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Abstract

Pseudoholomorphic curves have become an essential tool in symplectic topology
since their introduction by Gromov in 1985. They have also found application in
contact topology, where the existence of punctured holomorphic curves is closely
related to the dynamics of Reeb vector fields, and can be used to define contact
invariants via symplectic field theory.

Punctured holomorphic curves have particularly nice properties in contact three-
manifolds and their four-dimensional symplectizations, where intersections and trans-
versality can be controlled algebraically. This leads to the existence of two-dimen-
sional foliations by embedded holomorphic curves in the symplectization, which
project onto the contact manifold as one-dimensional singular foliations transverse
to the Reeb orbits. The existence of such foliations has been established previ-
ously for generic tight three-spheres by Hofer, Wysocki and Zehnder, with powerful
consequences for the Reeb dynamics.

The present thesis aims at extending this existence result to more general three-
manifolds and contact structures. To accomplish this, we develop a method for
preserving families of holomorphic curves under surgery along knots which cut trans-
versely through both the contact structure and the holomorphic curves. This is done
by considering a mixed boundary value problem on punctured Riemann surfaces
with boundary, then using the compactness properties of holomorphic curves to de-
generate each boundary component to a puncture. The result is that a holomorphic
foliation on the tight three-sphere can be used to construct a similar foliation for
every closed three-manifold with any overtwisted contact structure. This is the first
step in a program suggested by Hofer to prove the Weinstein conjecture in dimen-
sion three by constructing foliations or related objects for generic contact manifolds.
The constructions here also lead to some concrete examples of an algebraic theory
in the spirit of Floer homology and symplectic field theory, which is conjectured to
be of fundamental significance in the theory of holomorphic foliations, and may turn
out to have broader applications in three-dimensional topology.

vii

Contents

Dedication v

Acknowledgments vi

Abstract vii

List of Figures xi

1 Introduction 1

1.1 Holomorphic curves in contact geometry . . . . . . . . . . . . . . . . 1
1.2 Finite energy foliations . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Main result: Morse-Bott foliations in the overtwisted case . . . . . . . 14
1.4 Outline of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Toward a homotopy theory of finite energy foliations . . . . . . . . . 21

2 Contact Structures and Transverse Surgery 25

2.1 The theorem of Martinet and Lutz . . . . . . . . . . . . . . . . . . . 25
2.2 Transverse links are almost Hopf circles . . . . . . . . . . . . . . . . . 31

3 Explicit Constructions of Foliations 34

3.1 Morse-Bott contact structures in S1 × R2 . . . . . . . . . . . . . . . . 35
3.2 Local modifications and continuation . . . . . . . . . . . . . . . . . . 45
3.3 Nondegenerate perturbations . . . . . . . . . . . . . . . . . . . . . . . 50

4 Holomorphic Curves with Boundary and Interior Punctures 59

4.1 Mixed boundary conditions and Problem (BP) . . . . . . . . . . . . 59
4.2 The Maslov index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Maslov and Conley-Zehnder indices . . . . . . . . . . . . . . . 62
4.2.2 Bundles with boundary data . . . . . . . . . . . . . . . . . . . 63
4.2.3 Morse-Bott asymptotics . . . . . . . . . . . . . . . . . . . . . 74

viii
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Chapter 1

Introduction

1.1 Holomorphic curves in contact geometry

In general, a pseudoholomorphic curve is a map u : S → W from a Riemann surface
(S, j) to a 2n-dimensional almost complex manifold (W,J) satisfying

Tu ◦ j = J ◦ Tu. (1.1.1)

The almost complex structure J : TW → TW is, by definition, a smooth fiberwise
linear map satisfying J2 = − Id. We call J integrable if it is induced by a family of
charts identifying (W,J) locally with (Cn, i), i.e. W is a complex manifold. In this
case (1.1.1) is locally equivalent to the standard Cauchy-Riemann equations, so its
solutions are holomorphic maps. In general though, J need not be integrable except
for n = 1, and the study of Equation (1.1.1) falls into the realm of elliptic PDE theory
rather than complex analysis. As such, the solution spaces can be analyzed in a very
elegant way via nonlinear functional analysis and Fredholm theory. The solutions
u : S → W are also called J-holomorphic curves, or abbreviated as “holomorphic”
when there’s no ambiguity.

Gromov discovered in his seminal paper [Gr85] that J-holomorphic curves pro-
vide a natural tool for the study of symplectic manifolds. In this setting, one chooses
almost complex structures J that are tamed by the symplectic form ω, meaning

ω(X, JX) > 0 for all X ∈ TW , X 6= 0.

It’s often convenient to strengthen this condition slightly: J is called compatible
with ω if the bilinear form

gJ = ω(·, J ·)
defines a Riemannian metric. The spaces of almost complex structures that are
tamed by or compatible with a given symplectic form are always nonempty and
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contractible, and the particular choice of J is seldom of much importance for any
application. The advantage of the taming condition is that one can then bound
the area of a closed holomorphic curve in terms of purely topological quantities;
this establishes uniform area bounds for the solution spaces, leading to compactness
results. Gromov used these properties to prove several startling results in symplectic
topology, notably his celebrated “non-squeezing” theorem.

In the late 1980’s, holomorphic curves on noncompact domains were introduced
by Floer [F88], in his novel approach to infinite-dimensional Morse theory and the
Arnold conjecture. In the noncompact case, it is vital to have a notion of “finite
energy,” which establishes some control over the asymptotic behavior of a holomor-
phic curve. In Hamiltonian Floer homology, for example, one considers cylinders
u : R× S1 → W that satisfy a version of (1.1.1) which is related to a given Hamil-
tonian system. Then it turns out that solutions with finite energy always approach
periodic orbits of the Hamiltonian vector field at each end of the cylinder.

In what follows, we will be concerned largely with an analogous construction in
contact geometry. Let M be a smooth manifold of dimension 2n + 1, with n ≥ 1.
A contact form on M is a smooth 1-form λ with the property that

λ ∧ (dλ)n (1.1.2)

is a volume form. Then the 2n-plane distribution ξ = ker λ is called a contact
structure, and the contact condition (1.1.2) guarantees that ξ is, in some sense,
“maximally non-integrable”. In particular, an integral submanifold L ⊂ M of ξ
(called a Legendrian submanifold) never has dimension greater than n. On the other
hand, there are plenty of n-dimensional Legendrian submanifolds; this follows easily
from Darboux’s theorem, which states, as in the symplectic case, that all contact
manifolds are locally equivalent. In particular, every point has a neighborhood with
coordinates (x1, y1, . . . , xn, yn, z) in which λ takes the canonical form

λ = dz +
n∑

j=1

xj dyj.

If M is given an orientation, then the contact form is called positive if the volume
form λ ∧ (dλ)n has positive sign. Note that, given any smooth positive function
f : M → R, λ is positive if and only if fλ is also, thus it makes sense to speak
of positive contact structures, without direct reference to a contact form. It should
also be noted that a contact structure can exist without a global contact form;
the contact condition only requires the local existence of a 1-form satisfying (1.1.2).
Contact forms do exist globally for any contact structure that is coorientable, i.e. the
quotient TM/ξ is orientable. We will work exclusively with contact structures that
are both positive and coorientable.

2



A contact manifold is usually defined to be the pair (M, ξ), where ξ is a contact
structure, and the isomorphisms (M, ξ) ∼= (M ′, ξ′) in this category are defined by
contactomorphisms, i.e. diffeomorphisms ϕ : M → M ′ that satisfy ϕ∗ξ = ξ′. Con-
tact topology is thus considered to be the study of the category of manifolds with
contact structures. Alternatively, one can work more directly with contact forms
and call the pair (M,λ) a contact manifold, with contactomorphisms required to
satisfy ϕ∗λ′ = λ. This definition will be more convenient for our purposes, though
we’ll use both concepts interchangeably when there is no ambiguity.

There is an important dynamical system associated with every contact form.
Given (M,λ), the Reeb vector field Xλ is uniquely defined by the conditions

dλ(Xλ, ·) ≡ 0 and λ(Xλ) ≡ 1. (1.1.3)

The existence of closed orbits for Xλ is a fundamental open question in contact
geometry.

Conjecture 1.1.1 (Weinstein). Every closed contact manifold (M,λ) admits a
closed orbit of Xλ.

A considerable amount has been written about this problem in the literature.
For now we just mention the following result, which is of greatest relevance:

Theorem 1.1.2 (Hofer [H93]). The Weinstein conjecture holds in the following
3-dimensional cases:

• M = S3

• ξ is overtwisted

• π2(M) 6= 0

The definition of an overtwisted contact structure will be given in the next
section.

Theorem 1.1.2 follows from a construction involving holomorphic curves in the
so-called symplectization of a contact manifold. Given (M,λ), the symplectization
is the manifold R×M , which admits a special class of symplectic structures of the
form

Ωϕ = d(ϕλ),

where ϕ : R → (0,∞) is an increasing function, considered here as a function on
R×M . The particular choice of ϕ is unimportant; in fact, we’ll see in Sec. 4.6 that
it can sometimes be useful to choose a different class of symplectic forms altogether.
The key is that there’s a special class of almost complex structures tamed by these
forms.

The contact condition implies dλ is a nondegenerate 2-form on ξ, so (ξ, dλ) is a
symplectic vector bundle over M .

3

Definition 1.1.3. An admissible complex multiplication J on ξ is a smooth fiber-
wise linear map J : ξ → ξ that satisfies J2 = − Id and is compatible with dλ,
meaning that

| · |2J := dλ(·, J ·)
defines a metric on the bundle ξ →M .

Given (M,λ) with an admissible J : ξ → ξ, we exploit the natural splitting T (R×
M) = R⊕RXλ⊕ ξ to define an almost complex structure J̃ on the symplectization
R×M by

∂a 7→ Xλ, Xλ 7→ −∂a, v 7→ Jv for v ∈ ξ.
Here a : R × M → R is the coordinate function for the R-factor and ∂a is the
corresponding coordinate vector field. Observe that J̃ is invariant with respect to
the natural R-action on R×M .

We consider now J̃ -holomorphic curves

ũ : (Σ̇, j)→ (R×M, J̃),

where the domain Σ̇ = Σ \ Γ is a closed Riemann surface (Σ, j) with a finite set of
points Γ ⊂ Σ removed. The simplest example of a holomorphic curve in this setting
is a so-called orbit cylinder. Let x : R → M be a closed orbit of Xλ with period
T > 0; then it’s easy to check that the map ũ : R× S1 → R×M defined by

ũ(s, t) = (Ts, x(T t))

satisfies the nonlinear Cauchy-Riemann equation T ũ ◦ i = J̃ ◦ T ũ. The domain
(R× S1, i) is biholomorphic to the Riemann sphere with two punctures.

The following fact is the key to all dynamical applications of holomorphic curves
in contact geometry: all solutions satisfying a finite energy condition look approx-
imately like orbit cylinders near the punctures. The energy of any J̃-holomorphic
curve ũ : S → R×M is defined as

E(ũ) = sup
ϕ∈T0

∫

S

ũ∗d(ϕλ),

where T0 := {ϕ ∈ C∞(R, [0, 1]) | ϕ′ ≥ 0}. An easy computation shows that the
integrand is nonnegative whenever ũ is J̃-holomorphic. In the case where S = Σ̇
is a closed Riemann surface with finitely many punctures and ũ is a J̃-holomorphic
curve with E(ũ) < ∞, we call ũ a finite energy surface. These objects were first
introduced by Hofer to prove Theorem 1.1.2, and have since been studied in a series
of papers by Hofer, Wysocki and Zehnder.

The following notation will be used throughout: D ⊂ C is the closed unit disk,
and for r > 0, Dr ⊂ C is the closed disk of radius r centered at 0. We use dots to
indicate punctured surfaces, so for instance Ḋ = D \ {0}.
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Figure 1.1: A finite energy torus with one positive and two negative punctures.

Proposition 1.1.4 ([H93]). Suppose ũ = (a, u) : Ḋ = D \ {0} → R × M is a
J̃-holomorphic map with 0 < E(ũ) < ∞. If ũ is bounded, then ũ extends to a J̃-
holomorphic map D→ R×M . Otherwise, ũ is a proper map, and for every sequence
sk → ∞ there is a subsequence such that the loops t 7→ u(e−2π(sk+it)) converge in
C∞(S1,M) to a loop t 7→ x(Qt). Here x : R → M is a periodic orbit of Xλ with
period T = |Q|, where

Q = − lim
ǫ→0

∫

∂Dǫ

u∗λ 6= 0 (1.1.4)

It follows that any finite energy pseudoholomorphic map ũ = (a, u) : Σ̇ = Σ\Γ→
R×M behaves in this way at each puncture (see Figure 1.1)—this applies equally
well when (Σ, j) is a compact Riemann surface with boundary and interior punctures
Γ ⊂ int Σ. The number Q ∈ R \ {0} defined in (1.1.4) is called the charge of the
puncture, and we call the puncture positive/negative in accordance with the sign of
Q. It turns out also that a nonremovable puncture z0 ∈ Γ is positive if and only if
a(z) approaches +∞ as z → z0; a(z)→ −∞ at negative punctures. This partitions
the set of punctures into two subsets

Γ = Γ+ ∪ Γ−.

One can use the maximum principle to prove that for finite energy surfaces (i.e. when
Σ is closed), there is always at least one positive puncture; see [HWZ95a].

It’s important to note that the orbit x(t) need not be simply covered: in general
there is a minimal period τ > 0 and a positive integer k such that T = kτ . Whenever
we talk about a “periodic orbit” P ⊂ M , it is to be understood that P refers to both
an embedded circle in M and a covering number k ∈ N; though we will sometimes
abuse the notation and treat P as a set, when there is no ambiguity. We will also

5

sometimes allow a negative covering number −k: this is just short-hand notation
for a k-fold covered orbit that occurs as the asymptotic limit at a negative puncture.
The notation makes sense if one observes that t 7→ u(e−2π(sk+it)) converges to a
negative cover of the underlying orbit when Q is negative.

Prop. 1.1.4 makes no guarantee about the uniqueness of the orbit x(t); indeed,
one cannot exclude the possibility of a finite energy surface that has multiple distinct
asymptotic limits at the same puncture. However, this cannot happen if the orbit
is nondegenerate or Morse-Bott. Let Φtλ : M → M be the flow of the Reeb vector
field for time t. It follows from the definition of Xλ that TΦtλ preserves the contact
structure.

Definition 1.1.5. A T -periodic orbit x(t) with x(0) = p is nondegenerate if the
linear map dΦTλ (p)|ξp : ξp → ξp does not have 1 as an eigenvalue. The contact form
λ is called nondegenerate if all periodic orbits are nondegenerate.

Definition 1.1.6. A Morse-Bott manifold of T -periodic orbits N ⊂ M is a sub-
manifold N tangent to Xλ such that for every p ∈ N , ΦTλ (p) = p and ker(dΦTλ (p)−
Id)|ξp = TpN ∩ ξp. We call λ Morse-Bott nondegenerate (or simply Morse-Bott)
if the set of periods of Xλ is discrete, and if for every T > 0, the set NT = {p ∈
M | ΦTλ (p) = 0} is a closed Morse-Bott manifold.

Our main interest will be in Morse-Bott manifolds that have a few extra nice
properties.

Definition 1.1.7. A submanifold N ⊂ M will be called a simple Morse-Bott sub-
manifold if

(i) N is closed,

(ii) N is foliated by periodic orbits that all have the same minimal period τ > 0,
and

(iii) for every k ∈ N, N is a Morse-Bott manifold of kτ -periodic orbits.

Informally, we will call an orbit Morse-Bott if it belongs to a simple Morse-Bott
manifold. In this case the asymptotic result of Prop. 1.1.4 can be strengthened
considerably.

Proposition 1.1.8 ([HWZ96a], [HWZ96b] and [Bo02]). Let ũ = (a, u) : Ḋ→ R×M
be a finite energy punctured disk and suppose the T -periodic orbit x(t) provided by
Prop. 1.1.4 is either nondegenerate or belongs to a simple Morse-Bott manifold.
Then the loops

t 7→ u(e−2π(s+it))

6



converge exponentially fast in C∞(S1,M) to x(Qt) as s→∞. Moreover, the func-
tions

t 7→ a(e−2π(s+it))

s

converge in C∞(S1,R) to the constant Q as s→∞.

We defer a more precise discussion of the meaning of “exponentially fast” to
Appendix A, Theorem A.2.2.

Definition 1.1.9. A J̃-holomorphic curve ũ : Σ̇→ R×M will be called asymptoti-
cally cylindrical if it behaves as in Prop. 1.1.8 (more precisely Theorem A.2.2) near
each puncture z ∈ Γ.

Hofer’s proof of the Weinstein conjecture for the cases mentioned in Theo-
rem 1.1.2 establishes a periodic orbit as the asymptotic limit of a finite energy
plane. This plane is derived from a sequence of holomorphic disks by a “bubbling
off” process, exploiting the noncompactness of the space of holomorphic disks and
the properties of its natural compactification. A crucial ingredient here is a uniform
energy bound for the holomorphic disks; this guarantees that even as the sequence
technically fails to be compact, it gives rise to something with asymptotically cylin-
drical behavior. We will use a similar line of argument in Chapter 5, constructing
finite energy surfaces by degenerating punctured holomorphic curves with boundary.

1.2 Finite energy foliations

From now on, we assume dimM = 3. The more general situation is of course
quite interesting: one can use ideas similar to Floer homology and Gromov-Witten
theory to derive invariants of contact manifolds in any dimension, cf. [EGH00]. But
in dimension 3, holomorphic curves have some especially nice properties resulting
from the fact that 3 + 1 = 2 + 2.

For example, consider a finite energy plane

ũ = (a, u) : C→ R×M

with a nondegenerate asymptotic limit P ⊂M , and assume ũ is embedded. Using a
symplectic trivialization of the bundle u∗ξ →M to define a trivialization of ξ along
P , one can associate with any nondegenerate periodic orbit a Conley-Zehnder index
µCZ(P ). Now, if it happens that µCZ(P ) = 3, we can use some intersection theory
and the Fredholm theory developed in [HWZ99] to conclude the following:
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Figure 1.2: If an embedded finite energy plane has an asymptotic limit with Conley-
Zehnder index 3, the Fredholm theory gives a smooth family of planes foliating a
neighborhood in M and transverse to Xλ.

(i) There is a 2-dimensional family of embedded finite energy planes ũτ = (aτ , uτ)
near ũ, all mutually non-intersecting.

(ii) The maps uτ : C→M are all embedded, and the images of any two are either
identical or disjoint.

Thus a single plane ũ with the right kind of asymptotic data gives rise to a family
that foliate a neighborhood of ũ(C) in R ×M ; even better, they foliate a neigh-
borhood of u(C) in M , and it follows easily from the nonlinear Cauchy-Riemann
equation that this foliation is transverse to the Reeb vector field (Figure 1.2).

One may ask whether there is any global version of this local behavior. The first
results of this type were established by Hofer, Wysocki and Zehnder in [HWZ95b]
and [HWZ98], for the standard contact structure on S3. They proved that under
certain circumstances, S3 can be presented as a planar open book decomposition,
with pages given by finite energy planes that are all asymptotic to the same non-
degenerate “binding orbit” P , with µCZ(P ) = 3. This defines a smooth foliation of
S3 \ P by an S1-parametrized family of open disks with boundary at P (see Fig-
ure 1.3). The symplectization R× (S3 \P ) is itself foliated by an R-invariant family
of holomorphic planes; adding the orbit cylinder over P , this becomes a holomorphic
foliation of R× S3.

Finite energy foliations provide a natural generalization of this idea. Let (M,λ)
be a closed contact 3-manifold with an admissible complex multiplication J on the
contact structure ξ = ker λ. The associated almost complex structure on R×M is
always denoted by J̃ .

Definition 1.2.1. A finite energy foliation for (M,λ, J) is a smooth two-dimensional
foliation F of R×M such that
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1. Each leaf F ∈ F can be presented as the image of an embedded J̃-holomorphic
finite energy surface, and there exists a constant that bounds the energy of
every leaf uniformly.

2. For every leaf F ∈ F , the set σ+ F := {(σ+ a,m) | (a,m) ∈ F} for σ ∈ R is
also a leaf of the foliation, and thus either disjoint from or identical to F .

A foliation is called spherical if every leaf is a finite energy (punctured) sphere.

We shall often abuse notation and write ũ ∈ F , meaning that the finite energy
surface ũ parametrizes a leaf of F . The R-invariance assumption says that ũ =
(a, u) ∈ F if and only if ũσ := (a + σ, u) ∈ F for all σ ∈ R. This has several
consequences for the projection of F to the underlying contact manifold.

Proposition 1.2.2. Let F be a finite energy foliation. Then

(i) If P ⊂M is a periodic orbit which is an asymptotic limit for some leaf ũ ∈ F ,
then the orbit cylinder R× P is also a leaf of F .

(ii) For each leaf ũ = (a, u) : Σ̇ → R ×M of F that is not an orbit cylinder, the
map u : Σ̇→M is injective and does not intersect its asymptotic limits.

(iii) If ũ = (a, u) : Σ̇→ R×M and ṽ = (b, v) : Σ̇′ → R×M are two leaves of F ,
then u(Σ̇) and v(Σ̇′) are either disjoint or identical.

Proof. We prove (i) by an intersection argument: assume P is an asymptotic limit
of ũ = (a, u) ∈ F , and pick any point p ∈ P . This point is in the image of some
finite energy surface ṽ = (b, v) : Σ̇′ → R×M which parametrizes another leaf of F .
Suppose ṽ is not an orbit cylinder and v(z0) = p ∈ P . Since R× P is an embedded
holomorphic curve, one can apply the similarity principle as in [MS04] to analyze
the intersection of ṽ with R× P , finding a circle C ⊂ Σ̇′ around z0 such that v(C)
winds positively around P . Then ṽ must intersect ũσ for some σ ∈ R, and we have
a contradiction.

A useful immediate consequence is that if ũ = (a, u) is not an orbit cylinder, all
of its asymptotic limits are disjoint from the image of u : Σ̇→M .

To prove (iii), suppose ũ = (a, u) and ṽ = (b, v) are two leaves such that u(z1) =
v(z2). Then there is a number σ ∈ R such that ũ(z1) = ṽσ(z2), hence ũ and ṽσ

parametrize the same leaf of F . So u and v have the same image.
For (ii), assume ũ = (a, u) is a leaf and u(z1) = u(z2) for two distinct points

z1, z2 ∈ Σ̇. Then there is a number σ ∈ R such that ũσ(z1) = ũ(z2), thus ũ and ũσ

have identical images; in fact, ũkσ(Σ̇) = ũ(Σ̇) for all k ∈ Z. Now pick z0 ∈ Σ̇ and
zk ∈ Σ̇ such that ũ(zk) = ũkσ(z0), so

u(zk) = u(z0) and a(zk) = a(z0) + kσ.
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Clearly a subsequence of zk approaches a puncture as k → ±∞, so by the asymptotic
behavior of ũ, a subsequence of u(zk) converges to one of the asymptotic limits of ũ.
Thus u(z0) belongs to such an orbit, and as remarked earlier, this can only happen
if ũ is an orbit cylinder.

We’ll denote by PF ⊂M the union of all the closed orbits that occur as asymp-
totic limits for leaves of F ; equivalently, this is the projection down to M of all
the orbit cylinders in F . Then Prop. 1.2.2 can be rephrased by saying that an R-
invariant holomorphic foliation of R×M induces a continuous foliation of M \ PF .

Example 1.2.3. There is a simple foliation for the standard contact form on S3

that can be written down explicitly. We define this by regarding S3 as the unit sphere
in C2; then using the Euclidean inner product 〈 , 〉 on C2, one can write the contact
form λ0 as

λ0(z)v :=
1

2
〈iz, v〉

for z ∈ S3 ⊂ C2 and v ∈ TzS
3 ⊂ C2. The Reeb vector field for λ0 generates the

Hopf fibration, so all orbits are periodic (and have the same period). The standard
contact structure ξ0 = ker λ0 consists of complex lines in TS3 ⊂ S3×C2, so there is
a natural choice of admissible complex multiplication J = i : ξ0 → ξ0. This defines
an almost complex structure J̃ on R × S3 which turns out to be integrable; indeed,
the diffeomorphism

Φ : (R× S3, J̃)→ (C2 \ {0}, i) : (a,m)→ e2am

is holomorphic. For each ζ ∈ C \ {0} we now define a J̃-holomorphic plane

ũζ = (aζ , uζ) : C→ R× S3 : z 7→ Φ−1(z, ζ),

and for ζ = 0 there is a cylinder (i.e. punctured plane)

ũ0 = (a0, u0) : C \ {0} → R× S3 : z 7→ Φ−1(z, ζ).

One can check that all of these maps have finite energy; indeed, they are all asymp-
totic to the Hopf circle P∞ := {(e2πiθ, 0)}, and ũ0 is the orbit cylinder over P∞.
The images of uζ for ζ 6= 0 foliate S3 \ P∞, forming an open book decomposition
(Figure 1.3).

It is often desirable to impose some additional conditions on a finite energy
foliation. Recall from [HWZ99] that every embedded finite energy surface ũ : Σ\Γ→
R×M with nondegenerate asymptotic limits has an associated Fredholm index:

Ind(ũ) = µCZ(ũ)− χ(Σ) + #Γ,
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Figure 1.3: A planar open book decomposition of S3 = R3 ∪ {∞}, with binding
orbit P∞.

where µCZ(ũ) is the Conley-Zehnder index, as defined in [HWZ95a]. This is the index
of the linearized Cauchy-Riemann operator which detects embedded holomorphic
curves in a neighborhood of ũ with the same asymptotic limits. If this operator is
surjective, then every finite energy surface sufficiently close to ũ is part of a smooth
family with dimension Ind(ũ), and one would of course like to assume that this
family is the same as the obvious family defined by the foliation. In this case the
foliation is stable under perturbations of the data, since one can apply the implicit
function theorem to deform each leaf when the complex structure is perturbed. This
motivates the following definition.

Definition 1.2.4. A finite energy foliation F is called stable if PF is a finite union
of nondegenerate Reeb orbits, and for every leaf F ∈ F outside of R × PF , F is
parametrized by a finite energy surface ũ = (a, u) such that

1. The linearized Cauchy-Riemann operator at ũ is surjective, and all neighboring
finite energy surfaces obtained by the implicit function theorem are also leaves
of the foliation.

2. The map u : Σ̇→ M has no critical points.

Both conditions in this definition are essentially algebraic: we require that each
leaf should have “the right Fredholm index” and that the algebraic count of its

11
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Figure 1.4: A cross section of a stable finite energy foliation on S3 = R3 ∪ {∞},
with three asymptotic orbits cutting transversely through the page. The hyperbolic
orbit a is the limit of two rigid planes, and is connected to two elliptic orbits A
and B by rigid cylinders. All other leaves are index 2 planes asymptotic to A or B.
Arrows represent the signs of the punctures at a: a puncture is positive/negative if
the arrow points away from/toward the orbit.
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critical points is zero. The latter implies immediately that if ũ = (a, u) ∈ F is not
an orbit cylinder, then u : Σ̇ → M is an embedding. As for the Fredholm index,
it must be either 1 or 2; it cannot be 0 except for R-invariant leaves, which are
necessarily orbit cylinders. Leaves with Ind(ũ) = 1 are called rigid surfaces. These
belong to 1-parameter families determined by the R-action, and thus appear to be
isolated when projected down to M . Likewise, index 2 leaves belong to 2-parameter
families, which project down to 1-parameter families in M . In this way, stable finite
energy foliations give a geometric decomposition of the underlying contact manifold:

Proposition 1.2.5. Let p : R ×M → M be the projection onto the second factor.
Given a stable finite energy foliation F for (M,λ, J), the surfaces

p(F) := {p(F ) | F ∈ F such that F ⊂ R× (M \ PF )}

form a smooth 1-dimensional foliation of M \ PF , with all leaves transverse to the
Reeb vector field Xλ.

The transversality u ⋔ Xλ holds whenever ũ = (a, u) is a J̃-holomorphic curve
in R×M with u : Σ̇→M immersed.

Remark 1.2.6. The foliation of (S3, λ0, i) described in Example 1.2.3 is not techni-
cally stable since all the Reeb orbits on (S3, λ0) are degenerate, but with an intelligent
choice of coordinates near P∞ it can be turned into a stable foliation by a small per-
turbation of λ0. See Example 3.2.1.

One expects that stable finite energy foliations should generally be spherical, due
to algebraic relations that connect the topology of Σ with the the Fredholm index
Ind(ũ) and the number of critical points of u : Σ̇ → M . In particular, a necessary
and sufficient condition for u to be immersed is the vanishing of the homotopy
invariant windπ(ũ) defined in [HWZ95a], and we have the inequality

2windπ(ũ) ≤ Ind(ũ) + 2g +#Γ0 − 2, (1.2.1)

where g is the genus of Σ and Γ0 ⊂ Γ is the set of punctures with even Conley-
Zehnder index. (We will prove a generalization of this formula for punctured holo-
morphic curves with boundary in Chapter 4.) We see that the right hand side
of (1.2.1) cannot be zero if the genus is positive. In this situation, one can use
Fredholm theory with exponential weights to prove that finite energy surfaces with
windπ(ũ) = 0 do not exist generically. On the other hand, C. Abbas, K. Cieliebak
and H. Hofer [ACH04] have recently considered a generalization of the holomorphic
curve equation which may provide a suitable setup for defining stable finite energy
foliations with higher genus.
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In the present work, we will discuss only spherical foliations. Their existence
has previously been established for generic contact forms on the tight 3-sphere, see
[HWZ03b]. Recall that contact structures ξ on a 3-manifold M can be classified as
either tight or overtwisted, where overtwisted means there exists an embedded disk
D ⊂ M such that T (∂D) ⊂ ξ but TD|∂D 6= ξ|∂D. The standard contact structure
ξ0 on S3 is tight, and in fact by a theorem of Eliashberg [E92], all tight contact
structures ξ on S3 are contactomorphic to ξ0. Thus every tight contact form on S3

is equivalent to fλ0 for some smooth positive function f .

Theorem 1.2.7 ([HWZ03b]). There exist stable spherical finite energy foliations
on (S3, fλ0, J) for a generic set of f and J .

This has some remarkable dynamical consequences since the induced singular
foliation on S3 is transverse to the Reeb flow. Thus a stable foliation produces a
global system of transversal sections, with which one can prove:

Corollary 1.2.8 ([HWZ03b]). For a generic set of smooth functions f : S3 →
(0,∞), the Reeb vector field defined by λ = fλ0 on S3 has precisely either two or
infinitely many periodic orbits.

1.3 Main result: Morse-Bott foliations in the over-

twisted case

The present work is motivated by the goal of extending the existence result of
[HWZ03b] to other manifolds and other contact structures. To accomplish this, we
develop a technique for modifying families of holomorphic curves ũ : Σ̇ → R ×M
under surgery along links K ⊂M that are transverse to both the contact structure
and the holomorphic curves. Roughly, the idea is to cut pieces out of the domain Σ̇,
replacing ũ with a solution to a boundary value problem whose image stays outside of
a neighborhood of K. After performing surgery, we can then use a “noncompactness
argument” to obtain a new family of punctured holomorphic curves by degenerating
the boundary.

In the case considered here, this procedure takes a holomorphic open book de-
composition of the tight 3-sphere and uses it to create a finite energy foliation with
infinitely many asymptotic limits lying in Morse-Bott families.

Recall from [HWZ99] that for a finite energy surface ũ : Σ̇ → R × M with
degenerate asymptotic limits, one can use exponential weights to define a suitable
Cauchy-Riemann operator whose linearization is Fredholm. This works especially
nicely if the asymptotic limits belong to Morse-Bott families of periodic orbits:
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then for instance, an embedded index 2 curve has neighbors that are asymptotic
to neighboring orbits in a Morse-Bott family. (We’ll work out the details of this in
Chapter 4.)

Definition 1.3.1. A finite energy foliation F is said to be of stable Morse-Bott type
if PF consists of a finite union of nondegenerate orbits and/or simple 2-dimensional
Morse-Bott submanifolds, and for every leaf F ∈ F outside of R× (M \ PF), F is
parametrized by a finite energy surface ũ = (a, u) such that

1. The linearized Cauchy-Riemann operator at ũ (defined with exponential weights
if necessary) is surjective, and all neighboring finite energy surfaces obtained
by the implicit function theorem are also leaves of the foliation.

2. The map u : Σ \ Γ→ M has no critical points.

Just as in the stable case, a foliation F of stable Morse-Bott type defines a
1-dimensional foliation p(F) of M \ PF transverse to Xλ, where now the singular
set PF is a union of finitely many nondegenerate periodic orbits and finitely many
compact surfaces foliated by Morse-Bott periodic orbits. (The surfaces are tori in
particular, since they admit nonvanishing vector fields.)

Here is the main result.

Theorem 1.3.2. Every homotopy class of coorientable two-plane distributions on a
closed orientable three-manifold M contains a contact structure ξ with the following
property: there exists a contact form λ with ker λ = ξ and an admissible complex
multiplication J : ξ → ξ such that (M,λ, J) admits a spherical finite energy foliation
of stable Morse-Bott type. The foliation may be assumed to have the following
properties for every leaf that is not an orbit cylinder:

(i) all punctures are positive

(ii) all asymptotic limits are simply covered

(iii) each puncture has a different asymptotic limit

Eliashberg proved in [E89] that two overtwisted contact structures on a closed
3-manifold are contactomorphic if and only if they are homotopic as 2-plane distri-
butions. Combining this with the above theorem yields:

Theorem 1.3.3. Every closed contact three-manifold with a coorientable overtwisted
contact structure can be represented by a contact form that admits a spherical finite
energy foliation of stable Morse-Bott type.
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Though we will not prove this here, it should be possible to perturb a Morse-
Bott foliation along with a nondegenerate perturbation of the contact form, thus
producing a stable finite energy foliation (compare Figures 1.5 and 1.6). This would
follow by a gluing argument, using the ideas in [Bo02] to relate moduli spaces of
holomorphic curves in a Morse-Bott setup with the moduli spaces in a nondegener-
ate perturbation. We’ll see some explicit examples of such perturbed foliations in
Chapter 3. The result of such a gluing argument would be the proof of:

Conjecture 1.3.4. Every closed contact three-manifold with a coorientable over-
twisted contact structure can be represented by a nondegenerate contact form that
admits a stable spherical finite energy foliation.

The stable foliation will generally include some rigid cylinders that have one
negative puncture. But it should still be possible to guarantee that all orbits of
each leaf are simply covered and distinct.

1.4 Outline of the proof

Our existence result is made possible by the theorem of Martinet [Ma71] and Lutz
[Lu71] on the existence of contact structures in closed 3-manifolds. Their work
provides a blueprint for creating a contact structure in any given homotopy class
of 2-plane distributions on any closed oriented 3-manifold. This can be achieved by
a combination of Dehn surgery and so-called Lutz twists along transverse links in
the tight 3-sphere. We review the result in Chapter 2, and present also a lemma
that allows us to work only with links that are presented as closed braids near a
particular Hopf circle in S3.

In addition, we’ll make use of the existence of a particular type of stable finite
energy foliation on the tight 3-sphere: for this one can use either a stabilized version
of Example 1.2.3, or alternatively the open book decompositions constructed in
[HWZ95b]. We will use ingredients from such an open book decomposition of (S3, ξ0)
to construct a new foliation on some (M, ξ) obtained by surgery and Lutz twists.

To be more precise, we can choose a contact form λ1 on S3 with ker λ1 = ξ0,
such that the periodic orbits of Xλ1 include two linked Hopf circles P0 and P∞,
of which P∞ is nondegenerate and µCZ(P∞) = 3. There is then an admissible
complex multiplication J1 : ξ0 → ξ0, which determines a corresponding almost
complex structure J̃1 on R×S3, such that there is a smooth S1-parametrized family
ũτ = (aτ , uτ) : C → R × S3 of pairwise disjoint, embedded finite energy planes
which are all J̃1-holomorphic and asymptotic to P∞. The maps uτ : C → S3 are
embeddings transverse to Xλ1 , and they foliate S3\P∞. If we were to include all the
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R-translations of ũτ as well as the orbit cylinder R × P∞, this would give a stable
finite energy foliation for (S3, λ1, J1). Now take an arbitrary oriented link K ⊂ S3,
positively transverse to ξ0. By the lemma proved in Chapter 2, we can assume after
a transverse isotopy that each component of K is C∞-close to some positive cover
of the periodic orbit P0. Thus we can assume that K is transverse to each of the
planes uτ . The goal will then be to perform surgery on a neighborhood of K and
somehow obtain a holomorphic foliation after such a discontinuous change in the
data.

The new foliation will include an S1-parametrized family derived from the one
above, but the surfaces in this family will have extra punctures, and they will not
fill all of the new manifold M . In particular, these surfaces will fill only the region
outside a set of tori that bound a tubular neighborhood of K (Figure 1.5). Let
Kj ⊂ K be a knot, and choose a small tubular neighborhood Nj bounded by a
torus Lj . One result of the surgery will be to modify the contact form so that Lj
is a simple Morse-Bott manifold, foliated by periodic orbits which are meridians.
In principle, the fate of each of the planes ũτ cutting transversely through Kj is to
acquire a new puncture asymptotic to one of the orbits on Lj . Inside Lj , we need
to create a new foliation from scratch, and this is the subject of Chapter 3. It is
in fact the easy part of the argument, because we have enough freedom to choose
a contact form with a great deal of symmetry in Nj, so that it becomes possible
to write down the Cauchy-Riemann equations and, with a reasonable ansatz, solve
them. The foliation thus produced consists of an index 2 family of planes, which
project to a 1-dimensional family of disks in S3, bounded by the 1-parameter family
of periodic orbits on Lj (see Figure 3.2 in Chapter 3). This is the situation after
performing a Lutz twist in Nj. If we wish to change the topological type of S3 to
a new manifold M by Dehn surgery, the problem is hardly more complicated: in
effect, this just means looking at a solid torus Nj whose periodic orbits belong to
a different homotopy class (not meridians) on the boundary Lj . We can similarly
solve the Cauchy-Riemann equations and foliate Nj by finite energy cylinders, with
one puncture asymptotic to an orbit on Lj and the other one asymptotic to the
central axis of Nj . These constructions have much in common with the families of
holomorphic curves in an overtwisted S1 × S2 considered by Taubes in [T02]. As
a bonus, we obtain explicit constructions of foliations for some simple manifolds
such as S1 × S2 and T 3, and we will also see how to perturb these Morse-Bott
constructions to stable foliations with nondegenerate asymptotic limits.

The hard part is dealing with the situation outside of the neighborhoods Nj ,
where the family ũτ must be converted into a new S1-family of holomorphic curves
ṽτ with an additional puncture replacing each intersection point of ũτ with K. We
accomplish this by considering holomorphic curves defined on Riemann surfaces with
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Figure 1.5: The foliation of Morse-Bott type constructed from an open book de-
composition of S3 by surgery along a transverse knot. Here the knot has linking
number 2 with the binding orbit P∞, and a tubular neighborhood is bounded by
the Morse-Bott torus L. Each page of the former open book has two new punctures
asymptotic to orbits on L.
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Figure 1.6: A conjectured nondegenerate perturbation of Figure 1.5: here λ is per-
turbed near L so that most closed orbits are killed, but fourteen nondegenerate
orbits remain, alternating between hyperbolic and elliptic. These are connected by
rigid cylinders along L. Seven of the original leaves from the Morse-Bott construc-
tion are now rigid surfaces, each with two punctures at elliptic orbits (including
P∞) and one hyperbolic. The others are all index 2 surfaces with three punctures
at elliptic orbits (including P∞).
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both punctures and boundary. To begin, we take advantage of the fact that Kj is
close to P0 in order to make a C1-small change in λ1, so that the new contact form
λ has its Reeb vector field Xλ tangent to Lj . The implicit function theorem and a
simple compactness result allow us to perturb the open book decomposition {ũτ}
along with this change in the data. Since uτ cuts transversely through Lj, there is a
unique open disk Dj ⊂ C that can be cut out of the domain so that the restriction
of u to Σ̇ = C \ Dj has its image in S3 \Nj and maps the boundary ∂Σ into Lj. It
turns out that for any smooth function Gj : Lj → R, the graph

L̃j = {(Gj(x), x) ∈ R×M | x ∈ Lj}

is a totally real submanifold of R×S3. Clearly then, we can define such a surface L̃j
so that any of the restricted maps ũτ : Σ̇→ R×S3 satisfies the totally real boundary
condition ũτ(∂Σ) ⊂ L̃j . The properties of this mixed boundary value problem are
explored in detail in Chapter 4. In particular, we develop analogs of many of the
standard results for finite energy surfaces that were proved in [HWZ96a], [HWZ95a]
and [HWZ99], involving asymptotic behavior, algebraic embedding controls, Fred-
holm theory and transversality. A technical complication arises due to the fact that
the totally real submanifolds L̃j are not generally Lagrangian with respect to the
usual symplectic form d(eaλ), thus one cannot obtain a priori energy bounds for
this problem. We fix this in Sec. 4.6 by developing a generalized concept of energy,
which does satisfy an a priori bound if L̃j is made to satisfy a milder requirement,
called the pseudo-Lagrangian condition. This requirement is not very flexible, but
it doesn’t need to be, because we will see there is a trick for turning a solution
with pseudo-Lagrangian boundary conditions into one whose boundary is actually
Lagrangian.

After dealing with the technical preparations in Chapter 4, Chapter 5 completes
the proof of Theorem 1.3.2. Most of the technical work here consists of bubbling
off arguments: we must prove that if our solutions can be perturbed by the implicit
function theorem, then they also allow more than a small perturbation. This enables
us to homotop the S1-family of punctured holomorphic curves with boundary ũτ :
Σ̇ → R × S3, as the contact form is gradually twisted near the tori Lj . (The twist
is somewhat more violent inside Lj , but this doesn’t matter because our solutions
stay outside.) Eventually, a noncompactness result is used to produce the final
product: as λ is twisted so that the Reeb orbits on Lj become meridians, the
solutions ũτ cannot survive as punctured holomorphic curves with boundary. What
happens instead is that the complex structure on the domain Σ̇ degenerates until,
in the limit, each component of ∂Σ shrinks to a new puncture. The result is an
S1-parametrized family of finite energy surfaces asymptotic to both P∞ and the
new family of periodic orbits foliating Lj .
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1.5 Toward a homotopy theory of finite energy

foliations

Concordance of foliations and the Weinstein conjecture

Let us make some remarks about the larger context that this work fits into. The-
orem 1.3.2 and the corollary for overtwisted contact structures make up one ingre-
dient in a joint project with H. Hofer and two other Ph.D. students, R. Siefring
and J. Fish, to develop what might be called a homotopy theory for finite energy
foliations. Another important step in this program would be to formalize and prove
the following:

Assume (M,λ0, J0) are generic and admit a stable finite energy foliation F0.
Then for generic data (λ1, J1) with ker λ1 = ker λ0, there should also be a stable
finite energy foliation F1 for (M,λ1, J1). The two foliations should be related
to each other by a foliation F10 of R×M by embedded J̃01-holomorphic curves,
where J̃01 is a non-R-invariant almost complex structure interpolating between
J̃0 and J̃1.

The idea here is that one could use a foliation F0 to produce not only a foliation
for the new data (λ1, J1), but also a non-R-invariant holomorphic foliation F10 of
a symplectic cobordism connecting (M,λ0, J0) to (M,λ1, J1). F10 may be called a
concordance of foliations. For any such object, there should be a well defined notion
of asymptotic foliations F±

10, defined by taking “limits” of the foliations Fσ10 defined
by translation (a,m) 7→ (a + σ,m) as σ → ±∞. The conjecture then says that one
can find F1 and F10 such that F+

10 = F0 and F−
10 = F1.

A simple (though trivial) example of a concordance of foliations can be con-
structed as follows: given a foliation F of (M,λ, J), choose a smooth function
f : R → (0,∞) such that f ′ ≥ 0 and f(a) is constant for sufficiently large |a|, and
define a new almost complex structure Ĵ that matches J̃ on ξ = ker λ but takes ∂a
to Xfλ =

1
f(a)

Xλ at (a,m) ∈ R×M . If ũ = (a, u) parametrizes a leaf of F , one can

find a smooth function g : R → R so that the map ṽ = (g(a), u) is Ĵ-holomorphic.

All of these together form a Ĵ-holomorphic foliation F̂ of R×M , whose asymptotic
foliations F̂± are just F with the R-factor rescaled. This construction is the first
step in a proposed plan for constructing nontrivial concordances between foliations
for distinct contact forms.

Combined with Theorem 1.3.3, this would establish the existence of a stable finite
energy foliation for generic overtwisted contact forms on a closed three-manifold.
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One might next extend this result to generic tight contact forms by the following
trick. Given (M,λ), let (M,λ′) be the connected sum of M with a generic over-
twisted three-sphere. Then this would admit a finite energy foliation, and one can
imagine pinching off the overtwisted sphere by a stretching argument, thus obtaining
a finite energy foliation on (M,λ). If this succeeds, we obtain:

Every generic (M,λ, J) admits a (singular) finite energy foliation.

The word “singular” has been added here because there are known examples of
closed contact 3-manifolds that generically cannot admit stable finite energy foli-
ations, as we have defined them—though the methods used for studying holomor-
phic foliations may still yield interesting results in these cases. Take for instance
a closed Riemann surface S with χ(S) < 0, and consider the unit tangent bundle
M = S1TS defined by the complete hyperbolic metric h. This has a natural con-
tact form whose closed orbits correspond to closed geodesics of h, and they all have
Conley-Zehnder index 0. This last fact presents a problem because, as we will see
in Sec. 4.5.5, an abundance of even punctures tends to kill the transversality and
embeddedness results that make this theory work. Indeed, combining the index
formula Ind(ũ) = µCZ(ũ)− χ(Σ) + #Γ = 2g − 2 + #Γ0 with the inequality (1.2.1),
we have

windπ(ũ) ≤ Ind(ũ).

Thus if ũ is an index 1 or 2 leaf of a stable foliation, this must be a strict inequality,
and a weighted Fredholm theory argument can then be used to prove that such
curves do not exist generically. Similar inequalities appear in the Fredholm theory
and intersection theory, showing that generically, embedded finite energy surfaces
in this setting must be expected to have a fixed finite number of intersections with
their neighbors.

If the theory can be extended to this case, then one must introduce a more
general notion of “singular” finite energy foliations, for which different leaves may
have isolated intersections and the projected leaves are not embedded but have self-
intersections on some one-dimensional subset of M . We will not explore these ideas
further here.

Singular or otherwise, the generic existence of foliations would have the following
nice consequence. Given any contact form λ on a three-manifold M , we can ap-
proximate it by generic contact forms λk which admit finite energy foliations. The
foliations come with a crude energy bound c = c(λ), which also bounds the periods
of their spanning orbits. Thus for each λk there is a periodic orbit xk(t) with period
bounded by c(λ), and in the limit, Arzelá-Ascoli yields a periodic orbit x(t) for λ.
This would then settle the Weinstein conjecture in dimension three.
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Actually the result would prove more than just existence of a periodic orbit: as
was shown in [HWZ03b], the existence of a stable finite energy foliation leads to
the conclusion that generic tight contact forms on S3 admit either two or infinitely
many periodic orbits. It has been suggested that similar results may hold for all
closed contact three-manifolds as long as λ is sufficiently generic (e.g. one would
have to assume that all stable and unstable manifolds of hyperbolic orbits intersect
transversely).

Floer-type invariants

In addition to the potential dynamical results described above, a homotopy theory
of foliations may provide insight into contact geometry and topology. It should for
instance be possible to encode the data of a finite energy foliation algebraically in
the form of a Floer-type theory, leading potentially to new invariants that would
combine topological and contact information in an interesting way. We’ll explore
this idea speculatively in Chapter 6. The inspiration comes from observing the re-
lationship between index 2 families of leaves and index 1 rigid surfaces in stable
foliations: projecting down to the contact manifold, an index 2 family looks like
a 1-parameter family that is either compact (parametrized by S1) or degenerates
into a “broken” rigid surface with two levels (cf. Figures 1.4 and 1.6). The crucial
observation is that both this compactness statement and the corresponding gluing
theorem can be expressed without reference to any holomorphic curves other than
those that make up the foliation. This suggests that such behavior could be encoded
algebraically as in contact homology or rational symplectic field theory, creating a
version of these theories that sees only the moduli space of embedded holomorphic
curves belonging to a particular foliation. This would not be a contact invariant—it
would depend on the given foliation—but it should behave functorially with respect
to concordance. Then one could possibly construct invariants by considering, for
a given (M, ξ), the set of all stable foliations, up to equivalence by concordance.
Such a theory would likely have relations to the various other holomorphic curve
and gauge theoretic invariants that have found application to three-dimensional con-
tact geometry in recent years: e.g. Hutchings’ embedded contact homology [Hu02],
Ozsváth and Szabó’s Heegaard Floer homology [OS02], the Seiberg-Witten Floer
homology of Kronheimer and Mrowka [K98], and of course symplectic field theory
[EGH00].

In Chapter 6, we will outline in more detail what such a theory might look like
and, without worrying about the technical complications, do some simple compu-
tations based on the stable foliations constructed in Chapter 3. This leads to some
conjectures about concordance of foliations e.g. there is a contact manifold admit-
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ting two foliations that are not concordant. We will also argue (but not prove)
that the algebraic invariants, defined initially only for stable foliations, are also well
defined for foliations of stable Morse-Bott type.

24



Chapter 2

Contact Structures and Transverse

Surgery

2.1 The theorem of Martinet and Lutz

Our construction of finite energy foliations rests fundamentally on a procedure due to
Martinet [Ma71] and Lutz [Lu71] for creating contact structures on general closed
oriented 3-manifolds. We begin with a review of this construction, skipping the
proofs, which can be found in the excellent lecture notes by Geiges [Ge03]. Sec. 2.2
will then prove a lemma about transverse links in S3 which is needed for the com-
pactness arguments later on.

Dehn surgery

A basic fact in three-dimensional topology is that all closed oriented 3-manifolds
can be produced by integral Dehn surgery along links in S3. We review the basic
ideas here, referring to [Sa99] or [PS] for the details. Let K ⊂ S3 be an oriented
knot, with tubular neighborhood NK , and denote by B2(0) the closed unit ball in
R2. A rational Dehn surgery along K is accomplished by cutting NK out of S3

and replacing it by another solid torus S1 × B2(0), gluing the boundaries by some
homeomorphism ψ : ∂(S1 × B2(0)) → ∂NK . This surgery can be described by a
number p/q ∈ Q ∪ {∞} as follows.

Identify ∂B2(0) with S1 = R/Z via e2πiη̄ ↔ η̄, and define the standard coordi-
nates (θ̄, η̄) on ∂(S1 × B2(0)) = S1 × ∂B2(0) = S1 × S1. Let λ1 := S1 × {0} and
µ1 := {0} × S1 be the standard oriented longitude and meridian respectively. We
identify these loops with the homology classes they represent, which form a basis of
H1(∂(S

1 × B2(0))) ∼= Z⊕ Z. A similar canonical basis (λ2, µ2) of H1(∂NK) can be
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chosen by requiring λ2 to be the unique longitude of ∂NK that is oriented in the same
direction asK and is homologically trivial in H1(S

3\K) ∼= Z. Then the isotopy class
of ψ is entirely determined by the isomorphism ψ∗ : H1(∂(S

1×B2(0)))→ H1(∂NK),
which, in terms of the bases (λi, µi), is represented by a matrix

(
n q
m p

)
∈ GL(2,Z).

As it turns out, different surgeries produce diffeomorphic manifolds if the image
of the meridian µ1 7→ qλ2 + pµ2 is the same. One can prove this by constructing
a diffeomorphism explicitly, using the fact that certain homeomorphisms of the
boundary ∂(S1 ×B2(0)) extend to homeomorphisms of the full solid torus. A more
clever argument (see [Sa99]) would glue in the solid torus in two stages, beginning
with a contractible segment around the meridian, then using the fact that every
orientation preserving homeomorphism of S2 is isotopic to the identity. In any
case, we see that the numbers p and q determine the surgered manifold, and since
np−mq = ±1 implies that these are relatively prime, the surgery can be described
by the number p/q ∈ Q∪{∞}, which we call the framing. The resulting manifold is
independent of the choice of orientation for K, and we lose no generality in requiring
ψ to preserve orientation (in which case the matrix of ψ∗ is in SL(2,Z)).

By a slight abuse of terminology, we refer to any identification of ∂NK with
S1 × S1 as a coordinate system and call (θ, η) ∈ S1 × S1 coordinates on ∂NK . Such
coordinates will be called canonical if they generate the homology basis (λ2, µ2) in
H1(∂NK). Then since all homeomorphisms of a torus that generate the same map
on homology are isotopic, all surgeries can be obtained from gluing maps of the form

ψ(θ̄, η̄) =

(
θ(θ̄, η̄)
η(θ̄, η̄)

)
=

(
n q
m p

)(
θ̄
η̄

)
. (2.1.1)

We shall always use gluing maps of this form.
A surgery with framing p/q is called integral if q = ±1, in which case we may as

well assume q = 1 by appropriate choice of p. One can then interpret the framing
as a linking number: the surgery identifies the meridian of S1 × B2(0) with the
homology class λ2+rµ2, whose linking number with K is p. Thus, roughly speaking,
the framing p is equivalent to a choice of a loop parallel to K that winds around it
p times. This loop is the unique longitude on ∂NK that will become contractible in
the surgered manifold.

One easily extends these notions from knots to links: a framed link in S3 is a
finite disjoint set of knots {Kj ⊂ S3}, each given with a framing rj ∈ Q ∪ {∞}.
Taking mutually disjoint tubular neighborhoods of the knotsKj, one then constructs
a new manifold by surgery in each of these neighborhoods as described above. The
surgery is called integral if all the framings are integers.
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Theorem 2.1.1 (Lickorish [Li62], Wallace [Wa60]). Every closed orientable 3-
manifold can be obtained by integral Dehn surgery along some framed link in S3.

This was used by Martinet [Ma71] to prove that every closed orientable 3-
manifold admits a contact form. The construction is rather simple: start with
the standard contact structure ξ0 on S3, and let K ⊂ S3 be an oriented framed
knot. By a C0-small perturbation, we can assume K is positively transverse to ξ0,
meaning that if γ : S1 → S3 is an oriented parametrization of K and λ is a positive
contact form with ker λ = ξ0, then λ(γ̇(t)) > 0 for all t ∈ S1. Then by the con-
tact neighborhood theorem, one can identify a tubular neighborhood NK of K with
S1 ×B2

ǫ (0), where B
2
ǫ (0) is a ball around the origin in R2, such that K = S1 × {0}

and ξ0 is expressed in coordinates as the kernel of

λ0 = dθ + ρ2dφ.

Here θ is the standard coordinate on S1 and (ρ, φ) ∈ (0,∞) × (R/2πZ) are polar
coordinates on B2

ǫ (0) ⊂ R2; we can also choose this identification so that (θ, η) :=
(θ, φ/2π) define canonical coordinates on ∂NK ⊂ S3. Similarly, choose coordinates
(θ̄, ρ̄, φ̄) on the standard solid torus S1×B2

ǫ (0), and write η̄ = φ̄/2π ∈ S1. Then we
can perform surgery along K by cutting out K and attaching S1 × B2

ǫ (0) via the
embedding

ψ : S1 × (B2
ǫ (0) \B2

δ (0)) →֒ S3 \K : (θ̄, ρ̄, φ̄) 7→ (θ, ρ, φ)

where ρ = ρ̄, and (θ, φ) are determined by an invertible linear map

(
θ
η

)
=

(
n q
m p

)(
θ̄
η̄

)
,

for some matrix in SL(2,Z), with p/q dictated by the framing. Denoting the new
manifold by MK , we see that there is a contact form λK on MK \ (S1 × B2

δ (0))
with ker λK = ξ0, so it remains to extend λK to the center of the solid torus. On
S1 × (B2

ǫ (0) \B2
δ (0)) ⊂MK , we can write

λK = ψ∗λ0 = ψ∗(dθ + 2πρ2dη) = d(nθ̄ + qη̄) + 2πρ̄2d(mθ̄ + pη̄)

= (n + 2πρ̄2m)dθ̄ +
( q

2π
+ ρ̄2p

)
dφ̄.

Thus λK can be written in the form f(ρ̄)dθ̄ + g(ρ̄)dφ̄ for some smooth real-valued
functions f and g. We will have much more to say about 1-forms of this type,
but for now it suffices to observe that such forms are positive contact forms for
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ρ̄ > 0 if and only if the Wronskian fg′ − f ′g is positive, which means that the
curve ρ̄ 7→ (f(ρ̄), g(ρ̄)) through R2 winds around the origin in the counterclockwise
direction. One can define (f(ρ̄), g(ρ̄)) = (1, ρ̄2) or (−1,−ρ̄2) for ρ̄ close to 0, so that
f(ρ̄)dθ̄+g(ρ̄)dφ̄ extends to ρ̄ = 0 as a contact form. In this way, λK can be extended
over MK as a contact form; see for instance Figure 2.2. Repeating this procedure
for every connected component of a given framed link in S3, we obtain the existence
result from [Ma71]:

Theorem 2.1.2 (Martinet). Every closed oriented 3-manifold admits a positive
contact form.

Lutz twists

The existence result of Martinet can be improved substantially by supplementing
Dehn surgeries with so-called Lutz twists, which alter the homotopy class of the
contact structure while leaving the topology of the manifold unchanged. Let (M, ξ)
be a contact 3-manifold with a positively transverse knot K ⊂ M . Then we can
again choose coordinates (θ, ρ, φ), identifying a neighborhood NK of K with S1 ×
B2
ǫ (0) such that K = S1 × {0} and ξ is the kernel of λ0 = dθ + ρ2dφ. Now define a

new contact form λ = f(ρ)dθ + g(ρ)dφ such that

(i) (f(ρ), g(ρ)) = (1, ρ2) for ρ larger than some number δ ∈ (0, ǫ), and

(ii) If α(ρ) is the angular coordinate of the point (f(ρ), g(ρ)) in polar coordinates
on R2, then α is an increasing function with α(0) = −π and α(ρ) ∈ (0, π/2)
for ρ ≥ δ (Figure 2.3).

Again we can make sure that λ is a smooth contact form at ρ = 0 by setting
(f(ρ), g(ρ)) = (−1,−ρ2) for ρ near 0. The new contact structure matches the
old one outside a neighborhood of NK , and we shall refer to this particular type of
modification as a half-Lutz twist. Similarly, a full-Lutz twist would have α(0) = −2π
(Figure 2.4). A full-Lutz twist is less interesting for our purposes though, as it
produces a new contact structure which is homotopic to the old one through two-
plane distributions (Bennequin [Be83] gives an explicit homotopy). The half-Lutz
twist, on the other hand, does change the homotopy class of ξ, and so does an n

2
-Lutz

twist whenever n is odd.
It turns out that half-Lutz twists can be used to change a given contact structure

ξ on M to a new contact structure ξK which is homotopic to any prescribed coori-
ented 2-plane distribution α. Lutz proved this for S3 in his thesis [Lu71], and the
result can be extended to all closed oriented 3-manifolds by an obstruction theory
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Figure 2.1: The trajectory ρ 7→
(f(ρ), g(ρ)) for the contact structure
λ0 = f(ρ)dθ + g(ρ)dφ = dθ + ρ2dφ

Figure 2.2: Modification of λ0 under
nontrivial Dehn surgery

Figure 2.3: Half-Lutz twist of λ0 Figure 2.4: Full-Lutz twist of λ0
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argument. In brief, one can define obstruction classes

d2(α, ξ) ∈ H2(M ; π2(S
2)) ∼= H2(M ;Z)

d3(α, ξ) ∈ H3(M ; π3(S
2)) ∼= H3(M ;Z) ∼= Z

which measure whether two distributions α and ξ are homotopic over the 2-skeleton
and 3-skeleton respectively. Then one proves that the modification ξ → ξK can
be used to change both of these classes to any desired value, so long as one allows
sufficiently arbitrary homology classes and self-linking numbers for the transverse
link K ⊂M . A detailed account of this argument may be found in [Ge03].

The Lutz-Martinet result can be summarized using the concept of a partially
framed link. We define this to be an oriented link K ⊂ S3 with integer framings
associated to some (but not necessarily all) of its components; these integers con-
stitute a partial framing of K. There is a unique closed cooriented contact manifold
(MK , ξK) associated to every partially framed link K ⊂ S3 in the following way: af-
ter perturbing K to be positively transverse to the standard contact structure ξ0 on
S3, we can perform Dehn surgery on each component for which a framing is given,
and modify ξ0 as described above, producing the manifold MK with some contact
structure ξ. (One must settle on a convention for how to extend ξ0 to S1 × {0} in
each new solid torus; here there are choices to be made, but they aren’t important
for the present discussion.) Then for each remaining component of K we perform a
half-Lutz twist, changing ξ to ξK .

Theorem 2.1.3 (Lutz, Martinet). Given a closed oriented 3-manifold M with a
cooriented 2-plane distribution α, there exists a partially framed link K ⊂ S3 such
that MK =M and the distribution ξK is homotopic to α.

Note that the contact manifold (MK , ξK) produced in this way is usually over-
twisted, and in fact the classification result of Eliashberg [E89] shows that this
procedure produces every overtwisted contact structure up to isomorphism.

Remark 2.1.4. For the sake of later constructions, it will help to know that we can
assume our contact structure is always overtwisted. Indeed, the Martinet construc-
tion of ξ on MK allows considerable freedom in the way that we extend ξ0 to the
center of each solid torus being glued in; in particular we can choose to replace the
trajectory ρ 7→ (f(ρ), g(ρ)) of Figure 2.2 with one that winds an extra time around
the origin. This may change the homotopy class of ξ, but we can use Lutz twists
along other knots to change it back.

We can therefore assume without loss of generality that we have a contact struc-
ture ξ′ on M , homotopic to α, constructed from (S3, ξ0) by Dehn surgery and Lutz
twists along a transverse link K ⊂ S3, and having the following additional property.
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Near each connected component Kj ⊂ K ⊂ S3, we have chosen canonical coordi-
nates (θ, ρ, φ), which are also valid coordinates on an open subset of M for ρ larger
than some small number δ: then in this subset, ξ′ is the kernel of

f(ρ)dθ + g(ρ)dφ

for some smooth functions f and g, and there is a radius ρ0 at which g(ρ0) < 0 and
g′(ρ0) = 0. In other words, outside of this radius ρ0, the new contact structure looks
just like a half-Lutz twist of ξ0 along Kj ⊂ S3. We will use this fact in Chapter 5 to
facilitate the construction of a finite energy foliation in the region outside of these
open subsets.

2.2 Transverse links are almost Hopf circles

For technical reasons, it will be useful later on to assume that the transverse links
where we do surgery are “close” to a particular loop in S3, one which is a periodic
orbit for the standard contact form. The goal of this section is to prove that we can
make such an assumption without loss of generality.

Lemma 2.2.1. Let K ⊂ S3 be a link positively transverse to the standard contact
structure ξ0, and let P be an oriented Hopf circle. Then K is transversally isotopic to
a link whose components are each C∞-close to a positive cover of P . To be precise, if
P is parametrized by an embedding x : S1 → S3, then for each component Kj ⊂ K
there is a smooth immersion Fj : [0, 1] × S1 → S3 such that Fj(1, ·) : S1 → S3

parametrizes Kj, Fj(0, t) = x(kjt) for some kj ∈ N, and for all fixed τ ∈ (0, 1], the
maps Fj(τ, ·) : S1 → S3 are mutually non-intersecting embeddings transverse to ξ0.

A version of this was stated as Theorem 10 in [Be83], but without explicit proof.
It follows from a similar result for R3 which is proved earlier in the same paper
(Theorem 8). To set the stage, define a contact structure ζ0 on R3 in cylindrical
coordinates (ρ, φ, z) as the kernel of dz + ρ2dφ. This is isomorphic to the standard
contact form dz + xdy. (The proof of this fact is a diverting exercise in Moser’s
deformation technique!)

Theorem 2.2.2 (Bennequin [Be83]). Let K ⊂ R3 be a link positively transverse to
ζ0. Then K is transversally isotopic to a closed braid around the z-axis; that is, a
link in which every component can be parametrized as (ρ(t), φ(t), z(t)) with ρ(t) > 0
and φ̇(t) > 0 for all t ∈ S1.

Proof of Lemma 2.2.1. As usual, identify S3 with the unit sphere in C2. There
are contactomorphisms taking any Hopf circle to any other Hopf circle (e.g. 2-by-2
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unitary matrices), thus we may assume P = {(e2πiθ, 0) | θ ∈ S1}. Identify R3 with
C× R ⊂ C2, using (ρ, φ) as polar coordinates on C and z as the coordinate on the
R factor. Let p = (0,−1) ∈ C2 and define

ϕ : S3 \ {p} → R3 : (z1, z2) 7→
(

z1
1 + z2

,−i(z2 − z̄2)
2|1 + z2|2

)
.

This is a contactomorphism (S3 \ {p}, ξ0) → (R3, ζ0); see [Ge03], Sec. 2.1. We can
perturb K if necessary so that p 6∈ K and then reduce the problem to the following
question: is there a transverse isotopy of the link ϕ(K) ⊂ R3, bringing it close to
the loop ϕ(P ) = {(e2πiθ, 0) | θ ∈ S1} ⊂ R3?

Let us now change notation and assume K is a positively transverse link in
(R3, ζ0) and P = {(e2πiθ, 0) | θ ∈ S1} ⊂ R3. From Theorem 2.2.2 we can assume
after transverse isotopy that K is a closed braid about the z-axis. Thus we can
parametrize the components of K by non-intersecting embeddings γ1, . . . , γN : S1 →
R3, which appear in the (ρ, φ, z)-coordinates as

γj(t) = (ρj(t), 2πnjt, zj(t)) for some nj ∈ N.

A knot of this form is positively transverse to ζ0 if and only if [ρj(t)]
2 > − żj(t)

2πnj
. Now

let

τ0 =
2πnj

maxj,t |żj(t)|
if the functions zj(t) are not all constant; else set τ0 = 1. Choose a smooth nonde-
creasing function β : [0, 1]→ [0, 1] with β(0) = 0, β ′(0) > 0, β(1) = 1, and β(τ) = 1
for all τ ∈ [τ0, 1] if τ0 < 1. Now consider a homotopy of the form

γτj (t) = (β(τ)ρj(t) + (1− β(τ)), 2πnjt, τzj(t)) for τ ∈ [0, 1].

This defines an isotopy of K for τ ∈ (0, 1], and γ0j is an nj-fold cover of P . To verify
that it’s a transverse isotopy, we must check that

[β(τ)ρj(t) + (1− β(τ))]2 > −τ żj(t)
2πnj

, (2.2.1)

for all t ∈ S1 and τ ∈ (0, 1]. This is trivial whenever żj(t) ≥ 0, so assume żj(t) < 0
for some t. If τ ≥ τ0, the left hand side of (2.2.1) is simply [ρj(t)]

2, and since γ1j
is transverse, [ρj(t)]

2 >
−żj(t)

2πnj
≥ τ

−żj(t)

2πnj
. For τ < τ0, we observe that β(τ)ρj(t) +

(1 − β(τ)) is an interpolation between ρj(t) and 1, so this number is either greater
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than ρj(t) or greater than 1. In the former case, we again use the fact that γ1j is
transverse to conclude that (2.2.1) holds. In the latter case, we have

[β(τ)ρj(t) + (1− β(τ))]2 ≥ 1 ≥
(

2πnj
maxj,t |żj(t)|

) |żj(t)|
2πnj

= τ0
|żj(t)|
2πnj

> τ
−żj(t)
2πnj

.

Using the contactomorphism ϕ−1, this result transfers back to (S3, ξ0), proving
the lemma.
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Chapter 3

Explicit Constructions of

Foliations

By the Lutz-Martinet theorem, all of the contact manifolds in which we are in-
terested can be constructed from the tight 3-sphere (S3, ξ0) by surgery along par-
tially framed links K ⊂ S3. This produces a new manifold (M, ξ), which contains
a link K ′ ⊂ M such that there are tubular neighborhoods K ⊂ NK ⊂ S3 and
K ′ ⊂ NK ′ ⊂M with

(S3 \NK , ξ0) ∼= (M \NK ′, ξ).

The construction of a finite energy foliation on (M, ξ) will be done in two stages,
with separate families of holomorphic curves filling the the regions NK ′ andM \NK ′.
In this chapter we solve the problem for the neighborhood NK ′, by choosing a Morse-
Bott contact form with enough symmetry so that the Cauchy-Riemann equations
can be solved, more or less explicitly. This is the task of Sec. 3.1, which will fit
together with the work of Chapters 4 and 5 to prove the main existence result. In
Sec. 3.2, we extend the local analysis to address the problem of continuing a given
foliation from outside of NK ′ to the inside. This only works under some restrictive
assumptions and is not sufficient to prove the main result, but it does allow a
construction of foliations for which J becomes singular at K ′; this will turn out to
be useful for a technical argument in Chapter 5. Finally Sec. 3.3, which will not
be used elsewhere except in the speculative discussions of Chapter 6, shows how
the Morse-Bott construction on NK ′ can be perturbed to a stable foliation with
nondegenerate data.
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3.1 Morse-Bott contact structures in S1 × R2

We now investigate the following situation as a model of a contact manifold in the
neighborhood of some periodic orbit of the Reeb vector field. In particular, we have
in mind the neighborhood NK ′ = S1 ×B2

ǫ (0) of a knot K ′ = S1 × {0} that is glued
into S3 \NK .

Let M = S1 × R2. Denote by (ρ, φ) polar coordinates on the R2 factor, with
corresponding Cartesian coordinates (x, y) = (ρ cosφ, ρ sinφ), and let θ be the co-
ordinate on S1 = R/Z. Assume M is oriented so that at each point the basis(
∂
∂θ
, ∂
∂ρ
, ∂
∂φ

)
is positive. We can define a 1-form by

λ = f(ρ)dθ + g(ρ)dφ,

where the functions f and g are defined for ρ ≥ 0 and chosen so that (ρ, φ) 7→ f(ρ)
and (ρ, φ) 7→ g(ρ)/ρ2 define smooth functions on R2. This implies, among other
things, that f ′(0) = g′(0) = g(0) = 0. Then λ is a smooth 1-form on M and is also
a positive contact form if we make the following assumptions:

(i) The Wronskian D(ρ) := f(ρ)g′(ρ)− f ′(ρ)g(ρ) > 0 for all ρ > 0.

(ii) f(0)g′′(0) > 0.

Indeed, a simple calculation shows that

λ ∧ dλ = D(ρ)dθ ∧ dρ ∧ dφ =
D(ρ)

ρ
dθ ∧ dx ∧ dy,

and limρ→0D(ρ)/ρ = D′(0) = f(0)g′′(0). Intuitively, these conditions mean that the
curve ρ 7→ (f(ρ), g(ρ)) always winds counterclockwise around the origin in the xy-
plane, beginning on the x-axis with zero velocity and nonzero angular acceleration.
We will impose additional conditions on f and g as the need arises.

Denote by ξ = ker λ the contact structure on (M,λ). The Reeb vector field Xλ

satisfies dλ(Xλ, ·) = 0 and λ(Xλ) = 1, which imply

Xλ(θ, ρ, φ) =
1

D(ρ)

(
g′(ρ)

∂

∂θ
− f ′(ρ)

∂

∂φ

)
. (3.1.1)

A general orbit of the Reeb vector field is then of the form

x(t) = (θ(t), ρ(t), φ(t)) =

(
θ0 +

g′(r)

D(r)
t, r, φ0 −

f ′(r)

D(r)
t

)
,
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given fixed constants θ0, r and φ0, and we see that for r > 0, the orbit is periodic
whenever f ′(r)

2πg′(r)
= p

q
∈ Q∪{∞}. Here we take p and q to be relatively prime integers

with signs chosen to match those of f ′(r) and g′(r) respectively; the minimal period
is then

T = q
D(r)

g′(r)
= 2πp

D(r)

f ′(r)
(3.1.2)

(in the cases where f ′(r) = p = 0 or g′(r) = q = 0, pick whichever one of these
expressions makes sense). Thus the torus Lr := {ρ = r} ⊂M is foliated by periodic
orbits whenever f ′(r)/2πg′(r) is rational or g′(r) = 0.

Recall that a closed submanifold L ⊂M foliated by periodic orbits of the same
minimal period T is called a simple Morse-Bott manifold if for every x ∈ L and
k ∈ N, TxL = {v ∈ TxM | dϕkT (x)v = v}, where Φt is the time-t flow of Xλ. For
the torus Lr, this would amount to the statement that ∂

∂ρ
is never an eigenvector of

dΦkT with eigenvalue 1. From the expression

ΦkT (θ, ρ, φ) =

(
θ +

g′(ρ)

D(ρ)
kT, ρ, φ− f ′(ρ)

D(ρ)
kT

)
, (3.1.3)

we compute

∂ΦkT

∂ρ
(θ, r, φ) =

∂

∂ρ
+ (f ′′g′ − f ′g′′)kT

(
g

D2

∂

∂θ
− f

D2

∂

∂φ

)
,

where all functions are evaluated at r. The condition D > 0 implies that f and g are
never both 0, so the desired result is obtained if and only if f ′′g′ − f ′g′′ 6= 0, which
is equivalent to the statement that the slope g′/f ′ of the curve ρ 7→ (f(ρ), g(ρ)) (or
the slope’s reciprocal, if f ′(r) = 0) has nonzero derivative at r. We’ve proved:

Proposition 3.1.1. If f ′(r)/2πg′(r) = p/q ∈ Q ∪ {∞} and the function ρ 7→
f ′(ρ)/g′(ρ) (or its reciprocal) has nonvanishing derivative at r, then the torus Lr =
{ρ = r} ⊂ M is a simple Morse-Bott manifold of periodic orbits, with minimal
period given by (3.1.2).

At ρ = 0 we have Xλ(θ, 0, 0) =
1

f(0)
∂
∂θ
, thus the circle P := {ρ = 0} ⊂ M is also

a periodic orbit, with period T = |f(0)|. For k ∈ N, denote by P k the k-fold cover
of P , with period kT .

Proposition 3.1.2. The circle P = {ρ = 0} ⊂ M is a periodic orbit with period
T = |f(0)|. Its k-fold cover P k is degenerate if and only if

kf ′′(0)

2πg′′(0)
∈ Z,
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and otherwise has Conley-Zehnder index

µCZ(P
k) = 2

⌊
− kf ′′(0)

2πg′′(0)

⌋
+ 1

with respect to the natural symplectic trivialization of ξ along P induced by the
coordinates. Here ⌊x⌋ represents the greatest integer ≤ x.

The proof is a routine computation. The moral is that the nondegeneracy and
index of any cover of P depends on the slope of the trajectory ρ 7→ (f(ρ), g(ρ)) as
it pushes off from the x-axis at ρ = 0. So by choosing f and g of the form

(f(ρ), g(ρ)) = (±1 + αρ2,±ρ2) for ρ near 0

with α ∈ R, we can arrange any desired odd value for µCZ(P
k).

The goal is to construct various finite energy foliations in a neighborhood of
P ⊂ M . We must first pick a suitable complex structure J : ξ → ξ. Define a pair
of vector fields on M \ P by

v1 =
∂

∂ρ
, v2 =

1

D

(
−g ∂

∂θ
+ f

∂

∂φ

)
. (3.1.4)

These vectors form a basis of ξ on M \P , with dλ(v1, v2) ≡ 1, and we can use them
to define an admissible complex multiplication by

Jv1 = β(ρ)v2, Jv2 = −
1

β(ρ)
v1 (3.1.5)

for some smooth function β(ρ). The behavior of β near 0 can be chosen to ensure
that J is smooth at ρ = 0. We now define J̃ as the standard R-invariant almost
complex structure on R×M determined by λ and J . Then we seek maps ũ : (S, j)→
(R×M, J̃) defined on a Riemann surface (S, j) and satisfying T ũ ◦ j = J̃ ◦ T ũ. In
conformal coordinates (s, t) on S, this is equivalent to ũs + J̃(ũ)ũt = 0, or, writing
ũ = (a, u), the three equations

as − λ(ut) = 0

at + λ(us) = 0

πλus + Jπλut = 0

(3.1.6)

where πλ : TM → ξ is the projection along Xλ onto the contact structure. The
map u can be written in coordinates as u(s, t) = (θ(s, t), ρ(s, t), φ(s, t)), and then
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the equations (3.1.6) become

as = fθt + gφt ρs =
1

β
(f ′θt + g′φt)

at = −fθs − gφs ρt = −
1

β
(f ′θs + g′φs)

(3.1.7)

It seems reasonable that given two concentric tori L± = {ρ = ρ±}, each foliated
by periodic orbits that are homologous in H1(M \ P ), one might be able to find a
finite energy foliation of the region between them, each leaf being a finite energy
cylinder with ends asymptotic to orbits at L− and L+ respectively (Figure 3.1).
Indeed, suppose there are two radii ρ± with 0 < ρ− < ρ+, such that the following
conditions are met:

(i)
f ′(ρ±)

2πg′(ρ±)
=
p

q
∈ Q ∪ {∞}

(ii)
f ′(ρ)

2πg′(ρ)
6= p

q
for ρ ∈ (ρ−, ρ+)

A choice of sign must be made for p and q: for reasons that will become clear
shortly, let us choose p and q such that the quantity qf ′(ρ) − 2πpg′(ρ) is positive
for ρ ∈ (ρ−, ρ+). The two tori L± are each foliated by families of periodic orbits, of
the form

x±(t) =

(
θ0 +

q±
T±
t, ρ±, φ0 −

2πp±
T±

t

)
.

