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A HIERARCHY OF LOCAL SYMPLECTIC FILLING OBSTRUCTIONSFOR CONTACT 3-MANIFOLDSCHRIS WENDLAbstra
t. We generalize the familiar notions of overtwistedness and Giroux torsion in3-dimensional 
onta
t manifolds, de�ning an in�nite hierar
hy of lo
al �lling obstru
tions
alled planar torsion, whose integer-valued order k � 0 
an be interpreted as measuring agradation in \degrees of tightness" of 
onta
t manifolds. We show in parti
ular that any
onta
t manifold with planar torsion admits no 
onta
t type embeddings into any 
losedsymple
ti
 4-manifold, and has vanishing 
onta
t invariant in Embedded Conta
t Homology,and we give examples of 
onta
t manifolds that have planar k-torsion for any k � 2 butno Giroux torsion. We also show that the 
omplement of the binding of a supporting openbook never has planar torsion. The unifying idea in the ba
kground is a de
omposition of
onta
t manifolds in terms of 
onta
t �ber sums of open books along their binding. As thete
hni
al basis of these results, we establish existen
e, uniqueness and 
ompa
tness theoremsfor 
ertain 
lasses of J-holomorphi
 
urves in blown up summed open books; these also implyalgebrai
 obstru
tions to planarity and embeddings of partially planar domains.Contents1. Introdu
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ti
 �llings 51.2. Obstru
tions to non-separating embeddings and planarity 121.3. Holomorphi
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2 CHRIS WENDL1. Introdu
tionConta
t stru
tures for odd-dimensional manifolds arise naturally on boundaries of sym-ple
ti
 manifolds via the notion of 
onvexity. A symple
ti
 manifold (W;!) is said to have
onvex boundary if, on a neighborhood of �W , there exists a ve
tor �eld Y that pointstransversely outward at �W and whose 
ow is a symple
ti
 dilation, i.e. LY ! = !. WritingM = �W , the 
o-oriented hyperplane �eld � = ker (�Y !jTM ) � TM then satis�es a 
ertain\maximal nonintegrability" 
ondition whi
h makes it a 
onta
t stru
ture, and up to isotopy,it depends only on the symple
ti
 stru
ture of (W;!) near M , not on the 
hoi
e of ve
tor�eld Y .Given the above relationship, it is interesting to ask whi
h isomorphism 
lasses of 
onta
tmanifolds (M; �) do not arise as boundaries of 
ompa
t symple
ti
 manifolds, i.e. whi
h onesare not symple
ti
ally �llable. A variety of obstru
tions to symple
ti
 �lling are known, andthe following two examples give some hint as to the diversity of su
h results:� Lis
a [Lis98, Lis99℄ used the Seiberg-Witten monopole invariants of Kronheimer andMrowka [KM97℄ together with Donaldson's theorem on the interse
tion forms ofsmooth 4-manifolds [Don86℄ to �nd examples of oriented 3-manifolds that admit nosymple
ti
ally �llable 
onta
t stru
tures.� The author [Wen10b℄ used pun
tured holomorphi
 
urve te
hniques to show that a
onta
t 3-manifold has no symple
ti
 �lling if it is supported by a planar open bookwhose monodromy is not a produ
t of right-handed Dehn twists. (See [PV10,Pla12℄for some appli
ations of this result.)One 
ommon feature of the above examples is that they depend fundamentally on the globalproperties of the manifolds involved. In 
ontrast, one 
an also 
onsider �lling obstru
tionswhi
h are lo
al, in the sense that they answer the following question:What kinds of 
onta
t subdomains 
an never exist in the 
onvex boundary ofa 
ompa
t symple
ti
 manifold?The �rst known example of a symple
ti
 �lling obstru
tion was essentially lo
al in this sense:Gromov [Gro85℄ and Eliashberg [Eli90℄ established that 
onta
t type boundaries of symple
ti
4-manifolds 
an never 
ontain an overtwisted disk, and signi�
antly, the related distin
tion be-tween so-
alled \overtwisted" and \tight" 
onta
t stru
tures, dis
overed by Eliashberg [Eli89℄,has played a pivotal role in 
lassi�
ation questions for 
onta
t stru
tures in dimension three.This non-�llability result 
an be rephrased in terms of a 
ertain 3-dimensional 
onta
t domainwith boundary that we 
all a Lutz tube: this is a solid torus S1 � D with a radially symmet-ri
 
onta
t stru
ture that makes a half-twist along radii from the 
enter to the boundary(see Figure 1 and De�nition 2.17). One 
an show (e.g. using [Eli89℄) that a 
losed 
onta
t3-manifold 
ontains an overtwisted disk if and only if it 
ontains a Lutz tube, thus the lattermay be regarded as the prototypi
al example of a lo
al �lling obstru
tion.A more general lo
al �lling obstru
tion is furnished by the so-
alled Giroux torsion domain,a thi
kened torus [0; 1℄ � T 2 with a T 2-invariant 
onta
t stru
ture that makes one full twistfrom one end of the interval to the other (see Figure 2 and De�nition 2.18). Conta
t manifolds
ontaining su
h an obje
t are said to have Giroux torsion, and the fa
t that they are not �llablein general is a 
omparatively re
ent result, due to Gay [Gay06℄. Giroux torsion domains havealso played an important role in the 
lassi�
ation of 
onta
t stru
tures, most notably throughthe work of Colin, Giroux and Honda [CGH03,CGH09℄.

http://arxiv.org/abs/1009.2746v3
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vkv1�v2�Figure 1. Conta
t planes twist around the radii emerging from the 
entralaxis of a Lutz tube. The pi
ture also shows an embedded J -holomorphi
 planeasymptoti
 to a Reeb orbit of small period in a Morse-Bott family (arrowsindi
ate the Reeb ve
tor �eld); every Lutz tube 
ontains su
h planes, whi
hare the reason why the 
onta
t homology of an overtwisted 
onta
t manifoldvanishes.
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onta
t planes twist aroundsegments in the [0; 1℄-dire
tion. Su
h domains are foliated by J -holomorphi

ylinders asymptoti
 to Morse-Bott Reeb orbits.

4 CHRIS WENDLThese two examples of lo
al �lling obstru
tions 
reate the intuitive impression that 
onta
tmanifolds tend to be
ome non-�llable whenever they 
ontain regions where the 
onta
t planesexhibit some threshold amount of twisting. In this paper we shall introdu
e a geometri
 for-malism that makes this notion pre
ise, and in so doing, greatly expands the known repertoireof lo
al �lling obstru
tions. We will demonstrate in parti
ular that the examples above o

upythe �rst two levels in an in�nite hierar
hy : for ea
h integer k � 0, we shall de�ne a spe
ial
lass of 
ompa
t 
onta
t 3-manifolds, possibly with boundary, whi
h we 
all planar k-torsiondomains, su
h that the Lutz tube and Giroux torsion domain are spe
ial 
ases with k = 0and 1 respe
tively. Our use of the word \hierar
hy" is not in
idental, as it turns out that aplanar torsion domain yields quanti�ably stri
ter or less stri
t �lling obstru
tions dependingon its order, i.e. the integer k. In parti
ular, the overtwisted 
onta
t manifolds are pre
iselythose whi
h have planar 0-torsion, and these 
an be thought of as the \most non-�llable"among all 
onta
t 3-manifolds, while the �llable 
onta
t manifolds are the \tightest," andthose whi
h have only higher orders of planar torsion are non-�llable but are in some sense\tighter" than their lower order 
ounterparts.The de�nition of planar torsion, whi
h will be given in a pre
ise form in x2, 
ombines thefundamental 
onta
t topologi
al notion of a supporting open book de
omposition, as introdu
edby Giroux [Gir℄, with a simple topologi
al operation known as the 
onta
t �ber sum along
odimension 2 
onta
t submanifolds, originally due to Gromov [Gro86℄ and Geiges [Gei97℄.Roughly speaking, a planar k-torsion domain is a 
ompa
t 
onta
t 3-manifold (M; �), possiblywith boundary, that 
ontains a non-empty set of disjoint pre-Lagrangian tori dividing it intotwo pie
es:� A planar pie
e MP , whi
h is disjoint from �M and looks like a 
onne
ted open bookwith some binding 
omponents blown up and/or atta
hed to ea
h other by 
onta
t�ber sums. The pages must have genus zero and k + 1 boundary 
omponents.� The padding M nMP , whi
h 
ontains �M and 
onsists of one or more arbitrary openbooks, again with some binding 
omponents blown up or �ber summed together.Planar torsion domains are thus examples of what are 
alled partially planar domains, anotion that was �rst hinted at in [ABW10℄. The interior of su
h a domainM always 
ontainsa spe
ial set I � M of pre-Lagrangian tori whi
h arise by blowing up binding 
omponentsof open books: we refer to these tori all together as the interfa
e of (M; �). Postponing theexa
t de�nitions until x2, let us for now merely point out that in a Lutz tube M = S1 � D(Figure 1), the planar pie
e is some smaller solid torus MP = S1 � D r for 0 < r < 1,and the pages of the blown up open book in MP are the disks f�g � D r . Likewise, theplanar pie
e in a Giroux torsion domain M = [0; 1℄ � T 2 (Figure 2) is a smaller thi
kenedtorus MP = [r1; r2℄ � T 2 for 0 < r1 < r2 < 1, foliated by 
ylindri
al pages of the form[r1; r2℄ � S1 � f�g, and for both examples I = �MP . We will see that in the more generalde�nition, the topology of the planar pie
e and the whole domain may di�er from ea
h other
onsiderably, and interfa
e tori may also be found in the interior of the planar pie
e or thepadding. Some simple examples of the form S1 � � are shown in Figure 3. We should alsomention that the idea of de
omposing 
onta
t manifolds in this way via �ber sums of openbooks has further appli
ations beyond �lling obstru
tions, e.g. it is used in [Wen℄ to de�nea \blown up" version of Eliashberg's 
apping 
onstru
tion [Eli04℄, produ
ing a wide range ofexisten
e results for non-exa
t symple
ti
 
obordisms.Let us now re
all some basi
 de�nitions in preparation for stating the main results. A
onta
t stru
ture on an oriented 3-dimensional manifold is a hyperplane distribution �
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an be written lo
ally as the kernel of a smooth 1-form � with � ^ d� 6= 0. We 
all �positive if � ^ d� > 0. Every 
onta
t stru
ture in this paper will be assumed to be positiveand to 
arry a 
o-orientation, whi
h 
an be de�ned via a global 
hoi
e of 1-form �; any �with ker� = � that is 
ompatible with the 
hosen 
o-orientation is 
alled a 
onta
t form for(M; �). Note that a 
o-oriented 
onta
t stru
ture also inherits a natural orientation. Giventwo 
onta
t 3-manifolds (M0; �0) and (M; �), a 
onta
t embedding of (M0; �0) into (M; �)is an orientation preserving embedding � : M0 ,! M su
h that �� : TM0 ,! TM de�nes anorientation preserving map of �0 to �.Suppose (W;!) is a 
ompa
t 4-dimensional symple
ti
 manifold (oriented by ! ^ !) and(M; �) is a 
losed 
onta
t 3-manifold. A weak 
onta
t type embedding of (M; �) into(W;!) is an embedding � :M ,!W for whi
h ��!j� > 0. It is 
alled a (strong) 
onta
t typeembedding if a neighborhood of �(M) � W admits a 1-form � su
h that d� = ! and ���de�nes a 
onta
t form for (M; �); note that in this 
ase, the ve
tor �eld !-dual to � de�nesa symple
ti
 dilation positively transverse to �(M). The image of a (weak or strong) 
onta
ttype embedding is 
alled a (weak or strong) 
onta
t type hypersurfa
e in (W;!). If theimage is �W and � maps the orientation of M to the natural boundary orientation, then wesay (W;!) is a (weak or strong) symple
ti
 �lling of (M; �).1.1. Obstru
tions to symple
ti
 �llings. Given the notion of a planar k-torsion domainwhi
h was sket
hed above and will be explained fully in x2, it is natural to de�ne the following.De�nition 1.1. A 
onta
t 3-manifold is said to have planar torsion of order k (or planark-torsion) if it admits a 
onta
t embedding of a planar k-torsion domain (see De�nition 2.13).Theorem 1. If (M; �) is a 
losed 
onta
t 3-manifold with planar torsion of any order, then itdoes not admit a 
onta
t type embedding into any 
losed symple
ti
 4-manifold. In parti
ular,it is not strongly �llable.Though our proof of non-�llability will not depend on it, the impli
ation that (M; �) is notstrongly �llable follows from the above statement due to a result of Etnyre and Honda [EH02℄,that every 
onta
t 3-manifold is 
on
ave �llable: this means that strong �llings 
an always be
apped o� to produ
e 
losed symple
ti
 4-manifolds 
ontaining 
onta
t type hypersurfa
es.We will also prove an algebrai
 
ounterpart to the above result in terms of EmbeddedConta
t Homology, or \ECH" for short (see e.g. [Hut10℄). The de�nition of ECH will bereviewed in x4.2; for now it suÆ
es to re
all that given a 
losed 
onta
t 3-manifold (M; �)with nondegenerate 
onta
t form � and generi
 
ompatible 
omplex stru
ture J : � ! �, one
an de�ne a 
hain 
omplex generated by so-
alled orbit sets,
 = ((
1;m1); : : : ; (
n;mn));where 
1; : : : ; 
n are distin
t simply 
overed periodi
 Reeb orbits and m1; : : : ;mn are positiveintegers, 
alled multipli
ities. A di�erential operator is then de�ned by 
ounting a 
ertain
lass of embedded rigid J -holomorphi
 
urves in the symple
tization of (M; �), whi
h 
an beviewed as 
obordisms between orbit sets. The homology of the resulting 
hain 
omplex is theEmbedded Conta
t Homology ECH�(M;�; J). Though the 
omplex obviously depends on �and J , Taubes has shown [Tau10a,Tau10b℄ that ECH�(M;�; J) is isomorphi
 to a version ofSeiberg-Witten Floer homology, and thus a
tually only depends (up to natural isomorphisms)on the 
onta
t manifold (M; �), so we 
an writeECH�(M; �) := ECH(M;�; J):

6 CHRIS WENDL
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vkv1�v2�Figure 3. Various planar k-torsion domains, with the order k � 0 indi
atedwithin the planar pie
e. Ea
h pi
ture shows a surfa
e � that de�nes a manifoldS1 �� with an S1-invariant 
onta
t stru
ture �. The multi
urves that divide� are the sets of all points z 2 � at whi
h S1 � fzg is Legendrian. See alsoExample 2.15 and Figure 6.The 
ase n = 0 is also allowed among the generators, i.e. the \empty" orbit set ; := (), whi
his always a 
y
le in the homology, thus de�ning a distinguished 
lass
(�) := [;℄ 2 ECH(M; �);whi
h we 
all the ECH 
onta
t invariant. It 
orresponds under Taubes's isomorphism toa similar 
onta
t invariant in Seiberg-Witten theory, and 
onje
turally1 also to the Ozsv�ath-Szab�o 
onta
t invariant in Heegaard Floer homology.Theorem 2. If (M; �) is a 
losed 
onta
t 3-manifold with planar torsion of any order, thenits ECH 
onta
t invariant 
(�) vanishes.This 
al
ulation is in some sense a generalization of the well-known fa
t that overtwisted
onta
t manifolds have trivial 
onta
t homology (
f. Figure 1), and our proof of it has some1Re
ent progress on this 
onje
ture has been made in parallel proje
ts by Colin-Ghiggini-Honda [CGHa℄and Kutluhan-Lee-Taubes [KLTa,KLTb℄.
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ommonalities with the proof of the latter sket
hed by Eliashberg in the appendix of [Yau06℄.The result implies another proof that planar torsion is a �lling obstru
tion, albeit a very indi-re
t one: under the isomorphism of Taubes [Tau10b℄, the ECH 
onta
t invariant 
orrespondsto a similar invariant in Seiberg-Witten theory, whose vanishing gives a �lling obstru
tion dueto results of Kronheimer and Mrowka [KM97℄. We will however give a proof of Theorem 1 thatuses only holomorphi
 
urve methods, requiring no assistan
e from Seiberg-Witten theory.Remark 1.2. Aside from the dire
t holomorphi
 
urve proof of Theorem 1 that we will givein x4.1, there are at least two alternative approa
hes/generalizations one 
an imagine:(a) Algebrai
: �nd a 
onta
t invariant whose vanishing 
ontradi
ts symple
ti
 �lling, andwhi
h must always vanish in the presen
e of planar torsion.(b) Topologi
al: given (M; �) with planar torsion, �nd a symple
ti
 
obordism with neg-ative boundary (M; �) whose positive boundary is already known to be not �llable.The �rst approa
h is pursued in the present arti
le and in the related paper [LW11℄, howeverthe se
ond approa
h also works. Indeed, after the �rst version of this paper was 
ompleted, theauthor de�ned in [Wen℄ a generalized handle atta
hing 
onstru
tion whi
h yields symple
ti

obordisms from any 
onta
t manifold with planar torsion to another that is overtwisted. Thede
omposition of 
onta
t manifolds via blown up summed open books that we will explainin x2.1 is a 
ru
ial ingredient in this 
onstru
tion, whi
h also yields alternative proofs ofTheorem 5 and the weak �lling obstru
tions of [NW11℄ mentioned below.Under stronger geometri
 assumptions one also obtains stronger results in terms of ECHwith twisted 
oeÆ
ients, whi
h gives 
orrespondingly stri
ter obstru
tions to symple
ti
 �ll-ings. As we will review in x4.2, a twisted version of the ECH 
hain 
omplex 
an be de�nedas a module over the group ring Z[H2(M ;R)℄, so that the di�erential keeps tra
k of the 2-dimensional relative homology 
lasses of the holomorphi
 
urves it 
ounts. We shall denotethis twisted version of ECH by ℄ECH�(M; �). It also 
ontains a preferred homology 
lass~
(�) 2 ℄ECH�(M; �) represented by the empty orbit set, 
alled the twisted ECH 
onta
tinvariant.De�nition 1.3. A 
onta
t 3-manifold is said to have fully separating planar k-torsionif it 
ontains a planar k-torsion domain with a planar pie
e MP �M that has the followingproperties:(1) There are no interfa
e tori in the interior of MP .(2) Every 
onne
ted 
omponent of �MP separates M .We will see that the fully separating 
ondition is always satis�ed if k = 0, and for the 
aseof a Giroux torsion domain, it is satis�ed if and only if the domain separates M .Theorem 20. If (M; �) is a 
losed 
onta
t 3-manifold with fully separating planar torsion,then its twisted ECH 
onta
t invariant ~
(�) vanishes.Appealing again to the isomorphism of [Tau10b℄ together with results from Seiberg-Wittentheory [KM97℄ on weak symple
ti
 �llings, we obtain the following 
onsequen
e, whi
h is alsoproved by a more dire
t holomorphi
 
urve argument in joint work of the author with KlausNiederkr�uger [NW11℄.Corollary 1. If (M; �) is a 
losed 
onta
t 3-manifold with fully separating planar torsion,then it is not weakly �llable.

8 CHRIS WENDLAs we will show shortly, Theorem 1 and Corollary 1 yield many previously unknown exam-ples of non-�llable 
onta
t manifolds. Observe that the fully separating 
ondition in Corol-lary 1 
annot be removed in general, as for instan
e, there are in�nitely many tight 3-toriwhi
h have non-separating Giroux torsion (and hen
e planar 1-torsion by Theorem 3 be-low) but are weakly �llable by a 
onstru
tion of Giroux [Gir94℄. Further examples of thisphenomenon are 
onstru
ted in [NW11℄ for planar k-torsion with any k � 1.Remark 1.4. One 
an re�ne the above vanishing result with twisted 
oeÆ
ients as follows: fora given 
losed 2-form 
 onM , de�ne (M; �) to have 
-separating planar torsion if it 
ontainsa planar torsion domain su
h that every interfa
e torus T lying in the planar pie
e satis�esRT 
 = 0 (
f. De�nition 2.12). Under this 
ondition, our 
omputation implies a similar vanish-ing result for the ECH 
onta
t invariant with twisted 
oeÆ
ients in Z[H2(M ;R)= ker 
℄, withthe 
onsequen
e that (M; �) admits no weak �lling (W;!) for whi
h !jTM is 
ohomologousto 
. A dire
t proof of the latter is given in [NW11℄.We now 
onsider examples of 
onta
t manifolds with planar torsion. We will show in x2.2that the previously known lo
al �lling obstru
tions �t into the �rst two levels of the hierar
hy,i.e. k = 0 and 1.Theorem 3. A 
losed 
onta
t 3-manifold has planar 0-torsion if and only if it is overtwisted,and every 
losed 
onta
t manifold with Giroux torsion also has planar 1-torsion.For this reason, Theorems 2 and 20 imply ECH versions of the vanishing results of Ghiggini,Honda and Van Horn-Morris [GHV,GH℄ for the Ozsv�ath-Szab�o 
onta
t invariant in the pres-en
e of Giroux torsion. We'll see below that it is also easy to 
onstru
t examples of 
onta
tmanifolds that have planar torsion of any order greater than 1 but no Giroux torsion. It isnot 
lear whether there exist 
onta
t manifolds with planar 1-torsion but no Giroux torsion.To �nd examples for k � 2, suppose � is a 
losed oriented surfa
e 
ontaining a non-emptymulti
urve � � � that divides it into two (possibly dis
onne
ted) pie
es �+ and ��. Wede�ne the 
onta
t manifold (M�; ��), whereM� := S1 � �and �� is the (up to isotopy) unique S1-invariant 
onta
t stru
ture that makes f
onstg�� intoa 
onvex surfa
e with dividing set �. The existen
e and uniqueness of su
h a 
onta
t stru
turefollows from a result of Lutz [Lut77℄. We will see in Examples 2.10 and 2.15 that (M�; ��)is a partially planar domain whenever any 
onne
ted 
omponent �0 of � n � has genus zero:indeed, the surfa
es f�g ��0 are then the pages of a blown up planar open book. Moreover,(M�; ��) is then a planar torsion domain unless � n� has exa
tly two 
onne
ted 
omponentsand they are di�eomorphi
, and it is fully separating if every 
onne
ted 
omponent of ��0separates �.Corollary 2. Suppose �n� has a 
onne
ted 
omponent �0 of genus zero, and either �n� hasmore than two 
onne
ted 
omponents or � n �0 is not di�eomorphi
 to �0. Then (M�; ��)has vanishing (untwisted) ECH 
onta
t invariant and is not strongly �llable. Moreover, ifevery 
onne
ted 
omponent of ��0 separates �, then the invariant with twisted 
oeÆ
ientsalso vanishes and (M�; ��) is not weakly �llable.Note that (M�; ��) is always universally tight whenever � 
ontains no 
ontra
tible 
on-ne
ted 
omponents. This follows from [Gir01, Prop. 4.1(b)℄, and 
an also be dedu
ed (via[Hof93℄) from the observation that (M�; ��) then admits 
onta
t forms with no 
ontra
tible



