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Abstract. For contact manifolds in dimension three, the notions of weak and

strong symplectic fillability and tightness are all known to be inequivalent.
We extend these facts to higher dimensions: in particular, we define a natural

generalization of weak fillings and prove that it is indeed weaker (at least in

dimension five), while also being obstructed by all known manifestations of
“overtwistedness”. We also find the first examples of contact manifolds in

all dimensions that are not symplectically fillable but also cannot be called

overtwisted in any reasonable sense. These depend on a higher dimensional
analogue of Giroux torsion, which we define via the existence in all dimensions

of exact symplectic manifolds with disconnected contact boundary.

Introduction

Contact structures in dimension 2n−1 arise naturally from symplectic structures
in dimension 2n by considering symplectic manifolds with a convexity condition at
the boundary. It has been understood since the work of Gromov [Gro85] and
Eliashberg [Eli90] in the late 1980’s that not every contact structure arises in this
way, i.e. not all contact structures are symplectically fillable. Moreover, in dimen-
sion three, there are distinct notions of strong and weak fillability, and they are
both closely related to the deep dichotomy between tightness and overtwistedness,
which plays a crucial role in the problem of classifying contact structures. One
has in particular the following inclusions among classes of contact structures on
3-manifolds:

{strongly fillable} ⊂ {weakly fillable} ⊂ {tight}.
Both of these are proper inclusions: in the first case this was shown by Eliashberg
[Eli96], and in the second by Etnyre and Honda [EH02], though today a simple
alternative construction is also available using the notion of Giroux torsion. This
invariant, introduced by Giroux in [Gir00], measures the amount that a contact
structure “twists” in neighborhoods of certain embedded 2-tori; it does not imply
overtwistedness but does obstruct strong [Gay06] and sometimes also weak [GH08]
fillability. It also plays a key role in several classification results for tight contact
structures, such as the “coarse” classification due to Colin, Giroux and Honda
[CGH09].

Most of the above discussion only makes sense so far in dimension three. This
is partly because it is not known whether the tight/overtwisted dichotomy ex-
tends to higher dimensions, although recent work of the second author and others
(e.g. [Nie06, BvK10]) has revealed hints of “overtwistedness” in certain classes of
examples. It also has not been clear up to now whether the notions of weak filling
and Giroux torsion have any interesting higher dimensional counterparts. One of
our main goals in this paper is to answer the latter question in the affirmative: we
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will show that several well known three-dimensional phenomena, such as the exis-
tence of tight but non-fillable or weakly but not strongly fillable contact manifolds,
also occur in higher dimensions.

Let us begin the discussion with the phenomenon of contact structures that are
tight but not (strongly) fillable. The emblematic example is the family of contact
structures on T3 defined for k ∈ N by

ξk := ker
(
cos ks dθ + sin ks dt

)
,

where we define T3 as (R/2πZ) × (R/Z)2 with coordinates (s, t, θ). These contact
structures are all tight due to Bennequin’s theorem [Ben83], since they are covered
by the standard contact structure on R3, but Eliashberg [Eli96] showed that only
ξ1 has a strong symplectic filling. Despite this lack of fillability, they share other
important properties that are incompatible with overtwistedness. For example,
they are hypertight, i.e. they allow Reeb vector fields without contractible closed
orbits, in contrast to Hofer’s theorem [Hof93] that such orbits always exist in the
overtwisted case. More importantly, they are not “flexible,” meaning they are
all homotopic as plane fields yet not isotopic [Gir99], whereas overtwisted contact
structures are maximally flexible due to Eliashberg’s classification theorem [Eli89].

In higher dimensions, it is an open question whether one can define a reasonable
notion of tightness, but of course flexibility and contractible Reeb orbits are easy
to define. Strong fillability can also be defined in the same way as in dimension
three, by considering symplectic manifolds with convex boundary (see Definition 3
below). This allows us to compare the properties of the contact structures ξk on
T3 discussed above with the following statement.

Theorem A. Identify the torus T2 with (R/2πZ)× (R/Z) with coordinates (s, t).
In any odd dimension, there is a closed manifold M carrying two contact forms α+

and α− such that the formula

ξk := ker

(
1 + cos ks

2
α+ +

1− cos ks

2
α− + sin ks dt

)
for k ∈ N defines a family of contact structures on T2 × M with the following
properties:

(1) They all admit Reeb vector fields without contractible closed orbits.
(2) They are all homotopic as almost contact structures but not contactomor-

phic.
(3) (T2 ×M, ξk) is strongly fillable only for k = 1.

We recover the 3-dimensional case discussed above by taking M = S1 := R/Z
and α± = ±dθ in the theorem.

The non-fillability of the above contact structures on T3 was later recognized
to be a consequence of the positivity of their Giroux torsion, and we’d next like
to generalize this fact. Let us briefly recall the definition of Giroux torsion, in
language that is suitable for generalization to higher dimensions. Denote by (A, β)
the cylinder A := R × S1 with coordinates (s, θ), together with the 1-form β :=
s dθ, which makes it the completion of a Liouville domain (see Definition 3). The
contactization1 of (A, β) is the manifold A×S1 = R×S1×S1 = R×T2 equipped
with the contact structure ker(dt+ β), where t denotes the coordinate on the new

1Our use of the term “contactization” is slightly nonstandard, as the word is typically used in
the literature to mean a product of a Liouville domain with R instead of with S1. In this paper,
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S1-factor. This contact structure is tangent to the R-factor, and it makes a half
twist as we move from s = −∞ to s = +∞. One can then compactify this domain
by identifying it with the interior of [0, π] × S1 × S1 with coordinates (s, t, θ) and
contact structure

ker
(
cos s dθ + sin s dt

)
.

This last contact manifold is called a Giroux π-torsion domain (or sometimes
Giroux half-torsion domain). Such domains can be glued along boundary tori to
achieve any number of half turns. The Giroux torsion of a contact 3-manifold (V, ξ)
is defined to be the supremum of all integers n such that (V, ξ) contains 2n Giroux
π-torsion domains glued together.

The idea described above can be conveniently rephrased in terms of ideal Liou-
ville domains, a notion recently introduced by Giroux. We will review the precise
definition in §4, but in a nutshell, an ideal Liouville domain is the compactification
of a complete Liouville manifold that appears naturally e.g. as the closure of a page
of a supporting open book decomposition, or more generally, the closure of any
component of a ξ-convex hypersurface minus its dividing set. With this notion, a
Giroux π-torsion domain can be viewed directly as the contactization of an ideal
Liouville domain. In this paper, we shall refer to contactizations of ideal Liouville
domains as Giroux domains. The fact that Giroux torsion is an obstruction to
strong fillability [Gay06] is then generalized to the following theorem.

Theorem B. If a contact manifold contains a connected codimension 0 submanifold
with nonempty boundary obtained by gluing together two Giroux domains, then it
is not strongly fillable.

Observe that at least one of the Giroux domains in Theorem B must always
have disconnected boundary. The existence of Liouville domains with disconnected
boundary in dimensions four and higher is itself a nontrivial fact: the first examples
were found by McDuff [McD91] in dimension four, and more were found by Geiges
in dimensions four [Gei95] and six [Gei94], and Mitsumatsu [Mit95] in dimension
four. The following notion generalizes the construction of Geiges:

Definition 1. A Liouville pair on an oriented (2n− 1)-dimensional manifold M
is a pair (α+, α−) of contact forms such that ±α± ∧ dαn−1

± > 0, and the 1-form

β := e−sα− + esα+

on R×M satisfies dβn > 0.

A Liouville pair allows us to construct Liouville domains with two boundary
components (in fact, by attaching Stein 1-handles to these examples one can obtain
examples with any number of boundary components). These manifolds can then
be used to build Giroux domains of the form [0, π]× S1 ×M with contact form

(0.1) λGT =
1 + cos s

2
α+ +

1− cos s

2
α− + sin s dt ,

which can be stacked together to produce the examples described in Theorem A.

we shall go back and forth between both meanings of the term—it should always be clear from
context which one is meant.
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In order to state an existence result2 for Liouville pairs, recall that a number
field of degree n is a field that is an n-dimensional vector space over Q. Recall
also that R contains number fields of arbitrary degree.

Theorem C. One can associate canonically to any number field k of degree n a
(2n − 1)-dimensional closed contact manifold (Mk, ξk). If k can be embedded into
R, then Mk also admits a Liouville pair, hence R×Mk is Liouville.

Corollary. There exist Liouville domains with disconnected boundary in all even
dimensions.

This corollary provides a source of examples3 that can be plugged into Theorem B
to construct nonfillable contact manifolds in all dimensions, and a special case of
this leads to the examples of Theorem A as well as the higher dimensional version of
Giroux torsion discussed in §8. The proof of Theorem B is in fact a generalization to
higher dimensions of a construction that was used by the third author in [Wen10a]
to show that every contact 3-manifold with Giroux torsion is weakly symplectically
cobordant to one that is overtwisted. In higher dimensions, the overtwistedness
will come from a generalization of the work of Atsuhide Mori in [Mor09]. Note
that already in dimension three, the cobordism argument requires the fact that
overtwistedness obstructs weak (not only strong) fillability, a notion that has not
previously been defined in any satisfactory way in higher dimensions. In dimension
three of course, the subtle differences between weak and strong fillings are of interest
in themselves, not only as a tool for understanding strong fillability.

As preparation for the definition of weak fillability that we will propose here, let
us first have a look at the realm of (almost) complex manifolds.

Definition 2. One says that a contact manifold (V, ξ) is the tamed pseudocon-
vex boundary of an almost complex manifold (W,J) if V = ∂W and

• ξ is the hyperplane field TV ∩ JTV of J-complex tangencies,
• W admits a symplectic form ω taming J , and
• V is J-convex.

The last point means that if we orient V as the boundary of W , then for any 1-
form λ defining ξ (i.e. λ is a 1-form with ξ = kerλ as oriented hyperplanes), we
have dλ(v, Jv) > 0 for every nonzero vector v ∈ ξ.

Note that there is no direct relation in the definition between the taming form ω
and the contact structure ξ. It must also be pointed out that the existence of (W,J)
is not very restrictive without the taming condition. For instance, the overtwisted
contact structure on S3 that is homotopic to the standard contact structure can be
realized as a pseudoconvex boundary of the ball for some almost complex structure,
but the Eliashberg-Gromov theorem implies that this structure can never be tamed.

We now recall the standard definitions on the symplectic side.

Definition 3. Let V be a closed oriented manifold with a positive and co-oriented
contact structure ξ. We say that a compact symplectic manifold (W,ω) is a sym-
plectic filling of (V, ξ) if ∂W = V as oriented manifolds and ω admits a primitive

2Our proof of Theorem C owes a considerable debt to Yves Benoist, who explained to us how

to use number theory to find lattices in the groups considered by Geiges in [Gei94].
3Actually this construction provides infinitely many examples with pairwise distinct funda-

mental groups. We thank Gaëtan Chenevier for arithmetic discussions clarifying this.
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λ (a Liouville form) near ∂W which restricts to V as a contact form for ξ. We call
(W,ω) an exact filling of (V, ξ), or a Liouville domain, if the Liouville form λ
extends globally over W .

Note that a Liouville form λ gives rise (via the ω-dual) to a Liouville vector
field, whose flow is a symplectic dilation, and the condition that λ|TV be a positive
contact form means that the Liouville vector field points transversely outward at
the boundary. For this reason we say in this case that (W,ω) has (symplectically)
convex boundary. In dimension three, it is customary to distinguish this notion
from the weaker version discussed below by calling (W,ω) a strong filling of (V, ξ),
and we shall also apply this convention to higher dimensions in the present paper.

To obtain a weaker notion of symplectic filling, recall that every co-oriented
contact structure ξ carries a natural conformal class CSξ of symplectic structures:
indeed, if λ is any contact form for ξ, then dλ|ξ defines a symplectic bundle struc-

ture that is independent of the choice of λ up to scaling. If (W,ω) is a symplectic
manifold and V = ∂W carries a positive contact structure ξ, one says, following
[EG91], that ω dominates ξ if the restriction ωξ := ω|ξ belongs to CSξ. This

is always the case if (W,ω) is a strong filling of (V, ξ), and in dimension three it
defines a strictly weaker notion of symplectic fillability, e.g. it is obstructed by over-
twistedness but not by Giroux torsion. A symplectic 4-manifold (W,ω) dominating
a contact structure ξ at its boundary V = ∂W is therefore called a weak filling
of (V, ξ). However, McDuff proved [McD91, Lemma 2.1] that from dimension 5
upward, the dominating condition already implies that (W,ω) is a strong filling. In
this paper, we propose the following weak filling condition for all dimensions.

Definition 4. Let ξ be a co-oriented contact structure on a manifold V . Denote
by CSξ the canonical conformal class of symplectic structures on ξ. Let (W,ω) be
a symplectic manifold with ∂W = V as oriented manifolds and denote by ωξ the
restriction of ω to ξ. We say that (W,ω) is a weak filling of (V, ξ) (and ω weakly
dominates ξ) if ωξ is symplectic and ωξ + CSξ is a ray of symplectic structures
on ξ.

The weak filling condition is thus equivalent to the requirement that

α ∧
(
dα+ ωξ

)n−1
and α ∧ ωn−1

ξ

should be positive volume forms for every choice of contact form α for ξ. If one
fixes a contact form α, then this is equivalent to requiring α ∧ (ωξ + τ dα)n−1 > 0
for all constants τ ≥ 0, and it holds for instance whenever

α ∧ dαk ∧ ωn−1−k
ξ > 0

for all k ∈ {0, 1, . . . , n − 1}. In dimension three, weak domination is equivalent to
domination, hence our definition of weak filling reduces to the standard one.

The first important result to state about this new definition is that it is the
purely symplectic counterpart of tamed pseudoconvex boundaries.4

Theorem D. A symplectic manifold (W,ω) is a weak filling of a contact manifold
(V, ξ) (Definition 4) if and only if it admits a smooth almost complex structure J
that is tamed by ω and makes (V, ξ) the tamed pseudoconvex boundary of (W,J)
(Definition 2).

4We are deeply indebted to Bruno Sévennec and Jean-Claude Sikorav for discussions that led
to the proof of Theorem D.
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By contrast, weak fillings are not automatically strong fillings. Indeed, weak
domination of a fixed ξ is an open condition on ω, so one can easily construct
weak fillings that are non-exact at the boundary by taking small perturbations of
strong fillings. The following less trivial examples of weak fillings non-exact at the
boundary are inspired by Giroux’s construction [Gir94] of weak fillings for the tight
contact structures ξk on T3.

Example 5. Starting from a closed contact manifold (V, ξ) and a supporting open
book decomposition [Gir02], Frédéric Bourgeois constructed in [Bou02b] a contact
structure on V × T2. It can be written as the kernel of the 1-form

αε = αV + εf dx1 + εg dx2

for any ε > 0, where (x1, x2) are the coordinates on T2 = S1 × S1, αV is a contact
form on V compatible with the given open book, and f, g : V → R are functions
associated to the open book. Now if (W,ω) is a weak filling of (V, ξ), one can check
by examining the limit ε → 0 that the Bourgeois contact structure on V × T2 is
weakly filled by (W × T2, ω ⊕ ωT2), where ωT2 is an area form on T2.

The next result extends the fact that weak fillability is strictly weaker than
strong fillability beyond dimension three. Though we prove this only for dimension
five, it is presumably true in all dimensions; see §8 for further discussion.

Theorem E. There exist 3-manifolds M with Liouville pairs (α+, α−) such that the
contact manifolds (T2 ×M, ξk) of Theorem A are all weakly fillable. In particular,
there exist contact 5-manifolds that are weakly but not strongly fillable.

As in dimension three, one should expect that any notion of “overtwistedness”
one might define in higher dimensions obstructs the existence of a weak filling. Here
we have two possible notions in mind: recall first that the second author [Nie06]
has introduced a higher dimensional generalization of the overtwisted disk, called
the plastikstufe. We shall introduce in §3 a natural generalization of this, called a
bordered Legendrian open book (or “bLob” for short), and refer to contact manifolds
that contain such objects as PS-overtwisted. An alternative (though not necessarily
inequivalent) notion emerges from the observation that a contact 3-manifold is over-
twisted if and only if it has a supporting open book that is the negative stabilization
of another open book. The corresponding condition in higher dimensions is known
to imply algebraic overtwistedness, i.e. vanishing contact homomology [BvK10]. We
will show that each of these conditions gives an obstruction to semipositive5 weak
fillings:

Theorem F. If (V, ξ) is a closed contact manifold that either

(i) contains a contractible PS-overtwisted subdomain, or
(ii) is obtained as the negative stabilization of an open book,

then (V, ξ) has no (semipositive) weak filling.
Hence any contact structure on a closed manifold V with dimV ≥ 3 can be

modified within its homotopy class of almost contact structures to one that admits
no (semipositive) weak fillings.

5In Theorem F and several other results in this paper, we write the word “semipositive” in

parentheses: this means that the condition is presently necessary for technical reasons, but should
be removable in the future using the polyfold technology of Hofer-Wysocki-Zehnder, cf. [Hof06].

Note that in dimensions 4 and 6, symplectic manifolds are always semipositive.
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We will also show in §1 that the weak filling condition is conveniently amenable
to deformations near the boundary. An often used fact in dimension three, due
originally to Eliashberg [Eli91], is that any weak filling which is exact near the
boundary can be deformed to a strong filling. This was extended in [NW11] to
show that every weak filling can be deformed to make the boundary a stable hy-
persurface, so that weak fillings can be studied using the machinery of Symplectic
Field Theory (SFT). Extending this idea to higher dimensions led to the notion of
a stable symplectic filling defined in [LW11], and we will show:

Proposition 6. Any weak filling can be deformed near its boundary to a stable
filling. Moreover, if the symplectic form is exact near the boundary, then it can be
deformed to a strong filling.

The fact that weak fillings can be “stabilized” means that they are obstructed
by the invariants defined in [LW11], known as algebraic torsion. The following
corollary, which we will not use in this paper, comes of course with the standard
caveat about the analytical foundations of SFT:

Corollary 7. If (V, ξ) has fully twisted algebraic torsion in the sense of [LW11],
then it is not weakly fillable. In particular, this is the case if (V, ξ) has vanishing
contact homology with fully twisted coefficients.

The contact structures defined in (0.1) can be used to define a higher dimensional
version of the standard 3-dimensional Lutz twist along a pre-Lagrangian torus.
Notably, whenever (V, ξ) contains a hypersurface H that is isomorphic to one of
the boundary components of the domain [0, 2π]×S1×M with the contact structure
given by λGT, we can cut V open along H and glue in an arbitrary number of such
domains to modify the contact structure on V . The contact structure obtained
from this operation will never be strongly fillable, and in some cases it is not even
weakly fillable:

Theorem G. By inserting contact domains of the form ([0, 2πk]×S1×M, kerλGT)
for various k ∈ N, one can construct closed manifolds in any dimension 2n− 1 ≥ 3
which admit infinite families of hypertight but not weakly fillable contact structures
that are homotopic as almost contact structures but not contactomorphic.

We will also discuss in §8 a “blown down” version of the above operation, which
generalizes both the classical Lutz twist along transverse knots in dimension three
and a 5-dimensional version recently introduced by A. Mori [Mor09]. As we shall
see, this operation always produces a contact structure that is in the same homo-
topy class of almost contact structures, but is PS-overtwisted and thus not weakly
fillable. See also [EP11] for a completely different generalization of the Lutz twist
to higher dimensions.

Organization. Here is an outline of the remainder of the paper.
In §1 we establish some basic properties of the weak filling condition, including

its relation to tamed pseudoconvexity and behavior under deformations in collar
neighborhoods. This includes the proofs of Theorem D and Proposition 6.

Section 2 shows that weak fillings are obstructed by negatively stabilized open
books. The technology here involves finite energy holomorphic planes in the non-
compact completion of a weak filling; it is a minor adaptation of the contact homol-
ogy computation due to Bourgeois and van Koert [BvK10]. Instead of appealing to
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contact homology, however, we argue directly that the moduli space of holomorphic
planes found in [BvK10] cannot exist if there is a semipositive weak filling.

In §3, we introduce the bLob as a natural generalization of the plastikstufe and
adapt the standard “Bishop family of holomorphic disks” argument to prove the
remainder of Theorem F.

The next three sections establish the proof of Theorem B, defining the first higher
dimensional filling obstruction that is distinct from any notion of “overtwistedness”.
In §4, we discuss ideal Liouville domains and Giroux domains, and state a more
precise version of Theorem B that can also be applied to weak fillings. The proof
requires a surgery construction explained in §5, which is inspired by the construction
in [Wen10a] of symplectic cobordisms from any contact 3-manifold with Giroux
torsion to one that is overtwisted. In our case, we consider a contact manifold
(V, ξ) which contains a region with nonempty boundary consisting of two Giroux
domains G0 = Σ0× S1 and G1 = Σ1× S1 glued together. It turns out that one can
attach along G0 a symplectic “handle” of the form Σ0×D2, the effect of which is to
replace G0 ∪G1 with a region that is PS-overtwisted, thus a weak filling of (V, ξ)
with suitable cohomological properties at the boundary gives rise to a larger weak
filling of something PS-overtwisted and hence a contradiction. Note that since the
new boundary is only weakly filled in general, the new notion of weak fillability
plays a crucial role even just for proving that (V, ξ) is not strongly fillable. We shall
also provide in §6 an alternative argument that avoids holomorphic disks and uses
the somewhat simpler technology of closed holomorphic spheres; this allows us to
overcome transversality problems using the recently developed polyfold machinery
[HWZ11].

In §7 we switch gears and address the existence of Liouville pairs in all dimen-
sions, proving Theorem C. For this we borrow an idea of Geiges from [Gei94] to
look for Liouville pairs among left-invariant 1-forms on noncompact Lie groups
that admit co-compact lattices and hence compact quotients. Our examples of left-
invariant Liouville pairs on Lie groups are quite easy to write down (see e.g. Equa-
tion (7.1)), but in order to find co-compact lattices we’ll need to apply some basic
algebraic number theory.

Finally, §8 explains the most important special cases of the filling obstruction
from Theorem B, leading to higher dimensional generalizations of Giroux torsion
and the Lutz twist. From this follow the proofs of Theorems A, E and G.

The appendix contains some technical results in symplectic linear algebra needed
for the proof of Theorem D, relating weak symplectic fillings and tamed pseudo-
convexity.

Notation. Unless otherwise indicated, throughout this paper we will assume (W,ω)
is a compact symplectic manifold of dimension 2n ≥ 4, and (V, ξ) is a closed (2n−1)-
dimensional contact manifold, with ξ positive and co-oriented. In cases where V
is identified with ∂W , we assume that this identification matches the orientation
induced by ξ to the natural boundary orientation determined by ω. Also when
V = ∂W , we will often use the abbreviations

ωV := ω|TV and ωξ := ω|ξ.

Acknowledgments. We are grateful to Bruno Sévennec and Jean-Claude Sikorav
for e-mails leading to the proof of Theorem D, Yves Benoist for conversations
which were crucial for the proof of Theorem C, Sylvain Courte for his proof of
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Joel Fish for explaining to us some details of the polyfold machinery, and Paolo
Ghiggini for many helpful discussions at the beginning of this project. The idea
that some modification of Mori’s ideas in [Mor09] might lead to a notion of Giroux
torsion in higher dimensions was first suggested to us by John Etnyre. We would
also like to thank the mathematics department in Nantes for creating a pleasant
working environment which hosted several meetings of the authors, and a very
careful anonymous referee whose comments on the original version of this article
have led to several improvements in the exposition. The first and second author
were partially supported by the ANR grant ANR-10-JCJC 0102. The third author
was supported by an Alexander von Humboldt Foundation fellowship.

1. The weak filling condition

1.1. Pseudoconvexity and weak filling. The aim of this section is to show that
our definition of a weak filling (Definition 4 in the introduction) is in a certain
sense the purely symplectic counterpart of a tamed almost complex manifold with
pseudoconvex boundary.

Before proving the main theorem on this subject, we will need some important
properties of complex structures on vector spaces which were explained to us by
Bruno Sévennec and Jean-Claude Sikorav. We will give proofs of the following two
propositions in Appendix A.1 and A.2 respectively.

Proposition 1.1. The space of complex structures on a vector space E tamed by
two given symplectic forms ω0 and ω1 is either empty or contractible.

Proposition 1.2. Let E be a real vector space equipped with two symplectic forms
ω0 and ω1. The following properties are equivalent:

(1) the linear segment between ω0 and ω1 consists of symplectic forms
(2) the ray starting at ω0 and directed by ω1 consists of symplectic forms
(3) there is a complex structure J on E tamed by both ω0 and ω1.

Remark 1.3. When choosing an almost complex structure J on a symplectic man-
ifold, for most applications it makes no difference whether one requires J to be
calibrated (i.e. compatible with) or tamed by the symplectic structure, and typi-
cally very little attention is paid to this distinction in the literature. Note however
that the cotaming condition is strictly weaker than cocalibrating, and in many cases
it is not possible to require the latter. For instance, one can prove (by hand or using
the previous proposition) that there exists a complex structure on R4 that is co-
tamed by the two forms ω0 = dx1∧dx3 +dx2∧dx4 and ω1 = dx2∧dx1 +dx3∧dx4.
On the other hand, one can use the fact that ω0 ∧ ω1 = 0 to show that there does
not exist any complex structure that is both calibrated by ω0 and tamed by ω1.

The following is a restatement of Theorem D from the introduction.

Theorem 1.4. A symplectic manifold (W,ω) is a weak filling of (∂W, ξ) if and
only if there is an almost complex structure J on W which is tamed by ω and such
that (∂W, ξ) is the strictly pseudoconvex boundary of (W,J).