Here p± and q± are the same as p and q up to a sign, which must be chosen so

that the periods T± =
q±D(ρ±)

g′(ρ±)
=

2πp±D(ρ±)

f ′(ρ±)
are positive. Fixing values of θ0 and

φ0, we aim to find a finite energy cylinder ũ = (a, u) : R × S1 → R ×M that is
asymptotic at one end to x+, and at the other to x−, i.e.

lim
s→±∞

u(s, t) = x±(T±t) or x±(−T±t). (3.1.8)

Optimistically, such a map might take the form

(a(s, t), θ(s, t), ρ(s, t), φ(s, t)) = (a(s), θ0 + qt, ρ(s), φ0 − 2πpt). (3.1.9)

Taking this as an ansatz, we find that (3.1.7) reduces to the pair of ordinary differ-
ential equations

dρ

ds
=

1

β(ρ)
(qf ′(ρ)− 2πpg′(ρ)), (3.1.10a)

da

ds
= qf(ρ)− 2πpg(ρ). (3.1.10b)

38



Figure 3.1: Concentric tori with homologous periodic orbits connected by a finite
energy cylinder. On the left is the case where g′(ρ±) = 0, so the orbits are parallel
to ∂φ. On the right, f ′(ρ±) = 0 gives orbits parallel to ∂θ.
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These have unique solutions for any choice of ρ(0) ∈ (ρ−, ρ+) and a(0) ∈ R. Notice
that due to our sign convention for p and q, the right hand side of (3.1.10a) is always
positive, thus lims→±∞ ρ(s) = ρ± as desired. It is then clear that u(s, ·) converges in
the C1-topology to a periodic orbit as s→ ±∞, and we conclude from Prop. A.3.1
that ũ is a finite energy cylinder, with energy bounded by T+ + T−. For future
convenience we shall refer to this curve as a cylinder of type (p, q). An example is
shown in Figure 3.3.1

It is clear from (3.1.10b) that a is a proper function with asymptotically linear
growth to ±∞, as the condition D(ρ) > 0 guarantees that lims→±∞ a′(s) = qf(ρ±)−
2πpg(ρ±) cannot be zero. This expression determines the sign of the puncture at
s = ±∞ by

sign of puncture at L± = ± sgn(qf(ρ±)− 2πpg(ρ±)). (3.1.11)

To put this in a more revealing form, write f± := f(ρ±), f
′
± := f ′(ρ±) etc., and

observe that by assumption there is a nonzero number

c± =
2πp

f ′
±

=
q

g′±
.

Then (3.1.11) becomes ± sgn[c±(f±g
′
±−f ′

±g±)] = ± sgn(c±) since D(ρ±) is positive.
Now if both tori L± satisfy the Morse-Bott condition of Prop. 3.1.1, then 0 6=
f ′
±g

′′
± − f ′′

±g
′
± = − 1

c±
(qf ′′

± − 2πpg′′±), and our sign convention for p and q implies

sgn(qf ′′
± − 2πpg′′±) = ∓1, thus

sgn(f ′
±g

′′
± − f ′′

±g
′
±) = − sgn(c±) sgn(qf

′′
± − 2πpg′′±) = ± sgn(c±),

which is the sign of the puncture at L±. This expression depends only on the
contact form, and it has a geometric interpretation in terms of the acceleration of
the trajectory ρ 7→ (f(ρ), g(ρ)).

Definition 3.1.3. If Lr = {ρ = r} is a simple Morse-Bott torus, then we call it
positive or negative in accordance with the sign of f ′(r)g′′(r)− f ′′(r)g′(r).

Proposition 3.1.4. Suppose ũ : R× S1 → R×M is a cylinder of type (p, q) with
an asymptotic limit on some simple Morse-Bott torus Lr at one of its punctures.
Then the sign of this puncture matches the sign of Lr.

So Lr is a positive Morse-Bott torus if the trajectory ρ 7→ (f(ρ), g(ρ)) accelerates
inward at ρ = r, negative if the acceleration is outward. Observe that there can

1Thanks to Joel Fish for providing Figures 3.3 and 3.4.
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never be two consecutive negative tori with homologous periodic orbits—as one
would expect since a finite energy cylinder must have at least one positive puncture.
We will see in Sec. 4.2.3 that the behavior of Prop. 3.1.4 is quite general.

The equations (3.1.10) can be thought of as defining a direction field in the
subset (ρ−, ρ+)×R of the ρa-plane, which integrates to a one-dimensional foliation.
Since (3.1.10b) defines a(s) only up to a constant, this foliation is invariant under
the natural R-action on the a-coordinate. Meanwhile the set of trajectories t 7→
(θ0 + qt, φ0 − 2πpt) ∈ S1 × R/2πZ for all choices of θ0 and φ0 defines another one-
dimensional foliation. Putting these together as in (3.1.9) creates a two-dimensional
foliation of the region {(a, θ, ρ, φ) ∈ R×M | ρ ∈ (ρ−, ρ+)} by finite energy cylinders.
Note that the maps u = (θ, ρ, φ) : S1 × R→ M are also embeddings. The foliation
can be extended to ρ = ρ± by adding the cylinders over periodic orbits at L±.
Moreover, if there exists a radius ρ0 ∈ (0, ρ−) such that ρ0 and ρ− satisfy the same
conditions as ρ− and ρ+, then we can repeat this construction for ρ ∈ (ρ0, ρ−) and
thus extend the foliation to the region ρ ∈ [ρ0, ρ+].

It remains to extend the foliation further toward the center in the case where
there is no ρ < ρ− with f ′(ρ)/2πg′(ρ) = p/q. To that end, let us redefine our
notation with ρ− = 0 and L+ = {ρ = ρ+}; choose ρ+ > 0 so that:

(i)
f ′(ρ+)

2πg′(ρ+)
=
p

q
∈ Q ∪ {∞}

(ii)
f ′(ρ)

2πg′(ρ)
6= p

q
for ρ ∈ (0, ρ+)

Choose the signs of p and q so that qf ′ − 2πpg′ > 0 for ρ ∈ (0, ρ+), and consider
once more the family of J̃-holomorphic cylinders defined by

ũ = (a, u) : R× S1 → R×M : (s, t) 7→ (a(s), θ0 + qt, ρ(s), φ0 − 2πpt),

where ρ(s) and a(s) satisfy the ODEs (3.1.10) with ρ(0) ∈ (0, ρ+). By the same
arguments as before, u(s, ·) converges in the C1-topology (up to parametrization)
as s→∞ to the periodic orbit

x+(t) =

(
θ0 +

q+
T+
t, ρ+, φ0 −

2πp+
T+

t

)
∈ L+.

Define F (ρ) to be the right hand side of (3.1.10a). The requirement that J
be smooth at ρ = 0 implies that β(ρ) is bounded away from zero as ρ → 0, thus
limρ→0 F (ρ) = 0, and we conclude that ρ(s)→ 0 as s→ −∞.

We must now distinguish between two cases in order to understand fully the
behavior as s → −∞. If q 6= 0, u(s, ·) is C1-convergent to the |q|-fold cover of P ,
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with the sign of the puncture opposite the sign of q. In that case we have a family
of finite energy cylinders, each convergent to P |q| at one end and a simply covered
orbit on L+ at the other. By the same arguments as before, these together with the
orbit cylinder over P form a finite energy foliation in the region ρ < ρ+. Figure 3.2,
right, shows an example with (p, q) = (0, 1). An example with p and q both nonzero
is shown in Figure 3.4.

If q = 0, we have lims→−∞ u(s, t) = (θ0, 0) ∈ P ⊂ S1 × R2. In fact, since

lim
ρ→0

F ′(ρ) = − 2πpg′′(0)

limρ→0 β(ρ)
6= 0,

one can easily show that ρ(s) converges exponentially fast to 0, and plugging this
behavior into the equation ρ′ = F (ρ), so does its derivative. We now claim that
a(s) is bounded at −∞. For this it suffices to prove that the integral

∫ 0

−∞

da

ds
ds = −2πp

∫ 0

−∞

g(ρ(s)) ds

converges. We know ρ′(s) satisfies a bound of the form |ρ′(s)| ≤ Meλs with λ > 0.
Since g′ is continuous and ρ stays within a bounded interval for all s, we have

|g(ρ(s))| =
∣∣∣∣
∫ s

−∞

d

dσ
g(ρ(σ)) dσ

∣∣∣∣ ≤
∫ s

−∞

|g′(ρ(σ))| |ρ′(σ)| dσ

≤M1

∫ s

−∞

eλσ dσ =M2e
λs

for some constantM2 > 0. Clearly then
∫ 0

−∞
|g(ρ(s))| ds <∞ and the claim follows.

Since ut(s, ·) converges uniformly to 0 as s → −∞, a simple application of Stokes’
theorem now shows that for any function ϕ ∈ C∞(R) with ϕ′ > 0, the energy

∫

(−∞,0]×S1

ũ∗d(ϕλ)

is finite. Thus Gromov’s removable singularity theorem applies, and ũ can be ex-
tended to a finite energy plane ṽ = (b, v) : C→ R×M with ṽ(e2π(s+it)) = ũ(s, t) and
v(0) = (θ0, 0) ∈ S1 × R2. The set of all such planes then forms a two-dimensional
foliation of the interior of the solid torus, {ρ < ρ+}. Each of these planes is asymp-
totic to some orbit on L+, and the central orbit P is transverse to the foliation
(Figure 3.2, left).

The results of this section may be summarized as follows. Given a contact form
λ = f(ρ)dθ+ g(ρ)dφ on S1×R2, if the trajectory ρ 7→ (f(ρ), g(ρ)) winds sufficiently
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Figure 3.2: Holomorphic curves inside the innermost torus. If orbits on L+ have
nontrivial ∂θ component (right), we get finite energy cylinders with a puncture
asymptotic to the central axis; else that puncture is removable (left) and we get a
finite energy plane.
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Figure 3.3: A cylinder of type (p, q) in S1 × R2 with ρ+ > ρ− > 0.

Figure 3.4: A cylinder of type (p, q) in S1 × R2 with ρ+ > ρ− = 0.
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far around the origin, then we can single out certain concentric tori foliated by
homologous periodic orbits and construct finite energy foliations with cylindrical
leaves that span the regions between these tori. Depending on the homology class
of the orbits on these tori, the leaves inside the innermost torus extend to the center
either as finite energy cylinders with one end asymptotic to a (simple or multiple)
cover of the central orbit, or as finite energy planes transverse to this orbit.

To put this in a wider context, consider a knot K ⊂ S3, transverse to the
standard contact structure ξ0. Cutting out a neighborhood intNK ⊂ S3 and gluing
in another neighborhood NK ′ of a circle K ′, we obtain a new contact manifold
(M,λ), with λ constructed so that ∂(NK) = ∂(NK ′) is a simple Morse-Bott manifold,
foliated by periodic orbits that are meridians on ∂(NK). If the surgery is nontrivial,
then these orbits are not meridians on ∂(NK ′), they represent some other homology
class pµ + qλ ∈ H1(∂(NK ′)). Then the cylinders of type (p, q) can be used to
construct a Morse-Bott foliation inside NK ′.

Remark 3.1.5. By the Lickorish-Wallace theorem, we can assume without loss of
generality that the surgery is integral, i.e. q = ±1, in which case all asymptotic
orbits of the new foliation are simply covered. We can also control the acceleration
of the trajectory ρ 7→ (f(ρ), g(ρ)) so that all Morse-Bott tori are positive, and thus
all punctures at Morse-Bott orbits are positive. The sign of the puncture at ρ = 0
is determined by the sign of q, which is arbitrary.

3.2 Local modifications and continuation

Later on it will be important to understand how finite energy foliations can be
deformed globally in accordance with homotopies of the data (λ, J). In general
this requires Fredholm theory and the implicit function theorem. However, it is
occasionally useful to take a more simple-minded and purely local approach. In this
section we frame the question as follows: let M = S1 × B2

ǫ (0) with λ = f(ρ)dθ +
g(ρ)dφ and Jv1 = β(ρ)v2 as in the previous section, and suppose we are given a
smooth R-invariant foliation by holomorphic curves either transverse or asymptotic
to the orbit P = S1 × {0}. Now suppose the data (λ, J) are changed (preserving
symmetry) within a smaller neighborhood P ⊂ U ⊂M . Is there now a foliation for
the new data that matches the old foliation outside of U? If so, the new holomorphic
curves in U may be thought of as analytic continuations of the existing curves
outside U .

We will attack this problem with classical methods and find that some rather
restrictive assumptions are required for such an approach to succeed. The result
does have application: we’ll use it in Sec. 5.1.5 to produce a holomorphic open book
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decomposition for a setup in which J becomes non-smooth at the binding orbit. To
set the stage, here is a simpler example.

Example 3.2.1. The non-stable open book decomposition of (S3, λ0, i) described in
Example 1.2.3 can be stabilized by a small change in λ0 near the binding orbit P∞.
To do this, identify a neighborhood of P∞ with S1×B2

R(0) for any R ≤ 1/
√
2π, via

the embedding

ψ : S1 × B2
R(0)→ S3 : (θ, ρ, φ) 7→ e2πiθ

(√
1− 2πρ2, eiφ

√
2πρ
)
.

Then ψ(S1×{0}) = P∞ and ψ∗λ0 = π(dθ+ρ2dφ) = f(ρ)dθ+g(ρ)dφ, where f(ρ) = π
and g(ρ) = πρ2. The complex structure i : ξ0 → ξ0 now takes the form

iv1 = β(ρ)v2 where β(ρ) =
2π

1− 2πρ2
.

For ζ = reiφ0 ∈ C \ {0}, we can express the asymptotic behavior of the holomorphic
plane

ũζ(z) = (aζ(z), uζ(z)) =

(
1

2
ln |(z, ζ)|, (z, ζ)

|(z, ζ)|

)

in these coordinates by

(a(s, t), ρ(s, t), θ(s, t), φ(s, t)) =
(
a
(
e−2π(s+it)

)
, ψ−1 ◦ uζ

(
e−2π(s+it)

))

=

(
1

4
ln(e−4πs + r2),−t, r√

2π(e−4πs + r2)
, φ0 + 2πt

)
, (3.2.1)

with (s, t) ∈ (−∞, s0]×S1 for s0 sufficiently close to −∞. Thus ũζ looks asymptot-
ically like a cylinder of type (−1,−1).

Now change the contact form by setting λ̄ = f̄(ρ)dθ + ḡ(ρ)dφ where f̄ and ḡ
match f and g for ρ outside a neighborhood of 0; assume also that f̄ /f ≡ ḡ/g, so
ker λ̄ = ker λ0 = ξ0. The new contact form defines a new symplectic framing {v̄1, v̄2}
of ξ0, and there is a function β̄(ρ) such that iv̄1 = β̄(ρ)v̄2, where β̄(ρ) = β(ρ)
outside a neighborhood of 0. Then there are unique functions a(s) and ρ(s) that
solve the ODEs (3.1.10) for the new data and match (3.2.1) outside a neighborhood
of −∞. This gives a new open book decomposition for (S3, λ̄, i) by holomorphic
curves asymptotic to P∞ and matching the family {ũζ} everywhere on S3 except
near P∞.

This foliation will be stable if f̄(ρ) and ḡ(ρ) can be chosen near ρ = 0 so that P∞

is a nondegenerate orbit with µCZ(P∞) = 3. (This follows from the windπ estimates
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and Fredholm theory in [HWZ95a] and [HWZ99] respectively; see also Chapter 4.)
For this we use the formula of Prop. 3.1.2:

µv0
CZ
(P∞) = 2

⌊
− f̄ ′′(0)

2πḡ′′(0)

⌋
+ 1, (3.2.2)

where the superscript means this index is computed with respect to the trivialization
of ξ0|P∞ defined by the section v0(ψ(θ, 0, 0)) = ∂xψ(θ, 0, 0). This section does not
extend to a global trivialization of ξ0; to fix this, we can define a global nonzero
section by v(z1, z2) = (−z̄2, z̄1) ∈ (ξ0)(z1,z2) for (z1, z2) ∈ S3 ⊂ C2, and then compute

v0(ψ(θ, 0, 0)) = ∂xψ(θ, 0, 0) =
√
2πe2πiθ(0, 1) =

√
2πe4πiθv(ψ(θ, 0, 0)).

Thus windvP∞
(v0) = 2, and we must therefore add 4 to (3.2.2) in order to compute

µCZ(P∞). This implies that µCZ(P∞) = 3 if and only if

⌊
− f̄ ′′(0)

2πḡ′′(0)

⌋
= −1.

Happily, this is already almost true for f and g; it suffices to make a small per-
turbation so that f̄ ′′(0) is slightly greater than zero, i.e. the slope of the trajectory
ρ 7→ (f̄(ρ), ḡ(ρ)) begins at the f -axis with a slight slant to the right.

More generally, suppose the model M = S1 × B2
ǫ (0) with contact form λ =

f(ρ)dθ+g(ρ)dφ and complex multiplication Jv1 = β(ρ)v2 lies within a larger contact
manifold which already has a finite energy foliation, either transverse or asymptotic
to P = S1 × {0}. We then choose a number δ ∈ (0, ǫ) and new data

λ̄ = f̄(ρ)dθ + ḡ(ρ)dφ, J̄v1 = β̄(ρ)v2

such that f̄(ρ) = f(ρ), ḡ(ρ) = g(ρ) and β̄(ρ) = β(ρ) for ρ ∈ [δ, ǫ). Our goal is to find
a new foliation with respect to (λ̄, J̄) that matches the old foliation outside some
neighborhood of S1 ×B2

δ (0).
If the given foliation is transverse to P , then some portion of any leaf can be

parametrized by a map ũ = (a, u) = (a, θ, ρ, φ) : D → R × M such that u(0) =
(θ0, 0, ·) ∈ P . If P is an asymptotic limit, we instead define ũ on Ḋ = D \ {0}
so that u is asymptotic to P at 0. In either case, we can switch to holomorphic
cylindrical coordinates via the transformation (−∞, 0]× S1 → Ḋ : (s, t) 7→ e2π(s+it)

and consider the functions

ũ(s, t) = (a(s, t), θ(s, t), ρ(s, t), φ(s, t))
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for (s, t) ∈ (−∞, 0] × S1. As s → −∞ we have ρ(s, t) → 0, θ(s, t) → θ0 + qt and
φ(s, t) → φ0 − 2πpt for some integers q and p. If q = 0 then the singularity at
s = −∞ is removable, so a(s, t) → a0 for some a0 ∈ R; else a(s, t) → ±∞, with
sign opposite the sign of q. These functions satisfy the nonlinear Cauchy-Riemann
equations

as = fθt + gφt ρs =
1

β
(f ′θt + g′φt)

at = −fθs − gφs ρt = −
1

β
(f ′θs + g′φs)

(3.2.3)

Then from the expressions ast − ats = 0 and ρst − ρts = 0, we derive

f∆θ + g∆φ = 0, (3.2.4)

f ′∆θ + g′∆φ − 1

β
(f ′g′′ − f ′′g′)(θsφt − θtφs) = 0, (3.2.5)

where f , g and β depend on ρ(s, t).
We now switch to the new data (f̄ , ḡ, β̄) and look for a solution ṽ : (−∞, 0]×S1 →

R×M in the form

ṽ(s, t) = (ā(s, t), θ(s, t), ρ̄(s, t), φ(s, t))

such that there is some s0 ∈ (−∞, 0) with ṽ(s, t) = ũ(s, t) for s ≥ s0. There’s an
ansatz here: θ and φ are required to be the same functions as before, while ρ̄ and ā
must match ρ and a only for s ≥ s0. This will not be possible in general. If θ and φ
are fixed functions, then the equations for ρ in (3.2.3) can be interpreted as saying
that the graph Γρ := {(s, t, ρ(s, t))} is tangent to a certain two-plane distribution in
(−∞, 0]× S1 × R. The distribution turns out to be integrable if and only if

f̄ ′∆θ + ḡ′∆φ− 1

β̄
(f̄ ′ḡ′′ − f̄ ′′ḡ′)(θsφt − θtφs) ≡ 0. (3.2.6)

This expression is to be understood as a function of three independent variables
(s, t, ρ) ∈ (−∞, 0] × S1 × R. If it vanishes identically then solutions ρ̄(s, t) exist
locally. Assume this: then choosing s0 ∈ (−∞, 0) such that ρ(s, t) ≥ δ for all s ≥ s0,
there is a solution ρ̄(s, t) on (s1, 0] × S1 for some s1 < s0, with ρ̄(s, t) = ρ(s, t) for
s ≥ s0. For topological reasons, the continued solution is automatically 1-periodic
in t. Then for fixed t, ρ(s, t) satisfies the ODE

dρ̄

ds
=

1

β̄(ρ̄)

(
f̄ ′(ρ̄)θt + ḡ′(ρ̄)φt

)
,
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and we see that the solution ρ̄(s, t) extends to (−∞, 0]×S1 with lims→−∞ ρ(s, t) = ρ0,
where ρ0 ≥ 0 is the largest radius at which

f ′(ρ0)

2πg′(ρ0)
=
p

q
,

or zero if there is no such radius.
The remaining two equations specify the gradient of ā(s, t) in terms of known

functions, so solutions exist locally if and only if this gradient is curl-free, which
turns out to mean

f̄∆θ + ḡ∆φ ≡ 0 (3.2.7)

for all (s, t) ∈ (−∞, 0] × S1, ρ = ρ̄(s, t). In this case there is a unique solution on
(−∞, 0]× S1 with ā(s, t) = a(s, t) for all s ≥ s0. Fixing t, ā(s, t) satisfies

dā

ds
= f̄(ρ̄)θt + ḡ(ρ̄)φt → qf̄(ρ0)− 2πpḡ(ρ0) as s→ −∞.

This expression is automatically nonzero if ρ0 > 0 since the contact condition implies
that qf̄(ρ0)−2πpḡ(ρ0) and qf̄ ′(ρ0)−2πpḡ′(ρ0) cannot both vanish. Thus a(s, t) blows
up linearly at the puncture in this case, and ṽ is asymptotic to a periodic orbit on the
torus {ρ = ρ0}. For ρ0 = 0, a(s, t) blows up if q 6= 0, in which case ṽ is asymptotic
to P , and otherwise the puncture is removable.

The integrability conditions (3.2.6) and (3.2.7) are quite restrictive, but they are
obviously satisfied in two cases:

• Suppose f ′g′′ − f ′′g′ ≡ f̄ ′ḡ′′ − f̄ ′′ḡ′ ≡ 0, which means that the trajectories
ρ 7→ (f, g) and ρ 7→ (f̄ , ḡ) both parametrize portions of the same straight line
in R2. Then (3.2.4) and (3.2.5) give

f∆θ + g∆φ = f ′∆θ + g′∆φ = 0,

and since the contact condition requires (f, g) and (f ′, g′) to be linearly inde-
pendent in R2 for all ρ, we conclude that both θ(s, t) and φ(s, t) are harmonic.
Now (3.2.6) and (3.2.7) are satisfied for all (s, t, ρ), so any solution ρ(s, t) can
be continued to (−∞, 0]×S1. This precludes any twisting of the contact form,
but it can be used for Dehn surgery in some situations. It also allows arbitrary
changes to β̄ so long as limρ→0 β̄(ρ) 6= 0. In particular, λ̄ and J̄ need not be
smooth at P .

• Suppose θsφt − θtφs ≡ 0, then by the same arguments used above, θ and φ
must be harmonic and (3.2.6) and (3.2.7) are automatically satisfied, this time
for any choice of f̄ and ḡ. This is what happened in Example 3.2.1.
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3.3 Nondegenerate perturbations

As we said in the introduction, it is a reasonable conjecture that every finite en-
ergy foliation of stable Morse-Bott type can be perturbed to a stable finite energy
foliation, with nondegenerate asymptotic limits. A general proof of this would re-
quire some gluing estimates and the implicit function theorem, but for the explicitly
constructed foliations in the previous section, we can use a simpler trick to obtain
nondegenerate stable foliations in a neighborhood of S1 × {0} ⊂ M . As a bonus,
this leads to explicit constructions of stable foliations for simple contact manifolds
such as S1×S2 and T 3, which provide some examples for the discussion of invariants
in Chapter 6.

As in the previous section, let M = S1 × R2, with a contact form λ = f(ρ)dθ +
g(ρ)dφ where D = fg′ − f ′g > 0. Choose ρ+ > ρ− > 0 such that g′(ρ±) = 0: then
the tori L± = {ρ = ρ±} are simple Morse-Bott submanifolds foliated by “horizontal”
periodic orbits, of the form

x±(t) =

(
θ0, ρ±, φ0 −

f ′(ρ±)

D(ρ±)
t

)
.

We now define a perturbation λǫ of λ, which has finite (even) numbers of periodic
orbits on L±, all nondegenerate. Choose a smooth cutoff function α(ρ) which is
supported in two separate intervals around ρ+ and ρ−, and equals 1 near ρ±. Choose
also a small number ǫ > 0, and two Morse functions µ± : S1 → R. Here the Morse
condition simply means that every critical point has nonvanishing second derivative,
so the functions µ± each have even numbers of critical points, alternating between
local maxima and minima. Now, define a perturbed contact form on M as follows:

λǫ =

{
[1 + ǫα(ρ)µ±(θ)]λ for ρ ∈ supp(α),

λ for ρ ∈ α−1(0).

This can be written in the form λǫ = F (θ, ρ)dθ + G(θ, ρ)dφ, with F = (1 + ǫαµ)f
and G = (1 + ǫαµ)g for some function µ(θ, ρ) which matches µ±(θ) when ρ is near
ρ±; we will write µ′ for ∂θµ. The Reeb vector field is

Xλǫ(θ, ρ, φ) =
1

D(1 + ǫαµ)2

(
[g′ + ǫµ(α′g + αg′)]

∂

∂θ

− ǫµ′αg
∂

∂ρ
− [f ′ + ǫµ(α′f + αf ′)]

∂

∂φ

)
,
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and in particular at ρ = ρ±,

Xλǫ(θ, ρ±, φ) = −
1

D(ρ±)

(
ǫµ′

±(θ)g(ρ±)

(1 + ǫµ±(θ))2
∂

∂ρ
+

f ′(ρ±)

1 + ǫµ±(θ)

∂

∂φ

)
.

Thus for every critical point θj± ∈ Crit(µ±) there is a horizontal periodic orbit
P j
± ⊂ L±, parametrized by

xj±(t) =

(
θj±, ρ±, φ0 +

t

g(ρ±)(1 + ǫµ±(θ
j
±))

)
,

with minimal period T j± = 2π|g(ρ±)| · (1 + ǫµ±(θ
j
±)). As in the Morse-Bott case, we

can define a sign for the torus L± by

sgn(L±) = sgn[f ′(ρ±)g
′′(ρ±)− f ′′(ρ±)g

′(ρ±)].

Proposition 3.3.1. The orbits P j
± are nondegenerate if ǫ is sufficiently small, and

using the section ∂ρ ∈ ξ to define a trivialization Φ of ξ near L±, we have

µΦ
CZ
(P j

±) =





0 if sgn(µ′′
±(θ

j
±)) = sgn(L±),

1 if µ′′
±(θ

j
±) < 0 and L± is positive,

−1 if µ′′
±(θ

j
±) > 0 and L± is negative.

In the last two cases, the orbit is elliptic.

We omit the proof. Notice that each of the tori L± has an alternating pattern
of elliptic and hyperbolic orbits, all oriented in the same direction as the original
Morse-Bott orbits, and with approximately the same period.

Defining J̃ as in the previous section, we can again find a foliation of the region
{ρ ∈ (ρ−, ρ+)} by finite energy cylinders, essentially by guessing—but the loss of
symmetry in the θ-direction makes the problem somewhat harder. We will not be
able to find holomorphic cylinders

ũ : (R× S1, i)→ (R×M, J̃)

in any form nearly as simple as the ansatz that was used in the Morse-Bott case.
The solution is not to abandon the ansatz, but rather to allow more general complex
structures on R× S1.

It’s useful to adopt a more geometric perspective: given any almost complex
manifold (W,J), the set of embedded pseudoholomorphic curves u : (S, j)→ (W,J)
(with arbitrary domains) is in one-to-one correspondence with the set of complex
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1-dimensional submanifolds, i.e. surfaces S ⊂W such that TS is invariant under J .
Thus it will suffice for our purposes to find embeddings ũ : R× S1 → R×M whose
images have J̃-invariant tangent spaces. Then we can define a conformal structure
on R× S1 by j = ũ∗J̃ , and we will be able to prove that this conformal structure is
in fact equivalent to the standard structure i.

We use the following prescription (borrowed from [HWZ99]) for recognizing when
a given embedding ũ : S → R×M is J̃-invariant. Choosing any smooth coordinate
system (s, t) on an open subset of S, it suffices that ũ should satisfy the equation

ũs ∧ ũt = J̃ ũs ∧ J̃ ũt. (3.3.1)

We refer to this as the diffeomorphism-invariant Cauchy-Riemann equation, since ũ
is a solution if and only if ũ ◦ ϕ is also, for any diffeomorphism ϕ : S → S. Writing
ũ = (a, u) and using the definition of J̃ in terms of J and λ, (3.3.1) is equivalent to

asπλut − atπλus + λ(us)Jπλut − λ(ut)Jπλus = 0. (3.3.2)

In physicists’ terminology, these equations have a kind of “gauge invariance,” which
we can exploit to simplify the problem by “choosing a gauge”. This means we make
the very sensible assumption that (3.3.2) has solutions ũ = (a, u) : R×S1 → R×M
of the form

ũ(s, t) = (a(s, t), θ(s, t), ρ(s), 2πt),

where ρ(s) is an arbitrary increasing diffeomorphism R → (ρ−, ρ+). Indeed, if any
of the cylinders from the Morse-Bott construction can be perturbed to nondegen-
erate cylinders in this setup, then they can necessarily be written in this form by
composing with a (not necessarily holomorphic!) reparametrization of R× S1, and
the choice of ρ(s) fixes this reparametrization uniquely. Since the setup is still fully
symmetric in the φ-direction, it is also reasonable to suppose that a and θ depend
only on s, thus

ũ(s, t) = (a(s), θ(s), ρ(s), 2πt).

Now a simple computation reduces (3.3.2) to the pair of coupled ODEs,

GGθ

Dǫ

da

ds
=
Dǫ

β

dθ

ds
(3.3.3a)

Gρ
da

ds
= βG

dρ

ds
(3.3.3b)

where Dǫ := FGρ − FρG = (1 + ǫαµ)2D > 0. Remember that F , G and Dǫ depend
on both ρ and θ. Since ρ : R→ (ρ−, ρ+) is assumed to be a diffeomorphism, we can
think of a and θ as functions of ρ, turning this system into

da

dρ
=
βG

Gρ
=

D2
ǫ

βGGθ

dθ

dρ
.
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Thus θ(ρ) satisfies the differential equation

dθ

dρ
=

[
β(ρ)G(θ, ρ)

Dǫ(θ, ρ)

]2
Gθ(θ, ρ)

Gρ(θ, ρ)
. (3.3.4)

The graphs of solutions θ : (ρ−, ρ+)→ S1 to this equation are integral curves of the
vector field

V (θ, ρ) = Gρ(θ, ρ)
∂

∂ρ
+

[
β(ρ)G(θ, ρ)

Dǫ(θ, ρ)

]2
Gθ(θ, ρ)

∂

∂θ

=
(
[1 + ǫα(ρ)µ(θ)]g′(ρ) + ǫα′(ρ)g(ρ)µ(θ)

) ∂
∂ρ

+

[
β(ρ)g(ρ)

1 + ǫα(ρ)µ(θ)

]2
[ǫα(ρ)g(ρ)µ′(θ)]

∂

∂θ

in the θρ-plane. We assume ǫ is small enough so that the ∂ρ-term vanishes only when
g′(ρ) = 0. The ∂θ-term vanishes for ρ outside neighborhoods of ρ± since α(ρ) = 0,
and when ρ = ρ± it vanishes if and only if θ ∈ Crit(µ±). The integral curves are
shown in Figure 3.5. Picking ρ0 ∈ (ρ−, ρ+) outside the support of α, we conclude
the following:

• For any θ0 ∈ S1, there is a unique solution θ : (ρ−, ρ+) → S1 of (3.3.4) with
θ(ρ0) = θ0, and this solution is constant for ρ outside supp(α).

• If θ(ρ0) ∈ Crit(µ+) then θ(ρ) = θ(ρ0) for all ρ ∈ [ρ0, ρ+), and a similar
statement for critical points of µ−.

• If θ(ρ0) 6∈ Crit(µ±) then θ(ρ) converges to a critical point θ± ∈ Crit(µ±) as
ρ→ ρ±, where sgn(µ′′(θ±)) = sgn[g(ρ±)g

′′(ρ±)].

This last item comes from using (3.3.4) to compute the sign of d
dρ
µ(θ(ρ)) as ρ ap-

proaches ρ±. Now using fg′ − f ′g > 0 and g′(ρ±) = 0, we have sgn[g(ρ±)g
′′(ρ±)] =

− sgn[f ′(ρ±)g
′′(ρ±)] = − sgn(L±). Comparing the index computations in Prop. 3.3.1,

we see that generically, u(s, t) approaches an elliptic orbit on L± as s→ ±∞.
Once the equation for θ(ρ) is solved, we can find a(ρ) by integrating

da

dρ
=
β(ρ)G(θ(ρ), ρ)

Gρ(θ(ρ), ρ)
, (3.3.5)

and we see that the solutions are unique up to a constant; thus the solutions ũ(s, t)
come in 1-parameter families related by R-translation.

The embedding ũ : R × S1 → R ×M can be treated as a pseudoholomorphic
curve by defining the complex structure j = ũ∗J̃ on R × S1. From (3.3.5), we see
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Figure 3.5: Two examples of the integral curves of V (θ, ρ), with the critical points
of µ± acting alternately as attractors or repellors. Equivalently, these are cross-
sections of the resulting foliations in {ρ ∈ [ρ−, ρ+]} ⊂ S1×R2. The darkened curves
are rigid surfaces, and each orbit is labeled elliptic or hyperbolic. The foliation at
the right is not stable; it includes an index 0 cylinder connecting two hyperbolic
orbits.
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that a(s) → ±∞ as s → ±∞, thus ũ is a proper map. Then by Prop. A.3.1,
this fact and the asymptotic behavior of u(s, t) are enough to conclude that ũ has
finite energy and (R× S1, j) is conformally equivalent to the Riemann sphere with
two punctures. In other words, the complex structure extends smoothly over the
punctures, so we can reparametrize such that j = i.

We now have a family of pairwise non-intersecting embedded J̃-holomorphic
cylinders

ũ(σ,τ) = (a(σ,τ), θ(σ,τ), ρ(σ,τ), φ(σ,τ)) : R× S1 → R×M
parametrized by σ ∈ R and τ ∈ S1 such that the image of ũ(σ,τ) contains the circle
{(a, θ, ρ) = (σ, τ, ρ0)} ⊂ R×M .

It’s time to say a word about Fredholm indices and stability. By the results in
[HWZ99], a holomorphic cylinder in (R×M, J̃) has Fredholm index

Ind(ũ) = µCZ(ũ) + #Γ− χ(S2) = µCZ(ũ),

and we will show in Sec. 4.5.5 that the linearization of the Cauchy-Riemann equation
is always surjective in this case if Ind(ũ) ≥ 1. Let ũ = (a, θ, ρ, φ) : R×S1 → R×M be
a member of the family derived above, with asymptotic limits P± ⊂ L± at s = ±∞.
Comparing the natural orientations of {s} × S1 with those of P±, we find that the
sign of the puncture at s = ±∞ is precisely sgn(L±). Then from Prop. 3.3.1,

Ind(ũ) = µCZ(ũ) =





2 if both orbits are elliptic,

1 if one orbit is elliptic and one is hyperbolic,

0 if both orbits are hyperbolic.

So the foliation we’ve constructed in {ρ ∈ (ρ−, ρ+)} is stable if and only if the third
alternative never happens. As can be seen from Figure 3.5, it should never happen if
the Morse functions µ± are chosen generically; an isolated index 0 curve would cease
to exist if one of its asymptotic orbits were moved slightly along L±. In particular,
it suffices to assume that µ+ and µ− have no critical points in common. Then there
will be no cylinders connecting two hyperbolic orbits.

The foliation can be extended over the tori L±, though it requires more than
just orbit cylinders, since L± are no longer foliated by periodic orbits. The pattern
of alternating elliptic and hyperbolic orbits on L± suggests, in view of the index
computations above, that two such orbits could be connected by a rigid (i.e. index 1)
cylinder. We therefore search for solutions ũ = (a, u) : R× S1 → R×M to (3.3.2)
in the form

ũ(s, t) = (a(s), θ(s), ρ±, 2πt),
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where θ : R → S1 is a fixed diffeomorphism onto some open interval between
neighboring critical points of µ±. Now (3.3.3b) is satisfied trivially since Gρ(θ, ρ±) =
0, and treating a as a function of θ, (3.3.3a) becomes

da

dθ
=

[Dǫ(θ, ρ±)]
2

β(ρ±)G(θ, ρ±)Gθ(θ, ρ±)
,

This is well defined since θ(s) 6∈ Crit(µ±) by assumption, and we can integrate to
compute a(s) = a(θ(s)) up to a constant. We thus find a 1-parameter family of
solutions, related to each other by R-translation. Again ũ is a proper map, since
µ′(θ(s)) → 0 implies da

dθ
→ ±∞ as s → ±∞. Thus by Prop. A.3.1, ũ can be

reparametrized to define a J̃-holomorphic finite energy cylinder. The asymptotic
limits are a hyperbolic orbit P0 ⊂ L± and an elliptic orbit P1 ⊂ L±, and we find by
comparing orientations that the two punctures have opposite signs, with the sign at
P1 equal to the sign of L±.

Adding to these rigid cylinders the family ũ(σ,τ) and the orbit cylinders over
each periodic orbit on L±, we now have a foliation of {ρ ∈ [ρ−, ρ+]} ⊂ R ×M by
holomorphic curves. This construction works on any interval [ρ−, ρ+] ⊂ (0,∞) with
g′(ρ±) = 0 and g′(ρ) 6= 0 for ρ ∈ (ρ−, ρ+). The innermost region, where ρ− = 0, can
be filled by finite energy planes just as in the Morse-Bott case. Indeed, we only need
to make a nondegenerate perturbation of λ near L+ and find holomorphic cylinders
in the region {ρ ∈ (0, ρ+)} by the methods above. Since α(ρ) = 0 away from ρ+,
this family of cylinders looks identical to the family constructed for the Morse-Bott
case as ρ→ 0, thus the same argument as before allows us to remove the punctures
at s = −∞. By these methods, we can construct a stable finite energy foliation of
the subset {ρ ≤ ρ0} ⊂ R× (S1 × R2) for any ρ0 with g′(ρ0) = 0.

So far we’ve constructed nondegenerate perturbations for the cylinders of type
(1, 0) (and corresponding planes) from Sec. 3.1, but we’d also like to be able to
perturb the cylinders of type (p, q) in general. In principle this is no more difficult,
but since it’s less convenient to write down the perturbed contact form λǫ near
a torus Lr with longitudinal periodic orbits, we shall take a less direct approach.
The general situation is equivalent to the one already considered via a coordinate
transformation. Indeed, given ρ+ > ρ− > 0 with f ′(ρ±)

2πg′(ρ±)
= p

q
∈ Q ∪ {∞}, there is

a linear change in the coordinates (θ, φ) for ρ ∈ [ρ−, ρ+] which makes the orbits on
L± look like simply covered meridians. Then the methods above give a stable finite
energy foliation for this region. Of course, this doesn’t work for the innermost region,
when ρ− = 0; but here again we can simply observe that the cylinders constructed
in the perturbed setup look identical to those of the Morse-Bott setup when ρ is
outside supp(α). So these cylinders have the same behavior as ρ → 0 in both the
Morse-Bott and the nondegenerate pictures: the puncture at s = −∞ is asymptotic
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Figure 3.6: On the left is a cross section of a foliation of Morse-Bott type for T 3,
with two Morse-Bott tori La and Lb. Opposite edges of this diagram are identified.
On the right is a nondegenerate perturbation, with one elliptic and one hyperbolic
orbit on each of the original tori.

to a cover of the orbit P = S1×{0}. Moreover, since µCZ(P ) can be chosen to have
any odd value, we can arrange for these cylinders all to have Fredholm index 1 or
2, depending on whether the limit at L+ is hyperbolic or elliptic.

As we mentioned earlier, these ideas can be used to construct stable foliations
for some simple examples of closed contact manifolds. For example, a Morse-Bott
contact form on T 3 is obtained from (S1 × R2, f(ρ)dθ + g(ρ)dφ) by choosing f and
g to be 1-periodic and identifying S1 × ∂B2

1(0) with S1 × ∂B2
2(0). We can then

use the methods of this chapter to construct a foliation of Morse-Bott type and a
corresponding nondegenerate perturbation, as shown in Figure 3.6. S1 × S2 can be
treated similarly (Figures 3.7 and 3.8) by writing

S1 × S2 ∼= S1 × (B2
1(0)/∂B

2
1(0)).

In these diagrams we adopt the convention of labeling elliptic orbits with capital
letters and hyperbolic orbits with lowercase. Arrows are used to indicate the sign of
certain punctures, in a manner motivated by the notion of negative gradient flow:
a puncture is negative if the arrow points toward the orbit, and otherwise positive.
In these examples all punctures at elliptic orbits are positive.

We will use these constructions in Chapter 6 to compute some examples of a
conjectured variation on contact homology arising from finite energy foliations.
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a a

Figure 3.7: A cross section of a stable foliation for an overtwisted contact structure
on S1 × S2. The edges labeled ρ = 1 are identified to a single circle, which runs
transversely through a family of holomorphic planes.
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b1

b3

b4

b2

B2
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C
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C

C

CA
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Figure 3.8: Two more foliations of the same contact structure on S1 × S2 as in
Figure 3.7, this time using “vertical” orbits, and viewed “from above”. One should
imagine the region outside the torus labeled ρ = 1/2 as a reflection of the region
inside. On the left we have a nondegenerate perturbation with two orbits on {ρ =
1/2}. At right, a perturbation with eight orbits on this torus.
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Chapter 4

Holomorphic Curves with

Boundary and Interior Punctures

4.1 Mixed boundary conditions and Problem (BP)

As outlined in Sec. 1.3, the intermediate steps of our main argument require the
use of finite energy surfaces with boundary. The idea is to start with an ordinary
finite energy surface (or a family of them), and cut out part of the domain so that
we obtain a map defined on a punctured Riemann surface with smooth boundary,
satisfying a totally real boundary condition. This trick creates a holomorphic curve
whose image avoids a certain region of the target manifold, so we are then free
to perform surgery in that region. After surgery, we can convert the surface with
boundary back into an ordinary finite energy surface, using a noncompactness result
to degenerate the boundary into a puncture. The details of this argument will be
carried out in Chapter 5.

In this chapter we shall prove various technical results about the particular class
of holomorphic curves with boundary that will be needed. We refer to such problems
as “mixed” boundary value problems, because there are two types of “boundary”
data: a totally real submanifold which describes behavior at the actual boundary,
and a set of periodic orbits corresponding to the asymptotic behavior at the punc-
tures. An example of such a problem appeared previously in the work of Hofer,
Wysocki and Zehnder ([HWZ95a], [HWZ99] and [HWZ95b]): they considered holo-
morphic disks with multiple interior punctures (of negative sign), and boundary on
a surface transverse to both the contact structure and the Reeb vector field. Their
results are only loosely related to ours—we will need a slightly different set of as-
sumptions about the totally real submanifold, e.g. that the nonsingular surface is
tangent to the Reeb vector field. It should be emphasized that we will always as-
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sume punctures occur in the interior of our Riemann surface, never at the boundary.
The latter situation is interesting and important in other contexts, e.g. in relative
contact homology (cf. [EES02]).

In the following, (M,λ) is a closed contact 3-manifold, with contact structure ξ,
Reeb vector field Xλ, and some choice of admissible complex multiplication J on ξ.
We denote the natural vector field in the R-direction on R×M by ∂a, and define J̃
on R×M as usual by J̃∂a = Xλ, J̃ |ξ = J . Choose an embedded surface L which is
tangent to Xλ. As an example to keep in mind, L could be a Morse-Bott manifold
of periodic orbits.

Choose any smooth function G : L→ R and define the surface L̃G ⊂ R×M to
be the graph of G:

L̃G = {(G(x), x) ∈ R×M | x ∈ L}.

Proposition 4.1.1. For any choice of the function G, L̃G is a totally real subman-
ifold of (R×M, J̃).

Proof. For any x ∈ L, denote x̃ = (G(x), x) ∈ L̃G. Choose a nonzero vector
v ∈ TxL ∩ ξx, and observe that {Xλ(x), v} forms a basis of TxL. Then there exist
real numbers p and q such that {Y, Z} := {p∂a+Xλ(x), q∂a+ v} is a basis of Tx̃L̃G.
The proposition is true if {Y, Z, J̃Y, J̃Z} spans Tx̃(R×M) for all x. Writing these
as column vectors with respect to the basis {∂a, Xλ(x), v, Jv}, we obtain the matrix




p q −1 0
1 0 p q
0 1 0 0
0 0 0 1


 ,

which has determinant −p2 − 1 6= 0.

We will see that surfaces of the form L̃G furnish a natural boundary condition
for pseudoholomorphic curves in symplectizations. However, requiring the condition
ũ(∂Σ) ⊂ L̃G would be too simplistic, for the following reason. Our holomorphic
curves with boundary will be obtained by starting from curves without boundary
and cutting out pieces of the domain. The curves without boundary have very nice
properties with regard to Fredholm theory, and we’d like to preserve these properties
for the mixed boundary value problem. However, these properties are intertwined
with the R-invariance of the original problem, so we will have to formulate the new
one in a way that preserves R-invariance, at least locally. To that end, for any
σ ∈ R, denote by L̃σG a translation of L̃G in the R-direction:

L̃σG = {(G(x) + σ, x) ∈ R×M | x ∈ L}.
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Now instead of asking for solutions that map a boundary circle into a single totally
real submanifold, we shall require that they map the boundary into an element in a
1-parameter family of such submanifolds. This has the effect of raising the Fredholm
index, and in our situation will also help ensure transversality.

To formulate all of this precisely, let Σ be a compact oriented surface with
m ≥ 0 boundary components, and let Γ ⊂ int Σ be a finite subset. Denote the
punctured surface by Σ̇ = Σ\Γ, and choose an ordering of the boundary components
∂Σ = γ1 ∪ . . . ∪ γm. Choose L̃1, . . . , L̃m ⊂ R ×M to be some collection of totally
real surfaces of the type described above (they need not be distinct). We wish now
to consider maps ũ = (a, u) : Σ̇→ R×M with the following properties:

(i) ũ is pseudoholomorphic with respect to J̃ and some complex structure j on Σ.

(ii) ũ is asymptotically cylindrical (see Definition 1.1.9).

(iii) For each connected component γj ⊂ ∂Σ, j = 1, . . .m, we have the boundary
condition ũ(γj) ⊂ L̃σj for some σ ∈ R.

Condition (ii) implies that u : Σ̇→ R×M is asymptotic at each puncture to a
periodic orbit of Xλ. We shall always assume that all such periodic orbits are either
nondegenerate or belong to simple Morse-Bott submanifolds. In this case, let us
refer to a map with all of these properties as a solution to Problem (BP0).

Example 4.1.2. One way to obtain solutions to (BP0) is as follows. Suppose Σ̇
is a punctured surface without boundary, and we have 1-parameter family of finite
energy surfaces ũτ = (aτ , uτ) : Σ̇ → R ×M , such that the maps uτ : Σ̇ → M are
embedded and foliate a subset of M . Suppose there is also a solid torus N ⊂ M ,
where L := ∂N is tangent to Xλ and intersects each uτ transversely. Then for each
τ , the subset Dτ = u−1

τ (intN) ⊂ Σ̇ is a finite union of smoothly embedded open
disks, and Ṡτ = Σ̇ \ Dτ is a compact surface with smooth boundary and interior
punctures. One can then choose a function G : L→ R so that ũτ (∂Sτ ) ⊂ L̃G, thus
the restrictions of ũτ to Ṡτ define a 1-parameter family of solutions to (BP0).

This construction is very elegant, but it may not be quite as useful for construct-
ing foliations as one would expect. That’s because we require some extra conditions
on L̃G in order to facilitate compactness arguments for solutions of (BP0); this will
be discussed in Sec. 4.6.

For technical reasons, we will also need to consider a non-R-invariant general-
ization of problem (BP0). This is defined by choosing for each surface Lj ⊂ M a
smooth family of functions {Gσ

j : Lj → R}σ∈R such that ∂
∂σ
Gσ
j > 0. We then define

families of totally real submanifolds

L̃σj = {(Gσ
j (x), x) ∈ R×M | x ∈ Lj},
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and require that each component γj ⊂ ∂Σ satisfy the boundary condition ũ(γj) ⊂ L̃σj
for some σ ∈ R. We will call this Problem (BP). A further generalization to the
context of a 4-manifold with cylindrical ends will be treated in Sec. 4.5, when we
examine the Fredholm theory.

4.2 The Maslov index

4.2.1 Maslov and Conley-Zehnder indices

In any problem of this sort, the “boundary” conditions are described by some
homotopy-invariant integer which will appear in the Fredholm index formula. In
the case of a closed holomorphic curve, this is the first Chern number, and it be-
comes a Maslov index when totally real boundary conditions are added. When there
are punctures, one needs the Conley-Zehnder indices of the corresponding asymp-
totic orbits. Both Maslov and Conley-Zehnder indices are necessary for the mixed
boundary value problem.

Let ũ = (a, u) be a solution of (BP) with nondegenerate asymptotic limits. De-
note the limiting orbits at positive punctures by P+

1 , . . . , P
+
s , and those at negative

punctures by P−
1 , . . . , P

−
r . Since the domain Σ̇ is not closed, the complex line bun-

dle u∗ξ → Σ̇ admits a unitary trivialization Φ : u∗ξ → Σ̇ × C. (Here, “unitary”
means that the trivialization is both complex with respect to J , and symplectic with
respect to dλ|ξ). From the asymptotic description of ũ in Appendix A, we know
that Φ defines a trivialization of ξ over each asymptotic orbit, thus permitting us
to define the Conley-Zehnder indices µΦ

CZ(P
+
j ) and µ

Φ
CZ(P

−
j ) (see [HWZ95a]). Note

that the even/odd parity of µΦ
CZ(P

±
j ) is independent of Φ, thus we can characterize

each puncture z ∈ Γ as either even or odd, partitioning Γ into the subsets

Γ = Γ0 ∪ Γ1.

In addition to asymptotic behavior, we must factor in the totally real boundary
condition at ∂Σ. There are surfaces L1, . . . , Lm ⊂ M , covered in the symplectization
by families of totally real submanifolds L̃σ1 , . . . , L̃

σ
m parametrized by σ ∈ R, such

that for each connected component γj ⊂ ∂Σ, ũ(γj) ⊂ L̃σj for some σ. To simplify
notation, denote L =

⋃m
j=1 Lj , so then u(∂Σ) ⊂ L. Since L is tangent to Xλ, it is

also transverse to ξ, so there is a unique totally real subbundle ℓ ⊂ u∗ξ|∂Σ → ∂Σ
defined by

ℓz = ξu(z) ∩ Tu(z)L.
The trivialization Φ then allows us to define the boundary Maslov index (see [MS04])
of this totally real subbundle, denoted by µΦ(u∗ξ, ℓ).
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A generalized Maslov index for ũ can now be defined as

µ(ũ) =
s∑

j=1

µΦ
CZ(P

+
j )−

r∑

j=1

µΦ
CZ(P

−
j ) + µΦ(u∗ξ, ℓ). (4.2.1)

It will follow from Prop. 4.2.2 below that the index doesn’t depend on Φ. When
there is no confusion, we shall simply refer to this as the Maslov index of ũ.

We will need a more general definition of µ(ũ) in order to treat the case where ũ
has Morse-Bott asymptotic limits. For computational purposes, it’s also important
to understand the properties of µ(ũ) with respect to various operations that can be
performed on the bundle u∗ξ. To this end, we introduce in the next section a more
abstract framework for the Maslov index, and then use some of these ideas to treat
the Morse-Bott situation in Sec. 4.2.3.

4.2.2 Bundles with boundary data

The generalized Maslov index

Let Σ be a compact oriented surface with boundary, and denote Σ̇ = Σ \ Γ, where
Γ = Γ+∪Γ− is a finite set of interior points partitioned into subsets labeled “positive”
and “negative”. At this point the choice of sign for each puncture is purely arbitrary.
It makes sense to think of Σ̇ as a 2-manifold with boundary and positive and/or
negative cylindrical ends, which means the following. For each puncture z ∈ Γ,
choose a coordinate system identifying a neighborhood of Uz ∋ z with the closed
unit disk D ⊂ C, such that z is identified with 0 ∈ D. Denote the punctured
neighborhood by U̇z = Uz \ {z} ⊂ Σ̇. Depending on the sign of the puncture,
we then identify U̇z with either the positive half-cylinder Z+ = [0,∞) × S1 or the
negative half-cylinder Z− = (−∞, 0]× S1, using the diffeomorphisms

ϕ+ : Z+ → D \ {0} : (s, t) 7→ e−2π(s+it)

ϕ− : Z− → D \ {0} : (s, t) 7→ e2π(s+it)

This defines for each puncture z ∈ Γ a homeomorphism ϕz : U̇z → Z+ or ϕz :
U̇z → Z−. In the special case where Σ is a Riemann surface, we can choose these
homeomorphisms to be biholomorphic.

In general, Σ is required to have the structure of a topological manifold, and we
must also assume that this restricts to a smooth structure (all coordinate transforma-
tions are smooth) in some neighborhood of Γ. Then the coordinate maps identifying
Uz with D can be chosen as diffeomorphisms, so that the maps ϕz : U̇z → Z± are
also smooth. There is then a special oriented topological 2-manifold with boundary
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Σ, known as the circle compactification of Σ̇. This is defined from Σ by replacing
each puncture z ∈ Γ with the “circle at infinity,”

δz := TzΣ/R
+,

where R+ is the multiplicative group of positive numbers. One can define this equiv-
alently in the cylindrical coordinates above by replacing [0,∞)×S1 or (−∞, 0]×S1

with [0,∞]× S1 or [−∞, 0] × S1 respectively. Given the smoothness of the charts
near z, this description uniquely determines a topology on Σ, as well as a smooth
structure on each of the circles δz ⊂ ∂Σ. These circles are given a special orientation
defined by their identification with {±∞} × S1: thus the orientation of δz matches
that of ∂Σ if z is a positive puncture, and is otherwise the opposite.

In the case where Σ has a conformal structure, the natural inclusion Σ̇ →֒ Σ
defines a singular conformal structure on Σ. This structure degenerates at each
of the circles δz, but also determines a preferred class of diffeomorphisms δz ∼= S1,
unique up to rotation.

Let E → Σ be a topological Hermitian vector bundle of (complex) rank n, with
complex and symplectic structures denoted by J and ω respectively. We assume E
restricts to a smooth vector bundle over the circles δz ⊂ ∂Σ. Then we can associate
with E a collection of boundary data, which consists of the following:

1. A totally real subbundle ℓ ⊂ E|∂Σ → ∂Σ

2. A bounded real linear operator Az : H
1(E|δz) → L2(E|δz) for each puncture

z ∈ Γ; this is called an asymptotic operator. We assume that in some choice
of smooth unitary trivialization Φ : E|δz → S1 × R2n, with sections of E|δz
represented by loops η : S1 → R2n, Az can be written as

(Azη)(t) = −J0η̇(t)− S(t)η(t),

where J0 is the standard complex structure on R2n = Cn, and S(t) is a smooth
loop of symmetric matrices.

Operators of this type arise naturally when linearizing holomorphic curve equations
on punctured domains, and there is such an operator associated with every periodic
orbit of the Reeb vector field in a contact manifold (see Appendix A). In general,
given a smooth 1-periodic loop of real symmetric 2n-by-2n matrices S(t), we can
define an operator AS : H1(S1,R2n)→ L2(S1,R2n) by

(ASη)(t) = −J0η̇(t)− S(t)η(t). (4.2.2)

Then, as is well known, AS defines an unbounded self-adjoint operator on L2(S1,R2n)
(or technically on its complexification), and the spectrum σ(AS) ⊂ R consists of
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discrete eigenvalues of finite multiplicity that accumulate only at ±∞. We call AS

nondegenerate if its kernel is trivial, i.e. 0 6∈ σ(AS). This can be interpreted in
terms of a linear Hamiltonian system on R2n; indeed, ASη = 0 defines the differen-
tial equation

η̇(t) = J0S(t)η(t),

which yields the Hamiltonian flow for the time-dependent quadratic functionHt(η) =
1
2
〈η, S(t)η〉. Thus the flow is a 1-parameter family of linear symplectic matrices

ΨS(t) ∈ Sp(n) for t ∈ R, and AS is nondegenerate if and only if 1 is not an eigen-
value of ΨS(1). In this case, we define µCZ(AS) to be the Conley-Zehnder index for
this path of matrices. This also defines the Conley-Zehnder index µΦ

CZ(Az) for any
nondegenerate asymptotic operator Az : H

1(E|δz)→ L2(E|δz) with smooth trivial-
ization Φ : E|δz → S1 × R2n. We shall assume always that this trivialization covers
an orientation preserving diffeomorphism δz → S1 (using the special orientation of
δz).

Since it will be important later to consider punctured holomorphic curves that
have Morse-Bott asymptotic limits, we must add degenerate asymptotic operators
to this picture. Define the perturbed operators

A±
S = AS ± ǫ,

with ǫ a small positive number. Since AS has a discrete spectrum, we deduce that
A+
S and A−

S are each nondegenerate and have uniquely defined Conley-Zehnder
indices if ǫ > 0 is sufficiently small. We can therefore define µΦ

CZ(A
±
z ) even if Az is

degenerate. Of course if Az is nondegenerate, then µ
Φ
CZ(Az) = µΦ

CZ(A
±
z ).

Definition 4.2.1. Given a bundle E → Σ with boundary data B = (ℓ, {Az}z∈Γ),
define the generalized Maslov index of (E,B) by

µ(E,B) =
∑

z∈Γ+

µΦ
CZ(A

−
z )−

∑

z∈Γ−

µΦ
CZ(A

+
z ) + µΦ(E, ℓ),

where Φ is any unitary trivialization E → Σ×R2n that restricts smoothly over the
circles δz ⊂ ∂Σ.

Of course there is something to prove before this definition can make sense.

Proposition 4.2.2. The index µ(E,B) does not depend on the trivialization Φ.

Proof. This follows mainly from well known properties of the boundary Maslov and
Conley-Zehnder indices. Denote the connected components of ∂Σ by γ1 ∪ . . . ∪ γm,
so then the oriented boundary of Σ is

∂Σ =

(
⋃

j

γj

)
∪
(
⋃

z∈Γ+

δz

)
∪
(
⋃

z∈Γ−

−δz
)
.
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We focus on the case n = 1, since that is of greatest interest for our purposes. Then
if Φ and Ψ are two unitary trivializations of E → Σ, we measure the difference
between them by winding numbers: for any oriented circle γ ⊂ Σ, let windΦ

γ (Ψ) ∈ Z

be the winding number along γ of the natural nonzero section defined by Ψ, with
respect to the trivialization Φ. There is then the basic topological constraint, that
the winding numbers over all boundary components must add up to zero:

∑

γj⊂∂Σ

windΦ
γj
(Ψ) +

∑

z∈Γ+

windΦ
δz(Ψ)−

∑

z∈Γ−

windΦ
δz(Ψ) = 0. (4.2.3)

Let µΦ
γ (E, ℓ) denote the boundary Maslov index for the bundle pair (E, ℓ) restricted

to a given component γ ⊂ ∂Σ. Then we have

µΨ
γ (E, ℓ) = µΦ

γ (E, ℓ) + 2windΦ
γ (Ψ),

and similarly for the Conley-Zehnder index of any nondegenerate asymptotic oper-
ator Az,

µΨ
CZ(Az) = µΦ

CZ(Az) + 2windΦ
δz(Ψ).

Combining these formulas with (4.2.3) proves the result for n = 1. One could use
the same argument for general n, replacing winding numbers with Maslov indices
for loops of unitary matrices.

In this setting, we can partition Γ into sets of even and odd punctures according
to the parity of µΦ

CZ(A
±
z ). That is, we say z ∈ Γ± is odd if and only if µΦ

CZ(A
∓
z ) is

odd (note the sign reversal). This is independent of Φ, and it defines disjoint subsets
Γ±
0 and Γ±

1 so that

Γ = Γ+ ∪ Γ− = Γ0 ∪ Γ1 = Γ+
0 ∪ Γ−

0 ∪ Γ+
1 ∪ Γ−

1 .

Operations on bundles

There is a natural direct sum operation for bundles with boundary data. Given
two bundles Ej → Σ with boundary data Bj = (ℓj , {Aj

z}z∈Γ), j ∈ {1, 2}, define
boundary data for E1 ⊕ E2 → Σ by

B1 ⊕ B2 = (ℓ1 ⊕ ℓ2, {A1
z ⊕A2

z}z∈Γ).

Proposition 4.2.3. µ(E1 ⊕ E2,B1 ⊕ B2) = µ(E1,B1) + µ(E2,B2).

Proof. This follows at once from the corresponding additivity properties of the
Maslov and Conley-Zehnder indices over each component of ∂Σ.
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An even simpler operation is the disjoint union: if E1 → Σ1 and E2 → Σ2 have
the same rank n, then there is a natural rank n bundle

E1 ⊔ E2 → Σ1 ⊔ Σ2,

which inherits boundary data B1⊔B2 in a natural way. The following is then obvious:

Proposition 4.2.4. µ(E1 ⊔ E2,B1 ⊔ B2) = µ(E1,B1) + µ(E2,B2).

Somewhat less trivial is the behavior of the Maslov index with respect to gluing
operations. One such operation is the gluing of two bundles along boundary com-
ponents. Suppose Σ̇1 = Σ1 \ Γ1 and Σ̇2 = Σ2 \ Γ2 are two surfaces satisfying the
assumptions above, and we have bundles E1 → Σ1 and E2 → Σ2 of the same rank
n, with boundary data Bj = (ℓj , {Az}z∈Γj) for j ∈ {1, 2}. Pick two circles α ⊂ ∂Σ1

and β ⊂ ∂Σ2, along with an orientation reversing homeomorphism ψ : α → β, and
define

Σ1 #(ψ) Σ2

to be the surface obtained by gluing Σ1 and Σ2 along α and β via ψ. This surface
inherits the punctures in Γ1 ∪ Γ2, and Σ̇1 #(ψ) Σ̇2 has the natural compactification

Σ1 #(ψ) Σ2 = Σ1 #(ψ) Σ2.

If ψ is covered by a unitary bundle isomorphism Ψ : E1|α → E2|β, then we can
also glue the bundles by identifying v ∈ E1|α with Ψ(v) ∈ E2|β, defining a larger
Hermitian bundle

E1 #(Ψ) E2 → Σ1 #(ψ) Σ2.

This has a natural set of boundary data

B1 #(Ψ) B2 = (ℓ1|∂Σ1\α ∪ ℓ2∂Σ2\β
, {Az}z∈Γ1, {Az}z∈Γ2).

The gluing map Ψ will be called admissible if Ψ(ℓ1|α) and ℓ2|β are homotopic as
totally real subbundles over β; we then call #(Ψ) an admissible gluing operation, and
denote the resulting bundle with boundary data by

(E1,B1) #(Ψ) (E2,B2) = (E1 #(Ψ) E2,B1 #(Ψ) B2).

Note that admissibility is only possible if the subbundles ℓ1|α and ℓ2|β are simulta-
neously either orientable or non-orientable, i.e. their Maslov indices have the same
parity.

One can define similar operations for a single bundle (E,B) over Σ by choosing
α and β to be separate components of ∂Σ. The homeomorphism ψ : α → β must
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still reverse orientation, and the bundle isomorphism Ψ is admissible if Ψ(ℓ|α) is
homotopic to ℓ|β. The resulting operation is called a contraction, and it defines a
bundle

tr(Ψ)E → tr(ψ) Σ

with boundary data tr(Ψ) B, on a surface tr(ψ) Σ with two fewer boundary compo-
nents than Σ. Gluing operations can also be viewed as contractions for bundles over
surfaces with multiple components. By composing gluing operations with contrac-
tions, we can also define admissible operations that glue multiple pairs of boundary
circles at once.

A pair of punctures can be glued if they have opposite signs and the same parity.
Let z ∈ Γ1 ⊂ Σ1 and w ∈ Γ2 ⊂ Σ2, with positive and negative signs respectively.
Then an orientation preserving homeomorphism ψ : δz → δw is actually orientation
reversing as a map between components of ∂Σ1 and ∂Σ2. We can thus use ψ to
glue the compactified surfaces Σ1 and Σ2. More precisely, define Σ1 #(ψ) Σ2 as the
compact surface obtained by first replacing z ∈ Σ1 and w ∈ Σ2 with their respective
circles at infinity, and then gluing these via ψ. The glued surface has a natural set
of punctures

Γ1 #(ψ) Γ
2 = (Γ1 \ {z}) ∪ (Γ2 \ {w}),

and the circle compactification of the punctured surface is simply Σ1 #(ψ) Σ2 =
Σ1 #(ψ) Σ2.

The glued bundle E1 #(Ψ) E2 → Σ1 #(ψ) Σ2 and boundary data B1 #(Ψ) B2 are
defined in the obvious way for any unitary bundle isomorphism Ψ : E1|δz → E2|δw
covering ψ. If Ψ is smooth, it defines isomorphisms Ψ∗ : L2(E1|δz) → L2(E2|δw)
and Ψ∗ : H1(E1|δz) → H1(E2|δw), such that for any asymptotic operator A :
H1(E2|δw)→ L2(E2|δw), the natural push-forward

Ψ∗A = Ψ∗ ◦A ◦Ψ−1
∗ : H1(E2|δw)→ L2(E2|δw)

also has the form of an asymptotic operator. Then we call the gluing operation
#(Ψ) admissible if the operators A+

w and Ψ∗A
−
z are homotopic as nondegenerate

asymptotic operators. This is only possible if both punctures have the same parity.
Contractions of punctures can similarly be defined by gluing two punctures on

the same surface that have the same parity and opposite signs. One can also speak
of admissible gluing operations that involve multiple pairs of punctures, or a mixture
of punctures and boundary components.

Proposition 4.2.5. For any bundle with boundary data (E,B) and an admissible
contraction tr(Ψ),

µ(tr(Ψ)(E,B)) = µ(E,B).
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Similarly,
µ((E1,B1) #(Ψ) (E2,B2)) = µ(E1,B1) + µ(E2,B2).

for any admissible gluing operation on two such bundles.

Proof. It suffices to consider two cases: (i) a contraction of two boundary compo-
nents, and (ii) a contraction of two punctures. Every other operation can be built
from these ingredients together with disjoint unions (see Prop. 4.2.4).

Consider now a contraction on (E,B) for two components α, β ⊂ Σ. The bundle
tr(Ψ)E → tr(ψ) Σ contains an oriented circle C ⊂ int(tr(ψ) Σ) with distinguished
homeomorphisms α ∼= C and β ∼= −C, as well as a distinguished pair of totally
real subbundles ℓα and ℓβ over C, which are homotopic. One obtains E → Σ
from tr(Ψ)E → tr(ψ) Σ by cutting tr(ψ) Σ along C, using α and β to label the two
new boundary components, and supplementing the boundary data tr(Ψ) B with the
totally real subbundles ℓα and ℓβ over these two components. Then α and β cancel
each other out in computing the Maslov index: indeed, given any trivialization Φ of
tr(Ψ)E, this determines a trivialization of E, and we have

µΦ
α(E, ℓ

α) = −µΦ
β (E, ℓ

β)

due to the reversal of orientation and homotopy invariance of the index. This proves
the result for contractions of boundary components.

A virtually identical argument applies to the contraction of two punctures as
well.

Remark 4.2.6. This formalism extends to the case of a Hermitian bundle E over a
closed surface Σ by defining µ(E) = 2〈c1(E, J), [Σ]〉. Then additivity under gluing
still holds: in particular one can glue two surfaces without punctures together along
their entire boundaries to obtain a closed surface.

An important special case of a gluing operation is known as doubling. This can
be used to turn a question about surfaces with boundary and punctures into one
about surfaces without boundary or without punctures. We shall use it in particular
to eliminate boundaries.

Let E → Σ be a bundle with boundary data B, as defined above. We must first
define what we mean by the conjugate, or opposite of (E,B). From the underlying
surface Σ we define the conjugate surface Σc to be a copy of Σ with the opposite
orientation. An important special case is the conjugate of a Riemann surface (Σ, j):
the complex structure jc is defined on Σc by jc = −j. Alternatively one can define
this by replacing all holomorphic coordinate charts ϕ : U → C with their complex
conjugates, ϕc(p) = ϕ(p). There is a natural orientation reversing homeomorphism
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Σ→ Σc, which is antiholomorphic in the case of a Riemann surface. Given a point
z ∈ Σ or a subset U ⊂ Σ, we will denote its image in Σc by zc or U c.

For a punctured surface Σ̇ = Σ \ Γ, we also conjugate the special coordinate
maps ϕz : U̇z → Z± : p 7→ (s, t), replacing them with ϕcz : U̇ cz → Z∓ : pc 7→ (−s, t).
In this way the maps ϕcz remain holomorphic (if Σ has a conformal structure), and
in general the signs of z ∈ Γ and zc ∈ Γc are always opposite. The compactification
Σ
c
is now defined by the standard recipe: note that since both the orientation of Σ

and the sign of each puncture gets reversed, the natural homeomorphism Σ → Σ
c

actually induces orientation preserving diffeomorphisms δz → δzc for each z ∈ Γ.
The conjugate of the Hermitian bundle (E, J, ω) → Σ is similarly defined as

(Ec, Jc, ωc) → Σ
c
with Ec = E, Jc = −J and ωc = −ω. (The Hermitian metric

g = ω(·, J ·) is thus the same on both bundles.) There is a natural antiunitary bundle
isomorphism E → Ec : v 7→ vc, which covers the natural homeomorphism Σ→ Σc.
To every local trivialization Φ : E|U → U × Cn : v 7→ (p, V ) one can associate a
conjugate trivialization Φc : Ec|Uc → U c×Cn : vc 7→ (pc, V ), which is unitary if and
only if Φ is.

In defining the boundary data Bc, the choice of subbundle ℓc → ∂Σc is obvious.
For the asymptotic operators at zc ∈ Γc, we use the natural identification maps
δz → δzc and E → Ec to define isomorphisms

C : L2(E|δz)→ L2(Ec|δzc),
C : H1(E|δz)→ H1(Ec|δzc ),

then set Azc = −CAzC
−1. The minus sign is the price we pay for the fact that

the natural bundle isomorphism E → Ec is anti -unitary: its presence is needed
to ensure that Azc takes the standard form of an asymptotic operator. Indeed,
if (Azη)(t) = −J0η̇(t) − S(t)η(t) in some trivialization Φ, then writing Azc with
respect to Φc, we find

(Azcη)(t) = −J0η̇(t)− Sc(t)η(t)

for the loop of symmetric matrices defined by

Sc(t) = −KS(t)K, (4.2.4)

where K is the real 2n-by-2n matrix that represents complex conjugation on R2n =
Cn.

Proposition 4.2.7. For any bundle E with boundary data B,

µ(E,B) = µ(Ec,Bc).
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Proof. Given a trivialization Φ of E, we use the conjugate trivialization Φc to com-
pute µ(Ec,Bc). The first step is to show that for any component γ ⊂ ∂Σ,

µΦ
γ (E, ℓ) = µΦc

γc (E
c, ℓc).

In the trivializations, ℓc appears as the complex conjugate of ℓ, which reverses the
sign of the Maslov index; however, a second sign reversal results from the fact that
γc and γ have opposite orientations.

We will be done if we can show that µΦ
CZ(A

±
z ) = −µΦc

CZ(A
∓
zc). By (4.2.4), this

would mean that the two linear Hamiltonian systems

η̇(t) = J0Sǫ(t)η(t),

η̇(t) = −J0KSǫ(t)Kη(t)

give rise to symplectic flows with opposite Conley-Zehnder indices. Here Sǫ(t) :=
S(t) + ǫ, where ǫ is a real number arbitrarily close to 0, chosen to ensure that both
systems are nondegenerate. Suppose A(t) ∈ Sp(n) satisfies Ȧ(t) = J0Sǫ(t)A(t) and
A(0) = 1; then one verifies that A1(t) := KA(t)K is also a path of symplectic
matrices, and satisfies

Ȧ1(t) = −J0KSǫ(t)KA1(t).

We claim that µCZ(A) = −µCZ(A1). Since A(t) and A1(t) always have the same
spectrum (remember K = K−1) and µCZ is invariant under suitable homotopies, it
suffices to check this for paths A(t) in one of the canonical forms

A(t) =




e2πi(m+ 1
2)t

eπit

. . .

eπit


 , µCZ(A) = 2m+ n,

or

A(t) =




e2πimt
(
e−t

et

)

eπit

. . .

eπit



, µCZ(A) = 2m+ n− 1.

The rest is a routine computation.
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Now, define ψ : ∂Σ→ ∂Σc as the natural orientation reversing homeomorphism,
and choose Ψ : E|∂Σ → Ec|∂Σ to be the unique unitary bundle isomorphism that
maps v to vc for every v ∈ ℓ|∂Σ. The double of (E,B) is then defined as

(ED,BD) = (E,B) #(Ψ) (E
c,Bc).

The base ΣD = Σ #(ψ) Σ
c is a compact oriented surface with punctures (twice as

many as before, evenly divided between positive and negative) and no boundary.
From Props. 4.2.5 and 4.2.7, we immediately have

Corollary 4.2.8. For any bundle E with boundary data B,

µ(ED,BD) = 2µ(E,B).

Remark 4.2.9. If (Σ, j) is a Riemann surface, the closed surface ΣD obtained by
gluing Σ to Σc along the boundary inherits a natural complex structure jD, due to the
Schwartz reflection principle. One can see this by defining Σc in terms of conjugate
holomorphic charts, and piecing charts from Σ and Σc together to define ΣD. Thus
ΣD also inherits a natural smooth structure, and its tangent bundle is well defined.
(TΣD, jD) is then the double of (TΣ, j) as a complex line bundle, glued along the
totally real subbundle T (∂Σ)→ ∂Σ.

Conley-Zehnder indices and winding numbers

It will be useful to recall the relations proved in [HWZ95a] between the spectrum
of an asymptotic operator Az and its Conley-Zehnder index in the case n = 1.

A nonzero eigenfunction η ∈ H1(S1,R2) with ASη = λη is a smooth loop in
R2 that never passes through the origin, so it has a well defined winding number
w(η, λ) ∈ Z. The following is proved in [HWZ95a], Sec. 3.

Proposition 4.2.10. Let S(t) be a smooth 1-periodic loop of symmetric 2-by-2
matrices and define the operator AS : H1(S1,R2)→ L2(S1,R2) as in (4.2.2). Then:

1. If η1 and η2 are eigenfunctions with the same eigenvalue λ, then w(η1, λ) =
w(η2, λ). Thus we can omit the eigenfunction and define w(λ) for any λ ∈
σ(AS).

2. For every k ∈ Z, there are exactly two eigenvalues λ1, λ2 ∈ σ(AS) (counting
multiplicity) such that w(λ1) = w(λ2) = k.

3. Given two eigenvalues with λ1 ≤ λ2, we have w(λ1) ≤ w(λ2).
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Note that any eigenvalue λ ∈ σ(AS) has multiplicity at most 2. We now associate
with the loop S two integers:

α(S) = max{w(λ) | λ < 0}, (4.2.5)

and

p(S) =

{
0 if there exist λ1 < 0 and λ2 ≥ 0 with w(λ1) = w(λ2)

1 otherwise
(4.2.6)

The number p(S) is called the parity of AS. For an asymptotic operator Az with
trivialization Φ, we shall denote these integers by αΦ(z) and pΦ(z). The importance
of α and p derives from the following result proved in [HWZ95a]:

Proposition 4.2.11. If AS is nondegenerate, then

µCZ(AS) = 2α(S) + p(S).

