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A HIERARCHY OF LOCAL SYMPLECTIC FILLING OBSTRUCTIONS

FOR CONTACT 3-MANIFOLDS

CHRIS WENDL

Abstract. We generalize the familiar notions of overtwistedness and Giroux torsion in
3-dimensional contact manifolds, defining an infinite hierarchy of local filling obstructions
called planar torsion, whose integer-valued order k ≥ 0 can be interpreted as measuring a
gradation in “degrees of tightness” of contact manifolds. We show in particular that any
contact manifold with planar torsion admits no contact type embeddings into any closed
symplectic 4-manifold, and has vanishing contact invariant in Embedded Contact Homology,
and we give examples of contact manifolds that have planar k-torsion for any k ≥ 2 but
no Giroux torsion. We also show that the complement of the binding of a supporting open
book never has planar torsion. The unifying idea in the background is a decomposition of
contact manifolds in terms of contact fiber sums of open books along their binding. As the
technical basis of these results, we establish existence, uniqueness and compactness theorems
for certain classes of J-holomorphic curves in blown up summed open books; these also imply
algebraic obstructions to planarity and embeddings of partially planar domains.
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1. Introduction

Contact structures for odd-dimensional manifolds arise naturally on boundaries of sym-
plectic manifolds via the notion of convexity. A symplectic manifold (W,ω) is said to have
convex boundary if, on a neighborhood of ∂W , there exists a vector field Y that points
transversely outward at ∂W and whose flow is a symplectic dilation, i.e. LY ω = ω. Writing
M = ∂W , the co-oriented hyperplane field ξ = ker (ιY ω|TM ) ⊂ TM then satisfies a certain
“maximal nonintegrability” condition which makes it a contact structure, and up to isotopy,
it depends only on the symplectic structure of (W,ω) near M , not on the choice of vector
field Y .

Given the above relationship, it is interesting to ask which isomorphism classes of contact
manifolds (M, ξ) do not arise as boundaries of compact symplectic manifolds, i.e. which ones
are not symplectically fillable. A variety of obstructions to symplectic filling are known, and
the following two examples give some hint as to the diversity of such results:

• Lisca [Lis98, Lis99] used the Seiberg-Witten monopole invariants of Kronheimer and
Mrowka [KM97] together with Donaldson’s theorem on the intersection forms of
smooth 4-manifolds [Don86] to find examples of oriented 3-manifolds that admit no
symplectically fillable contact structures.

• The author [Wen10b] used punctured holomorphic curve techniques to show that a
contact 3-manifold has no symplectic filling if it is supported by a planar open book
whose monodromy is not a product of right-handed Dehn twists. (See [PV10,Pla12]
for some applications of this result.)

One common feature of the above examples is that they depend fundamentally on the global
properties of the manifolds involved. In contrast, one can also consider filling obstructions
which are local, in the sense that they answer the following question:

What kinds of contact subdomains can never exist in the convex boundary of
a compact symplectic manifold?

The first known example of a symplectic filling obstruction was essentially local in this sense:
Gromov [Gro85] and Eliashberg [Eli90] established that contact type boundaries of symplectic
4-manifolds can never contain an overtwisted disk, and significantly, the related distinction be-
tween so-called “overtwisted” and “tight” contact structures, discovered by Eliashberg [Eli89],
has played a pivotal role in classification questions for contact structures in dimension three.
This non-fillability result can be rephrased in terms of a certain 3-dimensional contact domain
with boundary that we call a Lutz tube: this is a solid torus S1 ×D with a radially symmet-
ric contact structure that makes a half-twist along radii from the center to the boundary
(see Figure 1 and Definition 2.17). One can show (e.g. using [Eli89]) that a closed contact
3-manifold contains an overtwisted disk if and only if it contains a Lutz tube, thus the latter
may be regarded as the prototypical example of a local filling obstruction.

A more general local filling obstruction is furnished by the so-called Giroux torsion domain,
a thickened torus [0, 1] × T 2 with a T 2-invariant contact structure that makes one full twist
from one end of the interval to the other (see Figure 2 and Definition 2.18). Contact manifolds
containing such an object are said to have Giroux torsion, and the fact that they are not fillable
in general is a comparatively recent result, due to Gay [Gay06]. Giroux torsion domains have
also played an important role in the classification of contact structures, most notably through
the work of Colin, Giroux and Honda [CGH03,CGH09].
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Figure 1. Contact planes twist around the radii emerging from the central
axis of a Lutz tube. The picture also shows an embedded J-holomorphic plane
asymptotic to a Reeb orbit of small period in a Morse-Bott family (arrows
indicate the Reeb vector field); every Lutz tube contains such planes, which
are the reason why the contact homology of an overtwisted contact manifold
vanishes.

S1

S1

|

Figure 2. In a Giroux torsion domain [0, 1]×T 2, contact planes twist around
segments in the [0, 1]-direction. Such domains are foliated by J-holomorphic
cylinders asymptotic to Morse-Bott Reeb orbits.
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These two examples of local filling obstructions create the intuitive impression that contact
manifolds tend to become non-fillable whenever they contain regions where the contact planes
exhibit some threshold amount of twisting. In this paper we shall introduce a geometric for-
malism that makes this notion precise, and in so doing, greatly expands the known repertoire
of local filling obstructions. We will demonstrate in particular that the examples above occupy
the first two levels in an infinite hierarchy : for each integer k ≥ 0, we shall define a special
class of compact contact 3-manifolds, possibly with boundary, which we call planar k-torsion
domains, such that the Lutz tube and Giroux torsion domain are special cases with k = 0
and 1 respectively. Our use of the word “hierarchy” is not incidental, as it turns out that a
planar torsion domain yields quantifiably stricter or less strict filling obstructions depending
on its order, i.e. the integer k. In particular, the overtwisted contact manifolds are precisely
those which have planar 0-torsion, and these can be thought of as the “most non-fillable”
among all contact 3-manifolds, while the fillable contact manifolds are the “tightest,” and
those which have only higher orders of planar torsion are non-fillable but are in some sense
“tighter” than their lower order counterparts.

The definition of planar torsion, which will be given in a precise form in §2, combines the
fundamental contact topological notion of a supporting open book decomposition, as introduced
by Giroux [Gir], with a simple topological operation known as the contact fiber sum along
codimension 2 contact submanifolds, originally due to Gromov [Gro86] and Geiges [Gei97].
Roughly speaking, a planar k-torsion domain is a compact contact 3-manifold (M, ξ), possibly
with boundary, that contains a non-empty set of disjoint pre-Lagrangian tori dividing it into
two pieces:

• A planar piece MP , which is disjoint from ∂M and looks like a connected open book
with some binding components blown up and/or attached to each other by contact
fiber sums. The pages must have genus zero and k + 1 boundary components.

• The padding M \MP , which contains ∂M and consists of one or more arbitrary open
books, again with some binding components blown up or fiber summed together.

Planar torsion domains are thus examples of what are called partially planar domains, a
notion that was first hinted at in [ABW10]. The interior of such a domain M always contains
a special set I ⊂ M of pre-Lagrangian tori which arise by blowing up binding components
of open books: we refer to these tori all together as the interface of (M, ξ). Postponing the
exact definitions until §2, let us for now merely point out that in a Lutz tube M = S1 × D
(Figure 1), the planar piece is some smaller solid torus MP = S1 × Dr for 0 < r < 1,
and the pages of the blown up open book in MP are the disks {∗} × Dr. Likewise, the
planar piece in a Giroux torsion domain M = [0, 1] × T 2 (Figure 2) is a smaller thickened
torus MP = [r1, r2] × T 2 for 0 < r1 < r2 < 1, foliated by cylindrical pages of the form
[r1, r2] × S1 × {∗}, and for both examples I = ∂MP . We will see that in the more general
definition, the topology of the planar piece and the whole domain may differ from each other
considerably, and interface tori may also be found in the interior of the planar piece or the
padding. Some simple examples of the form S1 × Σ are shown in Figure 3. We should also
mention that the idea of decomposing contact manifolds in this way via fiber sums of open
books has further applications beyond filling obstructions, e.g. it is used in [Wen] to define
a “blown up” version of Eliashberg’s capping construction [Eli04], producing a wide range of
existence results for non-exact symplectic cobordisms.

Let us now recall some basic definitions in preparation for stating the main results. A
contact structure on an oriented 3-dimensional manifold is a hyperplane distribution ξ
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that can be written locally as the kernel of a smooth 1-form α with α ∧ dα 6= 0. We call ξ
positive if α ∧ dα > 0. Every contact structure in this paper will be assumed to be positive
and to carry a co-orientation, which can be defined via a global choice of 1-form α; any α
with kerα = ξ that is compatible with the chosen co-orientation is called a contact form for
(M, ξ). Note that a co-oriented contact structure also inherits a natural orientation. Given
two contact 3-manifolds (M0, ξ0) and (M, ξ), a contact embedding of (M0, ξ0) into (M, ξ)
is an orientation preserving embedding ι : M0 →֒ M such that ι∗ : TM0 →֒ TM defines an
orientation preserving map of ξ0 to ξ.

Suppose (W,ω) is a compact 4-dimensional symplectic manifold (oriented by ω ∧ ω) and
(M, ξ) is a closed contact 3-manifold. A weak contact type embedding of (M, ξ) into
(W,ω) is an embedding ι :M →֒W for which ι∗ω|ξ > 0. It is called a (strong) contact type

embedding if a neighborhood of ι(M) ⊂ W admits a 1-form λ such that dλ = ω and ι∗λ
defines a contact form for (M, ξ); note that in this case, the vector field ω-dual to λ defines
a symplectic dilation positively transverse to ι(M). The image of a (weak or strong) contact
type embedding is called a (weak or strong) contact type hypersurface in (W,ω). If the
image is ∂W and ι maps the orientation of M to the natural boundary orientation, then we
say (W,ω) is a (weak or strong) symplectic filling of (M, ξ).

1.1. Obstructions to symplectic fillings. Given the notion of a planar k-torsion domain
which was sketched above and will be explained fully in §2, it is natural to define the following.

Definition 1.1. A contact 3-manifold is said to have planar torsion of order k (or planar
k-torsion) if it admits a contact embedding of a planar k-torsion domain (see Definition 2.13).

Theorem 1. If (M, ξ) is a closed contact 3-manifold with planar torsion of any order, then it
does not admit a contact type embedding into any closed symplectic 4-manifold. In particular,
it is not strongly fillable.

Though our proof of non-fillability will not depend on it, the implication that (M, ξ) is not
strongly fillable follows from the above statement due to a result of Etnyre and Honda [EH02],
that every contact 3-manifold is concave fillable: this means that strong fillings can always be
capped off to produce closed symplectic 4-manifolds containing contact type hypersurfaces.

We will also prove an algebraic counterpart to the above result in terms of Embedded
Contact Homology, or “ECH” for short (see e.g. [Hut10]). The definition of ECH will be
reviewed in §4.2; for now it suffices to recall that given a closed contact 3-manifold (M, ξ)
with nondegenerate contact form λ and generic compatible complex structure J : ξ → ξ, one
can define a chain complex generated by so-called orbit sets,

γ = ((γ1,m1), . . . , (γn,mn)),

where γ1, . . . , γn are distinct simply covered periodic Reeb orbits and m1, . . . ,mn are positive
integers, called multiplicities. A differential operator is then defined by counting a certain
class of embedded rigid J-holomorphic curves in the symplectization of (M, ξ), which can be
viewed as cobordisms between orbit sets. The homology of the resulting chain complex is the
Embedded Contact Homology ECH∗(M,λ, J). Though the complex obviously depends on λ
and J , Taubes has shown [Tau10a,Tau10b] that ECH∗(M,λ, J) is isomorphic to a version of
Seiberg-Witten Floer homology, and thus actually only depends (up to natural isomorphisms)
on the contact manifold (M, ξ), so we can write

ECH∗(M, ξ) := ECH(M,λ, J).
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Figure 3. Various planar k-torsion domains, with the order k ≥ 0 indicated
within the planar piece. Each picture shows a surface Σ that defines a manifold
S1 ×Σ with an S1-invariant contact structure ξ. The multicurves that divide
Σ are the sets of all points z ∈ Σ at which S1 × {z} is Legendrian. See also
Example 2.15 and Figure 6.

The case n = 0 is also allowed among the generators, i.e. the “empty” orbit set ∅ := (), which
is always a cycle in the homology, thus defining a distinguished class

c(ξ) := [∅] ∈ ECH(M, ξ),

which we call the ECH contact invariant. It corresponds under Taubes’s isomorphism to
a similar contact invariant in Seiberg-Witten theory, and conjecturally1 also to the Ozsváth-
Szabó contact invariant in Heegaard Floer homology.

Theorem 2. If (M, ξ) is a closed contact 3-manifold with planar torsion of any order, then
its ECH contact invariant c(ξ) vanishes.

This calculation is in some sense a generalization of the well-known fact that overtwisted
contact manifolds have trivial contact homology (cf. Figure 1), and our proof of it has some

1Recent progress on this conjecture has been made in parallel projects by Colin-Ghiggini-Honda [CGHa]
and Kutluhan-Lee-Taubes [KLTa,KLTb].
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commonalities with the proof of the latter sketched by Eliashberg in the appendix of [Yau06].
The result implies another proof that planar torsion is a filling obstruction, albeit a very indi-
rect one: under the isomorphism of Taubes [Tau10b], the ECH contact invariant corresponds
to a similar invariant in Seiberg-Witten theory, whose vanishing gives a filling obstruction due
to results of Kronheimer and Mrowka [KM97]. We will however give a proof of Theorem 1 that
uses only holomorphic curve methods, requiring no assistance from Seiberg-Witten theory.

Remark 1.2. Aside from the direct holomorphic curve proof of Theorem 1 that we will give
in §4.1, there are at least two alternative approaches/generalizations one can imagine:

(a) Algebraic: find a contact invariant whose vanishing contradicts symplectic filling, and
which must always vanish in the presence of planar torsion.

(b) Topological: given (M, ξ) with planar torsion, find a symplectic cobordism with neg-
ative boundary (M, ξ) whose positive boundary is already known to be not fillable.

The first approach is pursued in the present article and in the related paper [LW11], however
the second approach also works. Indeed, after the first version of this paper was completed, the
author defined in [Wen] a generalized handle attaching construction which yields symplectic
cobordisms from any contact manifold with planar torsion to another that is overtwisted. The
decomposition of contact manifolds via blown up summed open books that we will explain
in §2.1 is a crucial ingredient in this construction, which also yields alternative proofs of
Theorem 5 and the weak filling obstructions of [NW11] mentioned below.

Under stronger geometric assumptions one also obtains stronger results in terms of ECH
with twisted coefficients, which gives correspondingly stricter obstructions to symplectic fill-
ings. As we will review in §4.2, a twisted version of the ECH chain complex can be defined
as a module over the group ring Z[H2(M ;R)], so that the differential keeps track of the 2-
dimensional relative homology classes of the holomorphic curves it counts. We shall denote

this twisted version of ECH by ẼCH∗(M, ξ). It also contains a preferred homology class

c̃(ξ) ∈ ẼCH∗(M, ξ) represented by the empty orbit set, called the twisted ECH contact

invariant.

Definition 1.3. A contact 3-manifold is said to have fully separating planar k-torsion
if it contains a planar k-torsion domain with a planar piece MP ⊂M that has the following
properties:

(1) There are no interface tori in the interior of MP .
(2) Every connected component of ∂MP separates M .

We will see that the fully separating condition is always satisfied if k = 0, and for the case
of a Giroux torsion domain, it is satisfied if and only if the domain separates M .

Theorem 2′. If (M, ξ) is a closed contact 3-manifold with fully separating planar torsion,
then its twisted ECH contact invariant c̃(ξ) vanishes.

Appealing again to the isomorphism of [Tau10b] together with results from Seiberg-Witten
theory [KM97] on weak symplectic fillings, we obtain the following consequence, which is also
proved by a more direct holomorphic curve argument in joint work of the author with Klaus
Niederkrüger [NW11].

Corollary 1. If (M, ξ) is a closed contact 3-manifold with fully separating planar torsion,
then it is not weakly fillable.
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As we will show shortly, Theorem 1 and Corollary 1 yield many previously unknown exam-
ples of non-fillable contact manifolds. Observe that the fully separating condition in Corol-
lary 1 cannot be removed in general, as for instance, there are infinitely many tight 3-tori
which have non-separating Giroux torsion (and hence planar 1-torsion by Theorem 3 be-
low) but are weakly fillable by a construction of Giroux [Gir94]. Further examples of this
phenomenon are constructed in [NW11] for planar k-torsion with any k ≥ 1.

Remark 1.4. One can refine the above vanishing result with twisted coefficients as follows: for
a given closed 2-form Ω on M , define (M, ξ) to have Ω-separating planar torsion if it contains
a planar torsion domain such that every interface torus T lying in the planar piece satisfies∫
T
Ω = 0 (cf. Definition 2.12). Under this condition, our computation implies a similar vanish-

ing result for the ECH contact invariant with twisted coefficients in Z[H2(M ;R)/ ker Ω], with
the consequence that (M, ξ) admits no weak filling (W,ω) for which ω|TM is cohomologous
to Ω. A direct proof of the latter is given in [NW11].

We now consider examples of contact manifolds with planar torsion. We will show in §2.2
that the previously known local filling obstructions fit into the first two levels of the hierarchy,
i.e. k = 0 and 1.

Theorem 3. A closed contact 3-manifold has planar 0-torsion if and only if it is overtwisted,
and every closed contact manifold with Giroux torsion also has planar 1-torsion.

For this reason, Theorems 2 and 2′ imply ECH versions of the vanishing results of Ghiggini,
Honda and Van Horn-Morris [GHV,GH] for the Ozsváth-Szabó contact invariant in the pres-
ence of Giroux torsion. We’ll see below that it is also easy to construct examples of contact
manifolds that have planar torsion of any order greater than 1 but no Giroux torsion. It is
not clear whether there exist contact manifolds with planar 1-torsion but no Giroux torsion.

To find examples for k ≥ 2, suppose Σ is a closed oriented surface containing a non-empty
multicurve Γ ⊂ Σ that divides it into two (possibly disconnected) pieces Σ+ and Σ−. We
define the contact manifold (MΓ, ξΓ), where

MΓ := S1 × Σ

and ξΓ is the (up to isotopy) unique S1-invariant contact structure that makes {const}×Σ into
a convex surface with dividing set Γ. The existence and uniqueness of such a contact structure
follows from a result of Lutz [Lut77]. We will see in Examples 2.10 and 2.15 that (MΓ, ξΓ)
is a partially planar domain whenever any connected component Σ0 of Σ \ Γ has genus zero:
indeed, the surfaces {∗} ×Σ0 are then the pages of a blown up planar open book. Moreover,
(MΓ, ξΓ) is then a planar torsion domain unless Σ \Γ has exactly two connected components
and they are diffeomorphic, and it is fully separating if every connected component of ∂Σ0

separates Σ.

Corollary 2. Suppose Σ\Γ has a connected component Σ0 of genus zero, and either Σ\Γ has
more than two connected components or Σ \ Σ0 is not diffeomorphic to Σ0. Then (MΓ, ξΓ)
has vanishing (untwisted) ECH contact invariant and is not strongly fillable. Moreover, if
every connected component of ∂Σ0 separates Σ, then the invariant with twisted coefficients
also vanishes and (MΓ, ξΓ) is not weakly fillable.

Note that (MΓ, ξΓ) is always universally tight whenever Γ contains no contractible con-
nected components. This follows from [Gir01, Prop. 4.1(b)], and can also be deduced (via
[Hof93]) from the observation that (MΓ, ξΓ) then admits contact forms with no contractible



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 9

Reeb orbits (e.g. any Giroux form in the sense of Definition 2.8 will have this property).
Whenever this is true, an argument due to Giroux (see [Mas12, Theorem 3]) implies that
(MΓ, ξΓ) also has no Giroux torsion if no two connected components of Γ are isotopic. We
thus obtain infinitely many examples of contact manifolds that have planar torsion of any
order greater than 1 but no Giroux torsion:

Corollary 3. For any integers g ≥ k ≥ 1, let (Vg, ξk) denote the S1-invariant contact man-
ifold (MΓ, ξΓ) described above for the case where Γ ⊂ Σ has k connected components and
divides Σ into two connected components, one with genus zero and the other with genus
g − k + 1 > 0. Then (Vg, ξk) has no Giroux torsion if k ≥ 3, but for any k ≥ 1 it has planar
torsion of order k− 1. In particular (Vg, ξk) always has vanishing ECH contact invariant and
is not strongly fillable.

Some more examples of planar torsion without Giroux torsion are shown in Figure 4.

Remark 1.5. In many cases, one can easily generalize the above results from products S1×Σ
to general Seifert fibrations over Σ. In particular, whenever Σ has genus at least four, one
can find dividing sets on Σ such that (S1 × Σ, ξΓ) has no Giroux torsion but contains a
proper subset that is a planar torsion domain (see Figure 4). Then modifications outside of
the torsion domain can change the trivial fibration into arbitrary nontrivial Seifert fibrations
with planar torsion but no Giroux torsion. This trick reproduces many (though not all) of
the Seifert fibered 3-manifolds for which [Mas12] proves the vanishing of the Ozsváth-Szabó
contact invariant.

Remark 1.6. There is a significant overlap between our ECH vanishing results and the Hee-
gaard vanishing results proved by Massot in [Mas12] (see also [HKM,Mat11]), but neither
set of results contains the other. In particular, the examples (Vg, ξk) in Corollary 3 with
planar torsion of order greater than 1 seem thus far to be beyond the reach of Heegaard Floer
homology.

By a recent result of Etnyre and Vela-Vick [EVV10], the complement of the binding of
a supporting open book never contains a Giroux torsion domain. We will prove a natural
generalization of this:

Theorem 4. Suppose (M, ξ) is a contact 3-manifold supported by an open book π :M \B →
S1. Then any planar torsion domain in (M, ξ) must intersect the binding B.

In order to explain our choice of terminology and the use of the word “hierarchy,” we now
mention some related joint results with Janko Latschev which are proved in [LW11]. These
are most easily expressed by defining a contact invariant

PT(M, ξ) := sup
{
k ≥ 0

∣∣ (M, ξ) has no planar ℓ-torsion for any ℓ < k
}
,

which takes values in N ∪ {0,∞} and is infinite if and only if (M, ξ) has no planar torsion.
Then the results stated above show that PT(M, ξ) <∞ always implies (M, ξ) is not strongly
fillable; moreover PT(M, ξ) ≤ 1 whenever (M, ξ) has Giroux torsion, PT(M, ξ) = 0 if and
only if (M, ξ) is overtwisted, and there exist contact manifolds without Giroux torsion such
that PT(M, ξ) < ∞. We claim now that contact manifolds with larger values of PT(M, ξ)
not only exist but are, in some quantifiable sense, “closer” to being fillable. This statement
can be made precise by considering the existence or non-existence of symplectic cobordisms
between contact manifolds with different values of PT(M, ξ), as in the following result.
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Figure 4. Some contact manifolds of the form S1 × Σ that have no Giroux
torsion but have planar torsion of orders 2, 2, 3 and 2 respectively. In each
case the contact structure is S1-invariant and induces the dividing set shown
on Σ in the picture. For the example at the upper right, Theorem 2′ implies
that the twisted ECH contact invariant also vanishes, so this one is not weakly
fillable. In the bottom example, the planar torsion domain is a proper subset,
thus one can make modifications outside of this subset to produce arbitrary
nontrivial Seifert fibrations (see Remark 1.5).

