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Preface

The present book-in-progress began as a set of lecture notes written at a furious
pace to accompany a graduate course on holomorphic curves that I taught at ETH
Zürich in Spring 2009, and repeated at the Humboldt-Universität zu Berlin in the
2009-10 Winter semester. In both iterations of the course, it quickly became clear
that my conceived objectives for the notes were not really attainable within the
length of the semester, but the project nonetheless took on a life of its own. I have
written these notes with the following specific goals in mind:

(1) To give a solid but readable presentation of the analytical foundations of
closed holomorphic curves from a modern perspective;

(2) To use the above foundation to explain a few of the classic applications to
symplectic topology, such as Gromov’s nonsqueezing theorem [Gro85] and
McDuff’s results on rational and ruled symplectic 4-manifolds [McD90];

(3) To use the aforementioned “modern perspective” to generalize everything
as cleanly as possible to the case of punctured holomorphic curves, and
then explain some applications to contact geometry such as the Weinstein
conjecture [Hof93] and obstructions to symplectic fillings [Wen10b].

The choice of topics covered and their presentation is partly a function of my own
preferences, as well as my perception of which gaps in the existing literature seemed
most in need of filling. In particular, I have devoted special attention to a few
topics that seem fundamental but are not covered in the standard book on this
subject by McDuff and Salamon [MS04], e.g. the structure of Teichmüller space
and of the moduli space of unparametrized holomorphic curves of arbitrary genus,
existence results for local J-holomorphic curves, and regularity for moduli spaces
with constrained derivatives. My choice of applications is biased toward those which
I personally find the most beautiful and which admit proofs with a very geometric
flavor. For most such results, there are important abstract invariants lurking in the
background, but one need not develop them fully in order to understand the proofs,
and for that reason I have left out topics such as gluing analysis and Gromov-Witten
theory, on which I would in any case have nothing to add to the superb coverage
in [MS04]. In order to save space and energy, I have also included nothing about
holomorphic curves with boundary, but aimed to make up for this by devoting the
last third of the book to punctured holomorphic curves, a topic on which there are
still very few available expositions aimed at graduate students.

My personal attitude toward technical details is essentially that of a non-analyst
who finds analysis important: what this means is that I’ve tried very hard to create
an accessible presentation that is as complete as possible without boring readers

v

who don’t enjoy analysis for its own sake. In contrast to [MS04], I have not put
the discussion of elliptic regularity in an appendix but rather integrated it into the
main exposition, where it is (I hope) less likely to be ignored. On the other hand, I
have presented such details in less generality than would be theoretically possible,
in most places only as much as seems essential for the geometric applications. One
example of this is the discussion in Chapter 2 of a local representation formula that
is both weaker and easier to prove than the famous result of Micallef and White
[MW95], but still suffices for crucial applications such as positivity of intersections.
If some hardcore analysts find this approach lazy, my hope is that at least as many
hardcore topologists may benefit from it.

About the current version. This book has been growing gradually for several
years, and the current version contains a little over half of what I hope to include in
the finished product: there is not yet any serious material on contact geometry (only
a few main ideas sketched in the introduction), but the development of the technical
apparatus for closed holomorphic curves is mostly complete. The main thing still
missing from this technical development is Gromov’s compactness theorem, though a
simple case of it is covered in Chapter 5 in order to prove the nonsqueezing theorem.
I hope to add the chapter on Gromov compactness in the next major revision, along
with further chapters covering the special analytical properties of closed holomorphic
curves in dimension four, and applications to symplectic 4-manifolds.

It should be mentioned that in the time since this project was begun, a substan-
tial portion of the material that I eventually plan to include in later chapters has
appeared in other (shorter) sets of lecture notes that were written for various mini-
courses. In particular, a comprehensive exposition of my perspective on McDuff’s
characterization of symplectic rational and ruled surfaces now appears in [Wena],
and some of the extensions of these ideas to punctured holomorphic curves and
contact 3-manifolds are covered in [Wenb]. Both are written with similar target
audiences in mind and should be readable by anyone who has made it through the
existing chapters of this book—in fact they assume less technical background, but
provide brief reviews of analytical material that is treated here in much more detail.
It remains a long-term goal that the main topics covered in [Wena,Wenb] should
eventually be integrated into the present manuscript in some form.

Acknowledgments. I’d like to thank a number of people who have contributed
useful comments, ideas, explanations and encouragement on this project, including
Peter Albers, Jonny Evans, Joel Fish, Paolo Ghiggini, Janko Latschev, Sam Lisi,
Klaus Mohnke, and Dietmar Salamon. I would also like to thank Urs Fuchs for
pointing out errors in the original version, and particular gratitude goes to Patrick
Massot, who has recently been testing these notes on Master’s students at the École
Polytechnique and has suggested many valuable improvements as a result.

A very large portion of what I know about this subject was originally imparted
to me by Helmut Hofer, whose unpublished manuscript with Casim Abbas [AH] has
also been an invaluable resource for me. Other invaluable resources worth mention-
ing include of course [MS04], as well as the expository article [Sik94] by Sikorav.



Most of the revision work for Version 3.3 was undertaken during a two-month
research visit to the École Polytechnique, and I would like to thank them for their
hospitality.

Request. As should by now be obvious, these notes are work in progress, and
as such I welcome comments, questions, suggestions and corrections from anyone
making the effort to read them. These may be sent to c.wendl@ucl.ac.uk.