In the degenerate case we must consider the perturbed operators A±
S = AS ± ǫ;

then
µCZ(A

±
S ) = 2α±(S) + p±(S),

where α±(S) and p±(S) are defined as in (4.2.5) and (4.2.6) with all eigenvalues
assumed to be eigenvalues of A±

S . It will be useful later on to note that for any
eigenfunction η of AS with negative eigenvalue,

wind(η) ≤ α(S) ≤ α−(S). (4.2.7)

This follows from Prop. 4.2.10. Similarly we can bound the winding number from
below if η has a positive eigenvalue. Let λ be the smallest positive eigenvalue of AS;
then λ + ǫ ≥ λǫ, where λǫ is the smallest positive eigenvalue of A+

S . If p+(S) = 0,
there is a pair of positive and negative eigenfunctions of A+

S with the same winding
number, so the winding of any positive eigenfunction of AS is at least α+(S). In the
case p+(S) = 1, every positive eigenfunction of A+

S winds at least once more than
any negative eigenfunction, giving the lower bound α+(S) + 1. Thus

wind(η) ≥ α+(S) + p+(S). (4.2.8)

These are not the strictest bounds that can be obtained, but they will be useful in
relating these winding numbers to the Conley-Zehnder index. Note that we’re not
requiring AS to be nondegenerate.
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4.2.3 Morse-Bott asymptotics

The definition of µ(ũ) fits into the context of bundles with boundary data as follows.
Recall that every periodic orbit P ⊂ M with period T > 0 and a parametrization
x : S1 →M has an associated asymptotic operatorAx : H

1(x∗ξ)→ L2(x∗ξ), defined
by

Ax = −J (∇t − T∇Xλ) ,

where ∇ is any symmetric connection on M . It is shown in Appendix A that this
expression gives a well defined section of x∗ξ and does not depend on the choice of
∇. Then given any periodic orbit P ⊂ M and a trivialization Φ of x∗ξ → S1 for
some parametrization x : S1 → P , there are two perturbed Conley-Zehnder indices

µΦ,±
CZ (P ) := µΦ

CZ(A
±
x ), (4.2.9)

which clearly do not depend on the chosen parametrization. If P is nondegenerate
then both of these match µΦ

CZ(P ).
We can now generalize the discussion from Sec. 4.2.1 somewhat and consider

a solution ũ = (a, u) : Σ̇ → R ×M to Problem (BP) with asymptotic limits that
either are nondegenerate or belong to simple Morse-Bott submanifolds. Then by the
asymptotic description in Theorem A.2.2, the map u : Σ̇→M extends continuously
to a map ū : Σ → M , with each of the circles δz for z ∈ Γ defining a smooth
positively oriented parametrization

xz = ū|δz : δz →M

of the corresponding asymptotic orbit. (The special orientation of δz is defined so
that this should be true.) Thus the bundle u∗ξ → Σ̇ extends continuously to a
bundle E = ū∗ξ → Σ with smooth restrictions E|δz = x∗zξ, and we take Axz as the
asymptotic operator at z ∈ Γ. The transverse intersection ξ ∩ TL defines a totally
real subbundle ℓ over ∂Σ. Putting all of this together to define boundary data Bũ
for the bundle ū∗ξ, we set

µ(ũ) = µ(ū∗ξ,Bũ). (4.2.10)

In the nondegenerate case this just reiterates the definition in (4.2.1), but it’s
also well defined and quite useful in the Morse-Bott case. Note that the even/odd
parity of each puncture z ∈ Γ± is now defined according to the parity of µΦ,∓

CZ (P )
for the corresponding periodic orbit P .

Since we will be concerned primarily with finite energy foliations, we’re par-
ticularly interested in solutions ũ = (a, u) : Σ̇ → R × M that are asymptotic to
simple Morse-Bott families L ⊂M such that u(Σ̇)∩L = ∅. This is actually enough
information to reach some very specific conclusions about µ(ũ). Observe that any
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Morse-Bott surface L ⊂M defines a natural section of ξ along L via the intersection
TL ∩ ξ.

Proposition 4.2.12. Let L ⊂ M be a 2-dimensional simple Morse-Bott manifold,
and let Φ be the natural trivialization of ξ along L defined by the intersection TL∩ξ.
Then one of the following alternatives is true:

(i) For all periodic orbits P ⊂ L, µΦ,+
CZ

(P ) = 0 and µΦ,−
CZ

(P ) = 1.

(ii) For all periodic orbits P ⊂ L, µΦ,+
CZ

(P ) = −1 and µΦ,−
CZ

(P ) = 0.

Proof. Let P ⊂ L be a closed orbit with period T > 0, parametrized by x : S1 → L.
By assumption, if Φtλ :M →M is the Reeb flow and p = x(0), then (dΦTλ (p)−Id)|ξp :
ξp → ξp has a 1-dimensional kernel equal to TpL ∩ ξp. Thus Ax : H1(x∗ξ) →
L2(x∗ξ) also has a 1-dimensional kernel, spanned by a section e0 : S1 → ξ with
windΦ(e0) = 0. So by Prop. 4.2.10, there is one other eigenfunction e1 of Ax with
windΦ(e1) = 0, and with eigenvalue λ1 6= 0. The alternative described above will
depend on whether this eigenvalue is positive or negative. Note that e0 and e1 are
also both eigenfunctions of the perturbed operators A±

x , with eigenvalues λ±0 = ±ǫ
and λ±1 = λ1 ± ǫ respectively.

If λ1 < 0, then λ±1 < 0. So λ+0 > 0 implies αΦ
+(P ) = windΦ(e1) = 0 and

pΦ+(P ) = 0, thus µΦ,+
CZ (P ) = 2αΦ

+(P ) + pΦ+(P ) = 0 by Prop. 4.2.11. Likewise λ−0 < 0

implies αΦ
−(P ) = windΦ(e0) = 0 and pΦ−(P ) = 1, so µΦ,−

CZ (P ) = 1.
If λ1 > 0 then also λ±1 > 0, and λ+0 > 0 is the smallest positive eigenvalue of A+

x .
Thus the largest negative eigenvalue has winding number αΦ

+(P ) = windΦ(e0)− 1 =

−1, and pΦ+(P ) = 1, so µΦ,+
CZ (P ) = −1. Finally, λ−0 < 0 is the largest negative

eigenvalue of A−
x , giving α

Φ
−(P ) = windΦ(e0) = 0 and pΦ−(P ) = 0, thus µΦ,−

CZ (P ) =
0.

Definition 4.2.13. We define the sign of a simple Morse-Bott surface L ⊂ M as
positive if alternative (i) holds in Prop. 4.2.12, else negative.

This terminology is motivated by the following result.

Theorem 4.2.14. Let ũ = (a, u) : Σ̇→ M be a solution to Problem (BP), asymp-
totic at z ∈ Γ to an orbit P ⊂ L, where L is a simple Morse-Bott surface, and
assume there is a neighborhood U of z in Σ such that for every circle C ⊂ U around
z, the loop u(C) does not wind around P with respect to the framing determined by
L. Then the puncture z is odd, and its sign matches the sign of L.

Proof. By Theorem A.2.2, the asymptotic behavior of u at z is described by an
eigenfunction e : δz → ξ of the asymptotic operator Az, with an eigenvalue λ whose
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sign is opposite that of the puncture. The assumption that u(U \ {z}) does not
intersect L can only hold if e has the same winding number as the kernel of Az.
Thus λ is precisely the eigenvalue mentioned in the proof of Prop. 4.2.12, whose
sign determines (inversely) the sign of L. We conclude now from Prop. 4.2.12, using
the natural trivialization of ξ along L, that µΦ,−

CZ (P ) = 1 in the positive case and
µΦ,+
CZ (P ) = −1 in the negative case.

A sufficient condition for applying Theorem 4.2.14 is that u(U \ {z}) ∩ L = ∅.
This has obvious applications to the study of finite energy foliations of stable Morse-
Bott type. In particular we note that a given simple Morse-Bott surface can be only
a positive or negative asymptotic limit for leaves of a foliation, not both.

4.3 Estimating windπ(ũ)

Given a solution ũ = (a, u) of (BP), when can we conclude that u : Σ̇ → M is
an immersion? This is best understood in terms of the integer windπ(ũ), which
was introduced for finite energy surfaces in [HWZ95a]. To define it, note that the
Cauchy-Riemann equation T ũ ◦ j = J̃ ◦ T ũ can be written in the form

u∗λ ◦ j = da,

πλ ◦ Tu ◦ j = J ◦ πλ ◦ Tu.
(4.3.1)

Here πλ : TM → ξ is the fiberwise projection along Xλ. From the second equation,
we see that there is a section of HomC(T Σ̇, u

∗ξ)→ Σ̇, which we will denote by πTu,
defined at z ∈ Σ̇ by

πTu(z)v = πλ ◦ Tu(v) ∈ (u∗ξ)z

for v ∈ TzΣ̇. Then it also follows from (4.3.1) that at any point z ∈ Σ̇, du(z) :
TzΣ̇ → Tu(z)M fails to be injective if and only if πTu(z) = 0. It was proved for
finite energy surfaces in [HWZ95a] that the zeros of πTu are isolated and positive,
and their algebraic count can be estimated in terms of the Conley-Zehnder index
and genus of ũ. Extending this result to the case where Σ has boundary makes use
of the assumption that our totally real submanifolds are tangent to Xλ.

As in Sec. 4.2, denote L =
⋃m
j=1Lj , where ũ(γj) ⊂ L̃σj are the boundary con-

ditions for each connected component γj ⊂ ∂Σ, thus u(∂Σ) ⊂ L. Now pick any
z ∈ ∂Σ and a tangent vector Y ∈ Tz(∂Σ). We have

πλ ◦ Tu(Y ) = Tu(Y )− λ(Tu(Y )) ·Xλ(u(z)). (4.3.2)

Since Xλ(u(z)) ∈ Tu(z)L, we conclude that πTu(z)Y lies in TL ∩ ξ, which defines a
one-dimensional totally real subbundle of u∗ξ over ∂Σ. Call this subbundle ℓ→ ∂Σ.
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Then complex linearity defines a natural inclusion

HomR(T (∂Σ), ℓ) →֒ HomC(T Σ̇, u
∗ξ)|∂Σ,

which also defines a totally real subbundle, and πTu satisfies the boundary condition
πTu(∂Σ) ⊂ HomR(T (∂Σ), ℓ).

Counting zeros on the boundary

We’ll need some general topological notions about sections that satisfy this type of
boundary condition. Let (E, J) → S be a topological complex line bundle over a
compact, connected and oriented surface with boundary. Partition the boundary
into disjoint subsets ∂S = ∂0S⊔∂1S, either of which may be empty. As a motivating
example, one can think of S as the circle compactification Σ of a punctured Riemann
surface with boundary Σ̇, with ∂0S = ∂Σ and ∂1S =

⋃
z∈Γ δz. Now choose a

totally real subbundle ℓ ⊂ E|∂0S → ∂0S, and consider the space of all continuous
sections σ : S → E such that σ(∂0S) ⊂ ℓ and σ 6= 0 on ∂1S. We will call such
sections admissible. Suppose σ is an admissible section with a discrete zero set
Z(σ) ⊂ S. If z0 ∈ Z(σ) ∩ intS, then it is standard to define the order of the zero
o(z0) as the winding number of σ over a small loop around z0, computed in any local
trivialization. The boundary condition makes it possible to extend this definition
to isolated zeros on the boundary as well: for z0 ∈ Z(σ) ∩ ∂0S, choose coordinates
identifying a neighborhood U of z0 with D+ = {z ∈ C | |z| ≤ 1 and Im z ≥ 0}, such
that z0 = 0 and U ∩ ∂S = D+ ∩ R. Choose also a local trivialization over U that
identifies ℓ with (D+∩R)×R ⊂ D+×C. Then σ is represented on this neighborhood
by a continuous function f : D+ → C, satisfying the boundary condition f(D+∩R) ⊂
R. We can therefore extend f to a continuous function fD : D→ C on the full disk,
satisfying fD(z̄) = fD(z). By definition, the order o(z0) is then the order of the
isolated zero of fD at 0: i.e. the winding number of fD for a small circle about 0.
It is easy to verify that this definition doesn’t depend on the choices.

For an admissible section σ with discrete zero set Z(σ), we now define the alge-
braic count of zeros by

N(σ) =
∑

z∈Z(σ)∩intS

o(z) +
1

2

∑

z∈Z(σ)∩∂0S

o(z).

This is a direct generalization of the case where ∂0S = ∅; the price of allowing zeros
on the boundary is that in general, N(σ) may be a half-integer.

Proposition 4.3.1. Suppose σ0 and σ1 are admissible sections with isolated zeros,
and are homotopic through a family of admissible sections. Then N(σ0) = N(σ1).
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Proof. We prove this in two steps.
Step 1. Assume ∂0S = ∅. If ∂1S is nonempty, then the following result is

standard: N(σ) equals the sum of the winding numbers of σ about the components
of ∂1S, with respect to any global trivialization Φ. We’ll denote this sum of winding
numbers by windΦ

∂1S
(σ). Clearly this integer doesn’t change under homotopies that

remain nonzero on ∂1S. The result is also standard if ∂1S = ∂0S = ∅, for then S is
closed and N(σ) is simply the Euler number of the bundle E → S.

Step 2. Assume ∂0S is nonempty. Define the conjugate bundle (Ec, Jc) → Sc

as in Sec. 4.2.2, where Jc = −J and Sc is simply S with the opposite orientation.
Then the bundles E → S and Ec → Sc can be glued together along the totally
real subbundle ℓ → ∂0S, creating a new complex line bundle (ED, JD) → SD.
The boundary of SD is now ∂SD = ∂1S

D = ∂1S ⊔ (∂1S)
c, where ∂1S and (∂1S)

c

are identical manifolds with opposite orientations (they may also be empty). Any
admissible section σ of E defines naturally a “conjugate” section σc of Ec, and these
can be glued together to form an admissible section σD of ED, to which the result of
step 1 applies. Indeed, a homotopy σt of admissible sections of E yields a homotopy
σDt on ED, thus it will suffice to prove the following formula relating N(σ) to N(σD):

N(σD) =
∑

z∈Z(σD)

o(z) = 2
∑

z∈Z(σ)∩intS

o(z) +
∑

z∈Z(σ)∩∂0S

o(z) = 2N(σ).

This follows from two important facts which are easy to check: first, if z is an interior
zero of σ, its order is the same as that of zc for σc. This is due to the combination
of complex conjugation and orientation reversal, which cancel each other out in
computing the winding around zc. Secondly, if z is a boundary zero of σ, then its
order equals its order as an interior zero of σD. To see this, choose coordinates
identifying a neighborhood U of z ∈ S with D+, and a local trivialization Φ : E|U →
D+ × C such that Φ(ℓ|U∩∂0S) ⊂ (D+ ∩ R) × R. This defines a complex conjugate
trivialization Φc of Ec|Uc , which can be glued to Φ, forming a local trivialization
ΦD of ED over a neighborhood of z ∈ SD. Expressing σD in this trivialization near
z, we find that it matches the “Schwartz reflection” that we used to define o(z)
above.

Observe that one can combine a homotopy of an admissible section σ with a
homotopy of the totally real boundary condition ℓ ⊂ E. An easy variation on the
doubling argument above then shows that N(σ) is invariant under such changes.

If ∂1S 6= ∅, then N(σ) can be computed in terms of winding numbers around
∂1S and the Maslov index of the bundle pair (E, ℓ).
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Figure 4.1: The partition S = Sǫ ∪ Aǫ.

Proposition 4.3.2. Assume ∂1S 6= ∅. Then for any admissible section σ : S → E
with isolated zeros and any trivialization Φ : E → S × C,

N(σ) = windΦ
∂1S(σ) +

1

2
µΦ(E, ℓ).

Proof. Choose a compact neighborhood Aǫ of ∂0S in S and an orientation preserving
homeomorphism ϕ : [−ǫ, 0] × ∂0S → Aǫ such that ϕ({0} × ∂0S) = ∂0S. Then
∂Aǫ = ∂0S ∪ (−(∂0S)ǫ) where (∂0S)ǫ = ϕ({−ǫ} × ∂0S) is a collection of circles
“parallel” to ∂0S, with matching orientation (Figure 4.1). Denote Sǫ = S \ Aǫ, so
∂Sǫ = (∂0S)ǫ ∪ ∂1S. We can arrange that all interior zeros of σ are contained in Sǫ,
so then ∑

z∈Z(σ)∩intS

o(z) = windΦ
(∂0S)ǫ

(σ) + windΦ
∂1S

(σ). (4.3.3)

To count the zeros on the boundary, construct the double ED → SD by gluing
E to its opposite along the real subbundle ℓ → ∂0S, and extend σ in the natural
way to a section σD : SD → ED. Restricting to Aǫ ⊂ S, the trivialization Φ
can also be extended (though not naturally) over ADǫ ⊂ SD. Note that ∂ADǫ =
−(∂0S)ǫ ∪ −(∂0S)cǫ, thus using the extended trivialization Φ,

∑

z∈Z(σ)∩∂0S

o(z) = −windΦ
(∂0S)ǫ(σ)− windΦ

(∂0S)cǫ
(σc). (4.3.4)

(We’re using the convention that (∂0S)ǫ and (∂0S)
c
ǫ have opposite orientations.)

To compute this, we shall first identify ADǫ with [−ǫ, ǫ] × ∂0S. More precisely,
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let ψ : S → Sc be the natural orientation reversing homeomorphism, and define
ϕD : [−ǫ, ǫ] × ∂0S → ADǫ by

ϕD(s, t) =

{
ϕ(s, t) if s ≤ 0

ψ ◦ ϕ(−s, t) if s ≥ 0

Now choose a connected component γ ⊂ ∂0S and identify it with S1, so we can use
the coordinates (s, t) ∈ [−ǫ, ǫ]×S1 ⊂ SD for points in a neighborhood of γ. Let γǫ =
{−ǫ} × S1 be the corresponding component of (∂0S)ǫ. Suppose windΦ

γǫ(σ) = k and
µΦ(E|γ, ℓ|γ) = q, and let Φ2 : E|[−ǫ,0]×S1 → C be the projection of the trivialization
Φ : E|[−ǫ,0]×S1 → ([−ǫ, 0]× S1)× C to the second factor. Then after homotopies of
σ and ℓ, we may assume

Φ2(σ(−ǫ, t)) = e2πikt,

Φ2(ℓ(0,t)) = eπiqtR.

We now construct explicitly an extension of Φ over [0, ǫ] × S1. Let K : E → Ec

be the natural complex antilinear bundle map covering ψ : S → Sc, and define for
(s, t) ∈ [0, ǫ]× S1,

Φ−1(s, t, V ) = K ◦ Φ−1(−s, t, e2πiqtV ) (4.3.5)

This defines a continuous trivialization of ED over [−ǫ, ǫ] × S1 ⊂ SD. Now, since
by definition σc(s, t) = K ◦ σ(−s, t) for s ∈ [0, ǫ], we have Φ−1(ǫ, t,Φ2(σ

c(ǫ, t))) =
σc(ǫ, t) = K◦Φ−1(−ǫ, t, e2πikt), and using (4.3.5) we compute, Φ2(σ

c(ǫ, t)) = e2πi(q−k)t.
Thus the algebraic count of zeros on [−ǫ, ǫ] × S1 is

−windΦ
{−ǫ}×S1(σ) + windΦ

{ǫ}×S1(σc) = −k + (q − k) = q − 2k.

Adding these up over all components of ∂0S, we get

∑

z∈Z(σ)∩∂0S

o(z) = µΦ(E, ℓ)− 2windΦ
(∂0S)ǫ(σ).

Combined with (4.3.3), this yields

2N(σ) = 2
∑

z∈Z(σ)∩intS

o(z) +
∑

z∈Z(σ)∩∂0S

o(z)

=
(
2windΦ

(∂0S)ǫ
(σ) + 2windΦ

∂1S
(σ)
)
+
(
µΦ(E, ℓ)− 2windΦ

(∂0S)ǫ
(σ)
)

= 2windΦ
∂1S

(σ)) + µΦ(E, ℓ).

80



Remark 4.3.3. For the special case in which the real line bundle ℓ → ∂0S is ori-
entable, one can argue more simply as follows: there exists a trivialization Φ : E →
S × C such that Φ(ℓ) = ∂0S × R. This can be glued to the complex conjugate trivi-
alization Φc : Ec → Sc ×C, forming a global trivialization ΦD : ED → SD ×C, and
one easily verifies that

windΦ
∂1S(σ) = windΦc

(∂1S)c(σ
c),

thus 2N(σ) = N(σD) = windΦD

∂1SD(σD) = 2windΦ
∂1S

(σ). This matches the result of
Prop. 4.3.2 since µΦ(E, ℓ) = 0 for the particular trivialization chosen. Note that in
this case, N(σ) is always an integer. This is related to the familiar fact that any
generic real-valued function on the circle has an even number of zeros.

Application to windπ(ũ)

We return to the topic of estimating the number of zeros of the section πTu of
HomC(T Σ̇, u

∗ξ) → Σ̇. To understand the nature of the zero set, we apply the
similarity principle: this is often used to prove that functions satisfying Cauchy-
Riemann type equations have isolated zeros, as a corollary of the same fact for
analytic functions.

In the following, LR(C
n) (or LC(C

n)) denotes the space of real (or complex)
linear maps of Cn to itself, and we write

D+ = {z ∈ C | |z| ≤ 1, Im z ≥ 0},
D+ = {z ∈ D+ | |z| < 1}.

Proposition 4.3.4 (The Similarity Principle).

(i) Assume A ∈ L∞(D,LR(C
n)), 2 < p <∞ and w ∈ W 1,p

loc (D,C
n) solves

∂sw + i∂tw + Aw = 0 in intD

with w(0) = 0. Then there is a map

Φ ∈
⋂

2<q<∞

W 1,q(D,GL(n,C))

with Φ(0) = 1, and a map f : D→ Cn which is holomorphic on a neighborhood
of 0, such that f(0) = 0 and

w(z) = Φ(z)f(z).
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(ii) Assume A ∈ L∞(D+,LR(C
n)), 2 < p <∞ and w ∈ W 1,p

loc (D+,Cn) solves

∂sw + i∂tw + Aw = 0 in intD+

w(D+ ∩ R) ⊂ Rn

with w(0) = 0. Then there is a map

Φ ∈
⋂

2<q<∞

W 1,q(D+,GL(n,C))

with Φ(0) = 1 and Φ(D+ ∩ R) ⊂ GL(n,R) ⊂ GL(n,C), and a map f : D+ →
Cn which is holomorphic on a neighborhood of 0 in D+, such that f(0) = 0
and

w(z) = Φ(z)f(z).

See [HZ94] for a proof of the interior version, and [A03] for the boundary version.
To apply this at the boundary, we need the following variation on Darboux’s

theorem.

Lemma 4.3.5. Let (M,λ) be a three-dimensional contact manifold, and L ⊂ M
an embedded surface tangent to the Reeb vector field. Then any point p ∈ L is
contained in a neighborhood U ⊂M with coordinates (x, y, z) such that λ = dz+x dy,
p = (0, 0, 0) and L ∩ U = {y = 0}.

Proof. Let γ : (−ǫ, ǫ) → M be a smooth Legendrian curve with γ(0) = p and
γ(t) ∈ L for all t; the curve is unique up to parametrization. Choose any vector
field η transverse to L along γ(t), and add multiples of Xλ(γ(t)) so that η satisfies
λ(η(γ(t))) = t. Then for (x, y, z) in a neighborhood of 0 ∈ R3, we define the
embedding

ϕ(x, y, z) = Φzλ
(
expγ(x)[yη(γ(x))]

)
,

where the exponential map is defined with respect to any metric on M , and Φtλ is
the Reeb flow. This defines coordinates near p in which L = {y = 0} and ∂z ≡ Xλ,
hence λ(∂z) ≡ 1. For the coordinate vector ∂x along L, we have

λ(∂x) = λ

(
∂

∂x
Φzλ(γ(x))

)
= λ ((Φzλ)∗γ̇(x)) = 0

since γ is Legendrian and (Φzλ)∗ preserves ξ. Likewise along L,

λ(∂y) = λ

(
∂

∂y
Φzλ(expγ(x)[yη(γ(x))])

∣∣∣
y=0

)
= λ ((Φzλ)∗η(γ(x))) = λ(η(γ(x))) = x,

82



where the last step uses LXλ
λ ≡ 0.

By these considerations, we may assume without loss of generality that

M = R3, L = {y = 0}, p = (0, 0, 0),

and
λ|L = λ0|L, Xλ ≡ Xλ0 ≡ ∂z

where λ0 = dz + xdy. The new coordinates will be constructed by a Moser defor-
mation argument. Define a smooth family of 1-forms by λt = tλ + (1 − t)λ0; these
are contact forms near L, and they all have the same Reeb vector field. We seek a
time dependent vector field Yt whose flow ϕt is defined in a neighborhood of p for
t ∈ [0, 1] and satisfies

ϕ∗
tλt = λ0. (4.3.6)

It turns out that in this case we can get away with assuming Yt ∈ ξt = ker λt. Then
denoting λ̇t =

d
dt
λt, (4.3.6) is satisfied if

0 =
d

dt
ϕ∗
tλt = ϕ∗

t (LYtλt + λ̇t) = ϕ∗
t (dιYtλt + ιYtdλt + λ̇t),

which is equivalent to dλt(Yt, ·)|ξt = −λ̇t|ξt . This determines a unique vector field
Yt, which vanishes on L, thus the flow is indeed defined near p and preserves L. The
desired coordinate system is provided by ϕ1.

Proposition 4.3.6. Let ũ = (a, u) : Σ̇ → R ×M be a solution to Problem (BP).
Then if πTu is not identically zero, it has finitely many zeros, all with positive order.

Proof. The main task is to prove that either πTu vanishes identically or else all of its
zeros are isolated. Indeed, suppose πTu(ζ0) = 0 and ζ0 ∈ ∂Σ. Choosing holomorphic
coordinates (s, t) = s + it ∈ D+ near ζ0 and the coordinates of Lemma 4.3.5 near
u(ζ0) ∈ L ⊂M , we write

ũ = (a, u) : D+ → R3 : (s, t) 7→ (a(s, t), x(s, t), y(s, t), z(s, t)),

with λ = dz + xdy, Xλ ≡ ∂z , u(0, 0) = (0, 0, 0) and y(s, 0) = 0. For (s, t) ∈ D+, we
shall express the complex linear map πTu(s, t) : T(s,t)D

+ → ξu(s,t) in terms of the
trivialization of ξ provided by the vector fields

v1 = ∂x, v2 = ∂y − x∂z .
For any vector Y = Y 1∂x + Y 2∂y + Y 3∂z ∈ T(x,y,z)M , we have πλY = Y −
λ(Y )Xλ(x, y, z) = Y 1v1 + Y 2v2. Thus πTu(s, t)∂s = πλus(s, t) = xs(s, t)v1 +
ys(s, t)v2, and it will suffice to prove that the zero of

V : D+ → C : (s, t) 7→ xs(s, t) + iys(s, t)

83

at (s, t) = (0, 0) is isolated. Denote q(s, t) = x(s, t) + iy(s, t), so V (s, t) = qs(s, t).
Let J(s, t) be the complex multiplication J : ξu(s,t) → ξu(s,t), expressed in the

trivialization {v1, v2} as a real 2-by-2 matrix with [J(s, t)]2 = −1. Then the nonlin-
ear Cauchy-Riemann equation for ũ gives

qs(s, t) + J(s, t)qt(s, t) = 0,

where C is identified with R2 so that multiplication by J(s, t) makes sense. Differ-
entiating this with respect to s, we find

Vs(s, t) + J(s, t)Vt(s, t) + [∂sJ(s, t)]J(s, t)V (s, t) = 0,

and due to the boundary condition y(s, 0) = 0, V (s, 0) ∈ R for all s. Define a
smooth matrix valued function G : D+ → GL(2,R) by

G(s, t) =
(
e1 J(s, t)e1

)
, where e1 =

(
1
0

)
.

Then G(s, 0) preserves R, and [G(s, t)]−1J(s, t)G(s, t) = i. The map Ṽ (s, t) :=

[G(s, t)]−1V (s, t) then satisfies Ṽ (s, 0) ∈ R and an equation of the form

Ṽs(s, t) + iṼt(s, t) + A(s, t)Ṽ (s, t) = 0

for some smooth matrix-valued function A(s, t). We can thus apply the similarity
principle and write

V (s, t) = G(s, t)Φ(s, t)f(s, t),

where f : D+ → C is analytic on a neighborhood of 0, with f(D+ ∩ R) ⊂ R.
Moreover, G(s, t)Φ(s, t) can be assumed arbitrarily close to the constant invertible
matrix G(0, 0) along some small semicircle about 0. It follows that unless V vanishes
identically on a neighborhood of 0, the zero is isolated, and its order equals the order
of the zero for f . The latter is well defined and always positive, by the Schwartz
reflection principle.

A similar argument applies to interior zeros of πTu, using any Darboux chart.
This proves that all zeros are isolated.

The result now follows from the asymptotic description of ũ given in Appendix A;
the map u : Σ̇→ M is always an immersion in some neighborhood of the punctures.
Thus the zeros of πTu are confined to a compact subset of Σ̇.

Given a solution ũ = (a, u) : Σ̇→ R×M of (BP) with πTu not identically zero,
we define the nonnegative number windπ(ũ) by

windπ(ũ) =
∑

z∈int Σ̇,πTu(z)=0

o(z) +
1

2

∑

z∈∂Σ,πTu(z)=0

o(z),
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This generalizes the definition given in [HWZ95a], with the new feature that windπ(ũ)
may be a half-integer if πTu has zeros on the boundary. The name is motivated by
the fact that if Σ̇ = C, windπ(ũ) is simply the winding number of πTu around a
large circle with respect to a global trivialization.

The following is the main result of this section. Note that the solution ũ may
have Morse-Bott asymptotic limits—they need not be nondegenerate.

Theorem 4.3.7. Let ũ : Σ̇ → R ×M be a solution to (BP), and assume πTu is
not identically zero. Then

0 ≤ 2windπ(ũ) ≤ µ(ũ)− 2χ(Σ) + 2(#Γ0) + #Γ1.

Proof. Choose a smooth vector field Y ∈ Vec(Σ̇) with the following properties:

(i) Y has only nondegenerate zeros, and its zero set is disjoint from that of πTu,

(ii) in cylindrical coordinates (s, t) ∈ Z± near each puncture, Y (s, t) = ∂
∂s
,

(iii) at ∂Σ, Y is nonzero and tangent to ∂Σ.

Clearly the zero set Z(Y ) is finite, and we claim that the algebraic count of zeros
N(Y ) = χ(Σ̇). Indeed, one can deform Y slightly near the punctures to obtain a
vector field Y on Σ which is nonzero on ∂Σ. Then for each component of ∂Σ, glue
on a disk to obtain a closed surface Σ1. The vector field Y extends to Y1 ∈ Vec(Σ1)
with one new zero of order +1 on each added disk, so if ∂Σ has p components,
N(Y1) = N(Y ) + p = χ(Σ1) = χ(Σ) + p, which proves the claim.

There is a smooth section σY : Σ̇ → u∗ξ defined by σY (z) = πTu(z)Y (z),
which has finitely many nondegenerate zeros and, by (4.3.2), satisfies the totally
real boundary condition σY (z) ∈ ℓz = ξu(z) ∩ Tu(z)L for z ∈ ∂Σ. Thus the algebraic
zero count N(σY ) ∈ 1

2
Z is well defined, and we have N(σY ) = N(πTu) + N(Y ) =

N(πTu) + χ(Σ̇). Prop. 4.3.2 can be used to calculate N(σY ), once the asymptotic
behavior of σY is understood. The latter was analyzed in [HWZ95a] (in the proof
of Theorem 2.3). To reiterate briefly, using cylindrical coordinates (s, t) ∈ Z± in a
neighborhood of a puncture z ∈ Γ±, we have

σY (s, t)

|σY (s, t)|J
→ ρ(t)e(t) as s→ ±∞,

where ρ : S1 → R is a smooth positive function and e ∈ C∞(ū∗ξ|δz) is an eigen-
function of the asymptotic operator Az on L

2(ū∗ξ|δz) defined by the linearized Reeb
flow. The corresponding eigenvalue is negative if and only if the puncture is positive,
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and vice versa. Thus we can normalize σY near the punctures and extend it as a
section of ū∗ξ → Σ with σY (±∞, t) = e(t).

Choose a global unitary trivialization Φ : ū∗ξ → Σ × C. The winding num-
bers windΦ

δz(σY ) can now be related to the Conley-Zehnder indices µΦ
CZ(A

±
z ) via

Prop. 4.2.11: write µΦ
CZ(A

±
z ) = 2αΦ

±(z) + pΦ±(z), where α
Φ
±(z) is the winding number

(with respect to Φ) of the eigenfunction of A±
z = Az ± ǫ with the largest negative

eigenvalue, and the parity pΦ±(z) is either 0 or 1. Then if z is a positive puncture,
(4.2.7) gives

windΦ
δz(σY ) ≤ αΦ

−(z), (4.3.7)

whereas using (4.2.8) for a negative puncture,

windΦ
δz(σY ) ≥ αΦ

+(z) if pΦ+(z) = 0,

windΦ
δz(σY ) ≥ αΦ

+(z) + 1 if pΦ+(z) = 1.
(4.3.8)

Partition ∂Σ into the subsets ∂0Σ = ∂Σ and

∂1Σ =

(
⋃

z∈Γ+

δz

)
∪
(
⋃

z∈Γ−

(−δz)
)
,

recalling here that the special orientation of δz for a negative puncture is opposite
the natural orientation of ∂Σ. Then from (4.3.7) and (4.3.8) we compute,

2 windΦ
∂1Σ

(σY ) =
∑

z∈Γ+

2windΦ
δz(σY )−

∑

z∈Γ−

2windΦ
δz(σY )

≤
∑

z∈Γ+

2αΦ
−(z)−

∑

z∈Γ−
0

2αΦ
+(z)−

∑

z∈Γ−
1

2(αΦ
+(z) + 1)

=
∑

z∈Γ+

(2αΦ
−(z) + pΦ−(z))−#Γ+

1 −
∑

z∈Γ−

(2αΦ
+(z) + pΦ+(z))−#Γ−

1

=
∑

z∈Γ+

µΦ
CZ(A

−
z )−

∑

z∈Γ−

µΦ
CZ(A

+
z )−#Γ1.

Combining this inequality with Prop. 4.3.2 gives

2N(σY ) = 2windΦ
∂1Σ

(σY ) + µΦ(ū∗ξ, ℓ)

≤
∑

z∈Γ+

µΦ
CZ(A

−
z )−

∑

z∈Γ−

µΦ
CZ(A

+
z )−#Γ1 + µΦ(ū∗ξ, ℓ) = µ(ũ)−#Γ1.

Finally, 2 windπ(ũ) = 2N(πTu) = 2N(σY )−2χ(Σ̇) ≤ µ(ũ)−#Γ1−2(χ(Σ)−#Γ) =
µ(ũ)− 2χ(Σ) + #Γ1 + 2(#Γ0).

86



Corollary 4.3.8. If ũ = (a, u) : Σ̇ → R ×M is a solution to (BP) with µ(ũ) =
2χ(Σ)−#Γ1 − 2(#Γ0), then u is immersed and transverse to Xλ.

An important special case we will encounter in Chapter 5 is the following. Sup-
pose Σ is a sphere with m ≥ 0 disks removed, so χ(Σ) = 2 − m, and there is a
trivialization Φ in which each boundary component has Maslov index −2. Assume
also that the punctures

Γ = {z0, z1, . . . , zN}
are all positive and odd, with µΦ

CZ(P0) = 3 for the asymptotic limit P0 at z0, and
µΦ
CZ(Pj) = −1 for all the others. Then

2windπ(ũ) ≤ µ(ũ)− 2χ(Σ) + #Γ = 3−N − 2m− 2(2−m) + (N + 1) = 0,

so any such solution is automatically transverse to Xλ. Notice that this doesn’t
depend on the number of boundary components. Recalling Example 4.1.2, we can
therefore begin with an embedded finite energy surface and, under the right circum-
stances, guarantee that the surface must remain immersed as we cut out disks and
homotop the new solution via the implicit function theorem. We will be able to use
the intersection theory of the next section to strengthen this statement by replacing
“immersed” with “embedded”.

Further corollaries of Theorem 4.3.7 arise from the fact that windπ(ũ) is always
nonnegative. For instance, applying the inequality to a case where the set of punc-
tures Γ is empty, we have:

Corollary 4.3.9. If ũ : D→ R×M is a solution to (BP) with πTu not identically
zero, then µ(ũ) ≥ 2.

This will be useful when we look at the bubbling off of holomorphic disks in
Chapter 5, and we will also use some more general versions in the proof of the main
compactness theorems.

4.4 Intersections

In the study of closed holomorphic curves in four dimensions, one can show that
the limit of a compact sequence of embedded curves is always either embedded or
multiply covered. This type of result follows immediately from an inequality known
as the adjunction formula (see [MS04]). At a more basic level, it depends on the fact
that isolated intersections of two holomorphic curves (or of a holomorphic curve with
itself) always have positive intersection index, thus the number of such intersections
can be bounded by topological invariants. The same techniques make it possible to
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prove that if two sequences ũk and ṽk of non-intersecting holomorphic curves both
converge to limits ũ and ṽ, then the images of these two limits are either identical
or disjoint. A result of this type is of course vital to the study of foliations.

Under sufficiently nice conditions, such results hold for curves with punctures
and boundary as well. A version of the adjunction formula for compact holomorphic
curves with boundary was proved by R. Ye in [Y98]. In the case of Problem (BP),
it is not so simple to define a homotopy invariant intersection number due to the
variable boundary condition, i.e. we cannot guarantee that intersections don’t ap-
pear and disappear as the boundary moves through a family of distinct totally real
submanifolds. Instead of attempting to develop an algebraic intersection theory,
we’ll simply adapt some of Ye’s local arguments to find criteria for proving that so-
lutions to (BP) are embedded and non-intersecting, which suffices for our purposes.
The results of the previous section allow us to assume whenever necessary that all
solutions are immersed and transverse to the Reeb vector field.

4.4.1 Somewhere injective curves

Some general facts about the behavior of asymptotically cylindrical holomorphic
curves near a puncture will be needed. These follow from an asymptotic represen-
tation formula for two finite energy half-cylinders with the same asymptotic limit;
for details we refer to [Kr98] and the forthcoming thesis by R. Siefring [Sf05].

Proposition 4.4.1. Let (M,λ) be a contact 3-manifold and denote Ḋ = D \ {0},
Ḋr = Dr \ {0} for r > 0.

(i) If ũ : Ḋ → R×M is an asymptotically cylindrical J̃-holomorphic curve, then
for sufficiently small ǫ > 0 there exists a holomorphic covering map ϕ : Ḋǫ →
Ḋǫ and a J̃-holomorphic embedding ṽ : Ḋǫ → R×M such that

ũ|Ḋǫ
= ṽ ◦ ϕ.

(ii) Suppose ũ, ṽ : Ḋ→ R×M are asymptotically cylindrical J̃-holomorphic curves
with the same asymptotic limit. Then for sufficiently small ǫ > 0, either ũ(Ḋǫ)
and ṽ(Ḋǫ) are disjoint or ũ(Ḋǫ) ⊂ ṽ(Ḋ).

The images of two asymptotically cylindrical curves are thus embedded and non-
intersecting near the punctures; moreover since both maps are proper, these images
can be assumed to lie outside any given compact subset of R×M .

Recall that a J̃-holomorphic curve ũ : Σ̇→ R×M is called somewhere injective
if there is a point z ∈ Σ̇ such that dũ(z) 6= 0 and ũ−1(ũ(z)) = {z}. The point z is
then called an injective point for ũ.
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Proposition 4.4.2. Let ũ : Σ̇ = Σ \ Γ → R ×M be a non-constant solution to
Problem (BP). If ũ is somewhere injective then its set of noninjective points is
at most countable and is contained in a compact subset of Σ̇. Otherwise, there
is a compact Riemann surface Σ′ with boundary, a finite set of interior punctures
Γ′ ⊂ int Σ′, a holomorphic map ϕ : Σ → Σ′ and a somewhere injective solution
ṽ : Σ̇′ = Σ′ \ Γ′ → R×M to (BP), such that

ϕ(Γ) = Γ′, ϕ(Σ̇) = Σ̇′, ϕ(∂Σ) = ∂Σ′,

deg(ϕ) ≥ 2,

and
ũ = ṽ ◦ ϕ.

Proof. With the aid of Prop. 4.4.1, this follows from roughly the same argument
as for closed holomorphic curves (cf. [MS04]). In brief, we can construct such a
factorization ũ = ṽ ◦ ϕ for any solution ũ : Σ̇ → R × M ; then it becomes clear
from the construction that deg(ϕ) = 1 if ũ is somewhere injective, and the set of
noninjective points is then countable and stays away from the punctures.

Following [MS04], we construct Σ′ from the image of ũ. Let X ′ ⊂ R×M be the
set of critical values of ũ and let X = ũ−1(X ′). Both sets are finite since ũ has no
critical points near the punctures. Then define Q ⊂ ũ(Σ̇)\X ′ to be the set of points
where two branches meet, i.e. ũ(z) ∈ Q if it is a regular value and there’s a point
ζ 6= z such that ũ(z) = ũ(ζ) and for all sufficiently small neighborhoods U and V
of z and ζ respectively, ũ(U) 6= ũ(V). This defines a discrete subset of ũ(Σ̇) \ X ′

since the intersections can only accumulate at critical points; also by Prop. 4.4.1,
these intersections stay within a compact subset away from the punctures. Then
S := ũ(Σ̇) \ (X ′ ∪ Q) is a smooth 2-manifold with boundary, with a natural J̃-
invariant embedding ι : S → R ×M , thus defining a complex structure j′ = ι∗J̃ .
Topologically, S is a compact surface with finitely many punctures on the boundary
and in the interior; these can all be filled in to define a compact Riemann surface
(Σ′, j′), and there are then natural holomorphic maps ϕ : Σ→ Σ′ and ṽ : Σ′ → R×M
such that ũ = ṽ◦ϕ. The map ṽ is an embedding near the punctures and everywhere
in the interior except on a countable set of points.

Proving that a solution is somewhere injective is often rather easy if one has
some knowledge of its boundary and/or asymptotic behavior.

Corollary 4.4.3. Suppose ũ : Σ̇→ R×M is a solution to (BP), having an asymp-
totic limit P ⊂M that is simply covered and is the limit at only one puncture. Then
ũ is somewhere injective.
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4.4.2 Excluding intersections in M

Let (M,λ) be a compact 3-dimensional contact manifold with boundary L = ∂M ,
where L is a finite union of tori L1∪ . . .∪Lm tangent to Xλ. We define the boundary
conditions for Problem (BP) by smooth families of graphs L̃σj ⊂ R ×M covering
the tori Lj ⊂M .

As was mentioned earlier, it is not immediately clear how to count isolated in-
tersections for maps Σ̇ → R ×M that satisfy a variable boundary condition. One
can see this from the following example: let L̃σ = R× (R + iσ) ⊂ C2 and consider
the intersections of maps D+ → C2 defined by u(z) = (z, 0) and the smooth family
vτ (z) = (z, z+ iτ), satisfying u(D+∩R) ⊂ L̃0 and vτ (D

+∩R) ⊂ L̃τ . These intersect
if and only if τ ≤ 0. One could attempt to fix the problem by counting intersections
only for maps that satisfy exactly the same boundary condition—but this is of lim-
ited use if there is more than one boundary component, since we cannot assume the
boundary conditions at different components will move in any coordinated manner
under homotopies.

Much can still be said if we only want to exclude intersections of the projected
maps Σ̇ → M ; this works especially nicely in the R-invariant case. For Problem
(BP0), we assume each family L̃σj consists of R-translations of a single graph L̃j .

Theorem 4.4.4. Let ũk = (ak, uk) : Σ̇→ R×M be a sequence of solutions to (BP0)
such that uk : Σ̇→M is injective for all k, and assume ũk → ũ in C∞

loc(Σ̇,R×M),
where ũ = (a, u) : Σ̇→ R×M is a solution to (BP0) that is immersed, somewhere
injective and transverse to R×∂M . Then either u : Σ̇→M is injective or its image
is contained in some periodic orbit P ⊂M .

Note that the limit ũ is necessarily embedded as a consequence. The next result
concerns intersections of two sequences of solutions to (BP0).

Theorem 4.4.5. Let ũk = (ak, uk) : Σ̇1 → R×M and ṽk = (bk, vk) : Σ̇2 → R×M
be sequences of solutions to (BP0) such that uk(Σ̇1)∩ vk(Σ̇2) = ∅ for all k. Assume
both sequences converge in C∞

loc to solutions ũ = (a, u) : Σ̇1 → R×M and ṽ = (b, v) :
Σ̇2 → R×M that are immersed and transverse to R× ∂M . Then u(Σ̇1) and v(Σ̇2)
are either disjoint or identical.

For both theorems, we need not assume the almost complex structure on R×M
is fixed; the sequences may be J̃k-holomorphic with respect to a C∞-compact family
of almost complex structures, J̃k → J̃ .

Remark 4.4.6. The setup in which M has nonempty boundary is convenient for
stating these results, but not essential. As we’ll see below, what matters is that the
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totally real surfaces L̃σj are contained in an oriented hypersurface H ⊂ R ×M (in
this case R×∂M) such that our solutions always meet H transversely and approach
it “from the same side”. The transversality condition is guaranteed whenever windπ
vanishes, since Xλ is tangent to the hypersurface.

The proofs of these results rest on defining the proper notion of a local inter-
section index for boundary intersections. This is somewhat tricky: in general, even
if two maps of a surface with boundary into a 4-manifold have only positive in-
terior intersections, there is nothing to stop these intersections from “escaping off
the boundary” under homotopies. The situation is better if a totally real boundary
condition is imposed. One expects greater control in this case, since the boundaries
themselves are now confined to a submanifold in which they have complementary di-
mension. Even so, the following example demonstrates why this is not quite enough.

Example 4.4.7. Define a pair of holomorphic half-disks uj : (D
+, i) → (C2, i) by

u1(z) = (z, 0) and u2(z) = (−z, z2). These are both embeddings, satisfy the totally
real boundary condition uj(D

+ ∩R) ⊂ R2, and have a single isolated intersection at
(0, 0). However, one can perturb u2 to uǫ2(z) = (−z, z2 + ǫ), which never intersects
u1 if ǫ > 0.

Following [Y98], we shall introduce an additional assumption in order to exclude
the situation of Example 4.4.7. In the following, W is 4-dimensional manifold, with
N ⊂W a 2-dimensional submanifold.

Definition 4.4.8. Let fj : D
+ →W , j ∈ {1, 2}, be smooth embeddings with fj(D

+∩
R) ⊂ N and an intersection f1(0) = f2(0) = p. We say that f1 and f2 have a one-
sided intersection at p if there exists an oriented hypersurface H ⊂ W containing
N , such that

(i) f1 and f2 are both transverse to H at 0,

(ii) For any sequence zk ∈ D+\(D+∩R) approaching 0, f1(zk) and f2(zk) approach
H from the same side. In other words, we can identify a tubular neighborhood
of H ⊂ W with R ×H and find that for sufficiently large k, fj(zk) ∈ R ×H
all have a fixed sign in the R-factor.

Note that by condition (i), we can assume without loss of generality (using the
implicit function theorem) that f−1

j (N) ⊂ D+ ∩R. Then to prove an intersection is
one-sided, one only has to take coordinates z = s+ it on D+ and show that ∂tf1(0)
and ∂tf2(0) have the same sign when projected to the normal bundle ofH , as defined
by the orientation. The assumption that H has an orientation is harmless since the
question is purely local.
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Definition 4.4.9. Let f1 : D+ → W and f2 : D+ → W be two embeddings with
an isolated intersection f1(0) = f2(0) = p. We call this intersection simple if the
subspaces im df1(x) and im df2(y) of TpW are either transverse or identical.

Notice that in particular for pseudoholomorphic curves, all intersections are sim-
ple, and any map can be perturbed so that intersections are transverse (and therefore
simple).

It turns out that one can sensibly define a local intersection index for isolated,
one-sided simple intersections. Suppose f1 : D+ → W and f2 : D+ → W are
embeddings that have such an intersection at f1(0) = f2(0) = p, and both satisfy the
boundary condition fj(D

+ ∩R) ⊂ N . If the two maps are transverse at 0, we define
the intersection index to be ±1, the same as with an interior intersection. If they are
not transverse, then by assumption they must be tangent, and we can treat them
as follows. The one-sided assumption guarantees that im df1(0) 6⊂ TpN , so we may
choose coordinates near p, identifying p with 0 ∈ C2, such that f1(z) = (z, 0) and
N = R2 ⊂ C2. (We’re using complex-valued coordinates for notational convenience,
but one could just as well say R4 instead of C2.) Denote f2 = (ϕ, ψ) : D+ → C2; then
we have ϕ(D+∩R) ⊂ R and ψ(D+∩R) ⊂ R. Since f1 and f2 are both embedded and
tangent at 0, it follows that dψ(0) = 0, so dϕ(0) must be an isomorphism. Without
loss of generality, we may assume ∂sϕ(0) > 0: then the crucial consequence of
the one-sided assumption is that ∂tϕ(0) lies in the upper half-plane. Thus by the
implicit function theorem, ϕ is a diffeomorphism of some neighborhood of 0 in D+

to another such neighborhood, preserving the positive/negative real axes. We can
now reparametrize f2 on a neighborhood of 0 in D+ and change ψ accordingly so
that f2(z) = (z, ψ(z)). This new map ψ still satisfies ψ(s) ∈ R for s ∈ R. Referring
to Sec. 4.3, we define the local intersection index

(f1, 0) • (f2, 0)

to be the order of the zero of ψ at 0. Recall that this means extending ψ over
a neighborhood of 0 in D by ψ(z̄) = ψ(z), and then counting the winding of this
extended map over a small circle around 0.

For interior intersections f1(z1) = f2(z2), the local intersection index (f1, z1) •
(f2, z2) is defined in the standard way—we will always assume that an intersection
is either in the interior for both maps or on the boundary for both maps.

Lemma 4.4.10. Let W be a 4-manifold containing a surface N ⊂ W . Suppose
f1 : D+ → W and f2 : D+ → W are embeddings satisfying fj(D

+ ∩ R) ⊂ N ,
and they have disjoint images except for a one-sided simple intersection f1(0) =
f2(0) = p. Let f ǫ1 and f ǫ2 be C1-close perturbations of f1 and f2, both satisfying
f ǫj (D

+ ∩ R) ⊂ N . Assume f ǫ1 and f ǫ2 have a finite number of intersections, and all
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boundary intersections are simple. Then there is a neighborhood 0 ∈ U+ ⊂ D+ such
that if f ǫj are sufficiently C1-close to fj for j ∈ {1, 2} then (f1, 0) • (f2, 0) is equal to

2
∑

fǫ1(z1)=fǫ2(z2)

z2∈U+\(U+∩R)

(f ǫ1 , z1) • (f ǫ2 , z2) +
∑

fǫ1(z1)=fǫ2(z2)

z2∈U+∩R

(f ǫ1, z1) • (f ǫ2, z2).

Proof. The one-sided assumption implies im df1(0) 6⊂ TpN , so as in the above dis-
cussion of the local intersection index, we can choose coordinates near p so that
f1(z) = (z, 0) ∈ C2 and N = R2. Since f ǫ1 is C1-close to f1, we can choose a second
coordinate chart, C1-close to the first one, in which f ǫ1(z) = (z, 0) and N = R2. The
map f ǫ2 , expressed in the second chart, is C1-close to f2, as expressed in the first
chart. Thus we are free to assume that N = R2 and f ǫ1(z) = f1(z) = (z, 0). Write
f2(z) = (ϕ(z), ψ(z)) and f ǫ2(z) = (ϕǫ(z), ψǫ(z)): the boundary condition implies
that each of these four functions is real-valued on D+ ∩ R.

If f1 and f2 are transverse, then the restricted maps fj : D
+ ∩ R → N are also

transverse, so the perturbation f ǫ2 will also have a single transverse intersection with
f1 on the boundary, with the same sign, and none in the interior.

Otherwise, f1 and f2 are tangent at 0, which means dψ(0) = 0 and dϕ(0) is an
isomorphism, so we can reparametrize for convenience and write f2(z) = (z, ψ(z)).
(The reparametrization identifies the new domain D+ with some neighborhood of 0
in the original domain; we choose U+ to be this neighborhood.) Since ψ(D+ ∩R) ⊂
R, we can extend ψ continuously over D by ψ(z̄) = ψ(z), and (f1, 0) • (f2, 0) =
wind∂D(ψ). If f

ǫ
2 is C1-close to f2, we can reparametrize it in the same manner and

write f ǫ2(z) = (z, ψǫ(z)), with ψǫ C1-close to ψ. Extending ψǫ over D, we have a
continuous map that is C0-close to ψ, thus wind∂D(ψ

ǫ) = wind∂D(ψ). But this is
precisely the algebraic count of zeros for ψǫ inside D, or equivalently, the sum of
boundary intersection indices plus twice the sum of interior intersection indices.

Remark 4.4.11. The same argument proves a similar property for simple intersec-
tions in the interior.

One can see from Lemma 4.4.10 that any notion of a homotopy invariant inter-
section number for holomorphic curves with boundary must weight interior inter-
sections twice as heavily as boundary intersections. This feature is apparent, e.g. in
Ye’s adjunction formula [Y98]. For our purposes, it suffices to know that positive
intersections cannot be destroyed by small perturbations.

Proposition 4.4.12 (Positivity of intersections). Let (W,J) be an almost complex
4-manifold, containing a totally real submanifold N ⊂W .

(i) Suppose u, v : D → W are J-holomorphic embeddings with an isolated inter-
section u(0) = v(0). Then (u, 0) • (v, 0) > 0.
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(ii) Suppose u, v : D+ → W are J-holomorphic embeddings with u(D+ ∩ R) ⊂
N ⊃ v(D+ ∩R) and an isolated one-sided intersection u(0) = v(0) ∈ N . Then
(u, 0) • (v, 0) > 0.

Proof. We focus on the second statement, which follows from the boundary version
of the similarity principle (Prop. 4.3.4). We can choose coordinates and treat u and
v as J̄-holomorphic maps into C2 for some almost complex structure J̄ , with u(0) =
v(0) = 0, N = R2, u(z) = (z, 0) and J̄(z, 0) = i. Then writing v(z) = (ϕ(z), ψ(z)),
it follows from standard arguments (cf. [MS04]) that ψ : D+ → C satisfies a PDE of
the form

ψs(s, t) + iψt(s, t) = A(s, t)ψ(s, t)

for a smooth family of real-linear maps A(s, t) : C → C. We have also ψ(0, 0) = 0
and ψ(s, 0) ∈ R, thus by the similarity principle, there is a smooth map Φ : D+ →
C \ {0} with Φ(0, 0) = 1, Φ(s, 0) ∈ R \ {0}, and a map f : D+ → C with f(0, 0) = 0,
f(s, 0) ∈ R, such that

ψ(z) = Φ(z)f(z)

and f is holomorphic on some neighborhood of 0. Extending over D by the reflection
principle, f winds positively around 0, and Φ doesn’t wind at all since it has no zeros
in the disk. Thus ψ has the same winding number as f .

The version for interior intersections is proved in the same way.

Proof of Theorem 4.4.4. Suppose u(z1) = u(z2) for z1 6= z2. Then writing ũσ =
(a + σ, u) for σ ∈ R, there is an intersection ũσ(z1) = ũ(z2) for some σ ∈ R.
By assumption, ũ (and hence ũσ) is somewhere injective and immersed, so the
intersection is isolated unless ũσ(Σ̇) = ũ(Σ̇) and σ 6= 0. In this case, for any z ∈ Σ̇
and N ∈ N we can find zN ∈ Σ̇ such that ũ(zN) = ũNσ(z). The right hand side
escapes from any compact set as N → ±∞, thus we deduce that Σ̇ has at least
one positive and one negative puncture, with subsequences of zN approaching each
as N → ±∞. Denote the asymptotic orbits at these punctures by P± ⊂ M ; then
u(z) = u(zN)→ P±, so both are the same orbit, and it contains the image of u.

Assume now that the intersection ũσ(z1) = ũ(z2) is isolated. Both z1 and z2 are
either in the interior or on the boundary; in the former case it follows from positivity
of intersections and Remark 4.4.11 that there are points ζ1 near z1 and ζ2 near z2
such that ũσk(ζ1) = ũk(ζ2) for large k. To handle boundary intersections, denote by
γ1 and γ2 the connected components of ∂Σ containing z1 and z2 respectively. Using
the R-invariance of the boundary condition, we can choose sequences σk → σ and
τk → 0 such that ũσkk (γ1) and ũτkk (γ2) lie in the same totally real submanifold as
ũσ(γ1) and ũ(γ2). Then using positivity of intersections and Lemma 4.4.10, there
are points ζ1 near z1 and ζ2 near z2 such that ũσkk (ζ1) = ũτkk (ζ2) for large k. Hence
uk(ζ1) = uk(ζ2), a contradiction.
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Proof of Theorem 4.4.5. Suppose u and v do not have identical images and there’s
an intersection u(z1) = v(z2). Then, writing ũσ = (a + σ, u) for σ ∈ R, there is an
isolated intersection ũσ(z1) = ṽ(z2) for some σ ∈ R. Repeating the argument used
to prove Theorem 4.4.4, one finds that ũσkk and ṽτkk intersect at points near z1 and
z2 for some sequences σk → σ and τk → 0.

Occasionally, one would like a version of Theorem 4.4.4 for the non-R-invariant
problem as well. In this case, something extra is needed to rule out self-intersections
at the boundary, but this may not be so hard if u ⋔ Xλ and the Reeb flow along L
is fairly simple. Given such an assumption, the same argument as before rules out
interior self-intersections, and we have:

Proposition 4.4.13. Let ũk = (ak, uk) : Σ̇ → R ×M be a sequence of solutions
to (BP) such that uk : Σ̇ → M is injective for all k, and assume ũk → ũ in
C∞

loc(Σ̇,R×M), where ũ = (a, u) : Σ̇→ R×M is a solution to (BP) that is immersed,
somewhere injective and transverse to R×∂M . Assume also that u|∂Σ : ∂Σ→ R×M
is injective. Then either u : Σ̇ → M is injective or its image is contained in some
periodic orbit P ⊂M .

It is routine to extend these arguments to noncompact sequences ũk and ṽk that
degenerate to finite energy surfaces without boundary as k → ∞. We’ll have more
to say about this in Chapter 5.

4.5 Fredholm theory

In this section we investigate the space of solutions to (BP) near a given solution.
There is a standard recipe for attacking such questions: first one defines suitable
Banach spaces (or manifolds, bundles etc.) X and Y so that the solution space can
be described as the zero set of a smooth nonlinear map F : X → Y . If there is a
solution ũ ∈ F−1(0) ⊂ X for which the linearization dF (ũ) : X → Y is a surjective
Fredholm operator, then the infinite dimensional version of the implicit function
theorem (see [La93]) implies that the set of solutions near ũ has the structure of
a smooth finite dimensional manifold. Carrying this type of argument one step
further, one can set up a parametrized family of problems Fτ : X → Y , and use the
above result to prove that the solution set varies smoothly with small perturbations
of τ .

There are several steps in carrying out this program. We begin by defining in
Sec. 4.5.1 a generalized version of Problem (BP) for almost complex 4-manifolds
with cylindrical ends, and then finding suitable coordinates to describe the neigh-
borhood of any embedded solution. The functional analytic setup is presented in
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Sec. 4.5.2, where we define a Banach space bundle with a smooth section whose
zero set contains the solutions of interest. This generalizes the setup in [HWZ99]
to the situation where Σ may have boundary, and punctures may have Morse-Bott
asymptotic limits. The Banach space bundle is defined using Hölder spaces, which
are more convenient than Sobolev spaces for the nonlinear problem. In Sec. 4.5.3
we write down the linearized operator as a map between Hölder spaces with expo-
nential weights, then relate this to an operator on Sobolev spaces and prove the
Fredholm property. The analysis depends heavily on the results for similar prob-
lems studied by Hofer, Wysocki and Zehnder [HWZ99], and Schwarz [Sch96]. A
formula for the Fredholm index is presented in Sec. 4.5.4, using a simple doubling
argument to reduce the problem to M. Schwarz’s formalism for Cauchy-Riemann op-
erators on Riemann surfaces with cylindrical ends [Sch96]. It remains to prove that
the linearization is surjective before the implicit function theorem can be applied.
With elliptic problems of this sort, one typically must assume generic conditions
(e.g. a generic almost complex structure) before any conclusion about transversality
is possible. However, it is a convenient feature of the four-dimensional setting that
transversality sometimes holds without any genericity assumption. Some results of
this type are proved in Sec. 4.5.5, generalizing a theorem of Hofer, Lizan and Sikorav
[HLS97], as well as a similar folk theorem for finite energy surfaces; we refer to these
here as “automatic” transversality results. Finally, Sec. 4.5.6 applies the implicit
function theorem to gain a local understanding of the moduli space of solutions, and
Sec. 4.5.7 extends the discussion to problems that depend smoothly on a parameter,
so that we may vary J̃ and ũ simultaneously.

The eventual goal is to apply these results to a situation in which we start with
some almost complex structure J̃0 and a family of J̃0-holomorphic curves {ũσ}, then
homotop this family along with a homotopy of J̃0 to another complex structure J̃1.
This perturbation of J̃ will not be small, so continuing the homotopy of {ũσ} beyond
a small neighborhood will require some compactness arguments, to be presented in
Chapter 5. It should be noted that the automatic transversality results are also
crucial for this, as we cannot assume that a homotopy from J̃0 to J̃1 passes only
through generic almost complex structures.

4.5.1 Problem (BP′) and special coordinates

The moduli space M(Ĵ , L)

For the Fredholm theory discussion, we consider a generalization of Problem (BP),
defined as follows. Let (W, Ĵ) be an almost complex 4-manifold with cylindrical
ends, as in [BEHWZ03]. Specifically, this means that W can be decomposed as
W = E−∪W0∪E+, where E+ = [0,∞)×M+ and E− = (−∞, 0]×M− for some closed
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contact 3-manifolds (M±, λ±), and (W0, J0) is a compact almost complex 4-manifold
with boundary, glued to E± via some diffeomorphism of ∂W toM+⊔M−. We require
that the almost complex structure Ĵ match J0 on W0 and J̃± on E±, where J̃± is
defined by λ± and some admissible complex multiplication J± on ξ± = ker λ±.

We will now deal with maps ũ : Σ̇→W where Σ̇ = Σ \ Γ is a compact oriented
surface with punctures Γ ⊂ int Σ and boundary components ∂Σ = γ1 ∪ . . .∪ γm. To
set up the boundary condition, we choose for each component γj ⊂ ∂Σ a 2-manifold
Λj and an embedding ιj : (−1, 1) × Λj →֒ W such that for each τ ∈ (−1, 1), the
surface Lτ := ιj({τ} × Λj) is a totally real submanifold of (W, Ĵ). Thus the image
of ιj is a hypersurface Hj ⊂ W , which has a smooth foliation Fj by totally real
submanifolds Lτ ⊂ Hj ⊂ W , all of which are diffeomorphic. Define ũ : Σ̇ → W to
be a solution of Problem (BP′) if

(i) ũ is Ĵ-holomorphic with respect to some complex structure j on Σ̇.

(ii) ũ is a proper map, and is asymptotically cylindrical at the punctures. This
means every puncture is marked either positive or negative, and ũ maps the
neighborhood of each positive/negative puncture into E± ⊂ R × M±, with
asymptotic convergence to a (nondegenerate or Morse-Bott) periodic orbit as
in Definition 1.1.9.

(iii) for each component γj ⊂ ∂Σ, j = 1, . . . , m, we have the boundary condition
ũ(γj) ⊂ L for some L ∈ Fj.

(iv) ũ is an embedding, with the restriction to some neighborhood of γj ⊂ ∂Σ
transverse to Hj.

The last condition is purely technical in nature: it facilitates the particular approach
to the Fredholm theory that we wish to take, using the normal bundle. Observe
that by condition (ii), ũ can always be written in some neighborhood U of a posi-
tive/negative puncture as ũ = (a, u) : U → R×M±.

Remark 4.5.1. We’re now requiring j to be defined only on Σ̇, not necessarily ex-
tendable over the punctures. This relaxation of previous assumptions will offer some
convenience, but is actually not a meaningful change: the asymptotically cylindrical
behavior of ũ implies that it can always be reparametrized near the punctures so that
j extends over Σ (cf. Prop. A.3.1).

Remark 4.5.2. One could of course pick a single totally real submanifold L ⊂ W
and use the more straightforward boundary condition ũ(∂Σ) ⊂ L. This problem is
Fredholm, but it’s index would be too low for the application we have in mind, and
transversality would fail.
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The cylindrical ends of W admit a natural compactification

W = ([−∞, 0]×M−) ∪W0 ∪ ([0,∞]×M+).

This is a compact topological manifold with boundary, with natural smooth struc-
tures on intW = W and ∂W = ({−∞}×M−)∪ ({∞}×M+). The almost complex
structure Ĵ is defined only in the interior, but λ± and ξ± extend smoothly to the
boundary. By Remark 4.5.1, a solution ũ : (Σ̇, j) → (W, Ĵ) of Problem (BP′) can
always be reparametrized so that j is a smooth complex structure on Σ; for any
such parametrization, there is a continuous extension

ū : Σ→W,

mapping each of the circles δz ⊂ ∂Σ to {±∞}×P for some periodic orbit P ⊂M±.
The restriction ū|Σ\Σ̇ : Σ \ Σ̇→ {±∞} ×M± is a smooth immersion.

Two solutions ũ : Σ̇1 → W and ṽ : Σ̇2 → W are equivalent if there is a diffeo-
morphism ϕ : Σ̇2 → Σ̇1 such that ṽ = ũ ◦ ϕ. Note that if ũ and ṽ are parametrized
so that the complex structures j1 = ũ∗Ĵ and j2 = ṽ∗Ĵ extend over the punctures,
then Riemann’s removable singularity theorem extends ϕ to a biholomorphic map
(Σ2, j2)→ (Σ1, j1).

Denote the moduli space of solutions to Problem (BP′) up to equivalence by
M(Ĵ , L), where L represents the collection of data (hypersurfaces Hj and foliations
Fj) that define the boundary condition. We shall often abuse notation and refer to a

solution ũ : Σ̇→W as an element ofM(Ĵ , L), when we really mean the equivalence
class [ũ]. A topology onM(Ĵ , L) is defined by the following notion of convergence.

Definition 4.5.3. A sequence ũk : Σ̇k →W converges inM(Ĵ , L) to ũ : Σ̇→W if
there are diffeomorphisms ϕk : Σ̇→ Σ̇k and ϕ : Σ̇→ Σ̇ such that

1. ũk ◦ ϕk → ũ ◦ ϕ in C∞
loc(Σ̇,W ),

2. ũk ◦ ϕk and ũ ◦ ϕ each have continuous extensions ūk, ū : Σ → W such that
ūk → ū in C0(Σ,W ).

The second condition implies that the asymptotic limits of ũk converge to those
of ũ at the corresponding punctures. If all limits of ũ are nondegenerate, this means
ũk has the same limits for sufficiently large k. We’ll prove in Sec. 4.6.4 that in this
case, C∞

loc-convergence implies convergence inM(Ĵ , L).
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Trivializing the normal bundle

Following [HWZ99], we shall identify the solutions in some neighborhood of a given
solution ũ0 : Σ̇ → W with sections of the complex normal bundle νũ0 → Σ̇. We
assume that at least one of ∂Σ and Γ is nonempty, so the normal bundle is triv-
ial, and we’ll be able define the nonlinear Cauchy-Riemann operator on a domain
consisting of functions Σ̇ → C. An alternative to the normal bundle approach
would be to set up the nonlinear operator on a Banach manifold consisting of maps
Σ̇ → W ; this works also when ũ0 is not immersed, and is the approach taken for
finite energy surfaces by D. Dragnev in [Dr04]. In that case one must also explicitly
consider variations in j through Teichmüller space, whereas here we will avoid this
complication by looking for all nearby complex curves in W , rather than specifically
j-Ĵ-holomorphic maps. Another advantage of the normal bundle approach is that
the linearized operator acts on sections of a complex line bundle (the alternative
would be a rank 2 complex vector bundle): thus generic sections of this bundle
have isolated zeros which can be counted and related to the same topological invari-
ants that appear in the Fredholm index formula. This is what makes possible the
automatic transversality results of Sec. 4.5.5.

Let ũ0 : (Σ̇, j)→ (W, Ĵ) be a solution of (BP′), parametrized so that j extends
over the punctures, and denote by ū0 the continuous extension Σ→ W . Recall from
Sec. 4.2 that there are holomorphic coordinate maps

ϕz : U̇z → Z±

for a neighborhood Uz ⊂ Σ of each puncture z ∈ Γ±, where U̇z = Uz \ {z}, Z+ =
[0,∞) × S1 and Z− = (−∞, 0] × S1. These are referred to below as “cylindrical
coordinates”.

The following is a slight generalization of Theorem 4.7 from [HWZ99].

Proposition 4.5.4. There exists a continuous map Ψ : Σ × B2
ǫ (0) → W , where

B2
ǫ (0) ⊂ C is a small ball around 0, satisfying Ψ(z, 0) = ū0(z) and the following

additional properties:

1. The restrictions of Ψ to Σ̇ × B2
ǫ (0) and (Σ \ Σ̇) × B2

ǫ (0) are both smooth
immersions. Moreover, the restriction to some neighborhood of Σ̇ × {0} in
Σ̇ × B2

ǫ (0) is an embedding, as is the restriction to (Σ \ V) × B2
ǫ (0) for some

small neighborhood Γ ⊂ V ⊂ Σ. For z ∈ Σ \ Σ̇, the derivative dΨ(z, 0) maps
T(z,0)({z} × B2

ǫ (0)) = R2 isomorphically to the contact structure (ξ±)ū0(z).

2. The induced almost complex structure J̄ = Ψ∗Ĵ on Σ̇ × B2
ǫ (0) takes the form

J̄(z, 0) = j(z)⊕ i along Σ̇×{0}, and in the cylindrical coordinates (s, t) ∈ Z±
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near each puncture z ∈ Γ±, J̄(s, t, v) converges in C∞(S1) as s → ±∞ to a
smooth 4-by-4 matrix valued function J̄(±∞, t, v) on S1 × B2

ǫ (0).

3. Suppose ũ0 is asymptotic to a Morse-Bott orbit P0 ⊂M at z ∈ Γ±, and denote
nearby orbits in the Morse-Bott manifold by Pτ for τ ∈ (−1, 1). Then working
in cylindrical coordinates (s, t) ∈ Z± near z, there is a nonzero function θ :
S1 → C such that for each τ ∈ (−1, 1),

(±∞, xτ (t)) := Ψ(±∞, t, τθ(t))

gives a smooth parametrization of Pτ with λ(ẋτ (t)) ≡ const > 0.

4. There is a totally real subbundle ℓ of the trivial bundle ∂Σ × C → ∂Σ and a
section ζ : ∂Σ → ∂Σ × C transverse to ℓ with the following property at each
component γj ⊂ ∂Σ. Let L0 ∈ Fj be the totally real submanifold such that
ũ0(γj) ⊂ L0, and denote nearby leaves of the foliation Fj by Lτ for τ ∈ (−1, 1).
Then for all z ∈ γj, v ∈ B2

ǫ (0) and τ close to 0,

Ψ(z, v) ∈ Lτ ⇐⇒ v ∈ ℓz + τζ(z)

Note that the restriction of Ψ to Σ̇ × B2
ǫ (0) is an embedding if all asymptotic

limits are simply covered, but self-intersections appear near any puncture where the
orbit is multiply covered.

Proof. In principle, Ψ is constructed simply by exponentiating nonzero sections of
the normal bundle νũ0, but we must be careful about how this bundle is constructed
and trivialized near the punctures and boundary.

We recall first the construction from [HWZ99] in the neighborhood of a puncture
z0 ∈ Γ±. This neighborhood is identified with one of the half-cylinders Z± via
the cylindrical coordinates (s, t) ∈ R × S1. Since ũ0 is proper, we may assume
ũ0(Z

±) ⊂ E± and Ĵ = J̃±; thus the target looks like part of a symplectization
R×M , with M = M±, λ = λ±, J = J± and J̃ = J̃±. The map ũ0 : Z

± → R×M
extends continuously to ū0 : Z

± → [−∞,∞]×M by

ū0(±∞, t) = (±∞, x0(Qt)),

where x0 : R → M is a closed Reeb orbit with period T = |Q|. The data λ and J
define a natural J̃-invariant and R-invariant metric g on R×M , by requiring that

{∂a, Xλ, Y, JY }
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be an orthonormal frame, where Y ∈ ξ satisfies |Y |2J = dλ(Y, JY ) = 1. Using this
metric to define the normal bundle νũ0 near z0 ∈ Γ, an orthonormal frame for νũ0
is provided by the two vector fields

n(s, t) =
1

|ũs|

(
|πλus|∂a − λ(ut)

πλus
|πλus|

+ λ(us)
πλut
|πλut|

)
,

m(s, t) = J̃(ũ(s, t))n(s, t),

with all norms defined with respect to the metric g. It is shown in [HWZ99] that as
s→ ±∞,

n(s, t)→ ê(t) :=
e(t)

|e(t)| (4.5.1)

uniformly with all derivatives, where e(t) ∈ ξū(±∞,t) defines an eigenfunction of
the asymptotic operator Az0, corresponding to the eigenvalue that describes the
exponential approach of ũ(s, t) to its asymptotic limit (cf. Appendix A).

One can identify a neighborhood of P0 = x0(R) in M with a neighborhood of
S1 × {0} in S1 ×R2, choosing coordinates (θ, x, y) ∈ S1 ×R2 such that λ = f(dθ+
xdy) for some positive smooth function f which is constant and has vanishing first
derivative on S1×{0}. Moreover, if P0 belongs to a Morse-Bott family {Pτ}τ∈(−1,1),
we can assume that Pτ = {(θ, τ, 0) | θ ∈ S1} and f is constant on {y = 0}, hence
λ(∂θ) equals the same constant everywhere on each closed orbit. These coordinates
are constructed in [HWZ96b].

Now define Ψ on Z± ×B2
ǫ (0) in the coordinates (a, θ, x, y) ∈ [−∞,∞]×M± by

Ψ(s, t, α+ iβ) = ũ0(s, t) + αn(s, t) + βm(s, t).

Observe that this extends continuously to Z
± ×B2

ǫ (0), with

Ψ(±∞, t, α+ iβ) = (±∞, x0(Qt) + αê(t) + βJê(t)).

Clearly J̄ = Ψ∗Ĵ has the desired form along the zero section Σ̇×{0}, and it also has
the correct asymptotic behavior as a consequence of (4.5.1). We refer to [HWZ99]
for further details.

Turning to the situation near a component γj ⊂ ∂Σ, let L0 ∈ Fj be the totally
real submanifold which contains ũ0(γj), and denote nearby surfaces in the foliation
by Lτ , with τ a real parameter. Recall that the union of the surfaces Lτ forms a
3-dimensional hypersurface Hj ⊂W . We define a complex line bundle

η → γj

by choosing ηz ⊂ Tũ0(z)W to be the unique complex line in Tũ0(z)Hj for each z ∈ γj.
By assumption ũ0 is transverse to Hj at γj, thus ηz 6= im dũ0(z), and since both are
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complex subspaces, they are transverse. We will define the normal bundle νũ0 so
that it matches η over the boundary. Observe that the totally real condition implies
L0 and η are transverse within Hj, so their intersection defines a real subbundle

ℓN = η ∩ TL0 ⊂ η → γj.

We claim ℓN is orientable; or equivalently, ĴℓN is orientable. The latter is transverse
to L0, and thus isomorphic to the normal bundle of L0 within Hj , restricted over
ũ0(γj). This bundle is trivial, by the construction of Hj .

We can choose a nonzero section σ : γj → ℓN and use it to define a complex linear
trivialization η → γj×C, sending σ(z) to (z, 1). Now use this trivialization to define
a tubular neighborhood embedding Ψ0 : γj × B2

ǫ (0) → Hj onto a neighborhood U
of ũ0(γj) in Hj . Clearly this embedding can be chosen so that

Ψ0(γj × (R ∩B2
ǫ (0))) = L0 ∩ U .

With a slight modification, and possibly choosing smaller neighborhoods, one can
also ensure that

Ψ0(γj × ((R+ iτ) ∩B2
ǫ (0)) = Lτ ∩ U

for all τ close to 0.
Let A ⊂ Σ be a small neighborhood of γj, conformally equivalent to an an-

nulus (−δ, 0] × S1. Then since ũ0|A is transverse to Hj, we can extend Ψ0 to an
embedding Ψ : A × B2

ǫ (0) → W such that Ψ(z, v) = Ψ0(z, v) for z ∈ γj and
Ψ(z, 0) = ũ0(z). Denoting the coordinates on B2

ǫ (0) by α + iβ, it is also easy to
arrange that Ĵ(ũ0(z))

∂Ψ
∂α

(z, 0) = ∂Ψ
∂β

(z, 0).

We have now defined a map Ψ near the boundary and punctures of Σ̇ which sat-
isfies all the desired properties. In principle this is the same as choosing a Hermitian
metric near ũ0(Σ̇) ⊂ W in order to define the normal bundle, then trivializing the
normal bundle and defining an embedding via exponentiation. The map Ψ can be
extended appropriately over all of Σ̇ × B2

ǫ (0) if and only if the corresponding triv-
ialization of νũ0 near the boundary and punctures is extendable over Σ̇. This may
not be the case with the choices we’ve made, so to finish, pick any of the boundary
components or punctures, and working in conformal coordinates (s, t) ∈ R× S1 on
some neighborhood, make the replacement

Ψ(s, t, v)←→ Ψ(s, t, e2πiktv),

for some integer k. The new Ψ still has all the right properties, and there is a unique
choice of k for which the resulting trivialization of νũ0 extends globally. This allows
a global definition of Ψ, and completes the proof of Prop. 4.5.4.
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Remark 4.5.5. The normal bundle νũ0 → Σ̇ was defined above as the image of
the trivial bundle Σ̇×C under TΨ along Σ̇× {0}. Due to the splitting of J̄ , νũ0 is
thus a complex subbundle of (ũ∗0TW, Ĵ). It also extends continuously to a topological
complex line bundle

νū0 → Σ,

with a smooth structure over the circles δz ⊂ ∂Σ, such that νū0|δz = ū∗0ξ±|δz .