Proof. We denote the boundary of W by V and use the notation of the introduction.
Suppose we have a weak filling. From Proposition 1.2, using the fact that the
cotaming property is open, it follows that every point in the manifold V has a
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small neighborhood on which there exists a complex structure Jξ on ξ which is
tamed by both ωξ and CSξ. Using the contractibility of the space of such Jξ’s
(Proposition 1.1), we can then replace Jξ with a global complex structure on ξ that
has this property. Choose any vector field X on V that spans kerωV , and extend
it to a collar neighborhood U of V . Let Y be a vector field on U that lies along V
in the ω-orthogonal complement of ξ and that satisfies ω(X,Y ) > 0. We extend Jξ
to an almost complex structure J on U by setting JX = Y . Clearly, J is tamed by
ω on a small neighborhood of V , and we can then extend J to the interior of W
to obtain the desired tamed almost complex structure on the entire filling W . By
construction, ξ = TV ∩ JTV , and V is strictly J-pseudoconvex since Jξ is tamed
by CSξ.

Conversely, assume W has an almost complex structure J that is tamed by
ω and makes the boundary strictly pseudoconvex, with ξ as the field of complex
tangencies TV ∩ JTV . We can then write ξ as the kernel of a nonvanishing 1-form
α, and pseudoconvexity implies that we can choose the sign of α in such a way that
dα|ξ tames J |ξ, and such that the natural orientation of ξ together with its co-
orientation defined via α is compatible with the boundary orientation of W . Since
ω tames J , ωξ also tames J |ξ. We therefore have cotaming forms on ξ, so the easy

implication (3) =⇒ (2) of Proposition 1.2 guarantees that (W,ω) is a weak filling
of (V, ξ). �

Suppose now U is a domain inside a symplectic manifold (W,ω) and V := ∂U is
pseudoconvex for some tamed J . Using the easy direction of the preceding theorem,
we see that (U, ω|U ) is a weak filling of (V, TV ∩ JTV ). It is not true in general
that it is a strong filling. This was observed first in [EG91, p. 158], where an
example in Cn with its standard Kähler structure is discussed. In this example,
Eliashberg proved that the relevant contact structure is actually Stein fillable, but
weak fillability is much easier to check (recall that we used the easy direction).
By Theorem F in the introduction, this already implies global information about
the contact structure, such as the nonexistence of a contractible PS-overtwisted
subdomain, or of a negatively stabilized supporting open book.

1.2. Magnetic collars and cones. Recall that for any co-oriented hyperplane
field ξ on a manifold V , one can consider the annihilator of ξ in T ∗V :

Sξ :=
{
λ ∈ T ∗V

∣∣ kerλ = ξ and λ(v) > 0 if v is positively transverse to ξ
}
.

The field ξ is a contact structure if and only if Sξ is a symplectic submanifold of
(T ∗V, ωcan), and in this case Sξ is called the symplectization of ξ. Any contact form
α is a section of this R∗+-bundle, and thus determines a trivialization Sξ ∼= R∗+×V .
In this trivialization, the restriction of the canonical symplectic form ωcan becomes
d(tα), where t is the coordinate in R∗+.

In order to rephrase the definition of weak filling in these terms, we need to
recall one further notion. Suppose ωV is any closed 2-form on V , and denote the
projection from T ∗V to V by π. The 2-form ωcan +π∗ωV is then a symplectic form
on T ∗V , which is called magnetic.

The definition of weak fillings can now be reformulated as follows.

Lemma 1.5. Let (W,ω) be a symplectic manifold with ∂W = V . Denote by ωV
the restriction of ω to TV and by ωξ its restriction to a contact structure ξ on V .
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The manifold (W,ω) is a weak filling of (V, ξ) if and only if ωξ is symplectic and Sξ
is a symplectic submanifold of the magnetic cotangent bundle associated to ωV . �

In the case where (W,ω) strongly fills (V, ξ), it admits a Liouville vector field
X near V , which induces the contact form α = ιXω|TV on V . Let ϕt denote
the flow of X for time t. For sufficiently small ε > 0, the map (t,m) 7→ ϕln t(m)
embeds

(
(1 − ε, 1] × V, ωcan

)
symplectically into W . This allows the completion

of W by adding the positive half (1,∞) × V of Sξ. To understand this from a
magnetic point of view, observe that ωV = dα, so the magnetic form on Sξ is
ωV + d(tα) = d((t+ 1)α). Thus (t,m) 7→ (t+ 1,m) is a symplectomorphism from
the magnetic symplectization to the cylindrical end of the completed strong filling.

In the setting of weak fillings, we would similarly like to be able to complete
(W,ω) by adding the magnetic symplectization. For this we need a suitable de-
scription of a collar neighborhood of the boundary: the following lemma has an
obvious analogue for the situation where V is an oriented boundary component of
a symplectic manifold (W,ω).

Lemma 1.6. Suppose V ⊂W is an oriented hypersurface in the interior of a 2n-
dimensional symplectic manifold (W,ω), ξ ⊂ TV is the co-oriented (and hence also
oriented) hyperplane distribution induced by a nowhere vanishing 1-form λ on V ,
and the restriction of ω to ξ is symplectic and induces the positive orientation.
Then a neighborhood of V in (W,ω) is symplectomorphic to(

(−ε, ε)× V, d(tλ) + ωV
)
,

for some ε > 0, where ωV := ω|TV , V is identified in the natural way with {0}×V ,
and the direction of ∂t is such that ι∂tω

n = λ∧ωn−1. Moreover, the vector field ∂t
in W can be chosen to extend any given vector field which has these properties on
a neighborhood of some part of V .

Remark 1.7. The statement about the direction of ∂t means that in the version
of this lemma for the boundary of a weak filling, one obtains a neighborhood of
the form ((−ε, 0] × V, d(tλ) + ωV ), so in particular ∂t points outwards. There is
a corresponding variation for negative boundary components of weak symplectic
cobordisms, for which ∂t points inwards.

Proof of Lemma 1.6. An identical proof has been given for the 3-dimensional case
in [NW11]. We will first define a collar neighborhood of V by choosing a vector
field that is transverse to V . Let E ⊂ TW |V be the ω-orthogonal complement of ξ
along V . The intersection of E with TV is a 1-dimensional subbundle, and we can
uniquely define a Reeb-like vector field Xω by taking the section in E ∩ TV that
satisfies λ(Xω) ≡ 1. By our definition, ω(Xω, ·)|TV = 0 holds. Choose now a second
section Y in E that is transverse to V , and normalize it such that ω(Y,Xω) ≡ 1.
Note that if such a section is already given near some subset of V , then we can
choose Y to be an extension of that section. We now have ω(Y, ·)|TV = λ, since
both forms vanish on ξ and agree on Xω.

Extend Y to a smooth vector field in a neighborhood of V , and use the flow ϕY

of this vector field to define a smooth diffeomorphism

Φ: (−ε, ε)× V ↪→W, (t, p) 7→ ϕYt (p) ,

which agrees with the canonical identification on {0} × V . Next, compare the 2-
forms Φ∗ω and ωV +d(tλ) on (−ε, ε)×V . Both forms coincide along {0}×V , thus
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the linear interpolation of these forms is a path of symplectic structures (decreasing
ε > 0 if necessary). We can then use the Moser trick to show that they are all
symplectomorphic to each other (perhaps in a smaller neighborhood) by an isotopy
that keeps the level set {0} × V fixed. �

Corollary 1.8. If (W,ω) is a weak filling of (V, ξ), then one can extend W to a

magnetic completion (Ŵ , ω̂) with Ŵ = W ∪ Sξ, ω̂|W = ω and ω̂|Sξ = ωcan + ωV .

Moreover, for every positive t, ({t}× V, ξ) is then weakly filled by W ∪ (0, t]× V
equipped with the restriction of ω̂. �

In the previous section we proved that whenever (W,ω) is a weak filling of (V, ξ),
there is a J on ξ which is tamed by CSξ and also by the restriction of ω. However,
it is sometimes desirable to fix a complex structure on ξ in advance. The following
observation allows us to do this, at the price of first adding a sufficiently large part
of the magnetic completion. The proof is a short computation using the fact that
for T � 0, the restriction of ωV + d(tα) to {T} × V is dominated by the second
term.

Lemma 1.9. Suppose ωV is a closed 2-form on V weakly dominating a contact
structure ξ, α is a contact form for ξ and Rα is its Reeb vector field. Further,
suppose J is an almost complex structure on [0,∞)×V which preserves ξ such that
J |ξ is tamed by dα|ξ and J∂t = Rα, with t denoting the coordinate on [0,∞). Then

there exists a number T ≥ 0 such that J is tamed by ωV +d(tα) on [T,∞)×V . �

1.3. Deformations of weak fillings. We now want to deform completions of
weak fillings in order to obtain some flexibility for ωV .

Lemma 1.10. Let ωV be a closed 2-form weakly dominating a contact structure
ξ = kerα on V , and suppose ω′V is any closed 2-form on V that is cohomologous
to ωV . Then the symplectic structure ωV + d(tα) on [0,∞) × V can be deformed
away from {0} × V so that it coincides with ω′V + d(tα) on (t1,∞) × V for some
large number t1 > 0 and all levels ({t} × V, ξ) remain weakly filled.

Proof. Since ωV and ω′V are cohomologous, there exists a 1-form β on V such that
ω′V = ωV + dβ. Consider the closed 2-form ω′ = d(tα) +ωV + d(ρ β) on [0,∞)×V ,
where ρ : [0,∞) → [0, 1] is a smooth monotone function that is equal to 0 near
t = 0 and to 1 for large values of t. We now show that, if the support of ρ is
sufficiently far away from 0 and ρ increases sufficiently slowly, the new structure
ω′ will be symplectic. Since it is closed by construction, we only need to check
nondegeneracy. We compute:

(ω′)n = dt ∧ (α+ ρ′ β) ∧
(
t dα+ ωV + ρ dβ

)n−1
.

To prove that t dα + ωV + ρ dβ is a symplectic form on ker(α + ρ′ β), choose an
auxiliary norm on the space of differential forms on V , and set c1 := ‖β‖ and
c2 := ‖ωV ‖+ ‖dβ‖.

The map Ω1(V )×Ω2(V )→ Ω2n+1(V ), (γ, η) 7→ γ ∧ ηn is continuous, so that we
find constants ε1, ε2 > 0 such that γ∧ηn > 0 for every pair (γ, η) ∈ Ω1(V )×Ω2(V )
with ‖γ − α‖ < ε1, and ‖η − dα‖ < ε2. Then for η = dα+ωV /t+ρ dβ/t, we obtain
‖η − dα‖ = ‖ωV /t+ ρ dβ/t‖ ≤ c2/t, and similarly, we find for γ = α + ρ′ β that
‖γ − α‖ = ρ′ c1.

The nondegeneracy of ω′ is immediate whenever t lies outside the support of ρ. If
we let ρ increase sufficiently slowly so that ρ′ < ε1/c1 and also assume ρ(t) = 0 for
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t < c2/ε2, then the above calculation shows that ω′ is nondegenerate everywhere.
By the same reasoning, every hypersurface

(
{t} × V, α

)
will be weakly filled in the

new manifold. �

Remark 1.11. This lemma implies that a weak filling gives rise to a strong filling
whenever ω|TV is exact. This does not mean however that ω is a weak filling of
a unique isotopy class of contact structures on the boundary—there are counter-
examples in dimension 3. As explained for instance in [Mas08, Section 4.2], any
Seifert 3-manifold V is the boundary of a symplectic manifold (W,ω) such that
ker ω|TV is tangent to the fibers. Thus any (positive) contact structure on V which
is transverse to the fibers is weakly filled by (W,ω). If V is a Brieskorn sphere
−Σ(2, 3, 6n−1), then the results of [Mas08, GVHM09] combine to prove that there
are n− 2 isotopy classes of contact structures transverse to the fibers. Since those
manifolds are homology spheres, ω|TV is exact.

We now make the connection between weak fillings and stable hypersurfaces,
establishing Proposition 6 and hence Corollary 7 from the introduction.

Corollary 1.12. Any weak filling (W,ω) of a contact manifold (V, ξ) can be de-
formed to have the additional property that kerωV = ker dα for some nondegenerate
contact form α for ξ. In particular, (α, ωV ) is then a stable Hamiltonian structure
on V , and (W,ω) is a stable filling of (V, ξ) in the sense of [LW11].

Proof. Since weak filling is an open condition, we can perturb ω so that without loss
of generality it represents a rational cohomology class in H2

dR(V ). Then by a result
of Cieliebak and Volkov [CV10, Proposition 2.16], (V, ξ) admits a nondegenerate
contact form α and a 2-form ω′V cohomologous to ωV such that the pair (α, ω′V )
define a stable Hamiltonian structure. The claim now follows by application of the
preceding lemma. �

2. Negative stabilizations

Corollary 7 in the introduction, together with the result of Bourgeois and van
Koert [BvK10] that negatively stabilized contact manifolds have vanishing contact
homology (with full group ring coefficients), implies in principle that such manifolds
are not weakly fillable and always admit contractible Reeb orbits. In this section we
shall show how the computation from [BvK10] can be modified to produce direct
proofs of these facts without relying on SFT.

The simplest example of a negatively stabilized contact manifold is the sphere
(S2n−1, ξ−) that is supported by the open book with page T ∗Sn−1 and monodromy
isotopic to a single negative Dehn-Seidel twist. By an observation due to Giroux,
we may for our purposes define an arbitrary closed (2n − 1)-dimensional contact
manifold to be negatively stabilized if and only if it is the contact connected
sum of (S2n−1, ξ−) with some other closed contact manifold. Our goal is thus to
prove the following:

Theorem 2.1. For any closed (2n − 1)-dimensional contact manifold (M, ξ), the
contact connected sum (M, ξ)#(S2n−1, ξ−) has no (semipositive) weak filling, and
its Reeb vector fields always admit contractible closed orbits.

To prepare the proof, recall that a 1-form λ and closed 2-form Ω on an oriented
(2n− 1)-dimensional manifold V form a stable Hamiltonian structure (λ,Ω) if



14 P. MASSOT, K. NIEDERKRÜGER, AND C. WENDL

λ ∧ Ωn−1 > 0 and ker dλ ⊂ ker Ω. Such a pair always determines a unique vector
field R with the properties λ(R) ≡ 1 and Ω(R, ·) ≡ 0. Note that if λ is also a
contact form, then R is simply the Reeb vector field. We shall say that an almost
complex structure J on R× V is adjusted to (λ,Ω) if it is R-invariant, maps the
unit vector in the R-direction to the vector field R, and restricts to an Ω-tame
complex bundle structure on ξ := kerλ.

Lemma 2.2. Suppose (V, ξ) is a closed (2n−1)-dimensional contact manifold with
nondegenerate contact form λ and closed 2-form Ω such that kerλ = ξ and (λ,Ω)
forms a stable Hamiltonian structure on V . Suppose moreover that R × V admits
an almost complex structure J adjusted to (λ,Ω) with the following properties:

• There exists a finite energy J-holomorphic plane u0 : C → R × V which
is Fredholm regular, has Fredholm index 1 and is asymptotic to a simply
covered Reeb orbit γ.
• Other than R-translations of u0, R × V admits no finite energy punctured
J-holomorphic curves of genus zero with one positive end asymptotic to γ
and no other positive ends.

Then (V, ξ) does not admit any (semipositive) weak filling (W,ω) for which ω|TV
is cohomologous to Ω.

Proof. Assume the contrary, that there exists a weak filling (W,ω) with [ωV ] =
[Ω] ∈ H2

dR(V ). By Lemma 1.10, we can complete (W,ω) to an open symplectic

manifold (Ŵ , ω) by attaching a cylindrical end ([0,∞) × V, ω) such that for some

T > 0, ω = Ω + d(tλ) on [T,∞)× V . Assign to (Ŵ , ω) an ω-tame almost complex
structure that matches the given R-invariant structure J on [T,∞) × M and is
generic everywhere else; we shall denote this extension also by J . The point of
assuming (λ,Ω) to be a stable Hamiltonian structure is that the compactness results
of Symplectic Field Theory [BEH+03] are now valid for finite energy J-holomorphic

curves in (Ŵ , ω).
The R-translations of the J-holomorphic plane u0 : C → R × V asymptotic to

the orbit γ now give rise to a smooth 1-dimensional family of J-holomorphic curves

in [T,∞)× V ⊂ Ŵ . LetM denote the unique connected component of the moduli

space of unparametrized finite energy J-holomorphic curves in Ŵ that contains this
family. All curves in M are planes asymptotic to the simply covered orbit γ and
are thus somewhere injective. LetM+ ⊂M denote the subset consisting of curves
whose images are contained entirely in [T,∞)× V . By the uniqueness assumption
for u0, all of these are R-translations of u0, thusM+

∼= [0,∞). Then by genericity,
all curves inM\M+ are also Fredholm regular, henceM is a smooth 1-dimensional
manifold (without boundary). Observe thatM\M+ is an open subset. Its closure

M\M+ ⊂ M has exactly one boundary point, the unique curve in M+ that
touches {T} × V .

We claim that M\M+ is compact. Indeed, by [BEH+03], any sequence uk ∈
M \M+ has a subsequence convergent to a J-holomorphic building u∞ of arith-
metic genus 0, with one positive end asymptotic to γ and no other ends. If u∞ has
any nontrivial upper level, then the uniqueness assumption implies that this level
can only be an R-translation of u0, thus it has no negative ends and the main level
of u∞ must be empty. But this can happen only if uk has its image in [T,∞)× V
for large k, hence uk ∈ M+, giving a contradiction. Thus u∞ has only a main
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level, and is at worst a nodal J-holomorphic curve in Ŵ , including exactly one
component that is a plane asymptotic to γ, while all other components are spheres.
The spheres are ruled out by semipositivity: since dimM = 1, any spheres that
could appear in u∞ would necessarily be covers of somewhere injective spheres with
negative index, and thus cannot exist since J is generic. It follows that u∞ is a
smooth J-holomorphic plane, hence M\M+ is compact as claimed.

The above shows that M\M+ is diffeomorphic to a compact 1-dimensional
manifold whose boundary is a single point. Since no such space exists, we have a
contradiction and conclude that the filling (W,ω) cannot exist. �

For the case Ω = dλ, there is a variation on the above argument using a trick

pioneered by Hofer in [Hof93]. Instead of considering a completed filling (Ŵ , ω),
one considers an exact cylindrical symplectic cobordism (R×V, ω) with ω = d(etλ)
near +∞ and d(etλ′) near −∞, where λ′ may be taken to be a constant multiple of
any given contact form for ξ. Defining a moduli space of J-holomorphic planes in
R×V based on the R-translations of u0 as above, the same compactness argument
goes through and produces a contradiction unless planes bubble off in the negative
end, which means λ′ must admit a contractible Reeb orbit. Note that in this case
it’s even easier to rule out sphere bubbling, as the exact cobordism (R×M,ω) does
not admit any closed holomorphic curves. This proves:

Lemma 2.3. If the assumptions of Lemma 2.2 are satisfied with Ω = dλ, then
every contact form on (V, ξ) admits a contractible closed Reeb orbit. �

Proof of Theorem 2.1. For the case of Ω exact, [BvK10] establishes precisely the
hypotheses of Lemma 2.2, thus proving that (M, ξ)#(S2n−1, ξ−) is neither strongly
fillable nor (by Lemma 2.3) hypertight. Specifically, Bourgeois and van Koert
construct a contact form and suitable complex structure for (S2n−1, ξ−) such that
there is a special Reeb orbit γ, which has smaller period than all other Reeb orbits
in S2n−1, and is the asymptotic end of a unique J-holomorphic plane u0. In the case
of the connected sum (M, ξ)#(S2n−1, ξ−), they also observe that γ ⊂ S2n−1 can
be assumed to have smaller period than all other Reeb orbits except for a special
set of orbits in the tube connecting S2n−1 to M , and there can be no holomorphic
curves from γ to any combination of these orbits. To rule out weak fillings (W,ω)
with arbitrary cohomology β := [ω|T (M#S2n−1)] ∈ H2

dR(M#S2n−1), we now argue

as follows. We can first perturb ω to assume without loss of generality that β
is a rational cohomology class. Let β′ ∈ H2

dR(M) denote the image of β under
the natural isomorphism H2

dR(M#S2n−1) → H2
dR(M). Using the construction in

[CV10, Proposition 2.16], we can find a stable Hamiltonian structure (λ′,Ω′) on M
such that kerλ′ = ξ, [Ω′] = β′ and Ω′ = dλ′ outside a tubular neighborhood N (Σ)
of a contact submanifold Σ ⊂ M such that [Σ] ∈ H2n−3(M) is Poincaré dual to
a multiple of β′. The contact form λ′ may also be chosen freely outside N (Σ),
and we may assume that the ball deleted from M to form the connected sum is
disjoint fromN (Σ). The stable Hamiltonian structure (λ′,Ω′) can then be extended
over M#S2n−1 as a stable Hamiltonian structure (λ,Ω) such that [Ω] = β, and
outside of N (Σ), Ω = dλ with λ an arbitrarily chosen contact form for ξ#ξ−. This
construction can therefore be arranged to guarantee the same essential properties
of the orbit γ and curve u0 as in the exact case, thus establishing the hypotheses
of Lemma 2.2. �
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3. Bordered Legendrian open books

In this section, we will first introduce a generalization of the plastikstufe that
is more natural and less restrictive than the initial version introduced in [Nie06].
Subsequently we will prove that these objects, under a certain homological condition
(which is trivially satisfied for the overtwisted disk), represent obstructions to weak
fillability.

Definition. Let N be a compact manifold with nonempty boundary. A relative
open book on N is a pair (B, θ) where:

• the binding B is a nonempty codimension 2 submanifold in the interior of
N with trivial normal bundle;
• θ : N \B → S1 is a fibration whose fibers are transverse to ∂N , and which

coincides in a neighborhood B×D2 of B = B×{0} with the normal angular
coordinate.

Definition. Let (V, ξ) be a (2n + 1)-dimensional contact manifold. A compact
(n + 1)-dimensional submanifold N ↪→ V with boundary is called a bordered
Legendrian open book (abbreviated bLob), if it has a relative open book (B, θ)
such that:

(i) all fibers of θ are Legendrian;
(ii) the boundary of N is Legendrian.

Remark 3.1. The binding B of a Legendrian open book is automatically isotropic
because its tangent space is contained in the tangent space of the closure of all
pages. Similarly, the fibers of θ and the boundary of N meet transversely in N ,
and saying that they are both Legendrian implies that the induced foliation on N
is singular on B and ∂N .

A bLob is an example of a maximally foliated submanifold of (V, ξ), meaning
that the singular distribution defined by intersecting its tangent spaces with ξ
is integrable, thus forming an oriented singular foliation, and it has the largest
dimension for which this is possible (see [Nie06, Section 1] for further discussion).
A bLob in a 3-dimensional contact manifold is the “flat version” of the overtwisted
disk, the one where the characteristic foliation is singular along the boundary. This
is a slight difference compared with the definition of plastikstufes in [Nie06], where
the boundary was a regular leaf of the induced foliation, hence analogous to the
“cambered version” of the overtwisted disk. This is a minor technical detail; each
version can be deformed into the other one.

Definition 3.2. A contact manifold that admits a bLob is called PS-overtwisted.

Note that the definition of the bLob is topologically much less restrictive than
the initial definition of the plastikstufe. For example, a 3-manifold admits a relative
open book if and only if its boundary is a nonempty union of tori. On the other
hand, a plastikstufe in dimension 5 is always diffeomorphic to a solid torus S1×D2.

In this paper we will discuss one setting where we can find bLobs and are unable
to find plastikstufes: in Proposition 4.9, we show that bLobs always exist in certain
subdomains that are naturally associated to Liouville domains with disconnected
boundary, a special case of which produces the Lutz-type twist due to Mori [Mor09]
(cf. §8.1).
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Remark 3.3. Some bLobs also naturally arise in relation to the results of [NP10],
where it is shown that sufficiently large neighborhoods of overtwisted submanifolds
in higher dimensional contact manifolds give a filling obstruction. In [NP10] this
required a rather technical argument involving holomorphic disks with an immersed
boundary condition, but it can be simplified and strengthened by showing (using
arguments similar to those of Proposition 4.9) that such neighborhoods always
contain a bLob.

Of course, finding a bLob would be useless without the following theorem.

Theorem 3.4. If a closed contact manifold is PS-overtwisted, then it does not
have any (semipositive) weak symplectic filling (W,ω) for which ω restricted to the
bLob is exact.

Remark 3.5. The condition that the restriction of the symplectic form ω should
be exact is trivially satisfied in dimension 5 for the plastikstufes defined in [Nie06],
which were all diffeomorphic to S1 × D2. In general however this condition could
fail, and we believe that this could provide a hint as to varying degrees of filling
obstructions or overtwistedness. Though it is unknown whether there is a unique
natural notion of overtwistedness beyond dimension 3, or whether the different
definitions known thus far are inequivalent, it would be interesting to speculate
that a manifold can only be overtwisted in some “universal” sense if the bLob (or a
similar object) can be embedded into a ball within the contact manifold. In this way
the cohomological condition is satisfied automatically, thus defining an obstruction
to weak fillings due to the above theorem. We will refer to any bLob that lies inside
a ball in the contact manifold as a small bLob.

If dimV ≥ 3, then any contact structure ξ on V can be modified either by
[Pre07, NvK07] or by [EP11]—in the latter case without changing the homotopy
class of almost contact structures—to produce one that is PS-overtwisted. In
both cases, the change produces a small plastikstufe, hence Theorem 3.4 and the
preceding section imply Theorem F stated in the introduction.