Theorem ([LW11]). For the contact manifold (Vg, ξk) in Corollary 3, PT(Vg, ξk) = k − 1.
Moreover, if (M, ξ) is any contact manifold that appears as the positive boundary of an exact
symplectic cobordism whose negative boundary is (Vg, ξk), then PT(M, ξ) ≥ k − 1.

Since a contact 3-manifold (M, ξ) is tight if and only if PT(M, ξ) ≥ 1, the above result
can be regarded as demonstrating a “higher order” variant of the well-known conjecture that
contact (−1)-surgery on a Legendrian in a closed tight contact manifold always produces
something tight. Indeed, since contact surgery gives rise to a Stein cobordism, the above
implies that contact surgery (or for that matter, contact connected sums) on (Vg, ξk) always
produces examples with PT(M, ξ) ≥ k − 1.
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Remark 1.7. It should be emphasized here that the scale defined by the invariant PT(M, ξ)
measures something completely different from the standard quantitative measurement of
Giroux torsion; the latter counts the maximum number of adjacent Giroux torsion domains
that can be embedded in (M, ξ), and can take arbitrarily large values while PT(M, ξ) ≤ 1.
Likewise, (M, ξ) has Giroux torsion zero whenever PT(M, ξ) ≥ 2.

The theorem above follows from some results proved in [LW11] using notions from Sym-
plectic Field Theory, which also lie in the background of our choice of terminology. Recall
that SFT is a generalization of contact homology introduced by Eliashberg, Givental and
Hofer [EGH00] (see also [CL09] for the reformulation discussed here), that defines contact
invariants by counting J-holomorphic curves with arbitrary genus and positive and negative
ends in symplectizations of arbitrary dimension. The chain complex of SFT is a graded alge-
bra of the form A[[~]], where ~ is an even variable and A is a graded unital algebra generated
by symbols qγ corresponding to closed Reeb orbits γ. There is then a differential operator
DSFT : A[[~]] → A[[~]] which counts holomorphic curves and vanishes by definition on the
“constant” elements R[[~]] ⊂ A[[~]], hence defining prefered homology classes in

HSFT
∗ (M, ξ) := H∗(A[[~]],DSFT).

One then defines (M, ξ) to have algebraic k-torsion if the homology satisfies the relation

[~k] = 0 ∈ HSFT
∗ (M, ξ).

For k = 0, this means [1] = 0 and coincides with the notion of algebraic overtwistedness
(cf. [BN10]). It follows easily from the formalism2 of SFT that algebraic torsion of any order
gives an obstruction to strong symplectic filling, but in fact it is stronger, as it also implies
obstructions to the existence of exact symplectic cobordisms between certain contact mani-
folds. To state this succinctly, one can define an algebraic cousin of the invariant PT(M, ξ)
by

AT(M, ξ) := sup
{
k ≥ 0

∣∣ (M, ξ) has no algebraic ℓ-torsion for any ℓ < k
}
.

The above result is then a consequence of the following set of results, which serve as our main
motivation for keeping track of the integer k ≥ 0 in planar k-torsion.

Theorem ([LW11]). The invariant AT(M, ξ) has the following properties.

(1) Any contact manifold (M, ξ) with AT(M, ξ) <∞ is not strongly fillable.
(2) If there is an exact symplectic cobordism with positive boundary (M+, ξ+) and negative

boundary (M−, ξ−), then AT(M−, ξ−) ≤ AT(M+, ξ+).
(3) Every contact 3-manifold (M, ξ) satisfies AT(M, ξ) ≤ PT(M, ξ).
(4) For the examples (Vg, ξk) in Corollary 3, AT(Vg, ξk) = k − 1.

In particular, the computation AT(M, ξ) ≤ PT(M, ξ) follows from a variation on our proof
of Theorems 2 and 2′, and thus makes essential use of the holomorphic curve results in the
present article.

2For this informal discussion we are taking it for granted that SFT is well defined, which was not proved
in [EGH00] and is quite far from obvious. The rigorous definition of SFT, including the necessary abstract
perturbations to achieve transversality, is a large project in progress by Hofer-Wysocki-Zehnder, see for example
[Hof06]. The application stated above however does not depend on this, as it can also be proved using the
ECH methods in Hutchings’s appendix to [LW11].
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1.2. Obstructions to non-separating embeddings and planarity. We now discuss a
parallel stream of results that apply to a wider class of contact manifolds, some of which
are fillable. Observe that in addition to ruling out symplectic fillings, Theorem 1 implies
that contact manifolds with planar torsion can never appear as non-separating contact type
hypersurfaces in any closed symplectic 4-manifold. This is actually a consequence of the
following generalization of a result proved in [ABW10]:

Theorem 5. Suppose (M, ξ) is a closed contact 3-manifold that contains a partially planar
domain (see Definition 2.11) and admits a contact type embedding ι : (M, ξ) →֒ (W,ω) into
some closed symplectic 4-manifold (W,ω). Then ι separates W .

Corollary 4. If (M, ξ) is a closed contact 3-manifold containing a partially planar domain,
then it does not admit any strong symplectic semifilling with disconnected boundary.

Recall that a semifilling of a contact manifold (M, ξ) is defined to be a filling of (M, ξ) ⊔
(M ′, ξ′) for any (perhaps empty) closed contact manifold (M ′, ξ′). The corollary follows from
an observation due to Etnyre (cf. [ABW10, Example 1.3]), that given a filling of (M, ξ) ⊔
(M ′, ξ′) with M ′ non-empty, one can attach a symplectic 1-handle to connect M and M ′ and
then cap off the resulting boundary in order to realize (M, ξ) as a non-separating contact
type hypersurface. Corollary 4 also generalizes similar results proved by McDuff for the tight
3-sphere [McD91] and Etnyre for all planar contact manifolds [Etn04].

The algebraic counterpart to Corollary 4 involves the so-called U -map in Embedded Con-
tact Homology. This is a natural endomorphism

U : ECH∗(M, ξ) → ECH∗−2(M, ξ)

defined at the chain level by counting embedded index 2 holomorphic curves through a generic
point in the symplectization. The same definition also gives a map on ECH with twisted
coefficients,

Ũ : ẼCH∗(M, ξ) → ẼCH∗−2(M, ξ).

Theorem 6. If (M, ξ) is a closed contact 3-manifold containing a partially planar domain,
then for all integers d ≥ 1, the image of Ud : ECH∗(M, ξ) → ECH∗(M, ξ) contains c(ξ).

This implies Corollary 4 due to some recent results involving maps on ECH induced by
cobordisms (cf. [HT]), though again, those results depend on Seiberg-Witten theory, and our
proof of Theorem 5 will not.

Theorem 6 applies in particular to all planar contact manifolds and can thus be viewed as
an obstruction to planarity. The corresponding obstruction in Heegaard Floer homology is
a known result of Ozsváth, Stipsicz and Szabó [OSS05]. Our version of the obstruction can
easily be strengthened by observing that a planar open book is also a fully separating partially
planar domain, so analogously to Theorem 2′, it yields a result with twisted coefficients—the
Heegaard Floer theoretic analogue of this result is apparently not known.

Theorem 6′. If (M, ξ) is a planar contact manifold, then for all integers d ≥ 1, the image

of Ũd : ẼCH∗(M, ξ) → ẼCH∗(M, ξ) contains c̃(ξ).

Remark 1.8. Similarly to Remark 1.4, one can generalize the above by defining (cf. Defini-
tion 2.12) the notion of an Ω-separating embedding of a partially planar domain, where Ω is a
closed 2-form onM . Then such an embedding produces a version of Theorem 6′ for ECH with
coefficients in Z[H2(M ;R)/ ker Ω], and implies corresponding generalizations of Corollary 4.
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Remark 1.9. Note that by Theorem 6 above, there are also many non-planar examples for
which c(ξ) is in the image of Ud, but the corresponding statement with twisted coefficients is
not true. The most obvious example is the standard T 3, which is a partially planar domain
(see Example 2.5) but also admits weak semifillings with disconnected boundary (due to
Giroux [Gir94]).

1.3. Holomorphic curves and open book decompositions. The technical work in the
background of the above results is a set of theorems that we will prove in §3 relating holomor-
phic curves and a suitably generalized notion of open book decompositions. For illustration
purposes, we now state some simplified versions of these results.

Recall that if M is a closed and oriented 3-manifold, an open book decomposition is a
fibration

π :M \B → S1,

where B ⊂M is an oriented link called the binding, and the closures of the fibers are called
pages: these are compact, oriented and embedded surfaces with oriented boundary equal
to B. An open book is called planar if the pages are connected and have genus zero, and it
is said to support a contact structure ξ if the latter can be written as kerα for some contact
form α (called a Giroux form) whose induced Reeb vector field Xα is positively transverse
to the interiors of the pages and positively tangent to the binding. The latter definition is
due to Giroux [Gir], who established a groundbreaking one-to-one correspondence between
isomorphism classes of contact manifolds and their supporting open books up to right-handed
stabilization.

We refer to §3.1 for all the technical definitions needed to understand the following state-
ment. A substantial generalization will appear in §3.2 as Theorem 7.

Proposition 1.10. Suppose (M, ξ) is a closed connected contact 3-manifold with a supporting
open book decomposition π :M\B → S1 whose pages have genus g ≥ 0. Then for any numbers
τ0 > 0 and m0 ∈ N, (M, ξ) admits a nondegenerate Giroux form α and generic compatible
almost complex structure J on its symplectization such that the following conditions hold:

(1) The Reeb orbits in B have minimal period less than τ0, and their covers up to multi-
plicity m0 all have Conley-Zehnder index 1 with respect to the framing determined by
the open book. All Reeb orbits in M \B have period at least 1.

(2) If g = 0, then after a small isotopy of π fixing the binding, there is an (R × S1)-
parametrized family of embedded finite energy punctured J-holomorphic curves

u(σ,τ) : Σ̇ → R×M, (σ, τ) ∈ R× S1

which are Fredholm regular and have index 2 and have only positive ends, such that for
each (σ, τ) ∈ R× S1, the projection of u(σ,τ) to M is an embedding that parametrizes

π−1(τ).
(3) If g = 0, then every somewhere injective finite energy punctured J-holomorphic curve

in R × M whose positive ends all approach orbits in B of covering multiplicity up
to m0 is part of the (R× S1)-family described above.

(4) If g > 0, then there is no J-holomorphic curve in R × M whose positive ends all
approach distinct simply covered orbits in B.

The (R × S1)-parametrized family of J-holomorphic curves in this theorem is called a
holomorphic open book ; such objects have appeared previously in the work of Hofer-Wysocki-
Zehnder [HWZ95b, HWZ98] and Abbas [Abb11]. Their existence for the case g = 0 was
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already established in [Wen10c] and generalized in [Abb11], and lies in the background of
various contact topological results on planar contact manifolds, such as the proof of the We-
instein conjecture by Abbas-Cieliebak-Hofer [ACH05] and the author’s proof that strong and
Stein fillability are equivalent [Wen10b]. Given existence, the uniqueness statement for the
g = 0 case follows from a straightforward but surprisingly powerful intersection theoretic ar-
gument, using the homotopy invariant intersection number for punctured holomorphic curves
developed by Siefring [Sie11]. The non-existence result for g > 0 relies on this same argument
but is much subtler, because for analytical reasons, the existence part of the above theorem
fails in the case g > 0.3 The situation is saved by the observation, explained in [Wen10c], that
one can find a highly non-generic choice of data for which higher genus holomorphic open
books exist, and this data is compatible with an exact stable Hamiltonian structure, which
admits a well behaved perturbation to a suitable contact form.

In §3.2, we will state and prove a generalization of Proposition 1.10 in the context of blown
up and summed open books, which gives us existence and uniqueness for certain holomorphic
curves in partially planar domains that have only positive ends. Such results make it easy
to find orbit sets in the ECH chain complex that satisfy ∂γ = ∅ or Udγ = ∅, thus proving
Theorems 2, 2′, 6 and 6′.

As already mentioned, our main results on fillability and embeddability (Theorems 1, 4
and 5) can also be proved without recourse to ECH and Seiberg-Witten theory, and we shall
do this in §4.1. The main idea behind such arguments appeared already in [Wen10b]: given
a strong filling whose boundary contains a planar torsion domain, we can attach a cylindrical
end and use the above correspondence between open books and holomorphic curves to find
a region near infinity that is foliated by a stable 2-dimensional family of holomorphic curves.
This family can then be expanded into the filling and, due to the analytical properties of the
holomorphic curves in question, must foliate it. But the latter produces a contradiction, as
one can then follow the family back into a different region of the cylindrical end where our
uniqueness statement in fact excludes the existence of such holomorphic curves.

To make this type of argument work, we need compactness and deformation results for
families of curves in a symplectic filling that arise from the pages of a holomorphic open
book. An example of such a result is the following. Suppose (M, ξ) is supported by a
planar open book π : M \ B → S1, and α and J+ are the contact form and almost complex
structure respectively provided by Proposition 1.10. Assume also that (M, ξ) is the contact
type boundary of a compact symplectic manifold (W,ω) such that near ∂W , ω = dλ for
a 1-form λ that matches α at M = ∂W . We can then complete (W,ω) to a noncompact
symplectic manifold by attaching a cylindrical end

(W∞, ω) := (W,ω) ∪M
(
[0,∞)×M,d(etα)

)
.

Let u+ : Σ̇ → R×M denote one of the holomorphic planar pages provided by Proposition 1.10;
applying a suitable R-translation to u+, we may assume without loss of generality that it lies
in [0,∞) ×M ⊂ W∞. Now choose an open neighborhood N (B) ⊂ M of the binding B and

3Holomorphic open books with pages of positive genus cannot be expected to exist in general because
the necessary moduli spaces of holomorphic curves have negative virtual dimension. Hofer [Hof00] suggested
that this problem might be solved by introducing a “cohomological perturbation” into the nonlinear Cauchy-
Riemann equation in order to raise the Fredholm index. This program has recently been carried out by Casim
Abbas [Abb11] (see also [vB]), though applications to problems such as the Weinstein conjecture are as yet
elusive, as the compactness theory for the modified nonlinear Cauchy-Riemann equation is quite difficult.
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an open subset U ⊂M such that

u+(Σ̇) ⊂ [0,∞) × U .

Finally, choose any set of data α′, ω′, J ′
+ and J ′ with the following properties:

• α′ is a nondegenerate contact form on M that matches α in U ∪ N (B) and has only
Reeb orbits of period at least 1 outside of N (B)

• ω′ is a symplectic form on W∞ that matches d(etα′) on [0,∞) ×M
• J ′

+ is a generic almost complex structure on R×M compatible with α′ that matches
J+ on R× (U ∪ N (B))

• J ′ is an ω′-compatible almost complex structure on W∞ which is generic in W and
matches J ′

+ in [0,∞) ×M

We then denote byM(J ′) the moduli space of all unparametrized finite energy J ′-holomorphic
curves in W∞, and let M0(J

′) denote the connected component of this space containing u+.
A standard application of the implicit function theorem (see e.g. [ABW10, Theorem 4.7])
shows that M0(J

′) is a smooth 2-dimensional manifold whose elements are all embedded and
do not intersect each other; in particular they foliate an open subset of W∞. The key to the
proofs in §4.1 as well as various other applications in [NW11,LVW] is to show that the curves
in M0(J

′) also fill a closed subset outside of some harmless subvariety of codimension two.
That is the main point of the following result, which is a simplified version of Theorem 8
proved in §3.3.

Proposition 1.11. M0(J
′) is compact except for convergence in the sense of [BEH+03] to

holomorphic buildings of the following types:

(1) Buildings with empty main level and a single non-empty upper level curve in R ×M
whose projection to M is embedded,

(2) Finitely many nodal curves in W∞ consisting of two embedded index 0 components
that intersect each other transversely.

It is instructive perhaps to compare this with the results of McDuff [McD90]: in particular,
the role of McDuff’s symplectic sphere with nonnegative self-intersection is played by our
holomorphic curve u+, which generates a smooth 2-dimensional family of curves that, due to
the above compactness result and the aforementioned implicit function theorem, must fill the
entirety of W∞. In the form stated above, this result follows from [ABW10, Theorem 4.8].
The version we will prove in §3.3 for a general partially planar domain is more complicated
because one cannot generally avoid holomorphic buildings with multiply covered components,
nonetheless one can still show that only finitely many such buildings can appear.

1.4. Open questions and recent progress. Let us now discuss a few questions that arise
from the above results, some of which have been partially answered since the first version
of this paper appeared. In light of the equivalence between the ECH and Ozsváth-Szabó
contact invariants, recently established in independent work of Colin-Ghiggini-Honda [CGHb]
and Kutluhan-Lee-Taubes [KLTc], our vanishing results for the ECH contact invariants imply
corresponding results in Heegaard Floer homology. Some of these were already known from
the work of various authors [GHV,GH,HKM,Mas12,Mat11], but their results appear thus
far to recognize planar torsion only up to order 1.

Question. Can one prove within the context of Heegaard Floer homology (i.e. without using
ECH) that the contact invariant vanishes in the presence of planar k-torsion for k ≥ 2?
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As we sketched in the above discussion of related results in [LW11], the hierarchical struc-
ture encoded by the order k ≥ 0 of planar k-torsion can be detected algebraically via Sym-
plectic Field Theory, and it also can be detected by a refinement of the ECH contact invariant
explained in Hutchings’s appendix to [LW11]. The latter raises the question of what structure
in Heegaard Floer homology might also be able to see this hierarchy, but apparently nothing
is yet known about this.

Question. Can Heegaard Floer homology distinguish between two contact manifolds with
vanishing Ozsváth-Szabó invariant but differing minimal orders of planar torsion? Does this
imply obstructions to the existence of exact or Stein cobordisms?

It should be mentioned that in presenting this introduction to planar torsion, we neither
claim nor believe it to be the most general source of vanishing results for the various invari-
ants under discussion. For the Ozsváth-Szabó invariant, [Mas12] produces vanishing results
on some Seifert fibered 3-manifolds that fall under the umbrella of our Corollary 2 and Re-
mark 1.5, but also some that do not since there is no condition requiring the existence of a
planar piece. This phenomenon appears to be related to a generalization of planar torsion
that has recently emerged from joint work of the author with Lisi and Van Horn-Morris: the
idea is to replace the contact fiber sum with a more general “plumbing” construction that
produces a notion of “higher genus binding.” Among its applications, this allows a substantial
generalization of Corollary 2 that encompasses all of the examples in [Mas12] and many more;
details of this will appear in the forthcoming paper [LVW].

And now the obvious question: what can be done in higher dimensions? There has been
significant activity in this area in the last few years. Atsuhide Mori [Mor] showed that certain
blown up open books in dimension 5 produce a filling obstruction that strongly resembles
the Lutz tube and is related to Niederkrüger’s speculative notion of higher-dimensional over-
twistedness [Nie06]. After the preprint version of the present article first appeared, Mori’s
construction was generalized to all dimensions in a joint paper of the author with Massot
and Niederkrüger [MNW] which also defined a higher-dimensional notion of Giroux torsion,
giving the first examples of non-fillable contact manifolds in all dimensions that cannot be
called “overtwisted” in any reasonable sense. The constructions in [MNW] also give some
hints as to how one might define something analogous to higher-order planar torsion that
could be detected algebraically via SFT in all dimensions. This subject is still in its infancy,
but it now at least seems safe to state the following conjecture:

Conjecture. For all n ≥ 1 and k ≥ 0, there exist (2n + 1)-dimensional contact manifolds
(M, ξ) with AT(M, ξ) = k. In particular, there exists in every dimension greater than one
a sequence of non-fillable contact manifolds {(Mk, ξk)}k≥0 such that (Mk, ξk) admits exact
symplectic cobordisms to (Mℓ, ξℓ) if and only if k ≤ ℓ.

2. The definition of planar torsion

2.1. Blown up summed open books. We now explain the decomposition of a contact
manifold into “binding sums” of supporting open books, which underlies the notion of a
planar torsion domain.

Assume M is an oriented smooth manifold containing two disjoint oriented submanifolds
N1, N2 ⊂ M of real codimension 2, which admit an orientation preserving diffeomorphism
ϕ : N1 → N2 covered by an orientation reversing isomorphism Φ : νN1 → νN2 of their normal
bundles. Then we can define a new smooth manifold MΦ, the normal sum of M along Φ, by
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removing neighborhoods N (N1) and N (N2) of N1 and N2 respectively, then gluing together
the resulting manifolds with boundary along an orientation reversing diffeomorphism

∂N (N1) → ∂N (N2)

determined by Φ. This operation determinesMΦ up to diffeomorphism, and is also well defined
in the contact cateogory: if (M, ξ) is a contact manifold and N1, N2 are contact submanifolds
with ϕ : N1 → N2 a contactomorphism, then MΦ admits a contact structure ξΦ, which
agrees with ξ away from N1 and N2 (cf. [Gei08, §7.4]). Although the issue of uniqueness is
not discussed in [Gei08, §7.4], one can show that the construction of ξΦ explained there is
canonical up to isotopy; in the specific setting that we will be concerned with below, this is an
obvious consequence of the uniqueness of “supported” contact structures (cf. Definition 2.8
and the ensuing discussion).

We will consider the special case of the contact fiber sum where N1 and N2 are disjoint
components4 of the binding of an open book decomposition

π :M \B → S1

that supports ξ. Then N1 and N2 are automatically contact submanifolds, whose normal
bundles come with distinguished trivializations determined by the open book. In the follow-
ing, we shall always assume that M is oriented and the pages and binding are assigned the
natural orientations determined by the open book, so in particular the binding is the oriented
boundary of the pages.

Definition 2.1. Assume π :M \B → S1 is an open book decomposition onM . By a binding
sum of the open book, we mean any normal sum MΦ along an orientation reversing bundle
isomorphism Φ : νN1 → νN2 covering a diffeomorphism ϕ : N1 → N2, where N1, N2 ⊂ B
are disjoint components of the binding and Φ is constant with respect to the distinguished
trivialization determined by π. The resulting smooth manifold will be denoted by

M(π,ϕ) :=MΦ,

and we denote by I(π,ϕ) ⊂ M(π,ϕ) the closed hypersurface obtained by the identification of
∂N (N1) with ∂N (N2), which we’ll also call the interface. We will then refer to the data
(π, ϕ) as a summed open book decomposition of M(π,ϕ), whose binding is the (possibly
empty) codimension 2 submanifold

Bϕ := B \ (N1 ∪N2) ⊂M(π,ϕ).

The pages of (π, ϕ) are the connected components of the fibers of the naturally induced
fibration

πϕ :M(π,ϕ) \ (Bϕ ∪ I(π,ϕ)) → S1;

if dimM = 3, then these are naturally oriented open surfaces whose closures are generally
immersed (distinct boundary components may sometimes coincide).