Proposition 4.5.6. Assume ũ0 and Ψ are as in Prop. 4.5.4, and let ũk : Σ̇→W be
a sequence of solutions to (BP′), converging to ũ0 inM(Ĵ , L). Then for sufficiently
large k, there are unique smooth functions vk : Σ̇ → B2

ǫ (0) and diffeomorphisms
ϕk : Σ̇ → Σ̇ such that Ψ(z, vk(z)) = ũk ◦ ϕk(z) for all z ∈ Σ̇, and vk → 0 in
C∞

loc(Σ̇,C).
There are also continuous extensions v̄k : Σ→ B2

ǫ (0) and ϕ̄k : Σ→ Σ such that
ūk ◦ ϕ̄k(z) = Ψ(z, v̄k(z)) for all z ∈ Σ, and v̄k → 0 in C0(Σ,C).

Proof. Without loss of generality, we may assume ũk → ũ0 in C∞
loc(Σ̇,W ) and

ūk → ū0 in C0(Σ,W ). Since ūk converges uniformly and Ψ(Σ × B2
ǫ (0)) covers a

neighborhood of ū0(Σ) in W , there are functions fk : Σ → Σ and gk : Σ → B2
ǫ (0)

such that
ūk(z) = Ψ(fk(z), gk(z)) for all z ∈ Σ.

These are uniquely determined for z outside a neighborhood of the punctures, and
they extend uniquely if we require them to be continuous. Then fk → Id and
gk → 0 uniformly on Σ; both are also smooth on Σ̇, with convergence to Id and
0 respectively in C∞

loc(Σ̇). For sufficiently large k, we can therefore assume fk is a
homeomorphism of Σ and a diffeomorphism of Σ̇. The desired functions are then
ϕk = f−1

k , vk = gk ◦ f−1
k .

The upshot is that we can describe solutions close to ũ0 as sections of a trivial
complex line bundle, satisfying a linear boundary condition.

4.5.2 Functional analytic setup

The aim of this section is to describe a neighborhood of ũ0 inM(Ĵ , L) as the zero set
of a smooth section of a Banach space bundle. We begin by defining the function
spaces that will be needed. These include both Sobolev and Hölder spaces—the
latter are more convenient for the nonlinear operator, and elliptic regularity theory
will allow us to return to the Lp-setting for the linear analysis. We also must
introduce exponential weights to deal with the degeneracy at Morse-Bott punctures.
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Banach spaces of sections

To define these spaces for bundles E → Σ̇, it helps to know that E extends contin-
uously to a bundle over Σ, but this is not quite enough. The noncompactness of Σ̇
necessitates some notion of “asymptotic smoothness”.

Assume Σ is any compact oriented smooth surface with boundary, and Σ̇ =
Σ \ Γ has finitely many interior punctures. A class of preferred embeddings Z+ =
[0,∞)× S1 →֒ Σ̇ is defined by choosing any puncture z ∈ Γ and a diffeomorphism
ϕ : (U , z) → (D, 0), where U ⊂ Σ is a closed subset whose interior contains one of
the punctures. We then compose this with the diffeomorphism

Z+ → Ḋ = D \ {0} : (s, t) 7→ e−2π(s+it).

A smooth embedding ψ : Z+ → Σ̇ constructed in this way will be referred to
as a cylindrical coordinate system for Σ̇. We will occasionally also use cylindrical
coordinate systems in the negative half-cylinder Z− = (−∞, 0]× S1; all statements
about Z+ can be adapted for Z− as well.

Lemma 4.5.7. Let ψ1 : Z+ → Σ̇ and ψ2 : Z+ → Σ̇ be two cylindrical coordinate
systems near the same puncture, and consider the coordinate transformation h =
ψ−1
1 ◦ ψ2 : [R,∞) × S1 → [0,∞) × S1 for some R ≥ 0. Then for any multiindex
β with |β| ≥ 1, |∂βh| is globally bounded on [R,∞) × S1. Writing h(s, t) = (σ, τ),
there is a similar C∞-bound on the function

f(s, t) = ec(σ(s,t)−s)

for any c ∈ R.

Proof. If ψ : [0,∞) × S1 → Ḋ : (s, t) 7→ e−2π(s+it), then we can write h = ψ−1 ◦
ϕ ◦ ψ for some diffeomorphism ϕ between neighborhoods of 0 in D, with ϕ(0) = 0.
Denote by Dkϕ(z) the kth derivative of ϕ at z, considered as a real multilinear map
C⊗ . . .⊗ C→ C. Then if ψ(s, t) = z ∈ Ḋ, we compute

∂sh(s, t) =
1

ϕ(z)
Dϕ(z)z, ∂th(s, t) =

1

ϕ(z)
Dϕ(z)iz.

Both are clearly bounded since z
ϕ(z)

is bounded; this follows from the differentiability

of ϕ and nonsingularity of Dϕ(0).
We now proceed inductively and for n ∈ N, denote by An any finite linear

combination of functions [R,∞)× S1 → C of the form

1

[ϕ(z)]m
[
Dj1ϕ(z)(κz, . . . , κz)

]
. . .
[
Djmϕ(z)(κz, . . . , κz)

]
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where again z = ψ(s, t), m ∈ {1, . . . , n}, j1 + . . .+ jm = n and each κ is either 1 or
i. Also denote

Ãn =
n∑

k=1

Ak.

Then for any first order differential operator ∂, we find ∂Ãn = Ãn+1, and clearly
∂sh and ∂th are both Ã1. Thus ∂βh = Ã|β|. All of these expressions are bounded,
again resulting from the fact that |z|/|ϕ(z)| is bounded and j1 + . . .+ jm = n ≥ m.
This proves the bound for ∂βh with |β| ≥ 1.

In light of this, the bound on all derivatives of f will follow from a C0-bound,
and we observe

ec(σ−s) = [e2π(σ−s)]c/2π =

(
e−2πs

e−2πσ

)c/2π
=

( |z|
|ϕ(z)|

)c/2π
≤ C.

Definition 4.5.8. Let E → Σ be a complex vector bundle with a C0-structure that
restricts to a C∞-structure over each of Σ̇ and Σ \ Σ̇, and assume we are given local
trivializations over a neighborhood of each connected component of Σ \ Σ̇. We call
this an asymptotically smooth structure if for every transition map

g : [R,∞)× S1 → GL(n,C)

expressed in cylindrical coordinates, |∂βg| is bounded for every multiindex β.

Note that this notion is well defined due to Lemma 4.5.7. Also due to the
lemma, the tangent bundle T Σ̇ → Σ̇ is an example of an asymptotically smooth
bundle: near the punctures we can choose preferred trivializations defined by the
cylindrical coordinate systems. There is a natural extension of T Σ̇ to a C0-bundle
TΣ → Σ; we should emphasize however that this is not the tangent bundle of Σ,
which is not defined.

We can now define Hölder and Sobolev norms for sections of an asymptotically
smooth vector bundle. Choose a finite open cover

⋃
j Uj = Σ such that each set Uj

contains at most one puncture, and denote U̇j = Uj \ (Γ ∩ Uj). Assume that for
each set Uj ⊂ Σ̇, there is a smooth chart ϕj : Uj → Ωj ⊂ H, where H is the closed
upper half plane in C and Ωj is an open subset. If Uj contains a puncture, assume
instead that ϕj : U̇j → Ωj ⊂ Z+ defines a cylindrical coordinate system, as defined
above. Furthermore, suppose we have local trivializations Φj : E|Uj

→ Uj × Cn

that define an asymptotically smooth structure, and choose a partition of unity
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{αj : Σ → [0, 1]} subordinate to {Uj}. Then for any integer k ≥ 0 and a section
v : Σ̇→ E, we define

‖v‖Ck(E) =
∑

j

‖ pr2 ◦Φj ◦ (αjv) ◦ ϕ−1
j ‖Ck(Ωj). (4.5.2)

The Hölder norms ‖ ‖Ck+α(E) for α ∈ (0, 1) and Sobolev norms ‖ ‖W k,p(E) for p ≥ 1
can be expressed similarly, thus defining spaces Ck+α(E) and W k,p(E). There is
potential confusion when α = 0, so we use the notation

Ck
b (E) = Ck+0(E) ⊂ Ck(E)

to specify that we mean sections with bounded derivatives up to order k; this is
a proper subset of Ck(E) if Σ̇ is noncompact. A standard argument shows that
Ck+α(E) and W k,p(E) are all Banach spaces, and different choices of charts, trivi-
alizations etc. lead to equivalent norms as long as the derivatives of the transition
maps are bounded. The notation Ck+α

loc (E) and W k,p
loc (E) will be used for the Fréchet

spaces of sections that are of the corresponding class on every compact subset of
Σ̇. Note that these are well defined without assuming E → Σ to be asymptotically
smooth.

We are interested in certain closed subspaces of Ck+α(E) consisting of sections
that decay near the punctures. Denote Z+

R = [R,∞)× S1 for R ≥ 0, so Z+ = Z+
0 .

For any integer k ≥ 0 and real number α ∈ [0, 1), we say that a function f : Z+ → Cn

is in Ck+α
∞ (Z+), if

‖f‖Ck+α(Z+
R ) → 0 as R→∞.

Using Lemma 4.5.7 and the asymptotically smooth structure of E → Σ̇, one can
easily show that this concept also makes sense for sections v ∈ Ck+α(E).

Definition 4.5.9. Ck+α
Γ (E) is the space of sections v ∈ Ck+α(E) such that in some

trivialization Φ and cylindrical coordinates (s, t) near each puncture, the function
pr2 ◦Φ ◦ v(s, t) is of class Ck+α

∞ .

This is a closed subspace of Ck+α(E). Observe that there are continuous inclu-
sions Ck+1+α

Γ (E) ⊂ Ck+α
Γ (E), and any section in Cα

Γ (E) extends continuously to a
section Σ→ E that vanishes on Σ \ Σ̇.

Finally we introduce spaces of sections that decay (or grow) exponentially near
the punctures. As short-hand notation, let X represent any of the symbols Ck+α,
Ck+α

Γ , Ck+α
∞ or W k,p. Then for a function f : Z+ → Cn and a number ǫ ∈ R, we say

f ∈ Xǫ(Z+) if the function f ǫ(s, t) := eǫsf(s, t) is in X(Z+), and define a norm

‖f‖Xǫ(Z+) = ‖eǫsf‖X(Z+).
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Such functions decay exponentially as s → ∞ if ǫ > 0; on the other hand if ǫ < 0,
Xǫ(Z+) contains functions that grow exponentially. This will turn out to be useful.

In the following, we label the punctures

Γ = {z1, . . . , zN},

and choose associated cylindrical coordinate systems (s, t) ∈ Z+ with local trivial-
izations Φ1, . . . ,ΦN over the corresponding coordinate neighborhoods.

Definition 4.5.10. For any ǫ = (ǫ1, . . . , ǫN) ∈ RN , Ck+α,ǫ
Γ (E) is the space of sec-

tions v ∈ Ck+α
loc (E) such that in the trivializations Φj and cylindrical coordinates

(s, t) near each puncture zj ∈ Γ, pr2 ◦Φj ◦ v(s, t) is of class C
k+α,ǫj
∞ , i.e. the func-

tion eǫjs · pr2 ◦Φj ◦ v(s, t) is of class Ck+α
∞ . A norm is defined on Ck+α,ǫ

Γ (E) by the
prescription of (4.5.2) the same as for Ck+α

Γ (E), except replacing ‖ ‖Ck+α(Z+) with
‖ ‖Ck+α,ǫj (Z+) for a neighborhood of each puncture.

That this is well defined follows from the second statement in Lemma 4.5.7.
Indeed, it must be verified that for any transformation h : [s0,∞)×S1 → [0,∞)×S1

of cylindrical coordinate systems, there is a constant C > 0 and a function R(r)
with limr→∞R(r) =∞ such that for all f : Z+ → Cn and r ≥ s0,

‖eǫs(f ◦ h)‖Ck+α(Z+
r ) ≤ C‖eǫsf‖Ck+α(Z+

R(r)
).

This follows from the C∞-bound for eǫ(σ(s,t)−s) where (σ, τ) := h−1(s, t), since

eǫs(f ◦ h)(s, t) = (eǫσ(s,t)f) ◦ h(s, t) = (eǫ(σ(s,t)−s)eǫsf) ◦ h(s, t).

The spaces Ck+α,ǫ(E) and W k,p,ǫ(E) for ǫ ∈ RN are defined analogously, and all
of them are Banach spaces.

In addition to these, there are natural Fréchet spaces defined by

C∞
b (E) =

∞⋂

k=0

Ck
b (E), C∞

Γ (E) =
∞⋂

k=0

Ck
Γ(E), C∞,ǫ

Γ (E) =
∞⋂

k=0

Ck,ǫ
Γ (E).

Thus if ǫ = (ǫ1, . . . , ǫN) with all ǫj > 0, there are continuous inclusions

C∞,ǫ
Γ (E) ⊂ C∞

Γ (E) ⊂ C∞
b (E) ⊂ C∞,−ǫ

Γ (E).

The last space on the right contains sections that grow exponentially at every punc-
ture. We will also use the standard notation C∞

0 (E) for smooth sections with com-
pact support in Σ̇. Note that these need not vanish on ∂Σ.
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Manifolds of maps

For any manifold W , it is clear what is meant by Ck+α
loc (Σ̇,W ); this is not a vector

space but a nonlinear space of continuous maps Σ̇→W , with a natural topology de-
fined by considering Ck+α-norms in charts for both Σ̇ andW . To defineW k,p

loc (Σ̇,W ),
one must require kp > 2, so that the coordinate transformation u 7→ ϕ◦u for smooth
ϕ is continuous in the Sobolev space topology.

H. Eliasson described in [El67] a general formalism with which one can define
natural smooth Banach manifold structures for Ck+α(Σ,W ) and W k,p(Σ,W ) if Σ
is compact. These notions can be extended to noncompact domains under certain
conditions; such a generalization for maps on punctured Riemann surfaces is carried
out for instance in the appendix of [Sch96]. We will not delve into the details here,
but only mention that one can use ideas analogous to the asymptotically smooth
structures defined above in order to define a Banach manifold Ck+α(Σ̇,W ), which
contains maps Σ̇ → W of class Ck+α

loc that have nice asymptotic behavior near the
punctures. Generalizing Eliasson’s formalism to this case, it is not hard to construct
Banach space bundles over Ck+α(Σ̇,W ) and prove smoothness for certain natural
sections that arise.

Mixed boundary conditions on the normal bundle

Returning to the solution ũ0 ∈ M(Ĵ , L) and the associated immersion Ψ : Σ̇ ×
B2
ǫ (0) → W , we can now improve Prop. 4.5.6 as follows. Observe that the normal

bundle νũ0 → Σ has an asymptotically smooth structure determined by the vector
fields n(s, t) and m(s, t) from the proof of Prop. 4.5.4; indeed, our choice of trivial-
ization was unique up to a rotation near infinity, which has infinitely many bounded
derivatives. Using TΨ to identify νũ0 with Σ̇ × C, we can regard the domain of Ψ
as an open neighborhood V0 of the zero section in νũ0, and define subsets

Ck+α,ǫ
Γ (V0) = {v ∈ Ck+α,ǫ

Γ (νũ0) | v(z) ∈ V0 for all z ∈ Σ̇} ⊂ Ck+α,ǫ
Γ (νũ0),

which are open if all the exponential weights ǫj are nonnegative. Now for ũ ∈
M(Ĵ , L) sufficiently close to ũ0, let vũ : Σ̇ → V0 denote the unique smooth section
of νũ0 such that Ψ(z, vũ(z)) parametrizes the image of ũ. By Prop. 4.5.4, there
is a totally real subbundle ℓ ⊂ νũ0 → ∂Σ and a smooth section ζ : ∂Σ → νũ0|∂Σ
transverse to ℓ which corresponds to the variable boundary condition satisfied by ũ ∈
M(Ĵ , L). In particular, for any space of sections X(νũ0) that embeds continuously
into C0(νũ0), we can define the closed subspaces

Xℓ(νũ0) = {v ∈ X(νũ0) | v(∂Σ) ⊂ ℓ},
Xℓζ (νũ0) = {v ∈ X(νũ0) | v(γj) ⊂ ℓ+ τjζ for any τj ∈ R},

108



where γj ⊂ ∂Σ denotes the connected components. Clearly then, vũ ∈ C∞
ℓζ
(νũ0).

If all asymptotic limits of ũ0 are nondegenerate, then ũ necessarily has the
same limits, and the transversal approach is exponentially fast, as described in
Appendix A. From this we deduce vũ ∈ C∞,ǫ

Γ,ℓζ
(V0) for any ǫ = (ǫ1, . . . , ǫN) with

0 ≤ ǫj < c for some constant c > 0. In fact, if ũk → ũ0 in M(Ĵ , L), then it
follows from the uniform convergence and arguments in [HWZ96a] that the expo-
nential approach can be estimated uniformly in k. Combining this fact with the
C∞

loc-convergence of vũk to 0, we find

vũk → 0 in C∞,ǫ
Γ (νũ0)

if all ǫj are sufficiently small.
We must modify this somewhat if there are Morse-Bott asymptotic limits. Sup-

pose the limit of ũ0 at zj ∈ Γ± is P0 ⊂M±, which is part of a 1-parameter Morse-Bott
family of orbits {Pτ}τ∈(−1,1). Describe a neighborhood of zj in cylindrical coordi-
nates (s, t) ∈ Z+. Then for some s0 > 0 and all τ in a neighborhood of 0, we can
find a smooth family of smooth sections

wτ : [s0,∞)× S1 → V0

such that Ψ(s, t, wτ(s, t)) parametrizes half of the orbit cylinder over Pτ . Extend wτ
to [0,∞)× S1 by multiplication with a cutoff function such that wτ (s, t) = 0 for s
near 0. This then extends to a global section of νũ0, and is in C∞

b (V0). Repeating
this construction for all punctures that have Morse-Bott limits, one obtains a finite
dimensional submanifold

Y ⊂ C∞
b (V0),

containing a smooth family of sections {wτ} that are each supported in a neighbor-
hood of the punctures and parametrize orbit cylinders near infinity. Here we assume
the parameter τ belongs to an open neighborhood of zero in some Euclidean space,
and w0 is the unique section in Y that decays to zero at all the punctures.

The argument above for the nondegenerate case now generalizes as follows:

Proposition 4.5.11. Suppose ũk → ũ0 inM(Ĵ , L). Then there is a constant c > 0
such that for sufficiently large k and any ǫ = (ǫ1, . . . , ǫN) with each ǫj ∈ [0, c), we
have

vũk = vk + wτk

for unique sections vk ∈ C∞,ǫ
Γ,ℓζ

(V0) and wτk ∈ Y , with vk → 0 in C∞,ǫ
Γ,ℓζ

(νũ0) and
τk → 0.
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The nonlinear operator

Any section v ∈ C1(V0) may be regarded as a C1-embedding v : Σ̇ → V0. Then
Ψ ◦ v : Σ̇ → W defines a Ĵ -holomorphic curve if and only if the tangent spaces
of the embedding v are invariant under the almost complex structure J̄ = Ψ∗Ĵ on
V0 ⊂ νũ0, i.e. v is a complex curve. In this case, elliptic regularity theory implies
that v is actually smooth. Following [HWZ99], we now write down an operator to
detect all sections v : Σ̇→ V0 that define complex curves in (V0, J̄).

The general framework is as follows: let S be an oriented surface and (W,J) an
almost complex 4-manifold. Denote by Λ2TS → S the second exterior product of
the bundle TS → S, so for z ∈ S, the fiber Λ2TzS is a real 1-dimensional vector space
spanned by h ∧ k for any two linearly independent vectors h, k ∈ TzS. Similarly,
there is a 2-dimensional bundle Θ→ W defined by

Θp = {ξ ∈ Λ2TpW | Jξ = −ξ},

where J acts linearly on Λ2TW by J(X ∧ Y ) = JX ∧ JY . Now for any immersion
u : S → W we define a section of the bundle HomR(Λ

2TS, u∗Θ)→ S by

η̄J(u)(z) : h ∧ k 7→ Tu(h) ∧ Tu(k)− JTu(h) ∧ JTu(k)

for z ∈ S. One easily checks that u satisfies J(im du(z)) = im du(z) if and only if
η̄J(u)(z) = 0.

For any α ∈ (0, 1) and ǫ = (ǫ1, . . . , ǫN) with 0 ≤ ǫj < c for a suitably small
constant c > 0, define the Banach manifold

B = {v + wτ | v ∈ C1+α,ǫ
Γ,ℓζ

(V0), wτ ∈ Y }.

This could also be defined as the set of sections v ∈ C1+α
loc (V0) with the property that,

near each puncture, there is a section w : Z+ → V0 parametrizing an orbit cylinder
near infinity such that v(s, t)−w(s, t) is of class C1+α,ǫ

∞ . Thus the definition doesn’t
depend on the choice of the sections wτ . The space B is a smooth submanifold of
C1+α
ℓζ

(V0), and its tangent space at the zero section can be written as

T0B = C1+α,ǫ
Γ,ℓζ

(νũ0)⊕ Tw0Y,

where Tw0Y is a finite dimensional linear subspace of C1+α
ℓζ

(νũ0). There is a smooth
Banach space bundle E → B with fibers

Ev = Cα,ǫ
Γ (HomR(Λ

2T Σ̇, v∗Θ)).

Here v is regarded as a map from Σ̇ into the subset V0 of the total space νũ0, and
Θ is the subbundle of Λ2TV0 → V0 on which J̄ acts by negation. For the definition
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to make sense, we must observe that the asymptotic behavior of v and J̄ gives the
bundle v∗Θ → Σ̇ an asymptotically smooth structure, which then determines an
asymptotically smooth structure on HomR(Λ

2T Σ̇, v∗Θ)→ Σ̇.

Proposition 4.5.12. For any v ∈ B, the section of HomR(Λ
2T Σ̇, v∗Θ) defined by

F(v) = η̄J̄(v) ∈ Γ(HomR(Λ
2T Σ̇, v∗Θ))

is of class Cα,ǫ
Γ . This defines a smooth section

F : B → E

of the Banach space bundle E → B.
Proof. Using the asymptotic behavior of J̄ as described in Prop. 4.5.4, it’s clear that
F(v) is of class Cα,ǫ

Γ if v ∈ C1+α,ǫ
Γ,ℓζ

(V0). For any v ∈ B in general, the key is that v

differs by a section in C1+α,ǫ
Γ,ℓζ

(V0) from some smooth section wτ : Σ̇ → V0 such that

Ψ ◦ w parametrizes an orbit cylinder near each puncture. Thus F(w) vanishes near
the punctures, and F(v) ∈ Cα,ǫ

Γ (HomR(Λ
2T Σ̇, v∗Θ)).

Smoothness follows from the formalism of Eliasson [El67], arguing roughly as
follows: first define E as a vector bundle over the manifold of maps C1+α(Σ̇,V0),
where V0 is regarded as a smooth manifold rather than a subset of a vector bundle.
The section u 7→ η̄J̄(u) is easily shown to be smooth on this bundle, since, by
Eliasson’s results, the maps u 7→ Tu and u 7→ J(u) define smooth sections of
related bundles, and these are then put together by continuous linear multiplication
operations in order to form η̄J̄(u). Note that the multiplication in the last step
requires the Banach algebra structure of Cα; this is why we’re not working in W 1,p.

We deduce that F is smooth by observing that the space of sections C1+α(V0)
embeds smoothly into the manifold of maps C1+α(Σ̇,V0) in a natural way.

Clearly F(0) = 0; this is equivalent to the statement that ũ0 is Ĵ-holomorphic.
We will spend the next several sections studying the zero set F−1(0) in a neighbor-
hood of 0 by linear Fredholm analysis. The following summarizes the results of this
section thus far.

Proposition 4.5.13. There is an open neighborhood ũ0 ∈ U ⊂ M(Ĵ , L) such that
U is homeomorphic to a neighborhood of 0 in F−1(0) ⊂ B.
Proof. By Prop. 4.5.11, any ũ ∈ M(Ĵ , L) sufficiently close to ũ0 is represented by
some section vũ ∈ B, and clearly F(vũ) = 0. Conversely, any section v ∈ F−1(0)
represents a Ĵ-holomorphic curve ũ = Ψ ◦ v : Σ̇ → W with respect to the complex
structure j = ũ∗Ĵ on Σ̇. By elliptic regularity theory, ũ is smooth; it clearly is also
asymptotically cylindrical and satisfies the appropriate boundary conditions.
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If there is a Morse-Bott asymptotic limit, then F is closely related to another
nonlinear operator that will be of interest. Choose an ordering of the punctures Γ =
{z1, . . . , zN} such that the subset of punctures with Morse-Bott limits is {z1, . . . , zp},
p ≤ N . Now recall that the submanifold Y ⊂ C1+α

ℓζ
(V0) is a smooth p-parameter

family of smooth sections
wτ ∈ C∞

b (V0)
that parametrize all the cylinders over Morse-Bott orbits near infinity. Denote by
Ŷ zj ⊂ Y the codimension 1 submanifold containing all wτ ∈ Y that decay to zero
near the puncture zj. Then the Banach manifold

Bzj = {v + wτ | v ∈ C1+α,ǫ
Γ,ℓζ

(V0), wτ ∈ Ŷ zj}.

is a codimension 1 submanifold of B, consisting of all the sections in B that vanish
at zj , and it has tangent space

T0Bzj = C1+α,ǫ
Γ,ℓζ

(νũ0)⊕ Tw0 Ŷ
zj ,

at the zero section. We define the restriction

Fzj = F|Bzj : Bzj → E|Bzj ,

and observe:

Proposition 4.5.14. Let U ⊂M(Ĵ , L) be the open neighborhood from Prop. 4.5.13,
and define Uzj to be the subset consisting only of solutions ũ ∈ U that have the
same asymptotic limit as ũ0 at the puncture zj. Then Uzj is homeomorphic to a
neighborhood of 0 in F−1

zj
(0) ⊂ Bzj .

4.5.3 Linearization

Since F : B → E is smooth and F(0) = 0, there is a well defined linearization

dF(0) : C1+α,ǫ
Γ,ℓζ

(νũ0)⊕ Tw0Y → Cα,ǫ
Γ (HomR(Λ

2T Σ̇, v∗0Θ)),

where the embedding v0 : Σ̇ → V0 denotes the zero section. A computation in
[HWZ99], Sections 3 and 5, shows that dF(0) is conjugate to a linear Cauchy-
Riemann type operator, which takes sections of νũ0 → Σ̇ to complex antilinear
νũ0-valued 1-forms on Σ̇. Recall that νũ0 is a complex subbundle of (ũ∗TW, Ĵ), and
its complex structure extends naturally over Σ in an asymptotically smooth way.
We thus define a pair of asymptotically smooth complex line bundles

E = νũ0 → Σ, F = HomC(TΣ, E)→ Σ
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where TΣ is the natural extension of (T Σ̇, j) to an asymptotically smooth complex
bundle over Σ, and HomC(V,W ) denotes the bundle of complex antilinear bundle
maps V → W . Note that for z ∈ Γ±, the restriction of E to δz ⊂ ∂Σ is simply the
contact structure ξ± over the asymptotic orbit, and this has a symplectic structure
defined by dλ±. Thus it makes sense to speak of asymptotically smooth complex
trivializations Φ : E → Σ×C that are also “unitary at infinity,” and we shall require
this implicitly whenever a trivialization of E is mentioned.

The result from [HWZ99] can now be stated as follows:

Proposition 4.5.15. The linearization dF(0) is conjugate to a linear Cauchy-Rie-
mann type operator

Lũ0 : C
1+α,ǫ
Γ,ℓζ

(E)⊕ Tw0Y → Cα,ǫ
Γ (F ).

Introducing a global trivialization of E as described above, we can express sections
of E as functions v : Σ̇→ C and write the section Lũ0v : Σ̇→ Λ0,1T ∗Σ̇ as

(Lũ0v)(z)h = dv(z)h+ i dv(z)jh + [C(z)v(z)]h for h ∈ TzΣ̇, (4.5.3)

where C is a smooth section of HomR(Σ̇ × C,Λ0,1T ∗Σ̇) → Σ̇. In addition, suppose
z ∈ Γ± has asymptotic limit x : S1 → M±, and choose cylindrical coordinates
(s, t) ∈ Z± for a neighborhood of z. Then

[C(s, t) ·] ∂
∂s

:= S(s, t)

defines a smooth map S : Z± → LR(C) with S(s, t) → S∞(t) as s → ±∞ in
C∞(S1,LR(C)), where S∞(t) is a smooth loop of real 2-by-2 symmetric matrices
(we’re identifying C = R2), and

−J0
d

dt
− S∞(t)

is the asymptotic operator Ax : H1(x∗ξ±) → L2(x∗ξ±) associated with the orbit x,
expressed in the trivialization.

A trivial corollary is that for a puncture z ∈ Γ with Morse-Bott asymptotic
limit, the linearization of the restricted operator Fz : Bz → E|Bz is conjugate to the
restriction

Lũ0,z := Lũ0 : C
1+α,ǫ
Γ,ℓζ

(E)⊕ Tw0 Ŷ
z → Cα,ǫ

Γ (F ).

Recall that zero is in the spectrum of Ax if and only if the orbit x is degenerate; in
the simple Morse-Bott case, zero is an eigenvalue with multiplicity one.
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A general framework

For the rest of this section and the next two, we may assume E → Σ is any
asymptotically smooth complex vector bundle with a symplectic structure at Σ \ Σ̇,
F = HomC(TΣ, E)→ Σ, and

L : C1+α,ǫ
Γ,ℓζ

(E)⊕ Y0 → Cα,ǫ
Γ (F )

is an operator of the type defined in (4.5.3), where the zeroth order term determines
an asymptotic operator

Az : H
1(E|δz)→ L2(Eδz)

at each puncture z ∈ Γ, as in Prop. 4.5.15. The first factor in the domain consists
of sections v : Σ̇→ E of class C1+α,ǫ

Γ that satisfy the boundary condition

v(γj) ⊂ ℓ+ τjζ for any τj ∈ R

at each component γj ⊂ ∂Σ, where ℓ ⊂ E|∂Σ is a fixed totally real subbundle
and ζ : ∂Σ → E is a fixed section with values in E \ ℓ. The factor Y0 is a finite
dimensional subspace of C1+α

ℓζ
(E), spanned by sections

βz1 , . . . , βzp ∈ C∞
b (E),

where βzj is supported near the puncture zj ∈ Γ and defines a smooth nonzero

section on δzj ⊂ ∂Σ. The subset

{z1, . . . , zp} ⊂ {z1, . . . , zN} = Γ

consists of punctures where the asymptotic operator Azj is degenerate, with a one-
dimensional kernel. It may or may not include all such punctures; in this way our
general framework applies to both Lũ0 and the restricted operators Lũ0,z.

Operators L satisfying the criteria stated above will be referred to as admissible
Cauchy-Riemann type operators. Note that at this stage, α ∈ (0, 1) and the expo-
nential weights ǫ = (ǫ1, . . . , ǫN) ∈ RN are completely arbitrary; in practice of course
we’re most interested in the case where each ǫj is nonnegative and close to zero.

There are three objectives:

1. Prove that L is Fredholm for generic weights ǫ ∈ RN .

2. Compute its index.

3. Find criteria for L to be surjective.
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The remainder of this section will address the first issue. The next lemma shows
that, for proving the Fredholm property, the finite dimensional factor Y0 is irrelevant.
The proof is a trivial exercise.

Lemma 4.5.16. Let X and Z be Banach spaces, with X0 ⊂ X a closed subspace of
finite codimension. Suppose A : X → Z is a bounded linear operator, and denote
A0 = A|X0 : X0 → Z. Then A is Fredholm if and only if A0 is, and

IndA = IndA0 + codimX0.

We aim therefore to prove that the restriction

L′ : C1+α,ǫ
Γ,ℓζ

(E)→ Cα,ǫ
Γ (F )

is Fredholm. The next step is to eliminate the exponential weights, which causes
a perturbation in the asymptotic operators. Fix a cylindrical coordinate system
(s, t) ∈ Z+ near each puncture zj ∈ Γ and choose a smooth function γ : Σ̇→ (0,∞)
such that

γ = 0 outside a neighborhood of Γ, and

γ(s, t) = ǫjs for sufficiently large s near zj ∈ Γ.

This defines a continuous isomorphism

Wǫ : C1+α,ǫ
Γ,ℓζ

(E)→ C1+α
Γ,ℓζ

(E) : v 7→ eγv,

and a similar isomorphism Wǫ : Cα,ǫ
Γ (F ) → Cα

Γ (F ). Note that we may assume Wǫ

and W−ǫ are inverses. Now define an operator conjugate to L′ by

Lǫ = WǫL′W−ǫ : C1+α
Γ,ℓζ

(E)→ Cα
Γ (F ).

Proposition 4.5.17. Lǫ is also an admissible Cauchy-Riemann type operator, with
asymptotic operators

Aǫ
zj
= Azj ± ǫj

for zj ∈ Γ±.

Proof. Using the same trivialization as in (4.5.3), an easy computation shows

(Lǫv)(z)h = dv(z)h+ i dv(z)jh+ [Cǫ(z)v(z)]h for h ∈ TzΣ̇,

where
[Cǫ(z)v(z)]h := [C(z)v(z)]h − [dγ(z)h + i dγ(z)jh]v(z).
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Choosing cylindrical coordinates (s, t) ∈ Z+ near a positive puncture zj ∈ Γ+, we
have ∂sγ(s, t) = ǫj and ∂tγ(s, t) = 0, so for v ∈ C,

Sǫ(s, t)v := [Cǫ(s, t)v]
∂

∂s
= [C(s, t)v]

∂

∂s
− ǫjv = [S(s, t)− ǫj ]v.

Thus Sǫ∞(t) = S∞(t)− ǫj and

Aǫ
zj
= −J0

d

dt
− Sǫ∞(t) = Azj + ǫj .

At a negative puncture zj ∈ Γ−, there is a slightly subtle point: the asymptotic
operator is related to Lǫ via coordinates (s, t) on the negative half-cylinder Z− =
(−∞, 0]× S1, so we must reverse the sign of s and write γ(s, t) = −ǫjs. Then the
above calculation shows Aǫ

zj
= Azj − ǫj .

As a consequence, we can assume that for generic choices of ǫ ∈ RN , the asymp-
totic operators Aǫ

z are all nondegenerate in the sense defined in Sec. 4.2. This will
imply that Lǫ is Fredholm, and its index will turn out to be uniquely defined if we
confine the value of ǫ to a suitably small range.

To proceed further, we translate everything into the Lp-setting, where a wealth
of previous results is available for operators of this type. We’ve used Hölder spaces
up to this point because they are more convenient for the nonlinear problem. In
particular, the definition of F : B → E includes products of first derivatives, which
would not make sense in W 1,p. But there is no problem in defining the linear
operator,

L̃ǫ :W 1,p
ℓζ

(E)→ Lp(F )

for 2 < p <∞, where L̃ǫ is identical to Lǫ on smooth sections.

Proposition 4.5.18. If L̃ǫ is Fredholm, then so is Lǫ, and

kerLǫ = ker L̃ǫ ⊂ C∞,δ
Γ,ℓζ

(E)

for sufficiently small positive weights δ = (δ1, . . . , δN).

Proof. This follows from an argument given in [HWZ99], Sec. 2, using the standard
Hölder theory for elliptic systems. In this case one needs both interior regularity
[DN55] and regularity up to the boundary [ADN64]; see also [Wd79]. The exponen-
tial decay is derived by a standard argument for solutions of linear Cauchy-Riemann
type equations on half-cylinders; see [HWZ96a].
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In light of this, we can alter our notation so that Lǫ is defined on W 1,p
ℓζ

(E) for

some p ∈ (2,∞). Note that W 1,p
ℓζ

(E) is continuously embedded in C0
b,ℓζ

(E) by the
Sobolev embedding theorem. One further simplification is possible: consider the
restriction of Lǫ to an operator

Lǫ0 : W
1,p
ℓ (E)→ Lp(F ),

on the subspace W 1,p
ℓ (E) ⊂ W 1,p

ℓζ
(E) consisting of sections v ∈ W 1,p(E) that satisfy

the totally real boundary condition v(∂Σ) ⊂ ℓ. The restricted domain has codi-
mension equal to m, the number of components of ∂Σ. To see this, choose for each
component γj ⊂ ∂Σ a smooth section vj : Σ̇ → E with support in a neighborhood
of γj, such that vj |γj ≡ ζ |γj . If V ⊂ C1+α

Γ,ℓζ
(E) is the m-dimensional space spanned

by these sections, then
W 1,p
ℓζ

(E) = V ⊕W 1,p
ℓ (E).

Theorem 4.5.19. Let σ(Az) ⊂ R denote the spectrum of Az, and define

σL = (∓σ(Az1))× . . .× (∓σ(AzN )) ⊂ RN ,

where the ∓ signs are opposite the signs of the corresponding punctures. Then σL is
a closed set of measure zero, and for any ǫ ∈ RN \ σL, the operator Lǫ0 is Fredholm.
Moreover, the function

RN \ σL → Z : ǫ 7→ IndLǫ0

is continuous.

Proof. Clearly σL ⊂ RN is a closed set of measure zero since σ(Az) ⊂ R is a discrete
set for each z, and the condition ǫ ∈ RN \σL is satisfied if and only if all the operators
Aǫ
zj
= Azj ± ǫj for zj ∈ Γ± are nondegenerate, i.e. 0 6∈ σ(Aǫ

zj
).

Under this nondegeneracy assumption, the Fredholm property was proved in
[Sch96] for the case ∂Σ = ∅. The only extra ingredient needed for our situation is
the boundary regularity estimate:

‖u‖W 1,p(D+) ≤ c‖∂̄u‖Lp(D+)

for all smooth functions u : D+ → C with compact support in D+ \ (D+ ∩ ∂D) and
u(D+ ∩ R) ⊂ R. With this addition, Schwarz’s argument goes through as before,
proving that Lǫ0 is Fredholm.

The continuity of the index follows because ǫ 7→ Lǫ0 defines a continuous path of
Fredholm operators in any connected component of RN \ σL.

In particular, we can assume Lǫ0 is Fredholm and has a uniquely defined index if
all the weights ǫj are restricted to a sufficiently small interval (0, c).
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Corollary 4.5.20. L : C1+α,ǫ
Γ,ℓζ

(E)⊕ Y0 → Cα,ǫ
Γ (F ) is Fredholm for any ǫ ∈ RN \ σL,

and if ∂Σ has m connected components, IndL = IndLǫ0 +m+ dim Y0.

Corollary 4.5.21. For ũ ∈ M(Ĵ , L), the linearization Lũ is Fredholm, and so is
the restriction Lũ,z for any Morse-Bott puncture z ∈ Γ, with IndLũ,z = IndLũ − 1.

When all the weights ǫj are nonnegative and small (as is the case for the operators
Lũ and Lũ,z), it is useful to relate L : C1+α,ǫ

Γ,ℓζ
(E) ⊕ Y0 → Cα,ǫ

Γ (F ) to an operator
defined on sections that grow exponentially at some punctures. Recall that the p-
dimensional space Y0 = Y z1⊕. . .⊕Y zp includes a factor for each puncture zj in some
subset of Γ, where by assumption each of the asymptotic operators Az1, . . . ,Azp has
a one-dimensional kernel. It follows that if ǫ = (ǫ1, . . . , ǫN) ∈ RN \ σL, ǫj can’t be 0
for j ∈ {1, . . . , p}; let us therefore assume these weights are positive. Now set

ǫ′ = (−ǫ1, . . . ,−ǫp, ǫp+1, . . . , ǫN ) ∈ RN ,

and observe that there is a continuous inclusion

C1+α,ǫ
Γ,ℓζ

(E)⊕ Y0 →֒ C1+α,ǫ′

Γ,ℓζ
(E).

We can extend L to the larger space, defining a new operator

L+ : C1+α,ǫ′

Γ,ℓζ
(E)→ Cα,ǫ′

Γ (F ).

This operator is Fredholm by Corollary 4.5.20 if ǫ is sufficiently close to 0.

Proposition 4.5.22. If ǫ = (ǫ1, . . . , ǫN ) ∈ RN \ σL with each ǫj ≥ 0 sufficiently
small, then IndL = IndL+, and kerL ⊂ kerL+.

Proof. The second statement is obvious. To see that the indices are equal, consider
the operators

Lǫ = WǫL′W−ǫ : C1+α
Γ,ℓζ

(E)→ Cα
Γ (F ),

Lǫ
′

+ = Wǫ′L+W
−ǫ′ : C1+α

Γ,ℓζ
(E)→ Cα

Γ (F ),

where L′ is the restriction of L to C1+α,ǫ
Γ,ℓζ

(E) ⊂ C1+α,ǫ
Γ,ℓζ

(E) ⊕ Y0. Both can equally

well be regarded as linear maps W 1,p
ℓζ

(E)→ Lp(F ) for p ∈ (2,∞), and it suffices to
prove

IndLǫ
′

+ = IndLǫ + dimY0.

This will follow from the index formula presented in the next section, though we
can give another justification here, using the linear gluing operation of M. Schwarz
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[Sch96]. We observe first that the asymptotic operators Aǫ
z for L

ǫ and Aǫ′

z,+ for Lǫ
′

+

are related by

Aǫ
zj
= Axj ± ǫj , Aǫ′

zj ,+
= Axj ∓ ǫj for j ∈ {1, . . . , p},

Aǫ
zj
= Axj ± ǫj = Aǫ′

zj ,+
for j ∈ {p+ 1, . . . , N},

where xj : S
1 → M± parametrize the asymptotic limits at zj ∈ Γ±. Then Lǫ

′

+ has
the same index as an operator constructed from Lǫ by a gluing operation as follows:
attach to the cylindrical end at each puncture zj ∈ Γ± a cylinder R × S1, with a
Cauchy-Riemann operator Lj whose asymptotic operators are Aǫ

zj
at the end glued

to Σ̇, and Aǫ′

zj ,+
at the other end. Symbolically, we have

(Σ̇,Lǫ
′

+)
∼= (Σ̇,Lǫ)#

N⊔

j=1

(R× S1,Lj),

and by the additivity of the index,

IndLǫ
′

+ = IndLǫ +

N∑

j=1

IndLj .

The indices Lj are determined as in Floer homology by spectral flow: this gives 0 for
j ∈ {p+1, . . . , N} since in these cases the asymptotic operators match at either end.
For j ∈ {1, . . . , p}, Axj has 0 as an eigenvalue of multiplicity 1, and this determines

the spectral flow between Aǫ
zj

and Aǫ′

zj ,+
if ǫj is sufficiently small. Thus IndLj = 1,

and we see that IndL−ǫ
ũ,+ − IndLǫũ = p = dimY0.

The result is useful for two reasons: first, we’ll see in the next section that the
index of L+ can be expressed nicely in terms of a generalized Maslov index. We will
also find in Sec. 4.5.5 some simple criteria for proving that L+ is surjective, which
then immediately implies the surjectivity of L.

4.5.4 Index formula

Assume ∂Σ has m ≥ 0 connected components, and consider an admissible Cauchy-
Riemann type operator

L : W 1,p
ℓζ

(E)→ Lp(F )

along with its restriction
L0 : W

1,p
ℓ (E)→ Lp(F ),
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where 2 < p <∞. Assume that all the asymptotic operators Az are nondegenerate.
Then both operators are Fredholm by Theorem 4.5.19, and IndL = IndL0+m. We
shall concern ourselves in this section with computing IndL0. As a consequence we
obtain a formula for the index of the linearization Lũ.

If Σ̇ were a closed Riemann surface, the index of L0 would be derived from the
Riemann-Roch formula. Index formulas for compact manifolds with boundary can
be reduced to this case by gluing arguments, see for instance [MS04]. In his thesis,
M. Schwarz [Sch96] developed a gluing procedure that accomplishes the same thing
for manifolds with cylindrical ends and nondegenerate asymptotic data. Observe
that when Σ̇ is not compact, the zeroth order term Cv is not a compact perturbation;
its asymptotic behavior is crucial in determining the Fredholm index.

For the mixed boundary value problem, the Maslov index at the boundary must
also play a role. An integer that naturally arises in this situation is the generalized
normal Maslov index µN(ũ). It is computed according to a prescription similar to
µ(ũ), but using the normal bundle νũ→ Σ instead of the bundle of contact planes
ū∗ξ → Σ (the latter is not globally defined for Problem (BP′)). Recall that for any
solution ũ ∈M(Ĵ , L), the extension of νũ→ Σ̇ to an asymptotically trivial complex
line bundle over the circle compactification Σ satisfies

(νũ)|δz = x∗ξ±

for some parametrization x : δz →M± of the asymptotic limit at z ∈ Γ±. Thus the
asymptotic operator Ax : H1(x∗ξ±) → L2(x∗ξ±) furnishes boundary data at δz for
the bundle νũ → Σ. For boundary data at ∂Σ, we recall that the normal bundle
was defined so that there is always a one-dimensional intersection

(ℓN )z = (νũ)z ∩ Tũ(z)L0,

where L0 is the surface defining the totally real boundary condition for ũ. Thus
ℓN is a totally real subbundle of νũ over ∂Σ, and we can use this together with
the asymptotic operators described above to define boundary data BN for νũ. The
normal Maslov index is then defined by

µN(ũ) = µ(νũ,BN).

There is a similar index associated to the Fredholm operators L and L0. Both
are defined on a space of sections of a trivial bundle E → Σ̇, satisfying a boundary
condition determined by a totally real subbundle ℓ ⊂ E|∂Σ. The asymptotic behavior
of the zeroth order term defines the asymptotic operatorsAz : H

1(E|δz)→ L2(E|δz),
which together with ℓ furnish boundary data BL = BL0 for E → Σ. This is closely
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related to the normal Maslov index, in that if ũ ∈ M(Ĵ , L) has nondegenerate
asymptotic limits, clearly

µN(ũ) = µ(E,BLũ
).

This extends to the case of Morse-Bott asymptotic limits: recall that µN(ũ) =
µ(νũ,BN) is then defined in terms of the perturbed asymptotic operators A∓

x =
Ax ∓ ǫ for z ∈ Γ± with small ǫ > 0, and µ(E,BLũ

) can be defined similarly. By
Prop. 4.5.22, Lũ has the same Fredholm index as the corresponding operator on a
Hölder space with exponential growth at the degenerate punctures,

Lũ,+ : C1+α,ǫ′

Γ,ℓζ
(E)→ Cα,ǫ′

Γ (F ).

This in turn is equivalent to an operator Lǫ
′

ũ,+ : W 1,p
ℓζ

(E) → Lp(F ) with nondegen-

erate asymptotic operators Aǫ′

z,+ = Az ∓ ǫ, at each degenerate puncture z ∈ Γ±,
hence

µN(ũ) = µ(E,BLũ
) = µ(E,B

Lǫ′
ũ,+

).

It is therefore possible to restrict our attention to operators with nondegenerate
asymptotics and find a formula for IndLǫ

′

ũ,+ = IndLũ in terms of µ(E,B
Lǫ′
ũ,+

) =

µN(ũ).
We return now to the operator L0 : W 1,p

ℓ (E) → Lp(F ). Recalling that µ(E,B)
was previously defined in the case of a closed surface to be twice the first Chern
number of E, the following index formula should come as no surprise—it is a direct
generalization of Riemann-Roch for rank 1 bundles.

Theorem 4.5.23. IndL0 = µ(E,BL) + χ(Σ̇)

Proof. For ∂Σ = ∅, this is a special case of the formula of Schwarz [Sch96], proved by
gluing Fredholm operators along cylindrical ends with opposite signs. We can reduce
our situation to this case by doubling Σ along the boundary. Recall from Sec. 4.2
that there are natural conjugate bundles Ec → Σ

c
and F c → Σ

c
, where Σ̇c = Σc \Γc

has the same punctures as Σ̇ but with opposite signs. The natural antilinear bundle
isomorphisms E → Ec and F → F c then define a conjugate Fredholm operator

Lc0 :W
1,p
ℓc (Ec)→ Lp(F c),

with IndLc0 = IndL0. These two operators can now be glued along the boundary
by the construction described in [MS04], Appendix C, forming a doubled operator

LD0 :W 1,p(ED)→ Lp(FD).
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Here ED and FD are bundles over a surface ΣD with cylindrical ends and no bound-
ary. The Fredholm index is additive with respect to the gluing operation, so combin-
ing this with the formula of Schwarz and using Prop. 4.2.8 to compute the Maslov
index on ED,

2 IndL0 = IndL0 + IndLc0 = IndLD0

= µ(ED,BLD) + χ(Σ̇D) = 2µ(E,BL) + 2χ(Σ̇).

For a solution ũ ∈M(Ĵ , L), we use from now on the notation

Ind(ũ) := IndLũ.

This is uniquely defined, given any generic choice of small exponential weights ǫj ≥ 0
for the domain C1+α,ǫ

Γ,ℓζ
(E)⊕ Y0.

Corollary 4.5.24. For any solution ũ : Σ \ Γ→W of Problem (BP′),

Ind(ũ) = µN(ũ) + χ(Σ̇) +m = µN(ũ) + 2− 2g −#Γ

where g is the genus of Σ and m is the number of boundary components.

Proof. This follows immediately from Theorem 4.5.23 and Lemma 4.5.16, together
with the discussion of the normal Maslov index above.

Notice that if the genus and punctures are fixed, then the index formula has
no dependence on the number of boundary components m (except implicitly in
the Maslov index). This is one of the main features that makes the theory use-
ful for surgery: one can cut out disks virtually at will without compromising the
nice properties of the solutions. We shall see this phenomenon again in the discus-
sion of transversality below, as well as in the actual surgery construction (cf. Re-
mark 5.1.11).

We now put the index formula in a more useful form for Problem (BP). Assume
(W, Ĵ) = (R×M, J̃), and the totally real submanifolds consist of families of graphs
L̃σj ⊂ R×M covering embedded surfaces Lj ⊂M that are tangent to Xλ.

Lemma 4.5.25. For any immersed solution ũ : Σ̇→ R×M of (BP),

µ(ũ) = µN(ũ) + 2χ(Σ̇).
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Proof. Extend ũ to a continuous map ū : Σ → R ×M , where R = [−∞,∞]. The
tangent bundle T (R×M) has a natural extension to a continuous rank 2 complex
vector bundle

T (R×M)→ R×M,

and the pull-back ū∗T (R×M) → Σ then contains both ū∗ξ → Σ and νũ → Σ as
complex subbundles. By definition, µ(ũ) = µ(ū∗ξ,B) where the boundary data B
consist of the totally real subbundle

ℓ = ũ∗ξ ∩ ũ∗TL→ ∂Σ,

and the asymptotic operators Az : H
1(x∗ξ) → L2(x∗ξ) corresponding to the para-

metrized asymptotic limit x : δz → M at each puncture z ∈ Γ. Similarly, µN(ũ) =
µ(νũ,BN) where BN has the same asymptotic operators Az at νũ|δz = x∗ξ = ū∗ξ|δz ,
and the totally real subbundle

ℓN = νũ ∩ ũ∗T L̃→ ∂Σ.

Here L ⊂M is a surface tangent to Xλ and L̃ ⊂ R×L ⊂ R×M is a graph of some
real-valued function on L. Define now a trivial complex subbundle,

η = R⊕ RXλ ⊂ T (R×M)→ R×M,

which pulls back continuously to a complex line bundle ū∗η → Σ. We endow ū∗η
with boundary data B1, consisting of the totally real subbundle

ℓ1 = RXλ → ∂Σ,

and any nondegenerate asymptotic operatorsBz such that µCZ(Bz) = 0 with respect
to the natural trivialization. Finally, observe that the complex subbundle ũ∗T Σ̇ ⊂
ũ∗T (R×M)→ Σ̇ with fibers

(ũ∗T Σ̇)z = im dũ(z) ⊂ Tũ(z)(R×M)

also extends to a continuous complex line bundle ũ∗TΣ→ Σ with ũ∗TΣ|δz = ū∗η|δz .
A natural choice of boundary data B2 for ũ∗TΣ is defined by the real subbundle

ℓ2 = ũ∗T (∂Σ)→ ∂Σ,

along with the same asymptotic operators Bz that were chosen for ū∗η.
Putting these line bundles together in direct sums, we have

ū∗ξ ⊕ ū∗η = ū∗T (R×M) = νũ⊕ ũ∗TΣ.
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Moreover, the two sets of boundary data B⊕B1 and BN ⊕B2 have identical asymp-
totic operators Az ⊕Bz, and homotopic totally real subbundles

ℓ⊕ ℓ1 = ũ∗TL→ ∂Σ and ℓN ⊕ ℓ2 = ũ∗T L̃→ ∂Σ.

Thus by Prop. 4.2.3,

µ(ū∗ξ,B) + µ(ū∗η,B1) = µ(ū∗T (R×M),B ⊕ B1) = µ(νũ,BN ) + µ(ũ∗TΣ,B2).
(4.5.4)

The bundle ū∗η is trivial and has trivial boundary data, so clearly µ(ū∗η,B1) = 0.
To compute µ(ũ∗TΣ,B2), choose first a generic vector field Y ∈ Vec(Σ̇) which
has only interior zeros, is tangent to ∂Σ and equals ∂

∂s
in cylindrical coordinates

(s, t) ∈ Z+ near each puncture. This extends continuously to a section of TΣ→ Σ
and thus defines a complex trivialization of ũ∗TΣ → Σ near the boundary and
punctures; in this trivialization all Maslov and Conley-Zehnder indices for B2 vanish.
The algebraic number of zeros of Y is χ(Σ̇), which is therefore also the winding
number wind∂Σ(Y ) with respect to any global trivialization of TΣ, so we conclude
µ(ũ∗TΣ,B2) = 2χ(Σ̇). The result now follows from (4.5.4).

Let us apply this relation and summarize the most important results of this
section.

Theorem 4.5.26. Let ũ : Σ̇→ R×M be an embedded solution of (BP), defined on
a Riemann surface with genus g, m boundary components, and interior punctures
Γ ⊂ int Σ. Then the linearized Cauchy-Riemann operator Lũ is Fredholm for some
suitable choice of exponential weights, and its index is

Ind(ũ) = µ(ũ)− χ(Σ̇) +m = µ(ũ) + 2(g +m− 1) + #Γ. (4.5.5)

4.5.5 Automatic transversality results

It is a peculiarly four-dimensional phenomenon in the study of pseudoholomor-
phic curves, that one can sometimes prove transversality for the linearized Cauchy-
Riemann operator without having to assume that Ĵ is generic. Such results can
usually be stated in the form “L is always surjective if its Fredholm index is large
enough”.

Example 4.5.27. Suppose (W,J) is an almost complex 4-manifold, (Σ, j) is a com-
pact Riemann surface with genus g and m boundary components, and u : Σ→W is
an immersed J-holomorphic curve satisfying a standard totally real boundary con-
dition. Then a result of Hofer, Lizan and Sikorav [HLS97] shows that the linearized
operator for this problem is surjective whenever Ind(u) ≥ 2g + m − 1. Another
presentation of this result may be found in [MS04], Appendix C.
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In this section we prove some analogous results for the linearization Lũ of ũ ∈
M(Ĵ , L). Note that since ũ may have degenerate asymptotics, it’s more convenient
to consider the operator

Lǫ
′

ũ,+ : W 1,p
ℓζ

(E)→ Lp(F )

for 2 < p < ∞; this has the same Fredholm index and Maslov index as Lũ, and is
conjugate to an operator Lũ,+ : C1+α,ǫ′

Γ,ℓζ
(E)→ Cα,ǫ′

Γ (F ) whose kernel contains kerLũ.

Thus it suffices to prove that Lǫ
′

ũ,+ is surjective, and any statement made about
sections in its kernel will also apply to the kernel of Lũ.

Assume 2 < p < ∞ and let L : W 1,p
ℓζ

(E) → Lp(F ) be an admissible Cauchy-
Riemann type operator with nondegenerate asymptotic operators Az; denote by L0

its restriction to the subspace W 1,p
ℓ (E), which has codimension m. Both operators

are Fredholm, with IndL0 given by Theorem 4.5.23, and IndL = IndL0 +m. The
first step toward proving surjectivity for L is to estimate the number of zeros for any
section in kerL. This will be very similar to the discussion of windπ(ũ) in Sec. 4.3. To
begin with, we can apply the similarity principle (Prop. 4.3.4) to sections v ∈ kerL.

Lemma 4.5.28. If v ∈ W 1,p
ℓζ

(E) satisfies Lv ≡ 0 and v is not identically zero, then
all zeros of v are isolated and have positive order.

Proof. If z ∈ Σ̇ and v(z) = 0, one can choose coordinates s + it ∈ D or D+ near z
and local trivializations of E and F in which Lv = 0 translates to an equation of
the form

∂sv + i∂tv + Av = 0.

The similarity principles immediately applies if z ∈ int Σ̇ proving that z is an isolated
zero with positive order. If z ∈ ∂Σ, let γ ⊂ ∂Σ denote the connected component
containing z. The boundary condition requires v(γ) ⊂ ℓ+ τζ for some τ ∈ R, and τ
must be 0 since ζ(z) ∈ Ez \ ℓz. Thus v(γ) ⊂ ℓ, and we can choose the trivializations
so that ℓ is identified with R ⊂ C. The result then follows from the boundary version
of the similarity principle.

We recall some notation from Sec. 4.3: the zero set of a section v : Σ̇ → E is
denoted by Z(v) ⊂ Σ̇, and in the case where Z(v) is finite, the algebraic count is
defined by weighting interior zeros twice as heavily as boundary zeros:

N(v) =
∑

z∈Z(v)∩int Σ̇

o(z) +
1

2

∑

z∈Z(v)∩∂Σ

o(z).

Note that this may in general by a half-integer. We then have the following analog
of Theorem 4.3.7.
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Theorem 4.5.29. Let v : Σ̇→ E be a section in kerL which is not identically zero.
Then v has finitely many zeros, and 0 ≤ 2N(v) ≤ µ(E,BL)−#Γ1.

Proof. The reader may want to consult the proof of Theorem 4.3.7 for reference, as
many of the calculations here are the same. We can choose a global trivialization of
E and identify sections with functions v : Σ̇ → C. Then arguing as in [HWZ96a],
one finds that a function v satisfying dv+ i dv◦j+Cv ≡ 0 has its behavior near any
puncture z ∈ Γ± determined by some eigenfunction of the self-adjoint asymptotic
operator Az : H

1(E|δz) → L2(E|δz). The winding numbers of these eigenfunctions
can be related to the Conley-Zehnder index µCZ(Az) = 2α(z) + p(z): specifically
windδz(v) ≤ α(z) for z ∈ Γ+, while for z ∈ Γ−, windδz(v) ≥ α(z) + p(z).

At a component γj ⊂ ∂Σ we have v(z) ∈ ℓz + τjζ(z) for all z ∈ γj. If τj 6= 0,
then v(z) is never zero on γj, and windγj (v) = windγj (ζ) equals the winding number
of any nonzero section of ℓ along γj. Thus 2windγj (v) = µ(E|γj , ℓ|γj ). (Recall that
ℓ is orientable on each component, so all Maslov indices are even.) On the other
hand, if τj = 0, then v satisfies a standard totally real boundary condition on γj
and we can relate the number of boundary zeros to µ(E|γj , ℓ|γj). Let us partition

∂Σ = ∂0Σ ∪ ∂1Σ by setting

∂0Σ =
⋃

τj=0

γj

∂1Σ =


⋃

τj 6=0

γj


 ∪

(
⋃

z∈Γ+

δz

)
∪
(
⋃

z∈Γ−

−δz
)

Now, using terminology from Sec. 4.3, v is an admissible section in the sense that
it is nonzero on ∂1Σ and satisfies a totally real boundary condition v(∂0Σ) ⊂ ℓ|∂0Σ.
Applying Prop. 4.3.2,

2N(v) = 2wind∂1Σ(v) + µ(E|∂0Σ, ℓ|∂0Σ)
= 2

∑

z∈Γ+

windδz(v)− 2
∑

z∈Γ−

windδz(v) + 2
∑

τj 6=0

windγj (v) + µ(E|∂0Σ, ℓ|∂0Σ)

≤ 2
∑

z∈Γ+

α(z)− 2
∑

z∈Γ−
0

α(z)− 2
∑

z∈Γ−
1

(α(z) + 1) +
∑

τj 6=0

µ(E|γj , ℓ|γj) + µ(E|∂0Σ, ℓ|∂0Σ)

=
∑

z∈Γ+

(2α(z) + p(z))−#Γ+
1 −

∑

z∈Γ−

(2α(z) + p(z))−#Γ−
1 + µ(E, ℓ)

= µ(E,BL)−#Γ1.
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As we will see, a consequence of this inequality is that there are two things capa-
ble of preventing an operator L with positive Fredholm index from being surjective:
large genus, and an abundance of even punctures. If both of these conditions are
absent, which is the case we’re most interested in, the situation is quite favorable.
The following transversality result will be superseded later by Theorem 4.5.36, but
it’s an important enough special case to single out, and the statement about zeros
in the index 2 case is useful in itself.

Theorem 4.5.30. Suppose Σ has genus 0 and all punctures in Γ are odd. Then if
IndL ≥ 2, L is surjective. In particular, for the case where IndL = 2, all sections
in kerL are zero free.

Proof. Note first that the Fredholm index IndL = µ(E,BL)+χ(Σ̇)+m = µ(E,BL)+
2− 2g −#Γ = µ(E,BL) + 2−#Γ1 is necessarily even in this case, as µ(E,BL) and
#Γ1 always have the same parity. Thus denote 2p = IndL. Combining the index
formula with Theorem 4.5.29, we have

2
∑

z∈Z(v)∩int Σ̇

o(z) +
∑

z∈Z(v)∩∂Σ

o(z) ≤ µ(E,BL)−#Γ1 = 2p− 2. (4.5.6)

Now pick a global trivialization of E along with p distinct points z1, . . . , zp ∈ int Σ̇,
and define a linear evaluation map

A : kerL→ Cp : v 7→ (v(z1), . . . , v(zp)).

This map is injective, since if A(v) = 0 and v 6= 0, it means v ∈ kerL is a nonzero
section with at least p distinct interior zeros, all of which are positive, so

2
∑

z∈Z(v)∩int Σ̇

o(z) ≥ 2p,

in contradiction to (4.5.6). Therefore dim kerL ≤ 2p = IndL, which implies that
the cokernel of L is trivial.

The statement about the index 2 case follows immediately from (4.5.6).

Remark 4.5.31. Though we have assumed nondegenerate asymptotics for L, The-
orem 4.5.30 applies just as well to Lũ when the asymptotic limits are Morse-Bott.
Recall that each puncture has a well defined parity defined by the perturbed asymp-
totic operator A∓

z = Az ∓ ǫ, and one sees easily that this matches the parity defined
by the asymptotic operators of Lǫ

′

ũ,+.
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The inequality in Theorem 4.5.29 also provides a means of proving that L is
injective, since any section v in the kernel also has an a priori lower bound N(v) ≥ 0.
This observation is not immediately useful for the implicit function theorem, but it
becomes much more so when applied to the formal adjoint of L.

Choose a metric g on Σ̇ compatible with the complex structure j, such that
g = ds2 + dt2 in some cylindrical coordinate system (s, t) near each puncture. This
defines a natural volume form µg = g(j·, ·) on Σ̇. The metric also extends in a natural
way to bundles of alternating forms ΛkT ∗Σ̇→ Σ̇, in particular the cotangent bundle
T ∗Σ̇. There is a Hodge star operator ∗ : ΛkT ∗Σ̇ → Λ2−kT ∗Σ̇, defined so that for
any two k-forms α and β, g(α, β)µg = α∧∗β. For 1-forms, the Hodge star does not
depend on g: in conformal coordinates (s, t), we have ∗ds = dt and ∗dt = −ds.

Choose next a Hermitian metric 〈 , 〉 on the bundle E, by which we mean a
real-valued inner product that is compatible with the complex structure i. Then
combining this with the metric g, there are natural inner products on the bundles of
E-valued forms Λp,qT ∗Σ̇⊗E. Note that Λ1,0T ∗Σ̇⊗E and Λ0,1T ∗Σ̇⊗E are mutually
orthogonal subspaces of Λ1T ∗Σ̇⊗E. These structures determine a natural L2 inner
product for sections of E:

〈v, w〉L2 =

∫

Σ̇

〈v, w〉 µg,

and similarly for sections of F = Λ0,1T ∗Σ̇⊗E.
Corresponding to the operator L0, there is a formal adjoint L∗

0 : W 1,p
ℓ (F ) →

Lp(E), with the property that for all smooth sections v ∈ C∞
0,ℓ(E) and η ∈ C∞

0,ℓ(F )
with compact support

〈η,L0v〉L2 = 〈L∗
0η, v〉L2.

Here C∞
0,ℓ(F ) and W

1,p
ℓ (F ) are defined as spaces of sections η : Σ̇→ F = Λ0,1T Σ̇⊗E

that satisfy the totally real boundary condition η(z)Y ∈ ℓz for all z ∈ ∂Σ, Y ∈
Tz(∂Σ). Then L∗

0 is conjugate to a Cauchy-Riemann type operator of the same class
as L0, and it turns out that IndL∗

0 = − IndL0. In fact, one can identify the kernel
of L0 with the cokernel of L∗

0 and vice versa; in particular L0 is surjective if and only
L∗

0 is injective. This idea is a key ingredient in the proof of the Fredholm property
for L0 (cf. [MS04], [Sch96]).

Naturally, if L0 is surjective then so is L, but in general this would be too much
to hope for. Much better results are obtained by deriving a formal adjoint for L

itself. This will force us to consider a slightly new type of boundary condition.
Recall that the boundary condition for sections in the domain of L is determined

by an orientable totally real subbundle ℓ ⊂ E|∂Σ and a section ζ : ∂Σ→ E \ ℓ. We
can alter ζ without altering the boundary condition in order to assume that ζ takes
values in the orthogonal complement of ℓ. Suppose X(F ) is a space of continuous
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sections (of class C∞
0 , W k,p etc.) of F . Then define Xℓ0(F ) to be the space of

sections η ∈ X(F ) such that

(i) η(z)Y ∈ ℓz for all z ∈ ∂Σ and Y ∈ Tz(∂Σ),
(ii) for each component γj ⊂ ∂Σ,

∫

γj

〈∗η, ζ〉 = 0. (4.5.7)

Here 〈∗η, ζ〉 is a real-valued 1-form on ∂Σ, defined for z ∈ ∂Σ, Y ∈ Tz(∂Σ) by
〈∗η, ζ〉(Y ) = 〈∗(η(z))Y, ζ(z)〉.

Note that Xℓ0(F ) is a subspace of Xℓ(F ) with codimension m: the normalization
condition (4.5.7) kills one dimension for each component of ∂Σ. This inclusion is,
in a sense, the dualization of the inclusion Xℓ(E) ⊂ Xℓζ (E).

Define L∗ : W 1,p
ℓ0

(F ) → Lp(E) as the restriction of L∗
0. It follows immediately

from Lemma 4.5.16 that L∗ is Fredholm, with index

IndL∗ = IndL∗
0 −m = − IndL0 −m = − IndL.

Moreover, a simple computation yields:

Lemma 4.5.32. For all v ∈ C∞
0,ℓζ

(E) and η ∈ C∞
0,ℓ0

(F ),

〈η,Lv〉L2 = 〈L∗η, v〉L2.

Now applying elliptic regularity as in [MS04], [Sch96], we have:

Proposition 4.5.33. The cokernel of L is isomorphic to the kernel of L∗.

Corollary 4.5.34. L is surjective if and only if L∗ is injective.

We now turn our attention to the question of what conditions will guarantee that
L∗ is injective. Once again, the issue hinges on the zero sets of sections η ∈ kerL∗.
Since L∗ is conjugate to a Cauchy-Riemann type operator, any section η ∈ kerL∗

satisfies the similarity principle as in Lemma 4.5.28: so all zeros are isolated and
positive. This is also true at the boundary, since η satisfies a totally real boundary
condition. In light of this, Theorem 4.5.29 applies to η as well, and we have

0 ≤ 2N(η) ≤ µ(F,BL∗)−#Γ1.

The lower bound can be improved however, using the normalization condition (4.5.7).
Indeed, on each component γj ⊂ ∂Σ, η must be zero somewhere, or else the inte-
grand in (4.5.7) would always have the same sign. Thus there is at least one zero
on γj. If this zero has order 1, then it is a transverse intersection of η|γj with the
zero section of ℓ|γj , and therefore there must be another one. We’ve proved:
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Proposition 4.5.35. Let η ∈ W 1,p
ℓ0

(F ) be a section in kerL∗ which is not identically
zero. Then η has finitely many zeros, and 2m ≤ 2N(η) ≤ µ(F,BL∗)−#Γ1.

This is enough to prove the main result of this section.

Theorem 4.5.36. Let L : W 1,p
ℓζ

(E) → Lp(F ) be the Fredholm operator described
above. If IndL ≥ 2g +#Γ0 − 1, then L is surjective.

Remark 4.5.37. The hypothesis technically allows IndL = −1, but this will never
happen in practice. That’s because the inequality would then require #Γ0 = 0, in
which case, as remarked in the proof of Theorem 4.5.30, the index is always even.

Proof of Theorem 4.5.36. Assume IndL = µ(E,BL) + χ(Σ̇) +m ≥ 2g +#Γ0 − 1 =
−χ(Σ̇)−#Γ1 −m+ 1, and thus

µ(E,BL) + 2χ(Σ̇) ≥ −2m−#Γ1 + 1. (4.5.8)

We have IndL∗
0 = µ(F,BL∗) + χ(Σ̇) = − IndL0 = −µ(E,BL)− χ(Σ̇), which implies

µ(E,BL) = −µ(F,BL∗) − 2χ(Σ̇). Plugging this into (4.5.8), we find µ(F,BL∗) ≤
2m + #Γ1 − 1, and thus µ(F,BL∗) − #Γ1 ≤ 2m − 1 < 2m, which contradicts
Prop. 4.5.35 if there are any nontrivial sections in kerL∗. Therefore L∗ is injective,
and it follows from Corollary 4.5.34 that L is surjective.

Corollary 4.5.38. Suppose ũ : Σ̇→W is a solution to Problem (BP′), defined on a
Riemann surface with genus g, m ≥ 0 boundary components and even/odd punctures
Γ = Γ0 ∪ Γ1. Then the following is a sufficient condition for the linearization Lũ to
be surjective:

Ind(ũ) ≥ 2g +#Γ0 − 1.

Proof. By Prop. 4.5.22, it suffices to prove surjectivity for the operator Lũ,+ :

C1+α,ǫ′

Γ,ℓζ
(E)→ Cα,ǫ′

Γ (F ), or equivalently

Lǫ
′

ũ,+ : W 1,p
ℓζ

(E)→ Lp(F ).

Since µ(E,B
Lǫ′
ũ,+

) = µ(E,BLũ
), the result follows by applying Theorem 4.5.36 to

Lǫ
′

ũ,+.

The same argument works for the restricted operator Lũ,z at any puncture z ∈ Γ
with a Morse-Bott asymptotic limit, but there’s one caveat: the Conley-Zehnder
index of the perturbed operator at this puncture is now altered by one, thus changing
#Γ0. Accounting for this, we obtain:
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Corollary 4.5.39. Suppose the solution ũ : Σ̇ → W to (BP′) has a puncture
z ∈ Γ with a Morse-Bott asymptotic limit, and denote its parity (in the sense of
Sec. 4.2.3) by p(z) ∈ {0, 1}. Then the following is a sufficient condition for the
restricted linearization Lũ,z to be surjective:

Ind(ũ) ≥ 2g +#Γ0 − (−1)p(z).

The same argument using the formal adjoint of L0 leads to a more direct gener-
alization of the result from [HLS97]:

Theorem 4.5.40. Suppose (W, Ĵ) is an almost complex 4-manifold with cylindrical
ends, and ũ : Σ \ Γ → W is an asymptotically cylindrical Ĵ-holomorphic curve
defined on a Riemann surface with genus g, finitely many punctures Γ ⊂ int Σ and
m ≥ 0 boundary components. Assume all the asymptotic limits are nondegenerate
or Morse-Bott, and ũ satisfies a fixed totally real boundary condition. Then the
linearization of this problem is surjective if

Ind(ũ) ≥ 2g +m+#Γ0 − 1.

The special case with ∂Σ = ∅ and nondegenerate asymptotic limits (i.e. ũ is a
nondegenerate finite energy surface) is a folk theorem which provides useful criteria
for proving stability of finite energy foliations. We’ll use these results similarly for
a foliation of Morse-Bott type in Chapter 5.

Now that all of the important formulas have been stated and proved, it’s worth
taking a moment to revisit some of them in slightly different forms. In particular,
combining the upper bound in Theorem 4.5.29 with the Fredholm index formula of
Corollary 4.5.24, we get

2N(v) ≤ Ind(ũ) + 2g +#Γ0 − 2 (4.5.9)

for any solution ũ of (BP′) with genus g and even punctures Γ0, and any section v
in the kernel of the linearized operator Lũ. For a solution of Problem (BP) on the
symplectization R ×M , combining the windπ estimate of Theorem 4.3.7 with the
index formula produces a strikingly similar result:

2 windπ(ũ) ≤ Ind(ũ) + 2g +#Γ0 − 2. (4.5.10)

These two inequalities are most of the reason why the theory of finite energy fo-
liations works so well when the genus is zero and even punctures are kept to a
minimum, but in more general cases requires some modification (cf. [ACH04]).
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4.5.6 Implicit function theorem

Here we apply the results of the previous sections in order to understand the local
structure of the moduli space M(Ĵ , L). The first and simplest result along these
lines follows from Corollaries 4.5.38 and 4.5.39, together with the implicit function
theorem.

Theorem 4.5.41. Suppose ũ : Σ̇→ W is a solution to (BP′) defined on a surface
with punctures Γ = Γ0 ∪ Γ1, genus g and m boundary components.

(i) If Ind(ũ) ≥ 2g + Γ0 − 1, then the connected componentMũ ⊂ M(Ĵ , L) con-
taining ũ admits the structure of a smooth manifold, with dimMũ = Ind(ũ).

(ii) Suppose ũ has a Morse-Bott asymptotic limit at z ∈ Γ with parity p(z) ∈ {0, 1},
and let

Mz
ũ = {ṽ ∈Mũ | ṽ and ũ have the same asymptotic limit at z}.

Then if Ind(ũ) ≥ 2g + Γ0 − (−1)p(z), Mz
ũ admits the structure of a smooth

manifold, with dimMũ = Ind(ũ)− 1.

Note that no genericity assumption is required for Ĵ .
We focus next on the situation of greatest interest for the surgery arguments in

Chapter 5, where g = #Γ0 = 0. In this case, we can show that ũ and its neighbors
have properties well suited to finite energy foliations. The following results generalize
Theorems 1.5 and 1.6 in [HWZ99].

Theorem 4.5.42. Let Σ = S2 \⋃m
j=1Dj be a sphere with m ≥ 0 disjoint open disks

removed, and suppose ũ : Σ̇→W is a solution of (BP′) with Ind(ũ) = 2, such that
all asymptotic orbits are simply covered and all punctures are odd. Then there exists
an open ball 0 ∈ B2

δ (0) ⊂ R2 and an embedding

F̃ : B2
δ (0)× Σ̇→ W,

such that:

(i) For τ ∈ B2
δ (0), the maps ũτ = F̃ (τ, ·) : Σ̇ → W are solutions to (BP′), and

ũ0 = ũ.

(ii) For any puncture z ∈ Γ where ũ has a Morse-Bott asymptotic limit, the set

{τ ∈ B2
δ (0) | ũτ and ũ have the same asymptotic limit at z}

is a smooth 1-dimensional submanifold of B2
δ (0).
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(iii) If ṽk : Σ̇→W is a sequence of solutions to (BP′) converging to ũ inM(Ĵ , L),
then for sufficiently large k there is a sequence τk → 0 ∈ B2

δ (0) such that
ṽk = ũτk ◦ ϕk for some diffeomorphisms ϕk : Σ̇→ Σ̇.

Remark 4.5.43. The theorem intentionally makes no mention of any conformal
structure on Σ: it may well happen that nearby solutions ũ and ũτ are Ĵ-holomorphic
with respect to nonequivalent conformal structures j and jτ . (The moduli space of
conformal structures is nontrivial if m ≥ 2.)

This can be refined further in the R-invariant case.

Theorem 4.5.44. Suppose ũ = (a, u) : Σ̇ → R × M is an embedded solution
to (BP0), satisfying the same hypotheses as in Theorem 4.5.42, and assume addi-
tionally that either ∂Σ = ∅ or u : Σ̇ → M is injective and does not intersect its
asymptotic limits. Then there exists a number δ > 0 and an embedding

R× (−δ, δ)× Σ̇
F̃−→ R×M

(σ, τ, z) 7−→ (aτ (z) + σ, uτ (z))

such that:

(i) For σ ∈ R and τ ∈ (−δ, δ), the maps ũ(σ,τ) = F̃ (σ, τ, ·) : Σ̇→ R×M are (up
to parametrization) embedded solutions to (BP0), and ũ(0,0) = ũ.

(ii) The map F (τ, z) = uτ (z) is an embedding (−δ, δ) × Σ̇ →֒ M , and its image
never intersects the asymptotic limits of any ũ(σ,τ) for (σ, τ) ∈ R × (−δ, δ).
In particular the maps uτ : Σ̇ → M are embedded for each τ ∈ (−δ, δ), with
mutually disjoint images which do not intersect their asymptotic limits.

(iii) If ũ has a Morse-Bott asymptotic limit at z ∈ Γ, then uτ and uτ ′ have distinct
asymptotic limits at z whenever τ 6= τ ′.

(iv) For any sequence ṽk : Σ̇ → R ×M converging to ũ in M(J̃ , L), there is a
sequence (σk, τk) → (0, 0) ∈ R × (−δ, δ) such that ṽk = ũ(σk ,τk) ◦ ϕk for some

diffeomorphisms ϕk : Σ̇→ Σ̇ and k sufficiently large.