In the proof of Theorem 3.4 below, the general strategy is the same as in [Nie06,
NP10], but there are differences coming from two sources: the need to handle
weak rather than strong fillings, and bLobs rather than plastikstufes. Working
with weak fillings complicates the question of energy bounds because the integral
of ω on a holomorphic curve no longer has a direct relation to the integral of dα.
This is where the homological condition comes in. Further, it is no longer obvious
that we can choose our almost complex structure to be both adapted to a contact
form near the binding and boundary of the bLob and tamed by ω. As far as the
differences between the plastikstufe and the bLob are concerned, the first is the
singularity along the boundary, which makes energy control easier but makes it
harder to ensure that holomorphic curves cannot escape through the boundary.
This difference can be handled similarly to the analogous work in [NP10], which
dealt with the case where the fibration of the bLob becomes trivial at the boundary.
The general case additionally requires the somewhat technical Lemmas 3.6 and 3.7
below (though since we will not need this level of generality for our main results,
the reader may skip these if desired). The second difference is of course that pages
are more complicated and the interior monodromy can be anything, but this plays
no role in the proof; what matters is the existence of a fibration over S1.
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Proof of Theorem 3.4. Let N be a bLob in (V, ξ) with induced Legendrian open
book (B, θ). Suppose that (W,ω) is a weak filling of V for which ω|TN is exact.
We choose a contact form α for ξ and attach to (W,ω) the corresponding conical
end from Corollary 1.8. Since the restriction of ω to a neighborhood of the bLob
is exact, we can choose a closed 2-form Ω on V that is cohomologous to ω|TV and
vanishes on a neighborhood of N . In a second step, we can deform the symplectic
structure on the conical end to(

[t1,∞)× V, Ω + d(tα)
)

for large t1 as described in Lemma 1.10.
Identify the contact manifold (V, ξ) with a level set {T} × V in the conical end

for sufficiently large T > t1, and choose an almost complex structure J close to
{T}× V that makes ({T}× V, ξ) pseudoconvex and is tamed by d(tα). We require
this J to be of the explicit form given in [Nie06] in a neighborhood of the binding
{T} × B, which means the following. We can identify a neighborhood of {T} × B
symplectically with an open set in C2×T ∗B, with symplectic structure ω0⊕dλcan,
such that the part of the bLob intersecting this neighborhood lies in C2 × B. The
desired almost complex structure is then the product of the standard structure i
on the first factor with a tamed almost complex structure on the cotangent bundle.
This choice simplifies the behavior of local holomorphic disks significantly: indeed,
any disk lying entirely in this neighborhood and having boundary on the bLob
projects to disks in C2 and T ∗B, and the latter has boundary in the zero-section
and must therefore be constant for energy reasons. In this way one can easily
understand small disks close to the binding of the bLob, and in particular one
obtains the existence of a Bishop family of holomorphic disks close to B, as well as
the important fact that any holomorphic disk intersecting this model neighborhood
must be part of the Bishop family. We refer to [Nie06] for the full details.

Similarly, J should agree on a neighborhood of {T}×∂N with an almost complex
structure that we will describe in Lemma 3.7 below. As explained in Lemma 1.9,
we can ensure by increasing T that the chosen J will not only be tamed by d(tα)
but also by Ω + d(tα) close to {T} × V . Denote the symplectic manifold obtained

by attaching [0, T ] × V to W by Ŵ . We use contractibility of the space of tamed

almost complex structure to extend J to the interior of the weak filling Ŵ .
As in [Nie06], we now study the connected moduli space of J-holomorphic disks

u : (D2, ∂D2)→
(
Ŵ , {T} × (N \B)

)
emerging from a so-called Bishop family of disks in a neighborhood of some point
on B. The boundaries of these disks necessarily intersect each page of the Legen-
drian open book exactly once.

We first establish the energy bound required for Gromov compactness. Any
holomorphic disk u in the moduli space under consideration can be capped with
a disk D lying in the bLob so that u together with D bounds a 3-ball B3. Using
Stokes’ theorem,

0 =

∫
B3

dω =

∫
u

ω +

∫
D

ω,

it then follows that the energy of the holomorphic disk is equal to minus the sym-
plectic area of D ⊂ N . But since the restriction of ω to the bLob coincides with
T dα in our construction, this quantity can be determined by integrating Tα over
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the common boundary of the two disks u and D:

Eω(u) =

∫
u

ω = −
∫
D

T dα = T

∫
∂u

α .

Since the foliation on the bLob is given by ξ ∩ TN = ker dθ, there is a continuous
function f : N → R that is everywhere nonnegative and vanishes only on B ∪ ∂N
such that α|TN = f dθ. The energy of u is thus bounded by

Eω(u) = T

∫
∂u

α ≤ 2πT max
p∈N

f(p) .

This leads to the same contradiction to Gromov compactness as in the proof for
strong fillings [Nie06], because by Lemma 3.7 below, the boundaries of the holo-
morphic disks are trapped between B and ∂N , and the topology of the Legendrian
open book prevents bubbling of disks. �

Lemma 3.6. Suppose N is a manifold with boundary carrying a relative open book
(B, θ) which embeds as a bLob into two contact manifolds (V1, ξ1) and (V2, ξ2).
Then there are neighborhoods U1 ⊂ V1 and U2 ⊂ V2 of ∂N and a contactomorphism
Φ: (U1, ξ1)→ (U2, ξ2) such that Φ(N ∩ U1) = N ∩ U2.

Proof. Denote the two embeddings by ιj : N ↪→ Vj for j = 1, 2. The first step will
be to prove the existence of contact forms α1 and α2 for ξ1 and ξ2 with ι∗1α1 = ι∗2α2

near ∂N . Start with any pair of contact forms α1 and α2. By the definition of
a bLob, there are functions h1 and h2 which vanish exactly along ∂N such that
ι∗jαj = hj dθ. We will prove shortly that h1 and h2 are both transverse to zero
along ∂N . The implicit function theorem then guarantees the existence of a positive
function f on V with h1 = fh2, allowing us to replace α2 by fα2. The key point
is that ι∗jdαj = dhj ∧ dθ, so dhj cannot vanish anywhere along ∂N , otherwise TN
would be an isotropic subspace of dimension n + 1 inside the symplectic vector
space (ξj , dαj) of dimension 2n.

We now turn to the construction of the desired contactomorphism. We fix near
∂N a vector field Xr tangent to ker dθ and a vector field Xθ tangent to ∂N such that
dθ(Xθ) = 1. Then dαj(Xr, Xθ) = ι∗jdαj(Xr, Xθ) = dh(Xr) is positive. We denote
by F the foliation on ∂N induced by the pages, meaning TF = T∂N ∩ ker dθ. Its
tangent space is dαj-orthogonal to the symplectic subspace span(Xr, Xθ), so we can
construct for each j = 1, 2 a complex structure Jj on ξj which is compatible with
dαj , such that Xθ = JjXr and the dαj-symplectic complement of span(Xr, Xθ)
in ξj is TF ⊕ JjTF . Denoting the Reeb vector field of αj by Rj , we obtain the
decomposition

TVj |∂N = span(Xr, Xθ)⊕ TF ⊕ JjTF ⊕ span(Rj) .

The first two summands span TN |∂N , and each νj := JjTF ⊕ span(Rj) can be
identified with the normal bundle of N . Let τj be the restriction to νj of the
exponential map for some auxilliary Riemannian metric. Each τj allows us to
identify a tubular neighborhood of N with a neighborhood of the zero section in νj .
The bundles ν1 and ν2 are related by the bundle map Φ := Ψ ⊕ ΦR, where ΦR
sends t ·R1 to t ·R2 and Ψ = φ−1

2 ◦φ1, with φj : JjTF → T ∗F denoting the interior

product with dαj . Thus τ2 ◦ Φ ◦ τ−1
1 combines with the identity on N to give a

diffeomorphism between tubular neighborhoods of N in V1 and V2 near ∂N . This
map pulls α2 back to α1 and dα2 to dα1 for every p ∈ ∂N , so that the linear
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interpolation between both forms is a contact form, and we may apply the Moser
trick.

Denoting by βt with t ∈ [0, 1] the interpolation between the pulled back contact
forms, the Moser vector field Yt is the unique solution to the two equations

βt(Yt) = 0 and
(
ιYtdβt

)∣∣
ker βt

= − β̇t
∣∣∣
ker βt

.

From this we see that Yt vanishes along ∂N , so that the isotopy ϕt is well defined on
a small neighborhood U of ∂N and fixes ∂N pointwise. We now observe that Yt|N
lies in ker dθ, so that the isotopy preserves N . Indeed, if Yt had any component
in the complement of the Lagrangian subspace ker dθ, it would pair via dβt with a
vector in ker dθ and thus be different from −β̇t, which vanishes on TN . �

We can now construct a suitable almost complex structure on a model which
will be universal according to the preceding lemma.

Lemma 3.7. Assume (W,ω) has a conical end, and identify (V, ξ) with a level set
{T}× V of this conical end. Let α be any contact form for ξ. If N is a bLob in V ,
then we can choose an almost complex structure J0 in a neighborhood UW ⊂ W of
the boundary ∂N with the following properties:

• J0 is compatible with the symplectization form d(tα) and it restricts to ξ.
• If J is any almost complex structure on W that makes (V, ξ) pseudoconvex

and for which J |UW = J0, then every compact J-holomorphic curve

u : (Σ, ∂Σ)→ (W,N)

that intersects UW and whose boundary lies in the bLob must be constant.

Proof. The first step is to construct a model neighborhood for ∂N which is a bundle
with exact symplectic fibers and holomorphic projection map. Let F0 be a fiber
of the map θ|∂N : ∂N → S1. Then F0 is the intersection of ∂N with a page of
the bLob, and ∂N is the mapping torus of some diffeomorphism ψ : F0 → F0. We
consider the T ∗F0-fibration

π : C× R×
(
R× T ∗F0

)
/ ∼ → C× T ∗S1

(z, r; s; q, p) 7→ (z; s, r)
,

where we use the equivalence relation (z, r; s; q, p) ∼
(
z, r; s + 1;ψ(q), (Dψ−1)∗p

)
on the total space.

Since (ψ, (Dψ−1)∗) is symplectic, we get a symplectic structure dλcan on the
vertical bundle kerDπ. Let JF be a compatible complex structure on this bundle.
Note that the directions ∂r, and ∂s are well defined, so that we can extend JF to
an almost complex structure J = i ⊕ i ⊕ JF on the total space, where i ∂r = ∂s,
and i ∂s = −∂r. By construction, π is holomorphic with respect to J upstairs and
i⊕ i on C× T ∗S1.

The next step consists in finding a J-plurisubharmonic function on a neighbor-
hood of {1} × {0} ×

(
R×F0

)
/ ∼, where F0 denotes the 0-section in T ∗F0. Define

a function h on C × R ×
(
R × T ∗F0

)
/ ∼ by using a metric on the vector bundle

C×R×
(
R× T ∗F0

)
/ ∼ over C×R×

(
R×F0

)
/ ∼, and defining h(v) = ‖v‖2/2 for

every vector v in this bundle. In a bundle chart, we obtain

h(z, r; s; q, p) =
1

2

∑
i,j

gi,j(z, r; s; q) pipj ,
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and it follows that ddch = d(dh ◦ J) simplifies on the 0-section of this bundle to

ddch =
∑
i,j

gi,j dpi ∧ (dpj ◦ J) .

We claim now that the function

F : C× R×
(
R× T ∗F0

)
/ ∼ → [0,∞),

(z, r; s; q, p) 7→ |z|2 + r2 + h(z, r; s; q, p)

is J-plurisubharmonic in a neighborhood of {1} ×R×
(
R×F0

)
/ ∼. Here one just

needs to check that −ddcF simplifies near {1} × R×
(
R×F0

)
/ ∼ to

−ddcF = 4 dx ∧ dy + 2 dr ∧ ds− ddch ,
where x = Re z and y = Im z. This 2-form is positive on complex lines.

We find a neighborhood of {x = 1} in the level set F−1(1), where the restric-
tion of the 1-form α := −dF ◦ J defines a contact structure. Furthermore, the
submanifold N ′ ⊂ F−1(1) given by the embedding

[0, ε)×
(
R×F0

)
/ ∼ ↪→ C× R×

(
R× T ∗F0

)
/ ∼

(r; s; q) 7→
(√

1− r2, r; s; q, 0
)

has N ′ ∩{r = 0} as boundary and inherits a singular Legendrian foliation given by
the form r ds. This foliation is diffeomorphic to the one on the bLob N in the collar
neighborhood of ∂N , so that by Lemma 3.6 above, there is a small relatively open
set UW ⊂ F−1

(
(0, 1]

)
in the model containing ∂N ′ such that ∂+U := UW ∩F−1(1)

with contact form α is contactomorphic to a neighborhood UV of ∂N in V . Note
that for δ > 0 sufficiently small, the level set {x = 1− δ} is a compact hypersurface
with boundary in ∂+U , and we will set ∂−U := {x = 1 − δ} ∩ UW , writing from
now on UW for the compact set UW ∩ {x ≥ 1− δ}.

Extending this contactomorphism, we can embed UW into the symplectic mani-
fold W such that ∂+U lies in {T}×V , and N ′ ∩UW is mapped to N ∩UV . Choose
the almost complex structure J on UW constructed above, and extend it to one
that makes the contact manifold (V, ξ) pseudoconvex.

Now let u : (Σ, ∂Σ) → (W,N) be any J-holomorphic curve that intersects the
neighborhood UW . Our aim is to show that u must be constant. Define G :=
u−1(UW ) and write u|G for the restriction of u. Perturbing δ slightly, we can

assume that u−1
(
∂−U

)
⊂ G is a properly embedded submanifold so that G has

piecewise smooth boundary. Project the curve u|G via

π : C× R×
(
R× T ∗F0

)
/ ∼ → C× T ∗S1 ,

and note that π ◦ u|G is a holomorphic map with respect to the standard structure
(see Fig. 1). The boundary π ◦ u(∂G) lies in the union of

π
(
∂+U ∩N ′

)
=

{
(z; s, r)

∣∣ Re z ≥ 1− δ, Im z = 0, r = −
√

1− |z|2
}

and

π(∂−U) =
{

(z; s, r)
∣∣ Re z = 1− δ, |z|2 + r2 ≤ 1

}
.

Since both coordinate functions x = Re z and y = Im z are harmonic, it follows
that the maxima and minima are both attained on ∂G, so that if we assume y is
not everywhere equal to 0, then u must intersect π(∂−U), and in particular the
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Figure 1. The neighborhood of the boundary ∂N can be thought
of as a T ∗F0-bundle. We obtain a simple model by projecting this
neighborhood and the holomorphic curve u to the base space. The
holomorphic curve π◦u has to be cut off and will have two types of
boundary: the original one that sits in the bLob and the boundary
where the curve has been cut off. Along the cut-off boundary the
x-value is minimal, and there will be a point where the y-value also
becomes extremal, but this contradicts the boundary point lemma
showing that the x- and y-values of u have to be constant.

minimum of x will be 1 − δ. Let z0 ∈ ∂G be a point for which u(z0) has both
minimal x-coordinate and extremal y-coordinate. At this point, it follows that the
derivative of π ◦ u|G in the ∂G-direction has vanishing x and y-coordinates. Using
the Cauchy-Riemann equation at the point z0, we then see that the derivatives
also vanish in the radial direction, thus contradicting the boundary point lemma,
making both x and y constant on G.

It follows now that u is completely contained in UW ∩ {z = x0}, and from

this we immediately recover that the r-coordinate of u|∂Σ is equal to −
√

1− x2
0.

The r-coordinate is also harmonic, and it follows that π ◦ u must have constant
r-coordinate everywhere, since both its maximum and its minimum are equal, and
the Cauchy-Riemann equation then implies that the s-coordinate is also constant.
This finishes the proof, because it follows that the projection π ◦ u is constant, so
that u is completely contained in a fiber of π that is symplectomorphic to T ∗F0 with
exact symplectic form dλcan, but since JF was compatible with dλcan, and since the
boundary of u lies in the 0-section of T ∗F0, it follows that u has no dλcan-energy,
and hence must be constant. �

4. Giroux domains

While the filling obstructions we’ve discussed so far (namely bLobs and negative
stabilizations) were previously understood in less general forms, in this section we
shall introduce a subtler class of filling obstructions that generalizes Giroux torsion
in dimension three and is completely new in higher dimensions. The fundamental
objects in this discussion are called Giroux domains and ideal Liouville domains.
As was sketched in the introduction, an ideal Liouville domain is a natural com-
pactification of a complete Liouville manifold, and its product with S1 naturally
inherits a contact structure, producing what we call a Giroux domain. The defini-
tions and elementary properties of these objects, including a blow-down operation
along boundary components, are due to Giroux but cannot yet be found anywhere
in the literature, so we will discuss them in some detail in §4.2 and the beginning
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of §4.3. Before that, in §4.1, we introduce for later convenience a slightly more gen-
eral context for the blow-down operation. Some explicit examples of blown down
Giroux domains have already appeared in the work of Mori [Mor09], who showed
that his examples always contain a plastikstufe. The notion of the bLob allows us
to generalize this result using a purely topological description that we will explain
in §4.4. The last subsection, culminating with the statement of Theorem 4.13,
defines a filling obstruction in terms of Giroux domains which refines Theorem B
from the introduction and sets the stage for our higher dimensional generalization
of Giroux torsion in §8.

4.1. Round hypersurfaces. We say that an oriented hypersurface H in a con-
tact manifold (V, ξ) is a ξ-round hypersurface modeled on some closed contact
manifold (M, ξM ) if it is transverse to ξ and admits an orientation preserving iden-
tification with S1 ×M such that ξ ∩ TH = TS1 ⊕ ξM . In this definition, the word
“round” is used as in “round handle”. In general, the orientation of a round hy-
persurface may be chosen at will, and we shall assume in particular that whenever
H is a component of ∂V , its orientation is the opposite of the natural boundary
orientation; see Remark 4.2 below. Observe that in dimension three, a ξ-round
hypersurface is simply a pre-Lagrangian torus with closed characteristic leaves.

Lemma 4.1. Any ξ-round hypersurface H = S1×M in the interior (or boundary)
of (V, ξ) has a neighborhood (−ε, ε)×H (or [0, ε)×H respectively) on which ξ can
be defined by the contact form αM + s dt where s is the coordinate on the interval,
t the coordinate in S1 and αM is a contact form for ξM .

Proof. Fix any tubular neighborhood (or collar neighborhood) of H with coordi-
nate t. The 1-form described defines a contact form near H which induces the same
hyperplane field as ξ on H, hence they are isotopic relative to H. Pulling back the
neighborhood under this isotopy gives the desired neighborhood. �

Suppose H is a ξ-round boundary component of (V, ξ), with orientation opposite
the boundary orientation, and consider the collar neighborhood from the preceding
lemma. We now explain how to modify (V, ξ) by blowing down H to M . Let D be
the disk of radius

√
ε in R2. The map Ψ: (reiθ,m) 7→ (r2, θ,m) is a diffeomorphism

from
(
D \ {0}

)
×M to (0, ε)× S1 ×M which pulls back αM + s dt to the contact

form αM + r2dθ. Thus we can glue D×M to V \H to get a new contact manifold
in which H has been replaced by M . This process is equivalent to performing a
contact cut of V with respect to the (local) θ-action, as described in [Ler01].

Remark 4.2. Topologically, the blow down operation glues D2 ×M to V via the
natural identification of ∂(D2 × M) with S1 × M = H ⊂ V . This is why it is
appropriate to assign to H the reverse of its natural boundary orientation with
respect to V .

4.2. Ideal Liouville domains. The following notion is of central importance for
the new filling obstructions that we will introduce.

Definition (Giroux). Let Σ be a compact manifold with boundary, ω a symplectic

form on the interior Σ̊ of Σ and ξ a contact structure on ∂Σ. The triple (Σ, ω, ξ) is

an ideal Liouville domain if there exists an auxiliary 1-form β on Σ̊ such that:

• dβ = ω on Σ̊,
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• For any smooth function f : Σ→ [0,∞) with regular level set ∂Σ = f−1(0),
the 1-form fβ extends smoothly to ∂Σ such that its restriction to ∂Σ is a
contact form for ξ.

In this situation, β is called a Liouville form for (Σ, ω, ξ).

Remark 4.3. In the above definition, the space of possible auxiliary Liouville forms
β is contractible. Indeed, we first observe that if the second condition is satisfied
for any given function f1 as specified in the definition, then it is also satisfied for
any other function f2 with the required properties, as we then have f2 = gf1 for
some smooth function g : Σ → (0,∞). Thus we can fix a suitable function f and

see that the set of admissible primitives β on Σ̊ is convex. An interesting variation
on the above definition is obtained by also regarding ξ as auxiliary data: this still
leaves a contractible space of auxiliary choices, but it is slightly less convenient for
our purposes.

Remark 4.4. Note that for β and f as in the above definition, there is no requirement
that d(fβ) should be symplectic, and in general it is not. It is true however that
one can always find (using Lemma 4.5 below) suitable functions f for which fβ

also defines a Liouville form on Σ̊, and Liouville forms of this type arise naturally
in certain examples, cf. Example 4.7 and Remark 4.11.

One can check that a Liouville form β for an ideal Liouville domain Σ defines on
the interior of Σ the structure of a complete Liouville manifold. This means that
the flow of the vector field X which is ω-dual to β is complete, and in particular the
interior of Σ has infinite volume with respect to ω. This follows from Lemma 4.5
below, which describes precisely what happens near ∂Σ. For our purposes, one may
regard the statement of this lemma as part of the definition of an ideal Liouville
domain, but keeping in mind that it is already implied by the definition above.

Lemma 4.5 (Giroux). Suppose (Σ, ω, ξ) is an ideal Liouville domain with auxiliary
Liouville form β, and let X denote its ω-dual vector field, i.e. the unique vector field
on Σ̊ that satisfies ιXω = β.

Choose any smooth function f : Σ → [0,∞) with regular level set ∂Σ = f−1(0).

Then the vector field Xf := 1
fX on Σ̊ extends smoothly over ∂Σ so that it points

transversely outward. Moreover, a collar neighborhood of ∂Σ can be identified with
(0, 1] × ∂Σ with coordinate s ∈ (0, 1] such that β = 1

1−s α on (0, 1) × ∂Σ, where α
is a contact form for ξ.

Proof. By definition, the 1-form γ := fβ extends smoothly to Σ and restricts on
the boundary ∂Σ to a contact form for ξ. The smooth 2n-form µ := f dγn−ndf ∧
γ ∧ dγn−1 on the domain Σ simplifies on the interior Σ̊ to

µ = fn+1 ωn ,

and is hence a volume form on Σ̊. It is also nondegenerate along ∂Σ, since f dγn

vanishes and γ ∧ dγn−1 is a volume form on T (∂Σ) = ker df . It follows that there
is a unique vector field Xf on Σ satisfying the equation

ιXfµ = nγ ∧ dγn−1 .

Using ιXω
n = nβ ∧ dβn−1 on the interior Σ̊, one can check that Xf |Σ̊ = 1

f X, and

since the first term of µ vanishes at ∂Σ and f decreases in the outward direction,
it follows that Xf points transversely outward through ∂Σ.
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We now construct the collar neighborhood. The basic idea is to follow the flow of
Xf starting from ∂Σ, but for a particular choice of the function f : Σ→ [0,∞) with
regular level set f−1(0) = ∂Σ. Starting from an arbitrary function f of this type,
any other such function h can be written as h = gf for some positive function g
on Σ. We then seek h such that the vector field Xh = 1

h X satisfies

LXh(hβ) = 0 .

This condition is equivalent to dh(Xh) = −1, which leads to the ordinary differential

equation dg(Xf ) = − 1+df(Xf )
f g. The function f vanishes along ∂Σ, and by the

construction above, we see that df(Xf ) = −1 on ∂Σ, thus the differential equation
is well behaved at ∂Σ and can be solved with initial condition g|∂Σ ≡ 1.

We denote by α the contact form induced by hβ on ∂Σ. Since ιXhhβ = 0 and

LXhhβ = 0, the flow ϕXht of Xh for negative t pulls hβ back to α. Further, from

dh(Xh) = −1 we obtain h ◦ ϕXht = −t, so

(ϕXht )∗(hβ) = −t · (ϕXht )∗β = α .

Reparameterizing the time variable, we finally obtain the map Φ(s, p) := ϕXhs−1(p)
which gives the desired collar neighborhood with (1− s) Φ∗β = α. �

4.3. Giroux domains. Given an ideal Liouville domain (Σ, ω, ξ) and a Liouville
form β, one can endow Σ × R with the contact structure ker(f dt + fβ) for any
smooth function f : Σ → [0,∞) with regular level set f−1(0) = ∂Σ. Over the
interior of Σ, ker(f dt + f β) = ker(dt + β), so one recovers the standard notion
of the contactization of the Liouville manifold defined by β. On the boundary we
have f dt = 0, so the contact hyperplanes are ξ ⊕ TR. Any two contact struc-
tures obtained in this way from different Liouville forms are isotopic relative to the
boundary. Since the contact forms constructed on Σ × R are R-invariant, one can
just as well replace R by S1. We will refer to Σ × S1 with the contact structure
defined in this way as the Giroux domain associated to (Σ, ω, ξ); see Example 4.7
below for our main motivation. Observe that the boundary is a ξ-round hypersur-
face modeled on (∂Σ, ξ).

Remark 4.6. The above is a special case of a more general construction, also due to
Giroux, known as the suspension of a symplectomorphism ϕ with compact support
in Σ̊. The result of this construction also has ξ-round boundary, and blowing it down
gives the contact manifold associated to the abstract open book (Σ, ϕ). Observe
that unlike Giroux’s original construction of the contact structure associated to an
open book (see e.g. in [Gei08, Section 7.3]), this construction does not require any
tweaking near the binding.

In a different direction, one can generalize the construction of Giroux domains
to allow for nontrivial circle bundles over Σ using ideas from [DG12].

Example 4.7. We consider

Σ = S1 × [0, π], ω =
1

sin2 s
dθ ∧ ds

where s is the coordinate in [0, π] and θ the coordinate in S1, carrying the trivial
contact structure ker±dθ. One can take as a Liouville form β = cot s dθ. Setting
f(θ, s) = sin s, we get the contact form f(θ, s) · (β + dt) = cos s dθ + sin s dt on
Σ × S1. Thus the Giroux domain associated to this ideal Liouville domain is a
Giroux π-torsion domain.
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4.4. Blowing down. Let M be a union of connected components of the boundary
of a Giroux domain Σ× S1. These components are ξ-round hypersurfaces and can
thus be blown down as described in §4.1. We shall denote the resulting manifold
by (Σ×S1)//M . It inherits a natural contact structure for which each of the blown
down boundary components becomes a codimension two contact submanifold.

Example 4.8. Continuing the annulus example, a Giroux π-torsion domain with one
boundary component blown down is a so-called Lutz tube, i.e. the solid torus that
results from performing a Lutz twist along a transverse knot. With both boundary
components blown down, it is the standard contact structure on S2 × S1.