If ξ is a contact structure on M supported by π, we will denote the induced contact
structure on M(π,ϕ) by

ξ(π,ϕ) := ξΦ

and say that ξ(π,ϕ) is supported by the summed open book (π, ϕ).

4We use the word component throughout to mean any open and closed subset, i.e. a disjoint union of
connected components.



18 CHRIS WENDL

It follows from the corresponding fact for ordinary open books that every summed open
book decomposition supports a contact structure, which is unique up to isotopy: in fact it
depends only on the isotopy class of the open book π : M \ B → S1, the choice of binding
components N1, N2 ⊂ B and isotopy class of diffeomorphism ϕ : N1 → N2.

Throughout this discussion,M , N1, N2 and the pages of π are all allowed to be disconnected
(note that π : M \B → S1 will have disconnected pages if M itself is disconnected). In this
way, we can incorporate the notion of a binding sum of multiple, separate (perhaps summed)
open books, e.g. given (Mi, ξi) supported by πi :Mi \Bi → S1 with components Ni ⊂ Bi for
i = 1, 2, and a diffeomorphism ϕ : N1 → N2, a binding sum of (M1, ξ1) with (M2, ξ2) can be
defined by applying the above construction to the disjoint union M1 ⊔M2. We will generally
use the shorthand notation

M1 ⊞M2

to indicate manifolds constructed by binding sums of this type, where it is understood thatM1

and M2 both come with contact structures and supporting summed open books, which com-
bine to determine a summed open book and supported contact structure on M1 ⊞M2.

Example 2.2. Consider the tight contact structure on M := S1 × S2 with its supporting
open book decomposition

π :M \ (γ0 ∪ γ∞) → S1 : (t, z) 7→ z/|z|,

where S2 = C ∪ {∞}, γ0 := S1 × {0}, γ∞ := S1 × {∞} and S1 is identified with the unit
circle in C. This open book has cylindrical pages and trivial monodromy. Now let M ′ denote
a second copy of the same manifold and

π′ :M ′ \ (γ′0 ∪ γ
′
∞) → S1

the same open book. Defining the binding sum M ⊞M ′ by pairing γ0 with γ′0 and γ∞ with
γ′∞, we obtain the standard contact T 3. In fact, each of the tight contact tori (T 3, ξn), where

ξn = ker [cos(2πnθ) dx+ sin(2πnθ) dy]

in coordinates (x, y, θ) ∈ S1 × S1 × S1, can be obtained as a binding sum of 2n copies of the
tight S1 × S2; see Figure 5.

Example 2.3. Using the same open book decomposition on the tight S1 × S2 as in Exam-
ple 2.2, one can take only a single copy and perform a binding sum along the two binding
components γ0 and γ∞. The contact manifold produced by this operation is the quotient of
(T 3, ξ1) by the contact involution (x, y, θ) 7→ (−x,−y, θ + 1/2), and is thus the torus bundle
over S1 with monodromy −1. The resulting summed open book on T 3/Z2 has connected
cylindrical pages, empty binding and a single interface torus of the form I(π,ϕ) = {2θ = 0},
inducing a fibration

πϕ : (T 3/Z2) \ I(π,ϕ) → S1 : [(x, y, θ)] 7→

{
y if θ ∈ (0, 1/2),

−y if θ ∈ (1/2, 1).

The following two special cases of summed open books are of crucial importance.

Example 2.4. An ordinary open book can also be regarded as a summed open book: we
simply take N1 and N2 to be empty.
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Figure 5. Two ways of producing tight contact tori from 2n copies of the
tight S1 × S2. At left, copies of S1 × S2 are represented by open books
with two binding components (depicted here through the page) and cylindrical
pages. For each dotted oval surrounding two binding components, we construct
the binding sum to produce the manifold at right, containing 2n special pre-
Lagrangian tori (the black line segments) that separate regions foliated by
cylinders. The results are (T 3, ξn) for n = 1, 2.

Example 2.5. Suppose (Mi, ξi) for i = 1, 2 are closed connected contact 3-manifolds with
supporting open books πi whose pages are diffeomorphic. Then we can set N1 = B1 and N2 =
B2, choose a diffeomorphism B1 → B2 and define M = M1 ⊞M2 accordingly. The resulting
summed open book is called symmetric; observe that it has empty binding, since every
binding component of π1 and π2 has been summed. A simple example of this construction
is (T 3, ξ1) as explained in Example 2.2, and for an even simpler example, summing two open
books with disk-like pages produces the tight S1 × S2.

Remark 2.6. There is a close relationship between summed open books and the notion of open
books with quasi-compatible contact structures, introduced by Etnyre and Van Horn-Morris
[EV11]. A contact structure ξ is said to be quasi-compatible with an open book if it admits
a contact vector field that is positively transverse to the pages and positively tangent to the
binding; if the contact vector field is also positively transverse to ξ, then this is precisely
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the supporting condition, but quasi-compatibility is quite a bit more general, and can allow
e.g. open books with empty binding. A summed open book on a 3-manifold gives rise to an
open book with quasi-compatible contact structure whenever a certain orientation condition
is satisfied: this is the result in particular whenever we construct binding sums of separate
open books that are labeled with signs in such a way that every interface torus separates
a positive piece from a negative piece. Thus the tight 3-tori in Figure 5 are examples, in
this case producing an open book with empty binding (i.e. a fibration over S1) that is quasi-
compatible with all of the contact structures ξn. However, it is easy to construct binding
sums for which this is not possible, e.g. Example 2.3.

We now generalize the discussion to include manifolds with boundary. SupposeM(π,ϕ) is a
closed 3-manifold with summed open book (π, ϕ), which has binding Bϕ and interface I(π,ϕ),
and N ⊂ Bϕ is a component of its binding. For each connected component γ ⊂ N , identify a
tubular neighborhoodN (γ) of γ with a solid torus S1×D, defining coordinates (θ, ρ, φ) ∈ S1×
D, where (ρ, φ) denote polar coordinates5 on the disk D and γ is the subset S1×{0} = {ρ = 0}.
Assume also that these coordinates are adapted to the summed open book, in the sense that
the orientation of γ as a binding component agrees with the natural orientation of S1 × {0},
and the intersections of the pages with N (γ) are of the form {φ = const}. This condition
determines the coordinates up to isotopy. Then we define the blown up manifoldM(π,ϕ,γ) from

M(π,ϕ) by replacing N (γ) = S1×D with S1×[0, 1]×S1, using the same coordinates (θ, ρ, φ) on
the latter, i.e. the binding circle γ is replaced by a 2-torus, which now forms the boundary of
M(π,ϕ,γ). If ξ(π,ϕ) is a contact structure on M(π,ϕ) supported by (π, ϕ), then we can define an
appropriate contact structure ξ(π,ϕ,γ) on M(π,ϕ,γ) as follows. Since γ is a positively transverse
knot, the contact neighborhood theorem allows us to choose the coordinates (θ, ρ, φ) so that

ξ(π,ϕ) = ker
(
dθ + ρ2dφ

)

in a neighborhood of γ. This formula also gives a well defined distribution on M(π,ϕ,γ), but

the contact condition fails at the boundary {ρ = 0}. We fix this by making a C0-small change
in ξ(π,ϕ) to define a contact structure of the form

ξ(π,ϕ,γ) = ker [dθ + g(ρ) dφ] ,

where g(ρ) = ρ2 for ρ outside a neighborhood of zero, g′(ρ) > 0 everywhere and g(0) = 0.
Performing the above operation at all connected components γ ⊂ N ⊂ Bϕ yields a com-

pact manifold M(π,ϕ,N), generally with boundary, carrying a still more general decomposition
determined by the data (π, ϕ,N), which we’ll call a blown up summed open book. We
define its interface to be the original interface I(π,ϕ), and its binding is

B(ϕ,N) = Bϕ \N.

There is a natural diffeomorphism

M(π,ϕ) \Bϕ =M(π,ϕ,N) \
(
B(ϕ,N) ∪ ∂M(π,ϕ,N)

)
,

so the fibration πϕ : M(π,ϕ) \
(
Bϕ ∪ I(π,ϕ)

)
→ S1 carries over to M(π,ϕ,N) \ (B(ϕ,N) ∪ I(π,ϕ) ∪

∂M(π,ϕ,N)), and can then be extended smoothly to the boundary to define a fibration

π(ϕ,N) :M(π,ϕ,N) \
(
B(ϕ,N) ∪ I(π,ϕ)

)
→ S1.

5Throughout this paper, we use polar coordinates (ρ, φ) on subdomains of C with the angular coordinate φ
normalized to take values in S1 = R/Z, i.e. the actual angle is 2πφ.
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We will again refer to the connected components of the fibers of π(ϕ,N) as the pages of
(π, ϕ,N), and orient them in accordance with the co-orientations induced by the fibration.
Their closures are immersed surfaces which occasionally may have pairs of boundary compo-
nents that coincide as oriented 1-manifolds, e.g. this can happen whenever two binding circles
within the same connected open book are summed to each other.

Note that the fibration π(ϕ,N) :M(π,ϕ,N)\
(
B(ϕ,N) ∪ I(π,ϕ)

)
→ S1 is not enough information

to fully determine the blown up open book (π, ϕ,N), as it does not uniquely determine the
“blown down” manifold M(π,ϕ). Indeed, M(π,ϕ) determines on each boundary torus T ⊂
∂M(π,ϕ,N) a distinguished basis

{mT , ℓT } ⊂ H1(T ),

where ℓT is a boundary component of a page and mT is determined by the meridian on
a small torus around the binding circle to be blown up. Two different manifolds M(π,ϕ)

may sometimes produce diffeomorphic blown up manifolds M(π,ϕ,N), which will however have
different meridians mT on their boundaries. Similarly, each interface torus T ⊂ I(π,ϕ) inherits
a distinguished basis

{±mT , ℓT } ⊂ H1(T )

from the binding sum operation, with the difference that the meridian mT is only well defined
up to a sign.

The binding sum of an open book π : M \ B → S1 along components N1 ∪ N2 ⊂ B can
now also be understood as a two step operation, where the first step is to blow up N1 and N2,
and the second is to attach the resulting boundary tori to each other via a diffeomorphism
determined by Φ : νN1 → νN2. One can choose a supported contact structure on the blown up
open book which fits together smoothly under this attachment to reproduce the construction
of ξ(π,ϕ,N) described above.

Definition 2.7. A blown up summed open book (π, ϕ,N) is called irreducible if the fibers
of the induced fibration π(ϕ,N) are connected.

In the irreducible case, the pages can be parametrized in a single S1-family, e.g. an ordinary
connected open book is irreducible, but a symmetric summed open book is not. Any blown
up summed open book can however be decomposed uniquely into irreducible subdomains

M(π,ϕ,N) =M1
(π,ϕ,N) ∪ . . . ∪M

ℓ
(π,ϕ,N),

where each piece M i
(π,ϕ,N) for i = 1, . . . , ℓ is a compact manifold, possibly with boundary,

defined as the closure in M(π,ϕ,N) of the region filled by some smooth S1-family of pages.

Thus M i
(π,ϕ,N) carries a natural blown up summed open book of its own, whose binding and

interface are subsets of Bϕ and I(π,ϕ) respectively, and ∂M
i
(π,ϕ,N) ⊂ I(π,ϕ) ∪ ∂M(π,ϕ,N). One

can also write
M(π,ϕ,N) = M̌1

(π,ϕ,N) ⊞ . . .⊞ M̌ ℓ
(π,ϕ,N),

where the manifolds M̌ i
(π,ϕ,N) also naturally carry blown up summed open books and can be

obtained from M i
(π,ϕ,N) by blowing down ∂M i

(π,ϕ,N) ∩ I(π,ϕ).

Definition 2.8. Given a blown up summed open book (π, ϕ,N) on a manifold M(π,ϕ,N) with
boundary, a Giroux form for (π, ϕ,N) is a contact form λ on M(π,ϕ,N) with Reeb vector
field Xλ satisfying the following conditions:

(1) Xλ is positively transverse to the interiors of the pages,
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(2) Xλ is positively tangent to the boundaries of the closures of the pages,
(3) kerλ on each interface or boundary torus T ⊂ I(π,ϕ) ∪ ∂M(π,ϕ,N) induces a character-

istic foliation with closed leaves homologous to the meridian mT .

We will say that a contact structure on M(π,ϕ,N) is supported by (π, ϕ,N) whenever it is
the kernel of a Giroux form. By the procedure described above, one can easily take a Giroux
form for the underlying open book π :M \B → S1 and modify it near B to produce a Giroux
form for the blown up summed open book on M(π,ϕ,N). Moreover, the same argument that
proves uniqueness of contact structures supported by open books (cf. [Etn06, Prop. 3.18])
shows that any two Giroux forms are homotopic to each other through a family of Giroux
forms. We thus obtain the following uniqueness result for supported contact structures.

Proposition 2.9. Suppose M(π,ϕ,N) is a compact 3-manifold with boundary, with a contact
structure ξ(π,ϕ,N) supported by the blown up summed open book (π, ϕ,N), and (M(π,ϕ,N), ξ(π,ϕ,N))
admits a contact embedding into some closed contact 3-manifold (M ′, ξ′). If λ is a contact
form on M ′ such that

(1) λ defines a Giroux form on M(π,ϕ,N) ⊂M ′, and
(2) kerλ = ξ′ on M ′ \M(π,ϕ,N),

then ker λ is isotopic to ξ′.

Example 2.10. Suppose Σ is a compact, oriented and connected surface, possibly with
boundary, containing a non-empty multicurve Γ ⊂ Σ such that ∂Σ ⊂ Γ and Γ divides Σ into
two (possibly disconnected) pieces

Σ = Σ+ ∪Γ Σ−.

By Lutz [Lut77], S1 × Σ admits an S1-invariant contact structure ξΓ which is determined
uniquely up to isotopy by the condition that the loops S1 × {z} be positively/negatively
transverse to ξΓ for z ∈ int Σ± and Legendrian for z ∈ Γ. Then (S1×Σ, ξΓ) is supported by a
blown up summed open book with empty binding, interface I = S1 × (Γ \ ∂Σ) and fibration

π : (S1 × Σ) \ I → S1 : (φ, z) 7→

{
φ for z ∈ Σ+,

−φ for z ∈ Σ−.

Indeed, one can write ξΓ as the kernel of a contact form whose Reeb vector field is posi-
tively/negatively transverse to the interior of {∗} × Σ± and admits closed orbits of the form
{∗} × γ for each dividing curve γ ⊂ Γ. (An explicit construction of such a contact form may
be found e.g. in [LW11].) The distinguished meridians at I and ∂(S1 × Σ) are generated by
the Legendrians S1 × {∗}.

2.2. Partially planar domains and planar torsion. We are now ready to state the most
important definitions in this paper.

Definition 2.11. A blown up summed open book on a compact manifold M is called par-

tially planar if M \ ∂M contains a planar page. A partially planar domain is then any
contact 3-manifold (M, ξ) with a supporting blown up summed open book that is partially
planar. An irreducible subdomain

MP ⊂M

that contains planar pages and doesn’t touch ∂M is called a planar piece, and we will refer

to the complementary subdomain M \MP as the padding.
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By this definition, every planar contact manifold is a partially planar domain (with empty
padding), as is the symmetric summed open book obtained by summing together two planar
open books with the same number of binding components (here one can call either side the
planar piece, and the other side the padding). As we’ll soon see, one can also use partially
planar domains to characterize the solid torus that appears in a Lutz twist, or the thickened
torus in the definition of Giroux torsion, as well as many more general objects.

Definition 2.12. We say that a contact 3-manifold (M, ξ) with a closed 2-form Ω contains
an Ω-separating partially planar domain if there exists a partially planar domain (M0, ξ0)
with planar piece MP

0 ⊂ M0 and a contact embedding ι : (M0, ξ0) →֒ (M, ξ) such that for
every interface torus T of M0 lying in MP

0 ,
∫
T
ι∗Ω = 0. We say that the domain is fully

separating if this is true for all choices of Ω.

Note that in general, a 2-torus T embedded in a closed oriented 3-manifold M satisfies∫
T
Ω = 0 for all closed 2-forms Ω on M if and only if T separates M . In a partially planar

domain, any interface torus in the interior of the planar piece is necessarily non-separating,
thus the fully separating condition implies that there are no such interface tori, and each
component of the boundary of the planar piece also separates (cf. Definition 1.3).

We now come to the definition of a new symplectic filling obstruction.

Definition 2.13. For any integer k ≥ 0, a contact manifold (M, ξ), possibly with boundary,
is called a planar torsion domain of order k (or briefly a planar k-torsion domain)
if it is supported by a partially planar blown up summed open book (π, ϕ,N) with a planar
piece MP ⊂M satisfying the following conditions:

(1) The pages in MP have k + 1 boundary components.

(2) The padding M \MP is not empty.
(3) (π, ϕ,N) is not a symmetric summed open book (cf. Example 2.5).

We say that a contact 3-manifold (M, ξ) has (perhaps Ω-separating or fully separating)
planar k-torsion if it admits a (perhaps Ω-separating or fully separating) contact embedding
of a planar k-torsion domain.

Remark 2.14. The planar piece of a planar 0-torsion domain has no interior interface tori
and only one boundary component, thus planar 0-torsion is always fully separating. It is
easy to see from examples (cf. Example 2.15) that this is not true for k ≥ 1. Observe also
that whenever (M, ξ) is closed and connected and contains a fully separating partially planar
domain M0 ⊂M , one of the following must be true:

(i) (M0, ξ) is a planar torsion domain,
(ii) M0 = M and the interface is empty, i.e. (M, ξ) is supported by an ordinary planar

open book,
(iii) M0 =M and it carries a symmetric summed open book with disk-like pages.

In the last case, (M, ξ) is contactomorphic to the tight S1 × S2 (see Example 2.5), which
is planar. We thus conclude that under these assumptions, (M, ξ) always either has planar
torsion or is planar.

Example 2.15. The S1-invariant contact manifold (S1 × Σ, ξΓ) from Example 2.10 is a
partially planar domain whenever Σ \ Γ has a connected component Σ0 of genus zero with
Σ0∩∂Σ = ∅. In this case S1×Σ0 is the planar piece, and S

1×Σ is also a planar torsion domain
unless the blown up summed open book from Example 2.10 is symmetric, which would mean
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S1 × D

(T 3/Z2) \ N (K)

Figure 6. Schematic representations of two planar torsion domains as de-
scribed in Example 2.16.

∂Σ = ∅ and Σ \ Γ has exactly two connected components, which are diffeomorphic to each
other. Some special cases are shown in Figures 3 and 4.

Example 2.16. More generally than the S1-invariant examples described above, blown up
summed open books can always be represented by schematic pictures as in Figure 6, which
shows two examples of planar torsion domains, each with the order labeled within the pla-
nar piece. Here each picture shows a surface Σ containing a multicurve Γ: each connected
component Σ0 ⊂ Σ \ Γ then represents an irreducible subdomain with pages diffeomorphic
to Σ0, and the components of Γ represent interface tori (labeled in the picture by I). Each
irreducible subdomain may additionally have binding circles, shown in the picture as circles
with the label B. The information in these pictures, together with a specified monodromy
map for each component of Σ \ Γ, determine a blown up summed open book and supported
contact structure uniquely up to contactomorphism. If we take these particular pictures with
the assumption that all monodromy maps are trivial, then the first shows a solid torus S1×D
with an overtwisted contact structure that makes one full twist along a ray from the center
(the binding B) to the boundary. The other picture shows the complement of a solid torus in
the torus bundle T 3/Z2 from Example 2.3. More precisely, one can construct it by taking a
loop K ⊂ T 3/Z2 transverse to the pages in that example, modifying the contact structure ξ
near K by a full Lutz twist, and then removing a smaller neighborhood N (K) of K on which ξ
makes a quarter twist. Note that the appearance of genus in this picture is a bit misleading;
due to the interface torus in the interior of the bottom piece, it has planar pages with three
boundary components.

We can now proceed toward the proof of Theorem 3.

Definition 2.17. A Lutz tube is the solid torus S1×D with coordinates (θ, ρ, φ), where (ρ, φ)
are polar coordinates on the closed unit disk D ⊂ C, together with the contact structure ξ
defined as the hyperplane field

(2.1) ξ = ker [f(ρ) dθ + g(ρ) dφ]

for some pair of smooth functions f, g such that the path

[0, 1] → R2 \ {0} : ρ 7→ (f(ρ), g(ρ))
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1 + ǫ −ǫ

ρ1

ρ2

Figure 7. The path ρ 7→ (f(ρ), g(ρ)) used to define the contact form on Lǫ
(for the Lutz tube at the left and Giroux torsion domain at the right) in the
proof of Prop. 2.19.

makes exactly one half-turn (counterclockwise) about the origin, moving from the positive to
the negative x-axis. (See Figure 1.)

Definition 2.18. A Giroux torsion domain is the thickened torus [0, 1] × T 2 with coor-
dinates (ρ, φ, θ) ∈ [0, 1] × S1 × S1, together with the contact structure ξ defined via these
coordinates as in (2.1), where the path ρ 7→ (f(ρ), g(ρ)) makes one full (counterclockwise)
turn about the origin, beginning and ending on the positive x-axis. (See Figure 2.)

Proposition 2.19. If L ⊂M is a Lutz tube in a closed contact 3-manifold (M, ξ), then any
open neighborhood of L contains a planar 0-torsion domain. Similarly if L is a Giroux torsion
domain, then any open neighborhood of L contains a planar 1-torsion domain.

Proof. Suppose L ⊂ M is a Lutz tube. Then for some ǫ > 0, an open neighborhood of L
contains a region identified with

Lǫ := S1 × D1+ǫ,

where Dr denotes the closed disk of radius r and ξ = ker λǫ for a contact form

λǫ = f(ρ) dθ + g(ρ) dφ

with the following properties (see Figure 7, left):

(1) f(0) > 0 and g(0) = 0,
(2) f(1) < 0 and g(1) = 0,
(3) f(ρ)g′(ρ)− f ′(ρ)g(ρ) > 0 for all ρ > 0,
(4) g′(1 + ǫ) = 0,
(5) f(1 + ǫ)/g(1 + ǫ) ∈ Z.

Setting D(ρ) := f(ρ)g′(ρ)− f ′(ρ)g(ρ), the Reeb vector field defined by λǫ in the region ρ > 0
is

Xǫ =
1

D(ρ)

[
g′(ρ)∂θ − f ′(ρ)∂φ

]
,

and at ρ = 0, Xǫ =
1

f(0)∂θ. Thus Xǫ in these coordinates depends only on ρ and its direction

is always determined by the slope of the path ρ 7→ (f(ρ), g(ρ)) in R2; in particular, Xǫ points
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in the −∂φ-direction at ρ = 1 + ǫ, and in the +∂φ-direction at some other radius ρ0 ∈ (0, 1).
We can choose f and g without loss of generality so that these are the only radii at which Xǫ

is parallel to ±∂φ.
We claim now that Lǫ is a planar 0-torsion domain with planar piece LPǫ := S1 × Dρ0 .