Observe that in the case ∂Σ = ∅, the hypothesis doesn’t require u : Σ̇ → M to
be injective; this is rather a consequence of the theorem.

Proof of Theorem 4.5.42. We have g = #Γ0 = 0 and Ind(ũ) = 2, so by Theo-
rem 4.5.30, the linearization Lũ is surjective, and every section v ∈ kerLũ is zero
free. Applying the implicit function theorem, we obtain a smooth embedding

B2
δ (0)→ C1+α,δ

Γ,ℓζ
(E) : τ 7→ vτ
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such that F(vτ ) = 0. Moreover, after possibly decreasing δ, the arguments in
[HWZ99], Theorem 5.7 show that B2

δ (0) × Σ̇ → V0 : (τ, z) 7→ vτ (z) is a smooth
embedding. Since the asymptotic limits are simply covered, Ψ : V0 → W is also an
embedding, so the map

F̃ (τ, z) = Ψ(vτ (z)),

clearly has properties (i) and (iii). Property (ii) follows from the implicit function
theorem and Corollary 4.5.39, since Ind(ũ) = 2 ≥ ±1 = 2g +#Γ0 − (−1)p(z).

Proof of Theorem 4.5.44. Theorem 4.5.42 gives a 2-parameter family of disjoint em-
bedded solutions ũ(σ,τ) = (a(σ,τ), u(σ,τ)) : Σ̇→ R×M , with (σ, τ) ∈ B2

δ (0) ⊂ R2. This
family must include 1-parameter families of solutions related to each other by R-
translation, thus we can arrange the parametrization such that u(σ,τ)(Σ̇) = u(σ′,τ ′)(Σ̇)
if and only if τ = τ ′. The solutions can then be reparametrized smoothly to produce
an embedding of the form

B2
δ (0)× Σ̇→ R×M : (σ, τ, z) 7→ ũ(σ,τ) = (aτ (z) + σ, uτ (z)).

Using the R-invariance, this extends naturally to an immersion R× (−δ, δ)× Σ̇→
R×M , and we must show that this map is injective.

Observe that by the inequality (4.5.10), windπ(ũ(σ,τ)) = 0, so uτ : Σ̇ → M is
necessarily immersed for each τ ∈ (−δ, δ). We show now that u = u0 must also be
injective and disjoint from its asymptotic limits if ∂Σ = ∅. If u is not injective, then
ũ(0,0) intersects ũ(σ,0) for some σ 6= 0. But this is clearly not the case for any σ in a
neighborhood of 0, and applying positivity of intersections to the natural homotopy
from ũ(0,0) to ũ(σ,0), we find a contradiction. Therefore u is an embedding, and it
follows that it cannot intersect any of its asymptotic limits: such an intersection
would necessarily be transverse, thus implying a self-intersection of u.

The above intersection argument doesn’t work so well when ∂Σ 6= ∅; some-
thing extra is needed to prevent intersections from appearing or disappearing at
the boundary under R-translation. This is why we include the injectivity of u as
a hypothesis in this case. It still follows that u is embedded and disjoint from its
asymptotic limits, since windπ(ũ) = 0.

We can now assume, possibly by shrinking δ, that uτ is embedded and disjoint
from its asymptotic limits for each τ ∈ (−δ, δ). We claim that uτ and uτ ′ do not
intersect if τ 6= τ ′. To see this, we use again the fact that sections v : Σ̇ → νũ
in kerLũ have no zeros: it follows that any two such sections spanning kerLũ are
pointwise linearly independent. Thus if vR and w form a basis for kerLũ, where
vR is derived by differentiating the R-invariant family σ 7→ ũ(σ,0), we conclude that
p∗w(z) ∈ Tu(z)M is everywhere nonzero, where p : R ×M → M is the projection.
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There is then a 1-dimensional curve (σ(t), τ(t)) through (0, 0) such that (t, z) 7→
uτ(t)(z) is injective for t sufficiently close to 0, proving the claim.

It follows now that uτ doesn’t intersect the asymptotic limits of uτ ′ if τ 6= τ ′;
again such an intersection would be transverse, leading to an intersection of uτ
with uτ ′.

It remains to prove (iii), that uτ and uτ ′ have distinct limits at any Morse-Bott
puncture if τ 6= τ ′. This follows from the second statement in Theorem 4.5.44,
because in this case we can uniquely identify the 1-parameter family ũ(σ(t),τ(t)) that
shares the same limit with ũ(0,0): it is the family of R-translations ũ(σ,0).

4.5.7 Parametrized deformations

The theorems of the previous section show that the moduli space of index 2 solutions
to (BP0) or (BP′) is locally very well behaved. If there is also compactness, then
one obtains a foliation of (some subset of) the four-manifold W by holomorphic
curves. This is precisely the kind of argument that was used to produce open book
decompositions in [HWZ95b], and we will see more examples when we carry out the
necessary compactness arguments in Chapter 5.

In this section we assume that such a compact moduli space is given, and ask the
following question: if Ĵ is perturbed, does this compact family change continuously
along with Ĵ? The answer, of course, is “yes” for the cases we’re interested in.
The hard parts of the proof are already done—it only remains to synthesize the
ingredients.

The general framework is as follows: let {Ĵr}r∈R be a smooth family of almost
complex structures on W which have asymptotically cylindrical behavior, i.e. Ĵr is
defined on the ends E± in terms of a smooth family of contact forms λ±r , and a
smooth family of admissible complex multiplications J±

r on ξ±r = ker λ±r . Assume
there are open subsets U± ⊂ M± in which λ±r and J±

r are independent of r, and
these subsets contain compact submanifolds P± consisting of nondegenerate periodic
orbits and/or simple Morse-Bott families of periodic orbits, with respect to λ±r . The
domain for maps into W will be a fixed compact oriented surface Σ with boundary,
with a finite set of fixed punctures Γ ⊂ int Σ. We will require that these maps be
asymptotic to orbits from P± at the positive/negative punctures. For each connected
component γj ⊂ ∂Σ, we define the boundary condition ũ(γj) ⊂ Lτ for any τ ∈ Ij ,
where Ij is a connected 1-manifold and Lτ = ιj({τ} × Λj) is a smooth family

of surfaces that are totally real with respect to Ĵr for all r ∈ R. The map ιj :
Ij × Λj → W is an embedding, with Λj a closed connected 2-manifold. Solutions
ũ : Σ̇ → W will additionally be required to be globally embedded, and transverse
to ιj at γj. All of this is the same as in our original definition of Problem (BP′):
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the only new element here is that we require the boundary data at both ∂Σ and
Γ to be compatible with all almost complex structures from the family Ĵr, whereas
previously there was only one choice of Ĵ to worry about.

In this context, we can pick any r ∈ R and speak of Ĵr-holomorphic solutions to
Problem (BP′). This defines moduli spaces,

Mr =M(Ĵr, L),

M = {(r, ũ) | r ∈ R, ũ ∈ Mr}.

Recall that two solutions ũ and ṽ define the same element of Mr if there is a
diffeomorphism ϕ : Σ̇→ Σ̇ such that ṽ = ũ ◦ ϕ. Also, from Definition 4.5.3, ũk → ũ
in Mr if the maps can be reparametrized on Σ̇ so that ũk → ũ in C∞

loc(Σ̇,W ) and
there are well defined continuous extensions with ūk → ū in C0(Σ,W ). A topology
on M is defined by saying that (rk, ũk) → (r, ũ) if rk → r in R and ũk → ũ in
the sense just described. Then the natural inclusion Mr →֒ M : ũ 7→ (r, ũ) is
continuous.

For a given r ∈ R, Mr is not generally a smooth manifold, but it may have
components that are. This is the case in particular for any connected component
M∗

r ⊂Mr containing a solution ũ for which Ind(ũ) ≥ 2g+#Γ0−1. In this case we
can show that the corresponding componentM∗ ⊂M is also a manifold, containing
M∗

r as a hypersurface.
We use the same setup that was used to analyze the spaceMr. Assume (0, ũ) ∈

M, and construct an open neighborhood V ⊂ νũ of the zero section, along with an
immersion

Ψ : V →W

mapping the zero section to ũ(Σ̇), as in Sec. 4.5.1. The 1-parameter family of almost
complex structures J̄r = Ψ∗Ĵr is independent of r outside of V|K for some compact

subset K ⊂ Σ̇. Define a Banach space bundle Ẽ → B̃ with

B̃ = R× B,
Ẽ(r,v) = Cα,ǫ

Γ (HomR(Λ
2T Σ̇, v∗Θr)),

where for each r ∈ R, Θr ⊂ Λ2TV → V is the subbundle whose fibers are the
(−1)-eigenspaces of J̄r. We then have a smooth section F̃ : B̃ → Ẽ : v 7→ η̄J̄r(v),
where

η̄J̄r(v)(z) : h ∧ k 7→ Tv(h) ∧ Tv(k)− J̄rTv(h) ∧ J̄rTv(k).
Clearly a neighborhood of (0, ũ) inM is homeomorphic to a neighborhood of (0, 0)

in F̃−1(0) ⊂ B̃.

136



Notice that if we set Br = {r} × B̃ and Er = Ẽ |Br for any r ∈ R, the restriction

F̃|Br : Br → Er is precisely the problem we have already considered. Choose a local

trivialization of Ẽ → B̃ near (0, 0), so we can regard F̃ as a map between Banach

spaces. The following lemma then gives the local structure of F̃−1 near (0, 0).

Lemma 4.5.45. Suppose X and Y are Banach spaces, U ⊂ X is an open neigh-
borhood of 0, and F : R × U → Y is a smooth map with F (0, 0) = 0. For any
r ∈ R, denote Fr : U → Y : x 7→ F (r, x), and assume F has the property that
dF0(0) : X → Y is a surjective Fredholm operator with index N . Then there is
a neighborhood U ′ of (0, 0) ∈ R × X such that F−1(0) ∩ U ′ ⊂ R × U is a smooth
(N + 1)-dimensional manifold transverse to the hyperplanes {r} ×X for all r ∈ R.

Proof. The linearization of F at (r, x) ∈ R× U takes the form

dF (r, x)(h, y) = h
∂F

∂r
+ dFr(x)y

for (h, y) ∈ R⊕X . Thus dF (0, 0) is clearly surjective if dF0(0) is, and we can apply
the implicit function theorem to derive a manifold structure for F−1(0) near (0, 0).
The index of dF (0) is one higher than that of dF0(0), by Lemma 4.5.16. Taking
a neighborhood of (0, 0) small enough so that dFr(x) remains surjective, there is
always a solution to the equation dFr(x)y = −∂F

∂r
(r, x), hence (1, y) ∈ ker dF (r, x),

proving the transversality.

Corollary 4.5.46. Suppose (r, ũ) ∈M and Lũ is surjective. ThenMr andM are
both smooth manifolds in a neighborhood of ũ or (r, ũ) respectively, with dimM =
dimMr+1 = Ind(ũ)+1. The natural inclusionsMr′ →֒ M are smooth embeddings
for (r′, ũ′) near (r, ũ).

This implies the existence of J̃r′-holomorphic solutions near ũ for r′ near r.
Consider now the following situation. Suppose ũ0 ∈ M0 with Ind(ũ0) ≥ 2g +

#Γ0−1, so Lũ0 is automatically surjective, and denote byM∗
0 ⊂M0 the connected

component containing ũ0; similarly, let M∗ denote the connected component of
M containing (0, ũ0). The transversality criterion is homotopy invariant, thus we
conclude that Lũ is surjective for every (r, ũ) ∈ M∗, and M∗ is a manifold of
dimension Ind(ũ0) + 1. DenoteM∗

r = {ũ ∈Mr | (r, ũ) ∈M∗} for any r ∈ R; these
are smooth hypersurfaces, due to the transversality statement in Lemma 4.5.45. The
question now arises as to how the hypersurfacesM∗

r andM∗
0 might be related for r 6=

0. Under the right circumstances, it’s not hard to prove thatM∗
r is diffeomorphic

toM∗
0. Observe that there is a natural smooth function

h :M∗ → R : (r, ũ) 7→ r.
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Proposition 4.5.47. h has no critical points.

Proof. This is just another version of the transversality statement in Lemma 4.5.45.

Thus we can think of h as a Morse function on the manifoldM∗. IfM∗ happens
to be compact, we can follow the usual prescription of classical Morse theory: choose
a metric onM∗ and use the normalized gradient flow of h to obtain diffeomorphisms
M∗

0
∼= M∗

r (cf. [Mi63]). Of course, moduli spaces of holomorphic curves are often
not compact, but admit natural compactifications: this turnsM∗ into M∗

, which
is something resembling a manifold with boundary. A simpler remedy is available
for Problem (BP0), in whichM∗ is manifestly noncompact due to R-invariance: we
consider instead the quotientM∗/R.

One piece of terminology: for any solution ũ = (a, u) : Σ̇→ R×M to Problem
(BP), its contact area is the nonnegative number

Aλ(ũ) =
∫

Σ̇

u∗dλ.

This equals zero if and only if the image of u is contained in a closed Reeb orbit. A
simple argument given in the next section (Prop. 4.6.1) shows that Aλ(ũ) is constant
on any connected moduli space of solutions to (BP) with fixed data.

Lemma 4.5.48. Fix an R-invariant almost complex structure J̃ of the usual type
on R×M , and denote by L an R-invariant boundary condition for Problem (BP0),
with solutions forming the moduli space M(J̃ , L). Suppose M∗(J̃ , L) ⊂ M(J̃ , L)
is a connected component with the property that Aλ(ũ) > 0 for all ũ ∈ M∗(J̃ , L).
Then the natural R-action on M∗(J̃ , L) is free and proper. In particular, then, if
M∗(J̃ , L) is an N-dimensional manifold, M∗(J̃ , L)/R is a manifold of dimension
N − 1.

Proof. Given ũ = (a, u) ∈ M∗(J̃ , L), write the R-action by σ(ũ) := ũσ := (a +
σ, u) ∈ M∗(J̃ , L) for σ ∈ R. Pick any compact subset K ⊂ M∗(J̃ , L). Then to
prove that R acts properly, we must exclude the possibility of a diverging sequence
σk → ±∞ such that σk(K) intersects K for all k. Assume there is such a sequence,
so there exist ũk = (ak, uk) ∈ K and ṽk = (bk, vk) ∈ K such that ũσkk = ṽk up to
parametrization. Since K is compact, we may assume ũk → ũ∞ ∈ K and ṽk →
ṽ∞ ∈ K, with convergence in the sense ofM(J̃ , L). We should now be more precise
about parametrizations: assume there are continuous extensions ūk : Σ → R ×M
such that

ūk → ū∞ in C0(Σ,R×M),
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and similarly
ṽk ◦ ϕk → v̄∞ in C0(Σ,R×M),

where ϕk : Σ̇ → Σ̇ are diffeomorphisms such that ṽk ◦ ϕk extends to a continuous
map ṽk ◦ ϕk : Σ→ R×M for all k, and

ṽk = (bk, vk) = (ak + σk, uk) = ũσk .

Now for any z ∈ Σ̇, let zk = ϕ−1
k (z) and assume without loss of generality that

zk → z∞ ∈ Σ. Then ũk(z) → ũ∞(z) = (a∞(z), u∞(z)), and ṽk(z) = (ak(z) +
σk, uk(z))→ (±∞, u∞(z)). On the other hand,

ṽk(z) = ṽk ◦ ϕk(zk)→ v̄∞(z∞) = (b̄∞(z∞), v̄∞(z∞)) ∈ {±∞} ×M,

implying that u∞(z) = v̄∞(z∞) lies in one of the asymptotic limits of ṽ∞. This is
true for arbitrary z ∈ Σ̇, thus the image of ũ∞ ∈ K is contained in a periodic orbit,
and we have the contradiction

∫
Σ̇
u∗∞dλ = 0.

It follows immediately that the R-action is also free: otherwise there exists σ ∈
R \ {0} and ũ ∈M∗(J̃ , L) such that ũσ = ũ up to parametrization, and the same is
true of ũkσ for a sequence k →∞.

The same argument applies to an R-invariant moduli space M∗ =
⋃
r∈RMr if

every ũ ∈Mr has nonvanishing contact area. Thus in the case under consideration,
M∗/R is also a manifold.

Given an interval [a, b] ⊂ R, denoteM∗
[a,b] = h−1([a, b]) =

⋃
r∈[a,b]M∗

r.

Proposition 4.5.49. Suppose the connected moduli spaceM∗ =
⋃
r∈RM∗

r consists
of solutions to (BP0), such that some solution ũ0 ∈ M∗

0 satisfies Ind(ũ0) ≥ 2g +
#Γ0 − 1 and every ũ = (a, u) ∈ M∗

r for r ∈ R has
∫
Σ̇
u∗dλr > 0. Then M∗/R is

a smooth manifold of dimension Ind(ũ0). Moreover, if 0 ∈ [a, b] and M∗
[a,b]/R is

compact, there is a diffeomorphism

ψ : [a, b]×M∗
0/R→M∗

[a,b]/R

such that ψ(0, [ũ]) = [ũ] and for each r ∈ [a, b], ψ(r, ·) is a diffeomorphismM∗
0/R→

M∗
r/R.

Proof. This follows from the previous remarks and Lemma 4.5.48, plus the obser-
vation that the function h :M∗ → R descends to a functionM∗/R→ R which has
no critical points. Then we can choose a metric on M∗/R and use the flow ϕt of
∇h/|∇h|2, defining ψ(r, [ũ]) = ϕr([ũ]).
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We now investigate some of the consequences of this formalism for R-invariant
foliations. Let (M,λ) be a connected contact 3-manifold, possibly with boundary,
such that Xλ is tangent to ∂M . (This implies that any component of ∂M has
Euler characteristic zero, i.e. it’s a torus.) Choose an admissible J : ξ → ξ and
define an almost complex structure J̃ on R × M in the standard way. For each
component L ⊂ ∂M , choose a smooth function G : L → R and define the totally
real submanifold L̃G ⊂ (R × M, J̃), as at the beginning of this chapter. Its R-
translates L̃σG foliate R× L ⊂ ∂(R×M).

We can use Problem (BP0) to generalize the notion of a stable finite energy
foliation to this setting, with ∂M 6= ∅. We consider here a special case which will
be useful in Chapter 5. Fix a compact oriented surface Σ with genus 0, such that
∂Σ has at least as many components as ∂M . Fix also a finite set of positive and/or
negative punctures Γ = Γ+∪Γ− ⊂ int Σ, and for each z ∈ Γ choose a corresponding
nondegenerate periodic orbit Pz ⊂ intM , which is simply covered and has odd
Conley-Zehnder index. Denote P =

⋃
z∈Γ Pz ⊂ intM . Consider now a smooth

foliation of (R×M) \ (R×P) by surfaces {S(σ,τ)}(σ,τ)∈R×S1 , such that:

1. Each surface S(σ,τ) is the image of an embedded solution ũ : Σ̇ → R ×M of
(BP0), positively/negatively asymptotic to Pz at z ∈ Γ±, and with Ind(ũ) = 2.

2. If S(σ,τ) is the image of ũ = (a, u), then for any c ∈ R, S(σ+c,τ) is the image of
ũc = (a + c, u).

3. Let p : R×M → M be the projection. If τ 6= τ ′, then p(S(σ,τ)) and p(S(σ′,τ ′))
are disjoint embedded surfaces in M , for any choice of σ and σ′. In particular,
fixing σ ∈ R, the surfaces {p(S(σ,τ))}τ∈S1 foliate M \ P.

A family with these properties will be called a stable open book decomposition with
boundary. Observe that if ũ = (a, u) : Σ̇ → R ×M is any leaf, then u : Σ̇ → M is
embedded and therefore transverse to Xλ, so the foliation of M \ P is transverse to
∂M .

Lemma 4.5.50. LetM0 be the moduli space of embedded J̃-holomorphic solutions
to (BP0) on the manifold with boundary described above, and letM∗

0 ⊂M0 be the
connected component containing all the pages of a given stable open book decompo-
sition with boundary. Then, in fact, every solution ũ ∈ M∗

0 is a page of the open
book decomposition.

Proof. Denote by F the subset of M∗
0 consisting of solutions that are part of the

open book decomposition. Then an easy intersection argument shows that F/R is
a closed subset of M∗

0/R, and it is also an open subset, by the implicit function
theorem. Thus F/R =M∗

0/R.
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We now ask what happens to a family of this type under homotopies of J̃ . Choose
smooth homotopies {λr}r∈R and {Jr}r∈R, such that λ0 = λ and J0 = J : these induce
a corresponding homotopy {J̃r}r∈R with J̃0 ≡ J̃ . We assume λr and Jr are fixed in
some neighborhood of P, and that Xλr is tangent to ∂M for all r. Then the moduli
space M∗

0 embeds naturally into a connected moduli space M∗ consisting of pairs
(r, ũ), with ũ a J̃r-holomorphic solution of (BP0). Recall now that all asymptotic
limits are simply covered, so all solutions ũ = (a, u) ∈ M∗

r are guaranteed to be
somewhere injective. There can be no ũ = (a, u) ∈M∗

r with Aλr(ũ) = 0; this would
mean u(Σ̇) is contained in a periodic orbit, but this is clearly not true since ũ is
homotopic to some ũ0 ∈M∗

0.
By the implicit function theorem (Thm. 4.5.44), each of the spaces Mr is a

smooth 2-dimensional manifold whose local structure matches that of an R-invariant
foliation, and from Corollary 4.5.46, M∗ is a smooth 3-manifold. The natural R-
action on M∗ restricts to the submanifolds M∗

r ⊂ M∗, and the quotients M∗/R
and M∗

r/R are also manifolds. There is then a smooth function h : M∗/R → R

which has no critical points and whose level sets are the 1-manifoldsM∗
r/R.

Theorem 4.5.51. Suppose that for some r0 > 0, M∗
[0,r0]

/R is compact. Then

M∗
[0,r0]
∼= [0, r0]× R× S1, and for each r ∈ [0, r0], the moduli spaceM∗

r constitutes
a stable open book decomposition with boundary.

Proof. It follows from Prop. 4.5.49 that M∗
[0,r0]

∼= [0, r0] × R × S1 and M∗
r/R

∼=
M∗

0/R
∼= S1 for each r ∈ [0, r0]. We have to verify thatM∗

r defines an open book
decomposition with boundary. This follows from the intersection theory in Sec. 4.4.
Note that (4.5.10) gives windπ(ũ) = 0 for any (r, ũ) ∈ M∗, so if ũ = (a, u), u is
always immersed. Then if [ũk] = [(ak, uk)] ∈M∗

rk
/R with uk embedded, rk → r and

ũk → ũ = (a, u) up to R-translation, Theorem 4.4.4 implies that u is embedded.
Likewise we deduce from Theorem 4.4.5 that for any two distinct elements ũ =
(a, u) ∈ M∗

r and ṽ = (b, v) ∈ M∗
r, the images of u and v are either disjoint or

identical.
It remains to verify that the solutions inM∗

r cover all of M \ P. Define

Nr = {p ∈M \ P | p ∈ u(Σ̇) for some ũ = (a, u) ∈M∗
r}.

By the implicit function theorem, Nr is open. The compactness of M∗
r/R implies

that Nr is also a closed subset of M \ P: indeed, if uk(zk)→ p ∈ M \ P for zk ∈ Σ̇
and ũk = (ak, uk) ∈ M∗

r, we can assume zk → z∞ ∈ Σ and ūk → ū∞ in C0(Σ,R×M)
for some ũ∞ = (a∞, u∞) ∈ M∗

r. Thus ūk(zk) → ū∞(z∞) ∈ R ×M . It follows that
z∞ ∈ Σ̇ and u(z∞) = p, thus p ∈ Nr. Since Nr is open and closed and M \ P is
connected, Nr =M \ P, completing the proof.
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One could also extend this result to S1-parametrized families with Morse-Bott
asymptotic limits, and similar arguments can be used to deform more general types
of finite energy foliations.

Remark 4.5.52. An important unstated fact implicit in the above result is that if
M is a proper subset of a closed contact 3-manifoldM ′ (in our examples, M ′ = S3),
then starting with an open book decomposition F0 that foliates M \ P, the deformed
foliations Fr always “stay inside” M . This follows easily from the fact that the
leaves ũ always meet ∂M transversely, so the interior of Σ̇ is mapped into M ′ \∂M .

4.6 Energy

4.6.1 Taming functions and asymptotics

In preparation for the compactness arguments of the next chapter, we will need some
a priori energy bounds for solutions of Problem (BP). Such bounds are possible
because the boundary condition is always defined in terms of a surface L ⊂ M
which is tangent to Xλ, and thus dλ vanishes on TL. The simplest consequence
of this is that the contact area Aλ(ũ) is a homotopy invariant. Given a solution
ũ = (a, u) : Σ̇→ R×M of (BP), the contact area is defined as the integral

Aλ(ũ) =
∫

Σ̇

u∗dλ. (4.6.1)

Observe that Aλ(ũ) is always nonnegative if ũ is J̃-holomorphic. In the following,
let L ⊂M be any surface tangent to Xλ.

Proposition 4.6.1. Suppose ũ = (a, u) : Σ̇→ R×M and ṽ = (b, v) : Σ̇→ R×M
are two solutions of (BP), with the same asymptotic limits at the punctures, and
such that u|∂Σ and v|∂Σ are homotopic maps ∂Σ→ L. Then Aλ(ũ) = Aλ(ṽ).

Proof. Let T1, . . . , TN be the periods of the limiting orbits at punctures z1, . . . , zN ∈
Γ. Then using the exponential approach at the punctures and Stokes’ theorem, we
have

Aλ(ũ) =
∑

zj∈Γ+

Tj −
∑

zj∈Γ−

Tj +

∫

∂Σ

u∗λ. (4.6.2)

The integral on the right hand side depends only on the homotopy class of u|∂Σ :
∂Σ→ L since any homotopy h : [0, 1]× ∂Σ→ L satisfies

∫
[0,1]×∂Σ

h∗dλ = 0.
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This bound is useful but insufficient, because dλ is not a symplectic form on
R ×M . One usually defines a stronger notion of energy for holomorphic curves in
symplectizations as follows:

E(ũ) = sup
ϕ∈T0

∫

Σ̇

ũ∗d(ϕλ), (4.6.3)

where T0 is the set of all smooth functions ϕ : R→ [0, 1] with ϕ′ ≥ 0. In this context
λ and dλ are viewed as forms on R×M and ϕ is a real-valued function on R×M
which depends only on the R-coordinate. The finiteness of this energy provides
a criterion for proving that solutions are asymptotically cylindrical at punctures,
which is of paramount importance in compactness arguments.

An easy computation using Stokes’ theorem shows that solutions of (BP) have
finite energy as defined above. But this is not very helpful except in special cases,
because the totally real submanifolds L̃σj are generally not Lagrangian in a conven-
tional sense. If ϕ : R → [0, 1] has positive derivative, one can define a symplectic
structure on R×M by d(ϕλ), but this form does not vanish on the graph

L̃G = {(G(x), x) ∈ R×M | x ∈ L}
unless G : L → R is constant. Without a Lagrangian boundary condition, one
generally cannot obtain uniform energy bounds for solutions of Problem (BP), and
compactness arguments are hopeless.1

The situation is saved by the fact that R × M admits plenty of symplectic
structures other than the one mentioned above. With a little care, it is perfectly
possible to find a symplectic form that both tames J̃ and vanishes on surfaces such
as L̃G. This leads to a generalized definition of “energy” for punctured holomorphic
curves with boundary.

The generalized energy will be defined exactly as in (4.6.3), but with ϕ as a
function on R ×M rather than just R. The hard part is to define exactly what
set of functions ϕ : R ×M → R should replace T0; in effect, this is equivalent to
choosing a new class of symplectic structures on R ×M . Most importantly, any
sensible definition of energy must guarantee that solutions with finite energy have
nice asymptotic behavior. We shall now present a general axiomatic framework for
proving such results.

Definition 4.6.2. An R-invariant taming set T is a set of smooth functions ϕ :
R×M → [0, 1] satisfying the following axioms:

1There are situations, e.g. in [HWZ95b], where the geometry of the setup allows one to find
uniform energy bounds for a totally real boundary condition that is not Lagrangian. In such cases,
the energy is not a homotopy invariant, but one can prove that it only varies a finite amount due
to other geometric constraints. Our situation is less fortunate.
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• (positivity) d(ϕλ)(Y, J̃Y ) ≥ 0 for all ϕ ∈ T and Y ∈ T (R ×M), and for
any compact set K ⊂ R ×M there exists ϕ ∈ T such that d(ϕλ)(Y, J̃Y ) > 0
for all nonzero vectors y ∈ T (R×M)|K.

• (nontriviality) There exists a constant C > 0 and a function ϕ ∈ T such
that for all x ∈M ,

∫∞

−∞
∂aϕ(a, x) ≥ C.

• (Reeb flow invariance) If ϕ ∈ T and Φtλ : M → M is the flow of the
Reeb vector field, then the function ϕt(a, x) = ϕ(a,Φtλ(x)) is also in T for all
t ∈ R.

• (R-invariance) If ϕ ∈ T and σ ∈ R, then ϕσ(a, x) = ϕ(a + σ, x) is also in
T .

More generally, one can drop the R-invariance axiom and define a taming set to be
a set T of smooth functions ϕ : R ×M → [0, 1] satisfying the first three axioms,
plus:

• (asymptotic R-invariance) There exist R-invariant taming sets T ± and
a number a0 > 0 such that for any ϕ± ∈ T ±, there are functions ψ± ∈ T
satisfying

ψ+(a, x) = φ+(a, x) for all a > a0,

ψ−(a, x) = φ−(a, x) for all a < −a0.

The sets T ± are called asymptotic taming sets for T . Notice that an R-invariant
taming set also satisfies this last axiom by setting T ± = T . The functions ϕ ∈ T
will be referred to as taming functions.

Note that by plugging Y = ∂a into the positivity axiom, every taming function
satisfies ∂aϕ ≥ 0.

Remark 4.6.3. We should say a few words about possible generalizations of this
definition. None of these will be necessary for the applications we have in mind, but
they could be useful in the future.

1. The Reeb flow invariance axiom is convenient for proving asymptotic results,
but it may turn out to be unnecessary. This would be nice since, as we’ll see
in the next section, its presence is associated with a very restrictive condition
on the totally real submanifolds we’re allowed to use, without which the proof
of the main existence result for foliations would be substantially simpler.
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2. The R-invariance axiom could be replaced with “discrete” R-invariance: it
suffices to know that ϕ ∈ T if and only if ϕσ ∈ T for some σ 6= 0. Then
of course ϕNσ ∈ T for all N ∈ Z, and the compactness arguments could be
adapted to use only this assumption.

3. The notion of asymptotic R-invariance can be weakened somewhat. It suffices
to assume that there are numbers a0 > 0 and κ ∈ (0, 1) such that for each
ϕ± ∈ T ±, there exist taming functions ψ±

b ∈ T for b ≥ a0, satisfying

ψ+
b (a, x) = φ+(a, x) for all a ∈ [b− κb, b+ κb],

ψ−
b (a, x) = φ−(a, x) for all a ∈ [−b − κb,−b + κb].

The proofs of the asymptotic results below use only this assumption.

Given any taming set T , we now define the energy of a J̃-holomorphic map
ũ : Σ→ R×M by

ET (ũ) = sup
ϕ∈T

∫

Σ

ũ∗d(ϕλ).

The positivity condition guarantees that ET (ũ) ≥ 0 for all J̃-holomorphic curves,
and ET (ũ) = 0 if and only if ũ is constant.

The standard example of an R-invariant taming set is the set T0 of all smooth
functions ϕ : R×M → [0, 1] which depend only on the R-factor and satisfy ∂aϕ ≥ 0.
The energy ET0(ũ) then matches the standard definition given in (4.6.3).

We now must generalize some standard results about the asymptotic behavior
of punctured holomorphic curves with finite energy.

Theorem 4.6.4. Suppose ũ = (a, u) : Ḋ = D \ {0} → R ×M is a J̃-holomorphic
map with ET (ũ) < ∞. If ũ is bounded, then ũ extends to a J̃-holomorphic map
D → R ×M . Otherwise, for every sequence sk → ∞ there is a subsequence such
that the loops t 7→ u(e−2π(sk+it)) converge in C∞(S1,M) to a loop t 7→ x(Qt). Here
x : R→M is a periodic orbit of Xλ with period T = |Q| > 0, where

Q = − lim
ǫ→0

∫

∂Dǫ

u∗λ

Moreover, a : Ḋ→ R approaches either −∞ or +∞ at the puncture. If the orbit x
is nondegenerate or Morse-Bott, then ũ is asymptotically cylindrical in the sense of
Definition 1.1.9.

This theorem is a direct generalization of results from [H93], [HWZ96a] and
[HWZ96b]; the only new element here is the broader definition of finite energy in
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terms of arbitrary taming sets. One approach to proving this would be to redo all of
the earlier work in the more general context, taking extra care with certain details
where the choice of a taming set might play a role. But rather than reinventing the
wheel, we shall pursue this course only far enough to prove that a J̃-holomorphic
curve with ET (ũ) <∞ has ET0(ũ) <∞ as well. This is possible mainly because of
Prop. 4.6.6 below, which states that every finite energy plane with vanishing contact
area is constant. That in itself is a direct generalization of a result from [H93], and
the proof presented here is very similar. (A more detailed version of that argument
may be found in [AH]).

We will repeatedly use the well known fact that “gradient bounds imply C∞-
bounds,” i.e. in order to prove compactness in the C∞

loc-topology for a set of holomor-
phic curves, it suffices to find uniform C1-bounds over every compact subset. This
follows from standard elliptic regularity estimates and the Arzelá-Ascoli theorem;
see [MS04], Theorem B.4.2. Note that in the special case where the target manifold
is the complex plane with its standard complex structure, the regularity estimates
follow easily from the Cauchy integral formula. In the general case they are much
harder.

We’ll also need the following lemma of Hofer.

Lemma 4.6.5 ([HZ94], Sec. 6.4, Lemma 5). Let (X, d) be a complete metric space
and f : X → [0,∞) a continuous function. Then given any x0 ∈ X and ǫ0 > 0,
there exist x ∈ B2ǫ0(x0) and ǫ ∈ (0, ǫ0] such that

f(x)ǫ ≥ f(x0)ǫ0 and f(y) ≤ 2f(x) for all y ∈ Bǫ(x).

Proposition 4.6.6. Let ũ = (a, u) : C → R × M be a J̃-holomorphic map with
finite energy ET (ũ) <∞ and ∫

C

u∗dλ = 0.

Then ũ is constant.

Proof. From the Cauchy-Riemann equations, using coordinates s + it ∈ C,

dλ(us, ut) = dλ(πλus, πλut) =
1

2
(dλ(πλus, Jπλus) + dλ(πλut, Jπλut)) ≥ 0

thus the condition
∫
C
u∗dλ = 0 implies that πλ ◦ Tu vanishes identically. Then the

image of du(s, t) is contained in RXλ(u(s, t)) ⊂ Tu(s,t)M , so

us = λ(us)Xλ(u) and ut = λ(ut)Xλ(u).

In fact, since C is contractible, we can construct a (not necessarily periodic) Reeb
orbit x : R → M and a smooth function f : C → R such that u(s, t) = x(f(s, t)).
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We claim that the function Φ = a + if : C → C is holomorphic (in the classical
sense). Indeed,

as = λ(ut) = λ(ẋ(f)ft) = ftλ(Xλ(x(f))) = ft,

at = −λ(us) = −λ(ẋ(f)fs) = −fsλ(Xλ(x(f))) = −fs.

For any ϕ ∈ T , define ψ : C→ R by ψ(s, t) = ϕ(s, x(t)), and define a 2-form on C

by
τϕ = d(ψ(s, t)dt) = ∂sϕ(s, x(t)) ds ∧ dt.

Observe that this form is nonnegative with respect to the natural orientation of C,
and for any holomorphic function F : C → C, the same is true of F ∗τϕ. We can
use this to define a notion of energy for the entire function Φ which coincides with
ET (ũ); indeed,
∫

C

ũ∗d(ϕλ) =

∫

C

(dϕ ∧ λ)(as∂a + λ(us)Xλ(u), at∂a + λ(ut)Xλ(u)) ds ∧ dt

=

∫

C

∂aϕ(ũ) (asft − atfs) ds ∧ dt

=

∫

C

∂aϕ(a, x ◦ f)da ∧ df =

∫

C

Φ∗τϕ.

(4.6.4)

The map ũ is constant if and only if Φ is constant. If Φ is non-constant and has
a bounded first derivative, then Liouville’s theorem implies that Φ is an affine map
Φ(z) = Az + B for A, B ∈ C with A 6= 0. Thus Φ is an orientation preserving
diffeomorphism of C, and

∫

C

Φ∗τϕ =

∫

Φ(C)

τϕ =

∫

C

τϕ =

∫

C

∂sϕ(s, x(t)) ds dt.

By the nontriviality axiom, we can choose ϕ ∈ T such that this integral is infinite.
Thus if Φ is non-constant with finite energy, its first derivative must be unbounded.
We will now show by a simple bubbling off argument that this also cannot happen.

Assume zk ∈ C such that Rk := |∇Φ(zk)| → ∞, and choose a sequence ǫk → 0
with ǫkRk → ∞. Using Lemma 4.6.5, we may assume without loss of generality
that |∇Φ(z)| ≤ 2|∇Φ(zk)| for all z ∈ Bǫk(zk). Denote ak + ifk = Φ(zk). We must
distinguish two possible cases.

Case 1: assume there is a subsequence for which ak is bounded. Define a sequence
of rescaled maps Φk : C→ C by

Φk(z) = Φ

(
zk +

z

Rk

)
− ifk.
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These are all holomorphic functions, with Φk(0) = ak, |∇Φk(0)| = 1 and

|∇Φk(z)| ≤ 2 for all z ∈ DǫkRk
.

This gradient bound together with the Cauchy integral formula now implies C∞-
bounds for Φk on every compact subset of C, thus applying Arzelá-Ascoli, we can
pass to a subsequence and assume that Φk converges in C

∞
loc(C,C) to a holomorphic

function Φ∞ : C→ C. From the properties of Φk, we deduce

|∇Φ∞(0)| = 1, and |∇Φ∞(z)| ≤ 2 for all z ∈ C

Thus Φ∞ is a non-constant affine function. Write ψk(z) = zk + z/Rk and Fk(z) =
z − ifk, so Φk = Fk ◦Φ ◦ ψk. Using the nontriviality axiom again, there is a taming
function ϕ ∈ T such that ∫

C

Φ∗
∞τϕ =

∫

C

τϕ =∞.

On the other hand, for any disk Dr ⊂ C, we have

∫

Dr

Φ∗
∞τϕ = lim

k→∞

∫

Dr

Φ∗
kτϕ ≤ lim

k→∞

∫

DǫkRk

Φ∗
kτϕ

= lim
k→∞

∫

DǫkRk

ψ∗
kΦ

∗F ∗
k τϕ = lim

k→∞

∫

Bǫk
(zk)

Φ∗τk ≤ sup
k

∫

C

Φ∗τk

where τk = ∂sϕ(s, x(t−fk)) ds∧dt. This can be rewritten as τk = ∂sϕk(s, x(t)) ds∧dt
where ϕk(a, x) = ϕ(a,Φ−fk

Xλ
(x)), thus ϕk ∈ T by Reeb flow invariance, and we

conclude

∞ = lim
r→∞

∫

Dr

Φ∗
∞τϕ ≤ ET (ũ),

contradicting the finite energy assumption.
Case 2: assume |ak| → ∞. We can take a subsequence so that ak converges to

either +∞ or −∞; assume it’s the former (an analogous argument works when ak
is negative). We now rescale as follows,

Φk(z) = Φ

(
zk +

z

Rk

)
− (ak + ifk).

Now Φk(0) = 0, and by the same arguments as in the first case, a subsequence of
Φk converges in C∞

loc(C,C) to a non-constant affine function Φ∞ : C → C. Write
ψk(z) = zk + z/Rk and Fk(z) = z − (ak + ifk), so Φk = Fk ◦ Φ ◦ ψk. This time we
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shall use the asymptotic R-invariance axiom to prove that ET (ũ) cannot be finite.
Choose ϕ+ ∈ T + with ∫

C

Φ∗
∞τϕ+ =

∫

C

τϕ+ =∞.

For sufficiently large k, there are taming functions ϕk ∈ T and a number κ ∈ (0, 1)
such that

ϕk(a, x) = ϕ+(a− ak, x) for all a ∈ [ak − κak, ak + κak].

Let rk = min{ǫkRk, κak/2}. Then we have rk →∞, and using the uniform gradient
bound for Φk, |Φk(z)| ≤ 2rk ≤ κak for all z ∈ Drk , which implies

|a(z)− ak| ≤ κak for all z ∈ ψk(Drk) ⊂ Bǫk(zk).

Thus for any disk Dr ⊂ C,
∫

Dr

Φ∗
∞τϕ+ = lim

k→∞

∫

Dr

Φ∗
kτϕ+ ≤ lim

k→∞

∫

Drk

Φ∗
kτϕ+

= lim
k→∞

∫

Drk

ψ∗
kΦ

∗F ∗
k τϕ+ = lim

k→∞

∫

ψk(Drk
)

Φ∗τk ≤ sup
k

∫

C

Φ∗τk

where τk = ∂sϕ(s−ak, x(t−fk)) ds∧dt on a neighborhood of Φ(ψk(Drk)). Replacing
this with ∂sϕ̃k(s, x(t)) ds ∧ dt, where ϕ̃k(a, x) = ϕk(a,Φ

−fk
Xλ

(x)), we have ϕ̃k ∈ T ,
and thus ET (ũ) =∞.

The only remaining alternative is that Φ is constant, and thus so is ũ.

Proof of Theorem 4.6.4. If ũ(Ḋ) is contained in a compact set K ⊂ R × M , the
positivity axiom provides a taming function ϕ ∈ T such that d(ϕλ) is a symplectic
form on a neighborhood of K, and

∫

Ḋ

ũ∗d(ϕλ) < ET (ũ) <∞.

Thus ũ extends over D by Gromov’s removable singularity theorem.
Assume now that ũ is unbounded. We use the biholomorphic map ψ : [0,∞)×

S1 → Ḋ : (s, t) 7→ e−2π(s+it) to replace ũ with

ṽ = (b, v) = ũ ◦ ψ : [0,∞)× S1 → R×M.

Our goal will be to show that there is a sequence sk → ∞ for which the loops
t 7→ v(sk, t) converge in C∞(S1,M) to a closed Reeb orbit t 7→ x(Qt), where

Q = lim
k→∞

∫

{sk}×S1

v∗λ ∈ R \ {0}.
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The theorem then follows by showing that the standard energy ET0(ṽ) is finite, so
the results from [H93], [HWZ96a] and [HWZ96b] can be applied. There’s a larger
principle at work here: the finite energy condition does not depend on the choice
of taming set. Indeed, given another taming set T ′ and a function ϕ ∈ T ′, the
positivity axiom implies that the function

s 7→
∫

[0,s]×S1

ṽ∗d(ϕλ)

is continuous and nondecreasing, thus its limit as s → ∞ is well defined in [0,∞].
We can therefore use the sequence sk to compute it, and applying Stokes’ theorem,
together with the C∞-convergence of v(sk, t) to x(Qt) and the fact that ϕ ≤ 1,

∣∣∣∣
∫

[0,∞)×S1

ṽ∗d(ϕλ)

∣∣∣∣ =
∣∣∣∣−
∫

{0}×S1

ṽ∗(ϕλ) + lim
k→∞

∫

{sk}×S1

ṽ∗(ϕλ)

∣∣∣∣

≤
∫

{0}×S1

|v∗λ|+ lim
k→∞

∫

{sk}×S1

|v∗λ|

≤
∫

{0}×S1

|v∗λ|+ |Q|.

Note also that by a similar argument using Stokes’ theorem and the positivity of
v∗dλ, the limit

lim
s→∞

∫

{s}×S1

v∗λ

exists in (−∞,∞], and equals the limit of the integrals over {sk} × S1 as k → ∞.
It will therefore suffice to examine the behavior of v(sk, t) for a particular sequence
sk →∞.

We claim first that |∇ṽ| is bounded on [0,∞)×S1. Otherwise, there is a sequence
zk = (σk, τk) ∈ [0,∞)×S1 such that σk →∞ and Rk := |∇ṽ(zk)| → ∞. We choose
also a sequence ǫk → 0 with ǫkRk →∞, and using Lemma 4.6.5, we can assume

|∇ṽ(z)| ≤ 2|∇ṽ(zk)| for all z ∈ Bǫk(zk).

Identifying [0,∞) × S1 with HR/iZ where HR ⊂ C is the closed right half-plane,
define ψk : C→ R× S1 by

ψk(z) = zk +
z

Rk

.

For sufficiently large k these give embeddings DǫkRk
→֒ [0,∞)×S1. As in the proof

of Prop. 4.6.6, there are two cases to consider.
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If there is a subsequence for which b(zk) is bounded, we define a sequence of
rescaled maps ṽk = (bk, vk) : DǫkRk

→ R×M by

ṽk(z) = ṽ ◦ ψk(z).

The points ṽk(zk) are contained in a compact subset of R × M , and there is a
uniform gradient bound |∇ṽk(z)| ≤ 2 for all z ∈ DǫkRk

. Thus a subsequence of ṽk
converges to a J̃-holomorphic plane ṽ∞ : C → R×M , which is non-constant since
|∇ṽk(0)| = 1. It also has finite energy ET (ṽ∞), since for any ϕ ∈ T ,

∫

DǫkRk

ṽ∗kd(ϕλ) =

∫

Bǫk
(zk)

ṽ∗d(ϕλ) ≤
∫

[0,∞)×S1

ṽ∗d(ϕλ) ≤ ET (ṽ).

Moreover, ∫

DǫkRk

v∗kdλ =

∫

Bǫk
(zk)

v∗dλ→ 0 as k →∞,

thus
∫
C
v∗∞dλ = 0. Prop. 4.6.6 then implies that ṽ∞ is constant, yielding a contra-

diction.
The other possibility is that |b(zk)| → ∞, in which case we define

ṽk(z) = (bk(z), vk(z)) = (b ◦ ψk(z)− b(zk), v ◦ ψk(z)).

Now bk(zk) = 0, so the points ṽk(zk) are still contained in a compact subset of R×M ,
and as before there is a subsequence converging to a non-constant J̃-holomorphic
plane ṽ∞ : C→ R×M . We have

∫

C

v∗∞dλ = 0

by the same argument as above. To prove that the energy is finite, let rk =
min{ǫkRk, κ|b(zk)|/2}, so rk → ∞, and using the fact that |∇ṽk(z)| ≤ 2 for all
z ∈ DǫkRk

, we have |b(z) − b(zk)| ≤ κ|b(zk)| for all z ∈ ψk(Drk). Passing to a sub-
sequence, we may assume b(zk) → +∞ or −∞; assume the former. Then for any
ϕ+ ∈ T + and sufficiently large k, we can choose ϕk ∈ T such that

ϕk(b, x) = ϕ+(b− b(zk), x) for all b ∈ [b(zk)− κb(zk), b(zk) + κb(zk)].

Then
∫

Drk

ṽ∗kd(ϕ
+λ) =

∫

ψk(Drk
)

ṽ∗d(ϕkλ) ≤
∫

[0,∞)×S1

ṽ∗d(ϕkλ) ≤ ET (ṽ).
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This proves ET +(ṽ∞) < ∞, and a contradiction follows again from Prop. 4.6.6. In
the case where b(zk)→ −∞, we prove similarly that ET −(ṽ∞) <∞, with the same
result. This proves the claim that |∇ṽ| is bounded.

Now pick any sequence sk → ∞ such that b(sk, t) is unbounded, and define
translated maps ṽk = (bk, vk) : [−sk,∞)× S1 → R×M by

(bk(s, t), vk(s, t)) = (b(s + sk, t)− b(sk, 0), v(s+ sk, t)).

Then there is a uniform gradient bound for ṽk, and the points ṽk(0, 0) are contained
in a compact subset of R×M . Passing to a subsequence, ṽk converges in C∞

loc(R×
S1,R ×M) to a J̃-holomorphic cylinder ṽ∞ = (b∞, v∞) : R × S1 → R ×M with
bounded gradient |∇ṽ∞|. We have

∫

[−sk/2,∞)×S1

v∗kdλ =

∫

[sk/2,∞)×S1

v∗dλ→ 0 as k →∞,

thus
∫
R×S1 v

∗
∞dλ = 0. We can think of ṽ∞ as a map C→ R×M which is periodic

in t; then arguing as in the proof of Prop. 4.6.6, the vanishing contact area allows
us to find a Reeb orbit x : R → M and a holomorphic function Φ∞ = b∞ + if∞ :
C → C such that ṽ∞(s, t) = (b∞(s, t), x(f∞(s, t))). By construction, b∞(0, 0) =
limk bk(0, 0) = 0, moreover x and f∞ can be chosen so that f∞(0, 0) = 0 (this
determines both uniquely). The global bound on |∇ṽ∞| yields a global bound on
Φ∞, thus by Liouville’s theorem, the latter is an affine function Φ∞(z) = Az + B.
We conclude B = 0 since Φ∞(0) = 0, then writing A = α + βi and comparing
(α + βi)z with b∞(z) + if∞(z) yields

b∞(s, t) = αs− βt,
f∞(s, t) = βs+ αt.

The function b∞(s, t) must also be 1-periodic in t, thus β = 0, so we have

(b∞(s, t), v∞(s, t)) = (αs, x(αt)).

The constant α can be found by integrating

Q = lim
k→∞

∫

{sk}×S1

v∗λ = lim
k→∞

∫

{0}×S1

v∗kλ =

∫

{0}×S1

v∗∞λ = α.

It remains to prove Q 6= 0. Assume the contrary: then v(sk, ·) converges in
C∞(S1,M) to a constant x(0) ∈M . We now use the assumption that b(sk, t) is un-
bounded to derive a contradiction to Gromov’s monotonicity lemma (see Prop. 4.6.7
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below). The idea is that if ṽ is unbounded and v is asymptotically constant, the
image of ṽ must contain cylindrical segments of arbitrarily small area. Suppose first
that b(sk, t) is not bounded from above. Then for any c > 0, we can choose numbers
r and r′ such that both are regular values for b : [0,∞)× S1 → R, r is arbitrarily
large and r′ ∈ [r+c, r+2c]. Since b(sk, t)−b(sk, 0) converges uniformly to 0, there is
a subsequence such that b(sk, t) lies outside of any compact interval for sufficiently
large k. Thus b−1(r) and b−1(r′) are each countable unions of disjoint circles in
[0,∞)× S1, which we may assume without loss of generality are nonempty; in fact,
b−1([r, r′]) contains a compact annulus Ωr with ∂Ωr consisting of two circles γ− and
γ+ such that γ− ⊂ b−1(r) and γ+ ⊂ b−1(r′). We can also assume

Ωr ⊂ [sr,∞)× S1

for some sr > 0 with sr →∞ as r →∞. Consider now the translated maps

ṽr = (b− r, v) : [0,∞)× S1 → R×M
which take Ωr into [0, 2c]×M and ∂Ωr into the complement of (0, c)×M . Choose
any function ψ : R → [0, 1] which satisfies ψ > 0 and ψ′ > 0; then the symplectic
form d(ψλ) is compatible with J̃ , and we compute

∫

Ωr

ṽ∗rd(ψλ) ≤
∫

[sr,∞)×S1

ṽ∗rd(ψλ)

= lim
s→∞

∫

{s}×S1

ṽ∗r(ψλ)−
∫

{sr}×S1

ṽ∗r(ψλ) ≤
∫

{sr}×S1

|v∗λ| → 0

as r →∞, using the assumption Q = 0. Clearly then, we can pick a small number
ǫ and a sequence of ǫ-balls Br around points in ṽr(Ωr) ∩ ({c/2} ×M), such that
ṽr(∂Ωr) ∩ Br = ∅ and the area of ṽr(Ωr) ∩ Br becomes arbitrarily small as r is
increased, yielding a contradiction. A similar argument works in the case where
b(sk, t) is bounded from above but not from below.

Having shown that Q 6= 0, x is therefore a nontrivial periodic orbit, with period
T = |Q|.

For the sake of completeness, we include here the monotonicity lemma; see
[Hm97] for a proof.

Lemma 4.6.7 (Monotonicity). For any compact almost complex manifold (W,J)
with Hermitian metric g, there are constants ǫ0 and C > 0 such that the following
holds. Assume (S, j) is a compact Riemann surface, possibly with boundary, and
u : S → W is a pseudoholomorphic curve. Then for every z ∈ intS and r ∈ (0, ǫ0)
such that u(∂S) ∩ Br(u(z)) = ∅,

Area (u(S) ∩ Br(u(z))) ≥ Cr2.
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An important special case is when J is tamed by a symplectic form ω and the
Hermitian metric is gJ(X, Y ) =

1
2
[ω(X, JY ) + ω(Y, JX)]. Then

Area(u(S) ∩ Br(u(z))) =

∫

u−1(Br(u(z)))

u∗ω.

Remark 4.6.8. It’s worth repeating that for any two taming sets T and T ′, ET (ũ)
is finite if and only if ET ′(ũ) is. One would like to go further and say that given
a sequence of J̃-holomorphic curves ũk, ET (ũk) satisfies a uniform bound if and
only if ET ′(ũk) does. We will not attempt to prove such a general result here, but
heuristically it should follow from a compactness argument: a bound on ET (ũk)
implies some form of compactness for ũk, which implies a bound on ET ′(ũk).

So far we have seen only one example of a taming set, consisting of functions
ϕ(a, x) that don’t depend on x. In this case the axioms are trivial to verify. But the
advantage of this formalism is that we can now use taming functions that vary on
the slices {a} ×M . First we need a convenient criterion for the positivity axiom.

Proposition 4.6.9. Let ϕ : R×M → [0, 1] be a smooth function satisfying

|dϕ(v)|2 ≤ 4ϕ · (∂aϕ) · dλ(v, Jv) for all v ∈ ξ. (4.6.5)

Then J̃ is tamed by the 2-form d(ϕλ), in the sense that for every Y ∈ T (R ×M),
d(ϕλ)(Y, J̃Y ) ≥ 0.

Proof. Denote |v|2J = dλ(v, Jv) for any v ∈ ξ. Using the splitting T (R × M) =
R⊕RXλ⊕ ξ, let Y = c1∂a+ c2Xλ + v, where c1 and c2 are real numbers and v ∈ ξ.
Then J̃Y = −c2∂a + c1Xλ + Jv. We compute,

d(ϕλ)(Y, J̃Y ) = ϕ dλ(v, Jv) + (dϕ ∧ λ)(Y, J̃Y )
= ϕ|v|2J + dϕ(c1∂a + c2Xλ + v)c1 − dϕ(−c2∂a + c1Xλ + Jv)c2

= ϕ|v|2J + ∂aϕ(c
2
1 + c22) + dϕ(c1v − c2Jv).

Note that the assumption (4.6.5) implies ∂aϕ ≥ 0, and we have

|dϕ(c1v − c2Jv)| ≤ 2
√
ϕ(∂aϕ)|c1v − c2Jv|J = 2

√
ϕ(∂aϕ)(c21 + c22)|v|J .

Thus

d(ϕλ)(Y, J̃Y ) = ϕ|v|2J + ∂aϕ(c
2
1 + c22) + dϕ(c1v − c2Jv)

≥ ϕ|v|2J + ∂aϕ(c
2
1 + c22)− 2

√
ϕ(∂aϕ)(c21 + c22)|v|J

=

(√
ϕ|v|J −

√
∂aϕ(c

2
1 + c22)

)2

≥ 0.
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Remark 4.6.10. A similar argument shows that if ϕ satisfies a stricter bound such
as

|dϕ(v)|2 ≤ ϕ · (∂aϕ) · dλ(v, Jv) for all v ∈ ξ,
then d(ϕλ) is actually symplectic and d(ϕλ)(Y, J̃Y ) > 0 for all nonzero vectors
Y ∈ T (R×M).

4.6.2 Pseudo-Lagrangian tori and energy bounds

We now consider Problem (BP) with boundary conditions defined by a set of pair-
wise disjoint tori L1, . . . , LN ⊂M , each tangent to Xλ. As before, we choose families
of smooth functions Gσ

j : Lj → R, for σ ∈ R, such that ∂
∂σ
Gσ
j > 0 and define the

totally real submanifolds L̃σj ⊂ R×M as the graphs

L̃σj = {(Gσ
j (x), x) ∈ R×M | x ∈ Lj}

for any σ ∈ R. We will assume that these families of tori are either R-invariant or
asymptotically flat ; the latter means that the functions Gσ

j are constant for all σ
outside of some finite interval. For purely technical reasons, we need one additional
assumption:

Definition 4.6.11. The torus L̃σj ⊂ R × M is called pseudo-Lagrangian if it is
everywhere tangent to Xλ.

This condition means that dGσ
j (Xλ) ≡ 0. We require solutions ũ = (a, u) :

Σ̇→ R×M of (BP) at each component γ ⊂ ∂Σ to satisfy the boundary condition
ũ(γ) ⊂ Lσj for some σ ∈ R and j ∈ {1, . . . , N}.

The main purpose of the pseudo-Lagrangian condition is that it allows us to
define a taming set for which the resulting notion of energy satisfies a uniform
bound.

Definition 4.6.12. We say that a taming set T is compatible with the tori L̃σj if

every function ϕ ∈ T is constant on each torus L̃σj .

We see from this why the pseudo-Lagrangian condition is needed: unless Xλ is
tangent to L̃σj , there can usually be no compatible set of functions satisfying the
Reeb flow invariance axiom.

Remark 4.6.13. As mentioned earlier, it may be possible to remove the Reeb flow
invariance axiom without sacrificing the useful properties of taming sets. Unfortu-
nately, it is not clear whether this completely eliminates the need for the pseudo-
Lagrangian condition, as we will also use it in the next two sections to facilitate
bubbling off arguments near the boundary.
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For an easy example of a compatible taming set, one can use the standard set T0
when the boundary conditions take the form L̃σj = {σ} × Lj . In more general cases
it is not immediately obvious whether compatible taming sets exist, so we prove this
next.

In particular, given any R-invariant or asymptotically flat family of pseudo-
Lagrangian tori L̃σj , let TL be the set of smooth functions ϕ : R×M → [0, 1] such
that

(i) ϕ satisfies the taming criterion (4.6.5), and

(ii) ϕ is constant on each torus L̃σj .

Proposition 4.6.14. TL is a taming set.

Proof. We verify the nontriviality axiom first. The claim is that there exists a
smooth function ϕ : R ×M → [0, 1] which is constant on L̃σj , satisfies the taming
criterion

|dϕ(v)|2 ≤ 4ϕ · (∂aϕ) · dλ(v, Jv) for all v ∈ ξ,
as well as

lim
a→−∞

ϕ(a, x) = 0 and lim
a→∞

ϕ(a, x) = 1

for all x ∈ M . To simplify the notation, for any function g : R×M → R and any
point (a, x) ∈ R×M we will write

|dg(a, x)|ξ := sup
v∈ξx\{0}

|dg(a, x)v|
|v|J

where |v|2J = dλ(v, Jv).

Since the surfaces L̃σj are never tangent to ∂a, we can find a smooth function ψ :

R×M → R which is constant on each torus L̃σj and has ∂aψ > 0. Recall that the

families {L̃σj }σ are asymptotically flat, so we can also require that ∂aψ ≡ 1 outside
of some compact set in R×M . Then ∂aψ is globally bounded away from 0, and |dψ|ξ
is bounded from above. Choose a diffeomorphism f : R → (0, 1) such that f ′ > 0
and f ′/f is bounded. (Near −∞ one can accomplish this by setting f(t) = et.) Now
define ϕ : R×M → (0, 1) by ϕ(a, x) = f(rψ(a, x)), where r > 0 is a scaling factor,
to be determined momentarily. This function clearly is constant on the tori L̃σj and
has the right behavior as a→ ±∞. To verify the taming criterion, we compute

|dϕ(a, x)|2ξ = r2|f ′(rψ(a, x))|2|dψ(a, x)|2ξ
and

∂aϕ(a, x) = rf ′(rψ(a, x))∂aψ(a, x),
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thus

|dϕ(a, x)|2ξ
ϕ(a, x) · ∂aϕ(a, x)

=
r2|f ′(rψ(a, x))|2|dψ(a, x)|2ξ

rf(rψ(a, x))f ′(rψ(a, x))∂aψ(a, x)

= r
f ′(rψ(a, x))

f(rψ(a, x))

|dψ(a, x)|2ξ
∂aψ(a, x)

≤ r · sup f
′

f
· sup |dψ|

2
ξ

∂aψ
.

This is bounded below 4 if r is chosen sufficiently small. We’ve proved the nontriv-
iality axiom; in fact, combining this with Prop. 4.6.9 and Remark 4.6.10, we’ve also
proved positivity, because r can be chosen small enough so that d(ϕλ) is globally
symplectic and tames J̃ .

Reeb flow invariance is easy to prove: we just note that since LXλ
λ = 0 and

LXλ
dλ = 0, any Reeb flow diffeomorphism Φ : M → M defines an isometry of the

contact structure with respect to the metric | |2J = dλ(·, J ·). Then if ϕ ∈ TL and
ϕ̃(a, x) = ϕ(a,Φ(x)), we have for any (a, x) ∈ R×M and v ∈ ξx,

|dϕ̃(a, x)v|2 = |dϕ(a,Φ(x))Φ∗v|2 ≤ 4ϕ(a,Φ(x))∂aϕ(a,Φ(x))|Φ∗v|2J
= 4ϕ̃(a, x)∂aϕ̃(a, x)|v|2J .

So ϕ̃ satisfies the taming criterion. The pseudo-Lagrangian condition implies that
ϕ̃ is also constant on the tori L̃σj .

In the case where L̃σj is an R-invariant family, the set TL is clearly R-invariant,
and we conclude that it is indeed an R-invariant taming set. More generally, we
muse prove asymptotic R-invariance in the case where L̃σj is not R-invariant but is
asymptotically flat. To do this, define both asymptotic taming sets T ± to be the
standard taming set T0; i.e. ϕ ∈ T ± means ϕ(a, x) depends only on a and ∂aϕ ≥ 0.
Since the families L̃σj are asymptotically flat, we can choose a0 > 0 large enough
so that all “non-flat” tori (graphs of non-constant functions Gσ

j : Lj → R) are
contained in [−a0, a0]×M . Choose any a1 > a0, and let β : R→ [0, 1] be a smooth
function with β(a) ≡ 0 for a ≤ a0, β(a) ≡ 1 for a ≥ a1 and β ′ ≥ 0. Then given any
ϕ+ ∈ T +, we can define ψ+ ∈ TL by

ψ+(a, x) = β(a)ϕ+(a, x),

so ψ+(a, x) = ϕ+(a, x) for all a ≥ a1. Similarly, given ϕ− ∈ T −, define ψ− ∈ TL by

ψ−(a, x) = 1− β(−a)[1− ϕ−(a, x)],

so ψ−(a, x) = ϕ−(a, x) for all a ≤ −a1. The fact that ψ± both belong to TL is easily
verified since both are independent of x and are supported only in regions where all
tori are flat. So the positivity axiom reduces to the requirement that ∂aψ

± ≥ 0.
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Compatible taming sets are useful because of the following energy bound.

Proposition 4.6.15. Let T be a compatible taming set for the family of tori L̃σj ⊂
R×M . Suppose ũk is a sequence of solutions to (BP) that have the same asymptotic
limits and such that for each component γj ⊂ ∂Σ, uk(γj) are homotopic loops on Lj
for all k. Then there is a uniform energy bound ET (ũτ ) < C.

Proof. For each puncture zj ∈ Γ, let Tj be the period of the corresponding asymp-
totic limit, and choose a holomorphic embedding ψj : D → Σ that sends 0 to zj .
Then

lim
ǫ→0

∫

ψj(∂Dǫ)

u∗kλ = ±Tj .

Using Stokes’ theorem and the fact that |ϕ| ≤ 1 for all ϕ ∈ T , we have

∣∣∣∣
∫

Σ̇

ũ∗kd(ϕλ)

∣∣∣∣ ≤
#Γ∑

j=1

Tj +

∣∣∣∣
∫

∂Σ

ũ∗k(ϕλ)

∣∣∣∣ .

Moreover, since ϕ is constant on each of the totally real submanifolds L̃σj , ϕ ◦ ũ is
constant over each connected component γj ⊂ ∂Σ, hence

∣∣∣∣∣

∫

γj

ũ∗k(ϕλ)

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

γj

u∗kλ

∣∣∣∣∣ .

Since dλ vanishes on each torus Lj , the integral on the right depends only on the
homotopy class of uk|γj : γj → Lj .

4.6.3 Removing punctures on the boundary

We proved in Sec. 4.6.1 above that interior punctures of any J̃ -holomorphic curve
ũ = (a, u) : Σ̇ → R × M with finite energy (in the generalized sense) are either
removable or asymptotic to a closed Reeb orbit. In the latter case, a : Σ̇→ R goes
to ±∞ at the puncture. For the purposes of compactness arguments, we must also
understand what happens when a puncture appears on the boundary. One would
expect such punctures to be removable since the boundary condition confines ũ(∂Σ)
to a compact subset of R × M . One must then check that nothing horrible can
happen in the interior near the puncture. This is indeed the case if the totally real
submanifold is pseudo-Lagrangian—the author strongly suspects that it holds more
generally as well, but we’ll only prove it in the pseudo-Lagrangian case.

In the following, T denotes either the standard taming set T0 or the set TL
provided by Prop. 4.6.14, and we assume T is compatible with some family of
pseudo-Lagrangian tori containing L̃.
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Theorem 4.6.16. Suppose ũ = (a, u) : Ḋ+ = D+\{0} → R×M is a J̃-holomorphic
map with ET (ũ) <∞ and ũ(Ḋ+∩R) ⊂ L̃ for some pseudo-Lagrangian torus L̃ ⊂ R×
M . Then ũ extends to a J̃-holomorphic half-disk D+ → R×M with ũ(D+∩R) ⊂ L̃.

As with the asymptotic results for interior punctures, the first step is to prove a
special case involving solutions with zero contact area, which reduces the problem
to complex analysis. Here we make use of the pseudo-Lagrangian condition in order
to eliminate the boundary by means of the Schwartz reflection principle. In the
following, H denotes the closed upper half plane in C.

Proposition 4.6.17. Let ũ = (a, u) : H → R ×M be a J̃-holomorphic half-plane
mapping R into a pseudo-Lagrangian torus L̃, with finite energy ET (ũ) <∞ and

∫

H

u∗dλ = 0.

Then ũ is constant.

Proof. As in Prop. 4.6.6, the assumption of vanishing contact area implies that we
can find a Reeb orbit x : R → M and a smooth function f : H → R such that
u(s, t) = x(f(s, t)). Then Φ = a + if : H → C is holomorphic. Since u(R) is
contained in a Reeb orbit and ũ(R) ⊂ L̃ with L̃ tangent to Xλ, we conclude that
a is constant on R. Thus there is a number a0 ∈ R such that Φ(R) ⊂ a0 + iR,
and we can use the Schwartz reflection principle to extend Φ to an entire function
Φ̃ : C → C. Specifically, defining an antiholomorphic involution f : C → C by
reflecting over the line a0 + iR, we have

Φ̃(z̄) = f(Φ̃(z)).

For any ϕ ∈ T , define a 2-form τϕ on H by τϕ = ∂sϕ(s, x(t)) ds∧ dt. Repeating the
calculation (4.6.4), we have

∫

H

Φ∗τϕ =

∫

H

ũ∗d(ϕλ) ≤ ET (ũ) <∞

for all ϕ ∈ T . We shall now adapt the bubbling off argument from the proof of
Prop. 4.6.6 and show that in this situation as well, the finite energy assumption
implies Φ is constant.

If ∇Φ is bounded on H then ∇Φ̃ is bounded on C, implying that Φ̃ (and hence
Φ) is an affine function. Thus Φ maps H diffeomorphically to a half-plane bounded
by a0 + iR. Suppose the half-plane in question is Φ(H) = {s+ it | s ≤ a0}, then

∫

H

Φ∗τϕ =

∫

Φ(H)

τϕ =

∫ ∞

−∞

∫ a0

−∞

∂sϕ(s, x(t)) ds dt.
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It’s easy to see that one can choose ϕ ∈ T so that this integral is infinite: just choose
any ψ ∈ T0 with ψ′ > 0 and find a taming function ϕ ∈ T such that ϕ(a, x) = ψ(a)
for a near −∞. A similar argument shows that the energy must also be infinite if
Φ(H) = {s+ it | s ≥ a0}. We conclude that there is no affine function H→ C that
takes R to a0 + iR and has finite energy.

We will find a contradiction also if ∇Φ is unbounded. Assume zk = sk+ itk ∈ H

with Rk := |∇Φ(zk)| → ∞, and choose positive numbers ǫk → 0 with ǫkRk →∞. By
Lemma 4.6.5 we can assume that |∇Φ(z)| ≤ 2|∇Φ(zk)| whenever |z − zk| ≤ ǫk. We
will find that either a plane or a half-plane bubbles off, depending on the behavior
of the sequence tkRk. There are two cases to consider.

Case 1: assume tkRk is unbounded. Passing to a subsequence, we may assume
tkRk →∞, and thus rk := min{ǫkRk, tkRk} → ∞. Defining ψk : Drk →֒ C by

ψk(z) = zk +
z

Rk
,

we see that the image ψk(Drk) is contained in H, since |z| ≤ rk implies | Imψk(z)−
tk| ≤ |ψk(z) − zk| ≤ rk/Rk, and tk ≥ rk/Rk. Thus we can repeat the argument
from Prop. 4.6.6, defining a sequence of rescaled maps Φk : Drk → C which converge
to a non-constant entire function Φ∞ : C → C with bounded gradient and finite
energy; this is a contradiction. (In the case where ak := ReΦ(zk) is unbounded,
one must replace rk with min{ǫkRk, tkRk, κ|ak|/2} for some κ ∈ (0, 1), then use the
asymptotic R-invariance axiom to prove finite energy, just as in Prop. 4.6.6.)

Case 2: assume tkRk is bounded. Now the sequence zk approaches the boundary
of H too fast, so a half-plane bubbles off instead of a plane. To see this, denote
D+
r = Dr ∩H, and define ψk : D

+
ǫkRk

→֒ H by

ψk(z) = sk +
z

Rk
.

Then if fk = ImΦ(sk) and Fk : C→ C is the translation Fk(z) = z − ifk, we define
the rescaled maps Φk = Fk ◦ Φ ◦ ψk : D+

ǫkRk
→ C, that is,

Φk(z) = Φ

(
sk +

z

Rk

)
− ifk.

These satisfy the boundary condition Φk(D
+
ǫkRk
∩R) ⊂ a0 + iR. Since |∇Φk(z)| ≤ 2

for all z ∈ D+
ǫkRk

and Φk(0) = ReΦ(sk) ≡ a0, we can apply the Cauchy integral for-
mula to obtain C∞-bounds and conclude that a subsequence converges in C∞

loc(H,C)
to a holomorphic half-plane

Φ∞ : H→ C such that Φ∞(R) ⊂ a0 + iR.
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We claim that Φ∞ is not constant: indeed, |ψ−1
k (zk)| = Rk|zk − sk| = tkRk is

bounded by assumption, so we may assume ψ−1
k (zk) → ζ ∈ H, and |∇Φ∞(ζ)| =

limk |∇Φk(ψ−1
k (zk))| = 1. Φ∞ also has finite energy, since for any ϕ ∈ T and any

r > 0,

∫

D
+
r

Φ∗
∞τϕ = lim

k→∞

∫

D
+
r

Φ∗
kτϕ ≤ lim

k→∞

∫

D
+
ǫkRk

Φ∗
kτϕ

= lim
k→∞

∫

D
+
ǫkRk

ψ∗
kΦ

∗F ∗
k τϕ = lim

k→∞

∫

ψk(D
+
ǫkRk

)

Φ∗τϕk

≤ sup
k

∫

H

Φ∗τϕk
≤ ET (ũ),

where ϕk(a, x) = ϕ(a,Φ−fk
Xλ

(x)). This leads to a contradiction since Φ∞ extends to
an entire function by the Schwartz reflection principle, and is therefore affine. As
we argued above, such functions cannot have finite energy.

Proof of Theorem 4.6.16. It will suffice to prove that ũ(Ḋ+) is contained in a com-
pact set K ⊂ R ×M ; then we can choose a taming function such that d(ϕλ) is a
symplectic form on K and L̃ is Lagrangian, so the result follows from the boundary
version of Gromov’s removable singularity theorem (see [MS04]).

To prove that ũ(Ḋ+) is bounded, compose ũ with the biholomorphic map ψ :
[0,∞) × [0, 1] → Ḋ+ : (s, t) 7→ e−π(s+it) and consider the pseudoholomorphic half-
strip

ṽ = (b, v) = ũ ◦ ψ : [0,∞)× [0, 1]→ R×M.

We claim that |∇ṽ| is bounded on [0,∞)× [0, 1]. This will prove the theorem, since
ṽ([0,∞)× {0}) and ṽ([0,∞)× {1}) are contained in the compact set L̃.

If |∇ṽ| is not bounded, there is a sequence zk = sk + itk ∈ [0,∞) × [0, 1] ⊂ C

such that Rk := |∇ṽ(zk)| → ∞. We may assume sk → ∞. Choose a sequence of
positive numbers ǫk → 0 such that ǫkRk → ∞; by Lemma 4.6.5 we can assume
without loss of generality that |∇ṽ(z)| ≤ 2|∇ṽ(zk)| whenever |z − zk| ≤ ǫk. We will
define a sequence of rescaled maps which converge to either a plane or a half-plane,
depending on whether and how fast zk approaches the boundary of [0,∞) × [0, 1].
We consider three cases.

Case 1: assume tkRk and (1 − tk)Rk are both unbounded: then we can pass to
a subsequence so that both approach ∞. Let rk := min{ǫkRk, tkRk, (1− tk)Rk}, so
rk →∞ and we can define embeddings

ψk : Drk →֒ [0,∞)→ [0, 1] : z 7→ zk +
z

Rk

.
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With this one can define rescaled maps ṽk : Drk → R×M precisely as in the proof of
Theorem 4.6.4; a subsequence of these converges in C∞

loc(C,R×M) to a non-constant
finite energy plane ṽ∞ : C→ R×M with vanishing contact area

∫
C
ṽ∗∞dλ = 0. This

is a contradiction, by Prop. 4.6.6.
Case 2: assume tkRk is bounded. This means zk is approaching the half-line

[0,∞)× {0}. Let

ψk : D
+
ǫkRk
→֒ [0,∞)→ [0, 1] : z 7→ sk +

z

Rk
,

and define a sequence of rescaled maps ṽk : D
+
ǫkRk
→ R×M by ṽk = ṽ ◦ ψk. These

maps satisfy the boundary condition ṽk(DǫkRk
∩ R) ⊂ L̃. Moreover, the points

ṽk(0) = ṽ(sk) are contained in the compact set L̃, and there is a uniform gradient
bound |ṽk(z)| ≤ 2 for all z ∈ D+

ǫkRk
. Thus a subsequence converges in C∞

loc(H,R×M)

to a J̃-holomorphic half-plane ṽ∞ : H → R ×M , with finite energy since for any
ϕ ∈ T ,

∫

D
+
ǫkRk

ṽ∗kd(ϕλ) =

∫

ψk(D
+
ǫkRk

)

ṽ∗d(ϕλ) ≤
∫

[0,∞)×[0,1]

ṽ∗d(ϕλ) ≤ ET (ṽ).

Moreover,
∫

D
+
ǫkRk

v∗kdλ =

∫

ψk(DǫkRk
)

v∗dλ ≤
∫

[sk−ǫk,∞)×[0,1]

v∗dλ→ 0 as k →∞,

thus
∫
H
ṽ∗∞dλ = 0. We claim however that ṽ∞ is not constant. Indeed, |ψ−1

k (zk)| =
Rk|zk − sk| = tkRk is bounded, thus passing to a subsequence, ψ−1

k (zk) → ζ ∈ H,
and |∇ṽ∞(ζ)| = limk |∇ṽk(ψ−1

k (zk))| = 1. Thus ṽ∞ is a non-constant finite energy
half-plane with vanishing contact area, in contradiction to Prop. 4.6.17.

Case 3: assume (1 − tk)Rk is bounded. This is very similar to the previous
case; this time zk is approaching the half-line [0,∞)× {1}, so we rescale using the
embeddings

ψk : D
+
ǫkRk

→֒ [0,∞)→ [0, 1] : z 7→ (sk + i)− z

Rk
.

Then by the same arguments used above, ṽk = ṽ ◦ψk has a subsequence convergent
to a non-constant finite energy half-plane ṽ∞ : H→ R×M with boundary condition
ṽ(R) ⊂ L̃ and vanishing contact area, once again contradicting Prop. 4.6.17.

We conclude this section with a result for holomorphic disks with vanishing con-
tact area. In the pseudo-Lagrangian case it follows immediately from Prop. 4.6.17,
but a simpler proof is also available without the pseudo-Lagrangian condition. As-
sume G : L → R is any smooth function on a torus L ⊂ M tangent to Xλ, and
define L̃ as the graph of G in R×M .
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Proposition 4.6.18. Let ũ = (a, u) : D→ R×M be a J̃-holomorphic disk mapping
∂D into the totally real torus L̃, such that

∫

D

u∗dλ = 0.

Then ũ is constant.