In the above example, when one boundary component is blown down but not
the other, the resulting domain contains an overtwisted disk. We now generalize
this to higher dimensions.

Proposition 4.9. Suppose (V, ξ) is a contact manifold containing a subdomain G
with nonempty boundary, obtained from a Giroux domain by blowing down at least
one boundary component. Then (V, ξ) contains a small bLob (cf. Remark 3.5).

The bLob in the above proposition will come from a Lagrangian submanifold in
an ideal Liouville domain (Σ, ω, ξ). We first need a technical definition describing
how these submanifolds will be allowed to approach the boundary. We say that
a submanifold L properly embedded inside Σ and transverse to the boundary is a
Lagrangian with cylindrical end if:

• L̊ is Lagrangian in Σ̊,
• ∂L is Legendrian in ∂Σ,
• There is a Liouville form β whose ω-dual vector field is tangent to L near
∂Σ. More precisely, there is a collar (0, 1] × ∂Σ as in Lemma 4.5 which
intersects L along (0, 1]× ∂L.

We will say that the Liouville form in this definition is adapted to L.

Lemma 4.10. Let (Σ, ω, ξ) be an ideal Liouville domain. If L is a Lagrangian with

cylindrical end in Σ, then L̂ := L× S1 inside the contactization Σ× S1 is isotopic
to a maximally foliated submanifold whose singular set is its boundary and whose
foliation is otherwise defined via a fibration

ϑ : L̂→ S1, (l, t) 7→ F (l) + t ,

for some smooth function F : L→ S1 that is constant on a neighborhood of ∂L.

Proof. We first assume that there is a Liouville form β adapted to L which induces
a rational cohomology class on L. This implies there is a real number ~ > 0
such that ~−1 times the cohomology class of the restriction of β to L is integral:
~−1 [i∗β] ∈ H1(L;Z). First note that ~u dt+uβ defines a contact structure isotopic
to ker(u dt + uβ) relative to the boundary of the Giroux domain G := Σ × S1.
Furthermore, the vector field constructed in the standard proof of Gray’s theorem
vanishes along ∂Σ×S1, so this isotopy is actually tangent to the identity along the
boundary. We shall now prove the lemma using this contact form (and no further
isotopy of L× S1).

In the interior of G, the contact structure is defined by ~ dt+ β, which restricts

to η = ~ dt+i∗β on L̂. Since η is closed, L̂ is foliated. Moreover, ~ dt never vanishes

in L̂, so there is no singularity there. Along the boundary, the contact structure is

defined by uβ, whose restriction to L̂ vanishes, thus the singularities are as claimed.
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We now define the fibration ϑ using Tischler’s construction (cf. [Tis70]). Let

(l0, t0) be any base point in the interior of L̂. We define ϑ(l, t) = 1
~
∫
γ
η, where

γ is any path from (l0, t0) to (l, t). Since η is closed, Stokes’ theorem guarantees
that this is well defined modulo the integral of η along loops based at (l0, t0). If
(γL, γt) is such a loop, then the integral over it is

〈
[β], [γL]

〉
+ ~

〈
[dt], [γt]

〉
, which

belongs to ~Z + ~Z = ~Z, thus ϑ has a well-defined value in S1 = R/Z. Observe
that ϑ(l, t) = ϑ(l, 0)+ t, and two points (l1, t1) and (l2, t2) lie in the same connected
component of a fiber of ϑ if and only if they lie on the same leaf of the Legendrian
foliation. On a suitable collar neighborhood of the boundary, the 1-form η simplifies
to ~ dt, so the behavior of ϑ is also as claimed.

We now explain how to enforce the rationality assumption by perturbation of
the Liouville structure. Suppose β0 is any Liouville form adapted to L, in which
case β0|TL is a closed 1-form that vanishes on a collar neighborhood of ∂L. For

every ε > 0, we will find a closed 1-form λL on L with compact support in L̊ and
‖λL‖ < ε (in the C0-norm with respect to a fixed auxiliary metric on L) such that
i∗β0 + λL represents a rational cohomology class on L. Since the restriction of β0

to L vanishes near ∂L, its cohomology class belongs to the kernel K of the map
H1

dR(L)→ H1
dR(∂L) induced by inclusion. Let α1, . . . , αp be a set of closed 1-forms

representing a basis of the image in K of H1(L;Z). By the definition of K, we can
assume that all these 1-forms vanish near the boundary of L. The restriction of β0

to L can be written as
∑
ciαi + df for some real coefficients ci and some function

f . Since Q is dense in R, one can find arbitrarily small numbers εi such that ci+ εi
is rational for all i and then set λL =

∑
εiαi.

We extend λL to a tubular neighborhood U of L in Σ by pulling it back to the
normal bundle, and multiply it by a fixed cutoff function ρ : U → [0, 1] that has
compact support on U and equals 1 on L. In this way we obtain a 1-form β′0 given
by β0 + ρλL on U that extends smoothly to β0 on Σ \ U , and whose restriction

to L yields the desired closed 1-form with compact support in L̊ that represents a
rational cohomology class. We can choose ε above arbitrarily small, hence we can
assume that all forms in the segment between dβ0 and dβ′0 are symplectic. The
corresponding contact structures are then isotopic relative to Σ \ U and ∂Σ. �

Proof of Proposition 4.9. Let (Σ, ω, ξ∂) denote the ideal Liouville domain used to
construct G. We will construct a Lagrangian L ⊂ Σ with cylindrical end and
blow down the foliated submanifold of Lemma 4.10 to find the desired bLob. If
dim Σ = 2, it suffices to take for L an embedded path between two distinct bound-
ary components of Σ, where one corresponds to a blown down boundary component
of G and the other does not. More generally, choose two disjoint boundary parallel
Lagrangian disks Lbd and Lp with cylindrical ends in Σ such that ∂Lbd is a Leg-
endrian sphere in one of the blown down boundary components of ∂Σ, and ∂Lp is
a Legendrian sphere in another boundary component that is not blown down. By
a symplectic isotopy supported in a tube connecting them, we can deform Lp away
from ∂Lp so that it intersects Lbd transversely.

One can remove transverse self-intersection points between two Lagrangians L
and L′ using [Pol91]. This construction works by removing for each intersection two
small balls from L and L′ containing this point, and gluing in a tube diffeomorphic
to [−ε, ε]×Sn−1 joining the boundaries of the two balls. In fact, the construction is
explicit: choose a Darboux chart around the intersection point such that L and L′
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are represented by the n-planes {(x1, . . . , xn, 0, . . . , 0)} and {(0, . . . , 0, y1, . . . , yn)}
respectively. Remove a disk of radius ε around 0 in both planes and glue in the
tube

(−ε, ε)× Sn−1 ↪→ R2n, (t;x1, . . . , xn) 7→
(
ρ1(t) · (x1, . . . , xn); ρ2(t) · (x1, . . . , xn)

)
for a smooth function ρ1 : (−ε, ε) → [0, 1] that is 0 for values between −ε and
−ε/2, has positive derivative for t > −ε/2 and is the identity close to +ε. Define
ρ2(t) := ρ1(−t). This defines a Lagrangian manifold that glues well to L \ ε ·Dn for
t close to ε and to L′ \ ε · Dn for t close to −ε.

The symplectic isotopy and the surgery process both took place far away from the
boundary, so we obtain by this construction a Lagrangian that still has cylindrical
ends. Lemma 4.10 then produces a foliated submanifold which becomes a bLob
in the blown down Giroux domain. This bLob also embeds into a ball, because L
is obtained from two Lagrangian disks parallel to the boundary and a thin tube
that lies in the neighborhood of an embedded path, so that L lies in a ball of
the form [0, 1] × D2n−1 ⊂ Σ. Moving to the contactization and blowing down the
corresponding boundary components then gives a neighborhood diffeomorphic to a
ball D2 × D2n−1 that contains the bLob. �

4.5. Convex hypersurfaces and gluing. Recall that a hypersurface Σ in a con-
tact manifold (V, ξ) is said to be ξ-convex (cf. [Gir91]) if there is a contact vector
field X transverse to Σ. In this situation, the dividing set associated to Σ and
X is the hypersurface Γ in Σ where X is tangent to ξ. Observe that since the
vector field X corresponds to a “contact Hamiltonian” function and can thus be
cut off away from Σ, its flow identifies a neighborhood of Σ with Σ × R, with ξ
defined by γ + u dt where t denotes the coordinate on R, γ is a 1-form on Σ and
u a function on Σ. It follows from the computations in [Gir91] that the 1-form γ
induces a contact structure ξΓ on the dividing set Γ and, if Σ0 denotes the closure
of a connected component of Σ \ Γ,

(
Σ0, d(γ/u), ξΓ

)
is an ideal Liouville domain

whose contactization is Σ0 × R equipped with the restriction of ξ.
If Σ is closed then Γ cannot be empty, otherwise Σ would be a closed exact

symplectic manifold, contradicting Stokes’ theorem. So in this case, Σ \ Γ has at
least one component on which u is positive and one where it is negative. One can
then see Σ×R as several contactizations of ideal Liouville domains glued together.
Going in the opposite direction, we can take advantage of the fact that boundary
components of Giroux domains are ξ-round hypersurfaces and use Lemma 4.1 to
glue together any two Giroux domains along boundary components modeled on
isomorphic contact manifolds.

Remark 4.11. One can check that the ideal Liouville domain (Σ0, d(γ/u), ξΓ) defined
above depends only on the contact structure and contact vector field near Σ, not
on the choice of contact form. For an arbitrary choice of contact form, one cannot
expect dγ itself to be symplectic everywhere on Σ\Γ, but analogously to Remark 4.4,
one can always choose a contact form for which this is true. The surface Σ ×
{const} ⊂ Σ× S1 in Example 4.7 provides a popular example.

4.6. Obstructions to fillability. We now want to state a non-fillability result.
As preparation, note that any embedding of the interior of a Giroux domain IΣ :=
Σ̊×S1 into a contact manifold (V, ξ) determines a distinguished subspace H1(Σ;R)⊗
H1(S1;R) ⊂ H2(V ;R). We call its annihilator in H2

dR(V ) the space of cohomology
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classes obstructed by IΣ, and we denote it by O(IΣ). Classes in O(IΣ) are exactly
those whose restriction to IΣ can be represented by closed 2-forms pulled back
from the interior of Σ. If N ⊂ (V, ξ) is any subdomain resulting from gluing
together a collection of Giroux domains IΣ1

, . . . , IΣk and blowing down some of their
boundary components, then we define its obstructed subspace O(N) ⊂ H2

dR(V ) to
be O(IΣ1

) ∩ · · · ∩ O(IΣk). We will say that such a domain is fully obstructing if
O(N) = H2

dR(V ).

Example 4.12. If Σ is homeomorphic to [−1, 1] ×M for some closed manifold M ,
and N is the result of blowing down one boundary component of the Giroux domain
IΣ, then any embedding of N is fully obstructing. Indeed, any class in H1(Σ;R)⊗
H1(S1;R) can be represented by a cycle in theM×D2 part of the blown down Giroux
domain and, of course, H1(S1;R) becomes trivial in H1(D2;R). For instance, a Lutz
tube (see Example 4.8) in a contact 3-manifold is always fully obstructing, and the
same is true for the higher dimensional generalization that we will discuss in §8.

Theorem 4.13. Suppose (V, ξ) is a closed contact manifold containing a subdo-
main N with nonempty boundary, which is obtained by gluing and blowing down
Giroux domains.

(a) If N has at least one blown down boundary component then it contains a
small bLob, hence (V, ξ) does not have any (semipositive) weak filling.

(b) If N contains two Giroux domains Σ+ × S1 and Σ− × S1 glued together
such that Σ− has a boundary component not touching Σ+, then (V, ξ) has
no (semipositive) weak filling (W,ω) with [ωV ] ∈ O(Σ+ × S1).

In particular (V, ξ) has no (semipositive) strong filling in either case.

The first statement in this theorem follows immediately from Proposition 4.9 and
Theorem 3.4. We will prove the second in §6, essentially by using the symplectic
cobordism construction of the next section to reduce it to the first statement, though
some care must be taken because the filling obtained by attaching our cobordism
to a given semipositive filling need not always be semipositive. We will also give
in §6 an alternative argument for both parts of Theorem 4.13 using J-holomorphic
spheres: this requires slightly stricter homological assumptions than stated above,
but has the advantage of not requiring semipositivity at all, due to the polyfold
machinery recently developed in [HWZ11].

Without delving into the details, we should mention that we also expect the
above filling obstruction to be detected algebraically in Symplectic Field Theory
via the notion of algebraic torsion defined in [LW11]. Recall that a contact manifold
is said to be algebraically overtwisted if it has algebraic 0-torsion (this is equivalent
to having vanishing contact homology), but there are also infinitely many “higher
order” filling obstructions known as algebraic k-torsion for integers k ≥ 1. It
turns out that one can always choose the data on a Giroux domain Σ× S1 so that
gradient flow lines of a Morse function on Σ give rise to holomorphic curves in the
symplectization of Σ × S1, and these can be counted in SFT. The expected result
is as follows:

Conjecture 4.14. Suppose (V, ξ) contains a subdomain N as in Theorem 4.13,
choose any c ∈ O(N) and consider SFT with coefficients in R[H2(V ;R)/ ker c].
Then (V, ξ) has algebraic 1-torsion, and it is also algebraically overtwisted if N
contains any blown down boundary components.
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5. Surgery along Giroux domains

5.1. A handle attachment theorem. In this section, we explain a surgery pro-
cedure which removes the interior of a Giroux domain from a contact manifold
and blows down the resulting boundary. This surgery corresponds to a symplectic
cobordism that can be glued on top of any weak filling satisfying suitable cohomo-
logical conditions, leading to a proof of Theorem 4.13.

Suppose (V, ξ) is a (2n − 1)-dimensional contact manifold without boundary,
containing a Giroux domain G ⊂ V , possibly with some boundary components
blown down. Removing the interior of G, the boundary of V \G is then a ξ-round
hypersurface

∂(V \G) = M × S1 ,

where (M, ξM ) is a (possibly disconnected) closed contact manifold. We can thus
blow it down as described in §4.1, producing a new manifold

V ′ := (V \G)//M

without boundary, which inherits a natural contact structure ξ′.
Topologically, the surgery taking (V, ξ) to (V ′, ξ′) can be understood as a certain

handle attachment. We now give a point-set description of this handle attachment
which is sufficient to state the theorem below, and postpone the smooth description
to the next subsection. Assume that G is obtained from the ideal Liouville domain(
Σ, ω, ξΣ

)
with boundary ∂Σ = Mp tMbd by blowing down the Giroux domain

Σ × S1 at Mbd × S1 but preserving Mp × S1 as in Fig. 2(a) (here bd stands for
“blown down”, and p for “preserved”). Then topologically,

G =
(
Mbd × D2

)
∪Mbd×S1 (Σ× S1) .

Note that Mbd can now be regarded as a codimension 2 contact submanifold of G,
namely by identifying it with Mbd × {0}.

Next, remove a small open collar neighborhood of Mbd from Σ and denote the
resulting submanifold by Σh. We can regard Σh × S1 as a subdomain of G, and
consider the manifold with boundary and corners defined by(

[0, 1]× V
)
∪{1}×(Σh×S1) (Σh × D2) .

After smoothing the corners, this becomes a smooth oriented cobordism W with
boundary (see Fig. 2(b)),

∂W = −V t V ′ t (Mbd × S2) .

We can now state the main theorem of this section.

Theorem 5.1. Suppose W denotes the 2n-dimensional smooth cobordism described
above, and Ω is a closed 2-form on V such that:

• Ω weakly dominates ξ
• the cohomology class of Ω belongs to the obstructed subspace O(G), i.e. for

every 1-cycle Z in Σ, ∫
Z×S1

Ω = 0 .

Then W admits a symplectic structure ω with the following properties:

(1) ω|TV = Ω.
(2) The co-core Σh × {0} ⊂ Σh × D2 ⊂ W is a symplectic submanifold weakly

filling (∂Σh × {0}, ξΣ).
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(a) The domain G is obtained
from the product manifold

Σ × S1 by blowing down the
boundary components Mbd×
S1 to Mbd.

(b) The cobordism is obtained by gluing Σh × D2 onto
G, and rounding its corners. Note that after the handle

attachment the boundary of the surgered manifold consists

of the contact manifold V ′ plus components diffeomorphic
to Mbd × S2 corresponding to the blown down boundary

of G.

Figure 2.

(3) (V ′, ξ′) is a weakly filled boundary component of (W,ω) that is contacto-

morphic to the blown down manifold (V \G)//Mp.
(4) A neighborhood of Mbd×S2 ⊂ ∂W in (W,ω) can be identified symplectically

with (
(−δ, 0]×Mbd × S2, ω0 ⊕ ωS2

)
for some δ > 0, where ωS2 is an area form on S2 and ω0 is a symplectic
form on (−δ, 0] ×Mbd for which the boundary (Mbd, ξΣ) is weakly filled.
Moreover, the intersection of the co-core Σ×{0} with this neighborhood has
the form (−δ, 0]×Mbd × {const}.

Remark 5.2. Recall that due to Lemma 1.6, a pair of weak symplectic cobordisms
can be smoothly glued together along a positive/negative pair of contactomorphic
boundary components whenever the symplectic forms restricted to these boundary
components match. Thus the symplectic cobordism of the above theorem can be
glued on top of any weak filling (W,ω) of (V, ξ) for which [ω|TV ] ∈ O(G).

5.2. Construction of the symplectic cobordism. In this section we will give
the proof of Theorem 5.1. The proof will consist of the following five steps:

(1) Find a standardized model with a special contact form λ for tubular neigh-
borhoods of ∂G and the blown down components Mbd.

(2) Construct a symplectic form on our proto-cobordism [0, 1]× V that is well
adjusted to both Ω and λ.

(3) Carve out the interior of {1}×Σ× S1 from [0, 1]×V . This creates a notch
with corners along its edges, and we will then smoothly glue the handle
Σ× D2 into the cavity, creating a smooth manifold.

(4) Study the symplectic form induced from the proto-cobordism on the glued
part of the handle and extend it to the whole handle.

(5) Check that the new boundary of the cobordism has the desired properties.

Step 1: Neighborhoods and contact form for G
For simplicity, we first pretend that G is a Giroux domain Σ × S1 without blown
down boundary components. Consider a collar neighborhood (0, 1]×∂Σ associated
to some Liouville form β by Lemma 4.5 and denote by α the corresponding contact
form on ∂Σ. Let s be the coordinate in (0, 1]. We denote by u a smooth function
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Σ→ [0, 1] which has the boundary ∂Σ = u−1(0) as a regular level set, equals 1−s in
the region s ≥ 3/4 and 1 in the region s ≤ 1/4 and outside the collar, and satisfies
u′ ≤ 0 everywhere on the collar (see Fig. 3). We set γ = uβ. The contact form on
G associated to β and u is then λ := uβ + u dθ = γ + u dθ, where θ denotes the
coordinate on S1. In the collar one can set f := u/(1 − s) so that λ = fα + u dθ.
Note that the contact condition in (0, 1]× ∂Σ× S1 is equivalent to

(5.1) f (f ′u− u′f) > 0 ,

so appealing to Lemma 4.1, we can slightly extend our collar neighborhood embed-
ded in (V, ξ) to one of the form (0, 1 + ε]× ∂Σ× S1, with λ written as above and u
extended as 1− s when s > 1.

Figure 3. The functions u and f .

In the more general case where G is a Giroux domain with some boundary
components blown down, the function u becomes r2 in Mbd × D2, so λ is still a
smooth contact form (but of course there is no extended collar).

Step 2: The symplectic form on [0, 1]× V
The assumption that Ω weakly dominates ξ implies that the 2-form ω = d(tλ) + Ω
is symplectic on (−δ, 1]× V for some small positive constant δ. The cohomological
assumption [Ω] ∈ O(G) implies that Ω is cohomologous to some 2-form ω0 such that
ω0|G is the pull back of a 2-form on Σ. In addition, since the collar neighborhood
(0, 1]× ∂Σ retracts to ∂Σ, we can assume that ι∂sω0 = 0 when s ≥ 1/4.

Lemma 5.3. We can modify the form ω defined above to a new symplectic form
on (−δ, 1] × V , keeping the assumption that ω restrict to Ω on {0} × V and ξ be
weakly dominated by ω on each slice {t}× V , but asking in addition that ω restrict
to C d(tλ) + ω0 on [1/2, 1]× V for some large constant C > 0.

Proof. Using Lemma 1.10, we find a symplectic form ω′ on (−δ,∞)× V such that
each {t} × V is still weakly filled and ω′ restricts to d(tλ) + ω0 for t greater than
some large constant C/2. The scaling diffeomorphism (t, v) 7→ (t/C, v) pulls back
ω′ to the desired symplectic form. �

Step 3: Handle attachment
We now give a smooth description of the handle attachment which is compatible
with the smooth description of the blow-down process for ξ-round hypersurfaces.
For this, we will first create a small basin in the top of [0, 1] × V to which we can
glue in the handle.
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(a) The precise construction of the handle

attachment sketched in Fig. 2(b) works by

creating a trench on the top side of the
cobordism [0, 1]×V to which we can glue in

the handle. In the picture above we need to

remove the hatched area, which corresponds
to the Giroux domain Σ× S1 minus a small

neighborhood of the blown down boundary.

(b) The vector field X is tangent to the top

face and transverse to the hypersurface H,

which is Σh pushed inside [0, 1]×Σ relative
to its boundary. Everything above H has

been discarded to make room for the handle.

Figure 4.

Recall that Mbd denotes the blown down boundary components of the Liouville
domain Σ, and Mp denotes the other components. Let h be a smooth function from
Σ to (1/2,∞) such that

• h restricts on the special collar of Step 1 to a function only depending on
s with nonnegative derivative h′(s),
• h is constant on (0, 1/4)× ∂Σ and outside the boundary collar,
• For s ≥ 1− ε, h(s) = s near Mp, and h(s) = s+ ε near Mbd.

We denote by Σh the subset of Σ on which h is less than or equal to 1, and by
H ⊂ [0, 1]×V the product of S1 with the graph of h over Σh, see Fig. 4. We discard
the region {t ≥ h} from [0, 1] × V to get an open manifold, to which we will glue
the “handle” Σh×D. Here D denotes the disk around the origin in R2 with radius√
ε. In the following, we will find a symplectic vector field X in a neighborhood

of the hypersurface H in [0, 1] × V that is transverse to H, never points in the
positive t-direction, and is tangent to {1} × V near the boundary of H. Shrinking
ε if needed, we may assume that the flow of X starting from H embeds H × [0, ε]
into [1/2, 1] × V . We denote by ϕXτ the flow of X at time τ . The manifold W ′ is
obtained by attaching Σh×D to

(
[0, 1]×V

)
\{t ≥ h} using the gluing map Ψ from

Σh ×D∗ (where D∗ = D \ {0}) to [0, 1]× V defined by

Ψ(σ, reiθ) = ϕXr2
(
h(σ), σ, θ

)
.

Note that as a point-set operation, the handle attachement reduces to the operation
of adding the co-core Σh × {0} to the open manifold

(
[0, 1]× V

)
\ {t ≥ h}.

The vector field X that we will use below coincides with ∂s near {1}×∂G. This
implies that the attachment using Ψ restricts precisely to the gluing map used to
blow down the ξ-round hypersurface Mp × S1.

As a gluing vector field X, we choose the ω-dual of −C dθ, where C is the
constant appearing in ω. Since this 1-form is closed, X is a symplectic vector field.

Lemma 5.4. The vector field X is transverse to the hypersurface H and coincides
with ∂s near {1} × ∂G and {1} ×Mbd.

Proof. Away from the special collar neighborhoods considered in Step 1, λ = dθ+β,
and this gives dt(X) = −1. Elsewhere, on the collars [0, 1] ×

(
[1/4, 1] × ∂Σ × S1

)
,
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we use the ansatz X = Xt ∂t + Xs ∂s. Computing the interior product ιXω using
ω = C d(t(u dθ+fα))+ω0 and ι∂sω0 = 0, we find that X is indeed ω-dual to −C dθ
provided

uXt + tu′Xs = −1 ,

fXt + tf ′Xs = 0 .

This system is everywhere nonsingular due to the contact condition (5.1). For
s ≥ 3/4 and t = 1, we have X = ∂s as promised. For s < 3/4, the conditions
f(s) > 0 and f ′(s) > 0 imply Xt < 0 and Xs > 0, hence X is transverse to H. �

Step 4: Symplectic form on the handle

Lemma 5.5. The gluing map Ψ from Σh ×D∗ to [0, 1]× V pulls back ω to

Ψ∗ω = 2CωD + C d(hu) ∧ dθ + Ω0

where ωD := −r dr ∧ dθ and Ω0 is a symplectic form on Σh which weakly fills
(∂Σh, ker γ).

Proof. Let jH denote the embedding Σh×S1 → H ⊂ [0, 1]×V, (σ, θ) 7→
(
h(σ), σ, θ

)
.

Then we can decompose Ψ as Ψ = Φ ◦ P , where P is the map from Σh × D∗ to
Σh × (0, ε]× S1 defined by P (σ, reiθ) = (σ, r2, θ) and

Φ(σ, τ, θ) := ϕXτ
(
h(σ), σ, θ

)
= ϕXτ

(
jH(σ, θ)

)
.

Using the fact that the flow of
(
ϕXτ
)
∗∂τ = X preserves ω and ιXω = −C dθ, we

obtain for the pull back

Φ∗ω = −C dτ ∧ dθ + j∗Hω ,

and since the symplectic form ω is given in the range of jH by C d(tλ) + ω0 with
λ = u dθ + γ, we can compute

j∗Hω = C d(hλ) + ω0 = C d(hu) ∧ dθ + Ω0 ,

where we have set Ω0 = C d(hγ) + ω0 (which is a 2-form on Σh).
Now since P ∗dτ = 2r dr, the only thing left to prove is that Ω0 is a symplectic

form which weakly fills (∂Σh, ker γ). Since ωD is the only term in Ψ∗ω that contains
a dr-factor, and thus it follows that (Ψ∗ω)n = 2nCωD ∧Ωn−1

0 6= 0, we deduce that
Ω0 is symplectic.