Indeed, LPǫ can be obtained from the open book on the tight 3-sphere with disk-like pages by
blowing up the binding: the pages in the interior of LPǫ are defined by {θ = const}. Similarly,
the θ-level sets in the closure of Lǫ \ L

P
ǫ form the pages of a blown up open book, obtained

from an open book with cylindrical pages. The condition f(1 + ǫ)/g(1 + ǫ) ∈ Z implies that
the characteristic foliation on T := ∂Lǫ has closed leaves homologous to a primitive class
mT ∈ H1(T ), which together with the homology class of the Reeb orbits on T forms a basis of
H1(T ). Thus our chosen contact form λǫ is a Giroux form for some blown up summed open
book. (Note that the monodromy of the blown up open book in Lǫ \ L

P
ǫ is not trivial since

the distinguished meridians on ∂Lǫ and ∂L
P
ǫ are not homologous.)

The argument for Giroux torsion is quite similar, so we’ll only sketch it: given L = [0, 1]×
T 2 ⊂M , we can expand L slightly on both sides to create a domain

Lǫ = [−ǫ, 1 + ǫ]× T 2,

with a contact form λǫ that induces a suitable characteristic foliation on ∂Lǫ and whose
Reeb vector field points in the ±∂φ-direction at ρ = −ǫ, ρ = 1 + ǫ and exactly two other
radii 0 < ρ1 < ρ2 < 1 (see Figure 7, right). This splits Lǫ into three pieces, of which
LPǫ := {ρ ∈ [ρ1, ρ2]} is the planar piece of a planar 1-torsion domain, as it can be obtained
from an open book with cylindrical pages and trivial monodromy by blowing up both binding
components. The padding now consists of two separate blown up open books with cylindrical
pages and nontrivial monodromy. �

Proof of Theorem 3. The only claim in the theorem that doesn’t follow immediately from
Prop. 2.19 is that (M, ξ) must be overtwisted if it contains a planar 0-torsion domain M0.
One can see this as follows: note first that if we write

M0 =MP
0 ∪M ′

0,

where MP
0 is the planar piece and M ′

0 = M0 \MP
0 is the padding, then M ′

0 carries a blown
up summed open book with pages that are not disks (which means (M0, ξ) is not the tight
S1 × S2). If the pages in M ′

0 are surfaces with positive genus and one boundary component,
then one can glue one of these together with a page in MP

0 to form a convex surface Σ ⊂M0

whose dividing set is ∂MP
0 ∩Σ. The latter is the boundary of a disk in Σ, so Giroux’s criterion

(see [Gir01, Théorème 4.5(a)] or [Gei08, Prop. 4.8.13]) implies the existence of an overtwisted
disk near Σ.

In all other cases the pages Σ in M ′
0 have multiple boundary components

∂Σ = CP ∪ C ′,

where we denote by CP the connected component situated near the interface ∂MP
0 , and C ′ =

∂Σ \CP . We can then find overtwisted disks by constructing a particular Giroux form using
a small variation on the Thurston-Winkelnkemper construction as described e.g. in [Etn06,
Theorem 3.13]. Namely, choose coordinates (s, t) ∈ (1/2, 1] × S1 on a collar neighborhood of
each component of ∂Σ and define a 1-form λ1 on Σ with the following properties:

(1) dλ1 > 0
(2) λ1 = (1 + s) dt near each component of C ′
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(3) λ1 = (−1 + s) dt near CP

Observe that all three conditions cannot be true unless C ′ is non-empty, due to Stokes’s
theorem. Now following the construction described in [Etn06], one can produce a Giroux
form λ on M ′

0 which annihilates some boundary parallel curve ℓ near ∂MP
0 in a page, and

fits together smoothly with some Giroux form in MP
0 , so that kerλ is a supported contact

structure and is isotopic to ξ by Prop. 2.9. Then ℓ is the boundary of an overtwisted disk. �

3. Holomorphic summed open books

3.1. Technical background. We begin by collecting some definitions and background re-
sults on punctured holomorphic curves that will be important for understanding the remainder
of the paper.

A stable Hamiltonian structure on an oriented 3-manifold M is a pair H = (λ, ω)
consisting of a 1-form λ and 2-form ω such that dω = 0, λ∧ω > 0 and kerω ⊂ ker dλ. Given
this data, we define the co-oriented 2-plane distribution ξ = ker λ and nowhere vanishing
vector field X, called the Reeb vector field, which is determined by the conditions

ω(X, ·) ≡ 0, λ(X) ≡ 1.

The conditions on λ and ω imply that ω|ξ gives ξ the structure of a symplectic vector bundle
over M , and this distribution with its symplectic structure is preserved by the flow of X. As
an important special case, if λ is a contact form, then one can define a stable Hamiltonian
structure in the form H = (λ, h dλ) for any smooth function h : M → (0,∞) such that
dh ∧ dλ ≡ 0. Then ξ is a positive and co-oriented contact structure, and X is the usual
contact geometric notion of the Reeb vector field: we will often denote it in this case by Xλ,
since it is uniquely determined by λ.

For the rest of this section, assume H = (λ, ω) is a stable Hamiltonian structure with the
usual attached data ξ and X. We say that an almost complex structure J on R × M is
compatible with H if it satisfies the following conditions:

(1) The natural R-action on R×M preserves J .
(2) J∂t ≡ X, where ∂t denotes the unit vector in the R-direction.
(3) J(ξ) = ξ and ω(·, J ·) defines a symmetric, positive definite bundle metric on ξ.

Denote by J (H) the (non-empty and contractible) space of almost complex structures com-
patible with H. Note that if λ is contact then J (H) depends only on λ; we will in this case
say that J is compatible with λ.

A periodic orbit γ of X is determined by the data (x, T ), where x : R → M satisfies
ẋ = X(x) and x(T ) = x(0) for some T > 0. We sometimes abuse notation and identify
γ with the submanifold x(R) ⊂ M , though technically the period is also part of the data
defining γ. If τ > 0 is the smallest positive number for which x(τ) = x(0), we call it the
minimal period of this orbit, and say that γ = (x, τ) is a simple, or simply covered orbit.
The covering multiplicity of an orbit (x, T ) is the unique integer k ≥ 1 such that T = kτ
for a simple orbit (x, τ).

If γ = (x, T ) is a periodic orbit and ϕtX denotes the flow of X for time t ∈ R, then the
restriction of the linearized flow to ξx(0) defines a symplectic isomorphism

(ϕTX)∗ : (ξx(0), ω) → (ξx(0), ω).

We call γ nondegenerate if 1 is not in the spectrum of this map. More generally, a Morse-

Bott submanifold of T -periodic orbits is a closed submanifold N ⊂ M fixed by ϕTX such
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that for any p ∈ N ,
ker

(
(ϕTX )∗ − 1

)
= TpN.

We will call a single orbit γ = (x, T ) Morse-Bott if it lies on a Morse-Bott submanifold
of T -periodic orbits. Nondegenerate orbits are clearly also Morse-Bott, with N ∼= S1. We
say that the vector field X is Morse-Bott (or nondegenerate) if all of its periodic orbits
are Morse-Bott (or nondegenerate respectively). Since X never vanishes, every Morse-Bott
submanifold N ⊂ M of dimension 2 is either a torus or a Klein bottle. One can show
(cf. [Wen10a, Prop. 4.1]) that in the former case, ifX is Morse-Bott, then every orbit contained
in N has the same minimal period.

To every orbit γ = (x, T ), one can associate an asymptotic operator, which is morally
the Hessian of a certain functional whose critical points are the periodic orbits. To write it
down, choose J ∈ J (H), let x : S1 →M : t 7→ x(T t), choose a symmetric connection ∇ onM
and define

Aγ : Γ(x∗ξ) → Γ(x∗ξ) : η 7→ −J(∇tη − T∇ηX).

One can show that this operator is well defined independently of the choice of connection,
and it extends to an unbounded self-adjoint operator on the complexification of L2(x∗ξ), with
domain H1(x∗ξ). Its spectrum σ(Aγ) consists of real eigenvalues with multiplicity at most 2,
which accumulate only at ±∞. It is straightforward to show that solutions of the equation
Aγη = 0 are given by η(t) = (ϕTtX )∗η(0), thus γ is nondegenerate if and only if 0 6∈ σ(Aγ),
and in general if γ belongs to a Morse-Bott submanifold N ⊂M , then

dimkerAγ = dimN − 1.

Choosing a unitary trivialization Φ of (ξ, J, ω) along the parametrization x : S1 → M
identifies Aγ with a first-order differential operator of the form

(3.1) H1(S1,R2) → L2(S1,R2) : η 7→ −J0η̇ − Sη,

where J0 denotes the standard complex structure on R2 = C and S : S1 → EndR(R
2) is a

smooth loop of symmetric real 2-by-2 matrices. Seen in this trivialization, Aγη = 0 defines
a linear Hamiltonian equation η̇ = J0Sη corresponding to the linearized flow of X along γ,
thus its flow defines a smooth family of symplectic matrices

Ψ : [0, 1] → Sp(2)

for which 1 6∈ σ(Ψ(1)) if and only if γ is nondegenerate. In this case, the homotopy class of
the path Ψ is described by its Conley-Zehnder index µCZ(Ψ) ∈ Z, which we use to define
the Conley-Zehnder index of the orbit γ and of the asymptotic operator Aγ with respect to
the trivialization Φ,

µΦCZ(γ) := µΦCZ(Aγ) := µCZ(Ψ).

Note that in this way, µΦCZ(A) can be defined for any injective operator A : Γ(x∗ξ) → Γ(x∗ξ)
that takes the form (3.1) in a local trivialization. In particular then, even if γ is degenerate,
we can pick any ǫ ∈ R \ σ(Aγ) and define the “perturbed” Conley-Zehnder index

µΦCZ(γ − ǫ) := µΦCZ(Aγ − ǫ) := µCZ(Ψǫ),

where Ψǫ : [0, 1] → Sp(2) is the path of symplectic matrices determined by the equation
(Aγ − ǫ)η = 0 in the trivialization Φ. It is especially convenient to define Conley-Zehnder
indices in this way for orbits that are degenerate but Morse-Bott: then the discreteness of the
spectrum implies that for sufficiently small ǫ > 0, the integer µΦCZ(γ ± ǫ) depends only on γ,
Φ and the choice of sign.
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The eigenfunctions of Aγ are nowhere vanishing sections e ∈ Γ(x∗ξ) and thus have well de-

fined winding numbers windΦ(e) with respect to any trivialization Φ. As shown in [HWZ95a],
all sections in the same eigenspace have the same winding, thus defining a function

σ(Aγ) → Z : µ 7→ windΦ(µ),

where we set windΦ(µ) := windΦ(e) for any nontrivial e ∈ ker(Aγ − µ). In fact, [HWZ95a]
shows that this function is nondecreasing and surjective: counting with multiplicity there are
exactly two eigenvalues µ ∈ σ(Aγ) such that windΦ(µ) equals any given integer. It is thus
sensible to define the integers,

αΦ
−(γ − ǫ) = max{windΦ(µ) | µ ∈ σ(Aγ − ǫ), µ < 0},

αΦ
+(γ − ǫ) = min{windΦ(µ) | µ ∈ σ(Aγ − ǫ), µ > 0},

p(γ − ǫ) = αΦ
+(γ − ǫ)− αΦ

−(γ − ǫ).

Note that the parity p(γ − ǫ) does not depend on Φ, and it always equals either 0 or 1 if
ǫ 6∈ σ(Aγ). In this case, the Conley-Zehnder index can be computed as

(3.2) µΦCZ(γ − ǫ) = 2αΦ
−(γ − ǫ) + p(γ − ǫ) = 2αΦ

+(γ − ǫ)− p(γ − ǫ).

Given H = (λ, ω) and J ∈ J (H), fix c0 > 0 sufficiently small so that (ω + c dλ)|ξ > 0 for
all c ∈ [−c0, c0], and define

T = {ϕ ∈ C∞(R, (−c, c)) | ϕ′ > 0}.

For ϕ ∈ T , we can define a symplectic form on R×M by

(3.3) ωϕ = ω + d(ϕλ),

where ω and λ are pulled back through the projection R×M →M to define differential forms
on R×M , and ϕ : R → (−c, c) is extended in the natural way to a function on R×M . Then
any J ∈ J (H) is compatible with ωϕ in the sense that ωϕ(·, J ·) defines a Riemannian metric
on R×M . We therefore consider punctured pseudoholomorphic curves

u : (Σ̇, j) → (R×M,J)

where (Σ, j) is a closed Riemann surface with a finite subset of punctures Γ ⊂ Σ, Σ̇ := Σ \ Γ,
and u is required to satisfy the finite energy condition

(3.4) E(u) := sup
ϕ∈T

∫

Σ̇
u∗ωϕ <∞.

An important example is the following: for any closed Reeb orbit γ = (x, T ), the map

uγ : R× S1 → R×M : (s, t) 7→ (Ts, x(T t))

is a finite energy J-holomorphic cylinder (or equivalently punctured plane), which we call the
trivial cylinder over γ. More generally, we are most interested in punctured J-holomorphic
curves u : Σ̇ → R×M that are asymptotically cylindrical, in the following sense. Define the
standard half cylinders

Z+ = [0,∞) × S1 and Z− = (−∞, 0] × S1.

We say that a smooth map u : Σ̇ → R×M is asymptotically cylindrical if the punctures
can be partitioned into positive and negative subsets

Γ = Γ+ ∪ Γ−
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such that for each z ∈ Γ±, there is a Reeb orbit γz = (x, T ), a closed neighborhood Uz ⊂ Σ
of z and a diffeomorphism ϕz : Z± → Uz \ {z} such that for sufficiently large |s|,

(3.5) u ◦ ϕz(s, t) = exp(Ts,x(Tt)) hz(s, t),

where hz is a section of ξ along uγz with hz(s, t) → 0 for s→ ±∞, and the exponential map
is defined with respect to any choice of R-invariant connection on R ×M . We often refer to
the punctured neighborhoods Uz \ {z} or their images in R×M as the positive and negative
ends of u, and we call γz the asymptotic orbit of u at z.

Definition 3.1. Suppose N ⊂ M is a submanifold which is the union of a family of Reeb
orbits that all have the same minimal period. Consider an asymptotically cylindrical map
u : Σ̇ → R × M with punctures Γ+ ∪ Γ− ⊂ Σ and corresponding asymptotic orbits γz
with covering multiplicities kz ≥ 1 for each z ∈ Γ±. Then if k±N ≥ 0 denotes the sum of
the multiplicities kz for all punctures z ∈ Γ± at which γz lies in N , we shall say that u
approaches N with total multiplicity k±N at its positive or negative ends respectively.

Every asymptotically cylindrical map defines a relative homology class in the following
sense. Suppose γ = {(γ1,m1), . . . , (γN ,mN )} is an orbit set, i.e. a finite collection of distinct
simply covered Reeb orbits γi paired with positive integers mi. This defines a 1-dimensional
submanifold of M ,

γ̄ = γ1 ∪ . . . ∪ γN ,

together with homology classes

[γ] = m1[γ1] + . . . +mN [γN ]

in both H1(M) and H1(γ̄). Given two orbit sets γ
+ and γ

− with [γ+] = [γ−] ∈ H1(M),
denote by H2(M,γ+ − γ

−) the affine space over H2(M) consisting of equivalence classes of
2-chains C in M with boundary ∂C in γ̄

+∪ γ̄
− representing the homology class [γ+]− [γ−] ∈

H1(γ̄
+ ∪ γ̄

−), where C ∼ C ′ whenever C − C ′ is the boundary of a 3-chain in M . Now, the

projection of any asymptotically cylindrical map u : Σ̇ → R ×M to M can be extended as
a continuous map from a compact surface with boundary (the circle compactification of Σ̇)
to M , which then represents a relative homology class

[u] ∈ H2(M,γ+ − γ
−)

for some unique choice of orbit sets γ+ and γ
−.

As is well known (cf. [Hof93,HWZ96a,HWZ96b]), every finite energy J-holomorphic curve
with nonremovable punctures is asymptotically cylindrical if the contact form is Morse-Bott.
Moreover in this case, the section hz in (3.5), which controls the asymptotic approach of u
to γz at z ∈ Γ±, either is identically zero or satisfies a formula of the form6

(3.6) hz(s, t) = eµs(eµ(t) + r(s, t)),

where µ ∈ σ(Aγ) with ±µ < 0, eµ is a nontrivial eigenfunction in the µ-eigenspace, and the
remainder term r(s, t) ∈ ξx(Tt) decays to zero as s→ ±∞. It follows that unless hz ≡ 0, which
is true only if u is a cover of a trivial cylinder, u has a well defined asymptotic winding

about γz,
windΦz (u) := windΦ(eµ),

6The asymptotic formula (3.6) is a stronger version of a somewhat more complicated formula originally
proved in [HWZ96a,HWZ96b]. The stronger version is proved in [Mor03], and another exposition is given in
[Sie08].
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which is necessarily either bounded from above by αΦ
−(γz) or from below by αΦ

+(γz), depending
on the sign z ∈ Γ±. We say that this winding is extremal whenever the bound is not strict.

Denote byM(J) the moduli space of unparametrized finite energy punctured J-holomorphic

curves in R×M : this consists of equivalence classes of tuples (Σ, j,Γ, u), where Σ̇ = Σ \ Γ is

the domain of a pseudoholomorphic curve u : (Σ̇, j) → (R×M,J), and we define (Σ, j,Γ, u) ∼
(Σ′, j′,Γ′, u′) if there is a biholomorphic map ϕ : (Σ̇, j) → (Σ̇′, j′) such that u = u′ ◦ϕ. We as-

sign to M(J) the natural topology defined by C∞
loc-convergence on Σ̇ and C0-convergence

up to the ends. It is often convenient to abuse notation by writing equivalence classes
[(Σ, j,Γ, u)] ∈ M(J) simply as u when there is no danger of confusion.

If u ∈ M(J) has asymptotic orbits {γz}z∈Γ that are all Morse-Bott, then a neighborhood
of u in M(J) can be described as the zero set of a Fredholm section of a Banach space bundle
(see e.g. [Wen10a]). We say that u is Fredholm regular if this section has a surjective
linearization at u, in which case a neighborhood of u in M(J) is a smooth finite dimensional
orbifold. Its dimension is then equal to its virtual dimension, which is given by the index

of u,

(3.7) ind(u) := −χ(Σ̇) + 2cΦ1 (u) +
∑

z∈Γ+

µΦCZ(γz − ǫ)−
∑

z∈Γ−

µΦCZ(γz + ǫ),

where ǫ > 0 is any small positive number, Φ is an arbitrary choice of unitary trivialization of
ξ along all the asymptotic orbits γz, and we abbreviate

cΦ1 (u) := cΦ1 (u
∗T (R×M)),

where the latter denotes the relative first Chern number with respect to Φ of the complex
vector bundle u∗T (R×M) → Σ̇. Since T (R×M) splits into the direct sum of ξ with a trivial
complex line bundle, this Chern number is the same as cΦ1 (u

∗ξ), which can be computed by
counting the zeroes of a generic section of u∗ξ that is nonzero and constant at infinity with
respect to Φ.

We say that an almost complex structure J ∈ J (H) is Fredholm regular if all somewhere
injective curves in M(J) are Fredholm regular. As shown in [Dra04] or the appendix of
[Bou06], the set of Fredholm regular almost complex structures is of second category in
J (H); one therefore often refers to them as generic almost complex structures.

It is sometimes convenient to have an alternative formula for ind(u) in the case where u is
immersed. Indeed, the linearization of the Fredholm operator that describesM(J) near u acts

on the space of sections of u∗T (R×M), which then splits naturally as T Σ̇⊕Nu, whereNu → Σ̇
is the normal bundle, defined so that it matches ξ at the asymptotic ends of u. As explained
e.g. in [Wen10a], the restriction of the linearization to Nu defines a linear Cauchy-Riemann
type operator

DN
u : Γ(Nu) → Γ(HomC(T Σ̇, Nu)),

called the normal Cauchy-Riemann operator at u, and the Fredholm index of this oper-
ator is precisely ind(u). Thus whenever u is immersed, we can compute ind(u) directly from
the punctured version of the Riemann-Roch formula proved in [Sch95]:

(3.8) ind(DN
u ) = χ(Σ̇) + 2cΦ1 (Nu) +

∑

z∈Γ+

µΦCZ(γz − ǫ)−
∑

z∈Γ−

µΦCZ(γz + ǫ).

Finally, let us briefly summarize the intersection theory of punctured J-holomorphic curves
introduced by R. Siefring [Sie11]. Given any asymptotically cylindrical smooth maps u : Σ̇ →



32 CHRIS WENDL

R×M and v : Σ̇′ → R×M , there is a symmetric pairing

u ∗ v ∈ Z

with the following properties:

(1) u ∗ v depends only on the asymptotic orbits of u and v and the relative homology
classes [u] and [v].

(2) If u and v represent curves in M(J) with non-identical images, then their algebraic
count of intersections u • v satisfies 0 ≤ u • v ≤ u ∗ v. In particular, u ∗ v = 0 implies
that u and v never intersect.

The first property amounts to homotopy invariance: it implies that u0 ∗ v = u1 ∗ v whenever
u0 and u1 are connected to each other by a continuous family of curves uτ ∈ M(J) with
fixed asymptotic orbits. The second property gives a sufficient condition for two curves to
have disjoint images, but this condition is not in general necessary : sometimes one may have
0 = u • v < u ∗ v if u and v have an asymptotic orbit in common, and one must then
expect intersections to emerge from infinity under generic perturbations. The number u ∗ v
can also be defined when u and v are holomorphic buildings in the sense of [BEH+03], so
that it satisfies a similar continuity property under convergence of curves to buildings. The
computation of u ∗ v is then a sum of the intersection numbers between corresponding levels,
plus some additional nonnegative terms that count “hidden” intersections at the breaking
orbits.

Remark 3.2. The version of homotopy invariance described above assumes that u and v vary
as asymptotically cylindrical maps with fixed asymptotic orbits, but if any of the orbits belong
to Morse-Bott families, one can define an alternative version of u ∗ v that permits the orbits
to move continuously. This more general theory is sketched in the last section of [Wen10a]. In
general, the intersection number defined in this way is greater than or equal to u ∗ v, because
it counts additional nonnegative contributions for intersections that may emerge from infinity
as the asymptotic orbits move. It’s useful to observe however that in the situation we will
consider, both versions agree: in particular, if u and v are disjoint curves with u ∗ v = 0 and
a common positive asymptotic orbit that is (for both curves) simply covered and belongs to
a Morse-Bott torus that doesn’t intersect the images of u and v, then no new intersections
can appear under a perturbation that moves the orbit (independently for both curves). This
follows from an easy computation of asymptotic winding numbers using the definitions given
in [Wen10a].

Similarly, if u ∈ M(J) is somewhere injective, one can define the integer δ(u) ≥ 0, which
algebraically counts the self-intersections of u after perturbing away its critical points, but
in the punctured case this need not be homotopy invariant. One fixes this by introducing
the asymptotic contribution δ∞(u) ∈ Z, which is also nonnegative and counts “hidden”
self-intersections that may emerge from infinity under generic perturbations. We then have

0 ≤ δ(u) ≤ δ(u) + δ∞(u),

and the punctured version of the adjunction formula takes the form

(3.9) u ∗ u = 2 [δ(u) + δ∞(u)] + cN (u) + [σ̄(u)−#Γ] ,
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where σ̄(u) is an integer that depends only on the asymptotic orbits and satisfies σ̄(u) ≥ #Γ,
and cN (u) is the constrained normal Chern number, which can be defined as7

(3.10) cN (u) = cΦ1 (u)− χ(Σ̇) +
∑

z∈Γ+

αΦ
−(γz + ǫ)−

∑

z∈Γ−

αΦ
+(γz − ǫ).