Proof. Since u∗dλ ≡ 0, we can write ũ(z) = (a(z), x(f(z))) where x : R → M is a
Reeb orbit and Φ = a + if : D → C is a holomorphic function. Then Φ maps ∂D
into the smooth 1-dimensional submanifold

γ = {G(x(t)) + it ∈ C | t ∈ R}.

Since γ is not a closed curve, we have wind∂D(Φ, w) = 0 for any point w ∈ C \ γ,
thus the image of Φ is contained in γ. By the open mapping theorem, Φ is therefore
constant.

4.6.4 Localization at the punctures

This section addresses the following question: given a C∞
loc-convergent sequence of

holomorphic curves, what can be said about the behavior of the sequence near the
punctures? A uniform energy bound gives some useful consequences in this situa-
tion, and we can also consider the scenario in which components of the boundary
degenerate to punctures; this will be important for the foliation construction in the
next chapter.

As always, M is a closed 3-manifold. Let λk be a compact sequence of contact
forms on M , converging in C∞ to a contact form λ∞. Similarly, pick a compact
sequence Jk → J∞ of admissible complex multiplications on the contact structures
ξk = ker λk, and define the corresponding almost complex structures J̃k → J̃∞ on
R×M .

To define a domain for holomorphic curves, let S be a closed oriented surface
with a finite subset

Γ ∪ Γ′ = {z1, . . . , zn} ∪ {zn+1, . . . , zn+p} ⊂ S

for some n = #Γ ≥ 0 and p = #Γ′ ≥ 0. Choose also two collections of open disks
with pairwise disjoint closures,

D = D1 ∪ . . . ∪ Dm ⊂ S, D′ = Dm+1 ∪ . . . ∪ Dm+p ⊂ S
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for some m ≥ 0, such that D ∩ (Γ ∪ Γ′) = ∅ and D′ ∩ (D ∪ Γ) = ∅. Then we define
two compact surfaces with boundary

Σ = S \ (D ∪ D′), Σ′ = S \ D,

and observe that
Σ̇ := Σ \ Γ and Σ̇′ := Σ′ \ (Γ ∪ Γ′)

have only interior punctures. Denote the oriented boundary circles γj = −∂Dj for
j ∈ {1, . . . , m+ p}, thus

∂Σ = γ1 ∪ . . . ∪ γm+p, ∂Σ′ = γ1 ∪ . . . ∪ γm.

The compactified surfaces Σ and Σ
′
are homeomorphic, with a natural correspon-

dence between their respective boundary components; i.e. for each j ∈ {1, . . . , p},
the circle at infinity in Σ

′
for zn+j ∈ Γ′ corresponds to the circle γm+j ⊂ ∂Σ ⊂ ∂Σ.

For each j ∈ {1, . . . , n}, assume there is a submanifold Nj ⊂ M which is either
a circle or a 2-torus, such that for all the contact forms {λk}k≤∞, Nj is either
a nondegenerate periodic orbit or a simple Morse-Bott torus of periodic orbits.
Similarly for each j ∈ {1, . . . , m+ p}, choose a 2-torus Lj ⊂ M tangent to Xλk for
all k ≤ ∞, covered by an asymptotically R-invariant family of tori {L̃σj ⊂ R×M}σ∈R,
which are pseudo-Lagrangian with respect to λk for all k ≤ ∞. Assume also that
for each j ∈ {1, . . . , p}, Nn+j := Lm+j is a simple Morse-Bott manifold with respect
to λ∞. Finally, assume there exists a compatible taming set T for the families L̃σj ;

this is clearly true, e.g. if the tori L1, . . . , Lm+j are all disjoint and the families L̃σj
are R-invariant or asymptotically flat.

Theorem 4.6.19. For k < ∞, let ũk = (ak, uk) : Σ̇ → R ×M be a sequence of
J̃k-holomorphic solutions to Problem (BP) such that:

1. Each ũk satisfies the boundary condition ũk(γj) ⊂ L̃σj for j ∈ {1, . . . , m+ p}.
2. For j ∈ {1, . . . , n}, the puncture zj ∈ Γ has the same sign ǫj = ±1 for each

ũk and is asymptotic to an orbit in Nj.

3. For j ∈ {1, . . . , p}, the oriented loops uk(γm+j) are homotopic to the periodic
orbits on the Morse-Bott torus Nm+j, up to orientation (denoted here by the
sign ǫn+j = ±1).

Suppose there is a sequence of diffeomorphisms

ϕk : Σ
′ \ Γ′ → Σ \ ∂D′

,
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which extend to homeomorphisms ϕ̄k : Σ
′ → Σ identifying the corresponding bound-

ary components, such that ũk◦ϕk|Σ̇′ converges in C∞
loc(Σ̇

′,R×M) to a J̃∞-holomorphic
map

ũ∞ = (a∞, u∞) : Σ̇′ → R×M,

satisfying the boundary condition ũ∞(γj) ⊂ L̃σj for j ∈ {1, . . . , m}, and having
asymptotic limits in Nj at zj ∈ Γ∪ Γ′ with sign ǫj, for j ∈ {1, . . . , n+ p}. Then for
any sequence ζk ∈ Σ̇′ converging to a puncture zj ∈ Γ ∪ Γ′, uk ◦ ϕk(ζk) → Nj. In
fact, there is a shrinking sequence of circles Ck ⊂ Σ̇ around zj containing ζk such
that uk ◦ ϕk(Ck) converges in C∞ (up to parametrization) to an orbit in Nj.

The point is that even though ũk is only known to converge on compact sub-
sets away from the punctures, its behavior near the punctures cannot stray from
a neighborhood of the corresponding Morse-Bott manifolds. It may be possible to
prove a stronger version of this statement using some version of the “long cylinder
lemma” from [HWZ03a], but that is more effort than is needed for our purposes.

The theorem follows from bubbling off arguments for sequences of finite energy
half-cylinders—this requires careful choices of coordinates near each puncture. De-
note Ḋ = D \ {0}.
Lemma 4.6.20. Let jk be a sequence of complex structures on Ḋ such that jk → i
in C∞

loc(Ḋ), and take a sequence of biholomorphic maps

ψk : ([0, Rk)× S1, i)→ (Ḋ, jk)

for Rk ∈ (0,∞]. Then Rk → ∞, and ψk converges in C∞
loc([0,∞) × S1, Ḋ) to a

biholomorphic map ψ : ([0,∞)× S1, i)→ (Ḋ, i).

Proof. It’s easier first to prove compactness for the inverses ψ−1
k , since the complex

structure on the target space is then fixed. Let f : [0,∞) × S1 → Ḋ : (s, t) 7→
e−2π(s+it) and consider the sequence of biholomorphic maps

ϕk = ψ−1
k ◦ f : ([0,∞)× S1, ik)→ ([0, Rk)× S1, i),

where ik := f ∗jk → i in C∞
loc([0,∞)× S1). By the natural inclusion we can regard

these as ik-i-holomorphic embeddings of [0,∞) × S1 into itself. A bubbling off
argument shows that these maps satisfy a uniform gradient bound in any compact
subset of [0,∞) × S1. Indeed, suppose there is a sequence (sk, tk) ∈ [0,∞) × S1

such that Rk = |∇ϕk(sk, tk)| → ∞ and sk is bounded. If sk doesn’t approach zero
too fast, then by the usual rescaling argument we derive a sequence converging to a
non-constant entire function

Φ : C→ [0,∞)× S1.
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But applying Liouville’s theorem to f ◦ Φ : C → Ḋ, we conclude that Φ must be
constant, a contradiction. Alternatively if sk → 0 fast enough, we rescale around
points on the boundary and obtain a non-constant holomorphic half-plane

Φ : H→ [0,∞)× S1

with bounded first derivative and the boundary condition Φ(R) ⊂ {0}×S1. We can
assume Φ(0) = (0, 0) without loss of generality. Now let HR = [0,∞)×R ⊂ C, and
consider the natural holomorphic covering map

p : HR → [0,∞)× S1.

There is a unique lift Φ̃ : H → HR such that p ◦ Φ̃ = Φ and Φ̃(0) = 0; moreover
Φ̃ is holomorphic, has bounded derivative and maps R to iR. Thus the reflection
principle extends Φ̃ to an entire function with bounded derivative, which therefore
takes the form Φ̃(z) = iλz for some λ ∈ R \ {0}. But this contradicts the injectivity
of ϕk, since it implies that the restriction of Φ to any large compact subinterval of R
covers S1 × {0} arbitrarily many times, and we can then make a similar statement
about ϕk for large k. This proves the gradient bound.

In light of this, a subsequence of ϕk converges in C∞
loc to a holomorphic map

ϕ : [0,∞)× S1 → [0,∞)× S1, and gk := f ◦ ϕk ◦ f−1 converges to

g := f ◦ ϕ ◦ f−1 : Ḋ→ Ḋ,

which is holomorphic and maps ∂D to itself. In fact, g(∂D) winds once around the
interior of D, and the singularity at 0 is removable, thus g extends to a holomor-
phic map D → D that hits every point in intD exactly once. This means g is an
automorphism of the disk with g(0) = 0, i.e. a rotation. We conclude that

ϕ(s, t) = (s, t+ t0) (4.6.6)

for some t0 ∈ S1. This also shows that Rk → ∞, since otherwise we could find a
subsequence of ϕk with uniformly bounded image in [0,∞) × S1, and these could
not converge to ϕ.

A simple point set topology argument can now be used to establish uniform C0
loc-

bounds for ϕ−1
k . Indeed, suppose wk ∈ [0, Rk) × S1 is a bounded sequence and let

zk = ϕ−1
k (wk). Taking a subsequence, we may assume wk → w∞ ∈ [0,∞)× S1. Let

z∞ = ϕ−1(w∞), and choose an open ball B around z∞. Since ϕk converges uniformly
on B̄, there is a ball B′ around w∞ such that wind∂B̄(ϕk;w) = 1 for all w ∈ B′ and
sufficiently large k. Thus B′ ⊂ ϕk(B) for all k large. Since wk → w∞, this means
wk ∈ ϕk(B) for sufficiently large k, so zk ∈ B. In particular zk is bounded; in fact,
zk → z∞.
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We now know that for any compact subset K ⊂ [0,∞)×S1, ϕ−1
k (K) is contained

in another compact subset, on which the complex structure ik is C∞-convergent to
i. Thus the above arguments can be repeated to derive uniform gradient bounds
and a subsequence of ϕ−1

k that converges in C∞
loc to a biholomorphic map of the form

(4.6.6). We conclude that ψk = f ◦ ϕ−1
k also converges in C∞

loc to a biholomorphic
map ψ : [0,∞)× S1 → Ḋ.

Remark 4.6.21. If we compose the sequence ψk in the above lemma with rotations
so that ψk(0, 0) = 1, then the limit is uniquely determined: it’s ψ(s, t) = e−2π(s+it).

Proof of Theorem 4.6.19. Denote jk = ũ∗kJ̃k, a sequence of complex structures on Σ̇
which extend smoothly over the punctures to Σ. Similarly, j∞ = ũ∗∞J̃∞ defines a
complex structure on Σ′, and we have ϕ∗

kjk → j∞ in C∞
loc(Σ̇

′).
We examine first the behavior in a neighborhood of one of the punctures zn+j ∈

Γ′ ⊂ Σ′, which is the limit of a degenerating circle γm+j ⊂ ∂Σ. Choose a closed
neighborhood zn+j ∈ U ⊂ Σ′ such that (U , j∞) can be identified conformally with

(D, i). Denote U̇ = U \ {zn+j} ⊂ Σ̇′ and let U ⊂ Σ
′
be the circle compactification

of U̇ . Then for each k the annulus Ak := ϕ̄k(U) ⊂ Σ with complex structure jk is
conformally equivalent to [0, Rk]×S1 for some Rk > 0; this follows from the classifi-
cation of conformal structures on annuli (cf. [Hm97], Lemma 5.1). We can therefore
define homeomorphisms ψ̄k : [0, Rk]×S1 → U which restrict to biholomorphic maps

ψk : ([0, Rk)× S1, i)→ (U̇ , ϕ∗
kjk),

and by Lemma 4.6.20 there is a biholomorphic map

ψ : ([0,∞)× S1, i)→ (U̇ , j∞)

such that ψk → ψ in C∞
loc([0,∞)×S1, U̇). Now define a sequence of J̃k-holomorphic

annuli
ṽk = (bk, vk) = ũk ◦ ϕ̄k ◦ ψ̄k : [0, Rk]× S1 → R×M,

which satisfy a boundary condition of the form ṽk({Rk} × S1) ⊂ L̃σkm+j . These

converge in C∞
loc([0,∞)× S1,R×M) to a J̃∞-holomorphic half-cylinder

ṽ∞ = (b∞, v∞) = ũ∞ ◦ ψ : [0,∞)× S1 → R×M.

The energies

Ek(ũk) = sup
ϕ∈T

∫

Σ̇

ũ∗d(ϕλk)
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are uniformly bounded by Prop. 4.6.15; only a slight modification of the proof is
required to account for the varying contact form. Thus there is also a uniform bound

Ek(ṽk) = sup
ϕ∈T

∫

[0,Rk]×S1

ṽ∗d(ϕλk) < C.

As for the contact area, we claim that for any sequence sk →∞ with sk ≤ Rk,
∫

[sk,Rk]×S1

v∗kdλk → 0.

Indeed, by assumption vk({Rk} × S1) = uk(γm+j) is homotopic to the asymptotic
limit of ũ∞ at zn+j ∈ Γ′, so

lim
k→∞

∫

{Rk}×S1

v∗kλk = lim
s→∞

∫

{s}×S1

v∗∞λ∞ =: Q0.

Now for any ǫ > 0, we can assume
∣∣∣∣Q0 −

∫

{Rk}×S1

v∗kλk

∣∣∣∣ < ǫ

for sufficiently large k, and choose c ∈ (0,∞) such that

∫

[c,∞)×S1

v∗∞dλ∞ < ǫ,

hence ∣∣∣∣Q0 −
∫

{c}×S1

v∗∞λ∞

∣∣∣∣ < ǫ.

Then for sufficiently large k, we can also assume
∣∣∣∣Q0 −

∫

{c}×S1

v∗kλk

∣∣∣∣ < 2ǫ,

and thus using the positivity of v∗kdλk,

∫

[sk,Rk]

v∗kdλk ≤
∫

[c,Rk]

v∗kdλk =

∫

{Rk}×S1

v∗kλk −
∫

{c}×S1

v∗kλk < 3ǫ.

This proves the claim.
The decaying contact area implies a uniform gradient bound for the maps ṽk :

[0, Rk] × S1 → R × M . The argument is familiar: if |∇ṽk(sk, tk)| → ∞, we can
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assume sk → ∞, and thus bubble off either a plane or (if sk stays close to Rk) a
half-plane with finite energy and zero contact area. Such a beast must be constant,
yielding a contradiction. Thus there is a bound |∇ṽk| ≤ C.

Now take any sequence sk →∞ with sk ≤ Rk and distinguish two cases.
Case 1: assume Rk − sk →∞. Then define

w̃k = (βk, wk) : [−sk, Rk − sk]× S1 → R×M

by w̃k(s, t) = ṽk(s+ sk, t). By the uniform gradient bound, a subsequence converges
in C∞

loc(R× S1,R×M) (possibly after R-translation) to a J̃∞-holomorphic cylinder

w̃∞ = (β∞, w∞) : R× S1 → R×M,

which has zero contact area since
∫

[−sk/2,Rk−sk]×S1

w∗
kdλk =

∫

[sk/2,Rk ]×S1

v∗kdλk → 0.

Thus w̃ is an orbit cylinder: w̃(s, t) = (Qs+ s0, x(Qt)) for some s0 ∈ R and a closed
Reeb orbit x : R→M with period T = |Q|, and

Q = lim
k→∞

∫

{0}×S1

w∗
kλk = lim

k→∞

∫

{sk}×S1

v∗kλk

= lim
k→∞

(∫

{Rk}×S1

v∗kλk −
∫

[sk,Rk]×S1

v∗kdλk

)
→ Q0 6= 0.

In particular, this shows that a subsequence of vk(sk, ·) converges in C∞(S1,M) to
a nontrivial periodic orbit of Xλ∞ .

Case 2: assume Rk − sk has a bounded subsequence. Now define

w̃k = (βk, wk) : [−Rk, 0]× S1 → R×M,

w̃k(s, t) = ṽk(s+Rk, t). These maps satisfy the boundary condition w̃k({0}×S1) ⊂
L̃σkm+j , and using the gradient bound together with the asymptotic R-invariance of

the family L̃σm+j , there is a subsequence converging in C∞
loc((−∞, 0] × S1,R ×M)

after R-translation to a J̃∞-holomorphic half-cylinder

w̃∞ = (β∞, w∞) : (−∞, 0]× S1 → R×M

mapping {0}×S1 into some pseudo-Lagrangian torus L̃. The contact area vanishes
again since ∫

[−Rk/2,0]×S1

w∗
kdλk =

∫

[R/2,Rk ]×S1

v∗kdλk → 0.
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We claim that w̃∞ is a portion of an orbit cylinder. To see this, denote HL =
{s + it | s ≤ 0} ⊂ C and treat w̃∞ as a map HL → R × M which is 1-periodic
in t. We can then write w̃∞(s, t) = (β∞(s, t), x(f∞(s, t))) where x : R → M is a
(not necessarily closed) Reeb orbit and Φ := β∞ + if∞ : HL → C is a holomorphic
function. Assume without loss of generality that Φ(0, 0) = 0. Then since L̃ is
pseudo-Lagrangian, β∞(0, t) = 0 for all t, so Φ maps iR to itself, and can be extended
to an entire function by the Schwartz reflection principle. There is a global bound
for Φ′; this follows from the gradient bound |∇w̃k| ≤ C, which gives a global bound
on |∇w̃∞| and hence |∇β∞|. Thus by Liouville’s theorem, Φ is an affine function,
and the same argument as before then shows that

w̃∞ = (Qs, x(Qt)),

where

Q = lim
k→∞

∫

{0}×S1

w∗
kλk = lim

k→∞

∫

{Rk}×S1

v∗kλk = Q0 6= 0.

Since a subsequence of Rk−sk is bounded, this proves once more that a subsequence
of vk(sk, ·) converges to a nontrivial periodic orbit of Xλ∞ .

We can now complete the proof for any sequence ζk → zn+j ∈ Γ′. Indeed,
there is a sequence (sk, tk) ∈ [0, Rk) × S1 such that ψk(sk, tk) = ζk, and we know
sk → ∞ since otherwise there is a convergent subsequence (sk, tk) → (s∞, t∞)
and ζk = ψk(sk, tk) → ψ(s∞, t∞) 6∈ Γ′. We’ve just shown that a subsequence of
vk(sk, ·) = uk ◦ ϕk(ψk(sk, ·)) converges in C∞(S1,M) to some loop y : S1 →M that
parametrizes a periodic orbit P ⊂M , and we claim P ⊂ Nn+j. If not, let

N = {x ∈ C∞(S1,M) | x(S1) ⊂ Nn+j},
and choose open neighborhoods V and V ′ such that

N ⊂ V ⊂ V ⊂ V ′ ⊂ C∞(S1,M).

All parametrizations of the periodic orbits in Nn+j are contained in N , and by
the nondegeneracy/Morse-Bott condition, we can assume that V ′ contains no other
periodic orbits of Xλ∞ . Then since Lm+j = Nn+j we have vk(Rk, ·) ∈ N , so there
is a sequence s′k ∈ (sk, Rk) such that vk(s

′
k, ·) ∈ V ′ \ V. But there are no periodic

orbits in V ′ \ V, thus no subsequence of vk(s
′
k, ·) can converge to a periodic orbit,

which is a contradiction.
The case of a sequence ζk → zj ∈ Γ ⊂ Σ′ is slightly simpler and uses mostly the

same arguments. We choose a closed neighborhood zj ∈ U ⊂ Σ′ with biholomorphic
embeddings ψk : ([0,∞) × S1, i) → (U̇ , ϕ∗

kjk) converging in C∞
loc([0,∞) × S1, U̇) to

ψ : ([0,∞)× S1, i)→ (U̇ , j∞). Then the J̃k-holomorphic half-cylinders

ṽk = (bk, vk) = ũk ◦ ϕk ◦ ψk : [0,∞)× S1 → R×M
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converge in C∞
loc to ṽ∞ = (b∞, v∞) = ũ∞ ◦ ψ : [0,∞)× S1 → R×M , and there are

uniform energy and gradient bounds for ṽk. We also have

lim
k→∞

∫

[sk,∞)

v∗kdλk → 0

for any sequence sk →∞, using the C∞
loc-convergence and the fact that each map ṽk

for k ≤ ∞ is asymptotic to an orbit in Nj , hence

lim
k→∞

lim
s→∞

∫

{s}×S1

v∗kλk = lim
s→∞

∫

{s}×S1

v∗∞λ∞ = Q0.

Now for any sequence sk → ∞, the translated maps w̃k(s, t) = ṽk(s + sk, t) have a
subsequence converging in C∞

loc to a J̃∞-holomorphic cylinder

w̃∞ = (β∞, w∞) : R× S1 → R×M

with finite energy and zero contact area, which is therefore an orbit cylinder. This
shows that a subsequence of v(sk, ·) = uk ◦ ϕk(ψk(sk, ·)) converges in C∞(S1,M)
to a loop y : S1 → M which parametrizes an orbit of Xλ∞ . If P = y(S1) 6⊂ Nj ,
we define the sets N ⊂ V ⊂ V ′ ⊂ C∞(S1,M) as before so that N contains all
loops in Nj and V ′ contains no other orbits of Xλ∞ . Then since each half-cylinder
ṽk(s, t) is asymptotic to an orbit in Nj as s → ∞, we can find s′k > sk such that
vk(s

′
k, ·) ∈ V ′ \ V, leading again to a contradiction.

In the case where all asymptotic orbits are nondegenerate, this argument is
enough prove convergence in M(J̃ , L) (see Definition 4.5.3). Observe that any
solution ũ : Σ̇ → R ×M of Problem (BP) can be extended to a continuous map
ū : Σ→ R×M , where R = [−∞,∞].

Theorem 4.6.22. Let M be a closed 3-manifold with a C∞-compact sequence of
contact forms λk → λ∞ and admissible complex multiplications Jk → J∞. Suppose
Σ̇ = Σ \ Γ is a fixed compact oriented surface with boundary and finitely many
interior punctures, and for k ∈ Z ∪ {∞} we have J̃k-holomorphic solutions ũk =
(ak, uk) : Σ̇→ R×M to Problem (BP), such that

(i) ũk → ũ∞ in C∞
loc(Σ̇,R×M), and

(ii) for each puncture in Γ, every solution ũk for k ≤ ∞ has the same nondegen-
erate asymptotic limit with the same sign.
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Then there are diffeomorphisms ϕk : Σ → Σ, fixing each puncture and preserving
each connected component of ∂Σ, such that for any compact subset K ⊂ Σ̇, ϕk|K =
IdK for sufficiently large k, and if ϕ̄k denotes the homeomorphism induced on Σ,
then

ūk ◦ ϕ̄k → ū∞ in C0(Σ,R×M).

In particular, ũk → ũ∞ inM(J̃ , L).

Proof. Denote jk = ũ∗kJ̃k, so jk → j∞ in C∞
loc(Σ̇). Using Lemma 4.6.20, choose at

each puncture zj ∈ Γ a punctured neighborhood U̇ j ⊂ Σ̇ and biholomorphic maps

ψjk : ([0,∞)× S1, i)→ (U̇ j, jk)

such that ψjk → ψj∞ in C∞
loc([0,∞) × S1, Σ̇). Then by the arguments of Theo-

rem 4.6.19, for any sequence sk →∞, the loops uk ◦ψjk(sk, ·) converge in C∞(S1,M)
to a loop t 7→ xj(t + c), where xj : S1 → M is some fixed parametrization of the
asymptotic limit at zj and c ∈ S1 is a constant that may depend on the choice
of sequence sk. Similarly, the maps ∂s(ak ◦ ψjk)(sk, ·) converge in C∞(S1,R) to the
constant Qj 6= 0, which is the charge of the puncture zj for ũ∞.

Now choose suitable metrics for R×M and C∞(S1,M). Then for any ǫ > 0, we
can find k0 ∈ N and a compact subset K ⊂ Σ̇ such that dist(ũk(z), ũ∞(z)) < ǫ for
all k ≥ k0 and z ∈ K. We can also assume there is a number s0 ∈ (0,∞) such that

(i) Σ̇ = intK ∪
(
⋃

j

ψjk((s0,∞)× S1)

)
,

(ii) dist(uk ◦ ψjk(s, ·), xj(·+ c)) < ǫ for some c ∈ S1, and

(iii) |∂s(ak ◦ ψjk)(s, t)−Qj | < ǫ

for all k ≥ k0 and s ≥ s0. Then it is possible to choose diffeomorphisms ϕk : Σ→ Σ
with

supp(ϕk) ⊂
⋃

j

ψj∞([s0,∞)× S1)

such that for all s ≥ s0 and k ≥ k0, dist(ũk ◦ϕk ◦ψj∞(s, t), ũ∞◦ψj∞(s, t)) is uniformly
small. Repeating this for larger k and smaller ǫ, we obtain a sequence with the
desired properties. The statement that ũk → ũ∞ in M(J̃ , L) follows since ũk ◦ ϕk
clearly still converges to ũ∞ in C∞

loc(Σ̇,R×M).

172



Chapter 5

Modifying Foliations under

Surgery

5.1 The main construction

In this chapter we present the proof of Theorem 1.3.2 on the existence of stable
finite energy foliations of Morse-Bott type. These foliations live in a closed contact
3-manifold (M, ξ) which is obtained from the tight 3-sphere (S3, ξ0) by some combi-
nation of Dehn surgery and Lutz twists along a link K ⊂ S3 transverse to ξ0. The
details of this surgery were explained in Chapter 2. We begin this chapter by recall-
ing some basic notions, and then describe the procedure for modifying a foliation
under surgery. For technical reasons, we will carry out this program first under a
restrictive assumption on the link K, and then use a branched cover construction
to remove this assumption in Sec. 5.1.5. The argument uses several fundamental
compactness results, the proofs of which are presented in Sections 5.2 and 5.3.

5.1.1 Planar open books in the tight three-sphere

Identify S3 with the unit sphere in C2 and define the standard (tight) contact form
λ0 on S3 in terms of the standard inner product on C2 by

λ0(z)v :=
1

2
〈iz, v〉,

for z ∈ S3 ⊂ C2 and v ∈ TzS3 ⊂ C2. Note that this expression is real even though
the inner product is complex. The contact plane (ξ0)z at z is the complex orthogonal
complement of z in C2, which can also be thought of as the unique complex line in
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TzS
3. Every Hopf circle

Pw = {(z1, z2) ∈ S3 | z1/z2 = w} for w ∈ C ∪ {∞}

is a periodic orbit of Xλ0 .
The starting point of our foliation construction is an open book decomposition

of (S3, λA, JA) by finite energy planes for some contact form with ker λA = ξ0 and
some admissible complex multiplication JA : ξ0 → ξ0. For example one can take the
foliation of (S3, λ0, i) from Example 1.2.3 and perturb λ0 so that the binding orbit
P∞ becomes nondegenerate (see Example 3.2.1).

If one prefers to work with purely nondegenerate contact forms, a popular ex-
ample is the so-called irrational ellipsoid : choose positive numbers r1, r2 and define

H : C2 → R : (z1, z2) 7→
|z1|2
r21

+
|z2|2
r22

.

Let FE(z) = 1/H(z) for z ∈ S3 ⊂ C2. Then the Hamiltonian flow determined
by H on the energy surface H−1(1) is equivalent to the Reeb flow on (S3, FEλ0).
If r21/r

2
2 is irrational then this flow has only two periodic orbits, P0 and P∞, both

nondegenerate. Assume r1 < r2: then P∞ has the smallest period and has Conley-
Zehnder index 3. Choose an admissible complex multiplication JE : ξ0 → ξ0 and
define the corresponding almost complex structure J̃E on R× S3 in terms of λE =
FEλ0 and JE . Then it follows from the results in [HWZ95b] that for some choice
of JE, (S

3, λE, JE) admits a stable finite energy foliation which is an open book
decomposition, all leaves being finite energy planes asymptotic to P∞.1 (See also
[HWZ98], where this result is used for a different application.)

Assume the data (λA, JA) come from one of the examples above, such that P0

and P∞ are both periodic orbits, µCZ(P∞) = 3 and there is a stable open book de-
composition with P∞ as the binding orbit. Let us state this last fact more precisely,
using the notation of Chapter 4.

Proposition 5.1.1. There exists an embedding

R× S1 × C
F̃−→ R× S3

(σ, τ, z) 7−→ (aτ (z) + σ, uτ(z))

such that:
1The construction of the open book decomposition for (S3, λE , JE), which actually follows from

a much more general result in [HWZ95b], has been likened to “killing a canary with a hydrogen
bomb.” Indeed, given such an explicit construction of a contact form, one would think that the
open book decomposition could also be constructed more explicitly, as is the case for instance with
the degenerate contact form λ0. But no such construction is known.

174



1. For σ ∈ R and τ ∈ S1, the maps ũ(σ,τ) = F̃ (σ, τ, ·) : C→ R×S3 are embedded

J̃A-holomorphic finite energy planes asymptotic to P∞.

2. The map F (τ, z) = uτ (z) is a diffeomorphism S1 × C → S3 \ P∞. In partic-
ular the maps uτ : C → S3 form a foliation of S3 \ P∞ which is everywhere
transverse to XλA .

Denote this foliation of R× S3 by FA, and the projected foliation of S3 \ P∞ by
p(FA). We will use the leaves of FA to produce foliations on other contact manifolds
that are obtained from (S3, ξ0) by surgery along transverse links.

Remark 5.1.2. Technically, the full force of Prop. 5.1.1 is not needed for what
follows: we only really need the existence of one of the planes ũ : C → R× S3 that
constitute the foliation FA. In [HWZ95b], the existence of a single leaf ũ is proved
first, and then the full foliation is constructed by a compactness argument. We will
follow a similar approach after modifying the leaf ũ under surgery.

For the surgery, choose an arbitrary link K ⊂ S3, positively transverse to ξ0. By
Lemma 2.2.1, we can assume after a transverse isotopy that each component of K
is C∞-close to some positive cover of the Hopf circle P0. Since P0 is a periodic orbit
of XλA, it is transverse to p(FA), and thus we may also assume that K is transverse
to p(FA).

5.1.2 Simplifying the contact form near a link

The next step is to modify the contact form λA (but not the contact structure)
so that it matches a simple normal form in a neighborhood of K. If K0 ⊂ K is
a transverse loop, we can identify a neighborhood of K0 with S1 × B2

ǫ (0), where
B2
ǫ (0) ⊂ R2 is a small ball containing 0, and use coordinates (θ, ρ, φ) ∈ S1 × B2

ǫ (0)
so that K0 = {ρ = 0} and λA = h(θ, ρ, φ)(dθ + ρ2dφ) for some smooth function
h. Here (ρ, φ) are polar coordinates on R2. In the following, the use of coordinates
(θ, ρ, φ) will always mean an identification of this type.

It would be preferable to simplify λA so that its coordinate expression depends
only on ρ; we could then write it in the form λB = f(ρ)dθ+ g(ρ)dφ as in Chapter 3.
In principle we can achieve this change in λA by a smooth homotopy and use The-
orem 4.5.51 to homotop the foliation FA correspondingly—but the change must be
made carefully so as to preserve compactness. We will see that it suffices to make
sure the change is C1-small, and confined to a neighborhood of K. For this we take
advantage of the fact that each component of K is C∞-close to a positive cover of
the closed orbit P0.
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Let us frame this in a more general setting. Suppose (M,λ) is a closed contact
3-manifold, ξ = ker λ, and P ⊂ M is a periodic orbit of Xλ with period T . Choose
a parametrization x : R/TZ → M of P satisfying ẋ(t) = Xλ(x(t)). Suppose K =
K1 ∪ . . .∪KN ⊂ M is a link with each component close to a positive cover of P , in
the sense of Lemma 2.2.1. More precisely, there are smooth families γτj : S1 → M
for τ ∈ [0, 1] such that γ1j (S

1) = Kj , γ
0
j (t) = x(kjT t) for some kj ∈ N, and for

each fixed τ ∈ (0, 1], the maps γτ1 , . . . , γ
τ
N : S1 → M are mutually non-intersecting

embeddings transverse to ξ. Denote Kτ
j = γτj (S

1) and Kτ = Kτ
1 ∪ . . . ∪ Kτ

N for
τ ∈ (0, 1].

Proposition 5.1.3. Given the assumptions above, one can choose τ small enough
so that there is a contact form λ′ on M with ker λ′ = ξ = ker λ and the following
properties:

(i) λ′ is C1-close to λ, and differs from λ only in an arbitrarily small neighborhood
of Kτ ,

(ii) near each of the knots Kτ
j there is a coordinate system (θ, ρ, φ) in which Kτ

j =
{ρ = 0} and λ′ = c(dθ + ρ2dφ) for some constant c.

Remark 5.1.4. The first property implies that Xλ′ is C
0-close to Xλ, and equal to it

away from Kτ . In the case of λA on S3, this means we can assume the perturbed Reeb
vector field XλB is still transverse to FA. This has the advantage that, while changing
λA sacrifices our precise knowledge of its periodic orbits, we can at least conclude
from the structure of the open book decomposition that any new periodic orbits for
λB must be linked nontrivially with P∞. This will be crucial for the compactness
arguments to follow.

The key to proving Prop. 5.1.3 is to construct a coordinate system in which λ
already almost has the desired property, and then perturb λ. Choose an admissible
complex structure J on ξ, and let g be the metric on M defined by the conditions
that Xλ is a unit vector orthogonal to ξ and g|ξ = dλ(·, J ·). Choose a neighborhood
P ⊂ U ⊂ M which is retractable to P . Then the complex line bundle ξ → M is
trivial over U , so we can choose a nonzero section v : U → ξ such that dλ(v, Jv) ≡ 1;
the vector fields {Xλ, v, Jv} form an orthonormal frame for TM over U . We may
assume without loss of generality that Kτ ⊂ U for all τ ∈ (0, 1]. Since the knots
Kτ
j are assumed transverse to ξ, we can choose the parametrizations γτj : S1 → M

so that λ(γ̇τj (t)) is independent of t (it is positive and depends smoothly on τ).

Lemma 5.1.5. For each component Kj ⊂ K, there is a ball B2
δ (0) ⊂ R2 around 0

and a smooth family of immersions ψτj : S1 × B2
δ (0) → M , τ ∈ [0, 1], such that

ψτj (θ, 0) = γτj (θ) for all θ ∈ S1, and (ψτj )
∗λ = hτj (θ, ρ, φ)(dθ + ρ2dφ) for some

smooth family of real-valued functions hτj , which are constant on S1 × {0}.
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Proof. For each individual τ this follows from a standard Moser deformation ar-
gument; one must however make sure that the result depends smoothly on the
parameter τ .

Write cτ = λ(γ̇τj (t)), recalling that this number is independent of t. Let (x, y) be
the Cartesian coordinates on R2 corresponding to the polar coordinates (ρ, φ). For
each τ ∈ [0, 1] and some r > 0, there is an immersion Ψτ : S1×B2

r (0)→M defined
by

Ψτ (θ, x, y) = expγτj (θ)

(√
2cτ
(
x · v(γτj (θ)) + y · Jv(γτj (θ))

))
. (5.1.1)

The exponential map here is defined in terms of the metric g. Clearly Ψτ (θ, x, y)
depends smoothly on τ , and for any τ > 0 its restriction to some neighborhood of
S1×{0} is an embedding (since Ψτ (·, 0, 0) = γτj is embedded). Denote ατ1 = (Ψτ )∗λ,
and define another smooth family of contact forms on S1 × B2

r (0) by α
τ
0 = cτ (dθ +

ρ2dφ) = cτ (dθ− ydx+ xdy). The contact structure ζ0 = kerατ0 is independent of τ .
For any (θ, 0, 0) ∈ S1 × {0} ⊂ S1 × B2

r (0) we have

∂θΨ
τ (θ, 0, 0) = γ̇τj (θ),

∂xΨ
τ (θ, 0, 0) =

√
2cτ · v(γτj (θ)),

∂yΨ
τ (θ, 0, 0) =

√
2cτ · Jv(γτj (θ)).

A short computation then shows that ατ0 and ατ1 are related to each other along
S1 × {0} by ατ0 ≡ ατ1 and dατ0 |ζ0 ≡ dατ1|ζ0 .

Define a smooth family of 1-forms ατt = (1 − t)ατ0 + tατ1 , for t ∈ [0, 1], τ ∈
[0, 1]. On S1 × {0}, dατt |ζ0 = (1 − t)dατ0 |ζ0 + tdατ1|ζ0 = dατ0|ζ0 is nondegenerate,
thus nondegeneracy holds also in a neighborhood of S1 × {0}, and we can assume
by shrinking B2

r (0) if necessary that ατt is a contact form on S1 × B2
r (0) for all t

and τ . The goal is now to find a smooth family of diffeomorphisms ϕτt between
neighborhoods of S1 × {0} such that (ϕτt )

∗ατt = f τt α
τ
0 for some smooth family of

real-valued functions f τt . We proceed by assuming that for each τ , the family ϕτt
can be constructed as the flow generated by a time-dependent vector field Y τ

t :

∂

∂t
ϕτt (p) = Y τ

t (ϕ
τ
t (p)).

We will derive the properties that Y τ
t must satisfy, then verify that such a flow exists

on a neighborhood of S1 × {0} and depends smoothly on τ . It will turn out that
we can assume Y τ

t takes values in ζτt = kerατt . Denote ḟ τt = ∂
∂t
f τt and α̇τt = ∂

∂t
ατt .

Then if there is a flow ϕτt satisfying (ϕτt )
∗ατt = f τt α

τ
0 , we have

∂

∂t
(ϕτt )

∗ατt = (ϕτt )
∗
(
LY τ

t
ατt + α̇τt

)
= ḟ τt α

τ
0 =

ḟ τt
f τt

(ϕτt )
∗ατt = (ϕτt )

∗(F τ
t α

τ
t ),
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where

F τ
t :=

ḟ τt
f τt
◦ (ϕτt )−1 =

[
∂

∂t
(ln f τt )

]
◦ (ϕτt )−1.

Using Y τ
t ∈ ζτt , we then compute LY τ

t
ατt + α̇τt = ιY τ

t
dατt + α̇τt = F τ

t α
τ
t . Evaluating

this on ζτt and Xατ
t
respectively yields two equations,

dατt (Y
τ
t , ·)|ζτt = −α̇τt |ζτt and α̇τt (Xατ

t
) = F τ

t ,

which determine Y τ
t and F τ

t uniquely. Observe that both depend smoothly on τ ;
the same will therefore be true of the flow ϕτt . On S1 × {0}, α̇τt = ατ1 − ατ0 = 0, so
Y τ
t = 0 there, implying that the flow does exist on some neighborhood of S1 × {0},

and fixes S1 × {0} itself. Now define f τt by

f τt = exp

(∫ t

0

gτs ◦ φτs ds
)
. (5.1.2)

This also depends smoothly on τ . With these definitions, it is routine to verify that
∂
∂t
(ϕτt )

∗ατt = (ϕτt )
∗(F τ

t α
τ
t ) =

ḟτt
fτt
(ϕτt )

∗ατt , and thus

(ϕτt )
∗ατt = exp

(∫ t

0

ḟ τs
f τs

ds

)
ατ0 = f τt α

τ
0 .

In particular, setting ϕτ := ϕτ1, we have (ϕτ )∗ατ1 = f τ1 α
τ
0 = cτf τ1 (dθ + ρ2dφ), and

thus
(Ψτ ◦ ϕτ )∗λ = (ϕτ )∗(Ψτ )∗λ = (ϕτ )∗ατ1 = cτf τ1 (dθ + ρ2dφ).

Observe that F τ
t (θ, 0, 0) = 0 and ϕτ (θ, 0, 0) = (θ, 0, 0), thus (5.1.2) gives f τ1 (θ, 0, 0) =

1 for all θ. So the desired family of immersions is ψτj = Ψτ ◦ϕτ , with hτj = cτf τ1 .

Proof of Prop. 5.1.3. We’ll use the immersions ψτj : S1×B2
δ (0)→M constructed in

Lemma 5.1.5 to define a family of contact forms λτ in coordinates such that λτ → λ
in C1 as τ → 0.

Choose numbers ρτ ∈ (0, δ], smoothly dependent on the parameter τ , such that
ρτ → 0 as τ → 0 and for each τ ∈ (0, 1] the maps ψτj restricted to S1 × B2

ρτ (0)
are embeddings with mutually disjoint images. Choose also a smooth function
β : [0, 1] → [0, 1] such that β(s) = 0 for s near 0, β(s) = 1 for s near 1 and
|β ′(s)| < 2 for all s ∈ [0, 1]. Recall that there are smooth functions hτj such that
(ψτj )

∗λ = hτj (θ, ρ, φ)(dθ + ρ2dφ), and cτj := hτj (θ, 0) is independent of θ.
For τ > 0, define λτ to be the unique contact form on M such that

(i) λτ = λ outside of
⋃N
j=1 ψ

τ
j (S

1 × B2
ρτ (0)), and
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(ii) (ψτj )
∗λτ = h̃τj (θ, ρ, φ)(dθ + ρ2dφ) on S1 ×B2

ρτ (0), where

h̃τj (θ, ρ, φ) = (1− β(ρ/ρτ ))cτj + β(ρ/ρτ )hτj (θ, ρ, φ).

We claim that λτ → λ in C1 as τ → 0. Noting that there are functions f τ such
that λτ = f τλ, it is sufficient to prove that f τ → 1 and |∇f τ |g → 0, both uniformly
on M . Since f τ already equals 1 outside of the local coordinate neighborhoods,
we only need check that sup |h̃τj − hτj | → 0 and sup |∇h̃τj − ∇hτj |(ψτ

j )
∗g → 0, where

both suprema are taken over the domain S1 × B2
ρτ (0). We can work with a fixed

metric since (ψτj )
∗g → (ψ0

j )
∗g uniformly on S1 ×B2

δ (0). Moreover, any fixed metric
on S1 × B2

δ (0) is equivalent to any other one, so we may as well choose the natural
metric defined by the coordinates (θ, x, y); then |∇h| simply means the Euclidean
length of the vector (∂θh, ∂xh, ∂yh) in R3.

What makes the gradient estimate possible is the fact that the loops ψτj (S
1×{0})

converge to periodic orbits as τ → 0, and consequently ∇h0j (θ, 0) = 0. To see this,
use Cartesian coordinates (θ, x, y) and compute

(ψτj )
∗dλ = d

[
hτj (θ, x, y)(dθ − ydx+ xdy)

]

=
[
2hτj (θ, x, y) + x ∂xh

τ
j (θ, x, y) + y ∂yh

τ
j (θ, x, y)

]
dx ∧ dy

+
[
−∂xhτj (θ, x, y)− y ∂θhτj (θ, x, y)

]
dθ ∧ dx

+
[
−∂yhτj (θ, x, y) + x ∂θh

τ
j (θ, x, y)

]
dθ ∧ dy

From this we see

∂xh
τ
j (θ, 0, 0) = −dλ(∂θψτj (θ, 0, 0), ∂xψτj (θ, 0, 0)),

∂yh
τ
j (θ, 0, 0) = −dλ(∂θψτj (θ, 0, 0), ∂yψτj (θ, 0, 0)).

Both vanish for τ = 0 since ∂θψ
0
j (θ, 0, 0) is parallel to Xλ. It follows that

sup
ρ∈[0,ρτ ]

∣∣∇hτj (θ, ρ, φ)
∣∣→ 0

as τ → 0, and thus

1

ρτ
sup

ρ∈[0,ρτ ]

∣∣cτj − hτj (θ, ρ, φ)
∣∣ ≤ sup

ρ∈[0,ρτ ]

∣∣∇hτj (θ, ρ, φ)
∣∣→ 0.

Now we write h̃τj (θ, ρ, φ) − hτj (θ, ρ, φ) = (1 − β(ρ/ρτ ))(cτj − hτj (θ, ρ, φ)) and use the
fact that β(ρ/ρτ ) ∈ [0, 1] to estimate,

∣∣∣h̃τj (θ, ρ, φ)− hτj (θ, ρ, φ)
∣∣∣ ≤

∣∣cτj − hτj (θ, ρ, φ)
∣∣ ≤ ρτ sup

ρ∈[0,ρτ ]

|∇hτj (θ, ρ, φ)| → 0,
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and using the assumption |β ′(ρ/ρτ )| < 2,

∣∣∇h̃τj (θ, ρ, φ)−∇hτj (θ, ρ, φ)
∣∣

≤
∣∣∣∣
β ′(ρ/ρτ )

ρτ

∣∣∣∣
∣∣cτj − hτj (θ, ρ, φ)

∣∣+ |1− β(ρ/ρτ )|
∣∣∇hτj (θ, ρ, φ)

∣∣

≤ 3 sup
ρ∈[0,ρτ ]

∣∣∇hτj (θ, ρ, φ)
∣∣→ 0.

This proves the claim that λτ → λ uniformly to first order. We are now done:
choosing (ψτj )

−1 as a coordinate chart near Kτ
j , there is a radius ρ0 ∈ (0, ρτ ) such

that β(ρ/ρτ ) = 0 for all ρ ≤ ρ0, thus within this radius we have the coordinate
expression (ψτj )

∗λτ = cτj (dθ + ρ2dφ).

Applying Prop. 5.1.3 to the contact form λA on S3 with transverse link K ⊂ S3,
we find a C1-close contact form λB = fλA for some smooth function f : S3 → R,
such that λB looks like cj(dθ + ρ2dφ) in coordinates near each component Kj ⊂ K,
and λB = λA outside a neighborhood of K.

Now choose a smooth family of functions {fr}r∈R such that fr ≡ 1 for r ≤ 0 and
fr ≡ f for r ≥ 1; this defines a smooth homotopy of contact forms λr = frλA from
λA to λB, all defining the standard contact structure ξ0. In light of Remark 5.1.4,
we may assume that the Reeb vector fields Xλr are all transverse to the leaves of
the open book decomposition p(FA), and that P∞ is a periodic orbit for all of them.
In particular, this means every periodic orbit of Xλr is nontrivially linked with P∞.
This turns out to be precisely the condition needed to prove compactness for our
moduli spaces of embedded holomorphic curves.

We can similarly homotop the complex structure on ξ0 to a more convenient
form.

Definition 5.1.6. Suppose (M,λ) is a contact 3-manifold with contact structure
ξ = ker λ, and K ⊂ M is a positively transverse knot with a neighborhood that
admits coordinates (θ, ρ, φ) in which

K = {ρ = 0} and λ = f(ρ)dθ + g(ρ)dφ

for some smooth functions f and g. We say that an admissible complex multiplica-
tion J : ξ → ξ is adapted to the coordinates (θ, ρ, φ) if

1. dρ(J∂ρ) = 0, and

2. J is invariant with respect to all rotations (θ, ρ, φ) 7→ (θ+c, ρ, φ) and (θ, ρ, φ) 7→
(θ, ρ, φ+ c)
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Equivalently, J is adapted to (θ, ρ, φ) if and only if it can be defined as in
Chapter 3 by Jv1 = β(ρ)v2, where {v1, v2} is a rotation-invariant frame for ξ|{ρ>0}

with v1 = ∂ρ, and β(ρ) is a smooth function. We need to convert the complex
structure on ξ0 into precisely this form so that eventually the results of Chapter 3
can be applied for a neighborhood of K. Thus choose some JB : ξ0 → ξ0 that is
adapted to the given coordinates (θ, ρ, φ) near each component Kj ⊂ K, and choose
a smooth homotopy of complex multiplications

Jr : ξ0 → ξ0

such that Jr = JA for all r ≤ 0 and Jr = JB for all r ≥ 1. Associated with λr and
Jr, there is a natural smooth family of almost complex structures J̃r on R×M .

Let us now adopt the notation of Sec. 4.5.7 and callM∗
0 the connected moduli

space consisting of the finite energy planes in the open book decomposition FA. (By
Lemma. 4.5.50, any embedded finite energy plane in the same connected component
of the moduli space must be part of the foliation.) There is a larger connected moduli
space M∗ which consists of pairs (r, ũ) where ũ is an embedded J̃r-holomorphic
finite energy plane, andM∗

0 has a natural inclusion intoM∗. Since any ṽ = (b, v) ∈
M∗

r is homotopic to some ũ = (a, u) ∈ M∗
0, it also satisfies the conditions of

Theorem 4.5.44: in particular v : C → S3 is an embedding transverse to Xλr , and
the space of nearby planes in M∗

r foliates both a neighborhood of ṽ(C) in R × S3

and a neighborhood of v(C) in S3 \ P∞.

Theorem 5.1.7. M∗
[0,1]/R is compact.

Combining this with Theorem 4.5.51 yields:

Corollary 5.1.8. There are stable open book decompositions Fr asymptotic to P∞

corresponding to the data (S3, λr, Jr) for each r ∈ [0, 1]. In particular, Prop. 5.1.1
holds when (λA, JA) is replaced by (λB, JB).

Theorem 5.1.7 follows from a more general compactness result, which we post-
pone until Sec. 5.2 since it will have wider application. For now, let us simply note
that all solutions ũ ∈M∗

r have the same energy

Er(ũ) = sup
ϕ∈T0

∫

C

ũ∗d(ϕλr),

independent of r and ũ. That’s because the asymptotic behavior and Stokes’ theo-
rem imply that this energy is always equal to the period of the orbit P∞. See also
Prop. 5.1.16, of which this may be considered a special case.
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Remark 5.1.9. Since each solution ũ ∈ M∗
r has only the nondegenerate asymp-

totic limit P∞, convergence in M∗ follows from convergence in C∞
loc(Σ̇,R × M),

up to parametrization and R-translation. This follows from Theorem 4.6.22, and
permits us to reduce the question of compactness inM∗

[0,1]/R to one of finding C∞
loc-

convergent subsequences. Similar remarks apply to the next two compactness results,
Theorems 5.1.12 and 5.1.15.

5.1.3 An open book decomposition with boundary

From the results of the previous section, the situation is now as follows. We have
a contact form λ on S3, whose kernel is the standard contact structure ξ0, and an
admissible J : ξ0 → ξ0 such that (S3, λ, J) admits an open book decomposition
F as in Prop. 5.1.1, consisting of R-invariant families of embedded finite energy
planes ũ(σ,τ) : (C, i)→ (R× S3, J̃). All leaves are asymptotic to the nondegenerate
periodic orbit P∞ with µCZ(P∞) = 3, and the projected foliation p(F) of S3 \ P∞

is transverse to Xλ. Most importantly, there is a positively transverse link K ⊂ S3,
presented as a closed braid about P∞ and living in a neighborhood of P0, such that
each component Kj ⊂ K has the following property: a neighborhood of Kj admits
a coordinate system (θ, ρ, φ) in which Kj = {ρ = 0}, λ = cj(dθ + ρ2dφ) for some
constant cj > 0, and J : ξ0 → ξ0 is adapted to the coordinates (θ, ρ, φ). Notice that
λ is horribly degenerate: every point near K belongs to a periodic orbit, which can
be parametrized in coordinates by (θ(t), ρ(t), φ(t)) = (ct, ρ0, φ0) for some constants
c, ρ0 and φ0. A useful consequence of this observation is that each plane ũ(σ,τ) is
transverse to the coordinate vector field ∂θ as it cuts through a neighborhood of Kj .

In order to perform surgery along K without killing the holomorphic curves, we
must convert F into a stable open book decomposition with boundary (cf. Sec. 4.5.7),
so that the pages do not pass through the region we intend to cut out. To that
end, choose ρ0 > 0 sufficiently small, and for each component Kj ⊂ K, define a
torus around Kj by Lj = {ρ = ρ0}. In principle, the intention is now to define
families of totally real submanifolds L̃σj ⊂ R × S3 covering Lj , which can be used
as boundary conditions for the pages ũ ∈ F after cutting some disks out of the
domain C. In practice, it is complicated to do this for all pages at once and preserve
compactness; as we saw in Sec. 4.6, we’ll need to assume that the submanifolds L̃σj
are pseudo-Lagrangian. This is a strong condition, and it will force us temporarily to
throw out all but one page of the open book F , reconstructing a foliation only after
the boundary condition has been simplified. We also need to make a simplifying
assumption which will be in effect for the next several steps in the argument.

Assumption: each connected component Kj ⊂ K satisfies lk(Kj, P∞) = 1.
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Here lk(Kj, P∞) denotes the linking number ofKj and P∞ as oriented knots in S3; in
general this could be any natural number. The condition means that each string in
the closed braid representing K corresponds to a unique connected component of K,
i.e. there is no component that wraps around more than once without repetition. As
a result, each page ũ(σ,τ) of the open book decomposition intersects each component
of K exactly once. We will first prove the main result under this assumption, and
then use a branched cover construction in Sec. 5.1.5 to generalize the result.

Recall that if Gσ
j : Lj → R is a family of smooth functions and L̃σj is defined as

the graph
L̃σj = {(Gσ

j (x), x) ∈ R×M | x ∈ Lj},
then L̃σj is pseudo-Lagrangian if and only if dGσ

j (Xλ) ≡ 0. Using the coordinates
(θ, φ) on Lj , this means in the present situation that Gσ

j (θ, φ) depends only on φ.
Now choose any page ũ = (a, u) = ũ(σ0,τ0) ∈ F and let G0

j : Lj → R be the unique
function such that

dG0
j(Xλ) ≡ 0 and G0

j (u(z)) = a(z) for all z ∈ u−1(Lj).

This is possible because ũ is everywhere transverse to Xλ, and thanks to the sim-
plifying assumption, the intersection of u(C) with Lj has only one component.

We could extend L̃0
j to an R-invariant family L̃σj and try to construct an open

book decomposition with boundary, but this would be useful only if we could then
modify the foliation under homotopies of λ that twist the Reeb vector field near Lj ,
as will be necessary in the next section. It’s difficult to do this and maintain the
pseudo-Lagrangian condition unless Gσ

j is constant. The solution is thus to make

the family L̃σj “asymptotically flat” as in Sec. 4.6.2. This will allow us to produce
a stable open book decomposition with boundary where the boundary condition is
actually Lagrangian.

With this in mind, we extend the functions G0
j to a smooth family Gσ

j : Lj → R

such that

1. ∂
∂σ
Gσ
j > 0.

2. dGσ
j (Xλ) ≡ ∂

∂θ
Gσ
j ≡ 0.

3. There exists σ0 > 0 such that Gσ
j ≡ σ whenever |σ| ≥ σ0.

In the terminology of Section 4.6.2, this defines an asymptotically flat, pseudo-
Lagrangian boundary condition L̃σj for Problem (BP). We can use the plane ũ :
C → R × S3 to produce a single solution to this mixed boundary value problem
as follows. Let Nj ⊂ S3 be the solid torus {ρ ≤ ρ0}, which contains Kj and has
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boundary ∂Nj = Lj . By removing the interiors of Nj from S3, we obtain a compact
3-manifold M = S3 \⋃j(intNj) with oriented boundary ∂M = −⋃j Lj . Since the

embedding u : C → S3 is transverse to ∂M , there is a smooth Riemann surface
with boundary defined by (Σ̇, j) = (u−1(M), i). This is just the complex plane
with a finite set of open disks removed; using the natural inclusion C →֒ S2 we can
also define a compact Riemann surface with boundary, (Σ, j) ⊂ (S2, i) such that
Σ̇ = Σ \ {∞}. Now the restriction of ũ to a map ṽ0 = (b0, v0) : Σ̇ → R ×M is an
embedded solution of (BP), satisfying the boundary condition ṽ0(γj) ⊂ L̃0

j ⊂ ∂M

for each component γj ⊂ ∂Σ. The map v0 : Σ̇→M is also embedded and transverse
to Xλ.

Proposition 5.1.10. Ind(ṽ0) = 2 and windπ(ṽ0) = 0.

Proof. The second statement will follow immediately from the first by Equation
(4.5.10). To see that the Fredholm index is 2, we observe that ṽ0 is the restriction
of an index 2 finite energy plane ũ = (a, u) : C → R × S3 to a subdomain Σ̇ ⊂ C

obtained by removing the finite set of open disks D1∪. . .∪Dm =
⋃
j u

−1(intNj) ⊂ C.

Choose a global trivialization of ξ → S3; this defines a trivialization Φ of u∗ξ → C for
which µΦ

CZ(A∞) = µCZ(P∞) = 3, and it also restricts to a trivialization of v∗0ξ → Σ̇.
The generalized Maslov index µ(ṽ0) depends on µΦ

CZ(A∞) as well as the Maslov
index of the subbundle ℓ := ξ∩TLj over each oriented component γj = −∂Dj ⊂ ∂Σ.
We claim µΦ(v∗0ξ|γj , ℓ|γj) = −2. Indeed, identifying Dj conformally with the unit

disk D, the restriction of u to Dj is homotopic to a map w : D → Nj expressed
in coordinates (θ, ρ, φ) by w(re2πit) = (0, ρ0r, 2πt). Moving once around ∂D with
reversed orientation, the intersection ξ ∩TLj rotates once clockwise with respect to
any trivialization that extends over D; this gives Maslov index −2.

The index formula (4.5.5) now yields

Ind(ṽ0) = µ(ũ) + 2(g +m− 1) + #Γ

=
[
µΦ
CZ(A∞)− 2m

]
+ 2(m− 1) + 1 = µCZ(P∞)− 1 = 2.

Remark 5.1.11. The proof above that Ind(ṽ0) = Ind(ũ) is straightforward but un-
satisfying in a certain sense: there are deeper reasons why such a result should hold.
One way to see this is by working with the normal Maslov index. Since u ⋔ Xλ,
one can choose {∂a, Xλ} ⊂ T (R × S3) as a frame for the normal bundle of ũ, at
least away from the punctures. Using the fact that Xλ is also tangent to each torus
Lj, it then becomes obvious that the normal Maslov index at each component of ∂Σ
is 0, and thus µN(ũ) = µN(ṽ0). This is why the Fredholm index calculation doesn’t
depend on the number of disks removed from S2 to create Σ.
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By Theorem 4.5.42, ṽ0 belongs to a smooth 2-parameter family of pairwise dis-
joint embedded solutions {ṽτ}τ∈B2

ǫ (0) to (BP). The idea is now to consider the
maximal extension of this family, and extract from it an open book decomposition
with boundary. We will be especially interested in solutions whose boundaries lie
outside the region [−σ0, σ0] ×M , where the boundary condition is flat and locally
R-invariant. To measure this, pick a connected component γ ⊂ ∂Σ and denote

m(ṽ) = max
z∈γ

b(z)

for any solution ṽ = (b, v). By Theorem 4.5.42, the existence of any solution ṽ
implies the existence of another ṽ′ with m(ṽ′) > m(ṽ). It will now follow from a
compactness result that m(ṽ) can be made arbitrarily large.

Theorem 5.1.12. Let ṽk = (bk, vk) : Σ̇→ R×M be a sequence of solutions to the
problem defined above, all positively asymptotic to P∞ at the puncture ∞ ∈ Σ and
with vk|γj : γj → Lj homotopic to v0|γj : γj → Lj for each component γj ⊂ ∂Σ.
Then there is a sequence of diffeomorphisms ϕk : Σ → Σ that fix ∞ and preserve
each component of ∂Σ, such that:

1. Ifm(ṽk) is bounded, then a subsequence of ṽk◦ϕk converges in C∞
loc to a solution

ṽ∞ : Σ̇→ R×M , positively asymptotic to P∞ at the puncture.

2. If m(ṽk) is unbounded, then a subsequence of (bk −m(ṽk), vk) ◦ ϕk converges
in C∞

loc to a J̃-holomorphic map w̃ : Σ̇→ R×M , positively asymptotic to P∞

at the puncture, and satisfying the boundary condition w̃(γj) ⊂ {const} × Lj
at each component γj ⊂ ∂Σ.

The convergent subsequence arises from the more general compactness result
in Sec. 5.2, and the statement about boundary conditions is a consequence of the
uniform gradient bound derived in proving that result. We should note that the
discussion of generalized energy in Sec. 4.6 is crucial here. We use the taming set
TL consisting of functions ϕ : R× S3 → [0, 1] that are constant on all of the tori L̃σj
and satisfy the positivity criterion; then Prop. 4.6.15 gives a uniform bound on the
energies ETL(ṽk).

The compactness theorem is applied as follows. Start from ṽ0 = (b0, v0) and
construct a sequence ṽk = (bk, vk) with m(ṽk) increasing. Since v0 : Σ̇ → M is
embedded and doesn’t intersect P∞, we may assume the same is true for all the maps
vk. If m(ṽk) is bounded, we find a convergent subsequence ṽk ◦ϕk → ṽ∞ = (b∞, v∞)
and m(ṽk)→ m(ṽ∞).

Proposition 5.1.13. The map v∞ : Σ̇→M is embedded and doesn’t intersect P∞.
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Proof. Clearly v∞ is immersed since windπ(ṽ∞) = windπ(ṽk) = 0. Then v∞ ⋔ Xλ,
and using the fact that Xλ = ∂θ along Lj and v∞ maps each component of γj ⊂ ∂Σ
to a meridian on a unique torus Lj , we conclude that v∞ is injective on the boundary.
(Here we’re also using the simplifying assumption that each component Kj ⊂ K is
linked only once with P∞; hence v∞ maps separate components of ∂Σ into separate
tori.) Now the fact that v∞ is injective follows from positivity of intersections via
Prop. 4.4.13.

An intersection of v∞ with P∞ is equivalent to an intersection of ṽ∞ with the
orbit cylinder R × P∞. This is also excluded by positivity of intersections since
ṽk(Σ̇) ∩ R× P∞ = ∅.

We can now apply the implicit function theorem again for ṽ∞ and find more
solutions with m(ṽ) > m(ṽ∞). Thus we can assume without loss of generality
that the sequence ṽk satisfies m(ṽk) → ∞. Then the compactness result again
gives a solution w̃ = (β, w) : Σ̇ → M which satisfies the flat boundary condition
w̃(γj) ⊂ {const} × Lj . It has a positive puncture at ∞ asymptotic to P∞, and
repeating the argument of Prop. 5.1.13, w is also embedded, with image disjoint
from P∞.

From now on we can dispense with nonstandard taming sets and non-flat bound-
ary conditions: assume L̃σj = {σ} × Lj , an R-invariant family of Lagrangian sub-
manifolds, with which we define the boundary conditions for Problem (BP0). Then
w̃ = (β, w) is a solution to this problem with Ind(w̃) = 2. Denote by M the
moduli space of solutions to (BP0), and letM∗ be the connected component con-
taining w̃. By the results in Secs. 4.5.6 and 4.5.7, M∗ is a smooth 2-manifold and
M∗/R is a smooth 1-manifold. Since the asymptotic limits are nondegenerate, C∞

loc-
convergence implies convergence in M∗ (cf. Remark 5.1.9), thus Theorem 5.1.12
implies that M∗/R is compact, i.e. it’s diffeomorphic to a circle. The main result
of this section is the following.

Theorem 5.1.14. The solutions inM∗ constitute a stable open book decomposition
with boundary.

Proof. There is clearly a diffeomorphism ψ : S1 → M∗/R which lifts to a diffeo-
morphism

ψ̃ : R× S1 →M∗ : (σ, τ) 7→ w̃(σ,τ) = (βτ + σ, wτ ),

with w̃(0,0) = w̃. This is a slight abuse of notation; βτ and wτ are not technically

maps on Σ̇, but rather equivalence classes of maps, up to parametrization. The
distinction will be unimportant.

We must first show that wτ : Σ̇ → M are all embeddings, and that wτ (Σ̇) ∩
wτ ′(Σ̇) = ∅ if τ 6= τ ′. Both statements are true for τ near 0, by the implicit function
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theorem (Thm. 4.5.42). Combining this with Theorem 4.4.4 on self-intersections in
the R-invariant case, we deduce that the subset

{w̃(σ,τ) ∈M∗ | wτ is embedded}

is both open and closed; thus it is all ofM∗. Similarly, the implicit function theorem
tells us that for any τ ∈ S1, wτ and wτ ′ don’t intersect for τ ′ near τ . Then by
Theorem 4.4.5, any convergent sequence w̃(σk ,τk) for which wτk(Σ̇) ∩ wτ (Σ̇) = ∅ has
a limit w̃(σ∞,τ∞) for which wτ∞(Σ̇) is either identical to or disjoint from wτ (Σ̇). The
former would imply that w̃(σ∞,τ∞) is an R-translation of w̃(σ,τ), thus τ∞ = τ .

It remains only to show that the family of maps {wτ}τ∈S1 covers every point in
M \ P∞. Define a subset

N = {p ∈M \ P∞ | p ∈ wτ (Σ̇) for some τ ∈ S1}.

By Theorem 4.5.42, N is an open set. We claim that it is also a closed subset of
M \ P∞; indeed, suppose pk → p ∈ M \ P∞ and there are sequences τk ∈ S1 and
zk ∈ Σ̇ such that wτk(zk) = pk. We may assume after possibly taking a subsequence
and reparametrizing that w̃(σk,τk) → w̃(σ,τ) inM∗. In particular, wτk and wτ extend
continuously to maps w̄τk , w̄τ : Σ → M such that w̄τk → w̄τ in C0(Σ,M). There is
also a subsequence such that zk → z∞ ∈ Σ, and thus w̄τk(zk)→ w̄τ (z∞) = p. Since
p ∈M \P∞, we must have z∞ ∈ Σ̇, hence wτ (z) = p, proving the claim. This shows
that N is both open and closed in M \ P∞, hence N =M \ P∞.

5.1.4 Twisting the contact structure

Having created a foliation that lives entirely outside of the tori Lj ⊂ S3, we are
now free to make discontinuous changes such as Dehn surgery and Lutz twists to
the regions Nj inside these tori. By Remark 2.1.4, it suffices for present purposes to
consider Lutz twists. Denote the foliation of Theorem 5.1.14 by FK .

Choose a pair of smooth functions f , g : [0, ρ0]→ R with the following properties:

1. (f(ρ), g(ρ)) = (−1,−ρ2) for ρ near 0

2. (f(ρ), g(ρ)) = (1, ρ2) for ρ near ρ0

3. D(ρ) := f(ρ)g′(ρ)− f ′(ρ)g(ρ) > 0 for all ρ > 0

4. g′′(ρ) 6= 0 whenever g′(ρ) = 0
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We can then define an overtwisted contact form λK on S3 such that λK = λ in
M ⊂ S3, and in coordinates on Nj,

λK = cj [f(ρ)dθ + g(ρ)dφ] .

Focusing on the situation near a particular component Kj ⊂ K, let Lc be the
torus {ρ = c} for any c > 0 sufficiently small. The Reeb vector field in this neigh-
borhood is now

XλK (θ, ρ, φ) =
1

cjD(ρ)
[g′(ρ)∂θ − f ′(ρ)∂φ] ;

at ρ = ρ0 this becomes 1
cj
∂θ. The torus Lj = Lρ0 is thus foliated by longitudinal

periodic orbits, with the boundary of each page v : Σ̇→ M of FK cutting through
these orbits transversely. As one moves further toward the inside of Nj , the Reeb
vector field remains tangent to the tori Lρ, but its direction twists until it points
in the opposite direction at ρ = 0. There is thus a radius ρ− ∈ (0, ρ0) such that
Lρ− is foliated by periodic orbits with no ∂θ-component, i.e. they are meridians.
This picture easily suggests what the eventual goal should be: if we shrink the
boundary condition for the pages ṽ inward through concentric tori until it reaches
Lρ− , then we can imagine replacing each component of ∂Σ by a new puncture,
essentially degenerating the missing disk into a missing point. This would produce
a foliation of the region outside Lρ− by finite energy surfaces without boundary,
with new punctures asymptotic to periodic orbits on Lρ− . This is the general idea;
in practice however, it’s easier to proceed by changing the contact form rather than
the boundary condition.

The radius ρ− is a point in (0, ρ0) where g
′(ρ−) = 0; the existence of such a point

is guaranteed by our assumptions on f and g since the path ρ 7→ (f(ρ), g(ρ)) makes
at least a half rotation around the origin in R2. (If there’s more than one point
with g′(ρ) = 0, choose ρ− to be the largest that is less than ρ0.) By assumption,
g′′(ρ−) 6= 0, thus Lρ− is a simple Morse-Bott manifold, foliated by periodic orbits
of the form x(t) = (θ0, ρ−, ct). We shall sometimes refer to these informally as
horizontal orbits. Now choose ρ1 > ρ0 and a smooth family of reparametrizations
ψr : [0, ρ1]→ [0, ρ1], for r ∈ [0, 1] as shown in Figure 5.1, such that

(i) ψ0 is the identity,

(ii) ψr(ρ) = ρ for all ρ near 0 or ρ1,

(iii) ψ′
r(ρ) > 0 for all r and ρ,

(iv) ψr(ρ0) > ρ− for all r < 1 and ψ1(ρ0) = ρ−.
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Figure 5.1: The family of reparametrizations ψr : [0, ρ1]→ [0, ρ1], r ∈ [0, 1].

Define a smooth family of contact forms {λr}r∈[0,1] such that in the region {ρ ≤
ρ1} near Kj,

λr = cj [f(ψr(ρ))dθ + g(ψr(ρ))dφ] ,

and outside of this λr = λK . (Note that λ0 = λK everywhere.) It is easily verified
that the functions fr := f ◦ψr and gr := g◦ψr satisfy the same conditions as f and g;
in particular the tori {ρ = ψ−1

r (ρ−)} are simple Morse-Bott manifolds of horizontal
orbits for λr. Outside of this critical radius the Reeb vector field Xλr always has
a positive ∂θ-component: in particular this is true for all ρ ≥ ρ0 if r < 1. One
consequence is that for r < 1, all periodic orbits of Xλr in M are still nontrivially
linked with P∞. For r = 1 this is still true in intM , but the boundary ∂M =

⋃
j Lj

is now foliated by horizontal orbits. Figure 5.2 shows the change in the Reeb flow
on Lj = {ρ = ρ0} as r approaches 1.

Choose a smooth family of admissible complex multiplications Jr on the contact
structures ξr = ker λr which are adapted to the coordinates (θ, ρ, φ), and define the
almost complex structures J̃r accordingly. We now ask whether there is a continuous
family of open book decompositions Fr to accompany the homotopy J̃r, with F0 =
FK . The answer is yes if we move r through [0, 1), but—crucially—compactness
must fail as r → 1. It’s easy to see why the latter is true: due to the windπ estimates,
each page of Fr must be everywhere transverse to Xλr , but this is impossible at the
boundary if all the orbits there are horizontal, since the restriction of a page to each
boundary component is also homotopic to a meridian. So if r → 1, there cannot
be a convergent subsequence of J̃r-holomorphic solutions homotopic to any page of
FK . We will find that the only allowed alternative is exactly what we need: each
component of ∂Σ degenerates to a puncture.
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Figure 5.2: The Reeb flow on part of a torus Lj (with a holomorphic curve inter-
secting transversely) as r approaches 1. Eventually all orbits become meridians.

To formalize this, we once again adopt the notation of Sec. 4.5.7: letM∗
0 be the

connected moduli space constituted by the foliation F0 = FK . This is contained
in a larger connected moduli space M∗ whose elements are pairs (r, ṽ), with ṽ =
(b, v) : Σ̇→ R× S3 a J̃r-holomorphic solution of (BP0). Using the natural smooth
function h :M∗ → R : (r, ṽ) 7→ r, writeM∗

r = h−1(r) andM∗
[a,b] = h−1[a, b].

Theorem 5.1.15. For any r < 1,M∗
[0,r]/R is compact.

As with Theorems 5.1.7 and 5.1.12, this follows from a more general result dis-
cussed in Sec. 5.2, which is largely a consequence of the linking condition on periodic
orbits of Xλr . Of course we also need a uniform energy bound:

Proposition 5.1.16. For all ũ = (a, u) ∈ M∗
r for r ∈ [0, 1], there is a uniform

upper bound (independent of r) on the energy Er(ũ), defined by

Er(ũ) = sup
ϕ∈T0

∫

Σ̇

ũ∗d(ϕλr), (5.1.3)

where T0 is the standard taming set {ϕ ∈ C∞(R, [0, 1]) | ϕ′ ≥ 0}.
Proof. Let T∞ be the period of P∞. Since u : Σ̇→ S3 approaches P∞ exponentially
fast at the puncture ∞ ∈ Σ, we have

lim
R→∞

∫

∂DR

u∗λr = T∞.
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Then using Stokes’ theorem and the facts that |ϕ| ≤ 1 for all ϕ ∈ T0 and a is locally
constant on ∂Σ,

∣∣∣∣
∫

Σ̇

ũ∗d(ϕλr)

∣∣∣∣ ≤ T∞ +

∣∣∣∣
∫

∂Σ

ũ∗(ϕλr)

∣∣∣∣ ≤ T∞ +

∣∣∣∣
∫

∂Σ

u∗λr

∣∣∣∣ .

The 2-forms dλr vanish on the surfaces Lj , thus applying Stokes’ theorem again,
the integral on the right for each connected component γj ⊂ ∂Σ depends only on
the homotopy class of u|γj : γj → Lj. Using the coordinates (θ, ρ, φ) near Lj , we
can therefore let x : S1 → Lj : t 7→ (0, ρ0,−2πt) and compute,

∫

γj

u∗λr =

∫

S1

x∗λr =

∫

S1

λr(ẋ(t)) dt = −2πcjgr(ρ0).

This is bounded as r varies over [0, 1].

Taking the compactness result Theorem 5.1.15 as a black box for the moment,
we can apply Theorem 4.5.51 once again:

Corollary 5.1.17. For each r ∈ [0, 1), there is a stable open book decomposition
with boundary Fr for the data (M,λr, Jr), each with positive binding orbit P∞.

Compactness fails as r → 1, but as is so often the case with holomorphic curves,
this does not in the least mean that interesting things aren’t happening.

Theorem 5.1.18. Let ũk = (ak, uk) ∈ M∗
rk

with rk → 1. Then there is a finite set
Γ′ ⊂ C, a sequence of numbers ck ∈ R and diffeomorphisms ϕk : S

2 \Γ′ → int Σ that
fix ∞, such that a subsequence of (ak + ck, uk) ◦ϕk converges in C∞

loc(C \Γ′,R× S3)
to a J̃1-holomorphic finite energy surface

ũ = (a, u) : S2 \ ({∞} ∪ Γ′)→ R× S3.

All the punctures of ũ are positive, the asymptotic limit at ∞ ∈ S2 is P∞, and for
each component γj ⊂ ∂Σ there is a corresponding puncture zj ∈ Γ′ such that the
asymptotic limit at zj is a simply covered horizontal orbit on Lj.

Section 5.3 will be devoted to the proof of this result.
Denote byM∗

1 the space of all finite energy surfaces ũ = (a, u) : C\Γ′ → R×S3

obtained from Theorem 5.1.18 as limits of solutions inM∗
r for r < 1. Applying now

some routine intersection theory, we will show that the curves inM∗
1 form a finite

energy foliation of stable Morse-Bott type in M = S3 \⋃j intNj.

Proposition 5.1.19. The moduli spaceM∗
1 has the following properties.
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(i) For all ũ = (a, u) ∈M∗
1, u : C \ Γ′ → intM is an embedding, and Ind(ũ) = 2.

(ii) If ũ = (a, u) ∈M∗
1 and ṽ = (b, v) ∈M∗

1, then the images of u and v are either
identical or disjoint.

(iii) Every point p ∈ intM is in the image of u for some ũ = (a, u) ∈M∗
1.

(iv) For each component Lj ⊂ ∂M , every horizontal orbit P ⊂ Lj is an asymptotic
limit for a unique R-invariant set of curves (a+ c, u) ∈M∗

1, c ∈ R.

Proof. Using the windπ estimate of Sec. 4.3 for finite energy surfaces with Morse-
Bott asymptotics, one can show that windπ(ũ) = 0 for all ũ = (a, u) ∈ M∗

1; this
calculation will be carried out in the proof of Theorem 5.3.1. The key is that the
Conley-Zehnder indices at the Morse-Bott limits can be deduced from purely geo-
metric considerations, via Prop. 4.2.12 and Theorem 4.2.14. The same calculation
implies Ind(ũ) = 2.

We conclude that u is immersed. It is also somewhere injective since it has
simply covered asymptotic limits. If u fails to be injective, there must be an isolated
intersection ũ(z1) = ũc(z2) where ũ

c = (a+c, u) for some c ∈ R. Choosing a compact
set K ⊂ C\Γ′ that contains both z1 and z2, there is a sequence ũk = (ak, uk) ∈M∗

rk

for rk → 1 and diffeomorphisms ϕk : S2 \ Γ′ → int Σ such that ũk ◦ ϕk → ũ and
ũck ◦ϕk → ũc in C∞(K,R×M). Then by positivity of intersections, there are points
ζ1 near z1 and ζ2 near z2 such that ũk ◦ ϕk(ζ1) = ũck ◦ ϕk(ζ2) for some large k, a
contradiction since uk : Σ̇ → M is injective. This proves (i). The proof of (ii) is
almost identical.

To prove (iii), note that for any p ∈ intM , there is a sequence ũk = (ak, uk) ∈
M∗

rk
with rk → 1, unique up to R-translation and parametrization, such that p ∈

uk(Σ̇). Then by Theorem 5.1.18, we can assume there are diffeomorphisms ϕk :
S2 \Γ′ → int Σ such that ũk ◦ϕk → ũ = (a, u) ∈M∗

1 in C
∞
loc(C\Γ′,R×S3). Suppose

zk ∈ C\Γ′ such that uk◦ϕk(zk) = p. We claim that zk stays within a compact subset
of C \ Γ′. If not, then a subsequence converges to a puncture, and Theorem 4.6.19
implies that uk ◦ ϕk(zk) converges to either P∞ or ∂M , a contradiction. Thus we
can assume zk → z∞ ∈ C \ Γ′, and uk ◦ ϕk(zk)→ u(z∞) = p, proving (iii).