The 2-form Ω0 restricts on ∂Σh to C dγ+ω0. Recall that the weakly dominating

condition on {1} × V means that for any constant ν ≥ 0, λ ∧
(
ω + ν dλ

)n−1
> 0.

Restricting to {1} ×G, where λ = u dθ + γ and ω = C dλ+ ω0, this becomes:

(u dθ + γ) ∧
[
(C + ν) du ∧ dθ +

(
C dγ + ω0 + ν dγ

)]n−1
> 0 ,

which we expand along {1} × ∂Σh × S1 as

(n− 1)(C + ν) γ ∧ du ∧ dθ ∧
(
C dγ + ω0 + ν dγ

)n−2
> 0 .

In particular, this proves that γ ∧ (Ω0 + ν dγ)n−2 never vanishes. In order to check
that it has the correct sign, it suffices to consider the case ν = 0. �
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To finish the construction of the symplectic cobordism, we want to define a
symplectic structure on Σh × D that agrees in a neighborhood of the boundary
Σh × ∂D with Ψ∗ω, and that has a split form near Σh × {0}. Let ρ1 and ρ2 be
functions from [0,

√
ε] to R (constraints will be added later). We set:

ω̃ := 2Cρ1ωD + C d(ρ2hu) ∧ dθ + Ω0

= gωD + Cρ2 d(hu) ∧ dθ + Ω0 with g :=

(
2ρ1 −

huρ′2
r

)
C.

We choose ρ1(r) = ρ2(r) = 1 for r close to
√
ε, so that ω̃ extends Ψ∗ω. Near 0,

we choose ρ1 to be a large positive constant and ρ2 to vanish so that ω̃ makes sense
near the center of D. One can compute ω̃n = ngωD ∧Ωn−1

0 . Since Ω0 is symplectic
on Σh, we see that ω̃ is symplectic as soon as g is positive. This condition is
arranged by choosing ρ1 sufficiently large away from r =

√
ε.

Step 5: Properties of the new boundary of W
We now consider in turns the two types of new boundary components resulting
from the above construction: V ′ and Mbd × S2. Since hu is constant on ∂Σh, the
restriction of ω̃ to Mp × D is gωD + Ω0. As we already noted, the gluing map
Ψ extends the one used to define the blow-down, and the contact form on V ′ is
λ = γ − r2dθ. Thus in order to check the weak filling condition, we only need
compute, for any constant ν ≥ 0,

λ ∧ (ω̃ + ν dλ)n−1 = (n− 1)(g + 2ν)ωD ∧ γ ∧ (Ω0 + ν dγ)n−2.

This is indeed a positive volume form for any nonnegative ν because (Σh,Ω0) is a
weak filling of (Mp, ker γ) according to Lemma 5.5.

The situation along Mbd×S2 is very similar. There ω̃ induces ωS2 + Ω0 for some
area form ωS2 . The distribution we consider is ker γ. We compute:

γ ∧ (ω̃ + ν dγ)n−1 = (n− 1)ωS2 ∧ γ ∧ (Ω0 + ν dγ)n−2

so the restriction of ω̃ is symplectic on ker γ because of Lemma 5.5. Lemma 1.6 then
gives us a neighborhood of Mbd×S2 in (W ′, ω̃) that can be identified symplectically
with (

(−ε, 0]×Mbd × S2, (d(tγ) + Ω0)⊕ ωS2
)

for ε > 0 sufficiently small. Observe also that ω̃ already takes this split form
in a neighborhood of the co-core Σh × {0} ⊂ W ′, so we can apply the extension
property of Lemma 1.6 to get a collar whose intersection with the co-core is precisely
(−ε, 0]×Mbd × {0} with 0 ∈ D ⊂ S2.

6. Giroux domains and non-fillability

We now use the cobordism of the preceding section to prove Theorem 4.13 on
filling obstructions. We will present two slightly different approaches in §6.1 and
§6.2 respectively: the first uses holomorphic disks and the bLob, thus relying on a
version of Theorem 3.4. The second approach uses holomorphic spheres and proves a
slightly weaker result, as it requires stricter homological assumptions on the Giroux
domains—though it should be mentioned that these assumptions are satisfied in
all the interesting examples we know thus far, namely for the higher dimensional
notions of Lutz twists and Giroux torsion defined in §8. The use of spheres instead of
disks simplifies the proof in that it makes the Freholm and compactness properties
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easier, while at the same time allowing the use of the recently completed polyfold
technology [HWZ11] to handle transversality issues. For this reason the second
proof does not require semipositivity.

6.1. Proof of Theorem 4.13 via the bLob. Part (a) of the theorem follows
immediately from the fact that if (V, ξ) contains a Giroux domain N that has
some boundary components that are blown down and others that are not, then by
Proposition 4.9 it contains a small bLob, so Theorem 3.4 implies that (V, ξ) does
not admit any semipositive weak filling.

To prove part (b), suppose N has the form

N = (Σ+ × S1) ∪Y×S1 (Σ− × S1) ,

where Σ± are ideal Liouville domains with boundary ∂Σ± = ∂glueΣ±t∂freeΣ±, Y :=
∂glueΣ+ = ∂glueΣ− carries the induced contact form α and ∂freeΣ− is not empty.
Arguing by contradiction, assume that (V, ξ) is weakly filled by a semipositive
symplectic filling (W0, ω) with [ω|TV ] ∈ O(Σ+). This establishes the cohomological
condition needed by Theorem 5.1 on Σ+ × S1, so applying the theorem, we can
enlarge (W0, ω) by attaching Σ+ × D2, producing a compact symplectic manifold
(W1, ω) whose boundary (V ′, ξ′) supports a contact structure that is weakly filled.

Since the boundary V ′ of the new symplectic manifold (W1, ω) is contactomor-

phic to (V \ (Σ+ × S1))//Y , we find in (V ′, ξ′) a domain isomorphic to (Σ−×S1)//Y
that contains a small bLob. Unfortunately this does not directly obstruct the ex-
istence of the weak filling (W1, ω), because even though W0 was semipositive, W1

might not be. We will follow the proof of Theorem 3.4, with the difference that we
need to reconsider compactness to make sure that bubbling is still a “codimension 2
phenomenon”.

Choose an almost complex structure J on (W1, ω) with the following properties:

(i) J is tamed by ω and makes (V ′, ξ′) strictly J-convex,
(ii) J is adapted to the bLob in the standard way, i.e. it is chosen close to the

boundary of the bLob according to Lemma 3.7 and in a neighborhood of
the binding according to [Nie06] (cf. the proof of Theorem 3.4),

(iii) for some small radius r > 0, J = JΣ+ ⊕ i on Σ+ × D2
r ⊂ W1, where JΣ+ is

a tamed almost complex structure on Σ+ for which ∂Σ+ is JΣ+ -convex.

The third condition uses the fact from Theorem 5.1 that the co-core K′ := Σ+×{0}
of the handle is a symplectic (and now also J-holomorphic) hypersurface weakly
filling its boundary. The binding of the bLob lies in the boundary of the co-core K′+,
and the normal form described in [Nie06] is compatible with the splitting Σ+ ×D2

r

so that (ii) and (iii) can be simultaneously achieved.
By choosing JΣ+ generic, we can also assume that every somewhere injective

JΣ+ -holomorphic curve in Σ+ is Fredholm regular and thus has nonnegative index.
Note that any closed J-holomorphic curve in Σ+ × D2

r is necessarily contained in
Σ+×{z} for some z ∈ D2

r, and the index of this curve differs from its index as a JΣ+ -
holomorphic curve in Σ+ by the Euler characteristic of its domain. This implies that
every somewhere injective J-holomorphic sphere contained in Σ+ × D2

r has index
at least 2. Likewise, by a generic perturbation of J outside of this neighborhood
we may assume all somewhere injective curves that are not contained entirely in
Σ+ × D2

r also have nonnegative index.
Now letM be the connected moduli space of holomorphic disks attached to the

bLob that contains the standard Bishop family. We can cap off every holomorphic
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disk u ∈ M by attaching a smooth disk that lies in the bLob, producing a trivial
homology class in H2(W1). The cap and the co-core intersect exactly once, and it
follows that u also must intersect the co-core K′+ exactly once, because u and K′+
are both J-complex.

To finish the proof, we have to study the compactness of M and argue that
M \M consists of strata of codimension at least 2. A nodal disk u∞ lying in
M \M has exactly one disk component u0, which is injective at the boundary,
and one component u+ that intersects the co-core once; either u+ = u0 or u+ is
a holomorphic sphere. Every other nonconstant connected component v is a holo-
morphic sphere whose homology class has vanishing intersection with the relative
class [K′+]. So either v does not intersect the J-complex submanifold K′+ at all or
v is completely contained in K′+. In either case, v is homotopic to a sphere lying
in W0: indeed, if v does not intersect the co-core, we can move it out of the handle
by pushing it radially from Σ+ × (D2 \ {0}) into the boundary Σ+ × S1 ⊂W0, and
if v ⊂ K′+ = Σ+ × {0}, then we can simply shift it to Σ+ × {1} ⊂ W0. Using the
fact that u0 and u+ are both somewhere injective, together with the semipositivity
and genericity assumptions, we deduce that every connected component of u∞ has
nonnegative index, thus M\M has codimension at least two in M. The rest of
the proof is the same as for Theorem 3.4.

6.2. An alternative argument using holomorphic spheres. In this section
we will prove the following variation on Theorem 4.13, which does not involve the
word “semipositive” at all.

Theorem 6.1. Suppose (V, ξ) is a closed contact manifold containing a subdo-
main N with nonempty boundary, which is obtained by gluing and blowing down
Giroux domains. If either N has at least one blown down boundary component or it
includes at least two Giroux domains glued together, then (V, ξ) does not admit any
weak filling (W,ω) with [ωV ] ∈ O(N). In particular (V, ξ) is not strongly fillable.

Proof. We consider first the case where N has no blown down boundary compo-
nents but consists of at least two Giroux domains glued together: without loss of
generality, we may then assume N has the form

N = (Σ+ × S1) ∪Y×S1 (Σ− × S1) ,

where Σ± are ideal Liouville domains with boundary ∂Σ± = ∂glueΣ± t ∂freeΣ±,
Y := ∂glueΣ+ = ∂glueΣ− carries the induced contact form α and ∂freeΣ+ is not
empty. Arguing by contradiction, assume also that (V, ξ) has a weak filling (W0, ω)
with [ω|TV ] ∈ O(N). This establishes the cohomological condition needed by
Theorem 5.1 on both Σ+ × S1 and Σ− × S1, so applying the theorem, we can
enlarge (W0, ω) by attaching Σ+ × D2 and Σ− × D2 in succession, producing a
compact symplectic manifold (W1, ω) whose boundary is a disjoint union of pieces

∂W1 = ∂sphW1 t ∂ctW1 ,

where ∂ctW1 6= ∅ supports a contact structure that is weakly dominated and
∂sphW1

∼= Y × S2 with symplectic fibers {∗} × S2 (here ct stands for “contact”
and sph for “sphere”). Moreover, a neighborhood of ∂sphW1 in (W1, ω) can be
identified symplectically with the collar(

(−δ, 0]× Y × S2, ωY ⊕ ωS2
)
,
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where ωS2 is an area form on S2 and ωY is a symplectic form on (−δ, 0] × Y with
weakly filled boundary (Y, kerα).

We can choose an almost complex structure J on (W1, ω) with the following
properties:

(i) J is tamed by ω and makes ∂ctW1 strictly J-convex,
(ii) J = JY ⊕ j on the collar (−δ, 0] × Y × S2, where j is an ωS2-compatible

almost complex structure on S2 and JY is an almost complex structure on
(−δ, 0]× Y which is tamed by ωY and makes {0} × Y strictly JY -convex.

By choosing J generic outside the collar neighborhood (−δ, 0] × Y × S2, we may
assume all somewhere injective J-holomorphic curves that aren’t contained entirely
in that region are Fredholm regular.

For each (t, y) ∈ (−δ, 0] × Y , there is now an embedded pseudoholomorphic
sphere

u(t,y) : (S2, j)→
(
(−δ, 0]× Y × S2, J

)
, z 7→ (t, y, z) .

These curves are all Fredholm regular: indeed, a neighborhood of u(t,y) in the
moduli space of unparametrized J-holomorphic spheres in W1 can be identified with
a neighborhood of zero in the kernel of the linearized Cauchy-Riemann operator
on its normal bundle, but the latter is a trivial bundle with the standard Cauchy-
Riemann operator. Hence the operator splits into a direct sum of standard Cauchy-
Riemann operators on trivial line bundles over S2, all of which have index 2 and
are surjective by the Riemann-Roch theorem (cf. [MS04]). It follows also that the
curves u(t,y) have index 2n− 2.

Denote the co-cores of the two handles by

K′± := Σ± × {0} ⊂ Σ± × D2 ⊂W1.

The curves u(t,y) have exactly one transverse intersection with each of the two
co-cores, so we have homological intersection numbers:

(6.1) [u(t,y)] • [K′+] = [u(t,y)] • [K′−] = 1 .

We claim that every somewhere injective J-holomorphic sphere in W1 which inter-
sects {0} × Y × S2 is equivalent to u(0,y) for some y ∈ Y . Indeed, if u : S2 →W1 is

any such sphere, we define the open subset U = u−1((−δ, 0]×Y × S2), and observe
that u|U can be identified with a pair of maps uS2 : U → S2 and uY : U → (−δ, 0]×Y
which are j-holomorphic and JY -holomorphic respectively. But then uY touches
the boundary of (−δ, 0] × Y tangentially, which is impossible due to pseudocon-
vexity unless uY is constant, so we conclude that U = S2 and uS2 : S2 → S2 is a
degree 1 holomorphic map, hence the identity up to parameterization.

Let M denote the connected component of the moduli space of unparametrized
J-holomorphic spheres containing the curves u(t,y), and define M1 to be the same
space of curves but with one marked point, along with the natural compactifications
M andM1, consisting of nodal J-holomorphic spheres. Note that curves inM can
never touch ∂ctW1 due to J-convexity. By (6.1), every curve in M intersects each
of K′+ and K′− algebraically once, thus all curves in M are somewhere injective,

and the only nodal curves in M intersecting {0} × Y × S2 are u(0,y) for y ∈ Y .
Now our genericity assumptions for J , along with the Fredholm regularity of the
special curves u(t,y), imply thatM is a smooth (2n−2)-dimensional manifold with
boundary, where the boundary is a single connected component consisting of the
curves u(0,y). After perhaps shrinking δ > 0, we claim in fact that every curve
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in M intersecting (−δ, 0]× Y × S2 is one of the special curves u(t,y): were this not
the case, we would find sequences of negative numbers tk → 0 and holomorphic
spheres uk ∈M which are not equivalent to any u(t,y) but intersect {tk}× Y × S2,

and a subsequence then converges to a nodal curve inM intersecting {0}×Y ×S2,
but the latter must be of the form u(0,y). We then obtain a contradiction from the
implicit function theorem, as the (2n− 2)-dimensional moduli space of curves close
to u(0,y) consists only of curves of the form u(t′,y′) for some (t′, y′) ∈ (−δ, 0]× Y .

AlthoughM andM1 are smooth as explained above, their compactificationsM
and M1 need not be, due to the presence of nodal curves with multiply covered
components for which transversality fails. This is exactly the kind of problem that
the polyfold machinery of Hofer-Wysocki-Zehnder [HWZ11] is designed to solve:
we perturb the nonlinear Cauchy-Riemann equation via a generic multisection of

the appropriate polyfold bundle so that the compact space M′ of solutions to this
perturbed equation is, in general, an oriented, weighted branched orbifold with
boundary and corners. In the case at hand, the perturbation can be chosen to have
support in a neighborhood of the nonsmooth part of M, thus we may assume in

particular that elements of M′ approaching a neighborhood of the boundary are
still actually J-holomorphic curves, so the uniqueness statements above continue
to hold.

To conclude the proof, choose a smoothly embedded path ` ⊂ W1 with one
boundary point in ∂ctW1 and the other in ∂sphW1, meeting both transversely, and
define the compact space

M′` = ev−1(`)

where ev : M′1 →W1 denotes the natural evaluation map. For generic choices,M′`
is then a smooth, compact, oriented, weighted branched 1-dimensional manifold
with boundary, the latter being ev−1(∂`). By pseudoconvexity however, no curve

in M′ intersects ∂ctW1, hence ∂M′` = ev−1(∂sphW1), but this consists of only
one curve, namely the unique u(0,y) with y ∈ ∂`. Since there is no compact,
oriented, weighted branched 1-manifold with connected boundary (see e.g. [Sal99,
Lemma 5.11]), this gives the desired contradiction.

The proof is essentially the same but slightly simpler if N ⊂ (V, ξ) has any blown
down boundary components. If suffices then to consider the case where N is a single
blown down Giroux domain (Σ × S1)//Mbd. Attaching Σ × D2 via Theorem 5.1,
we again obtain a symplectic manifold (W1, ω) with ∂W1 = ∂ctW1 t∂sphW1, where
∂ctW1 6= ∅ is weakly filled and ∂sphW1

∼= Mbd×S2 is foliated by symplectic spheres
that give rise to J-holomorphic spheres intersecting the co-core Σ × {0} exactly
once. The rest of the argument is the same. �

Remark 6.2. If the original filling is assumed semipositive, then the above proof
can also be modified to take advantage of the symplectic co-core in the same way
as §6.1 and thus avoid the need for polyfolds.

7. Construction of Liouville domains with disconnected boundary

7.1. Contact products and Liouville pairs. In this section we shall construct
Liouville pairs on closed manifolds of every odd dimension; more precisely, we shall
prove Theorem C from the introduction and thus lay the groundwork for our Giroux
torsion construction in §8. Recall that the goal is to find positive/negative pairs of
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contact forms (α+, α−) on oriented odd-dimensional manifolds M with the property
that, if s ∈ R denotes the coordinate on the first factor of R×M ,

β := e−sα− + esα+

defines a positively oriented Liouville form on R×M .
The first example of a Liouville pair is ±dθ on S1. One can construct higher

dimensional examples using contact products. The contact product of (M1, ξ1) and
(M2, ξ2) is defined as the product of their symplectizations Sξ1 × Sξ2 divided by
the diagonal R-action (cf. [Gir10]). This describes a contact manifold but, since
the Liouville pair condition is really about contact forms and not only contact
structures, we want a more specific construction. Suppose we have contact forms
α1 and α2. Those give identifications between Sξi and R×Mi with fiber coordinates
ti on R. On the product, one has the Liouville form λ = et1α1 + et2α2 and its dual
vector field X = ∂t1 + ∂t2 . We shall say that a manifold V with a contact form λ
is a linear model for the contact product of (M1, α1) and (M2, α2) if it is realized
as a hypersurface in Sξ1×Sξ2 transverse to X and defined by a linear equation on
t1 and t2. Concretely, this means V = M1 ×R×M2 is embedded into the product
(R×M1)× (R×M2) by ϕ(m1, t,m2) = (µt,m1, νt,m2) for some constants µ and ν.
This gives a hypersurface positively transverse to X provided ν > µ. The contact
form induced by λ on V is then eµtα1 + eνtα2.

Proposition 7.1. If M1 is R or S1 endowed with the Liouville pair α± = ±dθ and
(M2, α2) is any manifold with a contact form, then any linear model for the contact
product inherits a Liouville pair ±eµtdθ + eνtα.

Proof. We set a = es + e−s, b = es − e−s and eρ = eρt for any real number ρ so
that our candidate Liouville form on R×M1 ×R×M2 is B = aeνα+ beµdθ. One
computes

dB = eν(aν dt+ b ds) ∧ α+ aeν dα+ eµ(bµ dt+ a ds) ∧ dθ

and then, denoting by 2q + 1 the dimension of M2,

dBq+2 = f(νa2 − µb2)ds ∧ dθ ∧ dt ∧ α ∧ dαq,

where f = (q + 1)(q + 2)aqeµ+(q+1)ν and νa2 − µb2 is positive because ν > µ and

a2 − b2 = 4. �

Remark 7.2. One can ask whether the above proposition extends to other Liouville
pairs. It seems that not all linear models will be suitable for this. What we can
prove, but will not use in this paper, is that if α± is a Liouville pair on some
manifold M1 (of any dimension) then α±+ etα is a Liouville pair on M1×R×M2.

Of course, the disadvantage of the contact product construction is that the re-
sulting manifold is never compact, and there seems to be no general way of finding
compact quotients of contact products. We shall therefore specialize further by
seeking examples among Lie groups which can be seen as symplectizations of some
subgroups that have co-compact lattices. (The idea to consider left-invariant con-
tact forms on Lie groups is borrowed from Geiges [Gei94].)

Before that, let us describe a corollary of the following algebraic constructions
that has the advantage of seeming somewhat more concrete. We will not use this
concrete description explicitly, so we leave it as an exercise to check that it can
indeed be related to our abstract treatement below. Taking any integer n ≥ 0, if
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we assign to Rn × Rn+1 the coordinates (t1, . . . , tn, θ0, . . . , θn) then one can show
using the above proposition or by an explicit calculation that for a suitable choice
of orientation on Rn × Rn+1,

(7.1) α± := ±et1+···+tn dθ0 + e−t1 dθ1 + · · ·+ e−tn dθn .

is a Liouville pair. We would like to prove the existence of compact quotients of
Rn × Rn+1 to which α+ and α− both descend. Observe that both are invariant
under the group action of Rn on Rn × Rn+1 defined by

(7.2) (τ1, . . . , τn) · (t1, . . . , tn, θ0, θ1, . . . , θn) :=

(t1 + τ1, · · · , tn + τn, e
−(τ1+···+τn)θ0, e

τ1θ1, . . . , e
τnθn) .

What we will prove in the next few sections implies the following:

Lemma 7.3. There exist lattices Λ ⊂ Rn and Λ′ ⊂ Rn+1 such that the group action
of Λ on Rn × Rn+1 defined by (7.2) preserves Rn × Λ′.

It follows that the action of Λ on Rn×Rn+1 descends to a smooth group action on
Rn×(Rn+1/Λ′), so dividing by this action we obtain a bundle with fiber Rn+1/Λ′ ∼=
Tn+1 and base Rn/Λ ∼= Tn, to which the Liouville pair (α+, α−) descends. In
this way one obtains the following result, which suffices to prove the existence of
Liouville domains with disconnected boundary in all dimensions:

Proposition 7.4. For every integer n ≥ 0, the Liouville pair defined by (7.1) on
Rn × Rn+1 descends to a compact quotient which is a Tn+1-bundle over Tn.

Lemma 7.3 is trivial when n = 0, and elementary when n = 1: for the latter
case, one can choose Λ ⊂ R to be generated by any real number τ 6= 0 such that eτ

is an eigenvalue of some matrix A ∈ SL(2,Z). Then A may be viewed as the matrix
of the linear transformation R2 → R2 : (θ0, θ1) 7→ (e−τθ0, e

τθ1) in some other basis
where it has integer coefficients. This transformation therefore preserves the lattice
generated by that basis. This produces a Liouville pair on every T2-bundle over S1

with hyperbolic monodromy—these examples have appeared in the previous work of
Geiges [Gei95] and Mitsumatsu [Mit95]. A hint of the general arithmetic strategy
we will use below appears in this discussion, as the condition that eτ should be
an eigenvalue of some matrix in SL(2,Z) implies that eτ belongs to a quadratic
extension of the field Q.

7.2. Some Lie groups as symplectizations. Denote by Aff+(R) the group of

orientation preserving affine transformations of the real line. Similarly, Ãff(C) will
denote the universal cover of the group Aff(C) of affine transformations of the
complex plane, which can be identified with the semi-direct product C n C by
associating to any (a, b) ∈ C×C the transformation z 7→ eaz+ b. Observe that the
same trick identifies Aff+(R) with Rn R.

Let gR denote the Lie algebra of the affine group Aff+(R). The identification
Aff+(R) = R n R defines global coordinates (t, θ) on Aff+(R) and hence a basis
(T,Θ) of left-invariant vector fields that match (∂t, ∂θ) at the identity; they satisfy
[T,Θ] = Θ. Writing the dual Lie algebra as g∗R, its dual basis is the pair of left-
invariant 1-forms

T ∗ = dt, Θ∗ = e−t dθ.
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Thus we can associate to Aff+(R) the left-invariant Liouville forms Θ∗ or −Θ∗ and
view it as the symplectization of (R, dθ) or (R,−dθ) respectively with fiber coordi-
nate −t = − ln ◦ det. Note that (R,±dθ) has a canonical contact type embedding
into (Aff+(R),±Θ∗), namely as the unimodular subgroup {det = 1}.

We denote by gC the Lie algebra of Ãff(C) = C n C. Using coordinates (u +
iv, x+ iy) on CnC, the basis (U, V,X, Y ) of gC defined to match (∂u, ∂v, ∂x, ∂y) at
the identity satisfies the relations

[U,X] = X, [V,X] = Y,
[U, Y ] = Y, [V, Y ] = −X,

with all other brackets vanishing. These relations give the following exterior deriva-
tives for the dual basis of left-invariant 1-forms:

(7.3)
dU∗ = 0, dX∗ = X∗ ∧ U∗ + V ∗ ∧ Y ∗,
dV ∗ = 0, dY ∗ = X∗ ∧ V ∗ + Y ∗ ∧ U∗.

Although this will not be used, we note for concreteness that in the coordinates
defined above,

U∗ = du, X∗ = e−u(cos v) dx+ e−u(sin v) dy,
V ∗ = dv, Y ∗ = −e−u(sin v) dx+ e−u(cos v) dy.

Now we can define a left-invariant Liouville form as, for instance,

β = X∗ so that dβ2 = −2 U∗ ∧ V ∗ ∧X∗ ∧ Y ∗.
The corresponding Liouville vector field is β# = −U , which is transverse to the
unimodular subgroup {|det|2 = 1} = iRnC, whose Lie algebra is the kernel of U∗.