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 9Reeb orbits (e.g. any Giroux form in the sense of De�nition 2.8 will have this property).Whenever this is true, an argument due to Giroux (see [Mas12, Theorem 3℄) implies that(M�; ��) also has no Giroux torsion if no two 
onne
ted 
omponents of � are isotopi
. Wethus obtain in�nitely many examples of 
onta
t manifolds that have planar torsion of anyorder greater than 1 but no Giroux torsion:Corollary 3. For any integers g � k � 1, let (Vg; �k) denote the S1-invariant 
onta
t man-ifold (M�; ��) des
ribed above for the 
ase where � � � has k 
onne
ted 
omponents anddivides � into two 
onne
ted 
omponents, one with genus zero and the other with genusg � k + 1 > 0. Then (Vg; �k) has no Giroux torsion if k � 3, but for any k � 1 it has planartorsion of order k� 1. In parti
ular (Vg; �k) always has vanishing ECH 
onta
t invariant andis not strongly �llable.Some more examples of planar torsion without Giroux torsion are shown in Figure 4.Remark 1.5. In many 
ases, one 
an easily generalize the above results from produ
ts S1��to general Seifert �brations over �. In parti
ular, whenever � has genus at least four, one
an �nd dividing sets on � su
h that (S1 � �; ��) has no Giroux torsion but 
ontains aproper subset that is a planar torsion domain (see Figure 4). Then modi�
ations outside ofthe torsion domain 
an 
hange the trivial �bration into arbitrary nontrivial Seifert �brationswith planar torsion but no Giroux torsion. This tri
k reprodu
es many (though not all) ofthe Seifert �bered 3-manifolds for whi
h [Mas12℄ proves the vanishing of the Ozsv�ath-Szab�o
onta
t invariant.Remark 1.6. There is a signi�
ant overlap between our ECH vanishing results and the Hee-gaard vanishing results proved by Massot in [Mas12℄ (see also [HKM,Mat11℄), but neitherset of results 
ontains the other. In parti
ular, the examples (Vg; �k) in Corollary 3 withplanar torsion of order greater than 1 seem thus far to be beyond the rea
h of Heegaard Floerhomology.By a re
ent result of Etnyre and Vela-Vi
k [EVV10℄, the 
omplement of the binding ofa supporting open book never 
ontains a Giroux torsion domain. We will prove a naturalgeneralization of this:Theorem 4. Suppose (M; �) is a 
onta
t 3-manifold supported by an open book � :M nB !S1. Then any planar torsion domain in (M; �) must interse
t the binding B.In order to explain our 
hoi
e of terminology and the use of the word \hierar
hy," we nowmention some related joint results with Janko Lats
hev whi
h are proved in [LW11℄. Theseare most easily expressed by de�ning a 
onta
t invariantPT(M; �) := sup�k � 0 �� (M; �) has no planar `-torsion for any ` < k	 ;whi
h takes values in N [ f0;1g and is in�nite if and only if (M; �) has no planar torsion.Then the results stated above show that PT(M; �) <1 always implies (M; �) is not strongly�llable; moreover PT(M; �) � 1 whenever (M; �) has Giroux torsion, PT(M; �) = 0 if andonly if (M; �) is overtwisted, and there exist 
onta
t manifolds without Giroux torsion su
hthat PT(M; �) < 1. We 
laim now that 
onta
t manifolds with larger values of PT(M; �)not only exist but are, in some quanti�able sense, \
loser" to being �llable. This statement
an be made pre
ise by 
onsidering the existen
e or non-existen
e of symple
ti
 
obordismsbetween 
onta
t manifolds with di�erent values of PT(M; �), as in the following result.
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onta
t manifolds of the form S1 � � that have no Girouxtorsion but have planar torsion of orders 2, 2, 3 and 2 respe
tively. In ea
h
ase the 
onta
t stru
ture is S1-invariant and indu
es the dividing set shownon � in the pi
ture. For the example at the upper right, Theorem 20 impliesthat the twisted ECH 
onta
t invariant also vanishes, so this one is not weakly�llable. In the bottom example, the planar torsion domain is a proper subset,thus one 
an make modi�
ations outside of this subset to produ
e arbitrarynontrivial Seifert �brations (see Remark 1.5).Theorem ([LW11℄). For the 
onta
t manifold (Vg; �k) in Corollary 3, PT(Vg; �k) = k � 1.Moreover, if (M; �) is any 
onta
t manifold that appears as the positive boundary of an exa
tsymple
ti
 
obordism whose negative boundary is (Vg; �k), then PT(M; �) � k � 1.Sin
e a 
onta
t 3-manifold (M; �) is tight if and only if PT(M; �) � 1, the above result
an be regarded as demonstrating a \higher order" variant of the well-known 
onje
ture that
onta
t (�1)-surgery on a Legendrian in a 
losed tight 
onta
t manifold always produ
essomething tight. Indeed, sin
e 
onta
t surgery gives rise to a Stein 
obordism, the aboveimplies that 
onta
t surgery (or for that matter, 
onta
t 
onne
ted sums) on (Vg; �k) alwaysprodu
es examples with PT(M; �) � k � 1.



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 11Remark 1.7. It should be emphasized here that the s
ale de�ned by the invariant PT(M; �)measures something 
ompletely di�erent from the standard quantitative measurement ofGiroux torsion; the latter 
ounts the maximum number of adja
ent Giroux torsion domainsthat 
an be embedded in (M; �), and 
an take arbitrarily large values while PT(M; �) � 1.Likewise, (M; �) has Giroux torsion zero whenever PT(M; �) � 2.The theorem above follows from some results proved in [LW11℄ using notions from Sym-ple
ti
 Field Theory, whi
h also lie in the ba
kground of our 
hoi
e of terminology. Re
allthat SFT is a generalization of 
onta
t homology introdu
ed by Eliashberg, Givental andHofer [EGH00℄ (see also [CL09℄ for the reformulation dis
ussed here), that de�nes 
onta
tinvariants by 
ounting J -holomorphi
 
urves with arbitrary genus and positive and negativeends in symple
tizations of arbitrary dimension. The 
hain 
omplex of SFT is a graded alge-bra of the form A[[~℄℄, where ~ is an even variable and A is a graded unital algebra generatedby symbols q
 
orresponding to 
losed Reeb orbits 
. There is then a di�erential operatorDSFT : A[[~℄℄ ! A[[~℄℄ whi
h 
ounts holomorphi
 
urves and vanishes by de�nition on the\
onstant" elements R[[~℄℄ � A[[~℄℄, hen
e de�ning prefered homology 
lasses inHSFT� (M; �) := H�(A[[~℄℄;DSFT):One then de�nes (M; �) to have algebrai
 k-torsion if the homology satis�es the relation[~k℄ = 0 2 HSFT� (M; �):For k = 0, this means [1℄ = 0 and 
oin
ides with the notion of algebrai
 overtwistedness(
f. [BN10℄). It follows easily from the formalism2 of SFT that algebrai
 torsion of any ordergives an obstru
tion to strong symple
ti
 �lling, but in fa
t it is stronger, as it also impliesobstru
tions to the existen
e of exa
t symple
ti
 
obordisms between 
ertain 
onta
t mani-folds. To state this su

in
tly, one 
an de�ne an algebrai
 
ousin of the invariant PT(M; �)by AT(M; �) := sup�k � 0 �� (M; �) has no algebrai
 `-torsion for any ` < k	 :The above result is then a 
onsequen
e of the following set of results, whi
h serve as our mainmotivation for keeping tra
k of the integer k � 0 in planar k-torsion.Theorem ([LW11℄). The invariant AT(M; �) has the following properties.(1) Any 
onta
t manifold (M; �) with AT(M; �) <1 is not strongly �llable.(2) If there is an exa
t symple
ti
 
obordism with positive boundary (M+; �+) and negativeboundary (M�; ��), then AT(M�; ��) � AT(M+; �+).(3) Every 
onta
t 3-manifold (M; �) satis�es AT(M; �) � PT(M; �).(4) For the examples (Vg; �k) in Corollary 3, AT(Vg; �k) = k � 1.In parti
ular, the 
omputation AT(M; �) � PT(M; �) follows from a variation on our proofof Theorems 2 and 20, and thus makes essential use of the holomorphi
 
urve results in thepresent arti
le.2For this informal dis
ussion we are taking it for granted that SFT is well de�ned, whi
h was not provedin [EGH00℄ and is quite far from obvious. The rigorous de�nition of SFT, in
luding the ne
essary abstra
tperturbations to a
hieve transversality, is a large proje
t in progress by Hofer-Wyso
ki-Zehnder, see for example[Hof06℄. The appli
ation stated above however does not depend on this, as it 
an also be proved using theECH methods in Hut
hings's appendix to [LW11℄.

12 CHRIS WENDL1.2. Obstru
tions to non-separating embeddings and planarity. We now dis
uss aparallel stream of results that apply to a wider 
lass of 
onta
t manifolds, some of whi
hare �llable. Observe that in addition to ruling out symple
ti
 �llings, Theorem 1 impliesthat 
onta
t manifolds with planar torsion 
an never appear as non-separating 
onta
t typehypersurfa
es in any 
losed symple
ti
 4-manifold. This is a
tually a 
onsequen
e of thefollowing generalization of a result proved in [ABW10℄:Theorem 5. Suppose (M; �) is a 
losed 
onta
t 3-manifold that 
ontains a partially planardomain (see De�nition 2.11) and admits a 
onta
t type embedding � : (M; �) ,! (W;!) intosome 
losed symple
ti
 4-manifold (W;!). Then � separates W .Corollary 4. If (M; �) is a 
losed 
onta
t 3-manifold 
ontaining a partially planar domain,then it does not admit any strong symple
ti
 semi�lling with dis
onne
ted boundary.Re
all that a semi�lling of a 
onta
t manifold (M; �) is de�ned to be a �lling of (M; �) t(M 0; �0) for any (perhaps empty) 
losed 
onta
t manifold (M 0; �0). The 
orollary follows froman observation due to Etnyre (
f. [ABW10, Example 1.3℄), that given a �lling of (M; �) t(M 0; �0) with M 0 non-empty, one 
an atta
h a symple
ti
 1-handle to 
onne
t M and M 0 andthen 
ap o� the resulting boundary in order to realize (M; �) as a non-separating 
onta
ttype hypersurfa
e. Corollary 4 also generalizes similar results proved by M
Du� for the tight3-sphere [M
D91℄ and Etnyre for all planar 
onta
t manifolds [Etn04℄.The algebrai
 
ounterpart to Corollary 4 involves the so-
alled U -map in Embedded Con-ta
t Homology. This is a natural endomorphismU : ECH�(M; �)! ECH��2(M; �)de�ned at the 
hain level by 
ounting embedded index 2 holomorphi
 
urves through a generi
point in the symple
tization. The same de�nition also gives a map on ECH with twisted
oeÆ
ients, eU : ℄ECH�(M; �)! ℄ECH��2(M; �):Theorem 6. If (M; �) is a 
losed 
onta
t 3-manifold 
ontaining a partially planar domain,then for all integers d � 1, the image of Ud : ECH�(M; �)! ECH�(M; �) 
ontains 
(�).This implies Corollary 4 due to some re
ent results involving maps on ECH indu
ed by
obordisms (
f. [HT℄), though again, those results depend on Seiberg-Witten theory, and ourproof of Theorem 5 will not.Theorem 6 applies in parti
ular to all planar 
onta
t manifolds and 
an thus be viewed asan obstru
tion to planarity. The 
orresponding obstru
tion in Heegaard Floer homology isa known result of Ozsv�ath, Stipsi
z and Szab�o [OSS05℄. Our version of the obstru
tion 
aneasily be strengthened by observing that a planar open book is also a fully separating partiallyplanar domain, so analogously to Theorem 20, it yields a result with twisted 
oeÆ
ients|theHeegaard Floer theoreti
 analogue of this result is apparently not known.Theorem 60. If (M; �) is a planar 
onta
t manifold, then for all integers d � 1, the imageof eUd : ℄ECH�(M; �)! ℄ECH�(M; �) 
ontains ~
(�).Remark 1.8. Similarly to Remark 1.4, one 
an generalize the above by de�ning (
f. De�ni-tion 2.12) the notion of an 
-separating embedding of a partially planar domain, where 
 is a
losed 2-form onM . Then su
h an embedding produ
es a version of Theorem 60 for ECH with
oeÆ
ients in Z[H2(M ;R)= ker 
℄, and implies 
orresponding generalizations of Corollary 4.



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 13Remark 1.9. Note that by Theorem 6 above, there are also many non-planar examples forwhi
h 
(�) is in the image of Ud, but the 
orresponding statement with twisted 
oeÆ
ients isnot true. The most obvious example is the standard T 3, whi
h is a partially planar domain(see Example 2.5) but also admits weak semi�llings with dis
onne
ted boundary (due toGiroux [Gir94℄).1.3. Holomorphi
 
urves and open book de
ompositions. The te
hni
al work in theba
kground of the above results is a set of theorems that we will prove in x3 relating holomor-phi
 
urves and a suitably generalized notion of open book de
ompositions. For illustrationpurposes, we now state some simpli�ed versions of these results.Re
all that if M is a 
losed and oriented 3-manifold, an open book de
omposition is a�bration � :M n B ! S1;where B �M is an oriented link 
alled the binding, and the 
losures of the �bers are 
alledpages: these are 
ompa
t, oriented and embedded surfa
es with oriented boundary equalto B. An open book is 
alled planar if the pages are 
onne
ted and have genus zero, and itis said to support a 
onta
t stru
ture � if the latter 
an be written as ker� for some 
onta
tform � (
alled a Giroux form) whose indu
ed Reeb ve
tor �eld X� is positively transverseto the interiors of the pages and positively tangent to the binding. The latter de�nition isdue to Giroux [Gir℄, who established a groundbreaking one-to-one 
orresponden
e betweenisomorphism 
lasses of 
onta
t manifolds and their supporting open books up to right-handedstabilization.We refer to x3.1 for all the te
hni
al de�nitions needed to understand the following state-ment. A substantial generalization will appear in x3.2 as Theorem 7.Proposition 1.10. Suppose (M; �) is a 
losed 
onne
ted 
onta
t 3-manifold with a supportingopen book de
omposition � :MnB ! S1 whose pages have genus g � 0. Then for any numbers�0 > 0 and m0 2 N, (M; �) admits a nondegenerate Giroux form � and generi
 
ompatiblealmost 
omplex stru
ture J on its symple
tization su
h that the following 
onditions hold:(1) The Reeb orbits in B have minimal period less than �0, and their 
overs up to multi-pli
ity m0 all have Conley-Zehnder index 1 with respe
t to the framing determined bythe open book. All Reeb orbits in M nB have period at least 1.(2) If g = 0, then after a small isotopy of � �xing the binding, there is an (R � S1)-parametrized family of embedded �nite energy pun
tured J-holomorphi
 
urvesu(�;�) : _�! R �M; (�; �) 2 R � S1whi
h are Fredholm regular and have index 2 and have only positive ends, su
h that forea
h (�; �) 2 R � S1, the proje
tion of u(�;�) to M is an embedding that parametrizes��1(�).(3) If g = 0, then every somewhere inje
tive �nite energy pun
tured J-holomorphi
 
urvein R � M whose positive ends all approa
h orbits in B of 
overing multipli
ity upto m0 is part of the (R � S1)-family des
ribed above.(4) If g > 0, then there is no J-holomorphi
 
urve in R � M whose positive ends allapproa
h distin
t simply 
overed orbits in B.The (R � S1)-parametrized family of J -holomorphi
 
urves in this theorem is 
alled aholomorphi
 open book ; su
h obje
ts have appeared previously in the work of Hofer-Wyso
ki-Zehnder [HWZ95b, HWZ98℄ and Abbas [Abb11℄. Their existen
e for the 
ase g = 0 was

14 CHRIS WENDLalready established in [Wen10
℄ and generalized in [Abb11℄, and lies in the ba
kground ofvarious 
onta
t topologi
al results on planar 
onta
t manifolds, su
h as the proof of the We-instein 
onje
ture by Abbas-Cieliebak-Hofer [ACH05℄ and the author's proof that strong andStein �llability are equivalent [Wen10b℄. Given existen
e, the uniqueness statement for theg = 0 
ase follows from a straightforward but surprisingly powerful interse
tion theoreti
 ar-gument, using the homotopy invariant interse
tion number for pun
tured holomorphi
 
urvesdeveloped by Siefring [Sie11℄. The non-existen
e result for g > 0 relies on this same argumentbut is mu
h subtler, be
ause for analyti
al reasons, the existen
e part of the above theoremfails in the 
ase g > 0.3 The situation is saved by the observation, explained in [Wen10
℄, thatone 
an �nd a highly non-generi
 
hoi
e of data for whi
h higher genus holomorphi
 openbooks exist, and this data is 
ompatible with an exa
t stable Hamiltonian stru
ture, whi
hadmits a well behaved perturbation to a suitable 
onta
t form.In x3.2, we will state and prove a generalization of Proposition 1.10 in the 
ontext of blownup and summed open books, whi
h gives us existen
e and uniqueness for 
ertain holomorphi

urves in partially planar domains that have only positive ends. Su
h results make it easyto �nd orbit sets in the ECH 
hain 
omplex that satisfy �
 = ; or Ud
 = ;, thus provingTheorems 2, 20, 6 and 60.As already mentioned, our main results on �llability and embeddability (Theorems 1, 4and 5) 
an also be proved without re
ourse to ECH and Seiberg-Witten theory, and we shalldo this in x4.1. The main idea behind su
h arguments appeared already in [Wen10b℄: givena strong �lling whose boundary 
ontains a planar torsion domain, we 
an atta
h a 
ylindri
alend and use the above 
orresponden
e between open books and holomorphi
 
urves to �nda region near in�nity that is foliated by a stable 2-dimensional family of holomorphi
 
urves.This family 
an then be expanded into the �lling and, due to the analyti
al properties of theholomorphi
 
urves in question, must foliate it. But the latter produ
es a 
ontradi
tion, asone 
an then follow the family ba
k into a di�erent region of the 
ylindri
al end where ouruniqueness statement in fa
t ex
ludes the existen
e of su
h holomorphi
 
urves.To make this type of argument work, we need 
ompa
tness and deformation results forfamilies of 
urves in a symple
ti
 �lling that arise from the pages of a holomorphi
 openbook. An example of su
h a result is the following. Suppose (M; �) is supported by aplanar open book � : M n B ! S1, and � and J+ are the 
onta
t form and almost 
omplexstru
ture respe
tively provided by Proposition 1.10. Assume also that (M; �) is the 
onta
ttype boundary of a 
ompa
t symple
ti
 manifold (W;!) su
h that near �W , ! = d� fora 1-form � that mat
hes � at M = �W . We 
an then 
omplete (W;!) to a non
ompa
tsymple
ti
 manifold by atta
hing a 
ylindri
al end(W1; !) := (W;!) [M �[0;1)�M;d(et�)� :Let u+ : _�! R�M denote one of the holomorphi
 planar pages provided by Proposition 1.10;applying a suitable R-translation to u+, we may assume without loss of generality that it liesin [0;1) �M � W1. Now 
hoose an open neighborhood N (B) � M of the binding B and3Holomorphi
 open books with pages of positive genus 
annot be expe
ted to exist in general be
ausethe ne
essary moduli spa
es of holomorphi
 
urves have negative virtual dimension. Hofer [Hof00℄ suggestedthat this problem might be solved by introdu
ing a \
ohomologi
al perturbation" into the nonlinear Cau
hy-Riemann equation in order to raise the Fredholm index. This program has re
ently been 
arried out by CasimAbbas [Abb11℄ (see also [vB℄), though appli
ations to problems su
h as the Weinstein 
onje
ture are as yetelusive, as the 
ompa
tness theory for the modi�ed nonlinear Cau
hy-Riemann equation is quite diÆ
ult.
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h that u+( _�) � [0;1) �U :Finally, 
hoose any set of data �0, !0, J 0+ and J 0 with the following properties:� �0 is a nondegenerate 
onta
t form on M that mat
hes � in U [ N (B) and has onlyReeb orbits of period at least 1 outside of N (B)� !0 is a symple
ti
 form on W1 that mat
hes d(et�0) on [0;1) �M� J 0+ is a generi
 almost 
omplex stru
ture on R �M 
ompatible with �0 that mat
hesJ+ on R � (U [N (B))� J 0 is an !0-
ompatible almost 
omplex stru
ture on W1 whi
h is generi
 in W andmat
hes J 0+ in [0;1) �MWe then denote byM(J 0) the moduli spa
e of all unparametrized �nite energy J 0-holomorphi

urves in W1, and let M0(J 0) denote the 
onne
ted 
omponent of this spa
e 
ontaining u+.A standard appli
ation of the impli
it fun
tion theorem (see e.g. [ABW10, Theorem 4.7℄)shows thatM0(J 0) is a smooth 2-dimensional manifold whose elements are all embedded anddo not interse
t ea
h other; in parti
ular they foliate an open subset of W1. The key to theproofs in x4.1 as well as various other appli
ations in [NW11,LVW℄ is to show that the 
urvesin M0(J 0) also �ll a 
losed subset outside of some harmless subvariety of 
odimension two.That is the main point of the following result, whi
h is a simpli�ed version of Theorem 8proved in x3.3.Proposition 1.11. M0(J 0) is 
ompa
t ex
ept for 
onvergen
e in the sense of [BEH+03℄ toholomorphi
 buildings of the following types:(1) Buildings with empty main level and a single non-empty upper level 
urve in R �Mwhose proje
tion to M is embedded,(2) Finitely many nodal 
urves in W1 
onsisting of two embedded index 0 
omponentsthat interse
t ea
h other transversely.It is instru
tive perhaps to 
ompare this with the results of M
Du� [M
D90℄: in parti
ular,the role of M
Du�'s symple
ti
 sphere with nonnegative self-interse
tion is played by ourholomorphi
 
urve u+, whi
h generates a smooth 2-dimensional family of 
urves that, due tothe above 
ompa
tness result and the aforementioned impli
it fun
tion theorem, must �ll theentirety of W1. In the form stated above, this result follows from [ABW10, Theorem 4.8℄.The version we will prove in x3.3 for a general partially planar domain is more 
ompli
atedbe
ause one 
annot generally avoid holomorphi
 buildings with multiply 
overed 
omponents,nonetheless one 
an still show that only �nitely many su
h buildings 
an appear.1.4. Open questions and re
ent progress. Let us now dis
uss a few questions that arisefrom the above results, some of whi
h have been partially answered sin
e the �rst versionof this paper appeared. In light of the equivalen
e between the ECH and Ozsv�ath-Szab�o
onta
t invariants, re
ently established in independent work of Colin-Ghiggini-Honda [CGHb℄and Kutluhan-Lee-Taubes [KLT
℄, our vanishing results for the ECH 
onta
t invariants imply
orresponding results in Heegaard Floer homology. Some of these were already known fromthe work of various authors [GHV,GH,HKM,Mas12,Mat11℄, but their results appear thusfar to re
ognize planar torsion only up to order 1.Question. Can one prove within the 
ontext of Heegaard Floer homology (i.e. without usingECH) that the 
onta
t invariant vanishes in the presen
e of planar k-torsion for k � 2?