Observe that cN (u) also depends only on the asymptotic orbits {γz}z∈Γ and the relative
homology class [u].

3.2. An existence and uniqueness theorem. We now prove a theorem on holomorphic
open books which lies in the background of all the results that were stated in §1. The setup is
as follows. Assume (M ′, ξ) is a closed 3-manifold with a positive, co-oriented contact structure,
and it contains a compact 3-dimensional submanifold M ⊂ M ′, possibly with boundary, on
which ξ is supported by a partially planar blown up summed open book

π̌ = (π̌, ϕ̌, Ň).

We will denote its binding and interface by B and I respectively, and denote the induced
fibration by

π :M \ (B ∪ I) → S1.

Denote the irreducible subdomains by Mi for i = 0, . . . , N , so

M =M0 ∪M1 ∪ . . . ∪MN

for some N ≥ 0. If Bi and Ii denote the intersections of B and I respectively with the
interior of Mi, then the restriction of π to the interior of Mi \ (Bi ∪ Ii) extends smoothly to
its boundary as a fibration

πi :Mi \ (Bi ∪ Ii) → S1.

Denote by gi ≥ 0 the genus of the fibers of πi, and assume without loss of generality that M0

is a planar piece, thus g0 = 0 and M0 ∩ ∂M = ∅; in particular ∂M0 ⊂ I.

Definition 3.3. Given the above setup, an integer m ∈ N and an almost complex structure J
compatible with some contact form on (M ′, ξ), we shall say that a finite energy J-holomorphic

curve u : Σ̇ → R×M ′ is subordinate to π0 up to multiplicity m if the following conditions
hold:

• u is not a cover of a trivial cylinder,
• All positive ends of u approach Reeb orbits in B0 ∪ I0 ∪ ∂M0,
• Each positive asymptotic orbit of u in B0 has covering multiplicity at most m.

Moreover, u is strongly subordinate to π0 if the following also holds:

• At its positive ends, u approaches each connected component of B0 ∪ ∂M0 with total
multiplicity at most 1, and each connected component of I0 with total multiplicity at
most 2.

See Definition 3.1 for an explanation of the term total multiplicity. Note that the above
condition allows the total multiplicity at any given component of B0∪I0∪∂M0 to be 0, which
would mean that the curve has no asymptotic orbits in that component.

7The version of cN (u) defined in (3.10) is adapted to the condition that homotopies in M(J) are required
to fix asymptotic orbits. A more general definition is given in [Wen10a] (see also Remark 3.2).
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Theorem 7. For any numbers τ0 > 0 and m0 ∈ N, the contact manifold (M ′, ξ) with subdo-
main M ⊂ M ′ carrying the blown up summed open book π̌ described above admits a Morse-
Bott contact form λ and compatible Fredholm regular almost complex structure J with the
following properties.

(1) The contact structure ker λ is isotopic to ξ.
(2) On M , λ is a Giroux form for π̌.
(3) The components of I ∪ ∂M are all Morse-Bott submanifolds, while the Reeb orbits

in B are nondegenerate and elliptic, and their covers for all multiplicities up to m0

have Conley-Zehnder index 1 with respect to the natural trivialization determined by
the pages.

(4) All Reeb orbits in B0 ∪ I0 ∪ ∂M0 have minimal period at most τ0, while every other
closed orbit of Xλ in M ′ has minimal period at least 1.

(5) For each component Mi with gi = 0, the fibration πi : Mi \ (Bi ∪ Ii) → S1 admits a
C∞-small perturbation π̂i : Mi \ (Bi ∪ Ii) → S1 such that the interior of each fiber
π̂−1
i (τ) for τ ∈ S1 lifts uniquely to an R-invariant family of properly embedded surfaces

S(i)
σ,τ ⊂ R×Mi, (σ, τ) ∈ R× S1,

which are the images of embedded finite energy J-holomorphic curves

u(i)σ,τ = (a(i)τ + σ, F (i)
τ ) : Σ̇i → R×Mi,

all of them Fredholm regular with index 2, and with only positive ends.
(6) A finite energy J-holomorphic curve u in R × M ′ parametrizes one of the planar

surfaces S
(i)
σ,τ described above whenever either of the following holds:

• u is strongly subordinate to π0,
• u is somewhere injective, subordinate to π0 up to multiplicity m0 and intersects
the interior of M0.

In addition to the applications treated in §4, Theorem 7 implies a wide range of existence
results for finite energy foliations, e.g. it could be used to reduce the construction in [Wen08]
to a few lines, after observing that every overtwisted contact structure is supported by a
variety of summed open books with only planar pages. The proof of the theorem will occupy
the remainder of §3.2.

3.2.1. A family of stable Hamiltonian structures. The first step in the proof is to construct
a specific almost complex structure on R ×M for which all pages of π̌ admit holomorphic
lifts. We will follow the approach in [Wen10c] and refer to the latter for details in a few
places where no new arguments are required. The idea is to present each subdomain Mi as
an abstract open book that supports a stable Hamiltonian structure which is contact near
B ∪ I ∪ ∂M and integrable elsewhere.

We must choose suitable coordinate systems near each component of the binding, interface
and boundary. Choose r > 0 and let Dr ⊂ R2 denote the closed disk of radius r. For each
binding circle γ ⊂ B, choose a small tubular neighborhood N (γ) and identify it with the solid
torus S1 × Dr with coordinates (θ, ρ, φ), where (ρ, φ) denote polar coordinates on Dr. If r is
sufficiently small then we can arrange these coordinates so that the following conditions are
satisfied:

• γ = S1 × {0}, with the natural orientation of S1 matching the co-orientation of ξ
along γ
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• π(θ, ρ, φ) = φ on N (γ) \ γ
• ξ = ker(dθ + ρ2 dφ)

Similarly, for each connected component T ⊂ ∂M , let N̂ (T ) ⊂ M ′ denote a neighborhood

that is split into two connected components by T , and denote N (T ) = N̂ (T ) ∩M . Identify

N̂ (T ) with S1 × [−r, r]× S1 with coordinates (θ, ρ, φ) such that:

• N (T ) = S1 × [0, r]× S1

• For each φ0 ∈ S1 the oriented loop S1 × {0, φ0} in T is positively transverse to ξ
• π(θ, ρ, φ) = φ on N (T )
• ξ = ker(dθ + ρ dφ)

Finally, we choose two coordinate systems for neighborhoods N (T ) of each interface torus
T ⊂ I, assuming that T divides N (T ) into two connected components

N (T ) \ T = N+(T ) ∪ N−(T ).

Choose an identification of N (T ) with S1 × [−r, r]× S1 and denote the resulting coordinates
by (θ+, ρ+, φ+), which we arrange to have the following properties:

• T = S1 × {0} × S1, N+(T ) = S1 × (0, r]× S1 and N−(T ) = S1 × [−r, 0) × S1

• For each φ0 ∈ S1 the oriented loop S1 × {0, φ0} in T is positively transverse to ξ
• π(θ+, ρ+, φ+) = φ+ on N+(T ) and π(θ+, ρ+, φ+) = −φ+ + c on N−(T ) for some
constant c ∈ S1

• ξ = ker(dθ+ + ρ+ dφ+)

Given these coordinates, it is natural to define a second coordinate system (θ−, ρ−, φ−) by

(3.11) (θ−, ρ−, φ−) = (θ+,−ρ+,−φ+ + c).

Then the coordinates (θ−, ρ−φ−) satisfy minor variations on the properties listed above: in
particular ξ = ker(dθ− + ρ− dφ−) and π(θ−, ρ−, φ−) = φ− on N−(T ). In the following, we
will use separate coordinates on the two components of N (T ) \ T , denoting both by (θ, ρ, φ):

(θ, ρ, φ) :=

{
(θ+, ρ+, φ+) on N+(T ),

(θ−, ρ−, φ−) on N−(T ).

Then π(θ, ρ, φ) = φ and ξ = ker(dθ + ρ dφ) everywhere on N (T ) \ T . Observe that these

coordinates on N+(T ) or N−(T ) separately can be extended smoothly to the closures N+(T )

and N−(T ), though in particular the two φ-coordinates are different where they overlap at T .

Notation. For any open and closed subset N ⊂ B ∪ I ∪ ∂M , we shall in the following
denote by N (N) the union of all the neighborhoods N (γ) and N (T ) constructed above for
the connected components γ, T ⊂ N . Thus for example,

N (B ∪ I ∪ ∂M)

denotes the union of all of them.

The complement M \ N (B ∪ I ∪ ∂M) is diffeomorphic to a mapping torus. Indeed, let
P denote the closure of π−1(0) ∩ (M \ N (B ∪ I ∪ ∂M)), a compact surface whose boundary
components are in one to one correspondence with the connected components of N (B ∪ I ∪
∂P ) \ I. The monodromy map of the fibration π defines a diffeomorphism ψ : P → P , which
preserves connected components and without loss of generality has support away from ∂P ,
so we define the mapping torus

Pψ = (R× P )/ ∼,
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where (t + 1, p) ∼ (t, ψ(p)). This comes with a natural fibration φ : Pψ → S1 which is
trivial near the boundary, so for a sufficiently small collar neighborhood U ⊂ P of ∂P , a
neighborhood of ∂Pψ can be identified with S1 × U . Choose positively oriented coordinates
on each connected component of U

(θ, ρ) : U → [r − δ, r + δ) × S1

for some small δ > 0. This defines coordinates (φ, θ, ρ) on a collar neighborhood of ∂Pψ =
S1 × ∂P , so identifying these for ρ ∈ (r − δ, r] with the (θ, ρ, φ) coordinates chosen above on
the corresponding components of N (B ∪I ∪∂M) \I defines an attaching map, such that the
union

Pψ ∪ N (B ∪ I ∪ ∂M)

is diffeomorphic to M , and the φ-coordinate, which is globally defined outside of B ∪ I,
corresponds to the fibration π :M \ (B ∪ I) → S1.

Choose a number δ′ > δ with r − δ′ > 0, and for each of the coordinate neighborhoods in
N (B ∪ I ∪ ∂M) \ I, define a 1-form of the form

λ0 = f(ρ) dθ + g(ρ) dφ,

with smooth functions f, g : [0, r] → R chosen so that

(1) kerλ0 = ξ on a smaller neighborhood of B ∪ I ∪ ∂M .
(2) For N (I) \ I, f(ρ) and g(ρ) extend smoothly to [−r, r] as even and odd functions

respectively.
(3) The path [0, r] → R2 : ρ 7→ (f(ρ), g(ρ)) moves through the first quadrant from the

positive real axis to (0, 1) and is constant for ρ ∈ [r − δ, r].
(4) The function

D(ρ) := f(ρ)g′(ρ)− f ′(ρ)g(ρ)

is positive and f ′(ρ) is negative for all ρ ∈ (0, r − δ).
(5) g(ρ) = 1 for all ρ ∈ [r − δ′, r].

Some possible pictures of the path ρ 7→ (f(ρ), g(ρ)) ∈ R2 (with extra conditions that will
be useful in the proof of Lemma 3.7) are shown in Figure 8. Note that the functions f and
g must generally be chosen individually for each connected component of N (B ∪ I ∪ ∂M).
Extend λ0 over M ′ \M so that ker λ0 = ξ on this region, and extend it over Pψ as λ0 = dφ.
The kernel ξ0 := kerλ0 is then a confoliation on M ′: it is contact outside of M and near
B ∪ I ∪ ∂M , while integrable and tangent to the fibers on Pψ. In particular λ0 is contact in
the region {ρ < r − δ} near B ∪ I ∪ ∂M , and its Reeb vector field here is

(3.12) X0 =
g′(ρ)

D(ρ)
∂θ −

f ′(ρ)

D(ρ)
∂φ,

which is positively transverse to the pages {φ = const} and reduces to ∂φ for ρ ∈ [r − δ′, r],
which contains the region where Pψ and N (B ∪ I ∪ ∂M) overlap.

Proceeding as in [Wen10c], choose next a 1-form α on Pψ such that dα is positive on the
fibers and, in the chosen coordinates (φ, θ, ρ) near ∂Pψ, α takes the form

α = (1− ρ) dθ,

where we assume r > 0 is small enough so that 1 − ρ > 0 when r ∈ [r − δ, r + δ). Then if
ǫ > 0 is sufficiently small, the 1-form

λǫ := dφ+ ǫα
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is contact on Pψ. We extend it to the rest of M ′ by setting λǫ = λ0 on M ′ \M , and on
N (B ∪ I ∪ ∂M),

λǫ = fǫ(ρ) dθ + gǫ(ρ) dφ,

where the functions fǫ, gǫ : [0, r] → R satisfy

(1) (fǫ(ρ)), gǫ(ρ)) = (f(ρ), g(ρ)) for ρ ≤ r − δ′,
(2) gǫ(ρ) = 1 and f ′ǫ(ρ) < 0 for ρ ∈ [r − δ′, r − δ],
(3) (fǫ(ρ), gǫ(ρ)) = (ǫ(1− ρ), 1) for ρ ∈ [r − δ, r],
(4) fǫ → f and gǫ → g in C∞ as ǫ→ 0.

Now λǫ is a contact form everywhere on M ′, and λǫ → λ0 in C∞ as ǫ → 0. Denote the
corresponding contact structure by

ξǫ = kerλǫ.

The Reeb vector field Xǫ of λǫ is defined by the obvious analogue of (3.12) near B ∪I ∪ ∂M ,
is independent of ǫ on M ′ \M , and on Pψ is determined uniquely by the conditions

dα(Xǫ, ·) ≡ 0, dφ(Xǫ) + ǫα(Xǫ) ≡ 1.

It follows that as ǫ → 0, Xǫ converges to a smooth vector field X0 that matches (3.12) near
B ∪ I ∪ ∂M and on Pψ is determined by

(3.13) dα(X0, ·) ≡ 0 and dφ(X0) ≡ 1.

Observing that Xǫ is always positively transverse to the pages {φ = const}, and applying
Proposition 2.9, we have:

Lemma 3.4. For ǫ > 0 sufficiently small, ξǫ is a contact structure on M ′ isotopic to ξ, and
λǫ is a Giroux form for π̌.

In order to turn λǫ into a stable Hamiltonian structure, we define an exact taming form
as follows. For each coordinate neighborhood in N (B ∪ I ∪ ∂M) \ I, fix a smooth function
h : [r − δ′, r − δ] → R such that h′ < 0, h(ρ) = f(ρ) + c for ρ near r − δ′ and some constant
c ≥ 0, and h(ρ) = 1− ρ for ρ near r − δ. For each interface torus T ⊂ I the function f(ρ) is
the same on N+(T ) as on N−(T ), thus we may assume the same is true of h(ρ) and c. Then

F (ρ) :=





1− ρ for ρ ∈ [r − δ, r],

h(ρ) for ρ ∈ [r − δ′, r − δ],

f(ρ) + c for ρ ∈ [0, r − δ′]

defines a smooth function on [0, r) which, for components of N (I), has a smooth even exten-
sion to [−r, r]. By choosing f(ρ) appropriately on the components of N (∂M), one can also
arrange c = 0; it will be convenient (e.g. for Lemma 3.7 below) to assume this for N (∂M)
but leave the choice of c ≥ 0 and thus f(ρ) arbitrary everywhere else. Now there is a smooth
1-form α̂ on M ′ such that

α̂ =





α+ dφ on Pψ,

F (ρ) dθ + g(ρ) dφ on N (B ∪ I ∪ ∂M),

λ0 on M ′ \M,

and we use this to define an exact 2-form

ω = dα̂.

We claim that (λ0, ω) defines a stable Hamiltonian structure on M ′. Indeed, outside M
and in a sufficiently small neighborhood of B ∪ I ∪ ∂M this is clear since λ0 is contact and
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ω = dλ0. On the subsets described in coordinates by r− δ′ ≤ ρ < r− δ, λ0 is still contact and

ω = −h′(ρ) dθ∧dρ = h′(ρ)
f ′(ρ)dλ0, thus ω has maximal rank and its kernel is spanned by X0. On

Pψ, dλ0 = 0 and ω = dα annihilates X0 by (3.13), so the claim is proved. In fact, for ǫ > 0
sufficiently small, we still have ω|ξǫ > 0 and the kernel of ω is still spanned by Xǫ, thus we’ve
proved:

Proposition 3.5. For sufficiently small ǫ ≥ 0,

Hǫ := (λǫ, ω)

defines a stable Hamiltonian structure on M ′.

Definition 3.6. Any smooth family Hǫ = (λǫ, ω) of stable Hamiltonian structures on M ′

defined for small ǫ ≥ 0 by the procedure above will be said to be adapted to π̌.

Lemma 3.7. There exists a number τ1 > 0 so that for any τ0 > 0 and m0 ∈ N, a family of
stable Hamiltonian structures Hǫ = (λǫ, ω) on M ′ adapted to π̌ can be constructed so as to
satisfy the following additional conditions on the Reeb vector fields Xǫ:

(1) The interface and boundary tori are Morse-Bott submanifolds, and all closed orbits in
a neighborhood of I ∪ ∂M are also Morse-Bott.

(2) Each connected component γ ⊂ B and all its multiple covers are nondegenerate elliptic
orbits, and their covers up to multiplicity m0 all have Conley-Zehnder index 1 with
respect to the natural trivialization of ξ along γ determined by the coordinates.

(3) All orbits in B0∪I0∪∂M0 have minimal period at most τ0, while all other orbits have
period at least τ1.

Moreover for each ǫ > 0 sufficiently small, the contact form λǫ admits a C∞-small pertur-
bation to a globally Morse-Bott contact form whose Reeb vector field still satisfies the above
conditions.

Proof. We first prove that the stated conditions can be established for X0.
If γ ⊂ B is a binding circle, then γ and all its multiple covers can be made nondegenerate

and elliptic by choosing the functions f and g so that

f ′(ρ)/g′(ρ) ∈ R \Q for all ρ > 0 sufficiently small.

This implies that the slope of the curve ρ 7→ (f(ρ), g(ρ)) ∈ R2 is constant for ρ near 0, and
this slope determines the Conley-Zehnder index of γ; in particular, the stated condition is
satisfied whenever f ′′(0)/g′′(0) is a negative number sufficiently close to 0. Assume this from
now on.

Similarly, we make every orbit in a neighborhood of I ∪ ∂M Morse-Bott by assuming that
in such a neighborhood, λ0 = f(ρ) dθ + g(ρ) dφ where f and g satisfy

f ′(ρ)g′′(ρ)− f ′′(ρ)g′(ρ) > 0.

This means that the path ρ 7→ (f(ρ), g(ρ)) ∈ R2 has nonzero inward angular acceleration as
it winds (counterclockwise) about the origin; clearly for N (I) we can also still safely assume
that f and g are restrictions of even and odd functions respectively on [−r, r].

We now show that the periods of the orbits in B0∪I0∪∂M0 can be made arbitrarily small
compared to all other periods. Observe that by (3.12), the Reeb flow as we’ve constructed it
preserves the concentric tori {ρ = const} in the neighborhood N (B0 ∪I0 ∪ ∂M0), thus it also
preserves M ′ \ N (B0 ∪ I0 ∪ ∂M0). Since the latter has compact closure, there is a positive
lower bound for the periods of all closed orbits in M ′ \ N (B0 ∪ I0 ∪ ∂M0), so it will suffice
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Figure 8. The path ρ 7→ (f(ρ), g(ρ)) ∈ R2 with the extra conditions imposed
in the proof of Lemma 3.7 for the nondegenerate case (left) and Morse-Bott
case (right).

to leave λ0 fixed in this region and reduce the periods in B0 ∪ I0 ∪ ∂M0 while preserving a
lower bound for all other orbits in N (B0 ∪ I0 ∪ ∂M0).

Consider a binding orbit γ ⊂ B0: writing λ0 as f(ρ) dθ + g(ρ) dφ near γ, the period of γ
is f(0) > 0. Choosing sufficiently small constants τ > 0 and ǫ0 > 0, we impose the following
additional conditions on f and g (see Figure 8, left):

• (f(0), g(0)) = (τ, 0),
• For all ρ ∈ (0, r],

g′(ρ)

−f ′(ρ)
≤

1

τ
+ ǫ0 ∈ R \Q,

with equality for ρ ≤ 2r/3.
• For ρ ∈ [2r/3, r], g(ρ) ≥ 2/3 and f(ρ) ≤ τ/3.

Since f ′(ρ)/g′(ρ) is irrational for ρ ≤ 2r/3, all closed orbits in N (γ)\γ are outside this region.
For any ρ0 ∈ [2r/3, r], (3.12) implies that a Reeb orbit in {ρ = ρ0} has its φ-coordinate
increasing at the constant rate of −f ′(ρ0)/D(ρ0). Its period is thus at least

∣∣∣∣
D(ρ0)

f ′(ρ0)

∣∣∣∣ =
∣∣∣∣
f(ρ0)g

′(ρ0)− f ′(ρ0)g(ρ0)

f ′(ρ0)

∣∣∣∣ ≥ |g(ρ0)| −

∣∣∣∣f(ρ0)
g′(ρ0)

f ′(ρ0)

∣∣∣∣

≥
2

3
−

∣∣∣∣
τ

3

(
1

τ
+ ǫ0

)∣∣∣∣ =
2

3
−

1

3
(1 + τǫ0) > 0.

(3.14)

We can therefore keep these periods bounded away from zero while shrinking f(0) = τ to
make both the period at γ and the ratio −f ′(ρ)/g′(ρ) near γ arbitrarily small.

The above requires only a small modification for the neighborhood of a torus T ⊂ I0∪∂M0:
here we need f and g to extend over ρ ∈ [−r, r] as even and odd functions respectively, so
it is no longer possible to fix the slope f ′(ρ)/g′(ρ) throughout ρ ∈ [0, 2r/3]. In fact f ′(0)
must vanish, so we amend the above conditions by allowing them to hold for ρ ∈ [r/3, r], but
requiring the following for ρ ∈ [0, r/3],

• −g′(ρ)/f ′(ρ) ≥ 1/τ + ǫ0,
• f(ρ) ≥ τ(1− ǫ0),
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• g(ρ) ≤ ǫ0.

This modification is shown at the right of Figure 8. Now for ρ ≤ r/3, the lower bound
calculated in (3.14) becomes

∣∣∣∣
D(ρ0)

f ′(ρ0)

∣∣∣∣ ≥
∣∣∣∣f(ρ0)

g′(ρ0)

f ′(ρ0)

∣∣∣∣− |g(ρ0)| ≥ τ(1− ǫ0)

(
1

τ
+ ǫ0

)
− ǫ0

= 1 + ǫ0
(
τ − 2− τǫ20

)
> 0.

Thus we can freely shrink f(0) = τ , the minimal period of the Morse-Bott family at T , while
bounding all other periods away from zero.