Version history

Versions 1 and 2 of these notes were the versions written to accompany the lec-
ture courses I gave at ETH and the HU Berlin in 2009 and 2010 respectively; both
included preliminary versions of what are now Chapters 1 through 4, though those
chapters have undergone considerable expansion since then. The first revision to
appear on the arXiv at http://arxiv.org/abs/1011.1690 was Version 3.1 (No-
vember 2010), which included the additional fifth chapter on Gromov’s nonsqueezing
theorem. Here is an overview of what has been added since then.

Version 3.2 (arXiv v2), May 2014. This revision includes a few substan-
tial new sections on topics that were either not covered or only briefly mentioned
in the previous version, including the contractibility of the space of tame almost
complex structures (§2.2), positivity of intersections (complete proofs of the local
results underlying the adjunction formula now appear in §2.16), transversality of the
evaluation map (§4.6), and a proof that “generic holomorphic curves are immersed”
(§4.7).

Version 3.3, April 2015. The main innovation in this revision (which is not
on the arXiv) is that there is now a complete proof of the Lp estimates for the
Cauchy-Riemann operator. This necessitated the addition of a few new sections in
Chapter 2, including a general review of distributions and Sobolev spaces (§2.5),
and two appendices: §2.A explaining the proof of a general result on singular inte-
gral operators that implies the Lp estimates for ∂̄, and §2.B (just for fun) on the
general definition of ellipticity for linear differential operators on vector bundles. In
Chapter 4, I have also added §4.5 for a more comprehensive discussion of genericity
results for parametrized families of almost complex structures; the only treatment
of this topic in the previous version was the statement of Theorem 4.1.12, whose
proof was left as an exercise.
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A Note on Terminology

Unless otherwise specified, whenever we deal with objects such as manifolds and
vector or fiber bundles that differential geometers normally assume to be smooth
and/or finite dimensional, the reader may assume that they are both. When infinite-
dimensional objects arise, we will either state explicitly that they are infinite dimen-
sional, or use standard functional analytic terms such as Banach manifold and Ba-
nach space bundle. Similarly, maps on manifolds and sections of bundles (including
e.g. complex and symplectic structures) should normally be assumed smooth unless
otherwise specified, with the notation Γ(E) used to denote the space of sections of
a bundle E.

xi



CHAPTER 1

Introduction
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1.1. Warm up: Holomorphic curves in Cn

The main subject of these notes is a certain interplay between symplectic struc-
tures and complex (or rather almost complex ) structures on smooth manifolds. To
illustrate the connection, we consider first the special case of holomorphic curves
in Cn.

If U ⊂ Cm is an open subset and u : U → Cn is a smooth map, we say that u is
holomorphic if its partial derivatives ∂u

∂zj
all exist for i = j, . . . , m, i.e. the limits

∂u

∂zj
= lim

h→0

u(z1, . . . , zj−1, zj + h, zj+1, . . . , zm)− u(z1, . . . , zm)

h

exist, where h is complex. This is the obvious generalization of the notion of an
analytic function of one complex variable, and leads to an obvious generalization of
the usual Cauchy-Riemann equations.

We will find the following equivalent formulation quite useful. Let us identify
Cn = R2n by regarding (z1, . . . , zn) ∈ Cn as the real vector

(p1, q1, . . . , pn, qn) ∈ R2n,

where zj = pj + iqj for j = 1, . . . , n. Then at every point z ∈ U ⊂ Cm, our smooth
map u : U → Cn has a differential du(z) : Cm → Cn, which is in general a real -
linear map R2m → R2n. Observe also that for any number λ ∈ C, the complex scalar
multiplication

Cn → Cn : z 7→ λz

defines a real-linear map from R2n to itself. It turns out that u is holomorphic
if and only if its differential at every point is also complex -linear: in particular it
must satisfy du(z)λV = λ · du(z)V for every V ∈ Cm and λ ∈ C. Since du(z) is

1
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already real-linear, it suffices to check that du(z) behaves appropriately with respect
to multiplication by i, i.e.

(1.1.1) du(z) ◦ i = i ◦ du(z),
where we regard multiplication by i as a linear map on R2m or R2n.

Exercise 1.1.1. Show that (1.1.1) is equivalent to the usual Cauchy-Riemann
equations for smooth maps u : U → Cn.

If m = 1, so U is an open subset of C, we refer to holomorphic maps u : U → Cn

as holomorphic curves in Cn. The choice of wording is slightly unfortunate if you
like to think in terms of real geometry—after all, the image of u looks more like a
surface than a curve. But we call u a “curve” because, in complex terms, it is a
one-dimensional object.

That said, let us think of holomorphic curves for the moment as real 2-dimensional
objects and ask a distinctly real 2-dimensional question: what is the area traced out
by u : U → Cn? Denote points in U by s + it and think of u as a function of the
two real variables (s, t), with values in R2n. In these coordinates, the action of i on
vectors in C = R2 can be expressed succinctly by the relation

i∂s = ∂t.

We first have to compute the area of the parallelogram in R2n spanned by ∂su(s, t)
and ∂tu(s, t). The Cauchy-Riemann equation (1.1.1) makes this easy, because

∂tu(s, t) = du(s, t)∂t = du(s, t)i∂s = i du(s, t)∂s = i ∂su(s, t),

which implies that ∂su(s, t) and ∂tu(s, t) are orthogonal vectors of the same length.
Thus the area of u is

Area(u) =

∫

U
|∂su||∂tu| ds dt =

1

2

∫

U

(
|∂su|2 + |∂tu|2

)
ds dt,

where we’ve used the fact that |∂su| = |∂tu| to write things slightly more symmet-
rically. Notice that the right hand side is really an analytical quantity: up to a
constant it is the square of the L2 norm of the first derivative of u.