The statement (iv) follows from the implicit function theorem (Thm. 4.5.44)
and similar intersection arguments applied to the moduli space M(J̃1) of all J̃1-
holomorphic finite energy surfaces contained inM . We claim thatM∗

1 is a connected
component ofM(J̃1). Indeed, for any ũ = (a, u) ∈ M∗

1 ⊂ M(J̃1), Theorem 4.5.44
implies every ṽ = (b, v) ∈ M(J̃1) that is not an R-translation of ũ and is suffi-
ciently close to ũ inM(J̃1) is also disjoint from it, in the sense that u and v don’t
intersect. But from (iii), we know that v does intersect w for some other curve
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w̃ = (β, w) ∈ M∗
1, and if the images of v and w are not identical, we apply posi-

tivity of intersections and derive an intersection of v with u, hence a contradiction.
This shows that M∗

1 is an open subset of M(J̃1). It is also a closed subset, by a
similar intersection argument. It’s easy to see now that M∗

1 is connected in the
topology ofM(J̃1); in fact,

M∗
1/R
∼= S1.

An explicit parametrization of this space can be derived by finding the unique in-
tersection point of u with the Hopf circle P0 for each ũ = (a, u) ∈ M∗

1. Recall that
P0 is a periodic orbit, so one finds that ũ always has one positive intersection with
the orbit cylinder R× P0.

We know from Theorem 4.5.44 that neighboring curves in M∗
1/R have distinct

Morse-Bott limits at each puncture in Γ′. The limits of ũ = (a, u) ∈ M∗
1 and

ṽ = (b, v) ∈ M∗
1 at z ∈ Γ′ are therefore distinct unless [ũ] = [ṽ] ∈M∗

1/R; otherwise,
v would have to intersect the close neighbors of u, contradicting (ii).

Corollary 5.1.20. The moduli space M∗
1 constitutes a finite energy foliation of

stable Morse-Bott type for M = S3 \ intN , with respect to the data (λ1, J1).

In each of the solid tori Nj , we have coordinates (θ, ρ, φ) in which λ1 takes the
form f(ρ)dθ+ g(ρ)dφ and J1 is adapted to the coordinates—thus the interior of Nj

can be foliated by the explicit constructions of Sec. 3.1. This works even if Nj is
changed by nontrivial Dehn surgeries. Supplementing these foliations with the orbit
cylinders over the Morse-Bott orbits on Lj = ∂Nj , we’ve constructed a finite energy
foliation of stable Morse-Bott type for the contact manifold obtained from (S3, ξ0)
by Dehn surgeries and Lutz twists along K. This completes the proof of the main
result, under the simplifying assumption that lk(Kj, P∞) = 1 for each component
Kj ⊂ K.

This restriction will be removed in the next section.

5.1.5 The proof for general closed braids

The previous constructions cannot be assumed to work if K contains a knot Kj with
lk(Kj, P∞) ≥ 2. The trouble begins when we try to define the boundary condition
for Problem (BP): the surface Σ must now have at least two distinct boundary
components mapped to the same torus Lj , and it may not be possible to construct
any family of pseudo-Lagrangian submanifolds covering Lj for which the original
open book decomposition contains a solution. Even if we could do this, there would
be problems preventing different boundary components from running into each other
along Lj as the solution is deformed.
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To avoid this complication, we shall use the previous arguments to construct
a foliation on another contact manifold (M (n), λ

(n)
1 ) with boundary, which defines

a branched cover of (M,λ1). An intersection argument will then show that the
foliation has a well defined projection to a foliation on M . Here are the details.

First, assume K ⊂ S3 is an arbitrary transverse link, and we have carried
through the argument up to Corollary 5.1.8. Thus K is a closed braid near P0

with lk(Kj , P∞) ≥ 1 for each component Kj ⊂ K, and we have a planar open book
decomposition F for some tight contact form λ and complex multiplication J that
have the usual simple form in neighborhoods Nj ⊃ Kj. In particular the Reeb orbits
are tangent to ∂M , where M is S3 with the solid tori Nj removed, as before.

Let E = S3\P∞. Then the open book decomposition defines a fibration E → S1

with fibers Eτ for τ ∈ S1 corresponding to the pages of the foliation F . For any
n ∈ N, there is another smooth fibration E(n) → S1 defined naturally by setting

E(n)
τ = Enτ .

The total space E(n) is then a noncompact manifold diffeomorphic to E = S3 \ P∞,
and there is a natural smooth n-fold covering map

p : E(n) → E,

along with a cyclic group of deck transformations ψk : E(n) → E(n) for k ∈ Zn,
generated by the map ψ that defines the natural diffeomorphism

E(n)
τ

ψ−→ E
(n)

τ+ 1
n

for each τ ∈ S1.
All of the data we have on E = S3 \ P∞ now lifts to the covering E(n). In

particular, define a contact form λ(n) = p∗λ on E(n), along with an admissible
complex multiplication J (n) = p∗J : ξ(n) → ξ(n). These define an almost complex
structure J̃ (n) on R × E(n), and each leaf of the foliation F also lifts to n distinct
J̃ (n)-holomorphic embeddings C → R × E(n). The deck transformation ψ satisfies
ψ∗λ(n) = λ(n) and ψ∗J (n) = J (n), thus it defines a J̃ (n)-holomorphic diffeomorphism

ψ̃ : R×E(n) → R× E(n) : (a, x) 7→ (a, ψ(x)).

There is also a transverse link K(n) = p−1(K) ⊂ E(n) such that ψ(K(n)) = K(n),
as well as a tubular neighborhood K(n) ⊂ N (n) ⊂ E(n) with ψ(N (n)) = N (n). Notice
that K and K(n) each define closed braids with the same number of strings, but K(n)

need not have the same number of components as K, and the deck transformations
may permute components. The point of all this is that if n is chosen to be the least
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Figure 5.3: The top is a transverse knot K with lk(K,P∞) = 3, represented as a
closed braid. The bottom is the 3-fold cover K(3) ⊂ E(3), with three components
cyclically permuted by ψ.

common multiple of all the linking numbers lk(Kj , P∞), then K(n) has precisely as
many components as the number of strings in the braid, i.e. each component wraps
around only once (Figure 5.3). Thus our surgery techniques can be applied to derive
a foliation of E(n) \ N (n). However, before doing this we need to make (E(n), λ(n))
compact, which requires closer examination of the covering map in a neighborhood
of the binding orbit P∞.

For this purpose we need to assume there are coordinates (θ, ρ, φ) on E near P∞

in which P∞ = {ρ = 0}, J is adapted to the coordinates and λ = f(ρ)dθ+g(ρ)dφ for
some functions f and g that satisfy f ′g′′− f ′′g′ ≡ 0 near 0. This is easy to arrange,
for instance, by choosing the initial open book decomposition to be the stabilized
foliation from Example 3.2.1. It is almost true for the irrational ellipsoid as well: λE
takes the right form in the coordinates from Example 3.2.1, though JE might not
be adapted, but this could presumably be fixed by a deformation argument similar
to Sec. 5.1.2. In any case, we assume J is defined by a condition of the form

Jv1 = β(ρ)v2

as in Chapter 3, where v1 = ∂ρ, dρ(v2) = 0 and dλ(v1, v2) ≡ 1. One can deduce
from these facts that if J is smooth at P∞, we must have limρ→0 β(ρ) = g′′(0) > 0.

The assumption f ′g′′ − f ′′g′ ≡ 0 means that the trajectory ρ 7→ (f(ρ), g(ρ))
through R2 follows a straight line. This, and the condition on J are unaffected if
we make a coordinate change of the form

(θ, ρ, φ)←→ (θ, ρ, φ+ 2πkθ)

for some k ∈ Z. We may therefore assume without loss of generality that the planes
of the open book decomposition do not wind around P∞ as they approach—this
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implies also that the circles {(ρ, φ) = const} for ρ > 0 are unlinked with P∞. We
can now deduce something about the slope of the trajectory (f(ρ), g(ρ)) from the
fact that µCZ(P∞) = 3. Indeed, let v0(θ) = ∂x ∈ ξ(θ,0,0) be the nonzero section of ξ
along P∞ determined by the coordinates, and let v be a global nonzero section of
ξ. Some general knowledge of the tight three-sphere then implies windv0P∞

(v) = −1,
and from Prop. 3.1.2, we have

3 = µCZ(P∞) = µv0CZ(P∞) + 2windvP∞
(v0) = 2

⌊
− f ′′(0)

2πg′′(0)

⌋
+ 3,

hence f ′′(0)/2πg′′(0) ∈ (−1, 0).
With this preparation, we choose similar coordinates (θ, ρ, φ) on a neighborhood

of the missing unknot in E(n), and define the covering map in this neighborhood
explicitly by

p(θ, ρ, φ) = (θ, ρ, nφ).

Since the framing along P∞ determined by the open book decomposition is the same
as that of the coordinate system, this map extends to the rest of E(n) in a manner

determined by the pages of the open book. Let E
(n)

be the compactification of E(n)

obtained by filling in the circle P
(n)
∞ := {ρ = 0}. Then p extends as a branched

covering map

p : E
(n) → S3,

which is nonsmooth but continuous at P
(n)
∞ ; the latter is mapped homeomorphically

to P∞. In coordinates on E(n), the contact form is now

λ(n) = f(ρ)dθ + ng(ρ)dφ =: fn(ρ)dθ + gn(ρ)dφ,

which extends smoothly to E
(n)

. Moreover, P
(n)
∞ is then a nondegenerate periodic

orbit, with

µCZ(P
(n)
∞ ) = 2

⌊
− f ′′

n(0)

2πg′′n(0)

⌋
+ 3 = 2

⌊
−1

n

f ′′(0)

2πg′′(0)

⌋
+ 3 = 3.

A complication arises with the complex structure J (n) = p∗J : defining the usual
symplectic trivialization {v(n)1 , v

(n)
2 } of ξ(n), a calculation shows that

J (n)v
(n)
1 = βn(ρ)v

(n)
2

where βn(ρ) = β(ρ). This looks great but is actually terrible, because we know that

J (n) can only be smooth at P
(n)
∞ if g′′n(0) = limρ→0 βn(ρ), which is not true since the

same thing equals g′′(0) = g′′n(0)/n.
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We will therefore need to change βn before proceeding. By the discussion in
Sec. 3.2, this can be done without sacrificing the given family of holomorphic curves
asymptotic to P∞. Indeed, these maps lift to J̃ (n)-holomorphic embeddings

ṽ = (b, v) : C→ R×E(n)

which are contained in R×E(n) and approach P
(n)
∞ asymptotically. Changing βn(ρ) in

a neighborhood of 0 so that J (n) becomes smooth at P
(n)
∞ , the condition f ′

ng
′′
n−f ′′

ng
′
n ≡

0 implies that we can find new solutions w̃ that match ṽ outside a neighborhood
of P

(n)
∞ . These form a stable open book decomposition of (E

n
, λ(n), J (n)) by finite

energy planes.
We now repeat the arguments of the previous sections to define a finite energy

foliation of stable Morse-Bott type on M (n) := E
n \ intN (n), with the contact form

twisted to λ
(n)
1 , which has horizontal Morse-Bott orbits on ∂M (n). All changes to

λ(n) and J (n) can be made in an equivariant away, e.g. we can define the homotopies
λ
(n)
r and J

(n)
r by pulling back similar homotopies λr and Jr on M via the covering

projection. This guarantees that there is always a Zn-family of deck transformations
ψk :M (n) → M (n) which preserve both the contact form and the complex structure.
In particular, Zn acts on (M (n), λ

(n)
1 , J

(n)
1 ), and therefore on the almost complex

manifold (R×M (n), J̃
(n)
1 ) via holomorphic diffeomorphisms ψ̃k. In addition to the

finite energy foliation F for (M (n), λ
(n)
1 , J

(n)
1 ), we therefore obtain n such foliations

Fk := ψ̃k(F) for k ∈ Zn.

Proposition 5.1.21. The foliations Fk for k ∈ Zn are all identical.

Proof. It suffices to show that for any leaf ũ = (a, u) ∈ F , the curve

ψ̃ ◦ ũ = (a, ψ ◦ u) : Σ̇→ R×M (n)

is also a leaf of the foliation. This follows from the intersection theory of finite energy
surfaces. Indeed, if ψ̃◦ũ is not a leaf, it must have finitely many isolated intersections
with some other leaf ṽ = (b, v) ∈ F , and by positivity of intersections, these cannot
be eliminated under homotopies. Thus ψ̃ ◦ ũ also has isolated intersections with ũ.
Such intersections also cannot be eliminated under arbitrarily large R-translations,
so ψ̃ ◦ ũ intersects ũσ = (a + σ, u) for all σ ∈ R. Since a : Σ̇ → R is a proper
map, choosing σ large forces these intersections toward the asymptotic limits. But
ũ and ψ̃ ◦ ũ clearly have distinct asymptotic limits, and neither curve intersects the
asymptotic limits of the other, thus we have a contradiction.

The situation is now as follows. There is an n-fold covering map p : M (n) \
P

(n)
∞ → M \ P∞ and a stable Morse-Bott finite energy foliation F on M (n) which
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is invariant under the deck transformations ψk : M (n) → M (n). Redefining the
complex multiplication over M \ P∞ by J1 = p∗J

(n)
1 and defining the corresponding

almost complex structure J̃1 on R × (M \ P∞), the foliation F now projects to
a J̃1-holomorphic foliation of R × (M \ P∞), each leaf having a positive puncture
asymptotic to P∞. To make this an honest finite energy foliation, we must once
again change J1 to a smooth complex multiplication near P∞, and the foliation
survives this change by the same argument as before.

The proof of Theorem 1.3.2 is now complete.
Of course, we postponed the hard part: the compactness proofs will be dealt

with in the next two sections.

5.2 Compactness by linking arguments

In this section we present a compactness result which implies Theorems 5.1.7, 5.1.12
and 5.1.15. The recurring theme is that any bubbling that arises will present a
contradiction to some known fact about linking numbers of knots in S3. To illustrate
the idea, let us start by sketching a proof of the simplest version, Theorem 5.1.7.
Recall that in that case, we have a compact sequence of almost complex structures J̃k
defined by contact forms λk on S

3 whose Reeb vector fields have the property that all
periodic orbits other than P∞ are nontrivially linked with P∞. Then given a sequence
of embedded J̃k-holomorphic finite energy planes ũk = (ak, uk) : C → R × S3, all
asymptotic to P∞, we argue that there must be a uniform gradient bound, and thus
by standard results in elliptic theory, ũk has a convergent subsequence. The gradient
bound is obtained by a bubbling-off argument: if there is no such bound, one can
reparametrize ũk on a shrinking sequence of disks so that the reparametrized maps
have a subsequence convergent to another finite energy plane ṽ = (b, v) : C→ R×S3.
For energy reasons, ṽ must be asymptotic to a periodic orbit P ⊂ S3 with smaller
period than that of P∞; thus P is a different orbit, and must therefore be nontrivially
linked with P∞. Topologically, v : C → S3 defines a disk spanning P , which must
therefore intersect P∞. But this presents a contradiction, for it would allow us to
prove that uk intersects its asymptotic limit for sufficiently large k, and this is known
to be false in our situation.

This simple argument is an important ingredient for proving the more general
result for holomorphic planes with boundary. An additional complication arises
in the latter case because the domain may have varying nonequivalent conformal
structures. This widens the range of bubbling phenomena that we’ll have to consider,
but we will still be able to exclude such possibilities by linking arguments. Figure 5.4
attempts a pictorial rendering of the contradiction described above, and one other
non-bubbling argument which will be useful in what follows.
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K

Figure 5.4: Some topological obstructions to noncompactness. Left: a finite energy
plane bubbles off and produces an illegal intersection with the asymptotic limit P∞.
Right: the appearance of a node produces an illegal intersection with the transverse
knot K.

We begin by summarizing the properties of our setup that are crucial for the
compactness proof. For any pair of oriented knots γ and γ′ ⊂ S3, denote their
linking number by lk(γ, γ′). We are given an oriented knot P∞ ⊂ S3 and an oriented
link K = K1∪ . . .∪Km ⊂ S3 \P∞ whose components satisfy lk(P∞, Kj) > 0.2 Each
knot Kj is the center of a solid torus Nj ; we assume that these solid tori are pairwise
disjoint and that N := N1 ∪ . . . ∪ Nm ⊂ S3 is disjoint from P∞. Denote ∂Nj = Lj
and M = S3 \ (intN), so the oriented boundary of M is ∂M = −⋃j Lj. Let λk be

a sequence of contact forms on S3 which are C∞-convergent to a contact form λ∞
and satisfy the following properties for all k ≤ ∞:

1. P∞ is a nondegenerate periodic orbit of Xλk .

2. Any other periodic orbit P ⊂M \ P∞ of Xλk satisfies lk(P, P∞) 6= 0.

3. Xλk is tangent to each torus Lj

4. There are trivializations Φk of ξk|M (where ξk = ker λk) such that µΦk

CZ(P∞) = 3
and, if γ ⊂ Lj is a positively oriented meridian, windΦk

γ (TLj ∩ ξk) = 1.

2None of the compactness discussion here depends on the simplifying assumption made in
Sec. 5.1.3 that lk(Kj , P∞) = 1; except perhaps implicitly, in that we assume there are uniform
energy bounds.
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In our specific setup, the trivializations Φk are derived from a global trivialization
of the standard contact structure ξ0, using the fact that ξk and ξ0 are homotopic
distributions on M (not on all of S3).

The almost complex structures J̃k on R × S3 are defined in terms of λk and
a compact sequence of admissible complex multiplications Jk : ξk → ξk. We can
assume by taking a subsequence that there is a complex structure J∞ such that
Jk → J∞ in the C∞-topology, and thus J̃k → J̃∞.

We will consider sequences of J̃k-holomorphic curves ũk = Σ̇→ R×S3, where ∂Σ
has m connected components γ1, . . . , γm, and solutions satisfy a boundary condition
of the form ũk(γj) ⊂ L̃σj . The totally real tori L̃σj ⊂ R × S3 are graphs of smooth
families of functions {Gσ

j : Lj → R}σ∈R. We assume these families are asymptotically

R-invariant in the sense that ∂
∂σ
Gσ
j is constant for sufficiently large |σ|, and also that

each torus L̃σj is pseudo-Lagrangian with respect to λk for all k. These assumptions
cover two qualitatively different situations that arise in the construction of foliations:
in one case the contact forms λk are all identical while the families L̃σj are not R-
invariant but pseudo-Lagrangian and asymptotically flat—in the other case we use
a sequence of distinct contact forms with fixed R-invariant families of Lagrangian
submanifolds. Either way, there is a taming set T which gives uniform energy
bounds for the solutions of interest (see Props. 4.6.15 and 5.1.16).

Remark 5.2.1. The discussion so far assumes L̃σj and L̃σi are disjoint if j 6= i, but
one could just as well allow them to be identical, so that different components of ∂Σ
satisfy the same boundary condition. This is necessary if one of the knots Kj has
lk(Kj , P∞) ≥ 2.

Theorem 5.2.2. Given the data on S3 described above, let Σ = S2\(D1∪. . .∪Dm) be
the sphere C∪{∞} with a finite collection of open disks Dj ⊂ C removed, and denote
Σ̇ = Σ \ {∞}. Let ũk = (ak, uk) : Σ̇ → R × S3 be a sequence of J̃k-holomorphic
solutions to Problem (BP), each positively asymptotic to P∞ at ∞, and with the
following additional properties:

(i) uk(Σ̇) ⊂M \ P∞ for all k.

(ii) For each component γj ⊂ ∂Σ and for all k, the oriented loop uk(γj) is homo-
topic along Lj to a negatively oriented meridian, i.e. lk(uk(γj), P∞) = 0 and
lk(uk(γj), Kj) = −1.

(iii) There is a taming set T for which the energies

Ek(ũk) = sup
ϕ∈T

∫

Σ̇

ũ∗d(ϕλk)

are uniformly bounded.
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Then there is a sequence of numbers ck ∈ R and diffeomorphisms ϕk : Σ → Σ that
fix ∞ and preserve each component of ∂Σ, such that the translations (ak + ck, uk)
are solutions of (BP), and a subsequence of (ak + ck, uk) ◦ϕk converges in C∞

loc to a
J̃∞-holomorphic solution ũ∞ of (BP) with positive asymptotic limit P∞.

Theorems 5.1.12 and 5.1.15 follow from this immediately. Theorem 5.1.7 follows
as a special case by assuming K = ∅ and m = 0.

One can gain intuition as to why Theorem 5.2.2 should be true by imagining how
the main compactness theorem from [BEHWZ03] might be adapted for Problem
(BP). We expect that a priori, ũk = (ak, uk) should converge to some kind of
holomorphic building with boundary, with multiple levels connected by periodic
orbits as well as separate components connected by nodes in the interior and at the
boundary (Figure 5.5). Then there is a continuous map u∞ : Σ̇ → M such that
uk → u∞ in the C0-topology, and we could extend these all to continuous maps
C→ S3 by sending the disks Dj into Nj , using the fact that uk maps each boundary
component to a meridian. In principle then, this reduces to the case Σ̇ = C, where as
we outlined above, bubbling off can be ruled out by a fairly simple linking argument.

In practice, proving a general Gromov-type compactness theorem would be
rather difficult because we’re not making any serious assumptions about the nonde-
generacy of λ∞. This means the set of periods of Xλ∞ might not be discreet, so we
cannot bound the energies above zero. Fortunately this is unnecessary; the actual
compactness of ũk can be established more directly by topological arguments. We’ll
work through this in the next few subsections.

5.2.1 Gradient bounds

The first step in proving Theorem 5.2.2 is to find uniform gradient bounds for the
sequence ũk : Σ̇→ R× S3. Note first that the complex structures jk = ũ∗kJ̃k extend
over the puncture ∞ ∈ Σ to give smooth complex structures on Σ. We shall deal
first with the case in which (Σ, jk, {∞}) is a sequence of stable Riemann surfaces in
the sense of Appendix B, i.e. χ(Σ̇) < 0. After establishing uniform gradient bounds
in the stable case, it will be easy to apply the same methods and complete the
compactness proof in the non-stable cases. The next section will then deal with the
possibility that jk might degenerate, which is only relevant if ∂Σ has at least two
boundary components.

For most of this section, we therefore assume χ(Σ̇) < 0. Recall that each stable
Riemann surface (Σ, jk, {∞}) defines a natural hyperbolic metric hk on Σ̇ = Σ\{∞},
for which each component of ∂Σ is a geodesic (see Appendix B). This metric is
the restriction of the Poincaré metric hDk defined on the doubled surface (Σ̇D, jDk ).
Denote the injectivity radius of hDk at any point z ∈ Σ̇ ⊂ Σ̇D by injradhk(z).
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Figure 5.5: Finite energy planes with two boundary components converging to a
three-level holomorphic building with boundary.
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Fix any metric g on S3 and extend it in the natural way to an R-invariant metric
g̃ on R × S3. In the following, we will always use the Euclidean metric on subsets
Ω of C or R× S1, and one of the Poincaré metrics hk on Σ̇. Then our notation for
norms of first derivatives is defined as follows:

ũ : Σ̇→ R×M ⇒ |dũ(z)|k := sup
Y ∈TzΣ\{0}

|dũ(z)Y |g̃
|Y |hk

ϕ : Ω→ Σ̇ ⇒ |dϕ(z)|k := sup
Y ∈C\{0}

|dϕ(z)Y |hk
|Y |

ṽ : Ω→ R×M ⇒ |∇ṽ(z)| := sup
Y ∈C\{0}

|dṽ(z)Y |g̃
|Y |

The main objective of this section is a bound on |dũk|k:

Proposition 5.2.3. If χ(Σ̇) < 0, then there is a constant C > 0 such that

|dũk(z)|k ≤
C

injradhk(z)
(5.2.1)

for all z ∈ Σ̇ and all k.

The bound will follow from a bubbling off argument carried out in conformal
coordinates, but before delving into the details, we must first prove that such coor-
dinates can always be chosen with careful control over the first derivatives. To set
this up, assume (Σ, j,Γ) is a stable Riemann surface without boundary. We assign
to Σ̇ = Σ \ Γ the Poincaré metric h, and denote by injradh(z) the injectivity radius
of h at the point z ∈ Σ̇. Observe that for a given topological type of Σ̇, there is
a universal upper bound for injradh(z), independent of j and z; this follows from
the Deligne-Mumford compactness theorem and the fact that injradh(z) approaches
zero at each puncture.

It will be useful to recall the universal cover of (Σ̇, j). If η is the Euclidean metric
on D, we define the hyperbolic metric h̃ on the open unit disk D ⊂ D by

h̃z =
4

(1− |z|2)2ηz.

Then there is a holomorphic covering projection p : D → Σ̇ such that p∗h = h̃.
Any two points in D are connected by a unique geodesic of h̃, which is a circular
arc or line segment that meets ∂D orthogonally at times ±∞. Thus the distance
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from 0 to any point z ∈ D is an integral over the line segment connecting them; we
characterize this by a function

f(|z|) := disth̃(0, z) =

∫ |z|

0

2 dt

1− t2 = ln

(
1 + |z|
1− |z|

)
. (5.2.2)

This is an increasing diffeomorphism f : [0, 1)→ [0,∞), and its derivative is also an
increasing function. The group of deck transformations is a subgroup G ⊂ Aut(D)
acting freely on D, and we have Σ̇ ∼= D/G. Recall also the standard fact that for
any z ∈ D,

injradh(p(z)) =
1

2
inf

ψ∈G\{Id}
disth̃(z, ψ(z)).

See [Hm97] for a proof.
In the following, we shall always use h as the metric on Σ̇, while using the

Euclidean metric on the closed disk D (not to be confused with the hyperbolic open
disk (D, h̃)).

Lemma 5.2.4. Let (Σ̇, j) be a punctured Riemann surface without boundary. There
are positive constants ci and Ci depending only on the topological type of Σ̇ (i.e. not
on j), such that the following is true: for any z0 ∈ Σ̇ and any geodesic γ passing
through z0, there is a holomorphic embedding ϕ : D →֒ Σ̇ such that ϕ(0) = z0, ϕ
maps R ∩ D to γ preserving orientation, and

c1 · injradh(z0) ≤ |dϕ(z)|h ≤ C1 · injradh(z0) for all z ∈ D. (5.2.3)

For any ρ ∈ [0, 1], the image ϕ(Dρ) is then a closed ball of radius d(ρ) in (Σ̇, h),
where

c2ρ · injradh(z0) ≤ d(ρ) ≤ C2ρ · injradh(z0), (5.2.4)

and the injectivity radius at any point ϕ(w) for w ∈ D with |w| = ρ can be estimated
by

(c3 − c4ρ) · injradh(z0) ≤ injradh(ϕ(w)) ≤ (1 + C3ρ) · injradh(z0) (5.2.5)

Proof. The embeddings can be constructed more or less explicitly in terms of the
cover p : (D, h̃)→ (Σ̇, h). Given z0 ∈ Σ̇ and the geodesic γ, we can compose p with
an automorphism of D in order to assume, without loss of generality, that p(0) = z0
and p(R ∩ D) = γ, the latter preserving the direction of γ.

Now for some r ∈ (0, 1) define a holomorphic immersion by ϕ : D → Σ̇ by
ϕ(z) = p(rz). We claim that this is an embedding if f(r) < injradh(z0), where f is
the function defined in (5.2.2). Otherwise, denoting by Dr the disk of radius r, there
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is a deck transformation ψ ∈ G such that Dr and ψ(Dr) intersect. Assuming this,
pick z and z′ in Dr such that ψ(z′) = z. Then using the fact that ψ is an isometry
of h̃,

disth̃(0, ψ(0)) ≤ disth̃(0, z) + disth̃(z, ψ(0))

= disth̃(0, z) + disth̃(ψ(z
′), ψ(0))

= disth̃(0, z) + disth̃(0, z
′)

≤ 2 disth̃(0, r) = 2f(r) < 2 injradh(z0) ≤ disth̃(0, ψ(0)),

yielding a contradiction. We can therefore assume ϕ is an embedding if we set
r := 1

2
f−1(injradh(z0)). This number is related to the derivative of ϕ as follows. At

any z ∈ D, using the fact that p is an isometric immersion (D, h̃)→ (Σ̇, h), we have

|dϕ(z)|2h = sup
|v|=1

∣∣hϕ(z)(dp(rz) · rv, dp(rz) · rv)
∣∣ = r2 sup

|v|=1

∣∣∣h̃rz(v, v)
∣∣∣

= r2 sup
|v|=1

4

(1− |rz|2)2 |v|
2 =

4r2

(1− r2|z|2)2 ,

so |dϕ(z)|h is uniformly bounded between 2r and 2r/(1 − r2). The lower bound
is precisely f−1(injradh(z0)), and the upper bound is itself bounded by 4

3
· 2r =

4
3
f−1(injradh(z0)) since, by our definition, r never exceeds 1/2. Noting that f ′(0) > 0

and f ′ is increasing, we can easily choose a constant C > 0 such that Cx ≥ 4
3
f−1(x)

for all x. Similarly we can choose c such that cx ≤ f−1(x) for all x ∈ [0,M ], where
M = supz,j injradh(z). Thus we have

c · injradh(z0) ≤ f−1(injradh(z0)) = 2r

≤ |dϕ(z)|h ≤
2r

1− r2 ≤
4

3
injradh(z0) ≤ C · injradh(z0).

It is clear from this construction that for any ρ ∈ [0, 1], ϕ(Dρ) is a closed ball of
radius d(ρ) := f(ρr) in (Σ̇, h). There are constants c and C such that cx ≤ f(x) ≤
Cx for all x ∈ [0, f−1(M)], thus

c

2C
ρ · injradh(z0) =

c

2C
ρf(2r) ≤ cρr

≤ f(ρr) = d(ρ)

≤ Cρr =
C

2c
ρc · 2r ≤ C

2c
ρf(2r) =

C

2c
ρ · injradh(z0).

Finally, let w ∈ D with |w| = ρ ∈ [0, 1]. To bound injradh(ϕ(w)) from above, note
first that for any ǫ > 0, there is a point z2 ∈ p−1(z0) ⊂ D such that disth̃(0, z2) <
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2 injradh(z0) + ǫ. Then let w1 = rw ∈ D and choose another w2 ∈ D such that
p(w2) = p(w1) = ϕ(w) and disth̃(z2, w2) = disth̃(0, w1) = f(rρ). We have

injradh(ϕ(w)) ≤
1

2
disth̃(w1, w2)

≤ 1

2
(disth̃(w1, 0) + disth̃(0, z2) + disth̃(z2, w2))

= injradh(z0) + f(rρ) + ǫ ≤
(
1 +

C

2c
ρ

)
injradh(z0) + ǫ.

A bound from below is obtained by observing that the ball of radius disth̃(0, r) −
disth̃(0, w1) = f(r)− f(ρr) about w1 ∈ D is contained in Dr ⊂ D, so the projection
down to Σ̇ is injective on this ball. Consequently, any other point w2 ∈ D with
p(w2) = p(w1) = ϕ(w) is at least this far away from w1, and

injradh(ϕ(w)) ≥
1

2
(f(r)− f(ρr)) ≥ 1

2
(cr − Cρr) = c− Cρ

4C
C · 2r

≥
(
c

4C
− 1

4
ρ

)
f(2r) =

(
c

4C
− 1

4
ρ

)
· injradh(z0).

Remark 5.2.5. Lemma 5.2.4 extends to surfaces Σ̇ with nonempty boundary as
follows: for any z0 ∈ ∂Σ, the component γ ⊂ ∂Σ containing z0 is a closed geodesic
in the doubled surface (Σ̇D, hD). Thus the lemma gives an embedding ϕ : D+ → Σ̇
that sends 0 to z0 and R ∩ D+ into ∂Σ.

Proof of Prop. 5.2.3. Assume there exists a sequence zk ∈ Σ̇ such that injradhk(zk) ·
|dũ(zk)|k →∞. Using Lemma 5.2.4, choose a sequence of holomorphic embeddings

ϕk : D →֒ Σ̇D

such that |dϕk|k, the radii of the disks ϕk(D) and the injectivity radius satisfy the
bounds specified in the lemma. Let

ρk = min
{
|ζ |
∣∣ ζ ∈ ϕ−1

k (∂Σ)
}
,

or ρk = ∞ if ϕk(D) ∩ ∂Σ = ∅. The sequence ρk determines whether or not we can
restrict the embeddings ϕk in a uniform way so that their images are in Σ̇.

Case 1: assume there is a number ρ ∈ (0, 1] and a subsequence for which ρk ≥ ρ.
Then the restrictions of ϕk to Dρ are embeddings into Σ̇, and we can define a
sequence of pseudoholomorphic disks

ṽk = (bk, vk) = ũk ◦ ϕk : Dρ → R× S3,
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which satisfy a uniform energy bound

Ek(ṽk) = sup
ϕ∈T

∫

Dρ

ṽ∗kd(ϕλk) ≤ Ek(ũk) ≤ C.

Denoting the Euclidean metric on D by η, the fact that ϕk : (Dρ, η) → (Σ̇, hk) is
conformal implies that the norms of dϕk(z) and its inverse are reciprocals. Then a
simple computation shows

|∇ṽk(0)| = |dũk(zk)|k · |dϕk(0)|k ≥ c1|dũk(zk)|k · injradhk(zk)→∞.
By Lemma 4.6.5, we can choose a new sequence ζk ∈ Dρ and positive numbers ǫ→ 0
such that Rk := |∇ṽ(zk)| → ∞, ǫkRk → ∞ and |∇ṽ(ζ)| ≤ 2Rk for all ζ ∈ Dρ with

|ζ − ζk| ≤ ǫk. Assume without loss of generality that Bǫk(ζk) ⊂ Dρ and define

ψk : DǫkRk
→ Bǫk(ζk) : ζ → ζk +

ζ

Rk
.

Now, if there is a subsequence for which bk(ζk) is bounded, define a rescaled sequence
of J̃k-holomorphic maps w̃k = (βk, wk) : DǫkRk

→ R× S3 by

(βk(ζ), wk(ζ)) = (bk ◦ ψk(ζ), vk ◦ ψk(ζ)).
We change this slightly if |bk(ζk)| → ∞ and define

(βk(ζ), wk(ζ)) = (bk ◦ ψk(ζ)− bk(ζk), vk ◦ ψk(ζ)).
In either case, these maps satisfy the uniform gradient bound |∇w̃k(ζ)| ≤ 2 and
they all map 0 into a compact subset of R × S3, thus a subsequence converges in
C∞

loc to a J̃∞-holomorphic plane

w̃∞ = (β∞, w∞) : C→ R× S3.

In the case where bk(ζk) is bounded, define the energy of w̃∞ by

E∞(w̃∞) = sup
ϕ∈T

∫

C

w̃∗
∞d(ϕλ∞).

This is finite, since for any large disk DR ⊂ C, we have DR ⊂ DǫkRk
for sufficiently

large k, and
∫

DR

w̃∗
∞d(ϕλ∞) = lim

k→∞

∫

DR

w̃∗
kd(ϕλk) ≤ lim

k→∞

∫

DǫkRk

ψ∗
k ṽ

∗
kd(ϕλk)

= lim
k→∞

∫

Bǫk
(ζk)

ṽ∗kd(ϕλk) ≤ sup
k

∫

D

ṽ∗kd(ϕλk) ≤ C.
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If on the other hand |bk(ζk)| → ∞, we change the definition of E∞(w̃∞) to use one of
the asymptotic taming sets T ± instead of T , and then find a similar bound using the
asymptotic R-invariance axiom (cf. the proof of Theorem 4.6.4). We conclude that
w̃∞ is a non-constant finite energy plane. The puncture at∞ cannot be removable:
since J̃∞ is tamed by the exact symplectic form d(eaλ∞), every closed holomorphic
curve is constant. Therefore w̃∞ is asymptotic to some periodic orbit P of Xλ∞ . We
now use a topological argument to show that this is impossible.

If P is geometrically distinct from P∞, then lk(P, P∞) 6= 0 by assumption. For
some large radius R, the image w∞(∂DR) is uniformly close to P , and we may assume
the same is true of P ′ := wk(∂DR) for sufficiently large k, thus lk(P ′, P∞) 6= 0. But
since wk is a reparametrization of uk : Σ̇ → S3 over some disk, this means there is
a disk D ⊂ Σ̇ such that P ′ = u(∂D). The linking condition then implies that u(D)
intersects P∞, contradicting the assumptions of the theorem.

Suppose now that P is identical to P∞ or some cover thereof. For any compo-
nent Kj ⊂ K, observe that uk(Σ̇) never intersects Kj . Then repeating the argument
above, we find a disk D ⊂ Σ̇ such that for sufficiently large k, uk(∂D) is a knot uni-
formly close to P∞. This implies lk(P∞, Kj) = 0, also contradicting the assumptions
of the theorem, thus proving that the plane w̃∞ cannot exist.

Case 2: assume ρk → 0. Here we will find that either a plane or a disk bubbles
off, depending on how fast ρk approaches 0. Choose a sequence ζ ′k ∈ D such that
ζk := ϕk(ζ

′
k) ∈ ∂Σ and |ζ ′k| = ρk. By Remark 5.2.5, we can find a sequence of

holomorphic embeddings
ϕ+
k : D+ →֒ Σ̇

that map 0 to ζk and D+∩R into ∂Σ, and satisfy the bounds specified in Lemma 5.2.4.
We claim there is a sequence of radii rk → 0 such that zk ∈ ϕ+

k (D
+
rk
). Indeed, from

Lemma 5.2.4, we know that ϕ+(D+
rk
) contains all points ζ ∈ Σ̇ with disthk(ζ, ζk) ≤ dk,

where
dk ≥ c2rk · injradhk(ζk).

We have also the estimates

disthk(zk, ζk) ≤ C2ρk · injradhk(zk),
injradhk(ζk) ≥ (c3 − c4ρk) · injradhk(zk).

Then when ρk is sufficiently small we can set

rk =
2C2

c2(c3 − c4ρk)
ρk

and compute,

disthk(ζk, zk) ≤
C2

c3 − c4ρk
ρk · injradhk(ζk) =

1

2
c2rk injradhk(ζk) < dk.
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We can thus choose a sequence z′k ∈ D+ with z′k → 0 and ϕ+
k (z

′
k) = zk. Defining a

sequence of J̃k-holomorphic half-disks

ṽk = ũk ◦ ϕ+ : D+ → R× S3,

we have

Rk := |∇ṽk(z′k)| = |dũk(zk)|k · |dϕ+(z′k)|k ≥ C|dũk(zk)|k · injradhk(ζk)
≥ C(c3 − c4ρk)|dũk(zk)|k · injradhk(zk)→∞.

Using Lemma 4.6.5, we may assume there is a sequence of positive numbers ǫk → 0
such that ǫkRk →∞ and |∇ṽk(z)| ≤ 2Rk for all z ∈ D+ with |z − z′k| ≤ ǫk. Writing
z′k = sk + itk, there are two possibilities:

Case 2a: assume tkRk is unbounded. Passing to a subsequence, we may assume
tkRk → ∞, thus r′k := min{ǫkRk, tkRk} → ∞. Then for sufficiently large k we can
define embeddings ψk : Dr′

k
→֒ D+ by

ψk(z) = zk +
z

Rk
.

Arguing as in case 1, there is now a sequence of rescaled maps

w̃k = (βk, wk) = ṽk ◦ ψk : Dr′
k
→ R× S3

and constants ck ∈ R such that a subsequence of (βk + ck, wk) converges in C∞
loc to

a J̃∞-holomorphic finite energy plane w̃∞ = (β∞, w∞) : C→ R× S3, asymptotic to
a periodic orbit P . Just as in case 1, we argue that this plane cannot exist, because
it would imply either lk(P, P∞) = 0 or lk(P∞, Kj) = 0 for Kj a component of K.

Case 2b: assume tkRk is bounded. Now define ψk : D
+
ǫkRk

→֒ D+ by

ψk(z) = sk +
z

Rk
,

and let
w̃k = (βk, wk) = ṽk ◦ ψk : D+

ǫkRk
→ R× S3.

Then |∇w̃k| is uniformly bounded. If there is a subsequence for which βk(0) is
bounded, then we may assume w̃k → w̃∞ in C∞

loc, where

w̃∞ = (β∞, w∞) : H→ R× S3,

is a J̃∞-holomorphic half-plane with finite energy

sup
ϕ∈T

∫

H

w̃∗
∞d(ϕλ∞) <∞.
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It also satisfies the boundary condition w̃∞(R) ⊂ L̃σj for some σ ∈ R. To see this,
note first that w∞(R) ⊂ Lj since Lj is compact. Then if F : R × Lj → R is the
smooth function defined by F (p) = σ for p ∈ L̃σj , we have a compact sequence of
constant functions F ◦ w̃k|R : R ∩ D+

ǫkRk
→ R, converging therefore to a constant

function.
If |βk(0)| → ∞, we instead define w̃∞ as the limit of some subsequence of (βk −

βk(0), wk). Then since the boundary condition is asymptotically R-invariant, w̃∞(R)
belongs to some R-invariant family of pseudo-Lagrangian tori, and w̃∞ has finite
energy with respect to one of the asymptotic taming sets T ±:

sup
ϕ∈T ±

∫

H

w̃∗
∞d(ϕλ∞) <∞

(cf. the proof of Prop. 4.6.17 for more detailed accounts of these energy estimates).
In either case, we have a finite energy half-plane w̃∞ : H → R × S3 solv-

ing some version of Problem (BP). It is not constant, since |∇w̃k(itkRk)| =
1
Rk
|∇ṽk(sk + itk)| = 1 and a subsequence of itkRk converges in D+. Now identi-

fying H conformally with D \ {1}, we can regard w̃∞ as a holomorphic disk with a
puncture on the boundary, and Theorem 4.6.16 tells us that the puncture is remov-
able. Thus extending over the puncture defines a J̃∞-holomorphic disk

w̃ = (β, w) : D→ R× S3

with w(∂D) ⊂ Lj . By topological considerations, we can severely restrict the homo-
topy class of the loop γ = w|∂D : ∂D → Lj . Indeed, choose a radius r slightly less
than 1 so that w|∂Dr : ∂Dr → S3 is uniformly close to γ. Returning to the half-plane
H, there is then a large simply connected region Ω ⊂ H with smooth boundary
such that for large k, wk|∂Ω : ∂Ω → S3 is also uniformly close to γ. Undoing the
reparametrization one step further, there is then an embedded disk D ⊂ Σ̇ such
that for some large k,

uk|∂D : ∂D → S3

is uniformly close to γ. Since uk does not intersect either P∞ or any of the knots
Kj ⊂ K, this implies

lk(γ, P∞) = lk(γ,K1) = . . . = lk(γ,Km) = 0.

This is only possible if γ is contractible on Lj . But this implies that the Maslov
index µ(w̃) is zero. By Corollary 4.3.9, a disk with πTw not identically zero must
have µ(w̃) ≥ 2, therefore πTw ≡ 0, which means

∫

D

w∗dλ∞ = 0.

But by Prop. 4.6.18, this implies that w̃ is constant, a contradiction.
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The arguments used so far to exclude bubbling are already almost enough to
prove the compactness theorem in the cases where ∂Σ is either empty or connected.

Proposition 5.2.6. Theorem 5.2.2 holds if χ(Σ̇) ≥ 0.

Proof. This includes two cases: Σ̇ is diffeomorphic to either a plane or a singly
punctured disk. In both cases the space of conformal structures on the domain
is trivial, so we can assume (Σ̇, jk) is either (C, i) or (C \ D, i) for all k, where
D = intD. We then have a sequence of maps ũk = (ak, uk) : Σ̇→ R× S3 satisfying
T ũk ◦ i = J̃k ◦ T ũ, all positively asymptotic at ∞ ∈ Σ to the simply covered orbit
P∞ with period T . In the case Σ̇ = C, Stokes’ theorem implies

∫
C
u∗kdλk = T for all

k, and we can assume the parametrization is chosen such that

∫

D

u∗kdλk =
T

2
.

In the case with boundary, there is a knot K contained in a solid torus N ⊂ S3 \P∞

such that lk(K,P∞) > 0, and uk maps ∂Σ to an oriented knot γ ⊂ L = ∂N with
lk(γ,K) = −1.

Assume first that |∇ũk(z)| is uniformly bounded (using the Euclidean metric
on C). Then there are constants ck ∈ R such that the translated maps (ak +
ck, uk) have a subsequence C∞

loc-convergent to a J̃∞-holomorphic map ũ∞ : Σ̇ →
R×S3, which (by the usual arguments) has finite energy and satisfies the appropriate
boundary condition. Then it remains to prove that ũ∞ has a positive puncture at
∞, asymptotic to P∞ with covering number 1. For the case Σ̇ = C, our choice of
parametrization gives

∫

C

u∗∞dλ∞ ≥
∫

D

u∗∞dλ∞ = lim
k

∫

D

u∗kdλk =
T

2
,

thus ũ∞ is not constant, and the puncture is therefore not removable. For ∂Σ 6= ∅
we can prove the same thing by observing that a removable puncture would give a
holomorphic disk

D→ R× S3 : z 7→ ũ∞(1/z)

mapping ∂D to a meridian on L, thus u∞ (and hence uk for large k) would have to
intersect K.

Having excluded the possibility of a removable puncture, we know ũ∞ is asymp-
totic to some periodic orbit P at ∞. If P is geometrically distinct from P∞ and
Σ̇ = C, we can repeat the linking argument used in Prop. 5.2.3 and show that
lk(P, P∞) = 0, a contradiction. This also works when Σ̇ = C \ D, because ũ∞
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extends as a smooth map over C, taking D into the solid torus N . The other pos-
sibility is that P could be an n-fold cover of P∞ with n 6= 0. (The covering number
n may be negative, meaning that ∞ becomes a negative puncture; this is possible a
priori if ∂Σ 6= ∅). In the case Σ̇ = C \ D, we have uk(Σ̇)∩K = ∅ for all k, so if k is
sufficiently large, a small perturbation of uk realizes a homology ∂[uk] = n[P∞]+ [γ]
in S3 \K, consequently

n · lk(P∞, K) = − lk(γ,K) = 1.

Then n can only be 1. In the case Σ̇ = C, nmust be positive since every finite energy
plane has a positive puncture. We use Stokes’ theorem to compute the contact areas
of ũ∞ and ũk:

Aλk(ũk) =
∫

C

u∗kdλk = T and Aλ∞(ũ∞) =

∫

C

u∗∞dλ∞ = nT.

Then since ũk → ũ∞ on compact subsets, we also have Aλ∞(ũ∞) ≤ limkAλk(ũk) =
T , so n cannot be greater than 1. This proves the result in the presence of uniform
gradient bounds.

Assume now that there is a sequence zk ∈ Σ̇ such that |∇ũk(zk)| → ∞. If
Σ̇ = C, then by the usual arguments, we can define a sequence of rescaled maps
ṽk = (bk, vk) : C→ R× S3 by

ṽk(z) = ũk

(
zk +

z

Rk

)
,

and find constants ck ∈ R such that a subsequence of (bk + ck, vk) converges to
a non-constant finite energy plane ṽ∞. Then repeating the argument above with
linking numbers and contact area, the asymptotic limit of ṽ∞ must be P∞.

In the case Σ̇ = C \ D, it turns out that the gradient cannot blow up. The
proof is much the same as in Prop. 5.2.3: we define rescaled maps ṽk on an in-
creasing sequence of either disks or half-disks, depending on whether and how fast
zk approaches the boundary. These then have a subsequence convergent to a non-
constant finite energy plane or half-plane ṽ∞. By the usual linking arguments, if
ṽ∞ is a plane it would have to intersect either P∞ or K, neither of which is al-
lowed. For the half-plane case, ṽ extends to a non-constant pseudoholomorphic
disk, and the same argument as before shows that ṽ(∂D) is contractible on L, thus
its Maslov index is 0, and it must therefore have vanishing contact area, another
contradiction.
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5.2.2 Convergence of conformal structures

Thanks to Prop. 5.2.6, we can from now on assume χ(Σ̇) < 0, so in the terminology
of Appendix B, (Σ, jk, {∞}) is a sequence of stable Riemann surfaces with boundary
and one interior marked point. By Prop. 5.2.3, the pseudoholomorphic maps ũk =
(ak, uk) : (Σ̇, jk)→ (R× S3, J̃k) satisfy the bound

|dũk(z)|k ≤ C · injradhk(z),

where hk is the Poincaré metric on (Σ̇, jk). The main hurdle remaining in the proof
of Theorem 5.2.2 is to show that jk is a compact sequence.

Proposition 5.2.7. There is a smooth complex structure j∞ on Σ and a sequence
of diffeomorphisms ϕk : Σ → Σ fixing ∞ and preserving each component of ∂Σ,
such that a subsequence of ϕ∗

kjk converges to j∞ in the C∞-topology.
There are also constants ck ∈ R such that the maps (ak+ck, uk)◦ϕk : (Σ̇, ϕ∗

kjk)→
(R×S3, J̃k) are solutions to Problem (BP), and a subsequence converges in C∞

loc to a
pseudoholomorphic solution ũ∞ : (Σ̇, j∞)→ (R×S3, J̃∞) of (BP) which is positively
asymptotic to P∞ at the puncture.

Proof. A subsequence of (Σ, jk, {∞}) converges to a stable nodal surface S =
(S, j, {p},∆, N), as described in Appendix B. Here (S, j) is a Riemann surface
consisting of finitely many compact components S = S1 ∪ . . . ∪ Sn, possibly with
boundary, and the marked point p ∈ intS is disjoint from the double points ∆ and
unpaired nodes N . A choice of decoration r defines the compact connected surface
Sr, with a singular conformal structure jS and singular Poincaré metric hS, both of
which degenerate on a finite set of circles and arcs Θ∆,N ⊂ Sr. Then convergence
means there is a decoration r and a sequence of diffeomorphisms

ϕk : Sr → Σ

such that:

1. ϕk(p) =∞.

2. ϕ∗
kjk → jS in C∞

loc(Sr \Θ∆,N).

3. All circles in ϕk(Θ∆,N) are closed geodesics in (Σ̇, hk), and all arcs in ϕk(Θ∆,N)
are geodesic arcs in (Σ̇, hk) that intersect ∂Σ transversely.

We can assume without loss of generality that the diffeomorphisms ϕk map a given
component of ∂(Sr) always to the same component of ∂Σ, i.e. ϕk ◦ϕ−1

j always maps
each connected component γj ⊂ ∂Σ to itself.
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If Sj is a connected component of S, let Ṡj be the punctured surface obtained by
removing all points in the set ({p} ∪∆∪N) ∩ Sj . Note that the stability condition
implies χ(ṠDj ) < 0. There is a natural embedding Ṡj →֒ Sr \ Θ∆,N , which we use

to define the sequence of complex structures ϕ∗
kjk and metrics ϕ∗

khk on Ṡj. Then
passing to a subsequence, we have ϕ∗

kjk → j and ϕ∗
khk → h in C∞

loc on Ṡj , where
h is the Poincaré metric for (Ṡj , j). Since dũk is uniformly bounded on compact
subsets and the boundary conditions are asymptotically R-invariant, we can then
find constants cjk ∈ R such that

ṽjk = (bjk, v
j
k) = (ak + cjk, uk) ◦ ϕk|Ṡj

: (Ṡj , ϕ
∗
kjk)→ (R× S3, J̃k)

is a sequence of pseudoholomorphic maps satisfying the appropriate boundary con-
ditions and a uniform C1-bound. Thus ṽjk has a C∞

loc-convergent subsequence

ṽjk → ṽj = (bj , vj) : Ṡj → R× S3,

where ṽj satisfies T ṽj ◦ j = J̃∞ ◦ T ṽj. Due to the uniform energy bound for ũk, we
see also that ṽj has finite energy

E∞(ṽj) = sup
ϕ

∫

Ṡj

(ṽj)∗d(ϕλ∞) <∞,

where the sup is taken for functions ϕ belonging to either T or (if |cjk| → ∞) one
of the asymptotic taming sets T ±. Since the complex structure j extends smoothly
over the punctures to Sj, we conclude that ṽj is a J̃∞-holomorphic solution to
Problem (BP). Repeating this process for every component Sj ⊂ S, we obtain a
set of J̃∞-holomorphic solutions

ṽ1 : Ṡ1 → R× S3,

...

ṽN : Ṡn → R× S3.

Our main goal now is to show that S is actually a smooth Riemann surface with
boundary, i.e. ∆ and N are empty sets and S has only one component. Then the
set of solutions above reduces to a single solution ũ∞ : Σ̇ → R × S3, which we
must show is positively asymptotic to P∞ at the puncture. As with the bubbling off
arguments in the previous section, these results will follow mainly from topological
considerations.

Recall from Remark 5.2.1 that it is sometimes convenient to label the component
knots in K = K1 ∪ . . . ∪ Km with some redundancy. That is, Ki and Kj may be
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the same knot even if i 6= j; in particular we require a given component Ki ⊂ K
to repeat n times in the list K1, . . . , Km if lk(Ki, P∞) = n. (This linking number
was assumed to be always positive.) The lists of components N = N1 ∪ . . . ∪ Nm

and L = L1 ∪ . . . ∪ Lm are then defined with similar repetitions. Each of the maps
uk : Σ̇ → S3 has its image in M = S3 \ intN , and if γ1, . . . , γm are the connected
components of ∂Σ (not repeated), then the oriented loop uk(γj) is a meridian on
Lj = ∂Nj with lk(uk(γj), Kj) = −1. Thus the linking number lk(Kj , P∞) is the
number of distinct components of ∂Σ mapped into the same torus Lj , and we have
also lk(uk(γj), K) = −1 since uk(γj) is unlinked with all components of K that are
distinct from Kj . Adding this up for all γj ⊂ ∂Σ, we see that the expression

− lk(uk(∂Σ), K)

counts the connected components of ∂Σ. Also, the map uk realizes a homology
∂[uk] = [P∞] + [uk(∂Σ)] in S

3 \K, which gives the useful formula

lk(Kj, P∞) = − lk(Kj , uk(∂Σ)). (5.2.6)

In light of this topological setup, uk extends to a smooth map

ūk : C→ R× S3

which satisfies T ūk ◦ jk = J̃k ◦ T ūk in Σ̇ = C \ (D1 ∪ . . . ∪Dm) ⊂ C, and maps each
of the disks Dj into Nj . We may assume that ūk|Dj

has a single transverse positive
intersection with Kj. Remember also that lk(P, P∞) 6= 0 for any periodic orbit P
that is geometrically distinct from P∞.

Let S1 ⊂ S be the connected component that contains the marked point p.
Then either p is a removable puncture for ṽ1 = (b1, v1) : Ṡ1 → R× S3, or else ṽ1 is
asymptotic to a periodic orbit there. We settle this question first.

Claim: ṽ1 is positively asymptotic to P∞ at p. If the puncture is removable,
then we can find an oriented circle C ⊂ Ṡ1 winding clockwise around p such that
v1(C) lies in an arbitrarily small neighborhood of some point in S3 \K. Then this
neighborhood also contains v1k(C) = uk(ϕk(C)) for sufficiently large k, and ϕk(C) is
a large circle in C, bounding a simply connected region Ω. One can then extend uk
over Ω to a smooth map

ûk : C→ S3 \K,
with the loops ûk(∂DR) approaching P∞ as R → ∞. This implies that for any
component Kj ⊂ K, lk(P∞, Kj) = 0, a contradiction.

If p is a nonremovable puncture and ṽ1 is asymptotic to an orbit P that is
geometrically distinct from P∞, we similarly find a large clockwise oriented circle
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ϕk(C) ⊂ C, bounding a region Ω, such that uk(ϕk(C)) is close to P . Then the
existence of the map ūk|Ω : Ω→ S3\P∞ implies lk(P, P∞) = 0, and this is impossible.
The alternative is that P could be an n-fold cover of P∞ for some integer n 6= 0.
(Negative n would mean the puncture is negative.) But then restricting uk to the
region outside of Ω gives a homotopy of uk(ϕk(C)) to P∞ in S3 \K, implying that
for any component Kj ⊂ K,

n · lk(P∞, Kj) = lk(uk ◦ ϕk(C), Kj) = lk(P∞, Kj),

so n = 1. This proves the claim.
With the asymptotic behavior at p understood, it remains to prove that S has

no double points or unpaired nodes.3 Note that it suffices to prove this for the com-
ponent S1 ⊂ S. Our approach will be to use topological constraints in conjunction
with the properties of the holomorphic curve ṽ1 : Ṡ1 → R × S3, in order to show
that ∆ ∩ S1 and N ∩ S1 are empty. We shall set up this discussion in a slightly
more general way than is immediately necessary, since it will also be useful for the
noncompactness argument in the next section.

First some notation. The m connected components of ∂Σ are denoted

∂Σ = γ1 ∪ . . . ∪ γm,

and let us write the components of ∂S1 as

∂S1 = α1 ∪ . . . ∪ αs.

Note that m ≥ 2 by assumption, but ∂S1 could conceivably be empty. Assume S1

has a (possibly empty) set of unpaired nodes

N ∩ S1 = {w1, . . . , wℓ},

interior double points
∆ ∩ int S1 = {z1, . . . , zq},

and boundary double points

∆ ∩ ∂S1 ⊃ ∆ ∩ αj = {ζ1j , . . . , ζ
rj
j } for j = 1, . . . , s,

where we are regarding ∆ for the moment as a set of points in S rather than pairs of
points. We know from Theorem 4.6.16 that ṽ1 extends smoothly over each boundary

3The remainder of this proof has been revised slightly from the original version, which contained
a gap resulting from an erroneous statement about boundary double points in Appendix B; the
same remark applies to Step 3 in the proof of the stable case for Theorem 5.3.1. Thanks to Kai
Cieliebak for pointing out the error.
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double point ζ ij ∈ ∆ ∩ ∂S1, and at each zj ∈ ∆ ∩ intS1 and wj ∈ N ∩ S1, ṽ1 either
has a removable singularity or is asymptotic to some periodic orbit of Xλ∞ .

Recall the compact surface S1 (with piecewise smooth boundary), obtained from
S1 \ ((∆∪N)∩S1) by replacing all interior double points zj and unpaired nodes wj
with “circles at infinity” δzj and δwj

, and replacing each boundary double point ζ ij
with an “arc at infinity” δζij (see Appendix B). Each component αj ⊂ ∂S1 then gives

rise to a piecewise smooth circular component ᾱj ⊂ ∂S1. There is a natural map
S1 → Sr, which is an inclusion except possibly on ∂S1, where two distinct circles
δzj or arcs δζij may have the same image; this corresponds to the identification of

double points in a pair. Since Sr is diffeomorphic to

Σ = C ∪ {∞} \ (D1 ∪ . . . ∪ Dm),

we can visualize Sr \{p} as the plane with a finite set of disks removed. An example
of this is shown in Figure 5.6. Here we settle on the convention that—unlike the
discussion of Σ in Chapter 4—the circles δzj are always oriented as components of
∂S1. Thus they appear as embedded loops winding clockwise in the plane, and
each encloses a bounded region which may contain some of the disks Di. Let mj

be the number of such disks enclosed by δzj . Similarly, for j = 1, . . . , s, denote
by m̂j the number of disks in the compact region enclosed by ᾱj ; this number is
always at least 1. Figure 5.6 shows a compact subset of Sr which contains the entire
boundary of S1. Here the closure of the white area is S1, and the lightly shaded
regions constitute the rest of Sr, while the darkly shaded regions are the disks Dj.

The integers defined above are related by

m = ℓ+

q∑

j=1

mj +

s∑

j=1

m̂j , (5.2.7)

and as remarked above,

m̂j ≥ 1 for all j = 1, . . . , s. (5.2.8)

There are also constraints imposed by the stability condition for each component of
S: the double of Ṡ1 must have negative Euler characteristic, thus

2(s+ q + ℓ) +
s∑

j=1

rj > 2, (5.2.9)

and applying similar reasoning to the portions of Sr inside the loops δzj , we have

mj ≥ 2 for all j = 1, . . . , q. (5.2.10)
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Figure 5.6: A compact subset of Sr showing the piecewise smooth boundary of
∂S1. Here we assume ∂S1 has four components α1, . . . , α4, S1 has one interior
double point ∆∩ intS1 = {z1}, seven boundary double points ∆∩α1 = {ζ11 , . . . , ζ41},
∆∩α2 = {ζ12 , ζ22}, ∆∩α3 = ∅, ∆∩α4 = {ζ14}, and one unpaired node N∩S1 = {w1}.
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We now transfer this picture onto Σ̇ via the diffeomorphism

ϕk : Sr \ {p} → Σ̇

for large k (see Figure 5.7). For j = 1, . . . , q, denote by ∂jΣ themj components of ∂Σ

that are enclosed within ϕk(δzj), and for j = 1, . . . , s let ∂̂jΣ be the m̂j components
in the closed region bounded by ϕk(ᾱj). Now for each component αj ⊂ ∂S1, we
define a perturbed loop α′

j ⊂ intS1 which misses the double points. The images

ϕk(α
′
j) ⊂ Σ̇ are represented as dotted loops in Figure 5.7; each encloses a bounded

region that contains ∂̂jΣ. Similarly, for each interior double point zj we choose a
perturbed loop Cj ⊂ intS1 near δzj , so ϕk(Cj) encloses ∂jΣ. Define also the loops

βj ⊂ int S1 as perturbations of δwj
for unpaired nodes wj ∈ N∩S1: thus each ϕk(βj)

encloses a unique connected component γg(j) ⊂ ∂Σ. Observe that ∂Σ is now the
disjoint union

∂Σ =

(
q⋃

j=1

∂jΣ

)
∪
(

s⋃

j=1

∂̂jΣ

)
∪
(

ℓ⋃

j=1

γg(j)

)
.

The images under ϕk of the various perturbed loops are shown with dotted lines in
Figure 5.7.

From this picture we can deduce some topological facts about the behavior of
v1 : Ṡ1 → S3 at its boundary and punctures. For a component αj ⊂ ∂S1, we have
v1(αj) ⊂ Lf(j) for some f(j) ∈ {1, . . . , m}, and we can assume uk ◦ ϕk(α′

j) is C0-
close to v1(αj). Then restricting uk to the bounded region inside ϕk(α

′
j) realizes a

homology
∂[uk] = −[uk ◦ ϕk(α′

j)] + [uk(∂̂jΣ)]

in both S3 \ P∞ and S3 \K. This implies

lk(uk ◦ ϕk(α′
j), P∞) = lk(uk(∂̂jΣ), P∞) = 0,

and thus
lk(v1(αj), P∞) = 0. (5.2.11)

This means v1(αj) covers a meridian on Lf(j), and its homotopy class can be deduced
exactly via the linking number with K:

lk(v1(αj), K) = lk(uk ◦ ϕk(α′
j), K) = lk(uk(∂̂jΣ), K) = −m̂j .

Since v1(αj) is only linked with one component of K,

lk(v1(αj), Kf(j)) = −m̂j . (5.2.12)
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Figure 5.7: The image of Figure 5.6 under ϕk : Sr \{p} → Σ̇, showing the perturbed
loops α′

1, . . . , α
′
4, β1 and C1 as dotted lines.
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Turning our attention next to the unpaired nodes, let us assume there is a simply
covered orbit Pj ⊂ S3 of Xλ∞ such that ṽ1 is asymptotic to an |nj |-fold cover of
Pj at wj ∈ N ∩ S1, for some nj ∈ Z. Here we adopt the convention that the sign
of nj matches the sign of the puncture at wj , and we set nj = 0 if the puncture is
removable (in which case it doesn’t matter what Pj is). Now, restricting uk to the
region between γg(j) and ϕk(βj), we have a homology

∂[uk] = [uk(γg(j))]− [uk ◦ ϕk(βj)],

in both S3\P∞ and S3\K, and we can assume [uk ◦ϕk(βj)] is homologous to nj[Pj ].
Thus for every component Ki ⊂ K,

nj lk(Pj, Ki) = lk(uk(γg(j)), Ki). (5.2.13)

Adding these up for all components of K, we find

nj lk(Pj, K) = −1,

implying that the puncture is nonremovable and the orbit is simply covered. If
Pj = P∞ this gives njm = −1, which cannot be true since m ≥ 2 by assumption.
Thus Pj is geometrically distinct from P∞, and using the homology in S3 \ P∞, we
have nj lk(Pj, P∞) = lk(uk(γg(j)), P∞) = 0, implying

lk(Pj, P∞) = 0. (5.2.14)

We can reach similar conclusions about the behavior of ṽ1 at an interior double
point zj ∈ ∆ ∩ intS1. Using the same convention as above, assume v1 approaches
an |n′

j |-fold cover of some simply covered orbit P ′
j at zj . Then we may assume

[uk ◦ϕk(Cj)] is homologous to n′
j [P

′
j ], and by restricting uk over the bounded region

inside ϕk(Cj),
∂[uk] = [uk(∂jΣ)]− [uk ◦ ϕk(Cj)]

in both S3 \K and S3 \ P∞. This implies for all components Ki ⊂ K,

n′
j lk(P

′
j, Ki) = lk(uk(∂jΣ), Ki), (5.2.15)

and summing this over the components of K, we have

n′
j lk(P

′
j , K) = −mj ≤ −2,

so n′
j cannot be zero, i.e. the puncture is not removable. If P ′

j = P∞, we have
n′
jm = −mj , then mj ≤ m implies n′

j = −1 and m = mj . But this contradicts the
stability assumption; indeed, combining (5.2.8), (5.2.10) and (5.2.7), we find q = 1
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and s = ℓ = 0, violating (5.2.9). Therefore P ′
j is geometrically distinct from P∞,

and the homology in S3 \ P∞ gives n′
j lk(P

′
j, P∞) = lk(uk(∂jΣ), P∞) = 0, thus

lk(P ′
j, P∞) = 0. (5.2.16)

At this point all the vital ingredients are in place.
Claim: N ∩S1 and ∆∩S1 are empty. If wj ∈ N ∩S1, then v

1 is asymptotic to a
periodic orbit Pj which is geometrically distinct from P∞, and is also unlinked with
it, by (5.2.14). But we have assumed there is no such orbit, therefore N ∩ S1 = ∅.
The same argument proves ∆ ∩ intS1 = ∅, using (5.2.16).

It remains only to exclude double points on the boundary. We now can assume
that ∂S1 6= ∅ and the only puncture of ṽ1 is at p, where it is positively asymptotic to
P∞. By assumption, there is a trivialization Φ∞ of (v1)∗ξ∞|M for which µΦ∞

CZ (P∞) =
3 and, using (5.2.12) and the fact that v1(αj) covers a meridian for each component
αj ⊂ ∂S1, the Maslov index along αj is 2 lk(v1(αj), Kf(j)) = −2m̂j . Thus we
compute

µ(ṽ1) = 3− 2

s∑

j=1

m̂j .

The contact area of ṽ1 is clearly nonzero since v1(∂S1) and the image of v1 near p
cannot belong to the same Reeb orbit. Thus πTv1 is not identically zero, and the
windπ estimate of Theorem 4.3.7 gives

0 ≤ 2windπ(ṽ
1) ≤ µ(ṽ1)− 2χ(S1) + 2(#Γ0) + #Γ1

= 3− 2
s∑

j=1

m̂j − 2(2− s) + 1 = −2
s∑

j=1

m̂j + 2s = 2
s∑

j=1

(1− m̂j) .

Since m̂j ≥ 1 for all j, the right hand side of this expression is never positive, and
is zero if and only if m̂j = 1 for all j. This excludes situations such as ᾱ1 and ᾱ2 in
Figure 5.6, where double points give rise to arcs that connect two distinct disks. All
the arcs in δζij ⊂ ∂S1 must therefore begin and end on the same circle, enclosing a

region of the plane as with ᾱ4 in the figure. But now the stability condition requires
this enclosed region to have negative Euler characteristic after doubling, which can
only be true if it contains at least one disk, contradicting the fact that m̂j = 1. We
conclude that there are no such arcs δζij , and hence no double points ζ ij ∈ ∆ ∩ ∂S1.

It follows now that S has no double points or unpaired nodes at all, thus the con-
vergence (Σ, jk, {∞}) → (S, j, {p},∆, N) simply means there are diffeomorphisms
ϕk : S → Σ such that ϕk(p) =∞ and ϕ∗

kjk → j in C∞(S). Then after R-translation,
ũk ◦ ϕk → ṽ1 in C∞

loc(S \ {p},R× S3), and ṽ1 has the same asymptotic limit as ũk.
This completes the proof of Prop. 5.2.7, as well as Theorem 5.2.2.
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5.3 Noncompactness: boundary → puncture

We shall see now what happens to the sequence ũk : Σ̇→ R× S3 when the contact
form is twisted to the point where “horizontal” orbits appear on the tori Lj . This will
prevent the compactness result of Theorem 5.2.2, instead forcing each component
of ∂Σ to degenerate to a new puncture. Thus we obtain in the limit a finite energy
surface without boundary.

Theorem 5.3.1. Assume ũk, λk and Jk are exactly as in the assumptions of The-
orem 5.2.2 for k < ∞, and ∂Σ has m > 0 connected components. For k = ∞ we
alter the assumptions on the contact form as follows:

• Any periodic orbit of Xλ∞ in (intM) \ P∞ satisfies lk(P, P∞) 6= 0. However,
the tori Lj ⊂ ∂M are simple Morse-Bott manifolds with respect to λ∞, foliated
by periodic orbits P with lk(P, P∞) = 0 and lk(P,Kj) = −1.

Then there is a finite set Γ′ ⊂ C with #Γ′ = m, a sequence of numbers ck ∈
R and diffeomorphisms ϕk : S2 \ Γ′ → int Σ that fix ∞, such that ϕ∗

kjk → i in
C∞

loc(S
2 \Γ′), the translations (ak + ck, uk) are solutions of (BP), and a subsequence

of (ak + ck, uk) ◦ ϕk converges in C∞
loc(C \ Γ′,R × S3) to a J̃∞-holomorphic finite

energy surface
ũ∞ : S2 \ ({∞} ∪ Γ′)→ R× S3.

All the punctures of ũ∞ are positive, the asymptotic limit at ∞ ∈ S2 is P∞, and
for each component γj ⊂ ∂Σ there is a corresponding puncture zj ∈ Γ′ such that the
asymptotic limit at zj is a simply covered orbit on Lj.

The proof includes most of the same arguments that were used to prove Theo-
rem 5.2.2, so we will not repeat these in any detail, but rather emphasize the aspects
that are different in this situation. As before, it’s convenient to treat the stable and
non-stable cases separately.

Proof in the non-stable case

Since we assumed ∂Σ is nonempty, (Σ, jk, {∞}) is necessarily stable unless ∂Σ has
only one component. Thus for now, assume (Σ̇, jk) = (C \D, i) where D = intD. It
will be convenient to use the biholomorphic map

ψ : R× S1 → C \ {0} : (s, t) 7→ e2π(s+it)

and consider the sequence of J̃k-holomorphic half-cylinders

ṽk = (bk, vk) = ũk ◦ ψ : [0,∞)× S1 → R× S3,
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with vk({s}×S1)→ P∞ as s→∞. We claim |∇ṽk| is uniformly bounded. The proof
is almost identical to what was done in Prop. 5.2.6: a sequence zk with |∇ṽk(zk)| →
∞ gives rise to a non-constant finite energy plane or disk. A disk is impossible
for the same reasons as before: its boundary would have to be contractible on L,
leading to the conclusion that the map is constant. A plane cannot be asymptotic
to any cover of P∞ or any orbit that is linked with it. The only new feature is that
a priori the plane could be asymptotic to one of the orbits on L, but this would
imply that vk intersects K for large k, and is thus also excluded.

Suppose P∞ has period T and the orbits of Xλ∞ on L have period T ′. Then
using Stokes’ theorem and the fact that dλk vanishes on TL,

Aλk(ṽk) =
∫

[0,∞)×S1

v∗kdλk = T −
∫

{0}×S1

v∗kλk → T − (−T ′) = T + T ′

as k → ∞. Here we’ve used the fact that vk({0} × S1) is homotopic to the peri-
odic orbits on L, with reversed orientation. Then for sufficiently large k there is a
sequence sk ∈ (0,∞) such that

∫

[0,sk]×S1

v∗kdλk =
T ′

2
.

We claim that sk → ∞. Otherwise, there is a subsequence for which sk → s∞ ∈
[0,∞) and (in light of the gradient bound), there are real numbers ck such that
(bk + ck, vk) is C

∞
loc-convergent to a J̃∞-holomorphic half-cylinder

ṽ = (b, v) : [0,∞)× S1 → R× S3

with finite energy. Then

Aλ∞(ṽ) =

∫

[0,∞)×S1

v∗dλ∞ ≥
∫

[0,s∞]×S1

v∗dλ∞ = lim
k

∫

[0,sk]×S1

v∗kdλk

=
T ′

2
> 0,

and thus πTv is not identically zero. From this and the windπ estimate of Theo-
rem 4.3.7, we deduce windπ(ṽ) = 0, so v : [0,∞)×S1 → S3 is everywhere transverse
to Xλ∞ . But this is impossible at the boundary, since both v({0} × S1) and the
Reeb orbits on L are meridians. This proves the claim.

Now define a new sequence

w̃k = (βk, wk) : [−sk,∞)× S1 → R× S3
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by w̃k(s, t) = ṽk(s+sk, t). Then a subsequence of (βk+ck, wk) converges in C
∞
loc(R×

S1,R× S3) to a J̃∞-holomorphic finite energy cylinder

w̃∞ = (β∞, w∞) : R× S1 → R× S3.

It cannot be a constant map, since
∫

{0}×S1

w∗
∞λ∞ = lim

k

∫

{0}×S1

w∗
kλk = lim

k

∫

{sk}×S1

v∗kλk

= lim
k

∫

{0}×S1

v∗kλk + lim
k

∫

[0,sk]×S1

v∗kdλk

= −T ′ +
T ′

2
= −T

′

2
< 0.

(5.3.1)

Since there are no non-constant holomorphic spheres, at least one of the punctures
must be nonremovable; we claim that they both are. Otherwise, we could define
a smooth map of a disk into S3 \ K sending the boundary to P∞, implying the
contradiction lk(P∞, K) = 0. Denote w∞({±∞} × S1) = P±. Then there are real
numbers s− near −∞ and s+ near +∞ such that for some large k, vk({sk+s±}×S1)
is close to P±, and since vk({s} × S1)→ P∞ as s→∞,

lk(P±, K) = lk(P∞, K).

If P± is geometrically distinct from P∞, then we have also

lk(P±, P∞) = 0,

since vk : [0,∞) × S1 → S3 \ P∞ can be glued along {0} × S1 to a disk contained
in N . These two relations imply that each orbit P± either is P∞ or is contained in
L, simply covered in either case. We can determine the sign of each puncture by
comparing the orientations of w∞({±∞} × S1) with the orientations of the orbits.
There are four possibilities:

(i) P+ = P∞ (positive puncture) and P− = P∞ (negative puncture)

(ii) P+ ⊂ L (negative puncture) and P− ⊂ L (positive puncture)

(iii) P+ = P∞ (positive puncture) and P− ⊂ L (positive puncture)

(iv) P+ ⊂ L (negative puncture) and P− = P∞ (negative puncture)

Case (iv) is immediately excluded because both punctures can’t be negative. In
cases (i) and (ii), Aλ∞(w̃∞) = 0, so w∗

∞dλ∞ ≡ 0 and we use Stokes’ theorem to
compute ∫

{0}×S1

w∗
∞λ∞ = lim

s→∞

∫

{s}×S1

w∗
∞λ∞ = T or −T ′,
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contradicting (5.3.1). We conclude that both punctures are positive, with P+ = P∞

and P− ⊂ L.
To apply this result to the sequence ũk, define a sequence of diffeomorphisms

ϕk : C \ {0} → C \ D
such that ϕk(z) = e2πskz for all z ∈ C \ {0} with |z| ≥ 2e−2πsk . Then observe
that w̃k ◦ ψ−1(z) = ũk ◦ ϕk(z) whenever |z| ≥ 2e−2πsk , thus after R-translation, a
subsequence of ũ ◦ ϕk converges in C∞

loc(C \ {0},R× S3) to

ũ∞ = w̃∞ ◦ ψ−1 : C \ {0} → R× S3,

which is asymptotic to P∞ at ∞ and an orbit on L at 0. Clearly also ϕ∗
ki → i in

C∞
loc(S

2 \ {0}). We have thus proved Theorem 5.3.1 for the case χ(Σ̇) ≥ 0.

Proof in the stable case

Now assume χ(Σ̇) < 0. To prove the theorem in this case, we’ll follow roughly the
same sequence of steps as in Theorem 5.2.2, with a few important differences.

Step 1: Gradient bounds

We begin by establishing a bound

|dũk(z)|k ≤
C

injradhk(z)
,

where hk is the Poincaré metric for (Σ̇, jk) and the norm is defined in terms of
this metric and an R-invariant metric g̃ on R × S3 (see Sec. 5.2.1). The proof is
mostly the same as in Prop. 5.2.3. If a finite energy plane bubbles off, then it is
asymptotic to an orbit P which (for topological reasons) cannot be a cover of P∞,
and lk(P, P∞) = 0. The only remaining alternative (which is new in this situation)
is that P is a meridian on one of the tori Lj , but this would imply lk(P,Kj) 6= 0, so
uk(Σ̇) would have to intersect Kj for some large k.