16 CHRIS WENDLAs we sket
hed in the above dis
ussion of related results in [LW11℄, the hierar
hi
al stru
-ture en
oded by the order k � 0 of planar k-torsion 
an be dete
ted algebrai
ally via Sym-ple
ti
 Field Theory, and it also 
an be dete
ted by a re�nement of the ECH 
onta
t invariantexplained in Hut
hings's appendix to [LW11℄. The latter raises the question of what stru
turein Heegaard Floer homology might also be able to see this hierar
hy, but apparently nothingis yet known about this.Question. Can Heegaard Floer homology distinguish between two 
onta
t manifolds withvanishing Ozsv�ath-Szab�o invariant but di�ering minimal orders of planar torsion? Does thisimply obstru
tions to the existen
e of exa
t or Stein 
obordisms?It should be mentioned that in presenting this introdu
tion to planar torsion, we neither
laim nor believe it to be the most general sour
e of vanishing results for the various invari-ants under dis
ussion. For the Ozsv�ath-Szab�o invariant, [Mas12℄ produ
es vanishing resultson some Seifert �bered 3-manifolds that fall under the umbrella of our Corollary 2 and Re-mark 1.5, but also some that do not sin
e there is no 
ondition requiring the existen
e of aplanar pie
e. This phenomenon appears to be related to a generalization of planar torsionthat has re
ently emerged from joint work of the author with Lisi and Van Horn-Morris: theidea is to repla
e the 
onta
t �ber sum with a more general \plumbing" 
onstru
tion thatprodu
es a notion of \higher genus binding." Among its appli
ations, this allows a substantialgeneralization of Corollary 2 that en
ompasses all of the examples in [Mas12℄ and many more;details of this will appear in the forth
oming paper [LVW℄.And now the obvious question: what 
an be done in higher dimensions? There has beensigni�
ant a
tivity in this area in the last few years. Atsuhide Mori [Mor℄ showed that 
ertainblown up open books in dimension 5 produ
e a �lling obstru
tion that strongly resemblesthe Lutz tube and is related to Niederkr�uger's spe
ulative notion of higher-dimensional over-twistedness [Nie06℄. After the preprint version of the present arti
le �rst appeared, Mori's
onstru
tion was generalized to all dimensions in a joint paper of the author with Massotand Niederkr�uger [MNW℄ whi
h also de�ned a higher-dimensional notion of Giroux torsion,giving the �rst examples of non-�llable 
onta
t manifolds in all dimensions that 
annot be
alled \overtwisted" in any reasonable sense. The 
onstru
tions in [MNW℄ also give somehints as to how one might de�ne something analogous to higher-order planar torsion that
ould be dete
ted algebrai
ally via SFT in all dimensions. This subje
t is still in its infan
y,but it now at least seems safe to state the following 
onje
ture:Conje
ture. For all n � 1 and k � 0, there exist (2n + 1)-dimensional 
onta
t manifolds(M; �) with AT(M; �) = k. In parti
ular, there exists in every dimension greater than onea sequen
e of non-�llable 
onta
t manifolds f(Mk; �k)gk�0 su
h that (Mk; �k) admits exa
tsymple
ti
 
obordisms to (M`; �`) if and only if k � `.2. The definition of planar torsion2.1. Blown up summed open books. We now explain the de
omposition of a 
onta
tmanifold into \binding sums" of supporting open books, whi
h underlies the notion of aplanar torsion domain.Assume M is an oriented smooth manifold 
ontaining two disjoint oriented submanifoldsN1; N2 � M of real 
odimension 2, whi
h admit an orientation preserving di�eomorphism' : N1 ! N2 
overed by an orientation reversing isomorphism � : �N1 ! �N2 of their normalbundles. Then we 
an de�ne a new smooth manifoldM�, the normal sum ofM along �, by



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 17removing neighborhoods N (N1) and N (N2) of N1 and N2 respe
tively, then gluing togetherthe resulting manifolds with boundary along an orientation reversing di�eomorphism�N (N1)! �N (N2)determined by �. This operation determinesM� up to di�eomorphism, and is also well de�nedin the 
onta
t 
ateogory: if (M; �) is a 
onta
t manifold and N1; N2 are 
onta
t submanifoldswith ' : N1 ! N2 a 
onta
tomorphism, then M� admits a 
onta
t stru
ture ��, whi
hagrees with � away from N1 and N2 (
f. [Gei08, x7.4℄). Although the issue of uniqueness isnot dis
ussed in [Gei08, x7.4℄, one 
an show that the 
onstru
tion of �� explained there is
anoni
al up to isotopy; in the spe
i�
 setting that we will be 
on
erned with below, this is anobvious 
onsequen
e of the uniqueness of \supported" 
onta
t stru
tures (
f. De�nition 2.8and the ensuing dis
ussion).We will 
onsider the spe
ial 
ase of the 
onta
t �ber sum where N1 and N2 are disjoint
omponents4 of the binding of an open book de
omposition� :M nB ! S1that supports �. Then N1 and N2 are automati
ally 
onta
t submanifolds, whose normalbundles 
ome with distinguished trivializations determined by the open book. In the follow-ing, we shall always assume that M is oriented and the pages and binding are assigned thenatural orientations determined by the open book, so in parti
ular the binding is the orientedboundary of the pages.De�nition 2.1. Assume � :M nB ! S1 is an open book de
omposition onM . By a bindingsum of the open book, we mean any normal sum M� along an orientation reversing bundleisomorphism � : �N1 ! �N2 
overing a di�eomorphism ' : N1 ! N2, where N1; N2 � Bare disjoint 
omponents of the binding and � is 
onstant with respe
t to the distinguishedtrivialization determined by �. The resulting smooth manifold will be denoted byM(�;') :=M�;and we denote by I(�;') � M(�;') the 
losed hypersurfa
e obtained by the identi�
ation of�N (N1) with �N (N2), whi
h we'll also 
all the interfa
e. We will then refer to the data(�; ') as a summed open book de
omposition of M(�;'), whose binding is the (possiblyempty) 
odimension 2 submanifoldB' := B n (N1 [N2) �M(�;'):The pages of (�; ') are the 
onne
ted 
omponents of the �bers of the naturally indu
ed�bration �' :M(�;') n (B' [ I(�;'))! S1;if dimM = 3, then these are naturally oriented open surfa
es whose 
losures are generallyimmersed (distin
t boundary 
omponents may sometimes 
oin
ide).If � is a 
onta
t stru
ture on M supported by �, we will denote the indu
ed 
onta
tstru
ture on M(�;') by �(�;') := ��and say that �(�;') is supported by the summed open book (�; ').4We use the word 
omponent throughout to mean any open and 
losed subset, i.e. a disjoint union of
onne
ted 
omponents.

18 CHRIS WENDLIt follows from the 
orresponding fa
t for ordinary open books that every summed openbook de
omposition supports a 
onta
t stru
ture, whi
h is unique up to isotopy: in fa
t itdepends only on the isotopy 
lass of the open book � : M n B ! S1, the 
hoi
e of binding
omponents N1; N2 � B and isotopy 
lass of di�eomorphism ' : N1 ! N2.Throughout this dis
ussion,M , N1, N2 and the pages of � are all allowed to be dis
onne
ted(note that � : M n B ! S1 will have dis
onne
ted pages if M itself is dis
onne
ted). In thisway, we 
an in
orporate the notion of a binding sum of multiple, separate (perhaps summed)open books, e.g. given (Mi; �i) supported by �i :Mi nBi ! S1 with 
omponents Ni � Bi fori = 1; 2, and a di�eomorphism ' : N1 ! N2, a binding sum of (M1; �1) with (M2; �2) 
an bede�ned by applying the above 
onstru
tion to the disjoint union M1 tM2. We will generallyuse the shorthand notation M1 �M2to indi
ate manifolds 
onstru
ted by binding sums of this type, where it is understood thatM1and M2 both 
ome with 
onta
t stru
tures and supporting summed open books, whi
h 
om-bine to determine a summed open book and supported 
onta
t stru
ture on M1 �M2.Example 2.2. Consider the tight 
onta
t stru
ture on M := S1 � S2 with its supportingopen book de
omposition � :M n (
0 [ 
1)! S1 : (t; z) 7! z=jzj;where S2 = C [ f1g, 
0 := S1 � f0g, 
1 := S1 � f1g and S1 is identi�ed with the unit
ir
le in C . This open book has 
ylindri
al pages and trivial monodromy. Now let M 0 denotea se
ond 
opy of the same manifold and�0 :M 0 n (
00 [ 
01)! S1the same open book. De�ning the binding sum M �M 0 by pairing 
0 with 
00 and 
1 with
01, we obtain the standard 
onta
t T 3. In fa
t, ea
h of the tight 
onta
t tori (T 3; �n), where�n = ker [
os(2�n�) dx+ sin(2�n�) dy℄in 
oordinates (x; y; �) 2 S1 � S1 � S1, 
an be obtained as a binding sum of 2n 
opies of thetight S1 � S2; see Figure 5.Example 2.3. Using the same open book de
omposition on the tight S1 � S2 as in Exam-ple 2.2, one 
an take only a single 
opy and perform a binding sum along the two binding
omponents 
0 and 
1. The 
onta
t manifold produ
ed by this operation is the quotient of(T 3; �1) by the 
onta
t involution (x; y; �) 7! (�x;�y; � + 1=2), and is thus the torus bundleover S1 with monodromy �1. The resulting summed open book on T 3=Z2 has 
onne
ted
ylindri
al pages, empty binding and a single interfa
e torus of the form I(�;') = f2� = 0g,indu
ing a �bration�' : (T 3=Z2) n I(�;') ! S1 : [(x; y; �)℄ 7! (y if � 2 (0; 1=2),�y if � 2 (1=2; 1).The following two spe
ial 
ases of summed open books are of 
ru
ial importan
e.Example 2.4. An ordinary open book 
an also be regarded as a summed open book: wesimply take N1 and N2 to be empty.
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ing tight 
onta
t tori from 2n 
opies of thetight S1 � S2. At left, 
opies of S1 � S2 are represented by open bookswith two binding 
omponents (depi
ted here through the page) and 
ylindri
alpages. For ea
h dotted oval surrounding two binding 
omponents, we 
onstru
tthe binding sum to produ
e the manifold at right, 
ontaining 2n spe
ial pre-Lagrangian tori (the bla
k line segments) that separate regions foliated by
ylinders. The results are (T 3; �n) for n = 1; 2.Example 2.5. Suppose (Mi; �i) for i = 1; 2 are 
losed 
onne
ted 
onta
t 3-manifolds withsupporting open books �i whose pages are di�eomorphi
. Then we 
an set N1 = B1 and N2 =B2, 
hoose a di�eomorphism B1 ! B2 and de�ne M = M1 �M2 a

ordingly. The resultingsummed open book is 
alled symmetri
; observe that it has empty binding, sin
e everybinding 
omponent of �1 and �2 has been summed. A simple example of this 
onstru
tionis (T 3; �1) as explained in Example 2.2, and for an even simpler example, summing two openbooks with disk-like pages produ
es the tight S1 � S2.Remark 2.6. There is a 
lose relationship between summed open books and the notion of openbooks with quasi-
ompatible 
onta
t stru
tures, introdu
ed by Etnyre and Van Horn-Morris[EV11℄. A 
onta
t stru
ture � is said to be quasi-
ompatible with an open book if it admitsa 
onta
t ve
tor �eld that is positively transverse to the pages and positively tangent to thebinding; if the 
onta
t ve
tor �eld is also positively transverse to �, then this is pre
isely

20 CHRIS WENDLthe supporting 
ondition, but quasi-
ompatibility is quite a bit more general, and 
an allowe.g. open books with empty binding. A summed open book on a 3-manifold gives rise to anopen book with quasi-
ompatible 
onta
t stru
ture whenever a 
ertain orientation 
onditionis satis�ed: this is the result in parti
ular whenever we 
onstru
t binding sums of separateopen books that are labeled with signs in su
h a way that every interfa
e torus separatesa positive pie
e from a negative pie
e. Thus the tight 3-tori in Figure 5 are examples, inthis 
ase produ
ing an open book with empty binding (i.e. a �bration over S1) that is quasi-
ompatible with all of the 
onta
t stru
tures �n. However, it is easy to 
onstru
t bindingsums for whi
h this is not possible, e.g. Example 2.3.We now generalize the dis
ussion to in
lude manifolds with boundary. SupposeM(�;') is a
losed 3-manifold with summed open book (�; '), whi
h has binding B' and interfa
e I(�;'),and N � B' is a 
omponent of its binding. For ea
h 
onne
ted 
omponent 
 � N , identify atubular neighborhoodN (
) of 
 with a solid torus S1�D , de�ning 
oordinates (�; �; �) 2 S1�D , where (�; �) denote polar 
oordinates5 on the disk D and 
 is the subset S1�f0g = f� = 0g.Assume also that these 
oordinates are adapted to the summed open book, in the sense thatthe orientation of 
 as a binding 
omponent agrees with the natural orientation of S1 � f0g,and the interse
tions of the pages with N (
) are of the form f� = 
onstg. This 
onditiondetermines the 
oordinates up to isotopy. Then we de�ne the blown up manifoldM(�;';
) fromM(�;') by repla
ingN (
) = S1�D with S1�[0; 1℄�S1, using the same 
oordinates (�; �; �) onthe latter, i.e. the binding 
ir
le 
 is repla
ed by a 2-torus, whi
h now forms the boundary ofM(�;';
). If �(�;') is a 
onta
t stru
ture on M(�;') supported by (�; '), then we 
an de�ne anappropriate 
onta
t stru
ture �(�;';
) on M(�;';
) as follows. Sin
e 
 is a positively transverseknot, the 
onta
t neighborhood theorem allows us to 
hoose the 
oordinates (�; �; �) so that�(�;') = ker �d� + �2d��in a neighborhood of 
. This formula also gives a well de�ned distribution on M(�;';
), butthe 
onta
t 
ondition fails at the boundary f� = 0g. We �x this by making a C0-small 
hangein �(�;') to de�ne a 
onta
t stru
ture of the form�(�;';
) = ker [d� + g(�) d�℄ ;where g(�) = �2 for � outside a neighborhood of zero, g0(�) > 0 everywhere and g(0) = 0.Performing the above operation at all 
onne
ted 
omponents 
 � N � B' yields a 
om-pa
t manifoldM(�;';N), generally with boundary, 
arrying a still more general de
ompositiondetermined by the data (�; ';N), whi
h we'll 
all a blown up summed open book. Wede�ne its interfa
e to be the original interfa
e I(�;'), and its binding isB(';N) = B' nN:There is a natural di�eomorphismM(�;') nB' =M(�;';N) n �B(';N) [ �M(�;';N)� ;so the �bration �' : M(�;') n �B' [ I(�;')�! S1 
arries over to M(�;';N) n (B(';N) [ I(�;') [�M(�;';N)), and 
an then be extended smoothly to the boundary to de�ne a �bration�(';N) :M(�;';N) n �B(';N) [ I(�;')�! S1:5Throughout this paper, we use polar 
oordinates (�; �) on subdomains of C with the angular 
oordinate �normalized to take values in S1 = R=Z, i.e. the a
tual angle is 2��.
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onne
ted 
omponents of the �bers of �(';N) as the pages of(�; ';N), and orient them in a

ordan
e with the 
o-orientations indu
ed by the �bration.Their 
losures are immersed surfa
es whi
h o

asionally may have pairs of boundary 
ompo-nents that 
oin
ide as oriented 1-manifolds, e.g. this 
an happen whenever two binding 
ir
leswithin the same 
onne
ted open book are summed to ea
h other.Note that the �bration �(';N) :M(�;';N) n�B(';N) [ I(�;')�! S1 is not enough informationto fully determine the blown up open book (�; ';N), as it does not uniquely determine the\blown down" manifold M(�;'). Indeed, M(�;') determines on ea
h boundary torus T ��M(�;';N) a distinguished basis fmT ; `T g � H1(T );where `T is a boundary 
omponent of a page and mT is determined by the meridian ona small torus around the binding 
ir
le to be blown up. Two di�erent manifolds M(�;')may sometimes produ
e di�eomorphi
 blown up manifoldsM(�;';N), whi
h will however havedi�erent meridiansmT on their boundaries. Similarly, ea
h interfa
e torus T � I(�;') inheritsa distinguished basis f�mT ; `T g � H1(T )from the binding sum operation, with the di�eren
e that the meridianmT is only well de�nedup to a sign.The binding sum of an open book � : M n B ! S1 along 
omponents N1 [ N2 � B 
annow also be understood as a two step operation, where the �rst step is to blow up N1 and N2,and the se
ond is to atta
h the resulting boundary tori to ea
h other via a di�eomorphismdetermined by � : �N1 ! �N2. One 
an 
hoose a supported 
onta
t stru
ture on the blown upopen book whi
h �ts together smoothly under this atta
hment to reprodu
e the 
onstru
tionof �(�;';N) des
ribed above.De�nition 2.7. A blown up summed open book (�; ';N) is 
alled irredu
ible if the �bersof the indu
ed �bration �(';N) are 
onne
ted.In the irredu
ible 
ase, the pages 
an be parametrized in a single S1-family, e.g. an ordinary
onne
ted open book is irredu
ible, but a symmetri
 summed open book is not. Any blownup summed open book 
an however be de
omposed uniquely into irredu
ible subdomainsM(�;';N) =M1(�;';N) [ : : : [M `(�;';N);where ea
h pie
e M i(�;';N) for i = 1; : : : ; ` is a 
ompa
t manifold, possibly with boundary,de�ned as the 
losure in M(�;';N) of the region �lled by some smooth S1-family of pages.Thus M i(�;';N) 
arries a natural blown up summed open book of its own, whose binding andinterfa
e are subsets of B' and I(�;') respe
tively, and �M i(�;';N) � I(�;') [ �M(�;';N). One
an also write M(�;';N) = �M1(�;';N) � : : :� �M `(�;';N);where the manifolds �M i(�;';N) also naturally 
arry blown up summed open books and 
an beobtained from M i(�;';N) by blowing down �M i(�;';N) \ I(�;'):De�nition 2.8. Given a blown up summed open book (�; ';N) on a manifoldM(�;';N) withboundary, a Giroux form for (�; ';N) is a 
onta
t form � on M(�;';N) with Reeb ve
tor�eld X� satisfying the following 
onditions:(1) X� is positively transverse to the interiors of the pages,

22 CHRIS WENDL(2) X� is positively tangent to the boundaries of the 
losures of the pages,(3) ker� on ea
h interfa
e or boundary torus T � I(�;') [ �M(�;';N) indu
es a 
hara
ter-isti
 foliation with 
losed leaves homologous to the meridian mT .We will say that a 
onta
t stru
ture on M(�;';N) is supported by (�; ';N) whenever it isthe kernel of a Giroux form. By the pro
edure des
ribed above, one 
an easily take a Girouxform for the underlying open book � :M nB ! S1 and modify it near B to produ
e a Girouxform for the blown up summed open book on M(�;';N). Moreover, the same argument thatproves uniqueness of 
onta
t stru
tures supported by open books (
f. [Etn06, Prop. 3.18℄)shows that any two Giroux forms are homotopi
 to ea
h other through a family of Girouxforms. We thus obtain the following uniqueness result for supported 
onta
t stru
tures.Proposition 2.9. Suppose M(�;';N) is a 
ompa
t 3-manifold with boundary, with a 
onta
tstru
ture �(�;';N) supported by the blown up summed open book (�; ';N), and (M(�;';N); �(�;';N))admits a 
onta
t embedding into some 
losed 
onta
t 3-manifold (M 0; �0). If � is a 
onta
tform on M 0 su
h that(1) � de�nes a Giroux form on M(�;';N) �M 0, and(2) ker� = �0 on M 0 nM(�;';N),then ker � is isotopi
 to �0.Example 2.10. Suppose � is a 
ompa
t, oriented and 
onne
ted surfa
e, possibly withboundary, 
ontaining a non-empty multi
urve � � � su
h that �� � � and � divides � intotwo (possibly dis
onne
ted) pie
es � = �+ [� ��:By Lutz [Lut77℄, S1 � � admits an S1-invariant 
onta
t stru
ture �� whi
h is determineduniquely up to isotopy by the 
ondition that the loops S1 � fzg be positively/negativelytransverse to �� for z 2 int�� and Legendrian for z 2 �. Then (S1��; ��) is supported by ablown up summed open book with empty binding, interfa
e I = S1 � (� n ��) and �bration� : (S1 � �) n I ! S1 : (�; z) 7! (� for z 2 �+;�� for z 2 ��:Indeed, one 
an write �� as the kernel of a 
onta
t form whose Reeb ve
tor �eld is posi-tively/negatively transverse to the interior of f�g � �� and admits 
losed orbits of the formf�g � 
 for ea
h dividing 
urve 
 � �. (An expli
it 
onstru
tion of su
h a 
onta
t form maybe found e.g. in [LW11℄.) The distinguished meridians at I and �(S1 � �) are generated bythe Legendrians S1 � f�g.2.2. Partially planar domains and planar torsion. We are now ready to state the mostimportant de�nitions in this paper.De�nition 2.11. A blown up summed open book on a 
ompa
t manifold M is 
alled par-tially planar if M n �M 
ontains a planar page. A partially planar domain is then any
onta
t 3-manifold (M; �) with a supporting blown up summed open book that is partiallyplanar. An irredu
ible subdomain MP �Mthat 
ontains planar pages and doesn't tou
h �M is 
alled a planar pie
e, and we will referto the 
omplementary subdomain M nMP as the padding.
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onta
t manifold is a partially planar domain (with emptypadding), as is the symmetri
 summed open book obtained by summing together two planaropen books with the same number of binding 
omponents (here one 
an 
all either side theplanar pie
e, and the other side the padding). As we'll soon see, one 
an also use partiallyplanar domains to 
hara
terize the solid torus that appears in a Lutz twist, or the thi
kenedtorus in the de�nition of Giroux torsion, as well as many more general obje
ts.De�nition 2.12. We say that a 
onta
t 3-manifold (M; �) with a 
losed 2-form 
 
ontainsan 
-separating partially planar domain if there exists a partially planar domain (M0; �0)with planar pie
e MP0 � M0 and a 
onta
t embedding � : (M0; �0) ,! (M; �) su
h that forevery interfa
e torus T of M0 lying in MP0 , RT ��
 = 0. We say that the domain is fullyseparating if this is true for all 
hoi
es of 
.Note that in general, a 2-torus T embedded in a 
losed oriented 3-manifold M satis�esRT 
 = 0 for all 
losed 2-forms 
 on M if and only if T separates M . In a partially planardomain, any interfa
e torus in the interior of the planar pie
e is ne
essarily non-separating,thus the fully separating 
ondition implies that there are no su
h interfa
e tori, and ea
h
omponent of the boundary of the planar pie
e also separates (
f. De�nition 1.3).We now 
ome to the de�nition of a new symple
ti
 �lling obstru
tion.De�nition 2.13. For any integer k � 0, a 
onta
t manifold (M; �), possibly with boundary,is 
alled a planar torsion domain of order k (or brie
y a planar k-torsion domain)if it is supported by a partially planar blown up summed open book (�; ';N) with a planarpie
e MP �M satisfying the following 
onditions:(1) The pages in MP have k + 1 boundary 
omponents.(2) The padding M nMP is not empty.(3) (�; ';N) is not a symmetri
 summed open book (
f. Example 2.5).We say that a 
onta
t 3-manifold (M; �) has (perhaps 
-separating or fully separating)planar k-torsion if it admits a (perhaps 
-separating or fully separating) 
onta
t embeddingof a planar k-torsion domain.Remark 2.14. The planar pie
e of a planar 0-torsion domain has no interior interfa
e toriand only one boundary 
omponent, thus planar 0-torsion is always fully separating. It iseasy to see from examples (
f. Example 2.15) that this is not true for k � 1. Observe alsothat whenever (M; �) is 
losed and 
onne
ted and 
ontains a fully separating partially planardomain M0 �M , one of the following must be true:(i) (M0; �) is a planar torsion domain,(ii) M0 = M and the interfa
e is empty, i.e. (M; �) is supported by an ordinary planaropen book,(iii) M0 =M and it 
arries a symmetri
 summed open book with disk-like pages.In the last 
ase, (M; �) is 
onta
tomorphi
 to the tight S1 � S2 (see Example 2.5), whi
his planar. We thus 
on
lude that under these assumptions, (M; �) always either has planartorsion or is planar.Example 2.15. The S1-invariant 
onta
t manifold (S1 � �; ��) from Example 2.10 is apartially planar domain whenever � n � has a 
onne
ted 
omponent �0 of genus zero with�0\�� = ;. In this 
ase S1��0 is the planar pie
e, and S1�� is also a planar torsion domainunless the blown up summed open book from Example 2.10 is symmetri
, whi
h would mean
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hemati
 representations of two planar torsion domains as de-s
ribed in Example 2.16.�� = ; and � n � has exa
tly two 
onne
ted 
omponents, whi
h are di�eomorphi
 to ea
hother. Some spe
ial 
ases are shown in Figures 3 and 4.Example 2.16. More generally than the S1-invariant examples des
ribed above, blown upsummed open books 
an always be represented by s
hemati
 pi
tures as in Figure 6, whi
hshows two examples of planar torsion domains, ea
h with the order labeled within the pla-nar pie
e. Here ea
h pi
ture shows a surfa
e � 
ontaining a multi
urve �: ea
h 
onne
ted
omponent �0 � � n � then represents an irredu
ible subdomain with pages di�eomorphi
to �0, and the 
omponents of � represent interfa
e tori (labeled in the pi
ture by I). Ea
hirredu
ible subdomain may additionally have binding 
ir
les, shown in the pi
ture as 
ir
leswith the label B. The information in these pi
tures, together with a spe
i�ed monodromymap for ea
h 
omponent of � n �, determine a blown up summed open book and supported
onta
t stru
ture uniquely up to 
onta
tomorphism. If we take these parti
ular pi
tures withthe assumption that all monodromy maps are trivial, then the �rst shows a solid torus S1�Dwith an overtwisted 
onta
t stru
ture that makes one full twist along a ray from the 
enter(the binding B) to the boundary. The other pi
ture shows the 
omplement of a solid torus inthe torus bundle T 3=Z2 from Example 2.3. More pre
isely, one 
an 
onstru
t it by taking aloop K � T 3=Z2 transverse to the pages in that example, modifying the 
onta
t stru
ture �nearK by a full Lutz twist, and then removing a smaller neighborhoodN (K) of K on whi
h �makes a quarter twist. Note that the appearan
e of genus in this pi
ture is a bit misleading;due to the interfa
e torus in the interior of the bottom pie
e, it has planar pages with threeboundary 
omponents.We 
an now pro
eed toward the proof of Theorem 3.De�nition 2.17. A Lutz tube is the solid torus S1�D with 
oordinates (�; �; �), where (�; �)are polar 
oordinates on the 
losed unit disk D � C , together with the 
onta
t stru
ture �de�ned as the hyperplane �eld(2.1) � = ker [f(�) d� + g(�) d�℄for some pair of smooth fun
tions f; g su
h that the path[0; 1℄! R2 n f0g : � 7! (f(�); g(�))
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onta
t form on L�(for the Lutz tube at the left and Giroux torsion domain at the right) in theproof of Prop. 2.19.makes exa
tly one half-turn (
ounter
lo
kwise) about the origin, moving from the positive tothe negative x-axis. (See Figure 1.)De�nition 2.18. A Giroux torsion domain is the thi
kened torus [0; 1℄ � T 2 with 
oor-dinates (�; �; �) 2 [0; 1℄ � S1 � S1, together with the 
onta
t stru
ture � de�ned via these
oordinates as in (2.1), where the path � 7! (f(�); g(�)) makes one full (
ounter
lo
kwise)turn about the origin, beginning and ending on the positive x-axis. (See Figure 2.)Proposition 2.19. If L �M is a Lutz tube in a 
losed 
onta
t 3-manifold (M; �), then anyopen neighborhood of L 
ontains a planar 0-torsion domain. Similarly if L is a Giroux torsiondomain, then any open neighborhood of L 
ontains a planar 1-torsion domain.Proof. Suppose L � M is a Lutz tube. Then for some � > 0, an open neighborhood of L
ontains a region identi�ed with L� := S1 � D 1+� ;where D r denotes the 
losed disk of radius r and � = ker �� for a 
onta
t form�� = f(�) d� + g(�) d�with the following properties (see Figure 7, left):(1) f(0) > 0 and g(0) = 0,(2) f(1) < 0 and g(1) = 0,(3) f(�)g0(�)� f 0(�)g(�) > 0 for all � > 0,(4) g0(1 + �) = 0,(5) f(1 + �)=g(1 + �) 2 Z.Setting D(�) := f(�)g0(�)� f 0(�)g(�), the Reeb ve
tor �eld de�ned by �� in the region � > 0is X� = 1D(�) �g0(�)�� � f 0(�)��� ;and at � = 0, X� = 1f(0)��. Thus X� in these 
oordinates depends only on � and its dire
tionis always determined by the slope of the path � 7! (f(�); g(�)) in R2 ; in parti
ular, X� points