Let us now write this area in a slightly different, more topological way. If 〈 , 〉
denotes the standard Hermitian inner product on Cn, notice that one can define a
differential 2-form on R2n by the expression

ωstd(X, Y ) = Re〈iX, Y 〉.
Writing points in Cn via the coordinates (p1 + iq1, . . . , pn + iqn), one can show that
ωstd in these coordinates takes the form

(1.1.2) ωstd =

n∑

j=1

dpj ∧ dqj.

Exercise 1.1.2. Prove (1.1.2), and then show that ωstd has the following three
properties:

(1) It is nondegenerate: ωstd(V, ·) = 0 for some vector V if and only if V = 0.
Equivalently, for each z ∈ R2n, the map TzR2n → T ∗

zR
2n : V 7→ ωstd(V, ·) is

an isomorphism.
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(2) It is closed : dωstd = 0.
(3) The n-fold product ωn

std = ωstd ∧ . . . ∧ ωstd is a constant multiple of the
natural volume form on R2n.

Exercise 1.1.3. Show that a 2-form ω on R2n (and hence on any 2n-dimensional
manifold) is nondegenerate if and only if ωn is a volume form.

Using ωstd, we see that the area of the parallelogram above is also

|∂su| · |∂tu| = |∂tu|2 = Re〈∂tu, ∂tu〉 = Re〈i∂su, ∂tu〉 = ωstd(∂su, ∂tu),

thus

(1.1.3) Area(u) = ‖du‖2L2 =

∫

U
u∗ωstd.

This is the first appearance of symplectic geometry in our study of holomorphic
curves; we call ωstd the standard symplectic form on R2n. The point is that the
expression on the right hand side of (1.1.3) is essentially topological: it depends
only on the evaluation of a certain closed 2-form on the 2-chain defined by u(U).
The present example is trivial because we’re only working in R2n, but as we’ll see
later in more interesting examples, one can often find an easy topological bound on
this integral, which by (1.1.3) implies a bound on the analytical quantity ‖du‖2L2.
One can use this to derive compactness results for spaces of holomorphic curves,
which then encode symplectic topological information about the space in which
these curves live. We’ll come back to this theme again and again.

1.2. Hamiltonian systems and symplectic manifolds

To motivate the study of symplectic manifolds in general, let us see how sym-
plectic structures arise naturally in classical mechanics. We shall only sketch the
main ideas here; a good comprehensive introduction may be found in [Arn89].

Consider a mechanical system with “n degrees of freedom” moving under the
influence of a Newtonian potential V . This means there are n “position” variables
q = (q1, . . . , qn) ∈ Rn, which are functions of time t that satisfy the second order
differential equation

(1.2.1) miq̈i = −∂V
∂qi

,

where mi > 0 are constants representing the masses of the various particles, and
V : Rn → R is a smooth function, the “potential”. The space Rn, through which the
vector q(t) moves, is called the configuration space of the system. The basic idea
of Hamiltonian mechanics is to turn this 2nd order system into a 1st order system
by introducing an extra set of “momentum” variables p = (p1, . . . , pn) ∈ Rn, where
pi = miq̇i. The space R2n with coordinates (p, q) is then called phase space, and
we define a real-valued function on phase space called the Hamiltonian, by

H : R2n → R : (p, q) 7→ 1

2

n∑

i=1

p2i
mi

+ V (q).
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Physicists will recognize this as the “total energy” of the system, but its main
significance in the present context is that the combination of the second order system
(1.2.1) with our definition of p is now equivalent to the 2n first order equations,

(1.2.2) q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

These are Hamilton’s equations for motion in phase space.
The motion of x(t) := (p(t), q(t)) in R2n can be described in more geometric

terms: it is an orbit of the vector field

(1.2.3) XH(p, q) =
n∑

i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
.

As we’ll see in a moment, vector fields of this form have some important properties
that have nothing to do with our particular choice of the function H , thus it is
sensible to call any vector field defined by this formula (for an arbitrary smooth
function H : R2n → R) a Hamiltonian vector field. This is where the symplectic
structure enters the story.

Exercise 1.2.1. Show that the vector field XH of (1.2.3) can be characterized
as the unique vector field on R2n that satisfies ωstd(XH , ·) = −dH .

The above exercise shows that the symplectic structure makes it possible to
write down a much simplified definition of the Hamiltonian vector field. Now we
can already prove something slightly impressive.

Proposition 1.2.2. The flow ϕt
H of XH satisfies (ϕt

H)
∗ωstd = ωstd for all t.

Proof. Using Cartan’s formula for the Lie derivative of a form, together with
the characterization of XH in Exercise 1.2.1 and the fact that ωstd is closed, we
compute LXH

ωstd = dιXH
ωstd + ιXH

dωstd = −d2H = 0. �

By Exercise 1.1.2, one can compute volumes on R2n by integrating the n-fold
product ωstd∧. . .∧ωstd, thus an immediate consequence of Prop. 1.2.2 is the following:

Corollary 1.2.3 (Liouville’s theorem). The flow of XH is volume preserving.

Notice that in most of this discussion we’ve not used our precise knowledge of the
2-form ωstd or function H . Rather, we’ve used the fact that ωstd is nondegenerate
(to characterize XH via ωstd in Exercise 1.2.1), and the fact that it’s closed (in the
proof of Prop. 1.2.2). It is therefore natural to generalize as follows.

