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h-Principles for the curvature
of (semi-)Riemannian metrics

M smooth manifold
E. =Sym3 T*M fibre bundle over M

sections in E; = Riemannian metrics on M

secg: Gro TM — R sectional curvature of g € I'(EL)
Ricg € I'(Sym? T*M)  Ricci curvature
scal: M — R scalar curvature

Ricg(v, v)

ricg: PTM = Gry TM — R:  defined by ricg([v]) := 2(v. )



Some interesting second-order PDRs % C J?E,:
e # = sec>0
e # = ric>0
@ # = scal >0
@ analogous relations with “<0"

e more generally, for a,b € RU {£oo}: a<sec<b etc.

E.g., sec>0 is defined to be
{jfg ‘ g€l(Ey), xe M, Yo € Grp T(M: secg(o) > O}.
A solution of sec>0 is a Riem. metric g on M with secg > 0.

All these relations are open and Diff(M)-invariant.

Thus Gromov's h-principle theorems apply if M is open.



Recall:

The parametric h-principle for diff-inv. PDRs on open manifolds

Let E — M be a natural fibre bundle over an open manifold.
Let Z C J"E be open and Diff(M)-invariant.

Then j": Sol(#) — T (Z) is a homotopy equivalence.
In our situation, this becomes (as we'll see in a moment):

Theorem

Let a,b € RU {+o00} satisfy a < b.
Let M be an open manifold of dimension > 2.
Let Z be one of the PDRs a<sec<b, a<ric<b, a<scal<b on M.

Then Sol(%) is contractible (w.r.t. the compact-open C'-top.).
In particular it is nonempty and connected.

To prove this, we have to check that (%) is contractible...



% C JPE,

pi|,, | —— fibre bundle with contractible fibres: convex, # @
JE,
P contractible fibres (vector spaces)
Ey
p° contractible fibres: Sym%r T;M convex, # @&
M

Why (p?)~1(€) N % is nonempty and convex for each ¢ € JYE, :

Since dim M > 2, metrics with a < secg < b exist locally.
=VxeM: 3 e JLE : (p2) W) NZ # 2.

All 1-jets of metrics at x look the same in normal coordinates.
Z is Diff-invariant = V¢ € JLE,: (p?) 1 () NZ + @.



Curvature in local coordinates:

(x1,...,x"): local coordinates; 0, = %
: Rl —arl _ar! el ol
Riemann tensor: Ry, = 0il — O;l + 3, Ty, — >0, T4 0,

where Ffj- = % Z# ghr (aigjp, + 0igiy — ,ugij)
R(u,v,v,u)
g(u,u)g(v,v)—g(u,v)?

sectional curvature: sec(span{u,v}) =
Ricci tensor: Ricjj =", Rku

scalar curvature: scal =}, . g”Ric;

For fixed Oth and 1st derivatives of the metric components gj;,
all curvatures are affine functions of the 2nd derivatives of g.

Thus, for each ¢ € JYE,,
(p?)"1(€) N Z is a convex subset of the fibre (p?)~1(&).

This proves our nonempty-and-convex-fibres claim.

Thus #Z — M has contractible fibres = (%) is contractible.



Let M be a(n open) manifold. Let A C M be a closed subset
s.t. each connected component of M\A has an exit to infinity.

The relative h-principle for diff-inv. PDRs on open manifolds

Let E — M be a natural fibre bundle.
Let Z C J"E be open and Diff(M)-invariant.
Let @o € I'(Z) be holonomic on a neighbourhood of A.

Then there exists a continuous map ¢: [0,1] — (Z) such that
® ©(0) = wo;
o Vt €[0,1]: ¢(t)|a = wola;
@ (1) is holonomic.

Corollary

Let dimM > 2. Let a,b € RU {£o0} satisfy a < b.

Let % be one of the PDRs a<sec<b, a<ric<b, a<scal<b on M.
Let gy be a Riemannian metric which solves % on A.

Then there is a metric g on M which solves % everywhere
and is equal to gy on A.



There's also a relative parametric h-principle on open manifolds,
but let’s not spell it out here.

Could convex integration yield additional information?