So we have on Ãff(C) a left-invariant symplectization structure with fiber coordinate
− ln ◦| det |, where det denotes the determinant of the projection in Aff(C).

We now combine any number of copies of the two preceding Lie groups as Gr,s :=

Aff+(R)r × Ãff(C)s, and then consider the subgroup

Gr,s1 =
{

(ϕ1, . . . , ϕr, ψ1, . . . , ψs) ∈ Gr,s
∣∣∣ ∏

i

detϕi
∏
j

|detψj |2 = 1
}
,

where detψj should be understood again as the determinant of the projection of
ψj to Aff(C). The discussion above shows that this group can be seen as a linear
model for a contact product. When r is positive, we can single out one of the
Aff+(R) factors and apply Proposition 7.1 to obtain:

Corollary 7.5. For any positive r, the Lie group Gr,s1 admits a left-invariant Li-
ouville pair. �

The goal of the next two sections is to prove the existence of co-compact lattices
in this group in order to find closed manifolds with Liouville pairs. As prepara-
tion, it will be useful observe that both Gr,s and Gr,s1 can be viewed as semi-direct
products: setting

hr,s := Rr × Cs,

hr,s1 :=
{

(t1, . . . , tr, w1, . . . , ws) ∈ hr,s
∣∣∣ ∑

i

ti + 2
∑
j

Rewj = 0
}

(7.4)

and defining the action of each on Rr × Cs by

(t1, . . . , tr, w1, . . . , ws)·(θ1, . . . , θr, z1, . . . , zs) := (et1θ1, . . . , e
trθr, e

w1z1, . . . , e
wszs) ,
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we have natural isomorphisms Gr,s = hr,s n (Rr ×Cs) and Gr,s1 = hr,s1 n (Rr ×Cs).

Remark 7.6. For most of the following discussion, the reader is free to assume s = 0,
since this suffices to prove Lemma 7.3 and thus the existence of closed manifolds
admitting Liouville pairs in all dimensions. The case s > 0 is only really needed to
relate our results to those of Geiges in §7.5.

7.3. Some number theory. In this section we will need some standard notions
and results from algebraic number theory, e.g. Dirichlet’s Unit Theorem; a good
reference for this material is [Mar77].

Throughout this section and the next, k will denote a number field, i.e. a finite
degree extension of Q, and n will denote its degree [k : Q]. Such a field is always
isomorphic to Q[X]/(f) for some irreducible polynomial f ∈ Q[X] of degree n
(with simple roots). We will denote by r the number of real roots and by s the
number of complex conjugate pairs of nonreal roots, thus n = r + 2s. Each root α
gives an embedding of k into C, sending (the equivalence class of) X to α. These
embeddings will be denoted by ρ1, . . . , ρr and σ1, . . . , σs, σ̄1, . . . , σ̄s. This method
actually gives all embeddings of k into C, and we can collect them to define an
injective map

j : k→ Rr × Cs : x 7→ (ρ1(x), . . . , ρr(x), σ1(x), . . . , σs(x)) .

The norm of an element of k is defined as N(x) =
∏
i ρi(x)

∏
j |σj(x)|2, and the

fact that f is irreducible implies that N(x) vanishes only when x = 0. The ring
of integers Ok of k is by definition the set of all elements in k which are roots of
monic polynomials with coefficients in Z. These all have integer-valued norms, and
an important observation is that the map j defined above sends Ok to a lattice in
Rr × Cs.

Invertible elements in the ring Ok are called units of k, and they form a (multi-
plicative) group denoted by O×k . They all have norm ±1 since N(xy) = N(x)N(y).

We denote by O×,+k the subgroup of positive units: O×,+k = {x ∈ O×k | ρi(x) >
0 for all i}. Among units are the roots of unity, whose (finite) set is denoted by Uk.

We also set U+
k = Uk∩O×,+k . Dirichlet’s Unit Theorem implies that O×k is a finitely

generated abelian group with torsion Uk and rank r+s−1. Since x2 ∈ O×,+k when-

ever x ∈ O×k , it follows that O×,+k is similarly the product of the finite cyclic group

U+
k with a free abelian group of rank r+ s− 1. The map j restricts to an injective

group homomorphism of O×,+k into the multiplicative group Hr,s := (R∗+)r×(C∗)s,
and since N(O×,+k ) = {1}, its image lies in the subgroup

Hr,s
1 =

{
(ρ1, . . . , ρr, σ1, . . . , σs) ∈ Hr,s

∣∣∣ ∏
i

ρi
∏
j

|σj |2 = 1
}
.

The precise formulation of Dirichlet’s theorem is that j(O×,+k ) is a lattice in Hr,s
1 .

Examples. We now discuss three examples of increasing complexity to see all the
objects discussed above appearing. In the next subsection we will see the con-
tact manifolds associated to these fields and the Liouville pair construction where
applicable.

The very first example of a number field is Q itself. In this case n = 1, f = X−1,
r = 1, s = 0 and j is the inclusion of Q in R. The ring of integers is Ok = Z, with
O×k = {±1} and O×,+k = {1}.
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As a less trivial number field, we consider k = Q[i]. We have n = 2 and can set
f = X2 + 1, so the roots are ±i, hence r = 0 and s = 1. Choosing i as a member
of the complex conjugate pair ±i, we have j : k→ C : a+ bX 7→ a+ ib. The norm
of a+ bX is a2 + b2. The integer ring Ok is Z + ZX, and its image under j is the
lattice Z + iZ in C. The group of units is O×k = {±1,±X} = Uk. All units are
automatically positive since there is no real embedding. We have H0,1 = C∗ and
H0,1

1 = S1, in which j(O×,+k ) is indeed a lattice.

As a last example, we consider k = Q[
√

2]. Here n = 2 and f = X2−2 with roots

±
√

2, so r = 2 and s = 0. The j map is defined by a+ bX 7→ (a+ b
√

2, a− b
√

2).
The norm of a + bX is a2 − 2b2. The integer ring Ok is Z + ZX, and its image
under j is the lattice

{(a+ b
√

2, a− b
√

2) | a, b ∈ Z} = Z(1, 1) + Z(
√

2,−
√

2) ⊂ R2 .

The group of units is O×k = {±(1 + X)k | k ∈ Z}, and Uk = {±1}. Restricting to

positive elements, we have O×,+k = {(3 + 2X)k | k ∈ Z} and U+
k = {1}. The image

of O×,+k in H2,0 = (R∗+)2 is j(O×,+k ) =
{

((3 + 2
√

2)k, (3− 2
√

2)k) | k ∈ Z
}

, which

is indeed a lattice in H2,0
1 = {(y, 1/y) ∈ (R∗+)2 | y > 0}.

7.4. A manifold associated to a number field. The next result provides the
desired co-compact lattices in the Lie groups Gr,s1 .

Proposition 7.7. Suppose k = Q[X]/(f) is a number field of degree n = r+2s ≥ 1,
where f ∈ Q[X] is an irreducible polynomial with r real and 2s complex roots (all
simple). Then one can associate to k a lattice Gk ⊂ Gr,s1 such that the quotient

Mk := Gr,s1 /Gk

is a Tn-bundle over Tn−1.

To prove this, we continue with the same notation as in the previous section and
observe that the Lie algebras of Hr,s and Hr,s

1 are precisely hr,s and hr,s1 respectively,
defined in (7.4) above. Since Hr,s is abelian, the exponential map

exp: hr,s → Hr,s : (t1, . . . , tr, w1, . . . , ws) 7→ (et1 , . . . , etr , ew1 , . . . , ews)

is a surjective group homomorphism, as is its restriction to hr,s1 → Hr,s
1 , and its

kernel is the free abelian group {0} × 2πiZs ⊂ hr,s1 . Thus the preimage of j(O×,+k )
in hr,s1 is a rank r + s− 1 + s = n− 1 lattice, which we denote by Γk.

The group Hr,s acts on Rr × Cs via coordinate-wise multiplication, so pulling
back this action via the exponential map defines an action of Γk on Rr×Cs, which
preserves the lattice j(Ok) since multiplication by elements of O×k preserves Ok.
The inclusions Γk ↪→ hr,s1 and j(Ok) ↪→ Rr × Cs can therefore be combined to an
inclusion of the semi-direct product

Gk := Γk n j(Ok) ↪→ hr,s1 n (Rr × Cs) = Gr,s1 ,

forming a lattice. Proposition 7.7 now follows from the observation that the pro-
jection Gr,s1 = hr,s1 n (Rr × Cs)→ hr,s1 descends to a well-defined projection

Gr,s1 /Gk → hr,s1 /Γk ,

forming a bundle with fiber (Rr × Cs)/j(Ok) ∼= Tn and base hr,s1 /Γk
∼= Tn−1.

Note that the only choices we made in the construction of Mk were the ordering
of the embeddings of k into R and C, and which complex embedding we pick out of
each complex conjugate pair. The manifold Mk does not depend on these choices up
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to diffeomorphism. Moreover, each choice of orientations for the factors of Aff+(R)
in Gr,s determines a contact structure on Mk uniquely up to isotopy. Indeed, aside
from the orientation of Aff+(R), the only other choices involved were the Liouville
forms on the relevant Lie groups, but one can check that all possible left-invariant
Liouville forms defining the same orientation are isotopic—they form a connected
open subset of the dual Lie algebra. If we fix a single orientation of Aff+(R) from the
beginning, we then obtain the canonical contact structure promised in Theorem C
from the introduction.

We remark that Gk is not the only possible lattice in Gr,s1 . In the totally real case
(s = 0) in particular, one can replace Ok by any additive subgroup M of k which

is a free abelian group of rank n, and O×,+k by any of its finite index subgroups
preserving M . The contact manifolds obtained in this way are cusp cross sections
of Hilbert modular varieties, see [vdG88, Chapter 1]. In particular, they are Stein
fillable and can be embedded as separating strictly pseudoconvex hypersurfaces in
holomorphic manifolds.

For later use in §8, we note the following observation.

Lemma 7.8. If k is a totally real number field which is not Q, then π1(Mk) has
trivial center.

Proof. Since Mk = Gr,s1 /Gk and Gr,s1 is simply connected, the lemma is equivalent
to the claim that the group Gk has trivial center. In the totally real case (i.e. s = 0),

we have Gk = O×,+k nOk, so as a set Gk = O×,+k ×Ok, and the composition law
is (u, x)(u′, x′) = (uu′, x+ ux′). Suppose (u, x) is central in Gk. This implies that
for any (u′, x′), x+ ux′ = x′ + u′x.

We can apply this to u′ = 1 to deduce that for any integer x′, ux′ = x′. Since
Ok is integral (recall it embeds in R), we get u = 1 or x′ = 0. Since Ok is not a
trivial group (it has rank deg(k)), this implies u = 1.

Similarily, we can apply the above formula with x′ = 0 to deduce that for any
unit u′, u′x = x. Hence u′ = 1 or x = 0. Since O×,+k has rank deg(k) − 1 and we
assume deg(k) > 1, we obtain x = 0, so (1, 0) is the only central element. �

Examples. Recall that our first example was k = Q. The corresponding Gr,s1 is
the group of affine transformations of R with determinant one, i.e. it is R. The
unit group O×,+k is trivial, hence it acts trivially on R, implying MQ = R/j(Ok) ∼=
R/Z = S1. The resulting Liouville pair on S1 is (dθ,−dθ).

Our second example was k = Q[i], and the corresponding Gr,s1 is Ãff(C) = iRnC,
whose elements (iv, w) correspond to affine transformations z 7→ eivz + w. Note
that since r = 0 in this case, all left-invariant contact forms on Gr,s1 induce the same
orientation, so there can be no left-invariant Liouville pair, but we can still extract
a co-compact lattice. We have hr,s1 = iR ⊂ C = hr,s, and Γk ⊂ iR is spanned by

m := iπ/2, where m stands for “monodromy”. The action of m on C is z 7→ eiπ/2z,
which does indeed preserve the lattice j(Ok) = Z + iZ. We conclude that Mk

is a T2-bundle over S1 whose monodromy is a quarter turn. Observe that Mk is
a finite quotient of T3, which cannot admit any Liouville pair due to [Wen10b,
Example 2.14].

We proceed to the last example k = Q[
√

2]. The corresponding Gr,s1 is the
unimodular subgroup within Aff+(R)2, which is the solvable group of Thurston’s
geometries. In the hyperplane hr,s1 = {(−t, t)} ⊂ R2 = hr,s, Γk is spanned by

m :=
(

ln(3 + 2
√

2), ln(3 − 2
√

2)
)
. The action of m on R2 is then (y1, y2) 7→
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((3 + 2
√

2)y1, (3 − 2
√

2)y2), and one can check by hand that it indeed preserves

the lattice j(Ok). Recall that a basis of this lattice is {(1, 1), (
√

2,−
√

2)}. In this

basis, the matrix of m is A =

(
3 4
2 3

)
, so we see that Mk is a T2-bundle over S1

with monodromy A, which is hyperbolic. The Liouville pair we constructed yields
two contact structures which rotate in opposite directions between the stable and
unstable foliations of the Anosov flow defined by the monodromy (cf. [Mit95]).

7.5. Geiges pairs and Geiges groups. The idea of Geiges in [Gei94] was to
consider a special class of Liouville pairs (without the general definition) that satisfy
a much stronger algebraic condition, and to look for examples among left-invariant
contact forms on Lie groups. The particular groups that Geiges considered turn
out to be a subfamily of the ones that we’ve studied above.

Definition. A Geiges pair on an oriented manifold M2n+1 is a pair of contact
forms α+ and α− on M such that:

• α+ ∧ dαn+ = −α− ∧ dαn− > 0, and

• for all 0 ≤ k ≤ n− 1, α± ∧ dαk± ∧ dαn−k∓ = 0.

A version of [Gei94, Proposition 1] is then the simple observation that Geiges
pairs are also Liouville pairs. Note that the Liouville pairs we constructed in the
preceding section are Geiges pairs in dimensions 1 and 3, but not in higher dimen-
sions in general.

Geiges constructed in each odd dimension 2n − 1 a Lie group G2n−1 admitting
a left-invariant Geiges pair, and also found co-compact lattices in these groups in
dimensions 3 and 5, thus giving examples of compact Liouville domains with two
boundary components in dimensions 4 and 6. We shall now show that our number
theoretic construction can also be used to find co-compact lattices for all the Geiges
groups, implying the existence of Geiges pairs on some closed manifold in every odd
dimension.

Proposition 7.9. For any positive integer n, there is an isomorphism between
G2n−1 and Gr,s1 where r = 1 if n is odd, r = 2 if n is even, and s = (n− r)/2.

The remainder of this section is devoted to the proof of this isomorphism. The
pairs constructed by Geiges have a nice form in the basis of the Lie algebra he con-
sidered, but our isomorphism will not preserve this basis in any nice way. Of course,
the point of our description of these groups was that it makes the construction of
co-compact lattices much easier.

First we recall the definition of the Geiges group G2n−1. For each positive integer
n, let A denote the n× n matrix

A =


0 −1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1
−1 0 . . . . . . 0

 .

We define the (2n− 1)-dimensional Geiges group G2n−1 as the semi-direct product
Rn−1 nA Rn, where (y1, . . . , yn−1) acts as exp(y1A + · · · + yn−1A

n−1) on Rn. Re-
versing the sign of the first vector in the canonical basis of Rn, one sees that A is
similar to the matrix of cyclic permutation of this basis. In particular, all powers
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of A appearing in the action have vanishing trace, because powers between 1 and
n − 1 of this permutation have no nontrivial fixed points, thus no diagonal term
can appear.

The matrix A is orthogonal and has characteristic polynomial Xn − 1, so its
eigenvalues are the nth roots of unity. We denote by Rα the 2× 2 rotation matrix
with angle α and set θ = 2π/n. Then A is similar to a block diagonal matrix
B = diag(1, Rθ, . . . , Rsθ) if r = 1, or B = diag(1,−1, Rθ, . . . , Rsθ) if r = 2. Choose
an invertible matrix P such that A = P−1BP . The map (y, x) 7→ (y, Px) is now an
isomorphism Rn−1nARn → Rn−1nBRn, where we define the latter group using B
instead of A to construct the Rn−1-action analogously.

To simplify the notation, we now assume that n is odd, so r = 1 and s = (n−1)/2;
the other case is completely analogous. The matrix B can be seen as acting on
R × Cs, with Rθ acting as multiplication by eiθ. The matrix ρ(y) = y1B + · · · +
yn−1B

n−1 for y ∈ Rn−1 thus splits into block form as diag(ρ0(y), ρ1(y), . . . , ρs(y))
for some linear maps ρ0 : Rn−1 → R and ρi : Rn−1 → C, i = 1, . . . , s. Using the
identification Gr,s = (R×Cs)n (R×Cs), we can now write down an injective group
homomorphism

Rn−1 nB (R× Cs)→ Gr,s(
y, (x, z1, . . . , zs)

)
7→
(
(ρ0(y), ρ1(y), . . . , ρs(y)), (x, z1, . . . , zs)

)
.

Since B is similar to A and each power of A appearing in the definition of the Geiges
group has vanishing trace, the same is true for B. After taking the exponential,
this translates to the fact that the above map actually takes values in the subgroup

Gr,s1 : indeed,
∣∣exp(eiθ)

∣∣2 = exp(2 Re eiθ) = exp(trRθ). We conclude that it is
an isomorphism to Gr,s1 since the dimensions match. The desired isomorphism
from G2n−1 to Gr,s1 is now obtained by composing the two isomorphisms we’ve
constructed.

8. Lutz twists and Giroux torsion in higher dimensions

In this section we examine the (2n−1)-dimensional generalizations of Giroux tor-
sion and Lutz twists that arise from any closed (2n− 3)-dimensional manifold with
a Liouville pair. We will begin with general considerations and then turn to specific
examples constructed using the Liouville manifolds of §7 to prove Theorems A and
E (in §8.3) and G (in §8.4) from the introduction.

Throughout the following, we choose an integer n ≥ 2 and assume M to be a
closed oriented (2n− 3)-dimensional manifold with a fixed Liouville pair (α+, α−),
writing the resulting positive/negative contact structures as ξ± = kerα±. We will
often consider manifolds of the form R× S1 ×M or S1 × S1 ×M , with the natural
coordinates on the first two factors denoted by s and t respectively.

8.1. Torsion domains and the Lutz-Mori twist. Given M with Liouville pair
(α+, α−), we define a 1-form on R× S1 ×M by

(8.1) λGT =
1 + cos s

2
α+ +

1− cos s

2
α− + (sin s) dt,

and denote ξGT := kerλGT.

Proposition 8.1. The co-oriented distribution ξGT defined above is a positive con-
tact structure on R × S1 ×M , which can be viewed as an infinite chain of Giroux
domains [kπ, (k + 1)π]× S1 ×M = (M × [kπ, (k + 1)π])× S1 glued together.
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Proof. Let ϕ : (0, π) → R denote the orientation reversing diffeomorphism defined
by ϕ(s) = ln 1+cos s

sin s . This induces an orientation preserving diffeomorphism from

the interior of Σ := M × [0, π] to R ×M , so pulling back β := 1
2 (euα+ + e−uα−)

gives a Liouville form which defines on Σ the structure of an ideal Liouville domain.
Regarding ∂Σ as the zero-set of the function sin s and writing u = ϕ(s), the Giroux
domain Σ× S1, then inherits the contact form

λGT = (sin s) ·
[
dt+

1

2

(
euα+ + e−uα−

)]
,

proving that λGT is indeed a positive contact form onM×[0, π]×S1 = [0, π]×S1×M .
A similar argument proves the contact condition on [π, 2π]× S1 ×M , and the rest
follows by periodicity. �

For any positive integer k, one can then define the Giroux 2kπ-torsion domain
modeled on (M,α+, α−) as ([0, 2kπ]× S1 ×M,λGT).

The fact that Giroux torsion is a filling obstruction in dimension three now
generalizes to the following immediate consequence of Theorem 4.13. Note that for
the case n = 2, the additional topological condition giving an obstruction to weak
fillability is equivalent to the condition that the embedding [0, 2π]× S1 ×M ↪→ V
should separate V .

Corollary 8.2. If (V, ξ) is a closed (2n−1)-dimensional contact manifold admitting
a contact embedding ι : ([0, 2π]× S1 ×M, ξGT) ↪→ (V, ξ), then (V, ξ) is not strongly
fillable. Moreover, if ι∗([S1] × C) = 0 ∈ H2(V ;R) for every C ∈ H1(M ;R), then
(V, ξ) is also not weakly fillable. �

The torsion domains ([0, 2kπ]× S1×M, ξGT) allow us to define a “twisting” op-
eration on contact structures that generalizes the 3-dimensional Lutz modification
along a pre-Lagrangian torus with closed leaves, see [CGH09, Section 1.4]. Note
that for any k, both boundary components of [0, 2kπ]× S1 ×M are ξGT-round hy-
persurfaces modeled on (M, ξ+) (see §4.1). Now if (V, ξ) is any (2n−1)-dimensional
contact manifold containing a ξ-round hypersurface H ⊂ V modeled on (M, ξ+),
then we can cut V open along H and insert ([0, 2kπ]× S1 ×M, ξGT) such that the
contact structures glue together smoothly. The resulting manifold is diffeomorphic
to V , and it determines a new contact structure ξk on V uniquely up to isotopy.
We shall say in this case that ξk is obtained from ξ by a k-fold Lutz-Mori twist
along H (we use the name Mori to emphasize that A. Mori [Mor09] introduced a
similar modification along a codimension 2 contact submanifold in dimension 5, see
below).

Recall that any positive co-oriented contact structure ξ on an oriented (2n− 1)-
dimensional manifold V induces an almost contact structure on V , i.e. a reduction
of the structure group of TV to U(n−1). For our purposes, we can regard an almost
contact structure as equivalent to a choice of co-oriented hyperplane distribution
ξ ⊂ TV together with a symplectic structure on the bundle ξ → V , and this choice
is determined uniquely up to homotopy when ξ is contact. The homotopy class of
almost contact structures amounts to a “classical” invariant that one can use to
distinguish non-isotopic contact structures. As we will see, one of the important
properties of the Lutz-Mori twist is that it does not change this invariant, though
it can change the isomorphism class of the contact structure.
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Theorem 8.3. Suppose (V, ξ) is any contact manifold containing a closed ξ-round
hypersurface H modeled on (M, ξ+), where ξ+ = kerα+ and (α+, α−) is a Liouville
pair on M . Then for any positive integer k, one can modify ξ near H by the k-
fold Lutz-Mori twist as described above to define a contact structure ξk with the
following properties:

(1) ξ and ξk are homotopic through a family of almost contact structures.
(2) (V, ξk) is not strongly fillable if V is closed.
(3) If V is closed and the natural map H1(M ;R) → H2(V ;R) induced by the

inclusion S1 ×M = H ↪→ V is trivial, then (V, ξk) is not weakly fillable.

Before proving this theorem, we note the following characterization of Liouville
pairs, the proof of which is a simple computation. It will be useful for understanding
homotopy classes of almost contact structures as well as Reeb vector fields in the
next section.

Lemma 8.4. A pair of 1-forms (α+, α−) on an oriented (2n − 1)-dimensional
manifold M is a Liouville pair if and only if for every pair of constants C+, C− ≥ 0
not both zero,

(C+α+ − C−α−) ∧ (C+ dα+ + C− dα−)
n−1

> 0 .

�

Proof of Theorem 8.3. The last two statements are simply Corollary 8.2. To prove
the first, we can model the Lutz-Mori twist as follows. By Lemma 4.1, a neigh-
borhood of H in (V, ξ) can be identified with a neighborhood of {0} × S1 ×M in
(R × S1 ×M, ξGT), i.e. with ((−ε, ε) × S1 ×M, ξGT) for ε > 0 sufficiently small.
Then given k, choose a diffeomorphism ϕk : (−ε, ε) → (−ε, 2πk + ε) as shown in
Fig. 5, with fixed slope 1 outside the interval (ε/3, 2ε/3), and define a new contact
form on (−ε, ε)× S1 ×M by

λk :=
1 + cosϕk(s)

2
α+ +

1− cosϕk(s)

2
α− + (sinϕk(s)) dt .

For convenience, let us also set ϕ0(s) = s, so λ0 := λGT and ξ0 := ξGT. Then it will
suffice to show that for each integer k ≥ 0, the almost contact structure induced by
ξk on (−ε, ε) × S1 ×M admits a compactly supported homotopy through almost
contact structures to a fixed almost contact structure independent of k.

To see this, choose a smooth function ψ : [0, ε] → [0, 1] which vanishes near the
boundary and equals 1 precisely on [ε/3, 2ε/3] (see Fig. 5), and for τ ∈ [0, 1], define
a smooth 1-parameter family of nowhere zero 1-forms and co-oriented hyperplane
fields by

λk,τ = [1− τψ(s)]λk + τψ(s) ds, ξk,τ = kerλk,τ .

We have λk,τ = λk outside of some compact subset of (0, ε) × S1 ×M for all τ ,
while λk,0 ≡ λk and λk,1 is everywhere independent of k. This shows that the
homotopy type of ξk as a co-oriented hyperplane field is independent of k. It
remains only to show that the homotopy {ξk,τ}τ∈[0,1] can be accompanied by a
homotopy {Ωk,τ}τ∈[0,1] of symplectic bundle structures such that Ωk,0 = dλk and
Ωk,1 has no k-dependence.