Definitions 1.2.4. A symplectic form on a 2n-dimensional manifold M is a
smooth differential 2-form ω that is both closed and nondegenerate. The pair (M,ω)
is then called a symplectic manifold. Given a smooth function H : M → R, the
corresponding Hamiltonian vector field is defined to be the unique vector field
XH ∈ Vec(M) such that1

(1.2.4) ω(XH , ·) = −dH.
1Some sources in the literature define XH by ω(XH , ·) = dH , in which case one must choose

different sign conventions for the orientation of phase space and definition of ωstd. One must always
be careful not to mix sign conventions from different sources—that way you could prove anything!
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For two symplectic manifolds (M1, ω1) and (M2, ω2), a smooth map ϕ :M1 →M2 is
called symplectic if ϕ∗ω2 = ω1. If ϕ is a symplectic embedding, then we say that
ϕ(M1) is a symplectic submanifold of (M2, ω2). If ϕ is symplectic and is also a
diffeomorphism, it is called a symplectomorphism, and we then say that (M1, ω1)
and (M2, ω2) are symplectomorphic.

Repeating verbatim the argument of Prop. 1.2.2, we see now that any Hamilton-
ian vector field on a symplectic manifold (M,ω) defines a smooth 1-parameter family
of symplectomorphisms. If we define volumes on M by integrating the 2n-form ωn

(see Exercise 1.1.3), then all symplectomorphisms are volume preserving—in partic-
ular this applies to the flow of XH .

Remark 1.2.5. An odd-dimensional manifold can never admit a nondegenerate
2-form. (Why not?)

1.3. Some favorite examples

We now give a few examples of symplectic manifolds (other than (R2n, ωstd))
which will be useful to have in mind.

Example 1.3.1. Suppose N is any smooth n-manifold and (q1, . . . , qn) are a
choice of coordinates on an open subset U ⊂ N . These naturally define coordinates
(p1, . . . , pn, q1, . . . , qn) on the cotangent bundle T ∗U ⊂ T ∗N , where an arbitrary
cotangent vector at q ∈ U is expressed as

p1 dq1 + . . .+ pn dqn.

Interpreted differently, this expression also defines a smooth 1-form on T ∗U ; we
abbreviate it by p dq.

Exercise 1.3.2. Show that the 1-form p dq doesn’t actually depend on the choice
of coordinates (q1, . . . , qn).

What the above exercise reveals is that T ∗N globally admits a canonical 1-form
λ, whose expression in the local coordinates (p, q) always looks like p dq. Moreover,
dλ is clearly a symplectic form, as it looks exactly like (1.1.2) in coordinates. We
call this the canonical symplectic form on T ∗N . Using this symplectic structure, the
cotangent bundle can be thought of as the “phase space” of a smooth manifold, and
is a natural setting for studying Hamiltonian systems when the configuration space
is something other than a Euclidean vector space (e.g. a “constrained” mechanical
system).

Example 1.3.3. On any oriented surface Σ, a 2-form ω is symplectic if and only
if it is an area form, and the symplectomorphisms are precisely the area-preserving
diffeomorphisms. Observe that one can always find area-preserving diffeomorphisms
between small open subsets of (R2, ωstd) and (Σ, ω), thus every point in Σ has a
neighborhood admitting local coordinates (p, q) in which ω = dp ∧ dq.

Example 1.3.4. A more interesting example of a closed symplectic manifold is
the n-dimensional complex projective space CP n. This is both a real 2n-dimensional
symplectic manifold and a complex n-dimensional manifold, as we will now show.

6 Chris Wendl

By definition, CP n is the space of complex lines in Cn+1, which we can express in
two equivalent ways as follows:

CP n = (Cn+1 \ {0})/C∗ = S2n+1/S1.

In the first case, we divide out the natural free action (by scalar multiplication) of
the multiplicative group C∗ := C \ {0} on Cn+1 \ {0}, and the second case is the
same thing but restricting to the unit sphere S2n+1 ⊂ Cn+1 = R2n+2 and unit circle
S1 ⊂ C = R2. To define a symplectic form, consider first the 1-form λ on S2n+1

defined for z ∈ S2n+1 ⊂ Cn+1 and X ∈ TzS
2n+1 ⊂ Cn+1 by

λz(X) = 〈iz,X〉,
where 〈 , 〉 is the standard Hermitian inner product on Cn+1. (Take a moment to
convince yourself that this expression is always real.) Since λ is clearly invariant
under the S1-action on S2n+1, the same is true for the closed 2-form dλ, which
therefore descends to a closed 2-form ωstd on CP n.

Exercise 1.3.5. Show that ωstd as defined above is symplectic.

The complex manifold structure of CP n can be seen explicitly by thinking of
points in CP n as equivalence classes of vectors (z0, . . . , zn) ∈ Cn+1 \ {0}, with two
vectors equivalent if they are complex multiples of each other. We will always write
the equivalence class represented by (z0, . . . , zn) ∈ Cn+1 \ {0} as

[z0 : . . . : zn] ∈ CP n.