A priori clear: many of the PDRs a<sec<b, a<ric<b, a<scal <b
are not ample. Otherwise they would have solutions on arbitrary
closed manifolds M, but there are obstructions:
@ The solution spaces of scal >0, ric>0, sec>0 are often empty.
@ When they are nonempty, they are usually not connected.
@ Sol(sec<0) = & if M is closed and its universal cover
is not diffeomorphic to R" (e.g. because m1(M) is finite).

@ Many open manifolds do not admit complete solutions of
scal >0, ric>0, sec>0, sec<O.
(E.g. T" x R does not admit a complete scal >0-metric.)

@ This shows also that the C%-dense h-principle fails
even on open manifolds for scal >0, ric>0, sec>0, sec<0.



But what about the remaining relations?
It's easy to see directly that none of our curvature PDRs is ample!

For x e M and W € Gr,_1 T, M, let Jf_WE+ denote

the set of equivalence classes of sections in Ey — M

w.r.t. the equivalence relation of having at x the same 1-jet

and the same W-directional derivatives of the 1-jet.

piW: JSE, — JiWEJr denotes the obvious projection.

By definition, one of our curvature PDRs % is ample iff:

VYW € Gro_1 TM: Y€€ 2 Ev: (P2 ) H(€) N Z is ample
(i.e., each of its connected comp.s has convex hull (p3,,,)7(€)).
For each of our PDRs Z in dim. > 2 with (a, b) # (—o0, c0),
each (p? ) "H(€) NZ is # @ and contained in a half-space.

Thus ampleness fails.

Nevertheless...



Lohkamp's theorems (1992-1995) for ric<0 and scal <0;
we state only the ric versions, scal is analogous:

Let M be a manifold of dimension n > 3.

Theorem (existence = mp-surjective h-principle)
M admits a complete Riemannian metric g with ric, < 0.

Even better: For each n > 3, there are numbers a, < b, < 0 s.t.
every n-mf. admits a complete Riem. metric g with a, < ricg < bj,.

Remark. For n > 5, it is not known whether we can take a, = b,,.

Theorem (relative h-principle)

Let c € R. Let A be a closed subset of M.
Let go be a metric on a nbhd. of A with ricg, < c.
Then there is a metric g on M with ricg, < ¢ and g|a = go|a-

Remark. The same holds with ric < ¢ instead of ric < c.



Theorem (parametric h-principle)

For every ¢ € R, the space Sol(ric<c)
of metrics g on M with ricg, < ¢ is contractible.

Theorem (C°-dense h-principle)

For every ¢ € R, the set Sol(ric<c) is dense in the space Metr(M)
of Riem. metrics w.r.t. the fine (= Whitney) C°-topology.

Remark. Using the Bochner formula
dd*a + d*da = VjVga + Ricg(af, ) for 1-forms a,
and the fact that d*« and Vga depend only on the 1-jet of g,
one can show that
Sol(ric<0) and Sol(scal <0) are C'-closed in Metr(M).

Hence Sol(ric<<0) and Sol(scal <0) are not C'-dense in Metr(M).



How does Lohkamp prove that every manifold of dimension > 3
admits a complete metric with ric<0?
For each n > 3, consider the following statements:

A(n): There exists a Riemannian metric g on R” which
is equal to eucl outside the open unit ball B”
and satisfies ric;, < 0 on B".

B(n): Each n-manifold M admits a complete ric < 0 metric.

Lohkamp's proof consists of 3 steps (we'll see no details today):
Q@ A(3) is true.
@ Vn > 3: A(n) = B(n).
@ Vn>3: B(n)= A(n+1).

inductive construction ~ hard to understand the metrics for n>>3.

CO-dense h-principle holds, C!-dense fails... what about C%“?
(CO0 = €% (C%l-topology = C!-topology)



For simplicity, let's consider only the relation scal < ¢ from now on.
Unlike ric < ¢, this makes sense also for semi-Riemannian metrics!
Difference to Riemannian (= positive definite) or neg. def. metrics:
e For p, g with pg # 0, not every (p + g)-manifold
admits a semi-Riem. metric of signature (p, q).
e If a manifold M admits a metric of signature (p, q), the
space Metr, 4(M) of such metrics is usually not connected.
Example: Lorentzian (i.e. ¢ = 1) metrics on closed 2-manifolds.
@ Only the 2-torus and the Klein bottle admit Lor. metrics.