We claim first that λk,τ is always contact, with the exception of λk,1 = ds on

[ε/3, 2ε/3] × S1 ×M . Indeed, λk,τ ∧ (dλk,τ )
n−1

= (1 − τψ)nλk ∧ (dλk)n−1 since
the term τψ(s) ds vanishes in this product; firstly it is closed, and secondly the
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Figure 5. The function ϕk is a diffeomorphism from (−ε, ε) onto
(−ε, 2πk + ε) that has slope 1 outside [ε/3, 2ε/3]. The function ψ
is 1 on the interval [ε/3, 2ε/3] and falls off to zero.

only term where dt appears in dλk is a multiple of ds ∧ dt. Since λk is contact,
it follows that λk,τ also is whenever τψ < 1. Thus dλk,τ defines a suitable family
of symplectic bundle structures for τ < 1, which we next would like to modify
so that it extends to τ = 1. To facilitate this, observe that whenever τ and ψ
are both close to 1, the projection along the s-direction restricts to a fiberwise
isomorphism ξk,τ → T (S1 ×M). Thus any symplectic bundle structure Ω on ξk,τ
can be identified via this isomorphism with an s-dependent family of nondegenerate
(but not necessarily closed) 2-forms Ω̂(s) on S1 ×M . For Ω = dλk,τ in particular,

we find that d̂λk,τ (s) belongs to the contractible space Ξ of 2-forms on S1 ×M
having the form

ω := C+ dα+ + C− dα− + δ α+ ∧ α− +B dt ∧ (C+α+ − C−α−)

for some constants C+, C− ≥ 0, B > 0 and δ ∈ R, where C+ and C− are assumed

not both zero. In the case of d̂λk,τ (s), one can compute:

C± =
1± cosϕk

2
, δ = −1− τψ

2τψ
ϕ′k sinϕk and B =

1− τψ
τψ

ϕ′k .

It turns out that any 2-form in Ξ is nondegenerate since

ωn = (n− 1)B dt ∧ (C+α+ − C−α−) ∧ (C+ dα+ + C− dα−)n−1

is nonzero due to Lemma 8.4. We can therefore solve the extension problem to

modify d̂λk,τ (s) for τ near 1 to a smooth homotopy of nondegenerate 2-forms that

match d̂λk,τ (s) outside a neighborhood of {ε/3 ≤ s ≤ 2ε/3} but also extend to
τ = 1 as nondegenerate forms with no dependence on k. Pulling back through the
fiberwise isomorphism ξk,τ → T (S1 ×M), this determines a homotopy of almost
contact structures as desired. �

The original Lutz twist in dimension three modifies a contact structure in the
neighborhood of a transverse knot to produce one that is always overtwisted, and
Mori [Mor09] generalized this to an operation on contact 5-manifolds along certain
special contact submanifolds of codimension 2. In our context, Mori’s construction
generalizes as follows: suppose (V, ξ) is a (2n − 1)-dimensional contact manifold
containing a contact submanifold M ⊂ V of codimension 2 with trivial normal
bundle such that ξ∩TM = ξ+. For any k, let (Yk, ξGT) denote the result of blowing
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down ([0, 2kπ]× S1 ×M, ξGT) along the ξGT-round hypersurface {0} × S1 ×M as
described in §4.1. We can then remove a small neighborhood of M from (V, ξ) and
glue in a correspondingly small neighborhood of (Yk, ξGT) ⊂ (Yk+1, ξGT) such that
the contact structures match up. The resulting manifold is again diffeomorphic
to V and determines a new contact structure ξk up to isotopy, and we shall say
that ξk is obtained from ξ by a k-fold Lutz-Mori twist along M .

Theorem 8.5. Suppose (V, ξ) contains a closed codimension 2 contact submanifold
M ⊂ V with trivial normal bundle such that ξ ∩ TM = ξ+ where ξ+ = kerα+ for
some Liouville pair (α+, α−) on M . Then for any positive integer k, one can
modify ξ near M by a k-fold Lutz-Mori twist as described above to define a contact
structure ξk with the following properties:

(1) ξk and ξ are homotopic through a family of almost contact structures.
(2) (V, ξk) is PS-overtwisted (cf. Definition 3.2) and not weakly fillable (if V

is closed).

Proof. Since the homotopy of almost contact structures in our proof of Theorem 8.3
had compact support in (0, ε)×S1×M , the argument can be carried over verbatim
to the present context to prove the first statement. The presence of a bLob can
be deduced from the general Proposition 4.9, but also much more directly for the
concrete examples we discussed in §7. Indeed, one can check that the torus bundles
on which we constructed Liouville pairs (α+, α−) always contain an n-torus T on
which both α+ and α− vanish. In [0, 2π]×S1×M , the contact form λGT induces on
[0, π]×S1×T the integrable 1-form (sin s) dt, whose kernel is singular exactly along
the boundary. Blowing down {0} × S1 ×M turns this domain into a plastikstufe
inside (Yk, ξGT).

Non-fillability can also be deduced directly from Theorem 6.1, with the tech-
nical advantage that it does not require any semipositivity assumption thanks to
the polyfold technology for holomorphic spheres [HWZ11]. (The corresponding
technology for holomorphic disks remains under development.) �

Remark 8.6. In the 3-dimensional case one can also define the so-called “half-
Lutz twist” along a positively transverse knot, which both changes the homotopy
class of the contact structure and makes it overtwisted, producing a negatively
transverse knot at the core of the inserted tube. The equivalent operation here
would be defined by replacing a neighborhood of (M, ξ+) in (V, ξ) with the domain
([π, 2π]× S1 ×M, ξGT) blown down along {π}× S1 ×M . A variation on the above
argument shows that the resulting contact manifold is also PS-overtwisted, and
in this case the submanifold M at the center of the inserted “tube” inherits the
negative contact structure ξ− instead of ξ+.

It is not remotely clear under what circumstances in general one can say that
the modification from ξ to ξk or ξ` produces non-isomorphic contact structures
for k 6= `, though we will show in the next few subsections that this is at least
sometimes the case for Lutz-Mori twists along round hypersurfaces. In light of
the flexibility exhibited by overtwisted contact structures in dimension three, the
following natural question arises:

Question. If ξk and ξ` are obtained from the same contact structure by a k-fold
and `-fold Lutz-Mori twist respectively along a fixed contact submanifold of codi-
mension 2, when are they isomorphic?
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Remark 8.7. It should be emphasized that Lutz-Mori twists cannot be performed
along arbitrary round hypersurfaces or codimension 2 contact submanifolds: we
always need to assume that the contact structure restricted to the submanifold M
admits a contact form belonging to a Liouville pair. This is a serious constraint,
as there are many smooth manifolds that are known to admit contact structures
but not Liouville pairs: for instance, by [Etn04] and [ABW10], this is the case for
any 3-manifold whose contact structures are all known to be planar (e.g. S3 and
S1 × S2) or partially planar (e.g. T3), as these can never admit strong symplectic
semifillings with disconnected boundary. The fact that 3-dimensional Lutz twists
can be inserted along any contact submanifold (here transverse knots) can then
be seen as a consequence of the fact that every contact form on every closed 1-
dimensional manifold obviously belongs to a Liouville pair.

8.2. Liouville pairs and Reeb vector fields. In this section we describe the
Reeb vector fields corresponding to contact forms coming from Liouville pairs.

Lemma 8.4 implies that for any Liouville pair (α+, α−) and constants C+, C− ≥ 0
that do not both vanish, the 2-form C+ dα+ +C− dα− has maximal rank. Its kernel
therefore defines a nonsingular line field on M .

Definition. A Liouville pair (α+, α−) is called hypertight if for every pair of
constants C+, C− ≥ 0 that are not both zero, M admits no contractible loops
tangent to ker (C+ dα+ + C− dα−).

In particular, this condition implies that α+ and α− each admit no contractible
closed Reeb orbits. As one can check, nonzero left-invariant vector fields on the
Lie groups Gr,s1 of §7 never have closed orbits, thus we have the following useful
observation:

Proposition 8.8. All the Liouville pairs constructed in §7 are hypertight.

The following computation will be useful for understanding Reeb vector fields on
our examples in the next two subsections. As a simple application, it immediately
implies that whenever the pair (α+, α−) is hypertight, λGT admits no contractible
closed Reeb orbits.

Lemma 8.9. Suppose (α+, α−) is a hypertight Liouville pair on a manifold M
of dimension 2n − 3 ≥ 1, and f, g, h : R → R are smooth functions such that f
and g are both nonnegative and never vanish simultaneously, and the 1-form on
R× S1 ×M defined by

λ := f(s)α+ + g(s)α− + h(s) dt

is contact. Then the Reeb vector field Rλ associated to λ has the form Rλ(s, t,m) =
Xs(m) + u(s) ∂t, where u : R → R is a smooth function and Xs is a smooth 1-
parameter family of vector fields on M , each of which either vanishes identically or
has no contractible closed orbits.

Proof. Computing λ ∧ (dλ)n−1, we find that the contact condition implies

(8.2) [(hf ′ − h′f)α+ + (hg′ − h′g)α−] ∧ (f dα+ + g dα−)n−2 6= 0,

thus there is for each s ∈ R a unique vector field Xs on M satisfying the conditions

(hf ′ − h′f)α+(Xs) + (hg′ − h′g)α−(Xs) = −h′,
f dα+(Xs, ·) + g dα−(Xs, ·) = 0,
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This vector field vanishes precisely when h′(s) = 0, and otherwise it has no con-
tractible orbits due to the hypertightness assumption. The relation (8.2) also im-
plies that h(s) and h′(s) can never simultaneously vanish, thus one can define a
function u : R→ R by

u(s) =

{
1
h [1− f α+(Xs)− g α−(Xs)] when h(s) 6= 0,

− 1
h′ [f ′ α+(Xs) + g′ α−(Xs)] when h(s) = 0.

With these definitions, it is straightforward to check that dλ(Xs + u(s) ∂t, ·) = 0
and λ(Xs + u(s) ∂t) = 1. �

8.3. A sequence of contact structures on T2 ×M . In order to prove Theo-
rems A and E from the introduction, we now consider an example that generalizes
the well-known sequence of weakly but not strongly fillable contact structures on T3

[Gir94, Eli96]. Assume as usual that M has a Liouville pair (α+, α−), and define
for each positive integer k a contact structure ξk on T2×M by identifying the latter
with (R/2kπZ) × S1 ×M and setting ξk := ξGT via (8.1). Theorems A and E are
then consequences of the following result, together with Example 8.11 below.

Theorem 8.10. For any closed manifold M with a Liouville pair (α+, α−), the
sequence of contact structures {ξk}k>0 on T2 ×M defined above has the following
properties:

(1) (T2 ×M, ξ1) is exactly fillable.
(2) (T2 ×M, ξk) is not strongly fillable for any k ≥ 2.
(3) For any k, `, ξk and ξ` are homotopic through a family of almost contact

structures.
(4) If (α+, α−) is hypertight (see Definition 8.2) then every ξk for k ∈ N is

hypertight, and no two of these contact structures are isotopic. If addition-
ally π1(M) has trivial center, then no two of these contact structures are
contactomorphic.

(5) Suppose additionally that S1 ×M admits a closed 2-form ω such that for
some constants c+, c− > 0 and all sufficiently small ε > 0, εω + c+dα+ +
c−dα− is symplectic on S1 ×M . Then (T2 ×M, ξk) is weakly fillable for
every k.

In particular, the first four statements are true for all the examples of §7 with
dimM ≥ 3 and s = 0 (see Proposition 8.8 and Lemma 7.8), and the fifth statement
is also true when dimM = 3, so M may be any T2-bundle over S1 with hyperbolic
monodromy (see the discussion following Proposition 7.4).

Example 8.11. We do not know any examples of Liouville pairs with dimM ≥ 5
for which we can verify the last condition, and this is why Theorem E in the in-
troduction is stated only for dimension five. For dimM = 1, the condition is the
trivial observation that T2 admits an area form, and our argument will then repro-
duce Giroux’s construction [Gir94] of weak fillings for the tight contact structures
on T3, which directly inspired our general case. Theorem E depends on finding
closed 3-manifolds M with Liouville pairs such that S1×M is symplectic, and this
is also not hard. Every T2-bundle over S1 with hyperbolic monodromy admits a
hypertight Liouville pair that can be written as follows: on R×R2 with coordinates
(t, x, y) let

α± = ±et dx+ e−t dy .
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Then if A ∈ SL(2,Z) has eigenvalues e±τ for τ > 0, one can find a lattice ΛA ⊂ R2

which is preserved by the linear transformation (x, y) 7→ (e−τx, eτy), so that α+

and α− both descend to the mapping torus

MA :=
(
R× (R2/ΛA)

)/
(t, x, y) ∼ (t+ τ, e−τx, eτy) .

Since MA fibers over S1, S1 ×MA admits a symplectic form, and we can write it
explicitly as

ω = dφ ∧ dt+ dx ∧ dy ,
where φ denotes the additional S1-coordinate. This form satisfies ω ∧ dα± = 0,
hence εω + c+ dα+ + c− dα− is symplectic for all constants ε > 0 and c± ∈ R.

Our argument for distinguishing the contact structures ξk for different values
of k will use cylindrical contact homology as sketched by Eliashberg-Givental-Hofer
[EGH00], a theory which in its most general form has not yet been rigorously defined
due to the difficulty of achieving transversality for multiply covered holomorphic
curves. In our situation however, we are in the lucky position of being able to
rule out multiply covered curves topologically. Suppose (V, ξ) is a closed contact
manifold and ā denotes a free homotopy class of loops S1 → V . We shall say that
a contact form λ for (V, ξ) is ā-admissible if all its Reeb orbits in the homotopy
class ā are Morse-Bott and their periods are uniformly bounded, and there are no
contractible Reeb orbits. The idea sketched in [EGH00] is that if λ is nondegenerate,
one should define a chain complex generated by a certain class of Reeb orbits
homotopic to ā, with the differential counting rigid holomorphic cylinders in the
symplectization for a generic choice of almost complex structure adapted to λ.
The resulting homology is meant to depend only on (V, ξ) and ā up to natural
isomorphisms, so we denote it by HC ā∗ (V, ξ). Bourgeois [Bou02a] has also explained
how to extend this definition to Morse-Bott contact forms by counting so-called
“holomorphic cascades.”

Lemma 8.12. Suppose ā is a free homotopy class of loops in (V, ξ) which is prim-
itive, i.e. it is not a positive multiple of any other homotopy class, and suppose
(V, ξ) admits an ā-admissible contact form. Then the cylindrical contact homology
HC ā∗ (V, ξ) sketched in [EGH00] is well defined and can be computed as described
in [Bou02a] by counting holomorphic cascades for generic data associated to any
ā-admissible contact form.

Proof. We only need to supplement the standard Floer-theoretic picture with the
following observations. First, every Reeb orbit homotopic to ā must be simply
covered, thus every holomorphic curve having only one positive end, which is as-
ymptotic to such an orbit, is guaranteed to be somewhere injective. Transversality
for these curves can therefore be achieved via a generic perturbation of the al-
most complex structure, using the standard result of Dragnev [Dra04] (see also the
appendix of [Bou06]). Secondly, if λ has no contractible Reeb orbits and λ′ is a
sufficiently small nondegenerate perturbation of it as in [Bou02a], then one may
assume every contractible Reeb orbit for λ′ to have arbitrarily large period. Then
since the periods of Reeb orbits homotopic to ā are bounded, one can choose a
generic almost complex structure J adapted to λ′ and define a subcomplex of the
usual complex for the data (λ′, J) by taking as generators all the Reeb orbits up
to a certain period, chosen so that all perturbations of the Morse-Bott orbits ho-
motopic to ā are included but holomorphic planes can never appear in the relevant
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compactifications because they have too much energy. For appropriate choices of
the period cutoff, the standard construction of natural isomorphisms (i.e. by count-
ing rigid holomorphic cylinders in symplectic cobordisms) suffices to prove that the
homology is independent of auxiliary choices. �

Proof of Theorem 8.10. Statements (2) and (3) in the theorem follow immediately
from Corollary 8.2 and Theorem 8.3 respectively. We shall now prove statements (1),
(5) and (4), in that order.

Proof of (1). An exact filling of (T2×M, ξ1) can be constructed as the product of
two Liouville domains of the form ([−1, 1]×S1, σ dθ) and ([−c, c]×M, esα++e−sα−)
with rounded corners, where c > 0 may be assumed arbitrarily large and (σ, θ)
denote the natural coordinates on [−1, 1]× S1.

Proof of (5). If S1×M also admits a 2-form ω as in the condition of statement (5),
then we can modify the exact filling constructed above to define weak fillings of
every (T2 × M, ξk), using the fact that the latter is naturally a k-fold cover of
(T2 ×M, ξ1). Indeed, the assumption implies that we can find s0 ∈ (−1, 1) such
that for any ε > 0 sufficiently small, the 2-form

(8.3) εω + es0 dα+ + e−s0 dα−

is symplectic on S1 ×M . Now observe that since the weak filling condition is open
with respect to the symplectic form, ([−1, 1] × S1 × [−c, c] ×M,ωε) with rounded
corners and

ωε := d
[
es α+ + e−s α− + σ dθ

]
+ εω

is also a weak filling of (T2 × M, ξ1) if ε > 0 is sufficiently small, and for any
σ0 ∈ (−1, 1) its restriction to the interior submanifold

X0 := {σ0} × S1 × {s0} ×M ⊂ ([−1, 1]× S1 × [−c, c]×M,ωε)

is precisely (8.3). Thus we have a weak filling of (T2 × M, ξ1) diffeomorphic to
D2 × S1 ×M and containing {0} × S1 ×M as a symplectic submanifold. For any
k, the k-fold symplectic branched cover of this, branched at {0} × S1 ×M , gives a
weak filling of (T2 ×M, ξk).

Proof of (4). Assume now that (α+, α−) is a hypertight Liouville pair. Lemma 8.9
then implies that λGT has no contractible Reeb orbits.

We next compute the cylindrical contact homology of (T2 × M, ξk), which is
a straightforward adaptation of the calculation for the tight 3-tori explained in
[Bou09, §4.2]. Let ā denote the free homotopy class of the loop S1 → S1 × S1 ×
M : φ 7→ (const, φ, const). Applying Lemma 8.9 again, the Reeb orbits of λGT in
homotopy class ā on R/(2πkZ)× S1×M consist of precisely k Morse-Bott families
foliating the submanifolds {cos s = 0, sin s = 1} ∼= S1 ×M . Moreover, all of these
orbits have the same period, thus our contact form is ā-admissible in the sense
of Lemma 8.12. Now for any choice of admissible almost complex structure J on
the symplectization of (T2×M, ξk), there can never be any index 1 J-holomorphic
cylinders connecting two orbits in homotopy class ā since it would have zero energy.
After making a nondegenerate perturbation as explained in [Bou09], nondegenerate
orbits in homotopy class ā are in one-to-one correspondence with the critical points
of a Morse function on the parameter space of the Morse-Bott families, i.e. on M .
Similarly, the holomorphic cylinders for the perturbed data correspond to so-called
“holomorphic cascades” for the unperturbed data, and in the absence of actual
holomorphic cylinders, these are in one-to-one correspondence with gradient flow
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lines on M . We conclude that HC ā∗ (T2 ×M, ξk) is isomorphic (up to a shift in the
grading) to the direct sum of k copies of the Morse homology of M , which is simply
the singular homology H∗(M).

Observe also that if b̄ 6= ā is any other free homotopy class of loops in T2 ×M
whose projections to M are contractible, then there are no Reeb orbits homotopic
to b̄ at all, hence HC b̄∗(T2 ×M, ξk) is trivial.

The above computation shows that if k 6= `, then there can be no contacto-
morphism (T2 ×M, ξk)→ (T2 ×M, ξ`) whose action on π1(T2 ×M) preserves the
subgroup

G := π1(T2)× {1} ⊂ π1(T2)× π1(M) = π1(T2 ×M).

Indeed, we have computed the cylindrical contact homology for all homotopy classes
in this subgroup, and by Lemma 8.12, these computations would have to match if
such a contactomorphism existed. This already implies that ξk and ξ` cannot be
isotopic. To show that they are not even diffeomorphic, we add the assumption that
π1(M) has trivial center: then the center of π1(T2 ×M) is G, which is therefore
preserved by every automorphism of π1(T2 ×M). �

8.4. Hypertight but not weakly fillable. We now construct a family of exam-
ples in all dimensions that implies Theorem G from the introduction. Throughout
this section, we denote by Σg the closed oriented surface of genus g, and by Σg,m
the compact oriented surface with genus g and m boundary components.

Theorem 8.13. Suppose M is any closed (2n−3)-dimensional manifold admitting
a hypertight Liouville pair. Then for any integer g > 0, Σ2g×M admits a sequence
of contact structures {ξk}k>0 with the following properties:

(1) (Σ2g ×M, ξ1) is exactly fillable.
(2) (Σ2g ×M, ξk) is not weakly fillable for any k ≥ 2.
(3) (Σ2g ×M, ξk) is hypertight for all k.
(4) For any k 6= `, ξk and ξ` are homotopic through a family of almost contact

structures but are not isotopic. If additionally π1(M) has trivial center and
is solvable, then they are not even contactomorphic.

In particular, all of these statements are true for the Liouville pairs defined from
totally real number fields in §7.

The contact structures ξk on Σ2g×M will be constructed using a simple general-
ization of the blow-down operation along round hypersurfaces that was introduced
in §4.1. To start with, we consider (Zk, ξGT) where Zk := [0, (2k − 1)π]× S1 ×M ,
so the two boundary components

∂+Zk := {0} × S1 ×M, ∂−Zk := {(2k − 1)π} × S1 ×M

are ξGT-round hypersurfaces modeled on (M, ξ+) and (−M, ξ−) respectively. At
∂+Zk in particular, we find by Lemma 4.1 a collar neighborhood identified with
([0, ε) × S1 ×M, ker(α+ + s dt)) for some ε > 0. Now choose a Liouville form β
on Σg,1 such that

∫
∂Σg,1

β = ε. Then ∂Σg,1 has a neighborhood N (∂Σg,1) ⊂
(Σg,1, β) that can be identified with ((0, ε]×S1, s dt), defining a natural embedding
Φ+ : N (∂Σg,1)×M ↪→ (0, ε]× S1×M ⊂ Zk with Φ∗+ξGT = ker(β+α+). Similarly,

the other end of Z̊k admits an orientation preserving embedding Φ− : N (∂Σg,1) ×
(−M) ↪→ Z̊k such that Φ∗−ξGT = ker(β + α−). We can therefore glue three pieces
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together to define

(Σ2g ×M, ξk) := (Σg,1 ×M, ker(β + α+)) ∪Φ+ (Z̊k, ξGT)

∪Φ− (Σg,1 × (−M), ker(β + α−)).

Note that if g = 0, this construction is equivalent to blowing down (Zk, ξGT) at both
boundary components as defined in §4.1, and we shall think of the more general
operation defined here as “blowing down with genus g.”

We now proceed to construct a model of (Σ2g ×M, ξk) with a more tractable
Reeb vector field. The disadvantage of using λGT for this purpose is that it cannot
easily be related to the normal forms α± + s dt coming from Lemma 4.1, as for
instance near ∂+Zk, the α−-term in λGT is small but not identically vanishing.
The following lemma allows us to eliminate it entirely after a small adjustment
which essentially replaces the Liouville form esα+ + e−sα− on R×M by one which
is explicitly the completion of a Liouville domain [−c, c]×M .

Lemma 8.14. Choose a smooth cutoff function ψ : R → [0, 1] that equals 0 on
(−∞, 0] and 1 on [1,∞). Then for any Liouville pair (α+, α−) on a (2n − 1)-
dimensional manifold M , the 1-form

β := ψ(c+ s) esα+ + ψ(c− s) e−sα−
is Liouville if c > 0 is a sufficiently large constant.

Proof. The claim is immediate whenever ψ′ = 0, so it will suffice to examine dβ on
the segments {−c ≤ s ≤ −c + 1} and {c − 1 ≤ s ≤ c}. On the former, we have
β = ψc(s)e

s α+ + e−sα− where ψc(s) := ψ(c+ s). Thus

dβn = nds ∧ (ψce
sα+ − e−sα− + ψ′ce

sα+) ∧ (ψce
s dα+ + e−s dα−)n−1

= ne−ns ds ∧
[
(ψce

2sα+ − α−) ∧ (ψce
2s dα+ + dα−)n−1

+ e2sψ′c α+ ∧ (ψce
2s dα+ + dα−)n−1

]
.

In this last expression, the first term in the brackets can be made arbitrarily close
to −α− ∧ dαn−1

− > 0 by assuming c > 0 large, while the second term can be made
arbitrarily close to 0, hence the sum is positive. A similar argument also works for
the segment {c− 1 ≤ s ≤ c}. �

Combining this lemma with the reparametrization trick in the proof of Proposi-
tion 8.1, we can now introduce a convenient modification of the contact form λGT:
on Zk = [0, (2k − 1)π]× S1 ×M , there exists a contact form of type

λk = f(s)α+ + g(s)α− + h(s) dt

for some smooth functions f, g, h : [0, (2k − 1)π] → R, such that for some small
constant ε > 0:

• λk = λGT on [2ε, (2k − 1)π − 2ε]× S1 ×M ,
• λk is everywhere C1-close to λGT,
• λk = α+ + s dt on [0, ε]× S1 ×M ,
• λk = α− + [(2k − 1)π − s] dt on [(2k − 1)π − ε, (2k − 1)π]× S1 ×M .

Then if β denotes the Liouville form on Σg,1 as described above with collar neigh-
borhood N (∂Σg,1) = (0, ε]× S1 in which β = s dt, we can smoothly glue Σg,1 ×M
with contact form λk := α++β to the interior of (Zk, λk) along (0, ε]×S1×M . Sim-
ilarly, defining the auxiliary coordinate s′ := (2k − 1)π − s ∈ [0, ε] on the opposite
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collar neighborhood, we can glue this neighborhood to Σg,1×M with contact form
λk := α−+β so that the coordinates (s′, t) match the collar N (∂Σg,1) = (0, ε]×S1.
The kernel of λk is now isotopic to ξk.

Proof of Theorem 8.13. The claim regarding almost contact structures follows by
the same argument as in Theorem 8.3. With this understood, we shall now proceed
to prove items (3) and (4) from the statement of the theorem, and after that prove
items (1) and (2).