Then for each k = 0, . . . , n, there is an embedding

(1.3.1) ιk : Cn →֒ CP n : (z1, . . . , zn) 7→ [z1 : . . . , zk−1 : 1 : zk : . . . : zn],

whose image is the complement of the subset

CP n−1 ∼= {[z1 : . . . : zk−1 : 0 : zk : . . . : zn] ∈ CP n | (z1, . . . , zn) ∈ Cn}.
Exercise 1.3.6. Show that if the maps ι−1

k are thought of as complex coordinate
charts on open subsets of CP n, then the transition maps ι−1

k ◦ ιj are all holomorphic.

By the exercise, CP n naturally carries the structure of a complex manifold such
that the embeddings ιk : Cn → CP n are holomorphic. Each of these embeddings
also defines a decomposition of CP n into Cn ∪ CP n−1, where CP n−1 is a complex
submanifold of (complex) codimension one. The case n = 1 is particularly enlight-
ening, as here the decomposition becomes CP 1 = C ∪ {point} ∼= S2; this is simply
the Riemann sphere with its natural complex structure, where the “point at infinity”
is CP 0. In the case n = 2, we have CP 2 ∼= C2 ∪CP 1, and we’ll occasionally refer to
the complex submanifold CP 1 ⊂ CP 2 as the “sphere at infinity”.

We continue for a moment with the example of CP n in order to observe that it
contains an abundance of holomorphic spheres. Take for instance the case n = 2:
then for any ζ ∈ C, we claim that the holomorphic embedding

uζ : C → C2 : z 7→ (z, ζ)

extends naturally to a holomorphic embedding of CP 1 in CP 2. Indeed, using ι2
to include C2 in CP 2, uζ(z) becomes the point [z : ζ : 1] = [1 : ζ/z : 1/z], and
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CP 2

CP 1

x0

Figure 1. CP 2 \ {x0} is foliated by holomorphic spheres that all
intersect at x0.

as z → ∞, this converges to the point x0 := [1 : 0 : 0] in the sphere at infinity.
One can check using alternate charts that this extension is indeed a holomorphic
map. The collection of all these embeddings uζ : CP 1 → CP 2 thus gives a very nice
decomposition of CP 2: together with the sphere at infinity, they foliate the region
CP 2 \ {x0}, but all intersect precisely at x0 (see Figure 1). This decomposition will
turn out to be crucial in the proof of Theorem 1.5.3, stated below.

1.4. Darboux’s theorem and the Moser deformation trick

In Riemannian geometry, two Riemannian manifolds of the same dimension with
different metrics can have quite different local structures: there can be no isometries
between them, not even locally, unless they have the same curvature. The follow-
ing basic result of symplectic geometry shows that in the symplectic world, things
are quite different. We will give a proof using the beautiful Moser deformation
trick, which has several important applications throughout symplectic and contact
geometry, as we’ll soon see.2

Theorem 1.4.1 (Darboux’s theorem). Near every point in a symplectic manifold
(M,ω), there are local coordinates (p1, . . . , pn, q1, . . . , qn) in which ω =

∑
i dpi ∧ dqi.

Proof. Denote by (p1, . . . , pn, q1, . . . , qn) the standard coordinates on R2n and
define the standard symplectic form ωstd by (1.1.2); this is the exterior derivative of
the 1-form

λstd =
∑

j

pj dqj.

Since the statement in the theorem is purely local, we can assume (by choosing local
coordinates) thatM is an open neighborhood of the origin in R2n, on which ω is any

2An alternative approach to Darboux’s theorem may be found in [Arn89].
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closed, nondegenerate 2-form. Then it will suffice to find two open neighborhoods
U ,U0 ⊂ R2n of 0, and a diffeomorphism

ϕ : U0 → U
preserving 0 such that ϕ∗ω = ωstd. Using Exercise 1.4.2 below (the “linear Darboux’s
theorem”), we can also assume after a linear change of coordinates that ϕ∗ω and
ωstd match at the origin.

The idea behind the Moser trick is now the following bit of optimism: we assume
that the desired diffeomorphism ϕ is the time 1 flow of a time-dependent vector field
defined near 0, and derive conditions that this vector field must satisfy. In fact, we
will be a bit more ambitious: consider the smooth 1-parameter family of 2-forms

ωt = tω + (1− t)ωstd, t ∈ [0, 1]

which interpolate between ωstd and ω. These are all obviously closed, and if we
restrict to a sufficiently small neighborhood of the origin then they are near ωstd

and thus nondegenerate. Our goal is to find a time-dependent vector field Yt on
some neighborhood of 0, for t ∈ [0, 1], whose flow ϕt is well defined on some smaller
neighborhood of 0 and satisfies

ϕ∗
tωt = ωstd

for all t ∈ [0, 1]. Differentiating this expression with respect to t and writing ω̇t :=
∂
∂t
ωt, we find

ϕ∗
tLYtωt + ϕ∗

t ω̇t = 0,

which by Cartan’s formula and the fact that ωt is closed and ϕt is a diffeomorphism,
implies

(1.4.1) dιYtωt + ω̇t = 0.

At this point it’s useful to observe that if we restrict to a contractible neighborhood
of the origin, ω (and hence also ωt) is exact: let us write

ω = dλ.