26 CHRIS WENDLin the ���-dire
tion at � = 1 + �, and in the +��-dire
tion at some other radius �0 2 (0; 1).We 
an 
hoose f and g without loss of generality so that these are the only radii at whi
h X�is parallel to ���.We 
laim now that L� is a planar 0-torsion domain with planar pie
e LP� := S1 � D �0 .Indeed, LP� 
an be obtained from the open book on the tight 3-sphere with disk-like pages byblowing up the binding: the pages in the interior of LP� are de�ned by f� = 
onstg. Similarly,the �-level sets in the 
losure of L� n LP� form the pages of a blown up open book, obtainedfrom an open book with 
ylindri
al pages. The 
ondition f(1 + �)=g(1 + �) 2 Z implies thatthe 
hara
teristi
 foliation on T := �L� has 
losed leaves homologous to a primitive 
lassmT 2 H1(T ), whi
h together with the homology 
lass of the Reeb orbits on T forms a basis ofH1(T ). Thus our 
hosen 
onta
t form �� is a Giroux form for some blown up summed openbook. (Note that the monodromy of the blown up open book in L� n LP� is not trivial sin
ethe distinguished meridians on �L� and �LP� are not homologous.)The argument for Giroux torsion is quite similar, so we'll only sket
h it: given L = [0; 1℄�T 2 �M , we 
an expand L slightly on both sides to 
reate a domainL� = [��; 1 + �℄� T 2;with a 
onta
t form �� that indu
es a suitable 
hara
teristi
 foliation on �L� and whoseReeb ve
tor �eld points in the ���-dire
tion at � = ��, � = 1 + � and exa
tly two otherradii 0 < �1 < �2 < 1 (see Figure 7, right). This splits L� into three pie
es, of whi
hLP� := f� 2 [�1; �2℄g is the planar pie
e of a planar 1-torsion domain, as it 
an be obtainedfrom an open book with 
ylindri
al pages and trivial monodromy by blowing up both binding
omponents. The padding now 
onsists of two separate blown up open books with 
ylindri
alpages and nontrivial monodromy. �Proof of Theorem 3. The only 
laim in the theorem that doesn't follow immediately fromProp. 2.19 is that (M; �) must be overtwisted if it 
ontains a planar 0-torsion domain M0.One 
an see this as follows: note �rst that if we writeM0 =MP0 [M 00;where MP0 is the planar pie
e and M 00 = M0 nMP0 is the padding, then M 00 
arries a blownup summed open book with pages that are not disks (whi
h means (M0; �) is not the tightS1 � S2). If the pages in M 00 are surfa
es with positive genus and one boundary 
omponent,then one 
an glue one of these together with a page in MP0 to form a 
onvex surfa
e � �M0whose dividing set is �MP0 \�. The latter is the boundary of a disk in �, so Giroux's 
riterion(see [Gir01, Th�eor�eme 4.5(a)℄ or [Gei08, Prop. 4.8.13℄) implies the existen
e of an overtwisteddisk near �.In all other 
ases the pages � in M 00 have multiple boundary 
omponents�� = CP [ C 0;where we denote by CP the 
onne
ted 
omponent situated near the interfa
e �MP0 , and C 0 =�� nCP . We 
an then �nd overtwisted disks by 
onstru
ting a parti
ular Giroux form usinga small variation on the Thurston-Winkelnkemper 
onstru
tion as des
ribed e.g. in [Etn06,Theorem 3.13℄. Namely, 
hoose 
oordinates (s; t) 2 (1=2; 1℄ � S1 on a 
ollar neighborhood ofea
h 
omponent of �� and de�ne a 1-form �1 on � with the following properties:(1) d�1 > 0(2) �1 = (1 + s) dt near ea
h 
omponent of C 0
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onditions 
annot be true unless C 0 is non-empty, due to Stokes'stheorem. Now following the 
onstru
tion des
ribed in [Etn06℄, one 
an produ
e a Girouxform � on M 00 whi
h annihilates some boundary parallel 
urve ` near �MP0 in a page, and�ts together smoothly with some Giroux form in MP0 , so that ker� is a supported 
onta
tstru
ture and is isotopi
 to � by Prop. 2.9. Then ` is the boundary of an overtwisted disk. �3. Holomorphi
 summed open books3.1. Te
hni
al ba
kground. We begin by 
olle
ting some de�nitions and ba
kground re-sults on pun
tured holomorphi
 
urves that will be important for understanding the remainderof the paper.A stable Hamiltonian stru
ture on an oriented 3-manifold M is a pair H = (�; !)
onsisting of a 1-form � and 2-form ! su
h that d! = 0, �^! > 0 and ker! � ker d�. Giventhis data, we de�ne the 
o-oriented 2-plane distribution � = ker � and nowhere vanishingve
tor �eld X, 
alled the Reeb ve
tor �eld, whi
h is determined by the 
onditions!(X; �) � 0; �(X) � 1:The 
onditions on � and ! imply that !j� gives � the stru
ture of a symple
ti
 ve
tor bundleover M , and this distribution with its symple
ti
 stru
ture is preserved by the 
ow of X. Asan important spe
ial 
ase, if � is a 
onta
t form, then one 
an de�ne a stable Hamiltonianstru
ture in the form H = (�; h d�) for any smooth fun
tion h : M ! (0;1) su
h thatdh ^ d� � 0. Then � is a positive and 
o-oriented 
onta
t stru
ture, and X is the usual
onta
t geometri
 notion of the Reeb ve
tor �eld: we will often denote it in this 
ase by X�,sin
e it is uniquely determined by �.For the rest of this se
tion, assume H = (�; !) is a stable Hamiltonian stru
ture with theusual atta
hed data � and X. We say that an almost 
omplex stru
ture J on R � M is
ompatible with H if it satis�es the following 
onditions:(1) The natural R-a
tion on R �M preserves J .(2) J�t � X, where �t denotes the unit ve
tor in the R-dire
tion.(3) J(�) = � and !(�; J �) de�nes a symmetri
, positive de�nite bundle metri
 on �.Denote by J (H) the (non-empty and 
ontra
tible) spa
e of almost 
omplex stru
tures 
om-patible with H. Note that if � is 
onta
t then J (H) depends only on �; we will in this 
asesay that J is 
ompatible with �.A periodi
 orbit 
 of X is determined by the data (x; T ), where x : R ! M satis�es_x = X(x) and x(T ) = x(0) for some T > 0. We sometimes abuse notation and identify
 with the submanifold x(R) � M , though te
hni
ally the period is also part of the datade�ning 
. If � > 0 is the smallest positive number for whi
h x(�) = x(0), we 
all it theminimal period of this orbit, and say that 
 = (x; �) is a simple, or simply 
overed orbit.The 
overing multipli
ity of an orbit (x; T ) is the unique integer k � 1 su
h that T = k�for a simple orbit (x; �).If 
 = (x; T ) is a periodi
 orbit and 'tX denotes the 
ow of X for time t 2 R, then therestri
tion of the linearized 
ow to �x(0) de�nes a symple
ti
 isomorphism('TX)� : (�x(0); !)! (�x(0); !):We 
all 
 nondegenerate if 1 is not in the spe
trum of this map. More generally, aMorse-Bott submanifold of T -periodi
 orbits is a 
losed submanifold N � M �xed by 'TX su
h

28 CHRIS WENDLthat for any p 2 N , ker �('TX )� � 1

� = TpN:We will 
all a single orbit 
 = (x; T ) Morse-Bott if it lies on a Morse-Bott submanifoldof T -periodi
 orbits. Nondegenerate orbits are 
learly also Morse-Bott, with N �= S1. Wesay that the ve
tor �eld X is Morse-Bott (or nondegenerate) if all of its periodi
 orbitsare Morse-Bott (or nondegenerate respe
tively). Sin
e X never vanishes, every Morse-Bottsubmanifold N � M of dimension 2 is either a torus or a Klein bottle. One 
an show(
f. [Wen10a, Prop. 4.1℄) that in the former 
ase, ifX is Morse-Bott, then every orbit 
ontainedin N has the same minimal period.To every orbit 
 = (x; T ), one 
an asso
iate an asymptoti
 operator, whi
h is morallythe Hessian of a 
ertain fun
tional whose 
riti
al points are the periodi
 orbits. To write itdown, 
hoose J 2 J (H), let x : S1 !M : t 7! x(T t), 
hoose a symmetri
 
onne
tion r onMand de�ne A
 : �(x��)! �(x��) : � 7! �J(rt� � Tr�X):One 
an show that this operator is well de�ned independently of the 
hoi
e of 
onne
tion,and it extends to an unbounded self-adjoint operator on the 
omplexi�
ation of L2(x��), withdomain H1(x��). Its spe
trum �(A
) 
onsists of real eigenvalues with multipli
ity at most 2,whi
h a

umulate only at �1. It is straightforward to show that solutions of the equationA
� = 0 are given by �(t) = ('T tX )��(0), thus 
 is nondegenerate if and only if 0 62 �(A
),and in general if 
 belongs to a Morse-Bott submanifold N �M , thendimkerA
 = dimN � 1:Choosing a unitary trivialization � of (�; J; !) along the parametrization x : S1 ! Midenti�es A
 with a �rst-order di�erential operator of the form(3.1) H1(S1;R2 )! L2(S1;R2) : � 7! �J0 _� � S�;where J0 denotes the standard 
omplex stru
ture on R2 = C and S : S1 ! EndR(R2 ) is asmooth loop of symmetri
 real 2-by-2 matri
es. Seen in this trivialization, A
� = 0 de�nesa linear Hamiltonian equation _� = J0S� 
orresponding to the linearized 
ow of X along 
,thus its 
ow de�nes a smooth family of symple
ti
 matri
es	 : [0; 1℄! Sp(2)for whi
h 1 62 �(	(1)) if and only if 
 is nondegenerate. In this 
ase, the homotopy 
lass ofthe path 	 is des
ribed by its Conley-Zehnder index �CZ(	) 2 Z, whi
h we use to de�nethe Conley-Zehnder index of the orbit 
 and of the asymptoti
 operator A
 with respe
t tothe trivialization �, ��CZ(
) := ��CZ(A
) := �CZ(	):Note that in this way, ��CZ(A) 
an be de�ned for any inje
tive operator A : �(x��)! �(x��)that takes the form (3.1) in a lo
al trivialization. In parti
ular then, even if 
 is degenerate,we 
an pi
k any � 2 R n �(A
) and de�ne the \perturbed" Conley-Zehnder index��CZ(
 � �) := ��CZ(A
 � �) := �CZ(	�);where 	� : [0; 1℄ ! Sp(2) is the path of symple
ti
 matri
es determined by the equation(A
 � �)� = 0 in the trivialization �. It is espe
ially 
onvenient to de�ne Conley-Zehnderindi
es in this way for orbits that are degenerate but Morse-Bott: then the dis
reteness of thespe
trum implies that for suÆ
iently small � > 0, the integer ��CZ(
 � �) depends only on 
,� and the 
hoi
e of sign.
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tions of A
 are nowhere vanishing se
tions e 2 �(x��) and thus have well de-�ned winding numbers wind�(e) with respe
t to any trivialization �. As shown in [HWZ95a℄,all se
tions in the same eigenspa
e have the same winding, thus de�ning a fun
tion�(A
)! Z : � 7! wind�(�);where we set wind�(�) := wind�(e) for any nontrivial e 2 ker(A
 � �). In fa
t, [HWZ95a℄shows that this fun
tion is nonde
reasing and surje
tive: 
ounting with multipli
ity there areexa
tly two eigenvalues � 2 �(A
) su
h that wind�(�) equals any given integer. It is thussensible to de�ne the integers,���(
 � �) = maxfwind�(�) j � 2 �(A
 � �), � < 0g;��+(
 � �) = minfwind�(�) j � 2 �(A
 � �), � > 0g;p(
 � �) = ��+(
 � �)� ���(
 � �):Note that the parity p(
 � �) does not depend on �, and it always equals either 0 or 1 if� 62 �(A
). In this 
ase, the Conley-Zehnder index 
an be 
omputed as(3.2) ��CZ(
 � �) = 2���(
 � �) + p(
 � �) = 2��+(
 � �)� p(
 � �):Given H = (�; !) and J 2 J (H), �x 
0 > 0 suÆ
iently small so that (! + 
 d�)j� > 0 forall 
 2 [�
0; 
0℄, and de�ne T = f' 2 C1(R; (�
; 
)) j '0 > 0g:For ' 2 T , we 
an de�ne a symple
ti
 form on R �M by(3.3) !' = ! + d('�);where ! and � are pulled ba
k through the proje
tion R�M !M to de�ne di�erential formson R �M , and ' : R ! (�
; 
) is extended in the natural way to a fun
tion on R �M . Thenany J 2 J (H) is 
ompatible with !' in the sense that !'(�; J �) de�nes a Riemannian metri
on R �M . We therefore 
onsider pun
tured pseudoholomorphi
 
urvesu : ( _�; j)! (R �M;J)where (�; j) is a 
losed Riemann surfa
e with a �nite subset of pun
tures � � �, _� := � n �,and u is required to satisfy the �nite energy 
ondition(3.4) E(u) := sup'2T Z _� u�!' <1:An important example is the following: for any 
losed Reeb orbit 
 = (x; T ), the mapu
 : R � S1 ! R �M : (s; t) 7! (Ts; x(T t))is a �nite energy J -holomorphi
 
ylinder (or equivalently pun
tured plane), whi
h we 
all thetrivial 
ylinder over 
. More generally, we are most interested in pun
tured J -holomorphi

urves u : _�! R �M that are asymptoti
ally 
ylindri
al, in the following sense. De�ne thestandard half 
ylindersZ+ = [0;1) � S1 and Z� = (�1; 0℄ � S1:We say that a smooth map u : _�! R �M is asymptoti
ally 
ylindri
al if the pun
tures
an be partitioned into positive and negative subsets� = �+ [ ��
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h that for ea
h z 2 ��, there is a Reeb orbit 
z = (x; T ), a 
losed neighborhood Uz � �of z and a di�eomorphism 'z : Z� ! Uz n fzg su
h that for suÆ
iently large jsj,(3.5) u Æ 'z(s; t) = exp(Ts;x(T t)) hz(s; t);where hz is a se
tion of � along u
z with hz(s; t)! 0 for s! �1, and the exponential mapis de�ned with respe
t to any 
hoi
e of R-invariant 
onne
tion on R �M . We often refer tothe pun
tured neighborhoods Uz n fzg or their images in R �M as the positive and negativeends of u, and we 
all 
z the asymptoti
 orbit of u at z.De�nition 3.1. Suppose N � M is a submanifold whi
h is the union of a family of Reeborbits that all have the same minimal period. Consider an asymptoti
ally 
ylindri
al mapu : _� ! R � M with pun
tures �+ [ �� � � and 
orresponding asymptoti
 orbits 
zwith 
overing multipli
ities kz � 1 for ea
h z 2 ��. Then if k�N � 0 denotes the sum ofthe multipli
ities kz for all pun
tures z 2 �� at whi
h 
z lies in N , we shall say that uapproa
hes N with total multipli
ity k�N at its positive or negative ends respe
tively.Every asymptoti
ally 
ylindri
al map de�nes a relative homology 
lass in the followingsense. Suppose 
 = f(
1;m1); : : : ; (
N ;mN )g is an orbit set, i.e. a �nite 
olle
tion of distin
tsimply 
overed Reeb orbits 
i paired with positive integers mi. This de�nes a 1-dimensionalsubmanifold of M , �
 = 
1 [ : : : [ 
N ;together with homology 
lasses [
℄ = m1[
1℄ + : : : +mN [
N ℄in both H1(M) and H1(�
). Given two orbit sets 
+ and 
� with [
+℄ = [
�℄ 2 H1(M),denote by H2(M;
+ � 
�) the aÆne spa
e over H2(M) 
onsisting of equivalen
e 
lasses of2-
hains C inM with boundary �C in �
+[ �
� representing the homology 
lass [
+℄� [
�℄ 2H1(�
+ [ �
�), where C � C 0 whenever C � C 0 is the boundary of a 3-
hain in M . Now, theproje
tion of any asymptoti
ally 
ylindri
al map u : _� ! R �M to M 
an be extended asa 
ontinuous map from a 
ompa
t surfa
e with boundary (the 
ir
le 
ompa
ti�
ation of _�)to M , whi
h then represents a relative homology 
lass[u℄ 2 H2(M;
+ � 
�)for some unique 
hoi
e of orbit sets 
+ and 
�.As is well known (
f. [Hof93,HWZ96a,HWZ96b℄), every �nite energy J -holomorphi
 
urvewith nonremovable pun
tures is asymptoti
ally 
ylindri
al if the 
onta
t form is Morse-Bott.Moreover in this 
ase, the se
tion hz in (3.5), whi
h 
ontrols the asymptoti
 approa
h of uto 
z at z 2 ��, either is identi
ally zero or satis�es a formula of the form6(3.6) hz(s; t) = e�s(e�(t) + r(s; t));where � 2 �(A
) with �� < 0, e� is a nontrivial eigenfun
tion in the �-eigenspa
e, and theremainder term r(s; t) 2 �x(T t) de
ays to zero as s! �1. It follows that unless hz � 0, whi
his true only if u is a 
over of a trivial 
ylinder, u has a well de�ned asymptoti
 windingabout 
z, wind�z (u) := wind�(e�);6The asymptoti
 formula (3.6) is a stronger version of a somewhat more 
ompli
ated formula originallyproved in [HWZ96a,HWZ96b℄. The stronger version is proved in [Mor03℄, and another exposition is given in[Sie08℄.
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h is ne
essarily either bounded from above by ���(
z) or from below by ��+(
z), dependingon the sign z 2 ��. We say that this winding is extremal whenever the bound is not stri
t.Denote byM(J) the moduli spa
e of unparametrized �nite energy pun
tured J -holomorphi

urves in R �M : this 
onsists of equivalen
e 
lasses of tuples (�; j;�; u), where _� = � n � isthe domain of a pseudoholomorphi
 
urve u : ( _�; j)! (R�M;J), and we de�ne (�; j;�; u) �(�0; j0;�0; u0) if there is a biholomorphi
 map ' : ( _�; j)! ( _�0; j0) su
h that u = u0 Æ'. We as-sign to M(J) the natural topology de�ned by C1lo
-
onvergen
e on _� and C0-
onvergen
eup to the ends. It is often 
onvenient to abuse notation by writing equivalen
e 
lasses[(�; j;�; u)℄ 2M(J) simply as u when there is no danger of 
onfusion.If u 2 M(J) has asymptoti
 orbits f
zgz2� that are all Morse-Bott, then a neighborhoodof u inM(J) 
an be des
ribed as the zero set of a Fredholm se
tion of a Bana
h spa
e bundle(see e.g. [Wen10a℄). We say that u is Fredholm regular if this se
tion has a surje
tivelinearization at u, in whi
h 
ase a neighborhood of u inM(J) is a smooth �nite dimensionalorbifold. Its dimension is then equal to its virtual dimension, whi
h is given by the indexof u,(3.7) ind(u) := ��( _�) + 2
�1 (u) + Xz2�+ ��CZ(
z � �)� Xz2�� ��CZ(
z + �);where � > 0 is any small positive number, � is an arbitrary 
hoi
e of unitary trivialization of� along all the asymptoti
 orbits 
z, and we abbreviate
�1 (u) := 
�1 (u�T (R �M));where the latter denotes the relative �rst Chern number with respe
t to � of the 
omplexve
tor bundle u�T (R�M) ! _�. Sin
e T (R�M) splits into the dire
t sum of � with a trivial
omplex line bundle, this Chern number is the same as 
�1 (u��), whi
h 
an be 
omputed by
ounting the zeroes of a generi
 se
tion of u�� that is nonzero and 
onstant at in�nity withrespe
t to �.We say that an almost 
omplex stru
ture J 2 J (H) is Fredholm regular if all somewhereinje
tive 
urves in M(J) are Fredholm regular. As shown in [Dra04℄ or the appendix of[Bou06℄, the set of Fredholm regular almost 
omplex stru
tures is of se
ond 
ategory inJ (H); one therefore often refers to them as generi
 almost 
omplex stru
tures.It is sometimes 
onvenient to have an alternative formula for ind(u) in the 
ase where u isimmersed. Indeed, the linearization of the Fredholm operator that des
ribesM(J) near u a
tson the spa
e of se
tions of u�T (R�M), whi
h then splits naturally as T _��Nu, where Nu ! _�is the normal bundle, de�ned so that it mat
hes � at the asymptoti
 ends of u. As explainede.g. in [Wen10a℄, the restri
tion of the linearization to Nu de�nes a linear Cau
hy-Riemanntype operator DNu : �(Nu)! �(HomC (T _�; Nu));
alled the normal Cau
hy-Riemann operator at u, and the Fredholm index of this oper-ator is pre
isely ind(u). Thus whenever u is immersed, we 
an 
ompute ind(u) dire
tly fromthe pun
tured version of the Riemann-Ro
h formula proved in [S
h95℄:(3.8) ind(DNu ) = �( _�) + 2
�1 (Nu) + Xz2�+ ��CZ(
z � �)� Xz2�� ��CZ(
z + �):Finally, let us brie
y summarize the interse
tion theory of pun
tured J -holomorphi
 
urvesintrodu
ed by R. Siefring [Sie11℄. Given any asymptoti
ally 
ylindri
al smooth maps u : _�!