If a disk bubbles off, then the usual linking arguments show that its boundary
is contractible on Lj , leading to a contradiction.

To prepare for the next step, we note that a subsequence of (Σ, jk, {∞}) con-
verges (in the sense of Appendix B) to a stable nodal surface S = (S, j, {p},∆, N).
Thus there is a decoration r and a sequence of diffeomorphisms ϕk : Sr → Σ such
that ϕ∗

kjk → jS in C∞
loc(Sr \ Θ∆,N), where jS is the singular conformal structure

defined on Sr by j and the natural inclusion

S \ (∆ ∪N) →֒ Sr.
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As before we label connected components by S = S1∪ . . .∪Sn and Ṡ = Ṡ1∪ . . .∪ Ṡn,
choosing the labels so that p ∈ S1. Then each Ṡj is naturally included in Sr, and
ϕ∗
kjk → j in C∞

loc(Ṡj). The gradient bound above then implies that we can find
constants cjk ∈ R such that

(ak + cjk, uk) ◦ ϕk|Ṡj
→ ṽj : Ṡj → R× S3

in C∞
loc(Ṡj,R× S3), where T ṽj ◦ j = J̃∞ ◦ T ṽj. Our main goal will be to show that

S has no double points and no boundary, but does have m unpaired nodes, one
corresponding to each component of ∂Σ.

Step 2: Asymptotic behavior at p

The same arguments as in Prop. 5.2.7 show that p is a nonremovable puncture for
ṽ1 : Ṡ1 → R × S3, and if P is an asymptotic limit then either P = P∞ (simply
covered) or P is geometrically distinct from P∞, with lk(P, P∞) = 0. In the present
context this last possibility implies that P is an n-fold cover of an orbit P1 on one of
the tori Li, with lk(P,Ki) = n · lk(P1, Ki) = −n. (As always, n 6= 0 and is negative
if the puncture is negative.) Then we can choose a small circle C about p such that
uk(ϕk(C)) is close to P for some large k, and thus construct a homotopy from P to
P∞ through S3 \K, implying

lk(P,Kj) = lk(P∞, Kj) > 0

for each component Kj ⊂ K. The left hand side is 0 if Kj 6= Ki, so this alternative
can only happen if K is connected: in that case −n = lk(P∞, K) = m, so p is a
negative puncture and P is an m-fold cover of P1. We shall use arguments similar
to the proof of the non-stable case to show that this is also impossible.

Identify a punctured neighborhood of p in Ṡ1 with the positive half-cylinder via
a holomorphic embedding

ψ : [0,∞)× S1 →֒ S1 \ {p},

and define w̃k = (βk, wk) = ũk ◦ ϕk ◦ ψ : [0,∞) × S1 → R × S3. Due to the
asymptotic behavior of ṽ1, there exists a sequence sk → ∞ such that wk(sk, t)
converges in C∞(S1, S3) to x(−mt) where x : R→ S3 is the periodic orbit P1 with
period T1 > 0. Let Ak ⊂ Σ̇ be the compact subset bounded by ϕk ◦ ψ({sk} × S1).
Then as k →∞, Stokes’ theorem implies

∫

Ak

u∗kdλk =

∫

{sk}×S1

w∗
kλk +

∫

∂Σ

u∗kdλk → −mT1 −
∑

γj⊂∂Σ

T1 = 0. (5.3.2)
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On the other hand, a similar calculation shows

∫

Σ̇

u∗kdλk = T +

∫

∂Σ

u∗kdλk → T +mT1 > 0, (5.3.3)

where T is the period of P∞. This indicates that all contact area is being absorbed
toward the puncture as k → ∞, so another holomorphic curve is bubbling off. To
see this, choose s′k > sk so that if A′

k ⊂ Σ̇ is the compact subset bounded by
ϕk ◦ ψ({s′k} × S1) then ∫

A′
k

u∗kdλk =
T1
2
,

which is possible due to (5.3.2) and (5.3.3). Now let Fk : [−s′k,∞)×S1 → [0,∞)×S1

be the translations Fk(s, t) = (s+ s′k, t) and define a new sequence

w̃′
k = (β ′

k, w
′
k) = w̃k ◦ Fk : [−s′k,∞)× S1 → R× S3.

Since ϕ∗
kjk → j in C∞ on any compact neighborhood of p, we have (ϕk ◦ ψ)∗jk → i

in C∞([0,∞) × S1) (not just on compact subsets); this follows from Lemma 5.3.2
below. Thus F ∗

k (ϕk◦ψ)∗jk → i in C∞
loc(R×S1). By the usual linking arguments, there

is a uniform bound for |∇w̃k|, and thus also for |∇w̃′
k|. Then there are constants

ck ∈ R such that a subsequence of (β ′
k + ck, w

′
k) converges in C∞

loc(R × S1,R × S3)
to a J̃∞-holomorphic finite energy cylinder

w̃ = (β, w) : R× S1 → R× S3.

We compute

∫

{0}×S1

w∗λ∞ = lim
k

∫

{0}×S1

(w′
k)

∗λk = lim
k

∫

{s′
k
}×S1

w∗
kλk

= lim
k

∫

A′
k

u∗kdλk − lim
k

∫

∂Σ

u∗kλk =

(
1

2
−m

)
T1 < 0, (5.3.4)

thus w̃ is not constant. For the asymptotic limits, the same linking arguments as
in the proof of the non-stable case give four alternatives, and we argue in the same
way that w(R× S1) is not contained in either P∞ or P1. Thus both punctures are
positive, with asymptotic limits P∞ at s =∞ and an m-fold cover of P1 at s = −∞.

Recall now from Sec. 4.2.3 that there is a natural trivialization Ψ of ξ∞ along
P1 ⊂ L defined by the intersection TL∩ ξ∞. Since πTw does not vanish identically,
it’s asymptotic behavior at s = −∞ is described by a nonzero eigenfunction of
the asymptotic operator. We claim that this eigenfunction has winding number 0
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with respect to Ψ; otherwise we could find s0 near −∞ such that for large k,
the loop uk ◦ ϕk ◦ ψ(s0, t) winds around P1, and must therefore intersect L, which
is a contradiction. Then Theorem 4.2.14 implies that L is a positive Morse-Bott
manifold, and by Prop. 4.2.12, µΨ,−

CZ (P1) = 1. We also are given a trivialization Φ∞

of ξ∞|M , in which µΦ∞
CZ (P∞) = 3 and windΦ∞

P1
(Ψ) = −m, thus µΦ∞,−

CZ (P1) = 1 − 2m.
So µCZ(w̃) = 3 + 1− 2m = 4− 2m, and the windπ estimate of Theorem 4.3.7 gives

0 ≤ 2windπ(w̃) ≤ µ(w̃)− 2χ(S2) + 2(#Γ0) + #Γ1

= 4− 2m− 4 + 2 = 2(1−m).

But we’ve assumed m ≥ 2, so this is a contradiction.
We’re left with the alternative that ṽ1 is positively asymptotic to P∞ at the

marked point p.
Before moving on, we should note the following lemma, which was used in the

argument above to prove C∞-convergence on the noncompact set [0,∞)× S1.

Lemma 5.3.2. Let Ak : D → End(TD) be a sequence of smooth sections of the
tensor bundle End(TD)→ D such that Ak → 0 in C∞(D). Then if ψ : [0,∞)×S1→
D\{0} is the biholomorphic map ψ(s, t) = e−2π(s+it), the tensors ψ∗Ak on [0,∞)×S1

converge uniformly to 0 with all derivatives.

Proof. Define the Euclidean metric on both D and [0,∞)× S1, and use the natural
coordinates on each to write sections of End(TD) or End(T ([0,∞)×S1)) as smooth
real 2-by-2 matrix valued functions. If ψ(s, t) = z, then the first derivative of ψ at
(s, t) and its inverse can be written as

Dψ(s, t) = −2πe−2π(s+it) = −2πz,

Dψ−1(z) = − 1

2πz
= − 1

2π
e2π(s+it),

(5.3.5)

using the natural inclusion of C in the space of real 2-by-2 matrices. Then

(ψ∗Ak)(s, t) = Dψ−1(z) ◦ Ak(z) ◦Dψ(s, t) = e2πitAk(z)e
−2πit,

so ‖ψ∗Ak‖C0 = ‖Ak‖C0 → 0 since the matrices on either side of Ak(z) are orthogonal.
We obtain convergence for all derivatives by observing that for any multiindex α,
∂α(ψ∗Ak)(s, t) is a finite sum of expressions of the form

c · U · e2πit ·DjAk(z)(z, . . . , z) · e−2πit · V
where c is a real constant, U and V are constant unitary matrices (i.e. complex
numbers of modulus 1), and j ≤ |α|. This is clearly true for |α| = 0 and follows
easily for all α by induction, using (5.3.5). The norm of this expression clearly goes
to 0 uniformly in (s, t) as k →∞.
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Step 3: Degeneration of jk

Most of the hard work for this step was done in the proof of Prop. 5.2.7; in particular,
the discussion surrounding Figures 5.6 and 5.7 applies in the present situation as
well.4 The main difference here is that, since there are now orbits that are unlinked
with P∞, it is not so trivial to exclude interior double points. Unpaired nodes, of
course, will not be excluded at all; they will replace the boundary.

Claim: ∆ ∩ S1 is empty. This will follow from similar algebraic relations to
the ones that were previously used only to exclude boundary double points. At any
component αj ⊂ ∂S1, the homotopy class of v1(αj) in Lf(j) is fully determined by
(5.2.12), giving the Maslov index −2m̂j with respect to the given trivialization Φ∞

of ξ∞|M .
The behavior at an unpaired node wj ∈ N ∩ S1 is similarly constrained: by

(5.2.14), the asymptotic limit Pj can only be one of the Morse-Bott orbits on some
torus Li. Then (5.2.13) tells us the torus in question must be Lg(j), and since
lk(Pj, Kg(j)) = −1, the covering number nj = 1. So wj is a positive puncture, and
repeating the argument from Step 2, the asymptotic approach to Pj is described by
an eigenfunction with zero winding relative to the natural framing determined by
TLg(j) ∩ ξ∞. Prop. 4.2.12 and Theorem 4.2.14 then give Conley-Zehnder index 1
with respect to this framing. The framing itself has winding number −1 along Pj
with respect to the trivialization Φ∞, which changes the Conley-Zehnder index to
−2 + 1 = −1.

Likewise at an interior double point zj ∈ ∆∩ intS1, the asymptotic limit P ′
j must

belong to a Morse-Bott torus, and summing (5.2.15) over all components Ki ⊂ K
we have

−n′
j = n′

j lk(P
′
j , K) = lk(uk(∂jΣ), K) = −mj ,

so zj is a positive puncture with covering number mj . The Conley-Zehnder index
with respect to the natural framing on the torus is again 1, but now the framing
winds −mj times with respect to Φ∞, giving index −2mj + 1.

We now compute the generalized Maslov index

µ(ṽ1) = 3 + ℓ(−1) +
q∑

j=1

(1− 2mj)− 2
s∑

j=1

m̂j = 3− ℓ + q − 2

(
q∑

j=1

mj +
s∑

j=1

m̂j

)
.

We can assume that at least one of the sets ∂S1, N ∩S1 and ∆∩ intS1 is nonempty,
in which case v1 approaches one of the tori Li somewhere, while approaching P∞ at
the marked point p. It follows that the image of v1 is not contained in any single

4As in the proof of Prop. 5.2.7, the original version of this argument contained a gap that has
been fixed in the revision.
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periodic orbit, so ṽ1 has nonvanishing contact area and πTv1 is not identically zero.
Thus Theorem 4.3.7 gives

0 ≤ 2windπ(ṽ
1) ≤ µ(ṽ1)− 2χ(S1) + 2(#Γ0) + #Γ1

= 3− ℓ+ q − 2

(
q∑

j=1

mj +

s∑

j=1

m̂j

)
− 2(2− s) + 1 + ℓ+ q

= 2

(
q∑

j=1

(1−mj) +
s∑

j=1

(1− m̂j)

)
. (5.3.6)

Recalling that always mj ≥ 2 and m̂j ≥ 1, we conclude q = 0 and m̂j = 1 for each j,
so ∆∩ intS1 is empty, and by the same argument as in the proof of Theorem 5.2.2,
so is ∆ ∩ ∂S1.

Claim: ∂S1 = ∅ and #N = m. We’ve now established that S can have only
one connected component (there are no double points to connect S1 with anything
else), thus Sr = S1

∼= Σ, and m = s+ℓ. We need to prove s = 0. Having just shown
that everything on the right hand side of (5.3.6) vanishes, we have windπ(ṽ

1) = 0,
so v : Ṡ1 → S3 is immersed and transverse to Xλ∞ . But if ∂S1 6= ∅ this cannot be
true, because v1(∂S1) and all orbits of Xλ∞ on Lj are meridians.

By the above results, S is a sphere with one marked point p and unpaired nodes
N = {w1, . . . , wm} ⊂ S\{p}, so we can identify it holomorphically with the Riemann
sphere (S2, i), setting ∞ := p and Γ′ := N . The diffeomorphisms ϕk : Sr → Σ
preserve ∞, and restricting them to the interior they define diffeomorphisms

ϕk : S \ Γ′ → int Σ,

with ϕ∗
kjk → i in C∞

loc(S \ Γ′). Moreover, after R-translation, ũk ◦ ϕk → ṽ1 in
C∞

loc(S \ ({∞}∪ Γ′),R× S3), and ṽ1 has precisely the required asymptotic behavior
at the punctures ∞ and wj ∈ Γ′. This concludes the proof of Theorem 5.3.1.
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Chapter 6

Sketch of a Floer-Type Theory for

Foliations

6.1 Algebraization

In this chapter we resume discussion of the homotopy theory of finite energy foli-
ations that was mentioned in the introduction. Since most of this theory is yet to
be developed, the discussion will be of a speculative nature: conjectures and plausi-
bility arguments take the place of theorems and proofs, and some of the definitions
may be deliberately vague. The intention is merely to sketch an intuitive picture of
what such a theory should look like, as motivation for future study. We can make
use of some of the foliations that were constructed in previous chapters to provide
concrete examples and motivate conjectures.

It was suggested by Hofer in [H00] that the theory of finite energy foliations and
its connection to symplectic field theory might yield powerful tools for the study
of three-manifolds. One potential starting point for this idea is to define SFT-type
algebraic objects that encode the data of a foliation. It’s clear from looking at any
of the pictures of stable foliations in Chapters 1 and 3 that such an “algebraization”
should be possible: the degeneration of index 2 families to broken index 1 leaves in
these pictures is precisely the kind of behavior that makes theories such as Floer
homology possible. We will now set about defining a simple version of such a theory.

Let (M,λ) be a closed contact 3-manifold with an admissible complex multipli-
cation J : ξ → ξ, admitting a stable spherical finite energy foliation F . We denote
by PF ⊂ M the union of all asymptotic orbits occurring in F . It will be convenient
for the purposes of this sketch to make the following simplifying assumptions:

1. All asymptotic orbits for leaves of F are simply covered.
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2. For each leaf ũ ∈ F , different punctures always have different asymptotic
limits.

3. H1(M) is torsion free.

Note that all of the Morse-Bott foliations we’ve constructed have the first two prop-
erties, and one can assume without loss of generality that their nondegenerate per-
turbations do as well. (In some cases it may require increasing the number of orbits
on each perturbed Morse-Bott torus in order to ensure that distinct punctures go
to distinct orbits.)

In general contact topology, the Floer-type invariants constructed from moduli
spaces of punctured holomorphic spheres in symplectizations fall under the heading
of rational symplectic field theory (see [EGH00]). The idea is to define a homology
theory which encodes the degeneration of index 2 punctured holomorphic spheres
as a graded Poisson superalgebra HRSFT

∗ (M,λ, J). Since the theory of foliations
discussed here deals exclusively with leaves of genus 0, it seems natural to define an
analogous algebra HRSFT

∗ (F) using only the components of the moduli space that
are present in the foliation.

Following [EGH00], we must first make some choices in order to define the grad-
ing. Using the assumption that H1(M) has no torsion, we choose a finite set of
embedded oriented circles Cj ⊂ M that generate a basis of H1(M), and for each
orbit γ ⊂ PF , choose a surface Fγ ⊂M representing a singular chain [Fγ ] such that

∂[Fγ ] = [γ]−
∑

j

nj[Cj ]

for a unique set of integers nj ∈ Z. For any leaf ũ ∈ F , one can then piece
together the chain [ũ] with the chains [Fγ ] for each of its asymptotic limits, forming
a homology cycle, also denoted by [ũ] ∈ H2(M). Choose trivializations of ξ along
the circles Cj and extend them over the surfaces Fγ . This gives trivializations of ξ
along each nondegenerate orbit γ, with which we can define Conley-Zehnder indices
µCZ(γ). We will consider an algebra generated by objects qγ and pγ associated with
each orbit γ ⊂ PF . These are assigned integer degrees

|qγ| = µCZ(γ)− 1, |pγ| = −µCZ(γ)− 1.

Each orbit thus inherits a parity |γ| ∈ Z2, which doesn’t depend on any choices;
note that it is the opposite of the even/odd parity defined by µCZ(γ). The integer
grading depends somewhat on the choices of Cj and Fγ. One can show however that
the relative grading for homologous orbits is well defined, and for the case [γ] = 0 ∈
H1(M) the grading is absolute. Indeed, |qγ | can then be interpreted as the Fredholm
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index of any finite energy plane ũ asymptotic to γ with [ũ] = 0 ∈ H2(M). (One
needn’t assume that such a thing exists—the index can be calculated regardless!)

Denote by Q[H2(M)] the group algebra of H2(M) with rational coefficients: this
is the rational vector space with generators of the form tA for A ∈ H2(M), where we
assume tA and tB are linearly independent if A 6= B, and there is a multiplication
law of the form tAtB = tA+B. We define on Q[H2(M)] the integer grading

|tA| = −2〈c1(ξ), A〉.

Now let P be the free Z-graded commutative superalgebra with unit, generated by
pγ and qγ for all γ ∈ PF , with coefficients in Q[H2(M)]. The prefix “super-” refers
here to the convention that any two elements of odd degree anticommute, whereas
they commute if one of the elements is even. We think of P informally as a space
of functions on a symplectic supermanifold (the “phase space” with coordinates
(qγ , pγ)), and as such there is a super-Poisson bracket defined by

{F,G} =
∑

γ

(−1)(|F |+1)|γ|

(
∂F

∂pγ

∂G

∂qγ
− (−1)|γ| ∂F

∂qγ

∂G

∂pγ

)

for F,G ∈ P. This is not the place to discuss signs in any detail, except to mention
that one must take care in defining the partial derivatives with respect to odd
variables. For a coherent approach to such matters, the recent book by Varadarajan
[V04] is recommended.

The foliation F defines a “Hamiltonian function” h ∈ P as follows. Associate
with every rigid surface ũ ∈ F the monomial

qP−
1
. . . qP−

r
pP+

1
. . . pP+

s
tA

where P±
j are the positive/negative asymptotic limits of ũ and A = [ũ] ∈ H2(M).

(Note: we’re using the assumption that all orbits are simply covered. Otherwise
this expression would need some rational factors, which is why we use Q instead of
Z for coefficients.) We define h to be the sum of these monomials for every rigid
surface in F , with appropriate signs corresponding to a choice of coherent orien-
tations (cf. Sec. 1.8 of [EGH00], or [BoM03]). One can deduce from the Fredholm
index formula that h is a homogeneous element of odd degree. Observe that in
this supersymmetric setting, Poisson brackets of two odd elements commute, so the
following is not obvious:

Conjecture 6.1.1. {h,h} = 0.

As in the general version of RSFT, this should follow from a combination of
compactness and gluing theorems: the idea is to interpret the expression {h,h} as
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an algebraic count of the components in the boundary of the moduli space of index 2
leaves in F . For compactness, one must prove not only that index 2 families of leaves
degenerate to broken index 1 curves, but also that both curves in such a limit are
also leaves of the foliation. The gluing theorem would then say that any two rigid
surfaces that connect at a single orbit can be glued into a family of index 2 curves
which also belong to the foliation. Both results should follow from the intersection
theory of finite energy surfaces.

One can now define a differential on P by dhg = {h, g}, and it follows from
the super-Jacobi identity that (dh)2 = 0. Thus we can define a Z-graded homology
algebra

HRSFT
∗ (F) = H∗(P, d

h),

which inherits the Poisson bracket from P.
One nice thing about a foliation is that it gives a very concrete picture of the

moduli space of rigid surfaces, which ought to make HRSFT
∗ (F) somewhat easier to

compute than the analogous object in general SFT. That said, it’s still hard. We
therefore consider various simplified versions, such as a contact homology algebra
HC∗(F), and in some cases also cylindrical contact homology groups HCc

∗(F).
The contact homology HC∗(F) is defined by counting rigid surfaces that have

only one positive puncture and an arbitrary number of negative punctures. We
define CC∗(F) to be the free commutative superalgebra over Q[H2(M)] with unit,
generated by the objects qγ for γ ⊂ PF . Then a differential ∂ : CC∗(F)→ CC∗(F)
of degree −1 is defined by

∂qγ =
∑

nA,α1,...,αs
γ qα1 . . . qαst

A

where nA,α1,...,αs
γ is an algebraic count (allowing for coherent orientations) of rigid

surfaces ũ ∈ F with [ũ] = A ∈ H2(M), having a positive puncture at γ, negative
punctures at α1, . . . , αs, and no other punctures. (Again, this formula would be
more complicated if there were multiply covered orbits.) The sum includes the case
with no negative punctures, for which the monomial qα1 . . . qαs becomes the unit
element. Extending ∂ to the whole algebra by a supersymmetric Leibnitz rule, the
same compactness and gluing results mentioned above should imply:

Conjecture 6.1.2. ∂2 = 0.

The homology of the chain complex (CC∗(F), ∂) defines a foliation contact ho-
mology algebra HC∗(F). As an abelian group, it splits into summands,

HC∗(F) =
⊕

h∈H1(M)

HC∗(F|h),
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where HC∗(F|h) is the homology of the complex CC∗(F|h) containing all monomials
qα1 . . . qαs such that [α1] + . . . + [αs] = h ∈ H1(M). The summand HC∗(F|0) is a
subalgebra on which the integer grading is absolute; other summands are modules
over HC∗(F|0) with only a relative integer grading (it is absolute mod 2).

Cylindrical contact homology should be well defined if the foliation contains no
rigid planes. Then for a given free homotopy class h ∈ [S1,M ], we define CCc

∗(F|h)
to be the free module over Q[H2(M)] generated by elements qγ for γ ⊂ PF with
[γ] = h. The differential ∂ : CCc

∗(F|h) → CCc
∗(F|h) counts rigid cylinders in F .

One expects ∂2 = 0 if there are no rigid planes, since this prevents families of index 2
cylinders from degenerating into anything other than broken cylinders.

6.2 Functoriality

In Sec. 1.5 we mentioned the notion of a concordance of foliations. The idea is es-
sentially as follows: let (M, ξ) be a contact manifold with two contact forms λ± such
that λ+ = fλ− for some smooth function f > 1, and pick two admissible complex
multiplications J± : ξ → ξ. This data defines two almost complex structures J̃± on
R ×M . Choose a number a0 > 0 and a smooth nondecreasing family of functions
fa for a ∈ R which equals 1 for a ≤ −a0 and f for f ≥ a0, and define a smooth
family of contact forms λa = faλ−, interpolating between λ− and λ+. Then we can
find an almost complex structure Ĵ which is tamed by some symplectic form d(ϕλa),
matches J̃− on (−∞,−a0] ×M and matches J̃+ on [a0,∞) ×M . This defines an
almost complex manifold (R ×M, Ĵ) with cylindrical ends, interpolating between
the data (λ−, J−) and (λ+, J+).

Assume now that there is a 2-dimensional foliation F of R ×M by embedded
Ĵ-holomorphic punctured spheres with finite energy. Each leaf is asymptotically
cylindrical, with positive/negative punctures asymptotic to periodic orbits of Xλ±.
For σ ∈ R, define translation maps

ψσ : R×M → R×M : (a,m) 7→ (a+ σ,m),

then ψ∗
σĴ → J̃± as σ → ±∞. Thus for large |σ|, the foliations ψ−1

σ (F) consist
of holomorphic curves with nearly R-invariant almost complex structures, and one
would expect to see approximately R-invariant behavior in the foliations themselves.
This leads to the notion of the asymptotic foliations F±, which we define informally
by

F± = lim
σ→±∞

ψ−1
σ (F).

In practice, one might define this rigorously with a compactness argument to derive
J̃±-holomorphic index 2 curves through a dense set of points in R×M , then filling
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in the rest by a second round of bubbling off analysis. (A similar technique was used
in [HWZ03b] for stretching a singular holomorphic foliation of CP 2 into a foliation
of R × S3.) One can see readily that if F is a stable (R-invariant) foliation, then
F± = F .

Given a stable foliation F for (M,λ, J) and any constant c > 0, there is a
corresponding stable foliation Fc for (M, cλ, J), defined by rescaling the leaves in
the R-direction. It will be convenient to call the foliations F and Fc equivalent,
denoted F ∼= Fc.
Definition 6.2.1. Given stable foliations F0 and F1 for (M,λ0, J0) and (M,λ1, J1)
respectively (with ker λ0 = ker λ1), a directed concordance from F0 to F1 is a folia-
tion F10 of an almost complex manifold with cylindrical ends such that

F+
10
∼= F0, and F−

10
∼= F1.

The word “directed” is important in this definition, since directed concordance
defines a partial order rather than an equivalence relation. A directed concordance
should determine a homomorphism Φ10 : HC∗(F0)→ HC∗(F1), defined by a chain
map of degree 0 which counts index 0 leaves of the foliation F10. There should also
be a gluing operation:

Conjecture 6.2.2. Given two directed concordances F10 and F21 such that F−
10
∼=

F+
21, there is a directed concordance

F20 = F21#F10

defined by gluing the leaves of the two foliations to form a new foliation, with
F+

20
∼= F+

10 and F−
20
∼= F−

21. Moreover, the corresponding homomorphisms on contact
homology are related by Φ20 = Φ21 ◦ Φ10.

The homomorphism Φ10 defined by F10 should be invariant under a suitable
definition of homotopy for F10. Loosely speaking, a homotopy F s10 is a continuous
family of directed concordances from F0 to F1. The technical definition is presum-
ably quite complicated: we expect for instance that there should exist homotopies
from honest foliations to singular foliations (in which neighboring leaves have iso-
lated intersections), thus accommodating examples such as the circle bundle S1TS,
where stable foliations generically can’t exist (see Sec. 1.5). In any case, once this
homotopy theory is placed on more solid ground, it should be possible to prove that

Φ10 = Id whenever F0
∼= F1.

This would follow from a result that says if F is a directed concordance with F+
∼=

F−, then F is homotopic to a trivial directed concordance in which all the index 0
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leaves are orbit cylinders. A stable foliation is itself an example of such a trivial
concordance, in the sense that

F10#F0
∼= F10 and F1#F10

∼= F10,

where in this context ∼= means “homotopic”. With these notions in place, we can
then define a nontrivial equivalence relation on the set of stable foliations:

Definition 6.2.3. A concordance between F0 and F1 is a pair of directed concor-
dances F10 from F0 to F1 and F01 from F1 to F0. We then say that the foliations
F0 and F1 are concordant.

Conjecture 6.2.4. The algebras HRSFT

∗ (F) and HC∗(F) are invariant with respect
to concordance.

By the above remarks, the foliations F01 and F10 can sensibly be thought of
as inverses of one another. Unlike the analogous situation of cylindrical symplectic
cobordisms in SFT, it is not automatic that one can find an inverse for any given
directed concordance. However, there is good reason to believe that the proposed
program for constructing a concordance by homotopy should naturally construct
its inverse as well. Recall, the claim was that given a foliation F0 for (M,λ0, J0)
and another set of generic data (M,λ1, J1) with the same contact structure, there
should be a foliation F1 for the new data along with a directed concordance F10 from
F0 to F1. The idea is to begin with a trivial concordance from F0 to itself: more
precisely, a holomorphic foliation of (R×M, Ĵ) where Ĵ interpolates between ǫλ0 near
{−∞}×M and 1

ǫ
λ0 near {∞}×M . Then homotop this to a holomorphic foliation of

(R×M, Ĵσ), where Ĵσ is defined by (λ1, J1) in a large compact subset [−σ, σ]×M . As
we let σ →∞, this should split the foliation into two directed concordances F10 and
F01 which are inverses. In the process we obtain the foliation F1 as an asymptotic
foliation for each of F10 and F01, and it follows that HC∗(F1) = HC∗(F0).

For the cylindrical contact homology one must restrict the notion of a concor-
dance before proving invariance. One way is by defining a cylindrical concordance
to be a concordance in which none of the leaves of F10 or F01 are index 0 planes.
This should permit the compactness result needed to prove thatHCc

∗(F) is invariant
with respect to cylindrical concordance.

6.3 Computations of foliation contact homology

6.3.1 The tight 3-sphere

As a warm up, let us compute HC∗(F1), where F1 is the stable foliation of the
tight 3-sphere shown in Figure 6.1 (a product of the existence result in [HWZ03b]).
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Figure 6.1: The foliation F1 of the tight 3-sphere, showing coherent orientations.

The figure shows a choice of coherent orientations for the moduli spaces of leaves,
after dividing out the R-action: for each rigid surface this is just a choice of sign,
and orientations of index 2 families are shown with arrows. The choices are by no
means unique, but they must follow a rule to ensure that gluing maps are orientation
preserving. Thus at any “corner” of the diagram where there is a hyperbolic orbit,
the arrow of an index 2 family points away from the corner if and only if the signs
of the two neighboring rigid surfaces match. (Note that some of the rigid surfaces
in this diagram are labeled more than once—e.g. the two positive segments on the
left are part of the same rigid cylinder.)

To simplify the notation, we’ll write A, B and a instead of qA, qB and qa. The
capital letters represent elliptic orbits, with Conley-Zehnder index 3, and the hy-
perbolic orbit a has µCZ(a) = 2. Thus the generators of CC∗(F1) have degrees
|A| = |B| = 2 and |a| = 1. There is one additional generator of degree 0: the unit
element 1, which is a cycle by definition. Counting rigid surfaces, we find

∂A = ∂B = a and ∂a = 1− 1 = 0.

From this we compute HC0(F1) = Q, generated by the unit, and HC1(F1) = 0.
The generators of CC3(F1) are the products Aa and Ba; then using the Leibnitz
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A A

Figure 6.2: Foliation F0, a planar open book decomposition of the tight 3-sphere.

rule and supercommutativity we have

∂(Aa) = (∂A)a = a2 = 0 and ∂(Ba) = (∂B)a = a2 = 0.

Thus HC2(F1) is generated by [A−B]. To compute the rest of HC∗(F1), we observe
that everything in degree 3 and higher is generated by a product of A, B and a,
so by considering symmetrized tensor products of CC1(F1) and CC2(F2), we find
that HC2k(F1) is generated by [(A− B)k] and HC2k+1(F1) = 0. Thus HC∗(F1) is
isomorphic to the rational cohomology ring of CP∞.

We could have guessed this result by assuming that F1 is concordant with the
open book decomposition F0 (Figure 6.2). HC∗(F0) is trivial to compute since A is
the only generator, with |A| = 2, hence ∂ = 0 and HC2k(F0) is generated by [A] for
each k ∈ N, while HC2k+1(F0) = 0.

This result raises the question as to whether all of the foliations of (S3, ξ0)
generated by the method in [HWZ03b] might be concordant. If so, one must wonder
whether (S3, ξ0) admits any other foliations that are not concordant with these.

6.3.2 Overtwisted contact structures

Generally if (M, ξ) is a closed contact manifold and ξ is overtwisted, then its contact
homology algebra HC∗(M, ξ) is trivial. This follows by choosing the contact form
so that it admits a hyperbolic orbit spanned by an index 1 plane; one can use this
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Figure 6.3: Cross section of a stable foliation in the neighborhood of a full-Lutz
twist along the knot K1

to show that the unit element is exact in the chain complex, so [1] = 0. A similar
argument works in the context of foliations, although it is not true that HC∗(F)
always vanishes if F lives in an overtwisted manifold. (We’ll see an example for
S1 × S2 below.) What should be true is the following:

Conjecture 6.3.1. For any overtwisted contact structure ξ on M , (M, ξ) admits a
foliation F such that HC∗(F) = 0.

We use the main result Theorem 1.3.3 to construct a foliation on (M, ξ), with one
extra detail: supplement the usual surgery along a link K ⊂ S3 with an additional
full-Lutz twist (see Chapter 2.1) along some separate knot K1 ⊂ S3 \ K. Recall
that the full twist produces a 2-plane distribution that is homotopic to the original;
then since ξ was already overtwisted, the new contact manifold is contactomorphic
to (M, ξ) by Eliashberg’s theorem. Carrying out the usual construction, we obtain
a foliation which looks like Figure 6.3 near K1. In particular there is a rigid plane
asymptotic to a hyperbolic orbit a, and this is the only rigid surface that has a as
its unique positive limit. Thus ∂a = 1, and HC∗(F) is trivial.

6.3.3 S1 × S2

Choose the usual coordinates (θ, ρ, φ) on S1 × B2(0) and collapse the boundary to
a circle to define

S1 × S2 = S1 × (B2(0)/∂B2(0)).
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Figure 6.4: Foliation F2 on S1 × S2

Define a contact form by λ = f(ρ)dθ+ g(ρ) where the trajectory ρ 7→ (f(ρ), g(ρ)) ∈
R2 winds once counterclockwise around the origin for ρ ∈ [0, 1]. The contact struc-
ture ξ = ker λ is overtwisted, and by the methods in Chapter 3 we can explicitly
construct foliations of Morse-Bott type as well as nondegenerate perturbations.

One such example is the stable foliation F2 shown in Figure 6.4. This bears
a strong resemblance to the full-Lutz twist, and HC∗(F2) vanishes for the same
reason.

Figure 6.5 shows two foliations that are quite different, for closely related non-
degenerate perturbations of this same contact form λ. Unlike F2, whose asymp-
totic orbits are all contractible, the asymptotic orbits here are all generators of
H1(S

1 × S2) ∼= Z. This suggests that there may be topological problems in con-
structing a concordance with F2, and we can confirm this by calculating the contact
homology.

We focus first on F3. Since H1(S
1 × S2) and H2(S

1 × S2) are both nonzero, we
must make some choices to set the grading. Note that A and C are homologous,
as are B and b, which point in the opposite direction. Choose the oriented circle
A as the canonical generator for H1(S

1 × S2). There are then obvious choices of
cylinders FB, Fb and FC connecting each of the other orbits to A: pick the cylinders
that project to vertical line segments in Figure 6.5 (left). With these choices, all of
the rigid surfaces in the picture represent the trivial homology class in H2(S

1×S2).
The grading will be defined only up to an even integer offset, so we’re free to pick
a trivialization of ξ over A such that µCZ(A) = 1. Then µCZ(B) = µCZ(C) = 1 and
µCZ(b) = 0, thus CC∗(F3) has three generators of degree 0 and one of degree −1.
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Figure 6.5: Foliations F3 (left) and F4 (right) on S1 × S2

Counting rigid surfaces with one positive puncture, accounting for the coherent
orientations, we find

∂A = 0, ∂C = 0, ∂B = b− b = 0, and ∂b = 0.

Thus HC∗(F3) is a free superalgebra with three even generators and one odd. In
particular, both HC∗(F3|[A]) and HC∗(F3|−[A]) are nontrivial. HC∗(F3|0) is also
nontrivial: it has generators [AB] and [CB] in degree 0, and [Ab] and [Cb] in de-
gree −1. Ignoring the technical details for now, this would seem to prove:

Conjecture 6.3.2. The foliations F2 and F3 on (S1 × S2, λ) are not concordant.

Another interesting question concerns the relationship between F3 and F4, which
are different nondegenerate perturbations of the same Morse-Bott foliation. Use A
again as the canonical generator of H1(S

1 × S2), and choose Fbj and FBj
to be

the cylinders that project to straight line segments connecting bj or Bj to A in the
picture, for j = 1, . . . , 4. Then once again all rigid surfaces in F4 are homologically
trivial inH2(S

1×S2). Picking a trivialization so that µCZ(A) = 1, we have µCZ(C) =
µCZ(Bj) = 1 and µCZ(bj) = 0 for all j. Then

∂A = ∂C = ∂bj = 0 and ∂Bj = bj − bj+1,

using the convention b5 = b1. Thus the generators bj are all homologous inHC−1(F4),
and

∑
j Bj is a cycle. It turns out thatHC∗(F4) is the free superalgebra generated by

[A], [C] and
[∑

j Bj

]
in degree 0 and [b1] in degree −1. Thus HC∗(F3) ∼= HC∗(F4).
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Clearly one obtains the same result for any similar perturbation with an arbitrary
number of orbits bj and Bj . The same phenomenon is observed in many other
examples, which strongly suggests:

Conjecture 6.3.3. HC∗(F) is well defined if F is a foliation of stable Morse-Bott
type. In fact, any two nondegenerate perturbations of F are concordant.

This should follow from the construction of the nondegenerate perturbations,
which would produce not only a stable foliation but also a concordance between
this and the original Morse-Bott foliation.
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Appendix A

Asymptotics of Finite Energy

Surfaces

A.1 Asymptotic operators

In this appendix we present in precise form the results of Hofer, Wysocki and Zehn-
der from [HWZ96a] and [HWZ96b], which describe the asymptotic approach of finite
energy surfaces to nondegenerate or Morse-Bott periodic orbits at the punctures. A
complete understanding of this behavior requires us to consider certain self-adjoint
operators of the form

A∞ = −J0
d

dt
− S∞(t),

where J0 is a complex structure on R2n and S∞(t) is a loop of symmetric matrices.
Instead of presenting these operators out of the blue, it’s worth taking a moment
to see how they arise naturally in contact geometry. Such an operator appears
also in the analysis of Floer homology (see for instance [S97]), where it can be
interpreted as the Hessian of the symplectic action functional. We will see that a
similar interpretation is available here.

Let (M,λ) be a contact manifold with contact structure ξ = ker λ and an admis-
sible complex multiplication J on ξ. Let S1 = R/Z and define the contact action
functional, Φλ : C

∞(S1,M)→ R by

Φλ(x) =

∫

S1

x∗λ.

For this rather informal discussion, we will follow the standard practice of treating
C∞(S1,M) as an infinite-dimensional smooth manifold with a well defined tangent
bundle, and assume whenever convenient that differential geometry applies to this

245

manifold just as in the finite-dimensional case. The extent to which this is rigorously
true will not concern us. That said, the tangent space at x ∈ C∞(S1,M) is

TxC
∞(S1,M) = Γ(x∗TM),

the space of smooth sections of the bundle x∗TM → S1. Then we compute that the
differential of Φλ at x is the linear map dΦλ(x) : Γ(x

∗TM)→ R defined by

dΦλ(x)v =

∫

S1

dλ(−ẋ(t), v(t)) dt.

Thus the critical points of Φλ are the unparametrized periodic orbits of the Reeb
vector field, i.e. x ∈ Crit(Φλ) if and only if the image x(S1) is a closed Reeb or-
bit. Note that Φλ is invariant under the natural action of Diff+(S1), the group of
orientation preserving diffeomorphisms of S1,

Diff+(S1)× C∞(S1,M)→ C∞(S1,M) : (ϕ, x) 7→ x ◦ ϕ.

A critical point of Φλ is always degenerate due to the group action, and thus the
ordinary Hessian carries redundant information. We therefore define a “restricted”
Hessian, which is an isomorphism at any critical point that is “as nondegenerate
as possible”. To see what this means, it’s instructive first to review the analogous
situation in a finite-dimensional manifold.

The finite-dimensional case

LetM be a smooth finite-dimensional manifold with f :M → R a smooth function.
Assume there is also a Lie group G acting smoothly on M ,

G×M →M : (g, x) 7→ ϕg(x),

with the following two properties:

(i) f ◦ ϕg ≡ f for all g ∈ G.

(ii) For all x ∈M , the orbit [x] = {ϕg(x) | g ∈ G} is a smooth submanifold of M ,
with fixed codimension.

Now on a neighborhood of Crit(f), choose a smooth splitting TM = θ⊕η such that
for x ∈ Crit(f), θx = Tx[x]. Choose also a metric 〈 , 〉 on the vector bundle η →M .
Then the differential df defines (by restriction) a smooth section of the dual bundle

246



η∗ →M , and we can use the metric to associate with this a “gradient,” ∇f ∈ Γ(η),
defined by

〈∇f(x), v〉 = df(v) for all v ∈ ηx.
Clearly in a neighborhood of Crit(f), ∇f(x) vanishes if and only if x is a critical
point. Choose next a connection ∇ on the bundle η → M . This induces naturally
a connection on η∗ → M , which allows us to define ∇df ∈ Γ(T ∗M ⊗ η∗). By
restriction, this may be considered a bilinear form on η.

Proposition A.1.1. If x ∈ Crit(f) then for any v, w ∈ ηx, ∇df(v, w) = ∇df(w, v).

Proof. Extend v and w to vector fields V,W ∈ Γ(TM) near x such that [V,W ] = 0,
and write V = Vθ + Vη ∈ θ ⊕ η, similarly for W . Then LV (df(Wθ))(x) = 0 since
both Wθ and df vanish at x, and similarly LW (df(Vθ)) = 0. We compute,

0 = LV LW f(x)− LWLV f(x)
= LV (df(Wη))(x)− LW (df(Vη))(x)

= (∇vdf)(w) + df(∇vWη)− (∇wdf)(v)− df(∇wVη)

= ∇df(v, w)−∇df(w, v).

Observe that if x is a critical point, the bilinear form ∇df(x) : ηx ⊗ ηx → R

doesn’t depend on our choice of connection. The same can be said of the linear map

∇2f(x) = ∇∇f(x) : TxM → ηx,

though of course this does depend on the metric (because ∇f does). If we choose
∇ to be compatible with the metric, then an easy computation shows

〈∇2f(x)X, v〉 = ∇df(x)(X, v) for all X ∈ TxM and v ∈ ηx.

Define the Hessian of f at x to be the restriction of this operator to

∇2f(x) : ηx → ηx.

Then Prop. A.1.1 and the above remarks show that∇2f(x) is symmetric with respect
to the metric 〈 , 〉 whenever x ∈ Crit(f). By definition, the function f is Morse-Bott
nondegenerate if and only if ∇2f(x) is an isomorphism at all critical points x.
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The Hessian of Φλ

To apply the ideas above to the action functional, define a splitting TC∞(S1,M) =
Θ⊕ E by

Θx = Γ(x∗(RXλ)) and Ex = Γ(x∗ξ),

where Θ and E are thought of as smooth vector bundles over C∞(S1,M). Clearly
if x ∈ Crit(Φλ), i.e. x is a loop parallel to the Reeb vector field, then the tangent
space to the orbit [x] ⊂ C∞(S1,M) is precisely Θx. Define the metric dλ(·, J ·) on
the bundle ξ → M and use this to define a metric on the bundle E → C∞(S1,M)
by

〈v, w〉 =
∫

S1

dλ(v(t), Jw(t)) dt for v, w ∈ Γ(x∗ξ). (1.1.1)

Then the “gradient” of Φλ can be defined as a section of E by

∇Φλ(x) = −Jπλẋ ∈ Γ(x∗ξ),

and we have 〈∇Φλ(x), v〉 = dΦλ(x)v for all v ∈ Γ(x∗ξ). To compute the Hessian,
choose any connection on ξ which is Hermitian with respect to the metric dλ(·, J ·)
and complex structure J . This defines a connection on E → C∞(S1,M) which is
compatible with 〈 , 〉. For any v ∈ Ex = Γ(x∗ξ), find a smooth map xs(t) = x(s, t)
such that v(t) = ∂sx(0, t), then ∇2Φλ(x)v = ∇v∇Φλ will be the section in Γ(x∗ξ)
defined by

(∇v∇Φλ)(t) = ∇s (∇Φλ(xs)(t)) |s=0

= ∇s (−Jπλ∂tx(s, t)) |s=0 = −J∇s(πλ∂tx(s, t))|s=0.

Assuming x ∈ Crit(Φλ), the covariant derivative of πλ∂tx(s, t) at s = 0 will not
depend on our choice of connection for ξ, since πλẋ(t) = 0. We can therefore
choose a more convenient connection for the computation; in particular, let ∇ be
any symmetric connection on M and define a covariant derivative ∇̃ for sections
v ∈ Γ(ξ) by

∇̃v = πλ ◦ ∇v.
It is easily verified that ∇̃ defines a linear connection on the bundle ξ → M . Then
using the symmetry of ∇, we compute

∇̃s(πλ∂tx(s, t))|s=0 = πλ∇s [∂tx(s, t)− λ(∂tx(s, t)) ·Xλ(x(s, t))] |s=0

= πλ∇t∂sx(0, t)− λ(ẋ(t)) · πλ∇sXλ(x(s, t))|s=0

= πλ
(
∇tv(t)− λ(ẋ(t))∇v(t)Xλ

)
.
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It turns out that the projection πλ can be removed, because the expression in paren-
theses is already a section of x∗ξ. Indeed, using again the symmetry of ∇ and the
fact that ẋ(t) ∈ RXλ(x(t)),

λ
(
∇tv(t)− λ(ẋ(t))∇v(t)Xλ

)
= λ

(
∇t∂sx(s, t)− λ(ẋ(t))∇sXλ(x(s, t))

)∣∣
s=0

= λ
(
∇s [∂tx(s, t)− λ(ẋ(t))Xλ(x(s, t))]

∣∣
s=0

)
= λ

(
∇s[πλ∂tx(s, t)]

∣∣
s=0

)

= ∂s [λ(πλ∂tx(s, t))]
∣∣
s=0
− (∇sλ)(πλẋ(t))

∣∣
s=0

= 0.

If we choose a parametrization of x ∈ Crit(Φλ) so that λ(ẋ(t)) ≡ T (the period
of the orbit), we now obtain the following formula for ∇2Φλ(x) : Γ(x

∗ξ)→ Γ(x∗ξ),1

∇2Φλ(x) = −J (∇t − T∇Xλ) .

With this as motivation, we associate with any T -periodic orbit P ⊂ M , para-
metrized by x : S1 → M with λ(ẋ) ≡ T , the asymptotic operator

Ax : H
1(x∗ξ)→ L2(x∗ξ)

Axv = −J (∇tv − T∇vXλ)
(1.1.2)

where ∇ is any symmetric connection on M . It must be emphasized that, despite
appearances to the contrary, Ax is necessarily a section of x∗ξ, and it depends only
on x, λ and J , not on the choice of connection. Moreover, it’s not hard to see
that different parametrizations x(t) for the same orbit will give conjugate operators.
Choosing a unitary trivialization of x∗ξ → S1, the operator takes the form

Ax : H
1(S1,R2n)→ L2(S1,R2n)

Axv = −J0v̇(t)− S∞(t)v(t)
(1.1.3)

where J0 is the standard complex structure and S∞ is a smooth loop of 2n-by-2n
symmetric matrices.

As one would expect, Ax is a symmetric operator with respect to the L2-inner
product defined by (1.1.1). More importantly, it defines an unbounded self-adjoint
operator on L2(x∗ξ), with spectrum σ(Ax) consisting of discrete eigenvalues of finite
multiplicity that accumulate only at infinity. The periodic orbit P is nondegenerate
if and only if 0 6= σ(Ax). In Sec. 4.2, we also consider Morse-Bott orbits, in which
case Ax has a nontrivial finite-dimensional kernel.

1The reader should beware that this operator is widely misprinted without the factor of T in
the literature. Some authors get away with this by defining S1 as R/TZ instead of R/Z—and some
of them, maddeningly, do this without saying so explicitly. The author wishes to thank Richard
Siefring for clarifying this point.
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A.2 Exponential approach

If Σ\Γ = Σ̇ is a Riemann surface (possibly with boundary) with interior punctures,
and ũ = (a, u) : Σ̇→ R×M is a finite energy J̃-holomorphic curve, Prop. 1.1.4 says
roughly that u(z) approaches some periodic orbit of the Reeb vector field as z → Γ.
We now state the precise version of Prop. 1.1.8, which describes the asymptotic
approach in the case where the orbit in question is either nondegenerate or Morse-
Bott. We’ll state only the three-dimensional version proved by Hofer, Wysocki and
Zehnder in [HWZ96a] and [HWZ96b], since this will suffice for our purposes.

Recall that each nonremovable puncture z ∈ Γ of a finite energy surface can be
characterized as either positive or negative, depending on the sign of the charge

Q = − lim
ǫ→0

∫

∂Dǫ

u∗λ,

where Dǫ ⊂ Σ is a decreasing sequence of holomorphically embedded disks centered
at z. It is convenient to associate with each puncture a special holomorphic coordi-
nate system that identifies a punctured neighborhood with one of the half-cylinders

Z+ = [0,∞)× S1 or Z− = (−∞, 0]× S1

depending on the sign. On the punctured disk Ḋ = D \ {0}, this is defined by

ϕ± : Z± → Ḋ : (s, t) 7→ e∓2π(s+it)

Then the asymptotic approach in Prop. 1.1.4 can be described conveniently by
u ◦ ϕ±(sk, t)→ x(T t) as sk → ±∞.

We will need nice coordinates for neighborhoods of periodic orbits.

Lemma A.2.1 ([HWZ96a] and [HWZ96b]). Let x : R → M be a T -periodic orbit
of Xλ with period T = kτ , where τ > 0 is the minimal period and k ∈ N is the
covering number. Write P ⊂ M for the image of x. Then a neighborhood of P in
M can be identified with a neighborhood U of S1 × {0} ⊂ S1 × R2 such that

P = S1 × {0},

and using coordinates (θ, x, y) ∈ S1 × R2,

λ = f(dθ + x dy)

for some smooth positive function f defined near P . We may assume

f(θ, 0, 0) = τ and df(θ, 0, 0) = 0
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for all θ ∈ S1. Moreover, if P belongs to a smooth 2-dimensional manifold L ⊂ M
foliated by T -periodic orbits, then we may assume L∩U is invariant under the Reeb
flow and

L ∩ U = {(θ, 0, y) ∈ U} and df(θ, 0, y) = 0

for all (θ, 0, y) ∈ U .
Theorem A.2.2 ([HWZ96a] and [HWZ96b]). Let ũ = (a, u) : Ḋ→ R×M be a finite
energy J̃-holomorphic map, with (M,λ) a contact 3-manifold, and suppose the T -
periodic orbit x(t) (with T = kτ = |Q|) given by Prop. 1.1.4 either is nondegenerate
or belongs to a simple Morse-Bott surface. Then, choosing ϕ+ or ϕ− according to
the sign of Q, the asymptotic behavior of the half-cylinder ũ ◦ ϕ± : Z± → R ×M
can be described as follows.

Using the coordinates of Lemma A.2.1 near P = x(R), write

ũ ◦ ϕ±(s, t) = (a(s, t), θ(s, t), z(s, t)) ∈ R× S1 × R2

for some functions a, θ and z. There are constants a0 ∈ R and θ0 ∈ S1 such that
either

(a(s, t), θ(s, t), z(s, t)) = (Ts+ a0, kt+ θ0, 0),

or there exists an exponential decay rate d > 0 with

|∂β [a(s, t)− a0 − Ts]| ≤ Ce∓ds

|∂β [θ(s, t)− θ0 − kt]| ≤ Ce∓ds

for all multi-indices β, with constants C = C(β). In this case, z(s, t) is described
by the formula

z(s, t) = e
∫ s

0
µ(σ) dσ[e(t) + r(s, t)] ∈ R2,

where ∂βr(s, t)→ 0 as s→ ±∞, uniformly in t for all multi-indices β. Here µ is a
smooth real-valued function with

µ(s)→ λ ∈ σ(Ax) as s→ ±∞,
where the sign of λ is opposite that of the puncture, and e : S1 → ξ(kt,0,0) = R2 is
an eigenfunction of Ax with Axe = λe.

A.3 A criterion for finite energy

We’ve seen that finite energy implies asymptotically cylindrical behavior for punc-
tured holomorphic curves. It is occasionally useful to have a converse to this state-
ment. As always, (M,λ) is a closed contact 3-manifold with the usual R-invariant
almost complex structure J̃ on its symplectization R×M .
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Proposition A.3.1. Let Σ be a compact oriented surface, possibly with boundary,
and define Σ̇ = Σ \ Γ where Γ ⊂ int Σ is a finite set of interior punctures. Assume
j is a complex structure on Σ̇ (not necessarily extending over Σ), and we are given
a pseudoholomorphic curve ũ = (a, u) : (Σ̇, j) → (R ×M, J̃) with the property that
for each puncture zj ∈ Γ, there is a shrinking sequence of circles γkj : S1 → Σ̇
winding clockwise around zj, and a periodic orbit xj : R → M of Xλ with period
Tj = |Qj| > 0 such that as k →∞,

u ◦ γkj (t)→ xj(Qjt) in C1(S1,M).

Then ũ has finite energy

E(ũ) = sup
ϕ∈T0

∫

Σ̇

ũ∗d(ϕλ) <∞,

and the following two statements are equivalent:

(i) a : Σ̇→ R is a proper map.

(ii) There is a compact Riemann surface (Σ′, j′) and a finite set Γ′ ⊂ int Σ′ such
that the punctured Riemann surface (Σ′ \ Γ′, j′) is biholomorphic to (Σ̇, j).
That is, ũ can be reparametrized near the punctures so that j extends over Σ.

Proof. To establish finite energy, choose a sequence of compact subsets Σk ⊂ Σ̇
bounded by the shrinking circles,

∂Σk = ∂Σ ∪


⋃

zj∈Γ

γkj (S
1)


 .

Then using Stokes’ theorem and the fact that ũ∗d(ϕλ) is always nonnegative,

∫

Σ̇

ũ∗d(ϕλ) = lim
k

∫

Σk

ũ∗d(ϕλ) =

∫

∂Σ

ũ∗(ϕλ) +
∑

zj∈Γ

lim
k

∫

γkj (S
1)

ũ∗(ϕλ)

≤
∫

∂Σ

|u∗λ|+
∑

Tj>0

Tj,

so this number bounds E(ũ).
Now it follows immediately from the properties of finite energy holomorphic

curves that (ii) implies (i). Conversely, suppose there is no reparametrization al-
lowing j to extend over one of the punctures zj ∈ Γ. From the classification of
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conformal structures on annuli, we know that a closed punctured neighborhood of
zj in (Σ̇, j) is conformally equivalent to either ([0,∞)× S1, i) or ([0, R)× S1, i) for
some R > 0 (see [Hm97], Lemma 5.1). It must in fact be the latter, since the former
is biholomorphic to a punctured disk. Thus we can describe a neighborhood of zj by
holomorphic coordinates (s, t) ∈ [0, R)× S1, and treat the circles γkj as embeddings
S1 →֒ [0, R)× S1 for sufficiently large k. Now for s ∈ [0, R) sufficiently close to R,
we can choose k and k′ > k so that {s}×S1 is contained in an annulus bounded by
γkj (S

1) and γk
′

j (S
1). Then Stokes’ theorem and the positivity of u∗dλ imply

∫

γkj (S
1)

u∗λ <

∫

{s}×S1

u∗λ <

∫

γk
′

j (S1)

u∗λ,

consequently
∫
{s}×S1 u

∗λ → Qj as s → R. The Cauchy-Riemann equations give

as = λ(ut), and thus

lim
s→R

∫

S1

a(s, t) dt =

∫

S1

a(0, t) dt+

∫ R

0

∫

S1

as(s, t) dt ds

=

∫

S1

a(0, t) dt+

∫ R

0

∫

S1

λ(ut(s, t)) dt ds

=

∫

S1

a(0, t) dt+

∫ R

0

(∫

{s}×S1

u∗λ

)
ds.

This integral is finite, proving that a is not a proper map.

253

Appendix B

Deligne-Mumford For Surfaces

with Boundary

B.1 Nodal surfaces

The main compactness result of Chapter 5 deals with sequences of holomorphic
curves on punctured Riemann surfaces with boundary, thus we need to understand
the compactification of the space of conformal structures on such a domain. A
useful version of the Deligne-Mumford compactness theorem for Riemann surfaces
without boundary was stated in [BEHWZ03]. Here we shall review that result, and
use doubling arguments to state a generalization to the case where ∂Σ 6= ∅. A
valuable reference for this material is the book by Seppälä and Sorvali [SS92].

The unfamiliar reader may wish to skip to the end and contemplate Figure B.2
before proceeding.

Let (Σ, j) be a compact connected Riemann surface, possibly with boundary,
and let Γ ⊂ int Σ be a finite ordered subset. As usual, denote the corresponding
punctured surface by Σ̇ = Σ \ Γ. If the Euler characteristic χ(Σ̇) < 0, then we
call the triple (Σ, j,Γ) a stable Riemann surface with boundary and interior marked
points. The stability condition means

2g +m+#Γ > 2,

where g is the genus of Σ and m is the number of boundary components. Recall
that there is a natural “conjugate” Riemann surface (Σc, jc) = (Σ,−j), which can
be glued to (Σ, j) along ∂Σ to form a surface without boundary ΣD = Σ∪∂ΣΣc. The
double ΣD has a natural conformal structure jD (see Remark 4.2.9) and a natural
antiholomorphic involution σ : ΣD → ΣD whose fixed point set is ∂Σ. We can
also double the set of marked points to define (ΣD, jD,ΓD) and a punctured surface
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without boundary Σ̇D = ΣD \ΓD; then an equivalent definition of stability is to say
that (Σ, j,Γ) is stable if and only if χ(Σ̇D) < 0. This definition has the advantage
of making sense also when marked points are allowed on the boundary.

It is a standard fact that every Riemann surface without boundary and with
negative Euler characteristic admits a unique complete metric that is compatible
with the conformal structure and has constant curvature −1. This follows easily
from the uniformization theorem, since any such surface has the Poincaré disk as its
universal cover (cf. [Hm97]). This metric is then called the Poincaré metric. Because
it is unique, the space of orientation preserving isometries with respect to this metric
can be identified with the space of biholomorphic maps. Given a stable Riemann
surface (Σ, j,Γ) with boundary and interior marked points, we define a metric h on
Σ̇ by restricting the Poincaré metric hD of (Σ̇D, jD) to the subset Σ̇ ⊂ Σ̇D. Then

the involution σ : ΣD → ΣD is an orientation reversing isometry of (Σ̇D, hD), and
one can use this fact to prove that each component of ∂Σ is a geodesic for h. We
shall refer to h as the Poincaré metric for (Σ̇, j).

Denote byMg,m,p the moduli space of equivalence classes of compact connected
Riemann surfaces (Σ, j,Γ) with genus g, m ≥ 0 boundary components and p = #Γ
interior marked points Γ ⊂ int Σ. Recall that the points of Γ come with an ordering.
Equivalence (Σ, j,Γ) ∼ (Σ′, j′,Γ′) means that there exists a biholomorphic map
ϕ : (Σ, j) → (Σ′, j′) that takes Γ to Γ′, preserving the ordering. The topology on
Mg,m,p is defined by saying that [(Σk, jk,Γk)]→ [(Σ, j,Γ)] if for sufficiently large k
there exist diffeomorphisms ϕk : Σ→ Σk mapping Γ→ Γk (with the right ordering)
and such that ϕ∗

kjk → j in C∞.
Using the Schwartz reflection principle, any biholomorphic map ϕ : (Σ1, j1) →

(Σ2, j2) extends naturally to a biholomorphic map ϕD : (ΣD1 , j
D
1 ) → (ΣD2 , j

D
2 ). It

follows that there is a well defined continuous map

Mg,m,p →M2g+m−1,0,2p : [(Σ, j,Γ)] 7→ [(ΣD, jD,ΓD)].

We shall use this and the natural compactificationM2g+m−1,0,2p to define the com-
pactificationMg,m,p.

Let us review the case where ∂Σ = ∅, following the presentation in [BEHWZ03].
A nodal Riemann surface Σ = (Σ, j,Γ,∆) consists of a Riemann surface (Σ, j)
which is a finite union of disjoint closed, connected surfaces Σ = Σ1 ∪ . . . ∪ Σq,
together with an ordered set of marked points Γ ⊂ Σ and a set of so-called double
points ∆. The latter is an unordered set of unordered pairs of points in Σ, ∆ =
{{z1, z′1}, . . . , {zd, z′d}}, with zj 6= z′j for each pair. When there is no confusion, we
shall sometimes abuse notation and treat ∆ as an ordinary set of points, rather than
a set of pairs; we assume the sets ∆ and Γ are disjoint. Intuitively one thinks of Σ
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as the topological space obtained from Σ by identifying each pair of double points:

Σ̂ = Σ/{zj ∼ z′j for each pair {zj , z′j} ∈ ∆}.

The point in Σ̂ determined by a given pair of double points {zj, z′j} ∈ ∆ is called

a node. We say that Σ is connected whenever Σ̂ is connected. Σ is called stable
if for each connected component Σj ⊂ Σ, the surface (Σj , j|Σj

, (Γ ∪ ∆) ∩ Σj) is
stable; this means that every connected component of Σ \ (Γ ∪ ∆) has negative
Euler characteristic.

There is another important connected space associated to a connected nodal
surface Σ; in order to define it we must add some extra data at each double point.
An asymptotic marker at z ∈ ∆ is a choice of direction µ ∈ (TzΣ \ {0})/R+, where
R+ is the group of positive real numbers, acting by scalar multiplication. A choice
of asymptotic markers r = {{µ1, µ

′
1}, . . . , {µd, µ′

d}} for every pair of double points
{zj , z′j} ∈ ∆ is called a decoration, and we then call (Σ, r) = (Σ, j,Γ,∆, r) a decorated
nodal Riemann surface. For each pair {z, z′} ∈ ∆ with asymptotic markers {µ, µ′},
the conformal structure j determines a natural choice of orientation reversing map

rz : (TzΣ \ {0})/R+ → (Tz′Σ \ {0})/R+

such that rz(µ) = µ′. These maps have an important interpretation in terms of the
circle compactification at a puncture. Namely, for each component Σj ⊂ Σ, let Σj be
the compact surface with boundary obtained from the punctured surface Σj\(∆∩Σj)
by replacing each puncture z ∈ ∆∩Σj with a “circle at infinity” δz ∼= (TzΣj\{0})/R+

(cf. Sec. 4.2). Then ∂Σj =
⋃
z∈∆∩Σj

δz, and for a pair {z, z′} ∈ ∆, the map rz
determines an orientation reversing diffeomorphism r̄z : δz → δz′. Denote

Σr = (Σ1 ⊔ . . . ⊔ Σq)/{w ∼ r̄z(w) for all w ∈ δz}.

This is a closed surface and is connected if and only if Σ̂ is connected. In that case,
we define the arithmetic genus of Σ to be the genus of Σr. Note that this number
doesn’t depend on the choice of the decoration r. We shall denote the union of the
special circles δz for z ∈ ∆ by Θ∆ ⊂ Σr. The conformal structure j on Σ defines
a singular conformal structure jΣ on Σr, which degenerates at Θ∆. If Σ is stable,
then there is similarly a “singular Poincaré metric” hΣ on Σr, defined by choosing
the Poincaré metric on each of the punctured components Σ̇j := Σj \ ((Γ∪∆)∩Σj).
This metric degenerates at Θ∆ ∪ Γ; in particular the distance from a marked point
z0 ∈ Γ or a circle δz ⊂ Θ∆ to any other point in Σ is infinite, and the circles δz have
length 0. Observe that in the stable case, Σr \ Γ is a union of pieces Σj \ (Γ ∩ Σj)
with negative Euler characteristic glued along boundary circles, thus χ(Σr \Γ) < 0.
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In particular, if Σ = (Σ, j,Γ,∆) is a stable nodal Riemann surface with arithmetic
genus g, then 2g +#Γ > 2.

Assume 2g+p > 2 and letMg,0,p denote the moduli space of equivalence classes of
stable nodal Riemann surfaces Σ = (Σ, j,Γ,∆) with arithmetic genus g and p = #Γ
marked points. We say (Σ, j,Γ,∆) ∼ (Σ′, j′,Γ′,∆′) if there is a biholomorphic
map ϕ : (Σ, j) → (Σ′, j′) taking Γ to Γ′ with the proper ordering, and such that
{ϕ(z1), ϕ(z2)} ∈ ∆′ if and only if {z1, z2} ∈ ∆. There is a natural inclusionMg,0,p →֒
Mg,0,p defined by assigning at any stable Riemann surface (Σ, j,Γ) an empty set of
double points.

To define the topology of Mg,0,p, we introduce the following notion of conver-
gence.

Definition B.1.1. A sequence [Σk] = [(Σk, jk,Γk,∆k)] ∈Mg,0,p converges to [Σ] =
[(Σ, j,Γ,∆)] ∈Mg,0,p if there are decorations rk for Σk and r for Σ, and diffeomor-
phisms ϕk : Σr → (Σk)rk , for sufficiently large k, with the following properties:

1. ϕk sends Γ to Γk, preserving the ordering.

2. ϕ∗
kjk → jΣ in C∞

loc(Σr \Θ∆).

3. ϕ−1
k (Θ∆k

) ⊂ Θ∆, and all circles in ϕk(Θ∆) \ Θ∆k
are closed geodesics for the

Poincaré metric hΣk
on (Σk)rk .

This definition is compatible with a metric onMg,0,p, thus compactness is equiv-
alent to sequential compactness (cf. [BEHWZ03], Appendix B).

Theorem B.1.2 (Deligne-Mumford). Mg,0,p is compact. In particular, any se-
quence of stable Riemann surfaces (Σk, jk,Γk) with fixed genus and number of marked
points has a subsequence convergent to a stable nodal Riemann surface (Σ, j,Γ,∆).

B.2 Symmetric nodal surfaces and boundaries

In order to extend these notions to the case of a Riemann surface with boundary,
we use the doubling operation to think of [(Σ, j,Γ)] ∈ Mg,m,p as a stable Riemann
surface without boundary [(ΣD, jD,ΓD)] ∈M2g+m−1,0,2p, but with an extra piece of
structure: (ΣD, jD) comes with a natural antiholomorphic involution σ : ΣD → ΣD

which permutes ΓD, and whose fixed point set is precisely ∂Σ ⊂ ΣD. Given any
biholomorphic map ϕ : Σ1 → Σ2, the involutions σi : Σ

D
i → ΣDi for i ∈ {1, 2} are

related to the induced biholomorphic map ϕD : ΣD1 → ΣD2 by

ϕD ◦ σ1 = σ2 ◦ ϕD.
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We therefore define a moduli space of symmetric Riemann surfaces Ms
g,0,p, con-

taining equivalence classes [(Σ, j,Γ, σ)], where [(Σ, j,Γ)] ∈ Mg,0,p and σ : Σ → Σ
is a diffeomorphism which permutes Γ and satisfies Tσ ◦ j = −j ◦ Tσ, as well as
σ ◦ σ = Id. Equivalence (Σ, j,Γ, σ) ∼ (Σ′, j′,Γ′, σ′) is defined by a biholomorphic
map ϕ : (Σ, j) → (Σ′, j′) that takes Γ to Γ′ with the right ordering and satisfies
ϕ◦σ = σ′◦ϕ. Similarly we define convergence inMs

g,0,p just as inMg,0,p, but require
also that the diffeomorphisms ϕk : Σ→ Σk should commute with the corresponding
involutions.

By construction, the natural map Mg,m,p → Ms
2g+m−1,0,2p defined by the dou-

bling operation is a continuous inclusion. It should be noted that not every symmet-
ric Riemann surface can be presented as the double of some surface with boundary,
e.g. there is the involution z 7→ −1/z̄ on S2, which has no fixed points. But it is easy
to see that any such symmetric surface in Ms

2g+m−1,0,2p is in a separate connected
component from the image of Mg,m,p. See [SS92] for a discussion of some other
kinds of beasts that live inMs

2g+m−1,0,2p.
The notion of a symmetric Riemann surface extends naturally to the compactifi-

cation: thus we define a moduli spaceMs

g,0,p of symmetric nodal Riemann surfaces

(Σ, σ) = (Σ, j,Γ,∆, σ). Here Σ ∈ Mg,0,p, and σ : Σ→ Σ is an antiholomorphic in-
volution which permutes Γ and has the additional property that {z1, z2} ∈ ∆ if and
only if {σ(z1), σ(z2)} ∈ ∆. Equivalence in Ms

g,0,p is defined the same as in Mg,0,p,
with the added condition that the biholomorphic map ϕ must commute with the
respective involutions. There is a well defined continuous involution defined by σ
on the singular surface Σ̂. This can be defined on Σr as well if the decoration r is
symmetric: this means that the set of asymptotic markers is preserved by Tσ. Then
one easily verifies that for any {z, z′} ∈ ∆, the orientation reversing diffeomorphism
r̄z : δz → δz′ commutes with σ, so σ defines an involution on Σr, which preserves
Θ∆ and is antiholomorphic on Σr \Θ∆.

With this preparation, we can define convergence in Ms

g,0,p just as in Defini-
tion B.1.1, requiring additionally that all decorations be symmetric, and that the
diffeomorphisms ϕk : Σr → (Σk)rk commute with the respective involutions. With
this topology,Ms

g,0,p is compact.1

We conclude this discussion by translating the results for symmetric Riemann
surfaces back into the language of surfaces with boundary. Consider a sequence

1Seppälä and Sorvali [SS92] prove this in the case where p = 0, using symmetric pair of pants
decompositions. One can extend their arguments to the case with marked points using degenerate
pair of pants decompositions, where each “boundary” component for a pair of pants is either a
closed geodesic or a puncture representing a marked point, and all marked points are accounted
for in this way (cf. Hummel [Hm97]). In this picture, marked points play much the same role as
nodes.
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[(Σk, jk,Γk)] ∈ Mg,m,p such that the doubles [(ΣDk , j
D
k ,Γ

D
k , σk)] ∈ Ms

2g+m−1,0,p con-
verge to a symmetric nodal surface

[(Σ∞, σ∞)] = [(Σ∞, j∞,Γ∞,∆∞, σ∞)] ∈Ms

2g+m−1,0,p.

There is a symmetric decoration r and a set of diffeomorphisms ϕk : (Σ∞)r → ΣDk
for large k, satisfying the conditions of Definition B.1.1 and ϕk ◦ σ∞ = σk ◦ ϕk. It
follows that there is a surface Σ with boundary ∂Σ ∼= Fix(σ∞) ⊂ (Σ∞)r, such that

the topological double of Σ is Σ
D

= (Σ∞)r. Moreover there are diffeomorphisms
ψk : Σ → Σk such that ϕk = ψDk . The singular conformal structure on Σr restricts
to Σ, where it degenerates along a compact 1-dimensional submanifold Θ∆ ∩ Σ.
There are now two novel features: one is that Θ∆ ∩ Σ may include components of
∂Σ; these correspond to pairs {z, z′} ∈ ∆∞ for which σ(z) = z′, and they arise from
components of ∂Σk which shrink to zero length in the Poincaré metric hk as k →∞.
There may also be circles in Θ∆ that intersect ∂Σ transversely, in which case Θ∆∩Σ
contains arcs with endpoints on ∂Σ. These arcs shrink to zero length as k → ∞,
producing pairs of double points {z, z′} that are each fixed points of σ, i.e. double
points on the boundary.

This picture inspires the following definition. A nodal Riemann surface with
boundary and interior marked points Σ = (Σ, j,Γ,∆, N) consists of a Riemann sur-
face (Σ, j) with finitely many connected components Σ = Σ1∪. . .∪Σq, each of which
is a compact surface, possibly with boundary. The marked point set Γ is a finite
ordered set of interior points, and the double points ∆ = {{z1, z′1}, . . . , {zd, z′d}}
have the property that zj ∈ ∂Σ if and only if z′j ∈ ∂Σ. We also now have a finite
unordered set N of interior points, which we’ll call unpaired nodes. These are meant
to be thought of as boundary components that have degenerated to zero length in
the Poincaré metric. We assume the sets Γ, ∆ and N are all disjoint. The singular
surface Σ̂ is defined from Σ as before by identifying pairs of double points in ∆.
We then call Σ connected if Σ̂ is connected. A decoration r consists of a choice
of asymptotic marker for each interior double point. Asymptotic markers for dou-
ble points at the boundary are unnecessary because the boundary itself defines a
preferred direction at these points. Analogously to the circle compactification at
an interior puncture, we can define the “arc compactification” at z ∈ ∆ ∩ ∂Σ as
follows: choose holomorphic coordinates identifying z with 0 ∈ D+, and use the
biholomorphic map

ϕ : [0,∞)× [0, 1]→ D+ : (s, t) 7→ e−π(s+it)

to identify the punctured neighborhood of z with the half-strip [0,∞)× [0, 1]. We
then compactify Σ \ {z} by adding the “arc at infinity” δz ∼= {∞} × [0, 1]. For a
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Figure B.1: A component Σ1 with its compactification Σ1. Here there’s one interior
double point z ∈ ∆ ∩ int Σ1 and one boundary double point z ∈ ∆ ∩ ∂Σ1.

connected component Σj ⊂ Σ, denote by Σj the compact topological surface with
boundary obtained by replacing each interior double point z ∈ ∆ ∩ int Σj and each
unpaired node z ∈ N ∩ Σj with a circle at infinity, and replacing each boundary
double point z ∈ ∆ ∩ ∂Σj with an arc at infinity (Figure B.1.) If {z, z′} ∈ ∆
is a pair of double points in ∂Σ, then the conformal structure defines a preferred
orientation reversing diffeomorphism δz → δz′. We then define the compact surface
Σr from Σ1 ∪ . . . ∪ Σq by gluing δz and δ

′
z via this diffeomorphism, and identifying

the circles at infinity for interior double points via the decoration r. The circles δz
corresponding to unpaired nodes z ∈ N become components of the boundary ∂Σr.

As before, we call the genus of Σr the arithmetic genus of Σ. The double of Σ is
defined to be the symmetric nodal Riemann surface (ΣD, σ) = (ΣD, jD,ΓD,∆D, σ)
where ∆D contains each pair {z, z′} ∈ ∆ in addition to its conjugate {σ(z), σ(z′)},
as well as the pair {z, σ(z)} for each z ∈ N . Clearly ΣD is connected if and only if
Σ is. There are natural inclusions

Σ̂ →֒ Σ̂D

Σr →֒ Σ
D

rD

where rD is defined as the unique symmetric decoration determined by r and some
arbitrary choice of asymptotic markers for the points of N (this choice has no effect

on the construction of Σ
D

rD).
We shall call Σ stable if every component of (Σ, j) is stable, considered as a

Riemann surface with the marked point set Γ∪∆∪N . Note that since some points
of ∆ may lie on ∂Σ, this means by definition that every component of Σ\(Γ∪∆∪N)
has a double with negative Euler characteristic. Equivalently, Σ is stable if and only
if ΣD is stable. Then we define a singular Poincaré metric hΣ as the restriction of

hΣD to Σr ⊂ Σ
D

rD . This metric degenerates at the marked points Γ and along a finite
set of circles and arcs Θ∆,N ; each of the circles is contained in either the interior or
the boundary of Σr, and each arc is contained in the interior except at its endpoints,
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where it meets ∂Σr transversely.
2 Note that if Σ is stable then χ(Σr \ Γ) < 0.

If 2g +m + p > 2, define Mg,m,p to be the moduli space of equivalence classes
of stable nodal Riemann surfaces with boundary and interior marked points Σ =
(Σ, j,Γ,∆, N), with arithmetic genus g, #Γ = p and m connected components of
∂Σr. Equivalence (Σ, j,Γ,∆, N) ∼ (Σ′, j′,Γ′,∆′, N ′) means there is a biholomorphic
map ϕ : (Σ, j) → (Σ′, j′) that identifies the ordered sets Γ and Γ′, identifies pairs
in ∆ with pairs in ∆′, and such that ϕ(N) = N ′. There is a natural inclusion
Mg,m,p →֒ Mg,m,p defined by choosing empty sets of double points and unpaired
nodes. There is also an inclusion Mg,m,p →֒ Ms

2g+m−1,0,p defined by the doubling
operation.

With these definitions, the notion of convergence introduced for m = 0 in Defi-
nition B.1.1 carries over verbatim toMg,m,p, after adding one detail:

4. ϕ−1
k (Θ∆k,Nk

) ⊂ Θ∆,N , and all arcs in ϕk(Θ∆,N) \Θ∆k,Nk
are geodesic arcs for

the Poincaré metric hΣk
, with endpoints on ∂((Σk)rk).

One sees readily that the topology defined in this way is equivalent to the topology
defined by the inclusion Mg,m,p →֒ Ms

2g+m−1,0,p. We summarize the compactness
theorem as follows. Figure B.2 shows an example.

Theorem B.2.1. Mg,m,p is compact. In particular, any sequence of stable Riemann
surfaces (Σk, jk,Γk) with boundary and interior marked points, having fixed topolog-
ical type and number of marked points, has a subsequence convergent (in the sense
of Definition B.1.1) to a stable nodal Riemann surface (Σ, j,Γ,∆, N) with boundary
and interior marked points.

2The original version of this appendix stated erroneously that an arc in Θ∆,N always connects
the same component of ∂Σ at its two ends. A counterexample to this is shown in Figure B.2;
thanks to Kai Cieliebak for pointing out the error.

261

Figure B.2: Degeneration of a stable Riemann surface (Σ, j,Γ) with genus 1, four
boundary components and two interior marked points, together with its symmetric
double (ΣD, jD,ΓD, σ). The lightly shaded curves on the left are the geodesic loops
and arcs that shrink to zero length in the limit. The right side shows the corre-
sponding singular surfaces Σ̂ and Σ̂D after degeneration; Σ̂ has one interior double
point, two boundary double points and one unpaired node.
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