Moreover, by adding a constant 1-form, we can choose λ so that it matches λstd at
the origin. Now if λt := tλ+(1− t)λstd, we have dλt = ωt, and λ̇t :=

∂
∂t
λt = λ−λstd

vanishes at the origin. Plugging this into (1.4.1), we see now that it suffices to find
a vector field Yt satisfying

(1.4.2) ωt(Yt, ·) = −λ̇t.
Since ωt is nondegenerate, this equation can be solved and determines a unique
vector field Yt, which vanishes at the origin since λ̇t does. The flow ϕt therefore
exists for all t ∈ [0, 1] on a sufficiently small neighborhood of the origin, and ϕ1 is
the desired diffeomorphism. �

Exercise 1.4.2. The following linear version of Darboux’s theorem is an easy
exercise in linear algebra and was the first step in the proof above: show that if Ω
is any nondegenerate, antisymmetric bilinear form on R2n, then there exists a basis
(X1, . . . , Xn, Y1, . . . , Yn) such that

Ω(Xi, Yi) = 1
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and Ω vanishes on all other pairs of basis vectors. This is equivalent to the statement
that R2n admits a linear change of coordinates in which Ω looks like the standard
symplectic form ωstd.

It’s worth pointing out the crucial role played in the above proof by the relation
(1.4.2), which is almost the same as the relation used to define Hamiltonian vector
fields (1.2.4). The latter, together with the argument of Prop. 1.2.2, tells us that
the group of symplectomorphisms on a symplectic manifold is fantastically large, as
it contains all the flows of Hamiltonian vector fields, which are determined by arbi-
trary smooth real-valued functions. For much the same reason, one can also always
find an abundance of symplectic local coordinate charts (usually called Darboux co-
ordinates). Contrast this with the situation on a Riemannian manifold, where the
group of isometries is generally finite dimensional, and different metrics are usually
not locally equivalent, but are distinguished by their curvature.

In light of Darboux’s theorem, we can now give the following equivalent definition
of a symplectic manifold:

Definition 1.4.3. A symplectic manifold is a 2n-dimensional manifold M
together with an atlas of coordinate charts whose transition maps are symplectic
(with respect to the standard symplectic structure of R2n).

In physicists’ language, a symplectic manifold is thus a manifold that can be
identified locally with Hamiltonian phase space, in the sense that all coordinate
changes leave the form of Hamilton’s equations unaltered.

Let us state one more important application of the Moser trick, this time of a
more global nature. Recall that two symplectic manifolds (M,ω) and (M ′, ω′) are
called symplectomorphic if there exists a symplectomorphism between them, i.e. a
diffeomorphism ϕ : M → M ′ such that ϕ∗ω′ = ω. Working on a single manifold
M , we say similarly that two symplectic structures ω and ω′ are symplectomor-
phic3 if (M,ω) and (M,ω′) are symplectomorphic. This is the most obvious notion
of equivalence for symplectic structures, but there are others that are also worth
considering.

Definition 1.4.4. Two symplectic structures ω and ω′ onM are called isotopic
if there is a symplectomorphism (M,ω) → (M,ω′) that is isotopic to the identity.

Definition 1.4.5. Two symplectic structures ω and ω′ on M are called de-
formation equivalent if M admits a symplectic deformation between them,
i.e. a smooth family of symplectic forms {ωt}t∈[0,1] such that ω0 = ω and ω1 = ω′.
Similarly, two symplectic manifolds (M,ω) and (M ′, ω′) are deformation equivalent
if there exists a diffeomorphism ϕ :M →M ′ such that ω and ϕ∗ω′ are deformation
equivalent.

It is clear that if two symplectic forms are isotopic then they are also both sym-
plectomorphic and deformation equivalent. It is not true, however, that a symplectic
deformation always gives rise to an isotopy: one should not expect this, as isotopic
symplectic forms onM must always represent the same cohomology class inH2

dR(M),

3The words “isomorphic” and “diffeomorphic” can also be used here as synonyms.
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whereas the cohomology class can obviously vary under general deformations. The
remarkable fact is that this necessary condition is also sufficient!

Theorem 1.4.6 (Moser’s stability theorem). Suppose M is a closed manifold
with a smooth 1-parameter family of symplectic forms {ωt}[t∈[0,1] which all represent
the same cohomology class in H2

dR(M). Then there exists a smooth isotopy {ϕt :
M →M}t∈[0,1], with ϕ0 = Id and ϕ∗

tωt = ω0.

Exercise 1.4.7. Use the Moser isotopy trick to prove the theorem. Hint: In the
proof of Darboux’s theorem, we had to use the fact that symplectic forms are locally
exact in order to get from (1.4.1) to (1.4.2). Here you will find the cohomological
hypothesis helpful for the same reason. If you get stuck, see [MS98].

Exercise 1.4.8. Show that if ω and ω′ are two deformation equivalent symplectic
forms on CP n, then ω is isotopic to cω′ for some constant c > 0.

1.5. From symplectic geometry to symplectic topology

As a consequence of Darboux’s theorem, symplectic manifolds have no local
invariants—there is no “local symplectic geometry”. Globally things are different,
and here there are a number of interesting questions one can ask, all of which fall
under the heading of symplectic topology. (The word “topology” is used to indicate
the importance of global rather than local phenomena.)

The most basic such question concerns the classification of symplectic structures.
One can ask, for example, whether there exists a symplectic manifold (M,ω) that
is diffeomorphic to R4 but not symplectomorphic to (R4, ωstd), i.e. an “exotic” sym-
plectic R4. The answer turns out to be yes—exotic R2n’s exist in fact for all n, see
[ALP94]—but it changes if we prescribe the behavior of ω at infinity. The following
result says that (R2n, ωstd) is actually the only aspherical symplectic manifold that
is “standard at infinity”.