32 CHRIS WENDLR �M and v : _�0 ! R �M , there is a symmetri
 pairingu � v 2 Zwith the following properties:(1) u � v depends only on the asymptoti
 orbits of u and v and the relative homology
lasses [u℄ and [v℄.(2) If u and v represent 
urves in M(J) with non-identi
al images, then their algebrai

ount of interse
tions u � v satis�es 0 � u � v � u � v. In parti
ular, u � v = 0 impliesthat u and v never interse
t.The �rst property amounts to homotopy invarian
e: it implies that u0 � v = u1 � v wheneveru0 and u1 are 
onne
ted to ea
h other by a 
ontinuous family of 
urves u� 2 M(J) with�xed asymptoti
 orbits. The se
ond property gives a suÆ
ient 
ondition for two 
urves tohave disjoint images, but this 
ondition is not in general ne
essary : sometimes one may have0 = u � v < u � v if u and v have an asymptoti
 orbit in 
ommon, and one must thenexpe
t interse
tions to emerge from in�nity under generi
 perturbations. The number u � v
an also be de�ned when u and v are holomorphi
 buildings in the sense of [BEH+03℄, sothat it satis�es a similar 
ontinuity property under 
onvergen
e of 
urves to buildings. The
omputation of u � v is then a sum of the interse
tion numbers between 
orresponding levels,plus some additional nonnegative terms that 
ount \hidden" interse
tions at the breakingorbits.Remark 3.2. The version of homotopy invarian
e des
ribed above assumes that u and v varyas asymptoti
ally 
ylindri
al maps with �xed asymptoti
 orbits, but if any of the orbits belongto Morse-Bott families, one 
an de�ne an alternative version of u � v that permits the orbitsto move 
ontinuously. This more general theory is sket
hed in the last se
tion of [Wen10a℄. Ingeneral, the interse
tion number de�ned in this way is greater than or equal to u � v, be
auseit 
ounts additional nonnegative 
ontributions for interse
tions that may emerge from in�nityas the asymptoti
 orbits move. It's useful to observe however that in the situation we will
onsider, both versions agree: in parti
ular, if u and v are disjoint 
urves with u � v = 0 anda 
ommon positive asymptoti
 orbit that is (for both 
urves) simply 
overed and belongs toa Morse-Bott torus that doesn't interse
t the images of u and v, then no new interse
tions
an appear under a perturbation that moves the orbit (independently for both 
urves). Thisfollows from an easy 
omputation of asymptoti
 winding numbers using the de�nitions givenin [Wen10a℄.Similarly, if u 2 M(J) is somewhere inje
tive, one 
an de�ne the integer Æ(u) � 0, whi
halgebrai
ally 
ounts the self-interse
tions of u after perturbing away its 
riti
al points, butin the pun
tured 
ase this need not be homotopy invariant. One �xes this by introdu
ingthe asymptoti
 
ontribution Æ1(u) 2 Z, whi
h is also nonnegative and 
ounts \hidden"self-interse
tions that may emerge from in�nity under generi
 perturbations. We then have0 � Æ(u) � Æ(u) + Æ1(u);and the pun
tured version of the adjun
tion formula takes the form(3.9) u � u = 2 [Æ(u) + Æ1(u)℄ + 
N (u) + [��(u)�#�℄ ;



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 33where ��(u) is an integer that depends only on the asymptoti
 orbits and satis�es ��(u) � #�,and 
N (u) is the 
onstrained normal Chern number, whi
h 
an be de�ned as7(3.10) 
N (u) = 
�1 (u)� �( _�) + Xz2�+ ���(
z + �)� Xz2�� ��+(
z � �):Observe that 
N (u) also depends only on the asymptoti
 orbits f
zgz2� and the relativehomology 
lass [u℄.3.2. An existen
e and uniqueness theorem. We now prove a theorem on holomorphi
open books whi
h lies in the ba
kground of all the results that were stated in x1. The setup isas follows. Assume (M 0; �) is a 
losed 3-manifold with a positive, 
o-oriented 
onta
t stru
ture,and it 
ontains a 
ompa
t 3-dimensional submanifold M � M 0, possibly with boundary, onwhi
h � is supported by a partially planar blown up summed open book�� = (��; �'; �N):We will denote its binding and interfa
e by B and I respe
tively, and denote the indu
ed�bration by � :M n (B [ I)! S1:Denote the irredu
ible subdomains by Mi for i = 0; : : : ; N , soM =M0 [M1 [ : : : [MNfor some N � 0. If Bi and Ii denote the interse
tions of B and I respe
tively with theinterior of Mi, then the restri
tion of � to the interior of Mi n (Bi [ Ii) extends smoothly toits boundary as a �bration �i :Mi n (Bi [ Ii)! S1:Denote by gi � 0 the genus of the �bers of �i, and assume without loss of generality that M0is a planar pie
e, thus g0 = 0 and M0 \ �M = ;; in parti
ular �M0 � I.De�nition 3.3. Given the above setup, an integer m 2 N and an almost 
omplex stru
ture J
ompatible with some 
onta
t form on (M 0; �), we shall say that a �nite energy J -holomorphi

urve u : _�! R�M 0 is subordinate to �0 up to multipli
ity m if the following 
onditionshold: � u is not a 
over of a trivial 
ylinder,� All positive ends of u approa
h Reeb orbits in B0 [ I0 [ �M0,� Ea
h positive asymptoti
 orbit of u in B0 has 
overing multipli
ity at most m.Moreover, u is strongly subordinate to �0 if the following also holds:� At its positive ends, u approa
hes ea
h 
onne
ted 
omponent of B0 [ �M0 with totalmultipli
ity at most 1, and ea
h 
onne
ted 
omponent of I0 with total multipli
ity atmost 2.See De�nition 3.1 for an explanation of the term total multipli
ity. Note that the above
ondition allows the total multipli
ity at any given 
omponent of B0[I0[�M0 to be 0, whi
hwould mean that the 
urve has no asymptoti
 orbits in that 
omponent.7The version of 
N (u) de�ned in (3.10) is adapted to the 
ondition that homotopies inM(J) are requiredto �x asymptoti
 orbits. A more general de�nition is given in [Wen10a℄ (see also Remark 3.2).

34 CHRIS WENDLTheorem 7. For any numbers �0 > 0 and m0 2 N, the 
onta
t manifold (M 0; �) with subdo-main M � M 0 
arrying the blown up summed open book �� des
ribed above admits a Morse-Bott 
onta
t form � and 
ompatible Fredholm regular almost 
omplex stru
ture J with thefollowing properties.(1) The 
onta
t stru
ture ker � is isotopi
 to �.(2) On M , � is a Giroux form for ��.(3) The 
omponents of I [ �M are all Morse-Bott submanifolds, while the Reeb orbitsin B are nondegenerate and ellipti
, and their 
overs for all multipli
ities up to m0have Conley-Zehnder index 1 with respe
t to the natural trivialization determined bythe pages.(4) All Reeb orbits in B0 [ I0 [ �M0 have minimal period at most �0, while every other
losed orbit of X� in M 0 has minimal period at least 1.(5) For ea
h 
omponent Mi with gi = 0, the �bration �i : Mi n (Bi [ Ii) ! S1 admits aC1-small perturbation ^�i : Mi n (Bi [ Ii) ! S1 su
h that the interior of ea
h �ber^��1i (�) for � 2 S1 lifts uniquely to an R-invariant family of properly embedded surfa
esS(i)�;� � R �Mi; (�; �) 2 R � S1;whi
h are the images of embedded �nite energy J-holomorphi
 
urvesu(i)�;� = (a(i)� + �; F (i)� ) : _�i ! R �Mi;all of them Fredholm regular with index 2, and with only positive ends.(6) A �nite energy J-holomorphi
 
urve u in R � M 0 parametrizes one of the planarsurfa
es S(i)�;� des
ribed above whenever either of the following holds:� u is strongly subordinate to �0,� u is somewhere inje
tive, subordinate to �0 up to multipli
ity m0 and interse
tsthe interior of M0.In addition to the appli
ations treated in x4, Theorem 7 implies a wide range of existen
eresults for �nite energy foliations, e.g. it 
ould be used to redu
e the 
onstru
tion in [Wen08℄to a few lines, after observing that every overtwisted 
onta
t stru
ture is supported by avariety of summed open books with only planar pages. The proof of the theorem will o

upythe remainder of x3.2.3.2.1. A family of stable Hamiltonian stru
tures. The �rst step in the proof is to 
onstru
ta spe
i�
 almost 
omplex stru
ture on R �M for whi
h all pages of �� admit holomorphi
lifts. We will follow the approa
h in [Wen10
℄ and refer to the latter for details in a fewpla
es where no new arguments are required. The idea is to present ea
h subdomain Mi asan abstra
t open book that supports a stable Hamiltonian stru
ture whi
h is 
onta
t nearB [ I [ �M and integrable elsewhere.We must 
hoose suitable 
oordinate systems near ea
h 
omponent of the binding, interfa
eand boundary. Choose r > 0 and let D r � R2 denote the 
losed disk of radius r. For ea
hbinding 
ir
le 
 � B, 
hoose a small tubular neighborhoodN (
) and identify it with the solidtorus S1 � D r with 
oordinates (�; �; �), where (�; �) denote polar 
oordinates on D r . If r issuÆ
iently small then we 
an arrange these 
oordinates so that the following 
onditions aresatis�ed:� 
 = S1 � f0g, with the natural orientation of S1 mat
hing the 
o-orientation of �along 
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) n 
� � = ker(d� + �2 d�)Similarly, for ea
h 
onne
ted 
omponent T � �M , let \N (T ) �M 0 denote a neighborhoodthat is split into two 
onne
ted 
omponents by T , and denote N (T ) = \N (T ) \M . Identify\N (T ) with S1 � [�r; r℄� S1 with 
oordinates (�; �; �) su
h that:� N (T ) = S1 � [0; r℄� S1� For ea
h �0 2 S1 the oriented loop S1 � f0; �0g in T is positively transverse to �� �(�; �; �) = � on N (T )� � = ker(d� + � d�)Finally, we 
hoose two 
oordinate systems for neighborhoods N (T ) of ea
h interfa
e torusT � I, assuming that T divides N (T ) into two 
onne
ted 
omponentsN (T ) n T = N+(T ) [N�(T ):Choose an identi�
ation of N (T ) with S1� [�r; r℄� S1 and denote the resulting 
oordinatesby (�+; �+; �+), whi
h we arrange to have the following properties:� T = S1 � f0g � S1, N+(T ) = S1 � (0; r℄� S1 and N�(T ) = S1 � [�r; 0) � S1� For ea
h �0 2 S1 the oriented loop S1 � f0; �0g in T is positively transverse to �� �(�+; �+; �+) = �+ on N+(T ) and �(�+; �+; �+) = ��+ + 
 on N�(T ) for some
onstant 
 2 S1� � = ker(d�+ + �+ d�+)Given these 
oordinates, it is natural to de�ne a se
ond 
oordinate system (��; ��; ��) by(3.11) (��; ��; ��) = (�+;��+;��+ + 
):Then the 
oordinates (��; ����) satisfy minor variations on the properties listed above: inparti
ular � = ker(d�� + �� d��) and �(��; ��; ��) = �� on N�(T ). In the following, wewill use separate 
oordinates on the two 
omponents of N (T ) n T , denoting both by (�; �; �):(�; �; �) := ((�+; �+; �+) on N+(T );(��; ��; ��) on N�(T ):Then �(�; �; �) = � and � = ker(d� + � d�) everywhere on N (T ) n T . Observe that these
oordinates on N+(T ) or N�(T ) separately 
an be extended smoothly to the 
losures N+(T )and N�(T ), though in parti
ular the two �-
oordinates are di�erent where they overlap at T .Notation. For any open and 
losed subset N � B [ I [ �M , we shall in the followingdenote by N (N) the union of all the neighborhoods N (
) and N (T ) 
onstru
ted above forthe 
onne
ted 
omponents 
; T � N . Thus for example,N (B [ I [ �M)denotes the union of all of them.The 
omplement M n N (B [ I [ �M) is di�eomorphi
 to a mapping torus. Indeed, letP denote the 
losure of ��1(0) \ (M n N (B [ I [ �M)), a 
ompa
t surfa
e whose boundary
omponents are in one to one 
orresponden
e with the 
onne
ted 
omponents of N (B [ I [�P ) n I. The monodromy map of the �bration � de�nes a di�eomorphism  : P ! P , whi
hpreserves 
onne
ted 
omponents and without loss of generality has support away from �P ,so we de�ne the mapping torus P = (R � P )= �;

36 CHRIS WENDLwhere (t + 1; p) � (t;  (p)). This 
omes with a natural �bration � : P ! S1 whi
h istrivial near the boundary, so for a suÆ
iently small 
ollar neighborhood U � P of �P , aneighborhood of �P 
an be identi�ed with S1 � U . Choose positively oriented 
oordinateson ea
h 
onne
ted 
omponent of U(�; �) : U ! [r � Æ; r + Æ) � S1for some small Æ > 0. This de�nes 
oordinates (�; �; �) on a 
ollar neighborhood of �P =S1 � �P , so identifying these for � 2 (r � Æ; r℄ with the (�; �; �) 
oordinates 
hosen above onthe 
orresponding 
omponents of N (B [I [�M) nI de�nes an atta
hing map, su
h that theunion P [N (B [ I [ �M)is di�eomorphi
 to M , and the �-
oordinate, whi
h is globally de�ned outside of B [ I,
orresponds to the �bration � :M n (B [ I)! S1.Choose a number Æ0 > Æ with r � Æ0 > 0, and for ea
h of the 
oordinate neighborhoods inN (B [ I [ �M) n I, de�ne a 1-form of the form�0 = f(�) d� + g(�) d�;with smooth fun
tions f; g : [0; r℄! R 
hosen so that(1) ker�0 = � on a smaller neighborhood of B [ I [ �M .(2) For N (I) n I, f(�) and g(�) extend smoothly to [�r; r℄ as even and odd fun
tionsrespe
tively.(3) The path [0; r℄ ! R2 : � 7! (f(�); g(�)) moves through the �rst quadrant from thepositive real axis to (0; 1) and is 
onstant for � 2 [r � Æ; r℄.(4) The fun
tion D(�) := f(�)g0(�)� f 0(�)g(�)is positive and f 0(�) is negative for all � 2 (0; r � Æ).(5) g(�) = 1 for all � 2 [r � Æ0; r℄.Some possible pi
tures of the path � 7! (f(�); g(�)) 2 R2 (with extra 
onditions that willbe useful in the proof of Lemma 3.7) are shown in Figure 8. Note that the fun
tions f andg must generally be 
hosen individually for ea
h 
onne
ted 
omponent of N (B [ I [ �M).Extend �0 over M 0 nM so that ker �0 = � on this region, and extend it over P as �0 = d�.The kernel �0 := ker�0 is then a 
onfoliation on M 0: it is 
onta
t outside of M and nearB [ I [ �M , while integrable and tangent to the �bers on P . In parti
ular �0 is 
onta
t inthe region f� < r � Æg near B [ I [ �M , and its Reeb ve
tor �eld here is(3.12) X0 = g0(�)D(�)�� � f 0(�)D(�)��;whi
h is positively transverse to the pages f� = 
onstg and redu
es to �� for � 2 [r � Æ0; r℄,whi
h 
ontains the region where P and N (B [ I [ �M) overlap.Pro
eeding as in [Wen10
℄, 
hoose next a 1-form � on P su
h that d� is positive on the�bers and, in the 
hosen 
oordinates (�; �; �) near �P , � takes the form� = (1� �) d�;where we assume r > 0 is small enough so that 1 � � > 0 when r 2 [r � Æ; r + Æ). Then if� > 0 is suÆ
iently small, the 1-form �� := d�+ ��
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onta
t on P . We extend it to the rest of M 0 by setting �� = �0 on M 0 nM , and onN (B [ I [ �M), �� = f�(�) d� + g�(�) d�;where the fun
tions f�; g� : [0; r℄! R satisfy(1) (f�(�)); g�(�)) = (f(�); g(�)) for � � r � Æ0,(2) g�(�) = 1 and f 0�(�) < 0 for � 2 [r � Æ0; r � Æ℄,(3) (f�(�); g�(�)) = (�(1� �); 1) for � 2 [r � Æ; r℄,(4) f� ! f and g� ! g in C1 as �! 0.Now �� is a 
onta
t form everywhere on M 0, and �� ! �0 in C1 as � ! 0. Denote the
orresponding 
onta
t stru
ture by �� = ker��:The Reeb ve
tor �eld X� of �� is de�ned by the obvious analogue of (3.12) near B [I [ �M ,is independent of � on M 0 nM , and on P is determined uniquely by the 
onditionsd�(X�; �) � 0; d�(X�) + ��(X�) � 1:It follows that as � ! 0, X� 
onverges to a smooth ve
tor �eld X0 that mat
hes (3.12) nearB [ I [ �M and on P is determined by(3.13) d�(X0; �) � 0 and d�(X0) � 1:Observing that X� is always positively transverse to the pages f� = 
onstg, and applyingProposition 2.9, we have:Lemma 3.4. For � > 0 suÆ
iently small, �� is a 
onta
t stru
ture on M 0 isotopi
 to �, and�� is a Giroux form for ��.In order to turn �� into a stable Hamiltonian stru
ture, we de�ne an exa
t taming formas follows. For ea
h 
oordinate neighborhood in N (B [ I [ �M) n I, �x a smooth fun
tionh : [r � Æ0; r � Æ℄ ! R su
h that h0 < 0, h(�) = f(�) + 
 for � near r � Æ0 and some 
onstant
 � 0, and h(�) = 1� � for � near r � Æ. For ea
h interfa
e torus T � I the fun
tion f(�) isthe same on N+(T ) as on N�(T ), thus we may assume the same is true of h(�) and 
. ThenF (�) := 8><>:1� � for � 2 [r � Æ; r℄;h(�) for � 2 [r � Æ0; r � Æ℄;f(�) + 
 for � 2 [0; r � Æ0℄de�nes a smooth fun
tion on [0; r) whi
h, for 
omponents of N (I), has a smooth even exten-sion to [�r; r℄. By 
hoosing f(�) appropriately on the 
omponents of N (�M), one 
an alsoarrange 
 = 0; it will be 
onvenient (e.g. for Lemma 3.7 below) to assume this for N (�M)but leave the 
hoi
e of 
 � 0 and thus f(�) arbitrary everywhere else. Now there is a smooth1-form ^� on M 0 su
h that^� = 8><>:�+ d� on P ;F (�) d� + g(�) d� on N (B [ I [ �M);�0 on M 0 nM;and we use this to de�ne an exa
t 2-form ! = d^�:We 
laim that (�0; !) de�nes a stable Hamiltonian stru
ture on M 0. Indeed, outside Mand in a suÆ
iently small neighborhood of B [ I [ �M this is 
lear sin
e �0 is 
onta
t and

38 CHRIS WENDL! = d�0. On the subsets des
ribed in 
oordinates by r� Æ0 � � < r� Æ, �0 is still 
onta
t and! = �h0(�) d�^d� = h0(�)f 0(�)d�0, thus ! has maximal rank and its kernel is spanned by X0. OnP , d�0 = 0 and ! = d� annihilates X0 by (3.13), so the 
laim is proved. In fa
t, for � > 0suÆ
iently small, we still have !j�� > 0 and the kernel of ! is still spanned by X�, thus we'veproved:Proposition 3.5. For suÆ
iently small � � 0,H� := (��; !)de�nes a stable Hamiltonian stru
ture on M 0.De�nition 3.6. Any smooth family H� = (��; !) of stable Hamiltonian stru
tures on M 0de�ned for small � � 0 by the pro
edure above will be said to be adapted to ��.Lemma 3.7. There exists a number �1 > 0 so that for any �0 > 0 and m0 2 N, a family ofstable Hamiltonian stru
tures H� = (��; !) on M 0 adapted to �� 
an be 
onstru
ted so as tosatisfy the following additional 
onditions on the Reeb ve
tor �elds X�:(1) The interfa
e and boundary tori are Morse-Bott submanifolds, and all 
losed orbits ina neighborhood of I [ �M are also Morse-Bott.(2) Ea
h 
onne
ted 
omponent 
 � B and all its multiple 
overs are nondegenerate ellipti
orbits, and their 
overs up to multipli
ity m0 all have Conley-Zehnder index 1 withrespe
t to the natural trivialization of � along 
 determined by the 
oordinates.(3) All orbits in B0[I0[�M0 have minimal period at most �0, while all other orbits haveperiod at least �1.Moreover for ea
h � > 0 suÆ
iently small, the 
onta
t form �� admits a C1-small pertur-bation to a globally Morse-Bott 
onta
t form whose Reeb ve
tor �eld still satis�es the above
onditions.Proof. We �rst prove that the stated 
onditions 
an be established for X0.If 
 � B is a binding 
ir
le, then 
 and all its multiple 
overs 
an be made nondegenerateand ellipti
 by 
hoosing the fun
tions f and g so thatf 0(�)=g0(�) 2 R n Q for all � > 0 suÆ
iently small:This implies that the slope of the 
urve � 7! (f(�); g(�)) 2 R2 is 
onstant for � near 0, andthis slope determines the Conley-Zehnder index of 
; in parti
ular, the stated 
ondition issatis�ed whenever f 00(0)=g00(0) is a negative number suÆ
iently 
lose to 0. Assume this fromnow on.Similarly, we make every orbit in a neighborhood of I [ �M Morse-Bott by assuming thatin su
h a neighborhood, �0 = f(�) d� + g(�) d� where f and g satisfyf 0(�)g00(�)� f 00(�)g0(�) > 0:This means that the path � 7! (f(�); g(�)) 2 R2 has nonzero inward angular a

eleration asit winds (
ounter
lo
kwise) about the origin; 
learly for N (I) we 
an also still safely assumethat f and g are restri
tions of even and odd fun
tions respe
tively on [�r; r℄.We now show that the periods of the orbits in B0[I0[�M0 
an be made arbitrarily small
ompared to all other periods. Observe that by (3.12), the Reeb 
ow as we've 
onstru
ted itpreserves the 
on
entri
 tori f� = 
onstg in the neighborhood N (B0 [I0 [ �M0), thus it alsopreserves M 0 n N (B0 [ I0 [ �M0). Sin
e the latter has 
ompa
t 
losure, there is a positivelower bound for the periods of all 
losed orbits in M 0 n N (B0 [ I0 [ �M0), so it will suÆ
e
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onditions imposedin the proof of Lemma 3.7 for the nondegenerate 
ase (left) and Morse-Bott
ase (right).to leave �0 �xed in this region and redu
e the periods in B0 [ I0 [ �M0 while preserving alower bound for all other orbits in N (B0 [ I0 [ �M0).Consider a binding orbit 
 � B0: writing �0 as f(�) d� + g(�) d� near 
, the period of 
is f(0) > 0. Choosing suÆ
iently small 
onstants � > 0 and �0 > 0, we impose the followingadditional 
onditions on f and g (see Figure 8, left):� (f(0); g(0)) = (�; 0),� For all � 2 (0; r℄, g0(�)�f 0(�) � 1� + �0 2 R n Q ;with equality for � � 2r=3.� For � 2 [2r=3; r℄, g(�) � 2=3 and f(�) � �=3.Sin
e f 0(�)=g0(�) is irrational for � � 2r=3, all 
losed orbits in N (
)n
 are outside this region.For any �0 2 [2r=3; r℄, (3.12) implies that a Reeb orbit in f� = �0g has its �-
oordinatein
reasing at the 
onstant rate of �f 0(�0)=D(�0). Its period is thus at least����D(�0)f 0(�0) ���� = ����f(�0)g0(�0)� f 0(�0)g(�0)f 0(�0) ���� � jg(�0)j � ����f(�0) g0(�0)f 0(�0) ����� 23 � �����3 �1� + �0����� = 23 � 13(1 + ��0) > 0:(3.14)We 
an therefore keep these periods bounded away from zero while shrinking f(0) = � tomake both the period at 
 and the ratio �f 0(�)=g0(�) near 
 arbitrarily small.The above requires only a small modi�
ation for the neighborhood of a torus T � I0[�M0:here we need f and g to extend over � 2 [�r; r℄ as even and odd fun
tions respe
tively, soit is no longer possible to �x the slope f 0(�)=g0(�) throughout � 2 [0; 2r=3℄. In fa
t f 0(0)must vanish, so we amend the above 
onditions by allowing them to hold for � 2 [r=3; r℄, butrequiring the following for � 2 [0; r=3℄,� �g0(�)=f 0(�) � 1=� + �0,� f(�) � �(1� �0),