@ The set of conn. comp.s of the space of Lor. metrics on T?
is in canonical bijective correspondence to Z X Z.



Analogous to what we've seen before, Gromov's theorems vyield:

Theorem (h-principle on open manifolds)

Let M be an open manifold of dimension p 4+ q > 2.
Let a,b € RU {+o0} satisfy a < b.
Then the inclusion
from the space of g € Metr,, o(M) with a < scal, < b
to Metr,, (M) is a homotopy equivalence.

Theorem (relative h-principle on open manifolds)

Let M be a(n open) manifold of dimension p + q > 2.
Let A C M be a closed subset such that
each connected component of M\ A has an exit to infinity.
Let a,b € RU {+o0o} satisfy a < b.
Let go € Metr,, q(M) satisfy a < scalg, < b on A.
Then the connected component of Metr,, (M) that contains go
contains also a metric g with g|a = go|a
which satisfies a < scalg < b on M.



| proved:

Theorem (semi-Riem. relative C%“-dense h-principle for scal <c)
Let c € R. Let A be a closed subset of a manifold M.

Let gy € Metrp, (M) satisfy scalg, |4 < ¢ [resp. scalg, |4 > c].

Let 0 < a <1, let 2/ C Metrp4(M) be a fine CO*-nbhd. of go.
Ifp>3,orp>1andq>2, [resp.ifq >3, 0o0rq>1andp>2]

then 7/ contains a metric g with g|a = go|a
and scal, < c [resp. scalg > c].

Thus, in dimension p+ g > 3,
scalar curvature can be decreased and increased
except in the signatures (p,0), (0, q) and maybe (1,2), (2,1).



Idea of proof. Let U be an open nbhd. of A with scalg, |y < c.

We choose locally finite covers (B;)ien and (B;)jen of M\U
by smooth open balls, with closures contained in M\A,
such that Vi: closure(B;) C B;.

Then we apply the following lemma iteratively to each i € N:

Lemma

Let e € Ry, let c € R. Let M := RPT9, let gy € Metrp, o(M).
Let B, B C M be open smooth balls with closure(B) C B.
Let0 < a <1, let 7/ C Metrpq(M) be a fine CO*-nbhd. of g.

Ifp>3,orp>1andq>2,
then there is a metric with ’M\B = gO’M\B
and scal, < scal,, +¢ andscal, |g < c — 1.

This proves the theorem. It remains to prove the lemma.



This involves a picture you might find familiar:

We choose on M = RPH4

@ a gp-orthonormal frame (e, ..., ep—1)
such that the ¢; := go(ej, i) € {£1} satisfy 1 = eo;
@ a fct. € C*(M,R) s.t. CVi>1:

@ a cutoff g € C*(M,[0,1]) with 5|z =1 and B|M\[3 =0.

For C € R, consider w € C*°(M,R) given by w(x) := wo(Cx).

For a € [—3,1], consider f :=1+ aB € C(M,Rxy).



For C € R, consider w € C>®(M,R) given by w(x) := wo(Cx).
For a € [—%, %] consider f :=1+ af € C*°(M,R-yp).

We define another gp-orthonormal frame (€, ..., €,-1) by
€= € if i ¢ {1,2}
€1 := cos(w)er + sin(w)es

€ 1= —sin(w)ey + cos(w)es .

Now we modify the frame (€p,...,€,_1) slightly:

g :=%¢ ifi#1l, &1 :=1fey .



For C € R, consider w € C>°(M,R) given by w(x) := wo(Cx).

For a € [—1,1], consider f := 1+ aB € C*°(M,Rxy).

We define g by declaring (&, ..., &,—1) to be g-orthonormal.

If |a| is small, then g is obviously C%-close to gp.
If |aC| is large, then scal, < scalg, +¢ and scal, |[g < c—1.

By choosing C > 0 depending on a > 0 such that
|aC| is large but |aC®| is small,
we can make g even C%“-close to gy for any o < 1.