Theorem 1.5.1 (Gromov [Gro85]). Suppose (M,ω) is a symplectic 4-manifold
with π2(M) = 0, and there are compact subsets K ⊂M and Ω ⊂ R4 such that (M \
K,ω) and (R4 \Ω, ωstd) are symplectomorphic. Then (M,ω) is symplectomorphic to
(R4, ωstd).

In a later chapter we will be able to prove a stronger version of this statement, as
a corollary of some classification results for symplectic fillings of contact manifolds
(cf. Theorem 1.7.12).

Another interesting question is the following: suppose (M1, ω1) and (M2, ω2) are
symplectic manifolds of the same dimension 2n, possibly with boundary, such that
there exists a smooth embedding M1 →֒ M2. Can one also find a symplectic embed-
ding (M1, ω1) →֒ (M2, ω2)? What phenomena related to the symplectic structures
can prevent this? There’s one obstruction that jumps out immediately: there can
be no such embedding unless

∫

M1

ωn
1 ≤

∫

M2

ωn
2 ,
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i.e. M1 has no more volume than M2. In dimension two there’s nothing more to say,
because symplectic and area-preserving maps are the same thing. But in dimen-
sion 2n for n ≥ 2, it was not known for a long time whether there are obstructions
to symplectic embeddings other than the volume. A good thought experiment along
these lines is the “squeezing” question: denote by B2n

r the ball of radius r about the
origin in R2n. Then it’s fairly obvious that for any r, R > 0 one can always find a
volume-preserving embedding

B2n
r →֒ B2

R × R2n−2,

even if r > R, for then one can “squeeze” the first two dimensions of B2n
r into B2

R but
make up for it by spreading out further in R2n−2. But can one do this symplectically?
The answer was provided by the following groundbreaking result:

Theorem 1.5.2 (Gromov’s “nonsqueezing” theorem [Gro85]). There exists a
symplectic embedding of (B2n

r , ωstd) into (B2
R × R2n−2, ωstd) if and only if r ≤ R.

This theorem was one of the first important applications of pseudoholomorphic
curves. We will prove it in Chapter 5, and will spend a great deal of time in the
next few chapters learning the technical machinery that is needed to understand the
proof.

We will close this brief introduction to symplectic topology by sketching the
proof of a result that was introduced in [Gro85] and later generalized by McDuff,
and provides us with a good excuse to introduce J-holomorphic curves. Recall from
§1.3 that CP 2 admits a singular foliation by embedded spheres that all intersect each
other at one point, and all can be parametrized by holomorphic maps CP 1 → CP 2.
One can check that these spheres are also symplectic submanifolds with respect to
the standard symplectic structure ωstd introduced in Example 1.3.4; moreover, they
intersect each other positively, so their self-intersection numbers are always 1. The
following result essentially says that the existence of such a symplectically embedded
sphere is a rare phenomenon: it can only occur in a very specific set of symplectic
4-manifolds, of which (CP 2, ωstd) is the simplest. It also illustrates an important
feature of symplectic topology specifically in four dimensions: once you find a single
holomorphic curve with sufficiently nice local properties, it can sometimes fully
determine the manifold in which it lives.

Theorem 1.5.3 (M. Gromov [Gro85] and D. McDuff [McD90]). Suppose (M,ω)
is a closed and connected symplectic 4-manifold containing a symplectically embedded
2-sphere C ⊂M with self-intersection C · C = 1, but no symplectically embedded 2-
sphere with self-intersection −1. Then (M,ω) is symplectomorphic to (CP 2, cωstd),
where c > 0 is a constant and ωstd is the standard symplectic form on CP 2.

The idea of the proof is to choose appropriate data so that the symplectic sub-
manifold C ⊂ M can be regarded in some sense as a holomorphic curve, and then
analyze the global structure of the space of holomorphic curves to which it belongs.
It turns out that for a combination of analytical and topological reasons, this space
will contain a smooth family of embedded holomorphic spheres that fill all of M
and all intersect each other at one point, thus reproducing the singular foliation of
Figure 1. This type of decomposition is a well-known object in algebraic geometry
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and has more recently become quite popular in symplectic topology as well: it’s
called a Lefschetz pencil. As we’ll see when we generalize Theorem 1.5.3 in a later
chapter, there is an intimate connection between isotopy classes of Lefschetz pencils
and deformation classes of symplectic structures: in the present case, the existence
of this Lefschetz pencil implies that (M,ω) is symplectically deformation equivalent
to (CP 2, ωstd), and thus also symplectomorphic due to the Moser stability theorem
(see Exercise 1.4.8).

The truly nontrivial part of the proof is the analysis of the moduli space of holo-
morphic curves, and this is what we’ll concentrate on for the next several chapters.
As a point of departure, consider the formulation (1.1.1) of the Cauchy-Riemann
equations at the beginning of this chapter. Here u was a map from an open subset
of Cm into Cn, but one can also make sense of (1.1.1) when u is a map between
two complex manifolds. In such a situation, u is called holomorphic if and only if
it looks holomorphic in any choice of holomorphic local coordinates. To put this in
coordinate-free language, the tangent spaces of any complex manifold X are natu-
rally complex vector spaces, on which multiplication by i makes sense, thus defining
a natural bundle endomorphism

i : TX → TX

that satisfies i2 = −1. Then (1.1.1) makes sense globally and is the equation defining
holomorphic maps between any two complex manifolds.

In the present situation, we’re interested in smooth maps u : CP 1 → M . The
domain is thus a complex manifold, but the target might not be, which means we
lack an ingredient needed to write down the right hand side of (1.1.1). It turns out
that in any symplectic manifold, one can always find an object to fill this role, i.e. a
fiberwise linear map J : TM → TM with the following properties:

• J2 = −1,
• ω(·, J ·) defines a Riemannian metric on M .