40 CHRIS WENDL� g(�) � �0.This modi�
ation is shown at the right of Figure 8. Now for � � r=3, the lower bound
al
ulated in (3.14) be
omes����D(�0)f 0(�0) ���� � ����f(�0) g0(�0)f 0(�0) ����� jg(�0)j � �(1� �0)�1� + �0�� �0= 1 + �0 �� � 2� ��20� > 0:Thus we 
an freely shrink f(0) = � , the minimal period of the Morse-Bott family at T , whilebounding all other periods away from zero.Sin
e X� is a small perturbation of X0 outside a neighborhood of B [ I [ �M , the sameresults immediately hold for X�: in parti
ular, for any sequen
e �k ! 0,M 0nN (B0[I0[�M0)
annot 
ontain a sequen
e of orbits of X�k with periods below a 
ertain threshold, as asubsequen
e of these would 
onverge (by Arzel�a-As
oli) to an orbit of X0. Similarly, this
onstraint on the periods will be satis�ed by any suÆ
iently small perturbation of X�. We 
annow 
hoose su
h a perturbation to a globally Morse-Bott 
onta
t form as follows: let U �M 0denote a union of 
oordinate neighborhoods of the form fj�j < r0g near ea
h 
omponent ofB [ I [ �M , where r0 > 0 is 
hosen su
h that all periodi
 orbits inside U are Morse-Bottand none exist near �U (be
ause f 0=g0 is irrational). After a generi
 perturbation of �� inM 0 n U , every Reeb orbit not fully 
ontained in U be
omes nondegenerate (
f. the appendixof [ABW10℄), whi
h means all orbits outside U are nondegenerate, while all the others (whi
hare inside U) are Morse-Bott by 
onstru
tion. �Remark 3.8. To satisfy the 
onditions stated in Theorem 7, we need a version of Lemma 3.7with �1 = 1. This 
an always be a
hieved by res
aling �� by a 
onstant, and thus repla
ingH� = (��; !) by (
��; !) for some 
 > 0.3.2.2. A symple
ti
 
obordism. As a qui
k detour away from the proof of Theorem 7, we nowexplain a 
onstru
tion that will be useful for proving Theorem 4. Namely, we will need toknow that the stable Hamiltonian stru
tures H0 and H� for some � > 0 
an be related to ea
hother by a 
ylindri
al symple
ti
 
obordism that looks standard near the binding.To simplify the statement of the following result, let us restri
t to the spe
ial 
ase whereM =M 0 and � :M nB ! S1 is an ordinary (not summed or blown up) open book; this willsuÆ
e for the appli
ation we have in mind.Proposition 3.9. There exists a family of stable Hamiltonian stru
tures H� = (��; !) on Madapted to the open book � : M n B ! S1 su
h that [0; 1℄ �M admits a symple
ti
 form 
with the following properties:� 
 = ! + d(t�0) near f0g �M .� 
 = d(et�) near f1g �M for some 
onta
t form � with ker � = �� and some � > 0.� 
 = d('(t)�0) on [0; 1℄ � U for some neighborhood U � M of B on whi
h �� = �0,and some smooth fun
tion ' : [0; 1℄! (0;1) with '0 > 0.Remark 3.10. We are not 
laiming that H� in this result 
an be 
hosen to make the periodsof binding orbits small as in Lemma 3.7 and Theorem 7. For our appli
ation we will not needthis.
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oordinates on N (B), we 
an write �0 = f(�) d� + g(�) d�with f and g 
hosen su
h that f(�) = 1� � for � near r � Æ0. Then settingF (�) = (1� � for � 2 [r � Æ0; r℄;f(�) for � 2 [0; r � Æ0℄and de�ning ^� and ! as before, we have ! � d^� where ^� = �0 on a neighborhood U := f� <r � Æ0g of B.With this stipulation in pla
e, 
onstru
t the family �� as before. Next 
hoose small numbers�; �1 > 0 and a smooth fun
tion � : [0;1)! [0; �℄ su
h that� �(t) = 0 for t near 0,� �(t) = � for t � �1.De�ne a 1-form ^� on [0;1)�M by ^�j(t;p) = ��(t)jpfor all (t; p) 2 [0;1) �M , and then de�ne
 = ! + d(t^�)on [0;1) �M . Note that ! + d(t�0) is symple
ti
 on [0; �1℄ �M if �1 > 0 is suÆ
ientlysmall, and 
 is C1-
lose to this if � > 0 is also small, implying that 
 is also symple
ti
 on[0; �1℄�M . It is also obviously symple
ti
 on [�1;1)�M sin
e it then equals! + d(t��)for some � > 0, where �� is 
onta
t and ! is d�� multiplied by a smooth positive fun
tion. This
onstru
tion thus gives a symple
ti
 form on [0;1)�M whi
h has the desired form alreadynear f0g�M and on [0;1)�U . To de�ne a suitable top boundary for the 
obordism, observethat 
 = d(^�+ t^�), thus the 
-dual ve
tor �eld to ^�+ t^� is a Liouville ve
tor �eld Y :�Y 
 := ^�+ t^�:We 
laim that on the hypersurfa
e fTg �M for T > 0 suÆ
iently large, dt(Y ) > 0. Indeed,this is equivalent to the statement that ^� + t^� de�nes a positive 
onta
t form on fTg �M ,whi
h is true if T is large enough sin
e its kernel is then a small perturbation of ker��. Thus�xing T suÆ
iently large, fTg�M is a 
onvex boundary 
omponent of [0; T ℄�M . Moreoversin
e the primitive of 
 is just (1 + t)�0 in [�1;1) � U , the ve
tor �eld Y takes the simpleform (1 + t)�t in this region. Using the 
ow of Y near fTg �M , we 
an now identify aneighborhood of this hypersurfa
e in [0; T ℄�M symple
ti
ally with a domain of the form((1� �1; 1℄�M;d(et�));where � is a 
onstant multiple of the 
onta
t 1-form ^�+T��, whi
h de�nes a 
onta
t stru
tureisotopi
 to �� due to Gray's theorem. There is thus a di�eomorphism of [0; T ℄�M to [0; 1℄�Mthat transforms 
 into the desired form. �3.2.3. Non-generi
 holomorphi
 
urves and perturbation. Returning to the proof of Theo-rem 7, assume H� = (��; !) is a family of stable Hamiltonian stru
tures adapted to the blownup summed open book �� on M � M 0 and satisfying Lemma 3.7. Choose any 
ompatiblealmost 
omplex stru
ture J0 2 J (H0) whi
h has the following properties in the 
oordinateneighborhoods N (B [ I [ �M):� J0 is invariant under the T 2-a
tion de�ned by translating the 
oordinates (�; �).

42 CHRIS WENDL� d�(J0��) � 0.Observe that �� 2 �0 always, so the se
ond 
ondition says that J0 maps �� into the 
hara
-teristi
 foliation de�ned by �0 on the torus f� = 
onstg. Note also that sin
e �0 is tangentto the �bers of P , these �bers naturally embed into R �M 0 as J0-holomorphi
 
urves. The
onstru
tion in [Wen10
, x3℄ now 
arries over dire
tly to the present setting and gives thefollowing result.Proposition 3.11. For ea
h i = 0; : : : ; N , the interior of R � (Mi n (Bi [ Ii)) is foliated byan R-invariant family of properly embedded surfa
esfS(i)�;�g(�;�)2R�S1with J0-invariant tangent spa
es, whereS(i)�;� \ (R � P ) = f�g � ���1i (�) \ P � ;and its interse
tion with ea
h 
onne
ted 
omponent of R�N (B[I [�M) 
an be parametrizedin (�; �; �)-
oordinates by a map of the form[0;1)� S1 ! R � S1 � (0; r℄� S1 : (s; t) 7! (ai(s) + �; t; �i(s); �):Here ai : [0;1) ! [0;1) is a �xed map with ai(0) = 0 and lims!1 ai(s) = +1, and�i : [0;1)! (0; r℄ is a �xed orientation reversing di�eomorphism.Denote by F (i)0 for i = 0; : : : ; N the resulting foliation on the interior of R�(Mi n(Bi[Ii)),whose leaves 
an ea
h be parametrized by an embedded �nite energy J0-holomorphi
 
urveu(i)�;� : _�i ! R �M 0:The 
olle
tion of all these 
urves together with the trivial 
ylinders over their asymptoti
orbits (whi
h in
lude all orbits in B[I[�M) de�nes a J0-holomorphi
 �nite energy foliationF0 ofM , as de�ned in [HWZ03,Wen08℄. It's important however to be aware that this foliationis not generally stable, due to the following index 
al
ulation. From now on we assume thatH� has the properties spe
i�ed in Lemma 3.7.Proposition 3.12. ind �u(i)�;�� = 2� 2gi.Proof. Let � denote the natural trivialization of �0 determined by the (�; �; �)-
oordinatesalong ea
h of the asymptoti
 orbits of u(i)�;� . These orbits are in general a mix of nondegeneratebinding 
ir
les 
 � Bi with ��CZ(
) = 1 and Morse-Bott orbits that belong to S1-familiesfoliating I [ �M . If 
 is one of the latter, then we observe that sin
e u(i)�;� doesn't interse
tR � (I [ �M), the asymptoti
 winding of u(i)�;� as it approa
hes 
 mat
hes the winding of anynontrivial se
tion in kerA
 , whi
h is zero in the 
hosen 
oordinates. Thus for suÆ
ientlysmall � > 0, the two largest negative eigenvalues of A
 � � both have zero winding, implying���(
 � �) = 0 and p(
 � �) = 1, hen
e by (3.2),(3.15) ��CZ(
 � �) = 2���(
 � �) + p(
 � �) = 1:Sin
e u(i)�;� proje
ts to an embedding in M 0, it is everywhere transverse to the 
omplexsubspa
e in T (R �M 0) spanned by �t and X0, though asymptoti
ally u(i)�;� be
omes tangentto this spa
e. We 
an thus de�ne a sensible normal bundle N ! _�i for u(i)�;� as follows: let Xdenote the smooth ve
tor �eld onM 0n(B[I[�M) that equals �� in every (�; �; �)-
oordinateneighborhood (ex
ept at f� = 0g, where this is not well de�ned), and X0 everywhere outside
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omplex span of this ve
tor �eld de�nes a bundle that extends smoothlyover B [ I [ �M , and we de�ne the normal bundle N ! _�i to be the restri
tion of thisbundle to the image of u(i)�;� . From this 
onstru
tion it is 
lear that 
�1 (N) = 0. Now sin
e u(i)�;�is embedded, its index is the index of the normal Cau
hy-Riemann operator on the bundleN ! _�i, so by (3.8),ind�u(i)�;�� = �( _�i) + 2
�1 (N) +X
 ��CZ(
 � �) = �(�i) = 2� 2gi;where the summation is over all the asymptoti
 orbits of u(i)�;� , whose Conley-Zehnder indi
esthus 
an
el out the terms in �( _�i) resulting from the pun
tures. �From this 
al
ulation it follows that the higher genus 
urves in F0 will vanish under generi
perturbations of the data. In 
ontrast, the genus zero 
urves have exa
tly the right propertiesto apply the following useful perturbation result (
f. [Wen05, Theorem 4.5.44℄):Impli
it Fun
tion Theorem. Assume M is any 
losed 3-manifold with stable Hamiltonianstru
ture H = (�; !), J 2 J (H), andu = �uR; uM� : _� n �! R �Mis a �nite energy J-holomorphi
 
urve with positive/negative pun
tures �� � � and thefollowing properties:(1) u is embedded and asymptoti
 to simply 
overed periodi
 orbits at ea
h pun
ture, andsatis�es Æ1(u) = 0.(2) _� has genus zero.(3) All asymptoti
 orbits 
z of u for z 2 �� are either nondegenerate or belong to S1-parametrized Morse-Bott families foliating tori, andp(
z � �) = 1for all z 2 �� and suÆ
iently small � > 0.(4) ind(u) = 2.Then u is Fredholm regular and belongs to a smooth 2-parameter family of embedded 
urvesu(�;�) = �uR� + �; uM� � : _�! R �M; (�; �) 2 R � (�1; 1)with u(0;0) = u, whose images foliate an open neighborhood of u( _�) in R �M . Moreover, themaps uM� : _�!M are all embedded and foliate an open neighborhood of uM ( _�) in M , and if
�z denotes a degenerate Morse-Bott asymptoti
 orbit of u(�;�) for some �xed pun
ture z 2 �,then the map � 7! 
�z parametrizes a neighborhood of 
0z in its S1-family of orbits.Using this and a simple topologi
al argument in [Wen10
℄, it follows that whenever gi = 0,the family u(i)�;� perturbs smoothly along with any suÆ
iently small perturbation of J0. Inparti
ular, pi
king � > 0 small and J� 2 J (H�) 
lose to J0, there is a 
orresponding familyof J�-holomorphi
 
urves in R �Mi that proje
t to a blown up summed open book on Mithat is C1-
lose to the original one. Perturbing �� a little bit further outside a suitableneighborhood of B[I[�M , we 
an then also turn �� into a globally Morse-Bott 
onta
t form,and a 
orresponding perturbation of J� makes the latter Fredholm regular. This proves the

44 CHRIS WENDLexisten
e part of Theorem 7. We will 
ontinue to denote the J�-holomorphi
 pages 
onstru
tedin this way by u(i)�;� : _�i ! R �Mi;for all i = 0; : : : ; N with gi = 0.3.2.4. Uniqueness. Despite their obvious instability, the higher genus 
urves in the foliationF0 are useful due to the following uniqueness result based on interse
tion theory. Here m0 2 Ndenotes the multipli
ity bound from Lemma 3.7, whi
h we 
an assume to be arbitrarily large.Proposition 3.13. Suppose v : _� ! R � M 0 is a somewhere inje
tive �nite energy J0-holomorphi
 
urve that interse
ts the interior of R�Mi and has all its positive ends asymptoti
to orbits in B [ I [ �M , where the orbits in Bi ea
h have 
overing multipli
ity at most m0.Then v parametrizes one of the surfa
es S(i)�;� .Proof. We use the homotopy invariant interse
tion number u�v 2 Z de�ned by Siefring [Sie11℄for asymptoti
ally 
ylindri
al maps u and v. If v does not parametrize any leaf of F (i)0 , thenits interse
tion with R�Mi implies that it has at least one isolated positive interse
tion withsome leaf S(i)�;� with J0-holomorphi
 parametrization u(i)�;� , hen
eu(i)�;� � v > 0:By 
hanging � slightly, we may assume without loss of generality that any ends of u(i)�;�approa
hing Morse-Bott orbits in I [ �M are disjoint from the positive asymptoti
 orbitsof v. By homotopy invarian
e, we 
an also take advantage of the la
k of negative ends for u(i)�;�and R-translate it until its image lies entirely in [0;1)�M 0. We 
an likewise 
hange v by ahomotopy through asymptoti
ally 
ylindri
al maps so that its interse
tion with [0;1)�M 0 liesentirely in the trivial 
ylinders over its positive asymptoti
 orbits, i.e. in [0;1)�(B[I[�M).An example of this kind of homotopy is shown in Figure 9. The interse
tion number aboveis then a sum of the form u(i)�;� � v =X
 u(i)�;� � (R � 
);where the summation is over some 
olle
tion of orbits 
 in B [ I [ �M , and we use R � 
 asshorthand for a J0-holomorphi
 
urve that parametrizes the trivial 
ylinder over 
. Note thatu(i)�;� never has an a
tual interse
tion with R�
, so the interse
tions 
ounted by u(i)�;� � (R�
)are asymptoti
, i.e. they are hidden interse
tions that 
ould potentially emerge from in�nityunder small perturbations of the data. Sin
e we've arranged for u(i)�;� and v to have noMorse-Bott orbits in 
ommon, the asymptoti
 interse
tions vanish ex
ept possibly for orbits
 � Bi of 
overing multipli
ity m � m0. As explained in [Sie11, x3.2℄, ea
h su
h asymptoti
interse
tion 
an be expressed in terms of the di�eren
e in the asymptoti
 winding of them-fold
over of the end of u(i)�;� about 
 from its maximum possible value, whi
h (by standard resultsin [HWZ96a,HWZ95a℄) is the winding number of the asymptoti
 eigenfun
tion with largestnegative eigenvalue. In the natural trivialization � determined by the (�; �; �)-
oordinates,ea
h of the relevant orbits 
 has ��CZ(
) = 1 = 2���(
) + 1, hen
e ���(
) = 0 using (3.2).By 
onstru
tion, the asymptoti
 winding of u(i)�;� as it approa
hes 
 is also zero, hen
e thiswinding is extremal, and this impliesu(i)�;� � (R � 
) = 0:This is a 
ontradi
tion. �
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vkv1�v2�Figure 9. A homotopy of two asymptoti
ally 
ylindri
al maps, redu
ing the
omputation of the interse
tion number to the interse
tion of one holomorphi

urve with the asymptoti
 trivial 
ylinders of the other.The above proof also works for a J�-holomorphi
 
urve if it passes through a region that isfoliated by J�-holomorphi
 pages. In parti
ular, sin
e we've already shown this to be true inthe planar pie
e M0 for suÆ
iently small � > 0, we dedu
e the following parallel result:Proposition 3.14. For all suÆ
iently small � > 0, the following holds: if v : _�! R �M 0 isa somewhere inje
tive �nite energy J�-holomorphi
 
urve that interse
ts the interior of R�M0and has all its positive ends asymptoti
 to orbits in B [ I [ �M , where the orbits in B0 have
overing multipli
ity at most m0, then v is a reparametrization of one of the J�-holomorphi
pages u(0)�;� .We now prove the remainder of the uniqueness statement in Theorem 7. Choose a sequen
e�k > 0 
onverging to zero, denote �k := ��k and �k := ker �k, and 
hoose generi
 almost
omplex stru
tures Jk 2 J (H�k) with Jk ! J0 in C1. By small perturbations we 
an assumethe forms �k are all Morse-Bott and have the properties listed in Lemma 3.7: in parti
ularthe minimal periods of the orbits in B0 [ I0 [ �M0 are bounded by an arbitrarily smallnumber � > 0, while all others are at least 1, and the orbits in B0 have Conley-Zehnderindex 1. We 
an also assume that for suÆ
iently large k, planar Jk-holomorphi
 pages u(i)�;�in R �Mi exist whenever gi = 0, and hen
e Prop. 3.14 holds. Now arguing by 
ontradi
tion,suppose that for every k, there exists a �nite energy Jk-holomorphi
 
urvevk : ( _�k; jk)! (R �M 0; Jk)whi
h is strongly subordinate to �0 and is (for large k) not equivalent to any of the planar
urves u(i)�;� . If vk has any positive end asymptoti
 to an orbit in B0 or I0, then it mustinterse
t the interior of R � M0 and Proposition 3.14 already gives a 
ontradi
tion. We
an therefore assume that the positive ends of vk approa
h simply 
overed orbits in distin
t
onne
ted 
omponents of �M0. This implies that they are all somewhere inje
tive.Lemma 3.15. A subsequen
e of vk 
onverges to one of the J0-holomorphi
 leaves of thefoliation F0.Proof. We pro
eed in three steps.Step 1: Energy bounds. We use the stable Hamiltonian stru
ture H�k = (�k; !) to de�nethe energy of vk. To be pre
ise, 
hoose 
0 > 0 small enough so that ! + d(t�0) is symple
ti
on [�
0; 
0℄�M 0; the same is then true for all !+d(t�k) with k suÆ
iently large, so following

46 CHRIS WENDL(3.3) and (3.4), de�ne Ek(vk) = Z _�k v�k! + sup'2T Z _�k v�kd('�k);where T = f' 2 C1(R; (�
0 ; 
0)) j '0 > 0g. Sin
e ! is exa
t, Ek(vk) depends only on theasymptoti
 behavior of vk. Now sin
e the positive ends all approa
h simple orbits in distin
t
onne
ted 
omponents of �M0, the number of ends and sum of their periods are uniformlybounded, implying a uniform bound on Ek(vk).Step 2: Genus bounds. After taking a subsequen
e we may assume that all the 
urves vkhave the same number of positive and negative pun
tures. It is still possible however thatthe surfa
es _�k 
ould have unbounded topology, i.e. their genus 
ould blow up as k !1. Topre
lude this, we apply the 
urrents version of Gromov 
ompa
tness, see [Tau98, Prop. 3.3℄or [Hut02, Lemma 9.9℄. The key fa
t is that sin
e Ek(vk) is uniformly bounded, Hk ! H0and Jk ! J0, vk as a sequen
e of 
urrents has a 
onvergent subsequen
e, and this implies inparti
ular that the relative homology 
lasses [vk℄ for this subsequen
e 
onverge. We now plugthis into the adjun
tion formula (3.9) for pun
tured holomorphi
 
urves, whi
h impliesvk � vk � 2 [Æ(vk) + Æ1(vk)℄ + 
N (vk) � 
N (vk):Both the right and left hand sides of this expression depend only on [vk℄ and on 
ertain integervalued winding numbers of eigenfun
tions at the asymptoti
 orbits of vk. As orbits vary ina Morse-Bott family that all have the same minimal period, these winding numbers remain
onstant, thus by the 
onvergen
e of [vk℄, the sequen
e vk � vk 
onverges to a �xed integer,implying an upper bound on 
N (vk) for large k. The latter 
an be written as 
�1 (vk)� �( _�k)plus more winding numbers of eigenfun
tions, thus every term other than �( _�k) 
onverges,and we obtain a uniform upper bound on ��( _�k), or equivalently, an upper bound on thegenus of _�k.Step 3: SFT 
ompa
tness. We 
an now assume the domains _�k are a �xed surfa
e _�, sothe sequen
e vk with uniform energy bound Ek(vk) < C satis�es the 
ompa
tness theorem ofSymple
ti
 Field Theory [BEH+03℄. There is one subtle point to be 
areful of here: sin
e X0is not a Morse-Bott ve
tor �eld, it is not 
lear at �rst whether the SFT 
ompa
tness theory
an be applied as H�k ! H0. What saves us is the fa
t that vk is asymptoti
 at +1 toorbits with arbitrarily small period: then for energy reasons, we may assume the only orbitsthat 
an appear under breaking or bubbling are other orbits in B0 [ I0 [ �M0, all of whi
hare Morse-Bott. With this observation, the proof of SFT 
ompa
tness in [BEH+03℄ goesthrough un
hanged. We 
an thus assume that vk 
onverges to a J0-holomorphi
 building v1.The positive asymptoti
 orbits of v1 are all simply 
overed and lie in distin
t 
onne
ted
omponents of �M0, thus the top level of v1 
ontains at least one somewhere inje
tive 
urvev+ that is strongly subordinate to �0. Then Prop. 3.13 implies that v+ parametrizes a leafof the foliation F0, so it has no negative ends. The same is true for every other top level
omponent of v1 unless it is a trivial 
ylinder, and nontrivial 
urves must all be distin
tsin
e they approa
h distin
t orbits at their positive ends. It follows that they do not interse
tea
h other, so there is no possibility of nodes 
onne
ting them, and the building must bedis
onne
ted unless it 
onsists of only a single 
omponent, namely v+. �We are now just about done with the proof of Theorem 7: the impli
it fun
tion the-orem implies that if the limit v1 = limvk has genus zero, then vk is always one of theJk-holomorphi
 pages u(i)�;� for suÆ
iently large k. If on the other hand v1 has genus g > 0,