Proof of (3) and (4). The contact form λk constructed above determines a Reeb
vector field Rλk that is given by Lemma 8.9 on [ε, (2k − 1)π − ε] × S1 ×M and
matches the Reeb vector fields of α+ and α− respectively on the two copies of
Σg,1 ×M . While this vector field does have nullhomologous closed orbits, none of
them are contractible if g > 0 since ∂Σg,1 is not contractible in Σ2g. Similarly, for
g > 0 one can define the cylindrical contact homology HC ā∗ (Σ2g ×M, ξk) for any
primitive homotopy class ā due to Lemma 8.12. A repeat of the argument in the
proof of Theorem 8.10 then shows that for k 6= `, there is no contactomorphism

(Σ2g ×M, ξk)→ (Σ2g ×M, ξ`)

whose action on π1(Σ2g×M) preserves π1(Σ2g). So in particular, ξk and ξ` are not
isotopic. Under the additional assumption on π1(M), they are not even contacto-
morphic due to Lemma 8.15 below.

Proof of (1). An exact filling of (Σ2g×M, ξ1) can be constructed as the product of
the two Liouville domains (Σg,1, β) and ([−c, c]×M, esα+ + e−sα−) for sufficiently
large c.

Proof of (2). Corollary 8.2 implies that (Σ2g ×M, ξk) is not weakly fillable for
k ≥ 3; note that here we need the fact that for any 1-cycle C in M , the 2-cycle
{const} × S1 × C in Zk ⊂ Σ2g ×M can be realized as the boundary of Σg,1 ×M
and is thus nullhomologous.

At this point we’ve proved everything except the fact that (Σ2g × M, ξ2) is
not weakly fillable. Since this already suffices to prove Theorem G, and the non-
fillability of ξ2 doesn’t quite follow from our previous results as stated, we shall
content ourselves with a sketch of the proof. The idea is analogous to the proof
of Theorem 6.1, but using a straightforward generalization of the surgery in §5 to
accommodate boundary components that are, in the terminology introduced above,
blown down with genus. In particular, (Σ2g ×M, ξ2) can be realized as a chain of
three Giroux domains G0 ∪ G1 ∪ G2 glued end to end, with the dangling ends of
G0 and G2 blown down with genus g. Now if we perform surgery to remove the
interiors of G0 and G1, we obtain a symplectic cobordism to a manifold with three
connected components

(M × Σg) t (M × S2) t (V ′, ξ′) ,

where (V ′, ξ′) is a weakly filled boundary component and the other two components
are foliated by symplectic submanifolds {∗} × Σg and {∗} × S2 respectively. Then
if (Σ2g ×M, ξ2) is assumed to be weakly fillable, one can derive a contradiction as
in the proof of Theorem 6.1 by examining the moduli space of holomorphic spheres
that emerge from the symplectic submanifolds {∗} × S2. This only involves one
feature not already present in the proof of Theorem 6.1: the holomorphic spheres
cannot approach the boundary component M ×Σg. This is guaranteed if one uses
a product complex structure near this boundary component, because then every
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somewhere injective holomorphic curve touching a neighborhood of it must be of
the form {∗} × Σg, and no sequence of holomorphic spheres can converge to any
cover of these curves since such a cover would necessarily have positive genus. �

In the above proof we used the following algebraic lemma, whose proof was kindly
explained to us by Yves de Cornulier.

Lemma 8.15. Suppose Σ is a closed oriented surface of genus at least two. If
G is any solvable group with trivial center, then any automorphism of π1(Σ) × G
preserves π1(Σ).

Proof. We set H = π1(Σ) × G. Our goal will be to show that G is the unique
maximal normal solvable subgroup of H, thus G is preserved by any automorphism.
Since G has trivial center, its centralizer in H is π1(Σ), which is therefore also
preserved by any automorphism.

We now prove the claim about G. Suppose G1 is a normal solvable subgroup
of H. The projection p(G1) of G1 into π1(Σ) is normal in π1(Σ) and solvable. We
now view π1(Σ) as a Zariski dense subgroup of PSL(2,R). The Zariski closure of
p(G1) is still solvable and is normal in the closure of π1(Σ), hence trivial because
PSL(2,R) is simple and not solvable. Thus p(G1) is trivial and G1 ⊂ G. �

Appendix A. Cotamed complex structures: Existence and convexity

A.1. Contractibility of the space of cotamed almost complex structures.
To go from the linear situation to global existence results on a manifold we will
need the following result.

Proposition 1.1 (Sévennec). The space of complex structures on a finite dimen-
sional vector space tamed by two given symplectic forms is either empty or con-
tractible.

Using the fact that the space of complex structures tamed by a symplectic form is
nonempty (which follows for instance by the linear Darboux theorem), and applying
the proposition above twice to the same symplectic form, we recover as a special
case the classical result of Gromov that states that the space of tamed complex
structures is contractible. The proof of the proposition uses the following two
lemmas, of which the first is more or less standard.

Lemma A.1 (Cayley, Sévennec). Let V be a real finite dimensional vector space
and J (V ) the space of complex structures on V . We can define for any fixed
J0 ∈ J (V ) a map

µJ0 : J 7→ (J + J0)−1 · (J − J0)

which is a diffeomorphism from

J ∗J0(V ) :=
{
J ∈ J (V ) | J + J0 ∈ GL(V )

}
to

A∗J0(V ) :=
{
A ∈ End(V ) | AJ0 = −J0A and A− I ∈ GL(V )

}
.

The inverse of this map is given by µ−1
J0

: A 7→ (A− I)J0(A− I)−1.

Proof. One can view A∗J0(V ) as the set of J0-complex antilinear maps that do not
have any eigenvalue equal to 1. Using the equations (J − J0) J0 = −J (J − J0) and
(J + J0) J0 = J (J + J0), one sees that the image of µJ0 consists of J0-complex
antilinear maps, and µJ0(J)− I = −2 (J + J0)−1 J0 is invertible. �
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Lemma A.2 (Sévennec). Let (V, ω) be a finite dimensional symplectic vector space
and denote by Jt(ω) ⊂ J (V ) the space of complex structures tamed by ω. Choosing
any J0 ∈ Jt(ω), it follows that Jt(ω) lies in J ∗J0(V ), and the image of Jt(ω) under
the associated map µJ0 is a convex domain in A∗J0(V ).

We first explain how to prove Proposition 1.1 using the above lemma. Suppose
there is a complex structure J0 tamed by ω0 and ω1. The space of cotamed com-
plex structures Jt(ω0) ∩ Jt(ω1) is then diffeomorphic under the map µJ0 to the
intersection of the convex subsets given by the lemma. This intersection is again
convex and hence contractible.

Proof of Lemma A.2. For any complex structure J tamed by ω, the endomorphism
J + J0 is invertible because for any nonzero w, we have ω

(
w, (J + J0)w

)
> 0, so in

particular (J + J0)w is not zero. This proves the first part of the lemma.
Now fix a nonzero vector v ∈ V , and let Cv be the set of A ∈ End(V ) that

anticommute with J0, and that satisfy

ω
(
(A− I) v, (A− I) J0v

)
= −ω

(
(A− I) v, J0(A+ I) v

)
> 0 .

We now prove that Cv ⊂ End(V ) is convex. Every segment As = (1− s)A0 + sA1

with s ∈ [0, 1] for arbitrary A0, A1 ∈ Cv defines a polynomial of degree 2

P (s) = −ω
(
(As − I) v, J0(As + I) v

)
,

and the above inequality corresponds to checking that P (s) is positive for all values
s ∈ [0, 1]. The leading coefficient −ω

(
(A1 − A0) v, J0(A1 − A0) v

)
of P (s) is never

positive, because J0 tames ω, so that P (s) is either a line or a parabola facing
downward. In both cases P (s) ≥ min{P (0), P (1)} > 0 for all s ∈ (0, 1) so the
inequality holds for the whole segment As.

Note that Cv 6= ∅ since 0 ∈ Cv. Define the intersection

C∗ :=
⋂
v 6=0

Cv ,

which is a nonempty convex subset of End(V ). In fact, one has C∗ ⊂ A∗J0(V ),
because if there were a matrix A ∈ C∗ with det(A− I) = 0, then A would have an
eigenvector w ∈ V with eigenvalue 1, but then −ω

(
(A− I)w, J0(A+ I)w

)
= 0 so

that A /∈ Cw.
Since C∗ lies in the domain of µ−1

J0
and Jt(ω) lies in the domain of µJ0 , we have

C∗ = µJ0
(
Jt(ω)

)
, so that the image of the complex structures tamed by ω is convex

as we wanted to show. �

A.2. Existence of a cotamed complex structure. In this appendix, we prove
Proposition 1.2, which we now recall:

Proposition 1.2. Let V be a finite dimensional real vector space equipped with
two symplectic forms ω0 and ω1. The following properties are equivalent:

(1) the segment between ω0 and ω1 consists of symplectic forms
(2) the ray starting at ω0 and directed by ω1 consists of symplectic forms
(3) there is a complex structure J on V tamed both by ω0 and by ω1.

The equivalence between (1) and (3) was explained to us by Jean-Claude Sikorav.
It relies on the simultaneous reduction of symplectic forms. Specifically, we need
[LR05, Theorem 9.1] which we shall state (in a slightly weakened form) and reprove
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(in its full force) below as Proposition A.3, since the very general context of [LR05]
makes it hard to read for people interested only in the symplectic case.

Recall that according to the linear Darboux theorem, any symplectic form on a
2n-dimensional vector space is represented in some basis by the standard matrix

Ω2n =

(
0 1
−1 0

)
.

We now want to understand what can be said for a pair of symplectic structures.
Below we give an approximate normal form which is sufficient for our purposes and
more pleasant to state than the precise result (cf. [LR05, Theorem 9.1]), though
the precise result can also be extracted from the proof that we will give at the end
of this section.

Proposition A.3. Let ω0 and ω1 be symplectic forms on a finite dimensional vector
space V . There exists a matrix A1 that splits into blocks of the form

(
0 λ
−λ 0

)
∈M2(R) and


0 0 µ ν
0 0 −ν µ
−µ ν 0 0
−ν −µ 0 0

 ∈M4(R)

for λ, ν 6= 0 with the following property: for any ε > 0, there is a basis of V such
that ω0 is represented by a block diagonal matrix with standard blocks Ω2k, and ω1

is represented by a matrix which is ε-close to A1.
If the linear segment between ω0 and ω1 consists of symplectic forms, then the

coefficients λ in the 2× 2-blocks of A1 described above cannot be negative.

The relation with cotamed complex structures will come from the following.

Proposition A.4.

(a) Let V = R2 with two antisymmetric bilinear forms ω0 and ω1 defined by
ωj(v, w) = vtAjw, where

A0 =

(
0 1
−1 0

)
and A1 =

(
0 λ
−λ 0

)
.

If λ > 0, then J =

(
0 −1
1 0

)
is tamed by both forms.

(b) Let V = R4, and let ω0 and ω1 be antisymmetric bilinear forms defined by
the matrixes

A0 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 and A1 =


0 0 λ µ
0 0 −µ λ
−λ µ 0 0
−µ −λ 0 0

 ,

with µ 6= 0. Then there exists a complex structure J on R4 that is tamed
by both forms.

Proof. We only need to prove (b). For simplicity write V as C2, and the matrices
A0 and A1 as

A0 =

(
0 1
−1 0

)
and A1 =

(
0 z
−z̄ 0

)
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with z = λ+ iµ = reiψ. The matrices

Jφ =

(
0 eiφ

−e−iφ 0

)
define complex structures on V , and it follows that A0Jφ = −

(
e−iφ 0

0 eiφ

)
is positive

definite if cosφ < 0, and A1Jφ = −r
(
ei(ψ−φ) 0

0 ei(φ−ψ)

)
is positive definite if cos(ψ −

φ) < 0. As long as ψ 6= π (which we have excluded by requiring that µ 6= 0), it
follows that we can choose φ such that φ ∈ (π/2, 3π/2) and φ− ψ ∈ (π/2, 3π/2) +
2πZ. �

Proof of Proposition 1.2. We first explain the easy equivalence between (1) and (2).
The (open) ray starting at ω0 and directed by ω1 and the open interval between ω0

and ω1 span the same cone in the space of antisymmetric bilinear forms. Since being
symplectic is invariant under nonzero scalar multiplication, we have the equivalence.

The implication (3) =⇒ (1) is also direct because, for any t ∈ [0, 1], we have(
(1− t)ω0 + t ω1

)
(v, Jv) = (1− t)ω0(v, Jv) + t ω1(v, Jv),

which is positive whenever v ∈ V is nonzero. So in particular, no such v can be in
the kernel of an element of the segment between ω0 and ω1.

To prove (1) =⇒ (3), we use the fact that by Proposition A.3, there is a matrix
A′1 that splits into certain standard blocks, such that we can find for any ε > 0 a
basis of V for which ω0 is in canonical form, and for which ω1 is represented by a
matrix that is ε-close to A′1.

If condition (1) holds, then the blocks of A′1 correspond to the ones described in
Proposition A.4, and we obtain the existence of a complex structure J on V that
is tamed both by the standard symplectic form and by A′1. By choosing ε > 0
sufficiently small, it follows that J is also tamed by ω0 and ω1, because tameness
is an open condition. �

Proof of Proposition A.3. The proof will proceed in several steps.
Decomposition into generalized eigenspaces. In the first step we shall

decompose V into suitable subspaces that are both ω0- and ω1-orthogonal.
Let ϕr : V → V ∗ for r = 0, 1 be the isomorphisms defined by ϕr(v) := ωr(v, ·).

We consider the endomorphism B = ϕ−1
0 ◦ ϕ1 of V so that ω1(v, w) = ω0(Bv,w).

The endomorphism B is invertible and it is ω0-symmetric since:

ω0(Bv,w) = ω1(v, w) = −ω1(w, v) = −ω0(Bw, v) = ω0(v,Bw) .

To define the generalized eigenspaces of B, complexify the vector space V to
obtain V C, and extend the ωr to sesquilinear forms ωC

r . A computation analogous
to the preceding one shows that B is ωC

0 -symmetric and we still have ωC
0 (v,Bw) =

ωC
1 (v, w).

The characteristic polynomial of B splits over C as P (X) =
∏
λ(X − λ)mλ , so

we can decompose V C into generalized eigenspaces

V C =
⊕

λ∈Sp(B)

EC
λ ; EC

λ = ker(B − λ)mλ .

Lemma A.5. If λ and µ are eigenvalues of B such that λ 6= µ̄, then EC
λ and EC

µ

are both ωC
0 - and ωC

1 -orthogonal.
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Proof. We prove by induction on k and l that ker(B − λ)k and ker(B − µ)l are
orthogonal.

To start the induction, note that if vλ ∈ ker(B − λ), and vµ ∈ ker(B − µ), then

(λ̄− µ)ωC
0 (vλ, vµ) = ωC

0

(
(B − µ̄) vλ, vµ

)
= ωC

0

(
vλ, (B − µ) vµ

)
= 0 ,

thus since λ 6= µ̄, it follows that ωC
0 (vλ, vµ) = 0. Similarly, ωC

1 (vλ, vµ) = ωC
0 (vλ, Bvµ) =

µωC
0 (vλ, vµ) = 0.
Assume now it has already been shown for the integers k and l that ker(B−λ)k

and ker(B−µ)l are both ωC
0 - and ωC

1 -orthogonal. Choose a vector v′λ ∈ ker(B−λ)k+1

and use the fact that Bv′λ = λ v′λ + w for some w ∈ ker(B − λ)k. Then we obtain
for any vµ ∈ ker(B − µ)l,

(λ̄− µ)l ωC
0 (v′λ, vµ) = (λ̄− µ)l−1 ωC

0

(
(B − µ̄) v′λ − w, vµ

)
= (λ̄− µ)l−1 ωC

0

(
(B − µ̄) v′λ, vµ

)
= ωC

0

(
v′λ, (B − µ)l vµ

)
= 0 ,

and also ωC
1 (v′λ, vµ) = ωC

0 (Bv′λ, vµ) = λ̄ ωC
0 (v′λ, vµ) + ωC

0 (w, vµ) = 0, which proves
the induction step from (k, l) to (k+1, l). Since λ and µ have completely symmetric
roles, this also explains how to go to (k, l + 1). �

We now relate this decomposition of V C to the initial real vector space V . For a
real eigenvalue λ, the intersection V ∩EC

λ defines a real subspace Eλ with dimREλ =
dimCE

C
λ . Complex conjugation defines an isomorphism EC

λ → EC
λ̄
, vλ 7→ v̄λ, and

we can write V ∩
(
EC
λ ⊕ EC

λ̄

)
for λ ∈ C \ R as the direct sum of real subspaces

E{λ,λ̄} =
{
v + v̄

∣∣ v ∈ EC
λ

}
⊕
{
i (v − v̄)

∣∣ v ∈ EC
λ

}
.

This way we find a decomposition of V into pairwise ω0- and ω1-orthogonal
subspaces

Eµ1 ⊕ · · · ⊕ Eµk ⊕ E{λ1,λ̄1} ⊕ · · · ⊕ E{λl,λ̄l}
with µ1, . . . , µk ∈ R \ {0}, and λ1, . . . , λl ∈ C \ R.

Blocks with real eigenvalue. For the following considerations, we restrict to
one of the subspaces Eλj with λj ∈ R, and denote λj for simplicity just by λ. We
will construct a basis of Eλ such that ω0 and ω1 have the particularly nice form
described in the proposition. Note that ω0 and ω1 are both nondegenerate on Eλ.

Let k+1 be the nilpotency index of B−λ, i.e. (B−λ)k+1 = 0 and (B−λ)k 6= 0.
Let v0 be an element of Eλ not in ker(B−λ)k. We set vj := ε−j(B−λ)jv0 to define
a collection of vectors v0, . . . , vk. Choose now a vector wk ∈ Eλ with ω0(vk, wk) = 1
and ω0(vj , wk) = 0 for every j 6= k, and define inductively wj−1 := ε−1 (B − λ)wj ,
or equivalently

Bwj = λwj + εwj−1

for j ≥ 1.

Lemma A.6. The vectors v0, . . . , vk, w0, . . . , wk are linearly independent and sat-
isfy the relations ωr(vj , vj′) = ωr(wj , wj′) = 0 for all r = 0, 1, and j, j′, and

ω0(vj , wj′) = δj,j′ and ω1(vj , wj′) = λ δj,j′ + ε δj,j′−1 .

Proof. We start by proving ωr(vj , vj′) = 0. For this we will use an induction on
|j − j′|. If j − j′ = 0 then the statement follows directly from the antisymmetry of
ωr. Suppose that the claim is true for j − j′ ≤ m and consider any j and j′ with
j − j′ = m+ 1 (in particular j ≥ 1). We have

ε ω0(vj , vj′) = ω0

(
(B − λ) vj−1, vj′

)
= ω1(vj−1, vj′)− λω0(vj−1, vj′) = 0
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by the induction hypothesis. Using the fact that Bvj′ = ε vj′+1 +λ vj′ , we compute

ω1(vj , vj′) = ω0(vj , Bvj′) = ε ω0(vj , vj′+1) + λω0(vj , vj′) .

The first term is zero by the induction hypothesis and the second one is zero because
of the preceding computation. The proof of ωr(wj , wj′) = 0 follows the same lines,
and will be omitted.

Note that

ω0(vj , wj′) = εj
′−k ω0

(
vj , (B − λ)k−j

′
wk
)

= εj
′−k ω0

(
(B − λ)k−j

′
vj , wk

)
= ω0(vk+j−j′ , wk) = δj,j′ ,

and in particular this implies that v0, . . . , vk, w0, . . . , wk are linearly independent
vectors with respect to which ω0 has standard form.

The remaining relation for ω1 can be obtained by

ω1(vj , wj′) = ω0(vj , Bwj′) = λω0(vj , wj′) + ε ω0(vj , wj′−1) = λ δj,j′ + ε δj,j′−1 . �

If we restrict ω0 and ω1 to the subspace E = span(v0, . . . , vk, w0, . . . , wk) and
represent them in this basis, we now find that ω0 is in standard form Ω2k and ω1

is represented by a matrix ε-close to λΩ2k.
To continue the proof, restrict ω0, ω1, and B to the ω0-symplectic complement

E′ of the space E. Note that E′ is stable under B because for u ∈ E′,

ω0(vj , Bu) = ω0(Bvj , u) = λω0(vj , u) + ε ω0(vj−1, u) = 0 ,

and similarly for ω0(wj , Bu) = 0. We can thus proceed as before to reduce all
eigenspaces Eλ with λ ∈ R to ω0-symplectic blocks in normal form.

Blocks with complex eigenvalue. We proceed now to the generalized com-
plex eigenspace EC

λ with λ ∈ C \ R. Let k be the largest integer for which
EC
λ 6= ker(B − λ)k, and construct as before a chain of vectors v0, . . . , vk ∈ EC

λ

by starting with an element v0 ∈ EC
λ \ ker(B − λ)k, and defining inductively

vj+1 := ε−1 (B − λ) vj .

Using complex conjugation, we also find a chain v̄0, . . . , v̄k that lies in EC
λ̄

. Since B

is the complexification of a real linear map, v̄j+1 := ε−1 (B − λ̄) v̄j holds.
Next, we define two chains w0, . . . , wk in EC

λ̄
and w̄0, . . . , w̄k in EC

λ by starting

with a vector wk ∈ EC
λ̄

with ωC
0 (vk, wk) = 1 and ωC

0 (vj , wk) = 0 for every j 6= k,

and defining wj−1 := ε−1 (B − λ̄)wj , or equivalently

Bwj = λ̄ wj + εwj−1

for j ≥ 1. Similarly, we obtain w̄j−1 = ε−1 (B − λ) w̄j .

Lemma A.7.

(a) The space spanned by v0, . . . , vk−1, v̄0, . . . , v̄k−1 and the one spanned by
w0, . . . , wk−1, w̄0, . . . , w̄k−1 are each isotropic with respect to both ω0 and
ω1.

(b) The ωC
0 -pairings for these vectors are given by

ωC
0 (vj , w̄j′) = 0 , ωC

0 (vj , wj′) = δj,j′ ,

ωC
0 (v̄j , wj′) = 0 , ωC

0 (v̄j , w̄j′) = δj,j′ .
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(c) The ωC
1 -pairings for these vectors are given by

ωC
1 (vj , w̄j′) = 0 , ωC

1 (vj , wj′) = λ δj,j′ + ε δj,j′−1 ,

ωC
1 (v̄j , wj′) = 0 , ωC

1 (v̄j , w̄j′) = λ̄ δj,j′ + ε δj,j′−1 .

Proof. To prove (a) note that since λ 6= λ̄, the spaces EC
λ and EC

λ̄
are both ωC

0 - and

ωC
1 -isotropic, so we only need to show that ωC

r (v̄j , vj′) = ωC
r (w̄j , wj′) = 0 for all

j, j′, and for r = 0, 1. If j = j′, we write vj as vx + ivy, and we use sesquilinearity
as follows:

ωC
0 (v̄j , vj) = ωC

0 (vx, vx) + ωC
0 (vx, ivy)− ωC

0 (ivy, vx)− ωC
0 (ivy, ivy)

= ω0(vx, vx) + iω0(vx, vy) + iω0(vy, vx)− ω0(vy, vy)

= 0.

By the same computation, ωC
1 (v̄j , vj) = 0.

If the statement is true for j′ − j = m ≥ 0, then

ε ωC
0 (v̄j , vj′+1) = ωC

0

(
v̄j , (B − λ) vj′

)
= ωC

1 (v̄j , vj′)− λωC
0 (v̄j , vj′)

= 0

and

ωC
1 (v̄j , vj′+1) = ωC

0 (Bv̄j , vj′+1) = ωC
0 (λ̄ v̄j + ε v̄j+1, vj′+1)

= 0 ,

which finishes the induction. The argument for ωC
r (w̄j , wj′) is identical.

To prove (b), note first that the second two equations are the complex conjugate
of the first two. Since vj , w̄j′ ∈ EC

λ , it also follows immediately that ωC
0 (v̄j , w̄j′) = 0,

so that we are only left with showing ωC
0 (vj , wj′) = δj,j′ , but the required compu-

tation is identical to the one used to show the analogous relation in the proof of
Lemma A.6.

The equalities for (c) follow similarly. �

We will now intersect the complex subspace spanned by the chains defined above
with the initial real vector space V to finish the proof of the proposition. For this,
define for all j ≤ k the real vectors

v+
j =

1√
2

(vj + v̄j), v−j =
i√
2

(vj − v̄j)

and

w+
j =

1√
2

(wj + w̄j), w−j =
i√
2

(wj − w̄j)

which all lie in Eλ,λ̄. Using the results deduced above, we obtain for all r = 0, 1, and

j, j′ the equations ωr(v
+
j , v

±
j′ ) = ωr(v

−
j , v

±
j′ ) = 0 and ωr(w

+
j , w

±
j′) = ωr(w

−
j , w

±
j′) =
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0, and finally

2ω0(v+
j , w

+
j′) = ωC

0 (vj , wj′ + w̄j′) + ωC
0 (v̄j , wj′ + w̄j′) = 2 δj,j′ ,

2ω0(v+
j , w

−
j′) = i ωC

0 (vj , wj′ − w̄j′) + i ωC
0 (v̄j , wj′ − w̄j′) = 0 ,

2ω1(v+
j , w

+
j′) = ωC

1 (vj , wj′ + w̄j′) + ωC
1 (v̄j , wj′ + w̄j′)

= ωC
0 (vj , Bwj′) + ωC

0 (v̄j , Bw̄j′) = λ̄ ωC
0 (vj , wj′) + ε ωC

0 (vj , wj′−1)

+ λωC
0 (v̄j , w̄j′) + ε ωC

0 (v̄j , w̄j−1)

= (λ+ λ̄) δj,j′ + 2ε δj,j′−1

and similar computations for the other matrix elements, which prove the desired
result with µ = Reλ and ν = Imλ.

Sign of real eigenvalues. Assume that all 2-forms in the family

ωt := (1− t)ω0 + t ω1

for t ∈ [0, 1] are nondegenerate. The λ-coefficients in the 2 × 2-blocks of A′1 cor-
respond to the real eigenvalues of the map B, so that if λ < 0 with eigenvector
v, then we have ω1(v, ·) = ω0(Bv, ·) = λω0(v, ·), and it follows that ωt(v, ·) =
(1 − t + tλ)ω0(v, ·) has to vanish for a certain value t0 ∈ (0, 1), so that ωt0 is
degenerate. �
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