Since Xǫ is a small perturbation of X0 outside a neighborhood of B ∪ I ∪ ∂M , the same
results immediately hold for Xǫ: in particular, for any sequence ǫk → 0,M ′\N (B0∪I0∪∂M0)
cannot contain a sequence of orbits of Xǫk with periods below a certain threshold, as a
subsequence of these would converge (by Arzelà-Ascoli) to an orbit of X0. Similarly, this
constraint on the periods will be satisfied by any sufficiently small perturbation of Xǫ. We can
now choose such a perturbation to a globally Morse-Bott contact form as follows: let U ⊂M ′

denote a union of coordinate neighborhoods of the form {|ρ| < r0} near each component of
B ∪ I ∪ ∂M , where r0 > 0 is chosen such that all periodic orbits inside U are Morse-Bott
and none exist near ∂U (because f ′/g′ is irrational). After a generic perturbation of λǫ in
M ′ \ U , every Reeb orbit not fully contained in U becomes nondegenerate (cf. the appendix
of [ABW10]), which means all orbits outside U are nondegenerate, while all the others (which
are inside U) are Morse-Bott by construction. �

Remark 3.8. To satisfy the conditions stated in Theorem 7, we need a version of Lemma 3.7
with τ1 = 1. This can always be achieved by rescaling λǫ by a constant, and thus replacing
Hǫ = (λǫ, ω) by (cλǫ, ω) for some c > 0.

3.2.2. A symplectic cobordism. As a quick detour away from the proof of Theorem 7, we now
explain a construction that will be useful for proving Theorem 4. Namely, we will need to
know that the stable Hamiltonian structures H0 and Hǫ for some ǫ > 0 can be related to each
other by a cylindrical symplectic cobordism that looks standard near the binding.

To simplify the statement of the following result, let us restrict to the special case where
M =M ′ and π :M \B → S1 is an ordinary (not summed or blown up) open book; this will
suffice for the application we have in mind.

Proposition 3.9. There exists a family of stable Hamiltonian structures Hǫ = (λǫ, ω) on M
adapted to the open book π : M \ B → S1 such that [0, 1] ×M admits a symplectic form Ω
with the following properties:

• Ω = ω + d(tλ0) near {0} ×M .
• Ω = d(etλ) near {1} ×M for some contact form λ with ker λ = ξǫ and some ǫ > 0.
• Ω = d(ϕ(t)λ0) on [0, 1] × U for some neighborhood U ⊂ M of B on which λǫ = λ0,
and some smooth function ϕ : [0, 1] → (0,∞) with ϕ′ > 0.

Remark 3.10. We are not claiming that Hǫ in this result can be chosen to make the periods
of binding orbits small as in Lemma 3.7 and Theorem 7. For our application we will not need
this.
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Proof of Prop. 3.9. In (θ, ρ, φ)-coordinates on N (B), we can write λ0 = f(ρ) dθ + g(ρ) dφ
with f and g chosen such that f(ρ) = 1− ρ for ρ near r − δ′. Then setting

F (ρ) =

{
1− ρ for ρ ∈ [r − δ′, r],

f(ρ) for ρ ∈ [0, r − δ′]

and defining α̂ and ω as before, we have ω ≡ dα̂ where α̂ = λ0 on a neighborhood U := {ρ <
r − δ′} of B.

With this stipulation in place, construct the family λǫ as before. Next choose small numbers
ǫ, ǫ1 > 0 and a smooth function β : [0,∞) → [0, ǫ] such that

• β(t) = 0 for t near 0,
• β(t) = ǫ for t ≥ ǫ1.

Define a 1-form λ̂ on [0,∞)×M by

λ̂|(t,p) = λβ(t)|p

for all (t, p) ∈ [0,∞) ×M , and then define

Ω = ω + d(tλ̂)

on [0,∞) × M . Note that ω + d(tλ0) is symplectic on [0, ǫ1] × M if ǫ1 > 0 is sufficiently
small, and Ω is C∞-close to this if ǫ > 0 is also small, implying that Ω is also symplectic on
[0, ǫ1]×M . It is also obviously symplectic on [ǫ1,∞)×M since it then equals

ω + d(tλǫ)

for some ǫ > 0, where λǫ is contact and ω is dλǫ multiplied by a smooth positive function. This
construction thus gives a symplectic form on [0,∞)×M which has the desired form already
near {0}×M and on [0,∞)×U . To define a suitable top boundary for the cobordism, observe

that Ω = d(α̂+ tλ̂), thus the Ω-dual vector field to α̂+ tλ̂ is a Liouville vector field Y :

ιY Ω := α̂+ tλ̂.

We claim that on the hypersurface {T} ×M for T > 0 sufficiently large, dt(Y ) > 0. Indeed,

this is equivalent to the statement that α̂ + tλ̂ defines a positive contact form on {T} ×M ,
which is true if T is large enough since its kernel is then a small perturbation of kerλǫ. Thus
fixing T sufficiently large, {T}×M is a convex boundary component of [0, T ]×M . Moreover
since the primitive of Ω is just (1 + t)λ0 in [ǫ1,∞) × U , the vector field Y takes the simple
form (1 + t)∂t in this region. Using the flow of Y near {T} × M , we can now identify a
neighborhood of this hypersurface in [0, T ]×M symplectically with a domain of the form

((1− ǫ1, 1]×M,d(etλ)),

where λ is a constant multiple of the contact 1-form α̂+Tλǫ, which defines a contact structure
isotopic to ξǫ due to Gray’s theorem. There is thus a diffeomorphism of [0, T ]×M to [0, 1]×M
that transforms Ω into the desired form. �

3.2.3. Non-generic holomorphic curves and perturbation. Returning to the proof of Theo-
rem 7, assume Hǫ = (λǫ, ω) is a family of stable Hamiltonian structures adapted to the blown
up summed open book π̌ on M ⊂ M ′ and satisfying Lemma 3.7. Choose any compatible
almost complex structure J0 ∈ J (H0) which has the following properties in the coordinate
neighborhoods N (B ∪ I ∪ ∂M):

• J0 is invariant under the T 2-action defined by translating the coordinates (θ, φ).
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• dρ(J0∂ρ) ≡ 0.

Observe that ∂ρ ∈ ξ0 always, so the second condition says that J0 maps ∂ρ into the charac-
teristic foliation defined by ξ0 on the torus {ρ = const}. Note also that since ξ0 is tangent
to the fibers of Pψ, these fibers naturally embed into R×M ′ as J0-holomorphic curves. The
construction in [Wen10c, §3] now carries over directly to the present setting and gives the
following result.

Proposition 3.11. For each i = 0, . . . , N , the interior of R × (Mi \ (Bi ∪ Ii)) is foliated by
an R-invariant family of properly embedded surfaces

{S(i)
σ,τ}(σ,τ)∈R×S1

with J0-invariant tangent spaces, where

S(i)
σ,τ ∩ (R× Pψ) = {σ} ×

(
π−1
i (τ) ∩ Pψ

)
,

and its intersection with each connected component of R×N (B∪I∪∂M) can be parametrized
in (θ, ρ, φ)-coordinates by a map of the form

[0,∞)× S1 → R× S1 × (0, r]× S1 : (s, t) 7→ (ai(s) + σ, t, ρi(s), τ).

Here ai : [0,∞) → [0,∞) is a fixed map with ai(0) = 0 and lims→∞ ai(s) = +∞, and
ρi : [0,∞) → (0, r] is a fixed orientation reversing diffeomorphism.

Denote by F
(i)
0 for i = 0, . . . , N the resulting foliation on the interior of R×(Mi \(Bi∪Ii)),

whose leaves can each be parametrized by an embedded finite energy J0-holomorphic curve

u(i)σ,τ : Σ̇i → R×M ′.

The collection of all these curves together with the trivial cylinders over their asymptotic
orbits (which include all orbits in B∪I ∪∂M) defines a J0-holomorphic finite energy foliation
F0 ofM , as defined in [HWZ03,Wen08]. It’s important however to be aware that this foliation
is not generally stable, due to the following index calculation. From now on we assume that
Hǫ has the properties specified in Lemma 3.7.

Proposition 3.12. ind
(
u
(i)
σ,τ

)
= 2− 2gi.

Proof. Let Φ denote the natural trivialization of ξ0 determined by the (θ, ρ, φ)-coordinates

along each of the asymptotic orbits of u
(i)
σ,τ . These orbits are in general a mix of nondegenerate

binding circles γ ⊂ Bi with µΦCZ(γ) = 1 and Morse-Bott orbits that belong to S1-families

foliating I ∪ ∂M . If γ is one of the latter, then we observe that since u
(i)
σ,τ doesn’t intersect

R× (I ∪ ∂M), the asymptotic winding of u
(i)
σ,τ as it approaches γ matches the winding of any

nontrivial section in kerAγ , which is zero in the chosen coordinates. Thus for sufficiently
small ǫ > 0, the two largest negative eigenvalues of Aγ − ǫ both have zero winding, implying
αΦ
−(γ − ǫ) = 0 and p(γ − ǫ) = 1, hence by (3.2),

(3.15) µΦCZ(γ − ǫ) = 2αΦ
−(γ − ǫ) + p(γ − ǫ) = 1.

Since u
(i)
σ,τ projects to an embedding in M ′, it is everywhere transverse to the complex

subspace in T (R ×M ′) spanned by ∂t and X0, though asymptotically u
(i)
σ,τ becomes tangent

to this space. We can thus define a sensible normal bundle N → Σ̇i for u
(i)
σ,τ as follows: let X

denote the smooth vector field onM ′\(B∪I∪∂M) that equals ∂φ in every (θ, ρ, φ)-coordinate
neighborhood (except at {ρ = 0}, where this is not well defined), and X0 everywhere outside
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of this. Then the J0-complex span of this vector field defines a bundle that extends smoothly
over B ∪ I ∪ ∂M , and we define the normal bundle N → Σ̇i to be the restriction of this

bundle to the image of u
(i)
σ,τ . From this construction it is clear that cΦ1 (N) = 0. Now since u

(i)
σ,τ

is embedded, its index is the index of the normal Cauchy-Riemann operator on the bundle
N → Σ̇i, so by (3.8),

ind
(
u(i)σ,τ

)
= χ(Σ̇i) + 2cΦ1 (N) +

∑

γ

µΦCZ(γ − ǫ) = χ(Σi) = 2− 2gi,

where the summation is over all the asymptotic orbits of u
(i)
σ,τ , whose Conley-Zehnder indices

thus cancel out the terms in χ(Σ̇i) resulting from the punctures. �

From this calculation it follows that the higher genus curves in F0 will vanish under generic
perturbations of the data. In contrast, the genus zero curves have exactly the right properties
to apply the following useful perturbation result (cf. [Wen05, Theorem 4.5.44]):

Implicit Function Theorem. Assume M is any closed 3-manifold with stable Hamiltonian
structure H = (λ, ω), J ∈ J (H), and

u =
(
uR, uM

)
: Σ̇ \ Γ → R×M

is a finite energy J-holomorphic curve with positive/negative punctures Γ± ⊂ Σ and the
following properties:

(1) u is embedded and asymptotic to simply covered periodic orbits at each puncture, and
satisfies δ∞(u) = 0.

(2) Σ̇ has genus zero.
(3) All asymptotic orbits γz of u for z ∈ Γ± are either nondegenerate or belong to S1-

parametrized Morse-Bott families foliating tori, and

p(γz ∓ ǫ) = 1

for all z ∈ Γ± and sufficiently small ǫ > 0.
(4) ind(u) = 2.

Then u is Fredholm regular and belongs to a smooth 2-parameter family of embedded curves

u(σ,τ) =
(
uRτ + σ, uMτ

)
: Σ̇ → R×M, (σ, τ) ∈ R× (−1, 1)

with u(0,0) = u, whose images foliate an open neighborhood of u(Σ̇) in R×M . Moreover, the

maps uMτ : Σ̇ →M are all embedded and foliate an open neighborhood of uM (Σ̇) in M , and if
γτz denotes a degenerate Morse-Bott asymptotic orbit of u(σ,τ) for some fixed puncture z ∈ Γ,

then the map τ 7→ γτz parametrizes a neighborhood of γ0z in its S1-family of orbits.

Using this and a simple topological argument in [Wen10c], it follows that whenever gi = 0,

the family u
(i)
σ,τ perturbs smoothly along with any sufficiently small perturbation of J0. In

particular, picking ǫ > 0 small and Jǫ ∈ J (Hǫ) close to J0, there is a corresponding family
of Jǫ-holomorphic curves in R ×Mi that project to a blown up summed open book on Mi

that is C∞-close to the original one. Perturbing λǫ a little bit further outside a suitable
neighborhood of B∪I∪∂M , we can then also turn λǫ into a globally Morse-Bott contact form,
and a corresponding perturbation of Jǫ makes the latter Fredholm regular. This proves the
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existence part of Theorem 7. We will continue to denote the Jǫ-holomorphic pages constructed
in this way by

u(i)σ,τ : Σ̇i → R×Mi,

for all i = 0, . . . , N with gi = 0.

3.2.4. Uniqueness. Despite their obvious instability, the higher genus curves in the foliation
F0 are useful due to the following uniqueness result based on intersection theory. Herem0 ∈ N
denotes the multiplicity bound from Lemma 3.7, which we can assume to be arbitrarily large.

Proposition 3.13. Suppose v : Σ̇ → R × M ′ is a somewhere injective finite energy J0-
holomorphic curve that intersects the interior of R×Mi and has all its positive ends asymptotic
to orbits in B ∪ I ∪ ∂M , where the orbits in Bi each have covering multiplicity at most m0.

Then v parametrizes one of the surfaces S
(i)
σ,τ .

Proof. We use the homotopy invariant intersection number u∗v ∈ Z defined by Siefring [Sie11]

for asymptotically cylindrical maps u and v. If v does not parametrize any leaf of F
(i)
0 , then

its intersection with R×Mi implies that it has at least one isolated positive intersection with

some leaf S
(i)
σ,τ with J0-holomorphic parametrization u

(i)
σ,τ , hence

u(i)σ,τ ∗ v > 0.

By changing τ slightly, we may assume without loss of generality that any ends of u
(i)
σ,τ

approaching Morse-Bott orbits in I ∪ ∂M are disjoint from the positive asymptotic orbits

of v. By homotopy invariance, we can also take advantage of the lack of negative ends for u
(i)
σ,τ

and R-translate it until its image lies entirely in [0,∞)×M ′. We can likewise change v by a
homotopy through asymptotically cylindrical maps so that its intersection with [0,∞)×M ′ lies
entirely in the trivial cylinders over its positive asymptotic orbits, i.e. in [0,∞)×(B∪I∪∂M).
An example of this kind of homotopy is shown in Figure 9. The intersection number above
is then a sum of the form

u(i)σ,τ ∗ v =
∑

γ

u(i)σ,τ ∗ (R× γ),

where the summation is over some collection of orbits γ in B ∪ I ∪ ∂M , and we use R× γ as
shorthand for a J0-holomorphic curve that parametrizes the trivial cylinder over γ. Note that

u
(i)
σ,τ never has an actual intersection with R×γ, so the intersections counted by u

(i)
σ,τ ∗ (R×γ)

are asymptotic, i.e. they are hidden intersections that could potentially emerge from infinity

under small perturbations of the data. Since we’ve arranged for u
(i)
σ,τ and v to have no

Morse-Bott orbits in common, the asymptotic intersections vanish except possibly for orbits
γ ⊂ Bi of covering multiplicity m ≤ m0. As explained in [Sie11, §3.2], each such asymptotic
intersection can be expressed in terms of the difference in the asymptotic winding of them-fold

cover of the end of u
(i)
σ,τ about γ from its maximum possible value, which (by standard results

in [HWZ96a,HWZ95a]) is the winding number of the asymptotic eigenfunction with largest
negative eigenvalue. In the natural trivialization Φ determined by the (θ, ρ, φ)-coordinates,
each of the relevant orbits γ has µΦCZ(γ) = 1 = 2αΦ

−(γ) + 1, hence αΦ
−(γ) = 0 using (3.2).

By construction, the asymptotic winding of u
(i)
σ,τ as it approaches γ is also zero, hence this

winding is extremal, and this implies

u(i)σ,τ ∗ (R × γ) = 0.

This is a contradiction. �
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≃

3/

Figure 9. A homotopy of two asymptotically cylindrical maps, reducing the
computation of the intersection number to the intersection of one holomorphic
curve with the asymptotic trivial cylinders of the other.

The above proof also works for a Jǫ-holomorphic curve if it passes through a region that is
foliated by Jǫ-holomorphic pages. In particular, since we’ve already shown this to be true in
the planar piece M0 for sufficiently small ǫ > 0, we deduce the following parallel result:

Proposition 3.14. For all sufficiently small ǫ > 0, the following holds: if v : Σ̇ → R×M ′ is
a somewhere injective finite energy Jǫ-holomorphic curve that intersects the interior of R×M0

and has all its positive ends asymptotic to orbits in B ∪ I ∪ ∂M , where the orbits in B0 have
covering multiplicity at most m0, then v is a reparametrization of one of the Jǫ-holomorphic

pages u
(0)
σ,τ .

We now prove the remainder of the uniqueness statement in Theorem 7. Choose a sequence
ǫk > 0 converging to zero, denote λk := λǫk and ξk := ker λk, and choose generic almost
complex structures Jk ∈ J (Hǫk) with Jk → J0 in C∞. By small perturbations we can assume
the forms λk are all Morse-Bott and have the properties listed in Lemma 3.7: in particular
the minimal periods of the orbits in B0 ∪ I0 ∪ ∂M0 are bounded by an arbitrarily small
number τ > 0, while all others are at least 1, and the orbits in B0 have Conley-Zehnder

index 1. We can also assume that for sufficiently large k, planar Jk-holomorphic pages u
(i)
σ,τ

in R×Mi exist whenever gi = 0, and hence Prop. 3.14 holds. Now arguing by contradiction,
suppose that for every k, there exists a finite energy Jk-holomorphic curve

vk : (Σ̇k, jk) → (R×M ′, Jk)

which is strongly subordinate to π0 and is (for large k) not equivalent to any of the planar

curves u
(i)
σ,τ . If vk has any positive end asymptotic to an orbit in B0 or I0, then it must

intersect the interior of R × M0 and Proposition 3.14 already gives a contradiction. We
can therefore assume that the positive ends of vk approach simply covered orbits in distinct
connected components of ∂M0. This implies that they are all somewhere injective.

Lemma 3.15. A subsequence of vk converges to one of the J0-holomorphic leaves of the
foliation F0.

Proof. We proceed in three steps.
Step 1: Energy bounds. We use the stable Hamiltonian structure Hǫk = (λk, ω) to define

the energy of vk. To be precise, choose c0 > 0 small enough so that ω + d(tλ0) is symplectic
on [−c0, c0]×M

′; the same is then true for all ω+d(tλk) with k sufficiently large, so following
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(3.3) and (3.4), define

Ek(vk) =

∫

Σ̇k

v∗kω + sup
ϕ∈T

∫

Σ̇k

v∗kd(ϕλk),

where T = {ϕ ∈ C∞(R, (−c0, c0)) | ϕ′ > 0}. Since ω is exact, Ek(vk) depends only on the
asymptotic behavior of vk. Now since the positive ends all approach simple orbits in distinct
connected components of ∂M0, the number of ends and sum of their periods are uniformly
bounded, implying a uniform bound on Ek(vk).

Step 2: Genus bounds. After taking a subsequence we may assume that all the curves vk
have the same number of positive and negative punctures. It is still possible however that
the surfaces Σ̇k could have unbounded topology, i.e. their genus could blow up as k → ∞. To
preclude this, we apply the currents version of Gromov compactness, see [Tau98, Prop. 3.3]
or [Hut02, Lemma 9.9]. The key fact is that since Ek(vk) is uniformly bounded, Hk → H0

and Jk → J0, vk as a sequence of currents has a convergent subsequence, and this implies in
particular that the relative homology classes [vk] for this subsequence converge. We now plug
this into the adjunction formula (3.9) for punctured holomorphic curves, which implies

vk ∗ vk ≥ 2 [δ(vk) + δ∞(vk)] + cN (vk) ≥ cN (vk).

Both the right and left hand sides of this expression depend only on [vk] and on certain integer
valued winding numbers of eigenfunctions at the asymptotic orbits of vk. As orbits vary in
a Morse-Bott family that all have the same minimal period, these winding numbers remain
constant, thus by the convergence of [vk], the sequence vk ∗ vk converges to a fixed integer,

implying an upper bound on cN (vk) for large k. The latter can be written as cΦ1 (vk)− χ(Σ̇k)

plus more winding numbers of eigenfunctions, thus every term other than χ(Σ̇k) converges,

and we obtain a uniform upper bound on −χ(Σ̇k), or equivalently, an upper bound on the

genus of Σ̇k.
Step 3: SFT compactness. We can now assume the domains Σ̇k are a fixed surface Σ̇, so

the sequence vk with uniform energy bound Ek(vk) < C satisfies the compactness theorem of
Symplectic Field Theory [BEH+03]. There is one subtle point to be careful of here: since X0

is not a Morse-Bott vector field, it is not clear at first whether the SFT compactness theory
can be applied as Hǫk → H0. What saves us is the fact that vk is asymptotic at +∞ to
orbits with arbitrarily small period: then for energy reasons, we may assume the only orbits
that can appear under breaking or bubbling are other orbits in B0 ∪ I0 ∪ ∂M0, all of which
are Morse-Bott. With this observation, the proof of SFT compactness in [BEH+03] goes
through unchanged. We can thus assume that vk converges to a J0-holomorphic building v∞.
The positive asymptotic orbits of v∞ are all simply covered and lie in distinct connected
components of ∂M0, thus the top level of v∞ contains at least one somewhere injective curve
v+ that is strongly subordinate to π0. Then Prop. 3.13 implies that v+ parametrizes a leaf
of the foliation F0, so it has no negative ends. The same is true for every other top level
component of v∞ unless it is a trivial cylinder, and nontrivial curves must all be distinct
since they approach distinct orbits at their positive ends. It follows that they do not intersect
each other, so there is no possibility of nodes connecting them, and the building must be
disconnected unless it consists of only a single component, namely v+. �

We are now just about done with the proof of Theorem 7: the implicit function the-
orem implies that if the limit v∞ = lim vk has genus zero, then vk is always one of the

Jk-holomorphic pages u
(i)
σ,τ for sufficiently large k. If on the other hand v∞ has genus g > 0,
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then ind(vk) = ind(v∞) = 2 − 2g ≤ 0 by Prop. 3.12, yet vk must be Fredholm regular since
Jk was chosen generically, and this gives a contradiction.

3.3. Deformation and compactness. We now prove a compactness result for families of
holomorphic curves in symplectic manifolds that emerge from the holomorphic pages provided
by Theorem 7.

We recall first that every strong symplectic filling can be completed by attaching a cylindri-
cal end. To be precise, assume (M ′, ξ) is a closed, connected contact 3-manifold with positive
contact form α, and for any two smooth functions f, g :M ′ → [−∞,∞] with g > f , define a
subdomain of the symplectization (R×M ′, d(etα)) by

(3.16) Sgf = {(t,m) ∈ R×M ′ | f(m) ≤ t ≤ g(m) }.