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 47then ind(vk) = ind(v1) = 2 � 2g � 0 by Prop. 3.12, yet vk must be Fredholm regular sin
eJk was 
hosen generi
ally, and this gives a 
ontradi
tion.3.3. Deformation and 
ompa
tness. We now prove a 
ompa
tness result for families ofholomorphi
 
urves in symple
ti
 manifolds that emerge from the holomorphi
 pages providedby Theorem 7.We re
all �rst that every strong symple
ti
 �lling 
an be 
ompleted by atta
hing a 
ylindri-
al end. To be pre
ise, assume (M 0; �) is a 
losed, 
onne
ted 
onta
t 3-manifold with positive
onta
t form �, and for any two smooth fun
tions f; g :M 0 ! [�1;1℄ with g > f , de�ne asubdomain of the symple
tization (R �M 0; d(et�)) by(3.16) Sgf = f(t;m) 2 R �M 0 j f(m) � t � g(m) g:Here we in
lude the 
ases f � �1 and g � +1 so that Sgf may be unbounded. Now supposeM 0 = �W , where (W;!) is a (not ne
essarily 
ompa
t) symple
ti
 manifold with 
onta
ttype boundary, and � is a primitive of ! de�ned near �W su
h that �jTM 0 = ef� for somesmooth fun
tion f : M 0 ! R. Then using the 
ow of the Liouville ve
tor �eld Y de�ned by�Y ! = �, one 
an identify a neighborhood ofM 0 in (W;!) symple
ti
ally with a neighborhoodof �Sf�1 in (Sf�1; d(et�)). As a 
onsequen
e, one 
an symple
ti
ally glue the 
ylindri
al end(S1f ; d(et�)) to (W;!) along M 0, giving a non
ompa
t symple
ti
 manifold(W1; !) := (W;!) [M 0 (S1f ; d(et�));whi
h ne
essarily 
ontains the half-symple
tization ([T;1) �M 0; d(et�)) whenever T 2 R issuÆ
iently large.Adopting the notation from the setup for Theorem 7, assume now that in addition tothe above, (M 0; �) 
ontains a partially planar domain M � M 0 with irredu
ible subdomainsM = M0 [ : : : [MN for N � 0, of whi
h M0 is a planar pie
e lying in the interior of M .By Theorem 7, we 
an then �nd a Morse-Bott 
onta
t form � on M 0 and generi
 
ompatiblealmost 
omplex stru
ture J+ su
h that the planar pages in M0 lift to an R-invariant foliationby properly embedded J+-holomorphi
 
urves in R�M 0 , whose asymptoti
 orbits are simply
overed and have minimal period less than an arbitrarily small number �0 > 0, while all other
losed orbits of X� in M 0 have period at least 1. Assume that � is the 
onta
t form 
hosenfor de�ning the symple
ti
 
ylindri
al end in (W1; !).Choose an almost 
omplex stru
ture J onW1 whi
h is 
ompatible with !, generi
 onW �W1 and mat
hes J+ on S1f �W1. Then every leaf of the J+-holomorphi
 foliation in R�M0has an R-translation that 
an be regarded as a properly embedded surfa
e in S1f � W1parametrized by a �nite energy J -holomorphi
 
urve. The main idea used for the proofs in x4.1is to show that these 
urves generate a moduli spa
e of J -holomorphi
 
urves that must �ll theentirety ofW1, and leads to a 
ontradi
tion in any of the situations 
onsidered by Theorems 1,4 and 5. To prove this, we need a deformation result and a 
orresponding 
ompa
tness resultto show that the region �lled by these 
urves is open and 
losed respe
tively. We shall provesomewhat more general versions of these results than are immediately needed, as they arealso useful for other appli
ations (e.g. in [NW11,LVW℄).We now generalize the above setup as follows: let u+ : _� ! W1 denote one of theJ -holomorphi
 planar pages living in the 
ylindri
al end of (W1; !), and pi
k any openneighborhood U �M 0 and T > 0 su
h thatu+( _�) � [T;1)� U :

48 CHRIS WENDLChoose any data (�0; !0; J 0) with the following properties:� �0 is a Morse-Bott 
onta
t form on M 0 that mat
hes � on U [N (B0 [I0 [ �M0) andhas only Reeb orbits of period at least 1 outside of N (B0 [ I0 [ �M0)� !0 is a sympe
ti
 form on W1 that mat
hes d(et�0) on S1f� J 0 is an !0-
ompatible almost 
omplex stru
ture on W1 that has an R-invariantrestri
tion J 0+ := J 0jS1fthat is generi
 and 
ompatible with �0 and mat
hes J+ on R�(U [N (B0[I0[�M0)),and J 0 is generi
 on W .The advantage of this generalization is that fairly arbitrary 
hanges to the data 
an bea

ommodated outside a neighborhood of a single page, whi
h is useful for instan
e in theadaptation of these arguments for weak �llings (
f. [NW11℄). Let M�(J 0) denote the modulispa
e of all unparametrized somewhere inje
tive �nite energy J 0-holomorphi
 
urves in W1,whi
h is non-empty by 
onstru
tion sin
e it 
ontains u+, and de�neM�0(J 0) �M�(J 0)to be the 
onne
ted 
omponent of this spa
e 
ontaining u+. The 
urves u 2M�0(J 0) share allhomotopy invariant properties of the planar J+-holomorphi
 pages in R �M 0, in parti
ular:(1) ind(u) = 2,(2) u � u = Æ(u) + Æ1(u) = 0.It follows that all 
urves in M�0(J 0) are embedded. This situation is a slight variation onthe setup that was 
onsidered in [ABW10, x4℄, only with the added 
ompli
ation that 
urvesin M�0(J 0) may have two ends approa
hing the same Morse-Bott Reeb orbit, whi
h presentsthe danger of degeneration to holomorphi
 buildings with multiply 
overed 
omponents. Therequired deformation result is however exa
tly the same: it depends on the fa
t that a neigh-borhood of ea
h embedded 
urve u 2 M�0(J 0) 
an be des
ribed by se
tions of its normalbundle whi
h are nowhere vanishing, be
ause they satisfy a Cau
hy-Riemann type equationand have vanishing �rst Chern number with respe
t to 
ertain spe
ial trivializations at theends.Proposition 3.16 ([ABW10, Theorem 4.7℄). The moduli spa
e M�0(J 0) is a smooth 2-dimensional manifold 
ontaining only proper embeddings that never interse
t ea
h other: inparti
ular they foliate an open subset of W1.The 
ompa
tness result we need is a variation on [ABW10, Theorem 4.8℄, but somewhatmore 
ompli
ated due to the appearan
e of multiple 
overs. For the statement of the result,re
all that the 
ompa
ti�
ation in [BEH+03℄ for the spa
e of �nite energy holomorphi
 
urvesin an almost 
omplex manifold with 
ylindri
al ends 
onsists of so-
alled stable holomorphi
buildings, whi
h have one main level and potentially multiple upper and lower levels, ea
h ofwhi
h is a (perhaps dis
onne
ted) nodal holomorphi
 
urve. We will be 
onsidering sequen
esof 
urves in W1 that stay within a bounded distan
e of the positive end, so there will be nolower levels in the limit. We shall use the term \smooth holomorphi
 
urve" to mean a holo-morphi
 building with only one level and no nodes. The following variation on De�nition 3.3will be 
onvenient.De�nition 3.17. A J 0-holomorphi
 
urve u : _� ! W1 will be 
alled subordinate to �0if it has only positive ends, all of whi
h approa
h Reeb orbits in B0 [ I0 [ �M0, with total
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ity at most 1 for ea
h 
onne
ted 
omponent of B0 [ �M0 and at most 2 for ea
h
onne
ted 
omponent of I0.Observe that all the 
urves in M�0(J 0) are subordinate to �0. The interse
tion argumentin the proof of Prop. 3.13 now implies:Lemma 3.18. If u 2M�(J) is subordinate to �0, then u � u+ = 0.Theorem 8. Choose an open subset W0 � W that 
ontains �W and has 
ompa
t 
losure,and let W10 = W0 [M 0 S1f . Then there is a �nite set of index 0 
urves �(W0) � M�(J 0)subordinate to �0 and with images in W10 su
h that the following holds. Any sequen
e of
urves uk 2 M�0(J 0) with images in W10 has a subsequen
e 
onvergent (in the sense of[BEH+03℄) to one of the following:(1) A 
urve in M�0(J 0)(2) A holomorphi
 building with empty main level and one nontrivial upper level 
onsistingof a single 
onne
ted 
urve that 
an be identi�ed (up to R-translation) with a 
urvein M�0(J 0) with image in S1f(3) A J 0-holomorphi
 building whose upper levels 
ontain only 
overs of trivial 
ylinders,and main level 
onsists of a 
onne
ted double 
over of a 
urve in �(W0)(4) A J 0-holomorphi
 building whose upper levels 
ontain only 
overs of trivial 
ylin-ders, and main level 
ontains at most two 
onne
ted 
omponents, whi
h are 
urvesin �(W0).Proof. Assume uk is a sequen
e of either index 2 
urves in M�0(J 0) or index 0 
urves subor-dinate to �0 with images in W10 and only simply 
overed asymptoti
 orbits. By [BEH+03℄,uk has a subsequen
e 
onverging to a stable J 0-holomorphi
 building u1. The main idea isto add up the indi
es of all the 
onne
ted 
omponents of u1 and use generi
ity to deriverestri
tions on the 
on�guration of u1. To fa
ilitate this, we introdu
e a variation on theusual Fredholm index formula (3.7): for any �nite energy holomorphi
 
urve v : _�! R �M 0with positive and negative asymptoti
 orbits f
zgz2�� , 
hoose a small number � > 0 andtrivializations � of the 
onta
t bundle along ea
h 
z and de�ne the 
onstrained index
ind(v) = ��( _�) + 2
�1 (v) + Xz2�+ ��CZ(
z � �)� Xz2�� ��CZ(
z � �):The only di�eren
e here from (3.7) is that at the negative pun
tures we take ��CZ(
z � �)instead of ��CZ(
z + �), whi
h geometri
ally means we 
ompute the virtual dimension of aspa
e of 
urves whose negative ends have all their Morse-Bott orbits �xed in pla
e. Sofor 
urves without negative ends 
ind(v) = ind(v), and the 
onstrained index otherwise hasthe advantage of being additive a
ross levels, i.e. if the building u1 has no nodes, then weobtain ind(uk) = ind(u1) if the latter is de�ned as the sum of the 
onstrained indi
es forall its 
onne
ted 
omponents. Observe that trivial 
ylinders over Reeb orbits always have
onstrained index 0. If u1 does have nodes, the formula remains true after adding 2 for ea
hnode in the building, so we then take this as a de�nition of the index for a nodal 
urve ornodal holomorphi
 building. We now pro
eed in several steps.Step 1: Curves in upper levels. We 
laim that every 
onne
ted 
omponent of u1 eitherhas no negative ends or is a 
over of a trivial 
ylinder (in an upper level). Indeed, 
urves inthe main level obviously have no negative ends, and if v is an upper level 
omponent withnegative ends, the smallness of the periods in B0[I0[�M0 
onstrains these to approa
h other

50 CHRIS WENDLorbits in B0 [I0 [ �M0, as otherwise v would have negative energy. Then if v does not 
overa trivial 
ylinder, an interse
tion argument 
arried out in [ABW10, Proof of Theorem 4.8℄implies that v must interse
t u+, 
ontradi
ting Lemma 3.18 above. The key idea here is to
onsider the asymptoti
 winding numbers that 
ontrol holomorphi
 
urves approa
hing orbitsat B0 [I0[�M0, whi
h di�er for positive and negative ends at ea
h of these orbits, and thusfor
e v to interse
t u+ in the proje
tion to M 0. We refer to [ABW10℄ for the details; notethat a similar argument has also appeared in [Mom08℄.Step 2: Indi
es of 
onne
tors. Borrowing some terminology from Embedded Conta
t Ho-mology, we refer to bran
hed multiple 
overs of trivial 
ylinders as 
onne
tors. These 
anappear in the upper levels of u1, but 
an never have any 
urves above them ex
ept for further
overs of trivial 
ylinders, due to Step 1. Sin
e the positive ends of u1 approa
h any givenorbit in B0[I0[�M0 with total multipli
ity at most 2, only the following types of 
onne
tors
an appear, both with genus zero:� Pair-of-pants 
onne
tors: these have one positive end at a doubly 
overed orbit andtwo negative ends at the same simply 
overed orbit.� Inverted pair-of-pants 
onne
tors: with two positive ends at the same simply 
overedorbit and one negative end at its double 
over.The se
ond variety will be espe
ially important, and we'll refer to it for short as an inverted
onne
tor. As we 
omputed in (3.15), all of the simply 
overed Morse-Bott orbits under
onsideration have ��CZ(
 � �) = 1 in the natural trivialization, and in fa
t exa
tly the sameargument produ
es the same result for their multiple 
overs. We thus �nd that the 
onstrainedFredholm index is 0 for a pair-of-pants 
onne
tor and 2 for the inverted variant.Step 3: Indi
es of multiple 
overs. Suppose v is a 
onne
ted 
omponent of u1 whi
h isnot a 
over of a trivial 
ylinder: then it has no negative ends, and all its positive ends mustapproa
h orbits in B0 [ I0 [ �M0 with total multipli
ity at most 2. Thus if v is a k-fold
over of a somewhere inje
tive 
urve v0, we have k 2 f1; 2g, and all the asymptoti
 orbits ofboth v and v0 have ��CZ(
 � �) = 1 in the natural trivialization. Assume k = 2, and labelthe positive pun
tures of v as � = �1 [ �2, where a pun
ture is de�ned to belong to �2 if itsasymptoti
 orbit is doubly 
overed, and �1 otherwise. For i = 1; 2, let �0i denote the pun
turesof v0 that are 
overed by �i, so the set of all pun
tures �0 of v0 is �01 [ �02. Note that in thissituation all the asymptoti
 orbits of v must have total multipli
ity exa
tly 2, whi
h impliesthat all asymptoti
 orbits of v0 are distin
t and simply 
overed, and we have #�2 = #�02 and#�1 = 2#�01. Both domains must also have genus zero, so we haveind(v) = �(2�#�) + 2
�1 (v) +#� = �2 + 2(#�02 + 2#�01) + 2k
�1 (v0);ind(v0) = �(2�#�0) + 2
�1 (v0) + #�0 = �2 + 2(#�02 +#�01) + 2
�1 (v0);hen
e(3.17) ind(v) = k ind(v0) + 2(k � 1)(1 �#�2):This formula also trivially holds if k = 1. This gives a lower bound on ind(v) sin
e ind(v0) isbounded from below by either 1 (in R�M 0) or 0 (inW1) due to generi
ity. Now observe thatwhenever �2 is non-empty, the doubly 
overed orbit must 
onne
t v to an inverted 
onne
tor,whose 
onstrained index is 2, so for k = 2 we have(3.18) ind(v) +XC 
ind(C) = k ind(v0) + 2(k � 1) � 2;
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onne
tors that 
onne
t to v along doubly 
overed breakingorbits.Step 4: Indi
es of bubbles. There may also be 
losed 
omponents in the main level of u1:these are J 0-holomorphi
 spheres v whi
h are either 
onstant (ghost bubbles) or are k-fold
overs of somewhere inje
tive spheres v0 for some k 2 N. In the latter 
ase, (3.17) also holdswith #�2 = 0, implying ind(v) � 0, and the inequality is stri
t whenever k > 1.If v is a ghost bubble, then ind(v) = �2, but then the stability 
ondition implies theexisten
e of at least three nodes 
onne
ting v to other 
omponents; let us refer to nodes ofthis type as ghost nodes. There is then a graph with verti
es representing the ghost bubblesin u1 and edges representing the ghost nodes that 
onne
t two ghost bubbles together, andsin
e u1 has arithmeti
 genus zero, every 
onne
ted 
omponent of this graph is a tree. Let Gdenote su
h a 
onne
ted 
omponent, with V verti
es and Ei edges, whi
h therefore satisfyV � Ei = 1, and suppose there are also Ee nodes 
onne
ting the ghost bubbles representedby G to non
onstant 
omponents; we 
an think of these as represented by \external" edgesin G. By the stability 
ondition, we have2Ei +Ee � 3V;whi
h after repla
ing Ei by V � 1, be
omes Ee � 2 � V . Then the total 
ontribution toind(u1) from all the ghost bubbles and ghost nodes represented by G is�2V + 2(Ei +Ee) = [�2V + (2Ei +Ee)℄ +Ee � V + (2 + V )= 2V + 2 � 4;(3.19)unless u1 has no ghost bubbles at all.Step 5: The total index of u1. We 
an now break down ind(u1) 2 f0; 2g into a sum ofnonnegative terms and use this to rule out most possibilities. Ghost bubbles are ex
ludedimmediately due to (3.19). Similarly, there 
annot be any multiply 
overed bubbles, be
ausethese imply the existen
e of at least one node and thus 
ontribute at least 4 to ind(u1).The only remaining possibility for multiple 
overs (aside from 
onne
tors) is a 
omponentwith only positive ends, whose index together with 
ontributions from atta
hed inverted
onne
tors is given by (3.18) and is thus already at least 2. In fa
t, if this 
omponent existsin an upper level, then the underlying simple 
urve must have index at least 1, implying aneven larger lower bound in (3.18) and hen
e a 
ontradi
tion. The remaining possibility, whi
ho

urs in the 
ase ind(u1) = 2, is therefore that the main level 
onsists only of a 
onne
teddouble 
over, and there are no nodes at all, nor anything other than trivial 
ylinders and
onne
tors in the upper levels (Figure 10). The underlying simple 
urve in the main level hasindex 0 and has only simply 
overed asymptoti
 orbits, all in separate 
onne
ted 
omponentsof B0 [ I0 [ �M0, thus it is subordinate to �0.Assume now that u1 
ontains no multiply 
overed 
omponents ex
ept possibly for 
on-ne
tors. If there is an upper level 
omponent v that is not a 
over of a trivial 
ylinder, thengeneri
ty implies ind(v) � 1, and in fa
t the index must also be even sin
e all the asymptoti
orbits satisfy ��CZ(
 � �) = 1. Then ind(u1) = ind(v) = 2 and there are no nodes or inverted
onne
tors; the latter implies that all positive asymptoti
 orbits of v must be simply 
overed.Then there also 
annot be any doubly 
overed breaking orbits, leaving only the possibilitythat v is the only nontrivial 
omponent in u1.Next assume there are only 
overs of trivial 
ylinders in the upper levels, in whi
h 
asethe main level is ne
essarily non-empty. Ea
h 
omponent in the main level has a nonnegativeeven index, so there 
an be at most one node or one inverted 
onne
tor in u1, and only
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vkv1�v2�Figure 10. The limit building u1 in a 
ase where all asymptoti
 orbits havetotal multipli
ity two, so the main level may be a double 
over of an index 0
urve, while the upper level in
ludes 
onne
tors and trivial 
ylinders (the latternot shown in the pi
ture). The numbers inside ea
h 
omponent indi
ate the
onstrained index.if ind(u1) = 2. If the main level 
ontains a 
omponent v of index 2, then there are nonodes or inverted 
onne
tors. The latter pre
ludes doubly 
overed breaking orbits, thus thereare no 
onne
tors at all, and sin
e v 
annot have negative ends, we 
on
lude that u1 = v(Figure 11). Otherwise all main level 
omponents in u1 have index 0 and are subordinateto �0. Examples of the possible 
on�gurations are shown in Figures 12{15.Step 6: Compa
tness for index 0 
urves. If ind(u1) = 2, then the somewhere inje
tiveindex 0 
urves that 
an appear in the building u1 are all subordinate to �0 and 
ome in twotypes:� Type 1: Curves with only simply 
overed asymptoti
 orbits.� Type 2: Curves with exa
tly one doubly 
overed asymptoti
 orbit and all otherssimply 
overed, and satisfying v � v = 0.Indeed, the se
ond type 
an o

ur as the unique main level 
urve in u1 if there is a singleinverted 
onne
tor in an upper level, atta
hed along the doubly 
overed orbit (Figure 14). Tosee that v � v = 0 for su
h a 
urve, we use the 
ontinuity of the interse
tion number under
onvergen
e to buildings, and the fa
t that uk � uk = 0 sin
e uk 2 M�0(J 0); a 
omputationshows that the 
ontribution to u1 � u1 from trivial 
ylinders and 
onne
tors in the upperlevel plus breaking orbits adds up to 0. The index 
ounting argument of the previous stepsshows already that the 
urves of Type 1 form a 
ompa
t and hen
e �nite set. To �nish theproof, we must show that the same is true for the Type 2 
urves.Suppose vk is a sequen
e of Type 2 
urves 
onverging to a holomorphi
 building v1.Applying the index 
ounting argument from the previous steps, v1 
annot 
ontain any nodesor inverted 
onne
tors; the worst 
ase s
enario is that the upper levels 
ontain only trivial
ylinders and a single pair-of-pants 
onne
tor, whose two negative ends 
onne
t to two mainlevel 
omponents v1� and v2� that are both Type 1 
urves (Figure 16). Sin
e there are �nitelymany Type 1 
urves, we may assume by generi
ity of J 0 that no two of them approa
h a
ommon orbit in the Morse-Bott families I0, but this must be the 
ase for v1� and v2� as theyare both atta
hed to a 
onne
tor over an orbit in I0, so we 
on
lude that both are the same
urve, whi
h we'll 
all v�. We 
an rule out this s
enario by 
omputing the self-interse
tion
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2
vkv1�v2� Figure 15. Bothtypes of 
onne
tors
an appear.number v1 � v1, whi
h must a priori equal vk � vk = 0. On
e more the 
onne
tors, trivial
ylinders and breaking orbits 
ontribute zero in total, so sin
e the main level in
ludes two
opies of v�, we dedu
e 0 = v1 � v1 = 4(v� � v�):But we 
an also 
ompute v� � v� dire
tly from the adjun
tion formula (3.9); indeed,v� � v� = 2 [Æ(v�) + Æ1(v�)℄ + 
N (v�);where we've dropped the last term in (3.9) sin
e all the asymptoti
 orbits are simple. The
onstrained normal Chern number 
N (v�) is de�ned in (3.10) and 
an be dedu
ed from thefa
t that ind(v�) = 0: sin
e all of the relevant orbits satisfy ��CZ(
��) = 1 and ���(
+�) = 0,we �nd 2
�1 (v�) = ind(v�) + �( _�)�Pz2� ��CZ(
z � �) = 2� 2#�, hen
e
N (v�) = 
�1 (v�)� �( _�) + Xz2�+ ���(
z + �) = 1�#�� (2�#�) = �1:This implies that v� � v� is odd, and is thus a 
ontradi
tion. �
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vk v1� v2�Figure 16. A possible limit of the sequen
e vk.4. Proofs of the main results4.1. Non-�llability. We are now in a position to prove the main results on symple
ti
 �llings.Proof of Theorem 5 and Corollary 4. Given Proposition 3.16 (impli
it fun
tion theorem) andTheorem 8 (
ompa
tness) above, the result follows from the same argument as in [ABW10℄.For 
ompleteness let us brie
y re
all the main idea: if (M; �) is a 
losed 
onta
t 3-manifoldwhi
h embeds as a non-separating 
onta
t type hypersurfa
e into some 
losed symple
ti
4-manifold (W;!), then by 
utting W open along M and gluing together an in�nite 
hainof 
opies of the resulting symple
ti
 