Here we include the cases f ≡ −∞ and g ≡ +∞ so that Sgf may be unbounded. Now suppose

M ′ = ∂W , where (W,ω) is a (not necessarily compact) symplectic manifold with contact
type boundary, and λ is a primitive of ω defined near ∂W such that λ|TM ′ = efα for some
smooth function f : M ′ → R. Then using the flow of the Liouville vector field Y defined by
ιY ω = λ, one can identify a neighborhood ofM ′ in (W,ω) symplectically with a neighborhood

of ∂Sf−∞ in (Sf−∞, d(e
tα)). As a consequence, one can symplectically glue the cylindrical end

(S∞
f , d(e

tα)) to (W,ω) along M ′, giving a noncompact symplectic manifold

(W∞, ω) := (W,ω) ∪M ′ (S∞
f , d(e

tα)),

which necessarily contains the half-symplectization ([T,∞) ×M ′, d(etα)) whenever T ∈ R is
sufficiently large.

Adopting the notation from the setup for Theorem 7, assume now that in addition to
the above, (M ′, ξ) contains a partially planar domain M ⊂ M ′ with irreducible subdomains
M = M0 ∪ . . . ∪MN for N ≥ 0, of which M0 is a planar piece lying in the interior of M .
By Theorem 7, we can then find a Morse-Bott contact form α on M ′ and generic compatible
almost complex structure J+ such that the planar pages in M0 lift to an R-invariant foliation
by properly embedded J+-holomorphic curves in R×M ′, whose asymptotic orbits are simply
covered and have minimal period less than an arbitrarily small number τ0 > 0, while all other
closed orbits of Xα in M ′ have period at least 1. Assume that α is the contact form chosen
for defining the symplectic cylindrical end in (W∞, ω).

Choose an almost complex structure J onW∞ which is compatible with ω, generic onW ⊂
W∞ and matches J+ on S∞

f ⊂W∞. Then every leaf of the J+-holomorphic foliation in R×M0

has an R-translation that can be regarded as a properly embedded surface in S∞
f ⊂ W∞

parametrized by a finite energy J-holomorphic curve. The main idea used for the proofs in §4.1
is to show that these curves generate a moduli space of J-holomorphic curves that must fill the
entirety ofW∞, and leads to a contradiction in any of the situations considered by Theorems 1,
4 and 5. To prove this, we need a deformation result and a corresponding compactness result
to show that the region filled by these curves is open and closed respectively. We shall prove
somewhat more general versions of these results than are immediately needed, as they are
also useful for other applications (e.g. in [NW11,LVW]).

We now generalize the above setup as follows: let u+ : Σ̇ → W∞ denote one of the
J-holomorphic planar pages living in the cylindrical end of (W∞, ω), and pick any open
neighborhood U ⊂M ′ and T > 0 such that

u+(Σ̇) ⊂ [T,∞)× U .
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Choose any data (α′, ω′, J ′) with the following properties:

• α′ is a Morse-Bott contact form on M ′ that matches α on U ∪N (B0 ∪I0 ∪ ∂M0) and
has only Reeb orbits of period at least 1 outside of N (B0 ∪ I0 ∪ ∂M0)

• ω′ is a sympectic form on W∞ that matches d(etα′) on S∞
f

• J ′ is an ω′-compatible almost complex structure on W∞ that has an R-invariant
restriction

J ′
+ := J ′|S∞

f

that is generic and compatible with α′ and matches J+ on R×(U ∪N (B0∪I0∪∂M0)),
and J ′ is generic on W .

The advantage of this generalization is that fairly arbitrary changes to the data can be
accommodated outside a neighborhood of a single page, which is useful for instance in the
adaptation of these arguments for weak fillings (cf. [NW11]). Let M∗(J ′) denote the moduli
space of all unparametrized somewhere injective finite energy J ′-holomorphic curves in W∞,
which is non-empty by construction since it contains u+, and define

M∗
0(J

′) ⊂ M∗(J ′)

to be the connected component of this space containing u+. The curves u ∈ M∗
0(J

′) share all
homotopy invariant properties of the planar J+-holomorphic pages in R×M ′, in particular:

(1) ind(u) = 2,
(2) u ∗ u = δ(u) + δ∞(u) = 0.

It follows that all curves in M∗
0(J

′) are embedded. This situation is a slight variation on
the setup that was considered in [ABW10, §4], only with the added complication that curves
in M∗

0(J
′) may have two ends approaching the same Morse-Bott Reeb orbit, which presents

the danger of degeneration to holomorphic buildings with multiply covered components. The
required deformation result is however exactly the same: it depends on the fact that a neigh-
borhood of each embedded curve u ∈ M∗

0(J
′) can be described by sections of its normal

bundle which are nowhere vanishing, because they satisfy a Cauchy-Riemann type equation
and have vanishing first Chern number with respect to certain special trivializations at the
ends.

Proposition 3.16 ([ABW10, Theorem 4.7]). The moduli space M∗
0(J

′) is a smooth 2-
dimensional manifold containing only proper embeddings that never intersect each other: in
particular they foliate an open subset of W∞.

The compactness result we need is a variation on [ABW10, Theorem 4.8], but somewhat
more complicated due to the appearance of multiple covers. For the statement of the result,
recall that the compactification in [BEH+03] for the space of finite energy holomorphic curves
in an almost complex manifold with cylindrical ends consists of so-called stable holomorphic
buildings, which have one main level and potentially multiple upper and lower levels, each of
which is a (perhaps disconnected) nodal holomorphic curve. We will be considering sequences
of curves in W∞ that stay within a bounded distance of the positive end, so there will be no
lower levels in the limit. We shall use the term “smooth holomorphic curve” to mean a holo-
morphic building with only one level and no nodes. The following variation on Definition 3.3
will be convenient.

Definition 3.17. A J ′-holomorphic curve u : Σ̇ → W∞ will be called subordinate to π0
if it has only positive ends, all of which approach Reeb orbits in B0 ∪ I0 ∪ ∂M0, with total
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multiplicity at most 1 for each connected component of B0 ∪ ∂M0 and at most 2 for each
connected component of I0.

Observe that all the curves in M∗
0(J

′) are subordinate to π0. The intersection argument
in the proof of Prop. 3.13 now implies:

Lemma 3.18. If u ∈ M∗(J) is subordinate to π0, then u ∗ u+ = 0.

Theorem 8. Choose an open subset W0 ⊂ W that contains ∂W and has compact closure,
and let W∞

0 = W0 ∪M ′ S∞
f . Then there is a finite set of index 0 curves Θ(W0) ⊂ M∗(J ′)

subordinate to π0 and with images in W
∞

0 such that the following holds. Any sequence of
curves uk ∈ M∗

0(J
′) with images in W

∞

0 has a subsequence convergent (in the sense of
[BEH+03]) to one of the following:

(1) A curve in M∗
0(J

′)
(2) A holomorphic building with empty main level and one nontrivial upper level consisting

of a single connected curve that can be identified (up to R-translation) with a curve
in M∗

0(J
′) with image in S∞

f

(3) A J ′-holomorphic building whose upper levels contain only covers of trivial cylinders,
and main level consists of a connected double cover of a curve in Θ(W0)

(4) A J ′-holomorphic building whose upper levels contain only covers of trivial cylin-
ders, and main level contains at most two connected components, which are curves
in Θ(W0).

Proof. Assume uk is a sequence of either index 2 curves in M∗
0(J

′) or index 0 curves subor-

dinate to π0 with images in W
∞

0 and only simply covered asymptotic orbits. By [BEH+03],
uk has a subsequence converging to a stable J ′-holomorphic building u∞. The main idea is
to add up the indices of all the connected components of u∞ and use genericity to derive
restrictions on the configuration of u∞. To facilitate this, we introduce a variation on the
usual Fredholm index formula (3.7): for any finite energy holomorphic curve v : Σ̇ → R×M ′

with positive and negative asymptotic orbits {γz}z∈Γ± , choose a small number ǫ > 0 and
trivializations Φ of the contact bundle along each γz and define the constrained index

înd(v) = −χ(Σ̇) + 2cΦ1 (v) +
∑

z∈Γ+

µΦCZ(γz − ǫ)−
∑

z∈Γ−

µΦCZ(γz − ǫ).

The only difference here from (3.7) is that at the negative punctures we take µΦCZ(γz − ǫ)

instead of µΦCZ(γz + ǫ), which geometrically means we compute the virtual dimension of a
space of curves whose negative ends have all their Morse-Bott orbits fixed in place. So

for curves without negative ends înd(v) = ind(v), and the constrained index otherwise has
the advantage of being additive across levels, i.e. if the building u∞ has no nodes, then we
obtain ind(uk) = ind(u∞) if the latter is defined as the sum of the constrained indices for
all its connected components. Observe that trivial cylinders over Reeb orbits always have
constrained index 0. If u∞ does have nodes, the formula remains true after adding 2 for each
node in the building, so we then take this as a definition of the index for a nodal curve or
nodal holomorphic building. We now proceed in several steps.

Step 1: Curves in upper levels. We claim that every connected component of u∞ either
has no negative ends or is a cover of a trivial cylinder (in an upper level). Indeed, curves in
the main level obviously have no negative ends, and if v is an upper level component with
negative ends, the smallness of the periods in B0∪I0∪∂M0 constrains these to approach other
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orbits in B0 ∪I0 ∪ ∂M0, as otherwise v would have negative energy. Then if v does not cover
a trivial cylinder, an intersection argument carried out in [ABW10, Proof of Theorem 4.8]
implies that v must intersect u+, contradicting Lemma 3.18 above. The key idea here is to
consider the asymptotic winding numbers that control holomorphic curves approaching orbits
at B0 ∪I0∪∂M0, which differ for positive and negative ends at each of these orbits, and thus
force v to intersect u+ in the projection to M ′. We refer to [ABW10] for the details; note
that a similar argument has also appeared in [Mom08].

Step 2: Indices of connectors. Borrowing some terminology from Embedded Contact Ho-
mology, we refer to branched multiple covers of trivial cylinders as connectors. These can
appear in the upper levels of u∞, but can never have any curves above them except for further
covers of trivial cylinders, due to Step 1. Since the positive ends of u∞ approach any given
orbit in B0∪I0∪∂M0 with total multiplicity at most 2, only the following types of connectors
can appear, both with genus zero:

• Pair-of-pants connectors: these have one positive end at a doubly covered orbit and
two negative ends at the same simply covered orbit.

• Inverted pair-of-pants connectors: with two positive ends at the same simply covered
orbit and one negative end at its double cover.

The second variety will be especially important, and we’ll refer to it for short as an inverted

connector. As we computed in (3.15), all of the simply covered Morse-Bott orbits under
consideration have µΦCZ(γ − ǫ) = 1 in the natural trivialization, and in fact exactly the same
argument produces the same result for their multiple covers. We thus find that the constrained
Fredholm index is 0 for a pair-of-pants connector and 2 for the inverted variant.

Step 3: Indices of multiple covers. Suppose v is a connected component of u∞ which is
not a cover of a trivial cylinder: then it has no negative ends, and all its positive ends must
approach orbits in B0 ∪ I0 ∪ ∂M0 with total multiplicity at most 2. Thus if v is a k-fold
cover of a somewhere injective curve v′, we have k ∈ {1, 2}, and all the asymptotic orbits of
both v and v′ have µΦCZ(γ − ǫ) = 1 in the natural trivialization. Assume k = 2, and label
the positive punctures of v as Γ = Γ1 ∪ Γ2, where a puncture is defined to belong to Γ2 if its
asymptotic orbit is doubly covered, and Γ1 otherwise. For i = 1, 2, let Γ′

i denote the punctures
of v′ that are covered by Γi, so the set of all punctures Γ′ of v′ is Γ′

1 ∪ Γ′
2. Note that in this

situation all the asymptotic orbits of v must have total multiplicity exactly 2, which implies
that all asymptotic orbits of v′ are distinct and simply covered, and we have #Γ2 = #Γ′

2 and
#Γ1 = 2#Γ′

1. Both domains must also have genus zero, so we have

ind(v) = −(2−#Γ) + 2cΦ1 (v) + #Γ = −2 + 2(#Γ′
2 + 2#Γ′

1) + 2kcΦ1 (v
′),

ind(v′) = −(2−#Γ′) + 2cΦ1 (v
′) + #Γ′ = −2 + 2(#Γ′

2 +#Γ′
1) + 2cΦ1 (v

′),

hence

(3.17) ind(v) = k ind(v′) + 2(k − 1)(1 −#Γ2).

This formula also trivially holds if k = 1. This gives a lower bound on ind(v) since ind(v′) is
bounded from below by either 1 (in R×M ′) or 0 (inW∞) due to genericity. Now observe that
whenever Γ2 is non-empty, the doubly covered orbit must connect v to an inverted connector,
whose constrained index is 2, so for k = 2 we have

(3.18) ind(v) +
∑

C

înd(C) = k ind(v′) + 2(k − 1) ≥ 2,
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where the sum is over all inverted connectors that connect to v along doubly covered breaking
orbits.

Step 4: Indices of bubbles. There may also be closed components in the main level of u∞:
these are J ′-holomorphic spheres v which are either constant (ghost bubbles) or are k-fold
covers of somewhere injective spheres v′ for some k ∈ N. In the latter case, (3.17) also holds
with #Γ2 = 0, implying ind(v) ≥ 0, and the inequality is strict whenever k > 1.

If v is a ghost bubble, then ind(v) = −2, but then the stability condition implies the
existence of at least three nodes connecting v to other components; let us refer to nodes of
this type as ghost nodes. There is then a graph with vertices representing the ghost bubbles
in u∞ and edges representing the ghost nodes that connect two ghost bubbles together, and
since u∞ has arithmetic genus zero, every connected component of this graph is a tree. Let G
denote such a connected component, with V vertices and Ei edges, which therefore satisfy
V − Ei = 1, and suppose there are also Ee nodes connecting the ghost bubbles represented
by G to nonconstant components; we can think of these as represented by “external” edges
in G. By the stability condition, we have

2Ei +Ee ≥ 3V,

which after replacing Ei by V − 1, becomes Ee − 2 ≥ V . Then the total contribution to
ind(u∞) from all the ghost bubbles and ghost nodes represented by G is

−2V + 2(Ei + Ee) = [−2V + (2Ei + Ee)] + Ee ≥ V + (2 + V )

= 2V + 2 ≥ 4,
(3.19)

unless u∞ has no ghost bubbles at all.
Step 5: The total index of u∞. We can now break down ind(u∞) ∈ {0, 2} into a sum of

nonnegative terms and use this to rule out most possibilities. Ghost bubbles are excluded
immediately due to (3.19). Similarly, there cannot be any multiply covered bubbles, because
these imply the existence of at least one node and thus contribute at least 4 to ind(u∞).
The only remaining possibility for multiple covers (aside from connectors) is a component
with only positive ends, whose index together with contributions from attached inverted
connectors is given by (3.18) and is thus already at least 2. In fact, if this component exists
in an upper level, then the underlying simple curve must have index at least 1, implying an
even larger lower bound in (3.18) and hence a contradiction. The remaining possibility, which
occurs in the case ind(u∞) = 2, is therefore that the main level consists only of a connected
double cover, and there are no nodes at all, nor anything other than trivial cylinders and
connectors in the upper levels (Figure 10). The underlying simple curve in the main level has
index 0 and has only simply covered asymptotic orbits, all in separate connected components
of B0 ∪ I0 ∪ ∂M0, thus it is subordinate to π0.

Assume now that u∞ contains no multiply covered components except possibly for con-
nectors. If there is an upper level component v that is not a cover of a trivial cylinder, then
genericty implies ind(v) ≥ 1, and in fact the index must also be even since all the asymptotic
orbits satisfy µΦCZ(γ − ǫ) = 1. Then ind(u∞) = ind(v) = 2 and there are no nodes or inverted
connectors; the latter implies that all positive asymptotic orbits of v must be simply covered.
Then there also cannot be any doubly covered breaking orbits, leaving only the possibility
that v is the only nontrivial component in u∞.

Next assume there are only covers of trivial cylinders in the upper levels, in which case
the main level is necessarily non-empty. Each component in the main level has a nonnegative
even index, so there can be at most one node or one inverted connector in u∞, and only
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Figure 10. The limit building u∞ in a case where all asymptotic orbits have
total multiplicity two, so the main level may be a double cover of an index 0
curve, while the upper level includes connectors and trivial cylinders (the latter
not shown in the picture). The numbers inside each component indicate the
constrained index.

if ind(u∞) = 2. If the main level contains a component v of index 2, then there are no
nodes or inverted connectors. The latter precludes doubly covered breaking orbits, thus there
are no connectors at all, and since v cannot have negative ends, we conclude that u∞ = v
(Figure 11). Otherwise all main level components in u∞ have index 0 and are subordinate
to π0. Examples of the possible configurations are shown in Figures 12–15.

Step 6: Compactness for index 0 curves. If ind(u∞) = 2, then the somewhere injective
index 0 curves that can appear in the building u∞ are all subordinate to π0 and come in two
types:

• Type 1: Curves with only simply covered asymptotic orbits.
• Type 2: Curves with exactly one doubly covered asymptotic orbit and all others
simply covered, and satisfying v ∗ v = 0.

Indeed, the second type can occur as the unique main level curve in u∞ if there is a single
inverted connector in an upper level, attached along the doubly covered orbit (Figure 14). To
see that v ∗ v = 0 for such a curve, we use the continuity of the intersection number under
convergence to buildings, and the fact that uk ∗ uk = 0 since uk ∈ M∗

0(J
′); a computation

shows that the contribution to u∞ ∗ u∞ from trivial cylinders and connectors in the upper
level plus breaking orbits adds up to 0. The index counting argument of the previous steps
shows already that the curves of Type 1 form a compact and hence finite set. To finish the
proof, we must show that the same is true for the Type 2 curves.

Suppose vk is a sequence of Type 2 curves converging to a holomorphic building v∞.
Applying the index counting argument from the previous steps, v∞ cannot contain any nodes
or inverted connectors; the worst case scenario is that the upper levels contain only trivial
cylinders and a single pair-of-pants connector, whose two negative ends connect to two main
level components v1− and v2− that are both Type 1 curves (Figure 16). Since there are finitely
many Type 1 curves, we may assume by genericity of J ′ that no two of them approach a
common orbit in the Morse-Bott families I0, but this must be the case for v1− and v2− as they
are both attached to a connector over an orbit in I0, so we conclude that both are the same
curve, which we’ll call v−. We can rule out this scenario by computing the self-intersection
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2

Figure 11. The limit building u∞ in the simplest case, a
smooth index 2 curve in the main level.
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Figure 12. A
nodal curve with two
index 0 components.
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Figure 13. An-
other nodal curve,
including a bubble.
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Figure 14. An in-
verted connector can
appear in an upper
level.
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γγ

γ γ
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Figure 15. Both
types of connectors
can appear.

number v∞ ∗ v∞, which must a priori equal vk ∗ vk = 0. Once more the connectors, trivial
cylinders and breaking orbits contribute zero in total, so since the main level includes two
copies of v−, we deduce

0 = v∞ ∗ v∞ = 4(v− ∗ v−).

But we can also compute v− ∗ v− directly from the adjunction formula (3.9); indeed,

v− ∗ v− = 2 [δ(v−) + δ∞(v−)] + cN (v−),

where we’ve dropped the last term in (3.9) since all the asymptotic orbits are simple. The
constrained normal Chern number cN (v−) is defined in (3.10) and can be deduced from the
fact that ind(v−) = 0: since all of the relevant orbits satisfy µΦCZ(γ−ǫ) = 1 and αΦ

−(γ+ǫ) = 0,

we find 2cΦ1 (v−) = ind(v−) + χ(Σ̇)−
∑

z∈Γ µ
Φ
CZ(γz − ǫ) = 2− 2#Γ, hence

cN (v−) = cΦ1 (v−)− χ(Σ̇) +
∑

z∈Γ+

αΦ
−(γz + ǫ) = 1−#Γ− (2−#Γ) = −1.

This implies that v− ∗ v− is odd, and is thus a contradiction. �
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0

γγ
2γ

2γ

vk
v1− v2−

Figure 16. A possible limit of the sequence vk.

4. Proofs of the main results

4.1. Non-fillability. We are now in a position to prove the main results on symplectic fillings.

Proof of Theorem 5 and Corollary 4. Given Proposition 3.16 (implicit function theorem) and
Theorem 8 (compactness) above, the result follows from the same argument as in [ABW10].
For completeness let us briefly recall the main idea: if (M, ξ) is a closed contact 3-manifold
which embeds as a non-separating contact type hypersurface into some closed symplectic
4-manifold (W,ω), then by cutting W open along M and gluing together an infinite chain
of copies of the resulting symplectic cobordism between (M, ξ) and itself, we obtain a non-
compact but geometrically bounded symplectic manifold (W, ω) with contact type boundary
(M, ξ). Attaching a cylindrical end and considering the moduli space M0(J) that arises from
a partially planar domain, one can use the monotonicity lemma to prevent the curves in
M0(J) from escaping beyond a compact subset of W, thus the compactness result Theorem 8
applies. In combination with Prop. 3.16, this implies that outside a subset of codimension 2
(the images of finitely many curves from Theorem 8), the set of all points in W filled by
curves in M0(J) must be open and closed, and is therefore everything; since those curves are
confined to a compact subset, this implies W is compact and is thus a contradiction.

By a similar argument one can prove Corollary 4 independently of Theorem 5, for if (W,ω)
is a strong filling with at least two boundary components (M, ξ) and (M ′, ξ′), then the curves
in M0(J) emerging from the cylindrical end at M will foliate W∞ except at a subset of
codimension 2; yet they cannot enter the cylindrical end at M ′ due to convexity, and this is
again a contradiction. �

Proof of Theorem 1. Assume (W,ω) is a strong filling of (M, ξ) and the partially planar do-
main M0 ⊂ M is a planar torsion domain. It therefore has a planar piece MP

0 ⊂ M0, which
is a proper subset of its interior. Combining Prop. 3.16 (implicit function theorem) and The-
orem 8 (compactness) as in the proof of Theorem 5 above, the curves in M0(J) that emerge
from MP

0 in the cylindrical end of W∞ form a foliation of W∞ outside a subset of codimen-
sion 2. We can therefore pick a point p ∈M \MP

0 and find a sequence of curves uk ∈ M0(J)
for k → ∞ whose images contain (k, p) ∈ [T,∞) ×M ⊂ W∞. Applying Theorem 8 again,
these have a subsequence which converges to a J+-holomorphic curve u′ in R×M , whose as-
ymptotic orbits are in the same Morse-Bott families as the curves in M0(J). The uniqueness
statement in the holomorphic open book result (Theorem 7) then implies that u′ is a lift of a
page in the blown up summed open book on M0, which proves that M0 =M , and M0 \M

P
0

consists of a single family of pages diffeomorphic to the planar pages in MP
0 and approaching
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R

T

0

T0

M
M0 BB

Figure 17. The symplectic cobordism used in the proof of Theorem 4, with
the negative end “walled off” by holomorphic pages of an open book. The
almost complex structure in the shaded region is a non-generic one for which
holomorphic open books always exist.

the same Reeb orbits at their boundaries. In other words, M0 is a symmetric summed open
book, which contradicts the definition of a planar torsion domain. �

Proof of Theorem 4. The idea is much the same as in the proof of Theorem 1, but instead of
working in the compact context of a symplectic filling, we work in a noncompact symplectic
cobordism diffeomorphic to R ×M , in which the negative end is “walled off” so that curves
in M0(J) cannot reach it. This wall is created by a family of holomorphic curves, namely
a subset of the generally non-generic family arising from an open book decomposition (see
Figure 17).

Specifically, suppose π :M \B → S1 is an open book decomposition. Recall from Prop. 3.9
that there is a symplectic cobordism (W,Ω) = ([0, 1]×M,Ω) where Ω has the form ω+d(tλ0)
near {0} ×M , d(etλ) near {1} ×M and d(ϕ(t)λ0) in a neighborhood of [0, 1] × B for some
positive increasing function ϕ. Here Hǫ = (λǫ, ω) is a family of stable Hamiltonian structures
adapted to the open book, so ξǫ = kerλǫ for some small ǫ > 0 is a supported contact structure
and λ is a contact form for ξǫ.

Arguing by contradiction, assume (M, ξǫ) contains a planar torsion domain M0 that is
disjoint from B. We can then find a neighborhood U ⊂ M of B such that M0 ⊂ M \ U and
Ω = d(ϕ(t)λ0) on [0, 1]×U . Extend W to a noncompact symplectic manifold as follows: first
attach to {1} ×M a positive cylindrical end that contains a half-symplectization of the form

([T ×∞)×M,d(etα)).
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Note that since {1} × M is a convex boundary component of (W,Ω), we are free here to
choose α as any contact form with kerα = ξǫ: in particular on M0 we can assume it is the
special Morse-Bott contact form provided by Theorem 7, and since M0 ∩ U = ∅, we can also
assume α = λ0 in U and Ω = d(etλ0) on [1,∞) × U . Secondly, attach to {0} ×M a negative
cylindrical end of the form

((−∞, 0] ×M,ω + d(ψ(t)λ0)),

where ψ : (−∞, 0] → R is an increasing function with sufficiently small magnitude to make
the form symplectic. Denote the resulting noncompact symplectic manifold by (W∞, ω).

Recall the special almost complex structure J0 ∈ J (H0) constructed in §3.2, for which all
the pages of π admit J0-holomorphic lifts in R×M . We now can choose an almost complex
structure J on (W∞, ω) that has the following properties:

(1) J is everywhere compatible with ω
(2) J = J0 on both R× U and (−∞, 0]×M
(3) On [T,∞)×M , J is the special almost complex structure compatible with α provided

by Theorem 7.

Now the moduli space M0(J) of J-holomorphic curves emerging from M0 in the positive
end can be defined as in the previous proof. The important new feature is that we also have
J-holomorphic curves inW∞ coming from the J0-holomorphic lifts of pages of the open book:
in fact for some T0 ∈ R sufficiently close to −∞, every point in (−∞, T0] ×M is contained
in such a curve (see Figure 17). The leaves of the foliation in [T,∞) × M0 obviously do
not intersect these curves, so positivity of intersections implies that no curve in M0(J) may
intersect them. It follows that the curves in M0(J) can never enter (−∞, T0] ×M , so the
compactness result Theorem 8 applies, and we conclude as before that M0(J) fills an open
and closed subset of W∞ outside a subset of comdimension 2. But this forces some curve in
M0(J) to enter the negative end eventually, and we have a contradiction. �

Remark 4.1. For an arguably easier proof of Theorem 4, one can present it as a corollary of
Theorem 1 by showing that whenever (M, ξ) is supported by an open book π : M \B → S1

and U ⊂ M is a neighborhood of the binding, (M \ U , ξ) can be embedded into a strongly
fillable contact manifold. This can be constructed by a doubling trick using the binding
sum: if (M ′, ξ′) is supported by an open book that has the same page P as π but inverse
monodromy, then one can construct a larger contact manifold by summing every binding
component in M to a binding component in M ′. The result is a symmetric summed open
book which has a strong symplectic filling homeomorphic to [0, 1] × S1 × P , in which the
natural projection to [0, 1]×S1 forms a symplectic fibration. The details of this construction
are carried out in [LVW]; see also the appendix of [BV].

4.2. Embedded Contact Homology. Our goal in this section is to prove Theorems 2, 2′,
6 and 6′. We begin with a quick review of the essential definitions of Embedded Contact
Homology, mainly following the discussions in [HS06, §11] and [Tau10b].

4.2.1. Review of twisted and untwisted ECH. Assume (M, ξ) is a closed contact 3-manifold
with nondegenerate contact form λ, and J is a generic almost complex structure on R ×M
compatible with λ. We will refer to Reeb orbits as even or odd depending on the parity of
their Conley-Zehnder indices: in dynamical terms, an even orbit is always hyperbolic, while
an odd orbit can be either elliptic or hyperbolic, the latter if and only if its double cover is
even. In §3.1 we defined the notion of an orbit set γ = {(γ1,m1), . . . , (γN ,mN )}, and we
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say that γ is admissible if mi = 1 whenever γi is hyperbolic. Given h ∈ H1(M), choose a
reference cycle, i.e. a 1-cycle ρh in M with [ρh] = h; without loss of generality we can assume
ρh is represented by an embedded oriented knot in M that is not contained in any closed
Reeb orbit. Then adapting the definition of H2(M,γ+ − γ

−) from §3.1, it makes sense to
speak of relative homology classes in H2(M,ρh − γ) for any orbit set γ with [γ] = h.

Given two orbit sets γ
± = {(γ±1 ,m

±
1 ), . . . , (γ

±
N±
,m±

N±
)} and a relative homology class

A ∈ H2(M,γ+ − γ
−) one defines the ECH index I(A) ∈ Z by choosing any trivialization Φ

of ξ along the orbits in γ
± and setting

(4.1) I(A) = cΦ1 (ξ|A) +A •Φ A+

N+∑

i=1

m+

i∑

k=1

µΦCZ(kγ
+
i )−

N−∑

i=1

m−

i∑

k=1

µΦCZ(kγ
−
i ),

where the various symbols are to be interpreted as follows:

• cΦ1 (ξ|A) is the relative first Chern number cΦ1 (u
∗ξ) for any asymptotically cylindrical

map u representing A,
• A •Φ A is the relative self-intersection number, computed as an algebraic count of
intersections of some asymptotically cylindrical representative u with a generic push-
off of u that is pushed in the direction of Φ at the cylindrical ends,

• kγ denotes the k-fold cover of a Reeb orbit γ.

One can check that this expression does not depend on the choice of trivializations Φ. Since
every finite energy J-holomorphic curve u in R×M represents a relative homology class, we
can define the ECH index of u as I(u) := I([u]).

Definition 4.2. A (possibly disconnected) finite energy J-holomorphic curve u : Σ̇ → R×M
is called a flow line if it is a disjoint union of two curves u0 and C, where u0 is embedded,
and C is any collection of trivial cylinders that do not intersect u0.

Hutchings [Hut02] has shown that for generic J , a flow line u always satisfies 1 ≤ ind(u) ≤
I(u). Embedded Contact Homology is defined by counting specifically the flow lines for which
this inequality is an equality. For any subgroup G ⊂ H2(M), define

C̃∗(M,λ;h,G)

to be the free Z-module generated by symbols of the form eAγ, where γ is an admissible
orbit set with [γ] = h and A ∈ H2(M,ρh − γ)/G, meaning A ∼ A′ whenever A−A′ ∈ G. A

differential ∂ : C̃∗(M,λ;h,G) → C̃∗−1(M,λ;h,G) is defined by

∂
(
eAγ

)
=

∑

γ′,A′

#

(
M1

emb(γ,γ
′, A′)

R

)
eA+A

′

γ
′,

where the sum ranges over all admissible orbit sets γ
′ and A′ ∈ H2(M,γ − γ

′)/G, and
M1

emb(γ,γ
′, A′) ⊂ M(J) is the oriented 1-manifold of (possibly disconnected) finite energy

J-holomorphic curves u : Σ̇ → R×M satisfying the following conditions:

(i) I(u) = 1,
(ii) [u] ∼ A′ in H2(M,γ − γ

′)/G,
(iii) u is a flow line in the sense of Definition 4.2.

The orientation of M1
emb(γ,γ

′, A′) is chosen in accordance with [BM04], which requires
first choosing an ordering for all the even orbits in M , then ordering the punctures of any
u ∈ M1

emb(γ,γ
′, A′) accordingly. The signed count above is then finite due to the index
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inequality and compactness theorem in [Hut02].8 These same results together with the gluing
construction of [HT07,HT09] imply that ∂2 = 0, and the resulting homology is denoted by

ẼCH∗(M,λ, J ;h,G). We have two natural choices for the subgroup G: if G = H2(M), then
the terms eA are all trivial and we obtain the usual untwisted Embedded Contact Homology,

ECH∗(M,λ, J ;h) := ẼCH∗(M,λ, J ;h,H2(M)).

At the other end of the spectrum, taking G to be the trivial subgroup leads to the fully twisted
variant of ECH,

ẼCH∗(M,λ, J ;h) := ẼCH∗(M,λ, J ;h, {0}).

Since every nontrivial finite energy J-holomorphic curve in R ×M has at least one positive
puncture, the empty orbit set ∅ always satisfies ∂∅ = 0, and thus represents a homology class
which we call the (untwisted) contact class,

c(λ, J) = [∅] ∈ ECH∗(M,λ, J ; 0).

To define the twisted contact class, we note that for h = 0 there is a canonical choice of
reference cycle ρ0, namely the empty set, so H2(M,ρ0 − ∅) = H2(M) and it is natural to
define

c̃(λ, J) = [e0∅] ∈ ẼCH∗(M,λ, J ; 0).

A chain map U : C̃∗(M,λ;h,G) → C̃∗−2(M,λ;h,G) can be defined by choosing a generic
point p ∈ M and counting index 2 holomorphic curves that pass through the point (0, p),
that is

U
(
eAγ

)
=

∑

γ′,A′

#
(
M2

emb(γ,γ
′, A′; p)

)
eA+A

′

γ
′,

where M2
emb(γ,γ

′, A′; p) consists of J-holomorphic flow lines u with I(u) = 2 and one marked
point which is mapped to the point (0, p). We denote by

U : ECH∗(M,λ, J ;h) → ECH∗−2(M,λ, J ;h)

and

Ũ : ẼCH∗(M,λ, J ;h) → ẼCH∗−2(M,λ, J ;h)

respectively the untwisted and fully twisted variants of the resulting map on homology.
It follows from Taubes’s isomorphism [Tau10a,Tau10b] that none of the above depends on

the choice of λ and J , and the U -map also does not depend on the choice of generic point
p ∈M .

4.2.2. Proof of the vanishing theorems. We now prove Theorems 2 and 2′. Assume (M, ξ)
contains a planar k-torsion domain M0 with planar piece MP

0 ⊂ M0. Note that for some
planar torsion domains, there may be multiple subsets of M0 that could sensibly be called
the planar piece (e.g. M0 could contain multiple planar open books summed together as in
Figure 18), so whenever such an ambiguity exists, we choose MP

0 to make k as small as
possible. Let λ and J denote the special Morse-Bott contact form and compatible Fredholm
regular almost complex structure provided by Theorem 7. Then ∂MP

0 is a non-empty union
of tori

∂MP
0 = T1 ∪ . . . ∪ Tn

8The results in [Hut02] are stated only for a very special class of stable Hamiltonian structures arising from
mapping tori, but they extend to the contact case due to the relative asymptotic formulas of Siefring [Sie08].
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13

Figure 18. A planar torsion domain for which the order is not uniquely
defined: depending on the choice of planar piece, the order could be either 1
or 3.

which are Morse-Bott families of Reeb orbits, and the interior ofMP
0 may also contain interface

tori, which we denote by

I0 = Tn+1 ∪ . . . ∪ Tn+r,

and binding circles

B0 = β1 ∪ . . . ∪ βm.

The planar pages in MP
0 have embedded J-holomorphic lifts to R ×M , forming a family of

curves,

uσ,τ ∈ M(J), (σ, τ) ∈ R× S1,

which have no negative punctures andm+n+2r positive punctures, each asymptotic to simply
covered orbits in B0 ∪I0 ∪ ∂M

P
0 , exactly one in each connected component of B0 ∪ ∂M

P
0 and

two in each component of I0. Moreover, other than these curves and the obvious trivial
cylinders, there is no other connected finite energy J-holomorphic curve in R ×M with its
positive ends approaching any subcollection of the asymptotic orbits of uσ,τ .

We now perturb λ to a nondegenerate contact form λ′ by the scheme described in [Bou02],
so that each of the original Morse-Bott tori Tj ⊂ I0∪∂M

P
0 contains exactly two nondegenerate

Reeb orbits, one elliptic and one hyperbolic,

γej ∪ γ
h
j ⊂ Tj .

Denoting by Φ0 the natural trivialization along these orbits determined by the (θ, ρ, φ)-

coordinates, they satisfy µΦ0

CZ(γ
e
j ) = 1 and µΦ0

CZ(γ
h
j ) = 0, and for any number k0 ∈ N we

can also arrange that µΦ0

CZ(kγ
e
j ) = 1 for all k ≤ k0. Perturbing J to a generic J ′ compatible

with λ′, the family of curves uσ,τ gives rise to embedded J ′-holomorphic curves (Figure 19) as-

ymptotic to various combinations of these orbits and the components of B0. If u : Σ̇ → R×M
is such a curve, then genericity implies ind(u) ≥ 1, so we deduce from the index formula that
such curves come in two types:

• ind(u) = 2 if all ends approaching I0 ∪ ∂M
P
0 approach elliptic orbits,

• ind(u) = 1 if u has exactly one end approaching a hyperbolic orbit in I0 ∪ ∂M
P
0 .
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uσ,τ

T1 T2

γe1

γe1

γh1

γe2

γh2

v+1

v−1

v+2

v−2

u0

Figure 19. The perturbation from Morse-Bott (left) to nondegenerate
(right), shown here in the simple case where uσ,τ is a family of cylinders as-
ymptotic to two Morse-Bott tori. All the orbits in the picture point along an
S1-factor through the page, and the top and bottom are identified. Arrows
indicate the signs of the ends of the rigid curves in the nondegenerate picture:
an end is positive if and only if the arrow points away from the orbit.

All of these curves also have genus zero and satisfy u•Φ0
u = 0 and cN (u) = cΦ0

1 (u)−χ(Σ̇) = 0,
so one can then deduce from (4.1) and the index formula (3.7) that I(u) = ind(u).

Up to R-translation there is now exactly one J ′-holomorphic flow line u0 : Σ̇ → R ×M
with all punctures positive and asymptotic to the orbits

γh1 , γ
e
2 , . . . , γ

e
n, γ

e
n+1, γ

e
n+1, . . . , γ

e
n+r, γ

e
n+r, β1, . . . , βm.

Let us therefore define the orbit set

γ0 = {(γh1 , 1), (γ
e
2 , 1), . . . , (γ

e
n, 1), (γ

e
n+1, 2), . . . , (γ

e
n+r, 2), (β1, 1), . . . , (βm, 1)},

for which [γ0] = 0, and define also the relative homology class

A0 = −[u0] ∈ H2(M,ρ0 − γ0).

The perturbation from J to J ′ creates some additional J ′-holomorphic cylinders which arise
from gradient flow lines along the Morse-Bott families of orbits, as described in [Bou02].
Namely for each j = 1, . . . , n+ r, there are two embedded cylinders

v+j , v
−
j : R× S1 → R×M,

each with positive end at γej and negative end at γhj ; the images of these cylinders in M are

the two connected components of Tj \ (γ
e
j ∪ γ

h
j ), thus after choosing the labels appropriately,

we can assume their relative homology classes are related by

[v+j ]− [v−j ] = [Tj ] ∈ H2(M).

These cylinders satisfy ind(v±j ) = I(v±j ) = 1.
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Now in the twisted ECH complex, the only curves other than u0 counted by ∂
(
eA0γ

)
are

the disjoint unions of v±j with collections of trivial cylinders for j = 2, . . . , n+r. The negative
ends of such a disjoint union give rise to the orbit set

γj := {(γh1 , 1), (γ
e
2 , 1), . . . , (γ

e
j−1, 1), (γ

h
j , 1), (γ

e
j+1, 1), . . . , (γ

e
n, 1),

(γen+1, 2), . . . , (γ
e
n+r, 2), (β1, 1), . . . , (βm, 1)}

for j = 1, . . . , n, and a similar expression for j = n+1, . . . , n+ r which will appear twice due
to the multiplicity attached to γej . Choosing appropriate coherent orientations and adding all
this together, we find

∂
(
eA0γ0

)
= e0∅+

n∑

j=2

eA0+[v−j ]
(
e[Tj ] − 1

)
γj

+

n+r∑

j=n+1

2eA0+[v−
j
]
(
e[Tj ] − 1

)
γj .

We thus have ∂
(
eA0γ0

)
= e0∅ whenever [Tj ] = 0 ∈ H2(M) for all j = 2, . . . , n + r, which

proves Theorem 2′. For untwisted coefficients, we divide the entire calculation by H2(M) so

that e[Tj ] − 1 = 0 always, thus ∂γ0 = ∅ holds with no need for any topological condition.
With that, the proof of Theorem 2 is complete.

4.2.3. The U -map. The proof of Theorems 6 and 6′ is a minor variation on the argument given
above. Assume (M, ξ) contains a partially planar domainM0 with planar pieceMP

0 ⊂M0, and
choose the Morse-Bott data λ, J and nondegenerate perturbation λ′, J ′ exactly as described
in the previous section, but adding the following condition: for any given d ∈ N, Theorem 7
allows us to choose λ so that the uniqueness statement for holomorphic curves subordinate
to the planar piece up to multiplicity k holds for any k ≤ d.

Now consider the J ′-holomorphic curves of index 2 with positive ends asymptotic to the
elliptic orbits,

γe1, . . . , γ
e
n, γ

e
n+1, γ

e
n+1, . . . , γ

e
n+r, γ

e
n+r, β1, . . . , βm.

These curves have embedded projections to M which foliate an open subset of MP
0 , thus if

we choose p in this open subset, there is exactly one curve with the given asymptotics that
passes through (0, p). Denote this curve by up, and for any k ∈ {1, . . . , d}, define the orbit
set

γ
(k) = {(γe1 , k), . . . , (γ

e
n, k), (γ

e
n+1, 2k), . . . , (γ

e
n+r, 2k), (β1, k), . . . , (βm, k)}

with [γ(k)] = 0, and the relative homology class

kAp = −k[up] ∈ H2(M,ρ0 − γ
(k)).

The uniqueness statement in Theorem 7 for curves subordinate to the planar piece up to
multiplicity d now implies that ∂

(
ekApγ

(k)
)
counts only the disjoint unions of the embedded

index 1 cylinders v±j with trivial cylinders. As in the previous section, the contributions from

v+j and v−j cancel each other out in the untwisted theory, and also in the twisted theory if

[Tj ] = 0 ∈ H2(M), so we conclude in either case that ekApγ
(k) is a cycle in the chain complex.

The uniqueness result also implies that there is exactly one curve counted by U
(
ekApγ

(k)
)
,

namely the disjoint union of up with a collection of trivial cylinders. We thus find,

U
(
ekApγ

(k)
)
= e(k−1)Apγ

(k−1)
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for each k ∈ {2, . . . , d}, and for k = 1,

U
(
eApγ

(1)
)
= e0∅.

Since the ECH does not depend on the choice of contact form, this shows that for all d ∈ N
the homology contains an element whose image under d iterations of the U -map is the contact
class. The proof of Theorems 6 and 6′ is thus complete.
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[Nie06] K. Niederkrüger, The plastikstufe—a generalization of the overtwisted disk to higher dimensions, Al-

gebr. Geom. Topol. 6 (2006), 2473–2508.
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1995.

[Sie08] R. Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math.
61 (2008), no. 12, 1631–1684.

http://arxiv.org/abs/1111.3324
http://arxiv.org/abs/1007.1979
http://arxiv.org/abs/1008.1595
http://arxiv.org/abs/1204.0115
http://arxiv.org/abs/1111.6008
http://arxiv.org/abs/0906.3237


A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 65

[Sie11] , Intersection theory of punctured pseudoholomorphic curves, Geom. Topol. 15 (2011), 2351–
2457 (electronic).

[Tau98] C. H. Taubes, The structure of pseudo-holomorphic subvarieties for a degenerate almost complex struc-
ture and symplectic form on S1 ×B3, Geom. Topol. 2 (1998), 221–332 (electronic).

[Tau10a] , Embedded contact homology and Seiberg-Witten Floer cohomology I, Geom. Topol. 14 (2010),
no. 5, 2497–2581.

[Tau10b] , Embedded contact homology and Seiberg-Witten Floer cohomology V, Geom. Topol. 14

(2010), no. 5, 2961–3000.
[vB] J. von Bergmann, Embedded H-holomorphic maps and open book decompositions. Preprint

arXiv:0907.3939.
[Wen05] C. Wendl, Finite energy foliations and surgery on transverse links, Ph.D. Thesis, New York University,

2005.
[Wen08] , Finite energy foliations on overtwisted contact manifolds, Geom. Topol. 12 (2008), 531–616.
[Wen10a] , Automatic transversality and orbifolds of punctured holomorphic curves in dimension four,

Comment. Math. Helv. 85 (2010), no. 2, 347–407.
[Wen10b] , Strongly fillable contact manifolds and J-holomorphic foliations, Duke Math. J. 151 (2010),

no. 3, 337–384.
[Wen10c] , Open book decompositions and stable Hamiltonian structures, Expos. Math. 28 (2010), no. 2,

187–199.
[Wen] , Non-exact symplectic cobordisms between contact 3-manifolds. Preprint arXiv:1008.2456, to

appear in J. Differential Geom.
[Yau06] M.-L. Yau, Vanishing of the contact homology of overtwisted contact 3-manifolds, Bull. Inst. Math.

Acad. Sin. (N.S.) 1 (2006), no. 2, 211–229. With an appendix by Yakov Eliashberg.

Department of Mathematics, University College London, Gower Street, London WC1E 6BT,

United Kingdom

E-mail address: c.wendl@ucl.ac.uk
URL: http://www.homepages.ucl.ac.uk/~ucahcwe/

http://arxiv.org/abs/0907.3939
http://arxiv.org/abs/1008.2456

	1. Introduction
	1.1. Obstructions to symplectic fillings
	1.2. Obstructions to non-separating embeddings and planarity
	1.3. Holomorphic curves and open book decompositions
	1.4. Open questions and recent progress

	2. The definition of planar torsion
	2.1. Blown up summed open books
	2.2. Partially planar domains and planar torsion

	3. Holomorphic summed open books
	3.1. Technical background
	3.2. An existence and uniqueness theorem
	3.3. Deformation and compactness

	4. Proofs of the main results
	4.1. Non-fillability
	4.2. Embedded Contact Homology
	Acknowledgments

	References