obordism between (M; �) and itself, we obtain a non-
ompa
t but geometri
ally bounded symple
ti
 manifold (W; !) with 
onta
t type boundary(M; �). Atta
hing a 
ylindri
al end and 
onsidering the moduli spa
eM0(J) that arises froma partially planar domain, one 
an use the monotoni
ity lemma to prevent the 
urves inM0(J) from es
aping beyond a 
ompa
t subset ofW, thus the 
ompa
tness result Theorem 8applies. In 
ombination with Prop. 3.16, this implies that outside a subset of 
odimension 2(the images of �nitely many 
urves from Theorem 8), the set of all points in W �lled by
urves inM0(J) must be open and 
losed, and is therefore everything; sin
e those 
urves are
on�ned to a 
ompa
t subset, this implies W is 
ompa
t and is thus a 
ontradi
tion.By a similar argument one 
an prove Corollary 4 independently of Theorem 5, for if (W;!)is a strong �lling with at least two boundary 
omponents (M; �) and (M 0; �0), then the 
urvesin M0(J) emerging from the 
ylindri
al end at M will foliate W1 ex
ept at a subset of
odimension 2; yet they 
annot enter the 
ylindri
al end at M 0 due to 
onvexity, and this isagain a 
ontradi
tion. �Proof of Theorem 1. Assume (W;!) is a strong �lling of (M; �) and the partially planar do-main M0 � M is a planar torsion domain. It therefore has a planar pie
e MP0 � M0, whi
his a proper subset of its interior. Combining Prop. 3.16 (impli
it fun
tion theorem) and The-orem 8 (
ompa
tness) as in the proof of Theorem 5 above, the 
urves inM0(J) that emergefrom MP0 in the 
ylindri
al end of W1 form a foliation of W1 outside a subset of 
odimen-sion 2. We 
an therefore pi
k a point p 2M nMP0 and �nd a sequen
e of 
urves uk 2M0(J)for k ! 1 whose images 
ontain (k; p) 2 [T;1) �M � W1. Applying Theorem 8 again,these have a subsequen
e whi
h 
onverges to a J+-holomorphi
 
urve u0 in R �M , whose as-ymptoti
 orbits are in the same Morse-Bott families as the 
urves inM0(J). The uniquenessstatement in the holomorphi
 open book result (Theorem 7) then implies that u0 is a lift of apage in the blown up summed open book on M0, whi
h proves that M0 =M , and M0 nMP0
onsists of a single family of pages di�eomorphi
 to the planar pages inMP0 and approa
hing
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obordism used in the proof of Theorem 4, withthe negative end \walled o�" by holomorphi
 pages of an open book. Thealmost 
omplex stru
ture in the shaded region is a non-generi
 one for whi
hholomorphi
 open books always exist.the same Reeb orbits at their boundaries. In other words, M0 is a symmetri
 summed openbook, whi
h 
ontradi
ts the de�nition of a planar torsion domain. �Proof of Theorem 4. The idea is mu
h the same as in the proof of Theorem 1, but instead ofworking in the 
ompa
t 
ontext of a symple
ti
 �lling, we work in a non
ompa
t symple
ti

obordism di�eomorphi
 to R �M , in whi
h the negative end is \walled o�" so that 
urvesin M0(J) 
annot rea
h it. This wall is 
reated by a family of holomorphi
 
urves, namelya subset of the generally non-generi
 family arising from an open book de
omposition (seeFigure 17).Spe
i�
ally, suppose � :M nB ! S1 is an open book de
omposition. Re
all from Prop. 3.9that there is a symple
ti
 
obordism (W;
) = ([0; 1℄�M;
) where 
 has the form !+d(t�0)near f0g �M , d(et�) near f1g �M and d('(t)�0) in a neighborhood of [0; 1℄ � B for somepositive in
reasing fun
tion '. Here H� = (��; !) is a family of stable Hamiltonian stru
turesadapted to the open book, so �� = ker�� for some small � > 0 is a supported 
onta
t stru
tureand � is a 
onta
t form for ��.Arguing by 
ontradi
tion, assume (M; ��) 
ontains a planar torsion domain M0 that isdisjoint from B. We 
an then �nd a neighborhood U � M of B su
h that M0 � M n U and
 = d('(t)�0) on [0; 1℄�U . Extend W to a non
ompa
t symple
ti
 manifold as follows: �rstatta
h to f1g �M a positive 
ylindri
al end that 
ontains a half-symple
tization of the form([T �1)�M;d(et�)):

56 CHRIS WENDLNote that sin
e f1g � M is a 
onvex boundary 
omponent of (W;
), we are free here to
hoose � as any 
onta
t form with ker� = ��: in parti
ular on M0 we 
an assume it is thespe
ial Morse-Bott 
onta
t form provided by Theorem 7, and sin
e M0 \ U = ;, we 
an alsoassume � = �0 in U and 
 = d(et�0) on [1;1) � U . Se
ondly, atta
h to f0g �M a negative
ylindri
al end of the form ((�1; 0℄ �M;! + d( (t)�0));where  : (�1; 0℄ ! R is an in
reasing fun
tion with suÆ
iently small magnitude to makethe form symple
ti
. Denote the resulting non
ompa
t symple
ti
 manifold by (W1; !).Re
all the spe
ial almost 
omplex stru
ture J0 2 J (H0) 
onstru
ted in x3.2, for whi
h allthe pages of � admit J0-holomorphi
 lifts in R �M . We now 
an 
hoose an almost 
omplexstru
ture J on (W1; !) that has the following properties:(1) J is everywhere 
ompatible with !(2) J = J0 on both R � U and (�1; 0℄�M(3) On [T;1)�M , J is the spe
ial almost 
omplex stru
ture 
ompatible with � providedby Theorem 7.Now the moduli spa
e M0(J) of J-holomorphi
 
urves emerging from M0 in the positiveend 
an be de�ned as in the previous proof. The important new feature is that we also haveJ -holomorphi
 
urves inW1 
oming from the J0-holomorphi
 lifts of pages of the open book:in fa
t for some T0 2 R suÆ
iently 
lose to �1, every point in (�1; T0℄ �M is 
ontainedin su
h a 
urve (see Figure 17). The leaves of the foliation in [T;1) � M0 obviously donot interse
t these 
urves, so positivity of interse
tions implies that no 
urve in M0(J) mayinterse
t them. It follows that the 
urves in M0(J) 
an never enter (�1; T0℄ �M , so the
ompa
tness result Theorem 8 applies, and we 
on
lude as before that M0(J) �lls an openand 
losed subset of W1 outside a subset of 
omdimension 2. But this for
es some 
urve inM0(J) to enter the negative end eventually, and we have a 
ontradi
tion. �Remark 4.1. For an arguably easier proof of Theorem 4, one 
an present it as a 
orollary ofTheorem 1 by showing that whenever (M; �) is supported by an open book � : M n B ! S1and U � M is a neighborhood of the binding, (M n U ; �) 
an be embedded into a strongly�llable 
onta
t manifold. This 
an be 
onstru
ted by a doubling tri
k using the bindingsum: if (M 0; �0) is supported by an open book that has the same page P as � but inversemonodromy, then one 
an 
onstru
t a larger 
onta
t manifold by summing every binding
omponent in M to a binding 
omponent in M 0. The result is a symmetri
 summed openbook whi
h has a strong symple
ti
 �lling homeomorphi
 to [0; 1℄ � S1 � P , in whi
h thenatural proje
tion to [0; 1℄�S1 forms a symple
ti
 �bration. The details of this 
onstru
tionare 
arried out in [LVW℄; see also the appendix of [BV℄.4.2. Embedded Conta
t Homology. Our goal in this se
tion is to prove Theorems 2, 20,6 and 60. We begin with a qui
k review of the essential de�nitions of Embedded Conta
tHomology, mainly following the dis
ussions in [HS06, x11℄ and [Tau10b℄.4.2.1. Review of twisted and untwisted ECH. Assume (M; �) is a 
losed 
onta
t 3-manifoldwith nondegenerate 
onta
t form �, and J is a generi
 almost 
omplex stru
ture on R �M
ompatible with �. We will refer to Reeb orbits as even or odd depending on the parity oftheir Conley-Zehnder indi
es: in dynami
al terms, an even orbit is always hyperboli
, whilean odd orbit 
an be either ellipti
 or hyperboli
, the latter if and only if its double 
over iseven. In x3.1 we de�ned the notion of an orbit set 
 = f(
1;m1); : : : ; (
N ;mN )g, and we
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 is admissible if mi = 1 whenever 
i is hyperboli
. Given h 2 H1(M), 
hoose areferen
e 
y
le, i.e. a 1-
y
le �h inM with [�h℄ = h; without loss of generality we 
an assume�h is represented by an embedded oriented knot in M that is not 
ontained in any 
losedReeb orbit. Then adapting the de�nition of H2(M;
+ � 
�) from x3.1, it makes sense tospeak of relative homology 
lasses in H2(M;�h � 
) for any orbit set 
 with [
℄ = h.Given two orbit sets 
� = f(
�1 ;m�1 ); : : : ; (
�N� ;m�N�)g and a relative homology 
lassA 2 H2(M;
+� 
�) one de�nes the ECH index I(A) 2 Z by 
hoosing any trivialization �of � along the orbits in 
� and setting(4.1) I(A) = 
�1 (�jA) +A �� A+ N+Xi=1 m+iXk=1��CZ(k
+i )� N�Xi=1 m�iXk=1��CZ(k
�i );where the various symbols are to be interpreted as follows:� 
�1 (�jA) is the relative �rst Chern number 
�1 (u��) for any asymptoti
ally 
ylindri
almap u representing A,� A �� A is the relative self-interse
tion number, 
omputed as an algebrai
 
ount ofinterse
tions of some asymptoti
ally 
ylindri
al representative u with a generi
 push-o� of u that is pushed in the dire
tion of � at the 
ylindri
al ends,� k
 denotes the k-fold 
over of a Reeb orbit 
.One 
an 
he
k that this expression does not depend on the 
hoi
e of trivializations �. Sin
eevery �nite energy J -holomorphi
 
urve u in R �M represents a relative homology 
lass, we
an de�ne the ECH index of u as I(u) := I([u℄).De�nition 4.2. A (possibly dis
onne
ted) �nite energy J -holomorphi
 
urve u : _�! R�Mis 
alled a 
ow line if it is a disjoint union of two 
urves u0 and C, where u0 is embedded,and C is any 
olle
tion of trivial 
ylinders that do not interse
t u0.Hut
hings [Hut02℄ has shown that for generi
 J , a 
ow line u always satis�es 1 � ind(u) �I(u). Embedded Conta
t Homology is de�ned by 
ounting spe
i�
ally the 
ow lines for whi
hthis inequality is an equality. For any subgroup G � H2(M), de�neeC�(M;�;h;G)to be the free Z-module generated by symbols of the form eA
, where 
 is an admissibleorbit set with [
℄ = h and A 2 H2(M;�h � 
)=G, meaning A � A0 whenever A�A0 2 G. Adi�erential � : eC�(M;�;h;G) ! eC��1(M;�;h;G) is de�ned by� �eA
� = X
0;A0#�M1emb(
;
 0; A0)R � eA+A0
 0;where the sum ranges over all admissible orbit sets 
0 and A0 2 H2(M;
 � 
0)=G, andM1emb(
;
0; A0) � M(J) is the oriented 1-manifold of (possibly dis
onne
ted) �nite energyJ -holomorphi
 
urves u : _�! R �M satisfying the following 
onditions:(i) I(u) = 1,(ii) [u℄ � A0 in H2(M;
 � 
0)=G,(iii) u is a 
ow line in the sense of De�nition 4.2.The orientation of M1emb(
;
 0; A0) is 
hosen in a

ordan
e with [BM04℄, whi
h requires�rst 
hoosing an ordering for all the even orbits in M , then ordering the pun
tures of anyu 2 M1emb(
;
 0; A0) a

ordingly. The signed 
ount above is then �nite due to the index

58 CHRIS WENDLinequality and 
ompa
tness theorem in [Hut02℄.8 These same results together with the gluing
onstru
tion of [HT07,HT09℄ imply that �2 = 0, and the resulting homology is denoted by℄ECH�(M;�; J ;h;G). We have two natural 
hoi
es for the subgroup G: if G = H2(M), thenthe terms eA are all trivial and we obtain the usual untwisted Embedded Conta
t Homology,ECH�(M;�; J ;h) := ℄ECH�(M;�; J ;h;H2(M)):At the other end of the spe
trum, taking G to be the trivial subgroup leads to the fully twistedvariant of ECH, ℄ECH�(M;�; J ;h) := ℄ECH�(M;�; J ;h; f0g):Sin
e every nontrivial �nite energy J-holomorphi
 
urve in R �M has at least one positivepun
ture, the empty orbit set ; always satis�es �; = 0, and thus represents a homology 
lasswhi
h we 
all the (untwisted) 
onta
t 
lass,
(�; J) = [;℄ 2 ECH�(M;�; J ; 0):To de�ne the twisted 
onta
t 
lass, we note that for h = 0 there is a 
anoni
al 
hoi
e ofreferen
e 
y
le �0, namely the empty set, so H2(M;�0 � ;) = H2(M) and it is natural tode�ne ~
(�; J) = [e0;℄ 2 ℄ECH�(M;�; J ; 0):A 
hain map U : eC�(M;�;h;G) ! eC��2(M;�;h;G) 
an be de�ned by 
hoosing a generi
point p 2 M and 
ounting index 2 holomorphi
 
urves that pass through the point (0; p),that is U �eA
� = X
0;A0# �M2emb(
;
0; A0; p)� eA+A0
 0;whereM2emb(
;
 0; A0; p) 
onsists of J -holomorphi
 
ow lines u with I(u) = 2 and one markedpoint whi
h is mapped to the point (0; p). We denote byU : ECH�(M;�; J ;h) ! ECH��2(M;�; J ;h)and eU : ℄ECH�(M;�; J ;h) ! ℄ECH��2(M;�; J ;h)respe
tively the untwisted and fully twisted variants of the resulting map on homology.It follows from Taubes's isomorphism [Tau10a,Tau10b℄ that none of the above depends onthe 
hoi
e of � and J , and the U -map also does not depend on the 
hoi
e of generi
 pointp 2M .4.2.2. Proof of the vanishing theorems. We now prove Theorems 2 and 20. Assume (M; �)
ontains a planar k-torsion domain M0 with planar pie
e MP0 � M0. Note that for someplanar torsion domains, there may be multiple subsets of M0 that 
ould sensibly be 
alledthe planar pie
e (e.g. M0 
ould 
ontain multiple planar open books summed together as inFigure 18), so whenever su
h an ambiguity exists, we 
hoose MP0 to make k as small aspossible. Let � and J denote the spe
ial Morse-Bott 
onta
t form and 
ompatible Fredholmregular almost 
omplex stru
ture provided by Theorem 7. Then �MP0 is a non-empty unionof tori �MP0 = T1 [ : : : [ Tn8The results in [Hut02℄ are stated only for a very spe
ial 
lass of stable Hamiltonian stru
tures arising frommapping tori, but they extend to the 
onta
t 
ase due to the relative asymptoti
 formulas of Siefring [Sie08℄.
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vkv1�v2�Figure 18. A planar torsion domain for whi
h the order is not uniquelyde�ned: depending on the 
hoi
e of planar pie
e, the order 
ould be either 1or 3.whi
h are Morse-Bott families of Reeb orbits, and the interior ofMP0 may also 
ontain interfa
etori, whi
h we denote by I0 = Tn+1 [ : : : [ Tn+r;and binding 
ir
les B0 = �1 [ : : : [ �m:The planar pages in MP0 have embedded J -holomorphi
 lifts to R �M , forming a family of
urves, u�;� 2M(J); (�; �) 2 R � S1;whi
h have no negative pun
tures andm+n+2r positive pun
tures, ea
h asymptoti
 to simply
overed orbits in B0 [I0 [ �MP0 , exa
tly one in ea
h 
onne
ted 
omponent of B0 [ �MP0 andtwo in ea
h 
omponent of I0. Moreover, other than these 
urves and the obvious trivial
ylinders, there is no other 
onne
ted �nite energy J -holomorphi
 
urve in R �M with itspositive ends approa
hing any sub
olle
tion of the asymptoti
 orbits of u�;� .We now perturb � to a nondegenerate 
onta
t form �0 by the s
heme des
ribed in [Bou02℄,so that ea
h of the original Morse-Bott tori Tj � I0[�MP0 
ontains exa
tly two nondegenerateReeb orbits, one ellipti
 and one hyperboli
,
ej [ 
hj � Tj :Denoting by �0 the natural trivialization along these orbits determined by the (�; �; �)-
oordinates, they satisfy ��0CZ(
ej ) = 1 and ��0CZ(
hj ) = 0, and for any number k0 2 N we
an also arrange that ��0CZ(k
ej ) = 1 for all k � k0. Perturbing J to a generi
 J 0 
ompatiblewith �0, the family of 
urves u�;� gives rise to embedded J 0-holomorphi
 
urves (Figure 19) as-ymptoti
 to various 
ombinations of these orbits and the 
omponents of B0. If u : _�! R�Mis su
h a 
urve, then generi
ity implies ind(u) � 1, so we dedu
e from the index formula thatsu
h 
urves 
ome in two types:� ind(u) = 2 if all ends approa
hing I0 [ �MP0 approa
h ellipti
 orbits,� ind(u) = 1 if u has exa
tly one end approa
hing a hyperboli
 orbit in I0 [ �MP0 .
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vkv1�v2�Figure 19. The perturbation from Morse-Bott (left) to nondegenerate(right), shown here in the simple 
ase where u�;� is a family of 
ylinders as-ymptoti
 to two Morse-Bott tori. All the orbits in the pi
ture point along anS1-fa
tor through the page, and the top and bottom are identi�ed. Arrowsindi
ate the signs of the ends of the rigid 
urves in the nondegenerate pi
ture:an end is positive if and only if the arrow points away from the orbit.All of these 
urves also have genus zero and satisfy u��0u = 0 and 
N (u) = 
�01 (u)��( _�) = 0,so one 
an then dedu
e from (4.1) and the index formula (3.7) that I(u) = ind(u).Up to R-translation there is now exa
tly one J 0-holomorphi
 
ow line u0 : _� ! R �Mwith all pun
tures positive and asymptoti
 to the orbits
h1 ; 
e2 ; : : : ; 
en; 
en+1; 
en+1; : : : ; 
en+r; 
en+r; �1; : : : ; �m:Let us therefore de�ne the orbit set
0 = f(
h1 ; 1); (
e2 ; 1); : : : ; (
en; 1); (
en+1; 2); : : : ; (
en+r; 2); (�1; 1); : : : ; (�m; 1)g;for whi
h [
0℄ = 0, and de�ne also the relative homology 
lassA0 = �[u0℄ 2 H2(M;�0 � 
0):The perturbation from J to J 0 
reates some additional J 0-holomorphi
 
ylinders whi
h arisefrom gradient 
ow lines along the Morse-Bott families of orbits, as des
ribed in [Bou02℄.Namely for ea
h j = 1; : : : ; n+ r, there are two embedded 
ylindersv+j ; v�j : R � S1 ! R �M;ea
h with positive end at 
ej and negative end at 
hj ; the images of these 
ylinders in M arethe two 
onne
ted 
omponents of Tj n (
ej [ 
hj ), thus after 
hoosing the labels appropriately,we 
an assume their relative homology 
lasses are related by[v+j ℄� [v�j ℄ = [Tj ℄ 2 H2(M):These 
ylinders satisfy ind(v�j ) = I(v�j ) = 1.
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omplex, the only 
urves other than u0 
ounted by � �eA0
� arethe disjoint unions of v�j with 
olle
tions of trivial 
ylinders for j = 2; : : : ; n+r. The negativeends of su
h a disjoint union give rise to the orbit set
j := f(
h1 ; 1); (
e2 ; 1); : : : ; (
ej�1; 1); (
hj ; 1); (
ej+1; 1); : : : ; (
en; 1);(
en+1; 2); : : : ; (
en+r; 2); (�1; 1); : : : ; (�m; 1)gfor j = 1; : : : ; n, and a similar expression for j = n+1; : : : ; n+ r whi
h will appear twi
e dueto the multipli
ity atta
hed to 
ej . Choosing appropriate 
oherent orientations and adding allthis together, we �nd � �eA0
0� = e0;+ nXj=2 eA0+[v�j ℄ �e[Tj ℄ � 1�
j+ n+rXj=n+1 2eA0+[v�j ℄ �e[Tj ℄ � 1�
j :We thus have � �eA0
0� = e0; whenever [Tj ℄ = 0 2 H2(M) for all j = 2; : : : ; n + r, whi
hproves Theorem 20. For untwisted 
oeÆ
ients, we divide the entire 
al
ulation by H2(M) sothat e[Tj ℄ � 1 = 0 always, thus �
0 = ; holds with no need for any topologi
al 
ondition.With that, the proof of Theorem 2 is 
omplete.4.2.3. The U -map. The proof of Theorems 6 and 60 is a minor variation on the argument givenabove. Assume (M; �) 
ontains a partially planar domainM0 with planar pie
eMP0 �M0, and
hoose the Morse-Bott data �; J and nondegenerate perturbation �0; J 0 exa
tly as des
ribedin the previous se
tion, but adding the following 
ondition: for any given d 2 N, Theorem 7allows us to 
hoose � so that the uniqueness statement for holomorphi
 
urves subordinateto the planar pie
e up to multipli
ity k holds for any k � d.Now 
onsider the J 0-holomorphi
 
urves of index 2 with positive ends asymptoti
 to theellipti
 orbits, 
e1; : : : ; 
en; 
en+1; 
en+1; : : : ; 
en+r; 
en+r; �1; : : : ; �m:These 
urves have embedded proje
tions to M whi
h foliate an open subset of MP0 , thus ifwe 
hoose p in this open subset, there is exa
tly one 
urve with the given asymptoti
s thatpasses through (0; p). Denote this 
urve by up, and for any k 2 f1; : : : ; dg, de�ne the orbitset 
(k) = f(
e1 ; k); : : : ; (
en; k); (
en+1; 2k); : : : ; (
en+r; 2k); (�1; k); : : : ; (�m; k)gwith [
(k)℄ = 0, and the relative homology 
lasskAp = �k[up℄ 2 H2(M;�0 � 
(k)):The uniqueness statement in Theorem 7 for 
urves subordinate to the planar pie
e up tomultipli
ity d now implies that � �ekAp
(k)� 
ounts only the disjoint unions of the embeddedindex 1 
ylinders v�j with trivial 
ylinders. As in the previous se
tion, the 
ontributions fromv+j and v�j 
an
el ea
h other out in the untwisted theory, and also in the twisted theory if[Tj ℄ = 0 2 H2(M), so we 
on
lude in either 
ase that ekAp
(k) is a 
y
le in the 
hain 
omplex.The uniqueness result also implies that there is exa
tly one 
urve 
ounted by U �ekAp
(k)�,namely the disjoint union of up with a 
olle
tion of trivial 
ylinders. We thus �nd,U �ekAp
(k)� = e(k�1)Ap
(k�1)

62 CHRIS WENDLfor ea
h k 2 f2; : : : ; dg, and for k = 1,U �eAp
(1)� = e0;:Sin
e the ECH does not depend on the 
hoi
e of 
onta
t form, this shows that for all d 2 Nthe homology 
ontains an element whose image under d iterations of the U -map is the 
onta
t
lass. The proof of Theorems 6 and 60 is thus 
omplete.A
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