The first condition allows us to interpret J as “multiplication by i”, thus turning the
tangent spaces ofM into complex vector spaces. The second reproduces the relation
between i and ωstd that exists in R2n, thus generalizing the important interaction
between symplectic and complex that we illustrated in §1.1: complex subspaces of
TM are also symplectic, and their areas can be computed in terms of ω. These
conditions make J into a compatible almost complex structure on (M,ω); we will
prove the fundamental existence result for these by fairly elementary methods in
§2.2. Now, the fact that C is embedded in M symplectically also allows us to
arrange the following additional condition:

• the tangent spaces TC ⊂ TM are invariant under J .

We are thus ready to introduce the following generalization of the Cauchy-
Riemann equation: consider smooth maps u : CP 1 → M whose differential is a
complex-linear map at every point, i.e.

(1.5.1) Tu ◦ i = J ◦ Tu.
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Solutions to (1.5.1) are called pseudoholomorphic, or more specifically, J-holomorphic
spheres in M . Now pick a point x0 ∈ C and consider the following space of J-
holomorphic spheres,

M := {u ∈ C∞(CP 1,M) | Tu ◦ i = J ◦ Tu,
u∗[CP1] = [C] ∈ H2(M),

u(0) = x0}/ ∼,
where u ∼ u′ if there is a holomorphic diffeomorphism ϕ : CP 1 → CP 1 such that
u′ = u ◦ ϕ and ϕ(0) = 0. We assign to M the natural topology defined by C∞-
convergence of smooth maps CP 1 →M .

Lemma 1.5.4. M is not empty: in particular it contains an embedded J-holo-
morphic sphere whose image is C.

Proof. Since C has J-invariant tangent spaces, any diffeomorphism u0 : CP 1 →
C with u0(0) = x0 allows us to pull back J to an almost complex structure j := u∗0J
on CP 1. As we’ll review in Chapter 4, the uniqueness of complex structures on S2

then allows us to find a diffeomorphism ϕ : CP 1 → CP 1 such that ϕ(0) = 0 and
ϕ∗j = i, thus the desired curve is u := u0 ◦ ϕ. �

The rest of the work is done by the following rather powerful lemma, which
describes the global structure of M. Its proof requires a substantial volume of
analytical machinery which we will develop in the coming chapters; note that since
M is not a complex manifold, the methods of complex analysis play only a minor role
in this machinery, and are subsumed in particular by the theory of nonlinear elliptic
PDEs. This is the point where we need the technical assumptions that C · C = 1
and M contains no symplectic spheres of self-intersection −1,4 as such topological
conditions figure into the index computations that determine the local structure
of M.

Lemma 1.5.5. M is compact and admits the structure of a smooth 2-dimensional
manifold. Moreover, the curves in M are all embeddings that do not intersect each
other except at the point x0; in particular, they foliate M \ {x0}.

By this result, the curves in M form the fibers of a symplectic Lefschetz pencil
on (M,ω), so that the latter’s diffeomorphism and symplectomorphism type are
completely determined by the moduli space of holomorphic curves.

1.6. Contact geometry and the Weinstein conjecture

Contact geometry is often called the “odd-dimensional cousin” of symplectic
geometry, and one context in which it arises naturally is in the study of Hamil-
tonian dynamics. Again we shall only sketch the main ideas; the book [HZ94] is
recommended for a more detailed account.

4As we’ll see, the assumption of no symplectic spheres with self-intersection−1 is a surprisingly
weak one: it can always be attained by modifying (M,ω) in a standard way known as “blowing
down”.

14 Chris Wendl

Consider a 2n-dimensional symplectic manifold (M,ω) with a Hamiltonian H :
M → R. By the definition of the Hamiltonian vector field, dH(XH) = −ω(XH , XH) =
0, thus the flow of XH preserves the level sets

Sc := H−1(c)

for c ∈ R. If c is a regular value of H then Sc is a smooth manifold of dimension
2n−1, called a regular energy surface, and XH restricts to a nowhere zero vector
field on Sc.

Exercise 1.6.1. If Sc ⊂ M is a regular energy surface, show that the direction
of XH is uniquely determined by the condition ω(XH, ·)|TSc = 0.

The directions in Exercise 1.6.1 define the so-called characteristic line field
on Sc: its existence implies that the paths traced out on Sc by orbits of XH depend
only on Sc and on the symplectic structure, not on H itself. In particular, a closed
orbit of XH on Sc is merely a closed integral curve of the characteristic line field. It
is thus meaningful to ask the following question:

Question. Given a symplectic manifold (M,ω) and a smooth hypersurface S ⊂
M , does the characteristic line field on S have any closed integral curves?

We shall often refer to closed integral curves of the characteristic line field on
S ⊂ M simply as closed orbits on S. There are examples of Hamiltonian systems
that have no closed orbits at all, cf. [HZ94, §4.5]. However, the following result
(and the related result of A. Weinstein [Wei78] for convex energy surfaces) singles
out a special class of hypersurfaces for which the answer is always yes:

Theorem 1.6.2 (P. Rabinowitz [Rab78]). Every star-shaped hypersurface in the
standard symplectic R2n admits a closed orbit.

Recall that a hypersurface S ⊂ R2n is called star-shaped if it doesn’t intersect
the origin and the projection R2n \ {0} → S2n−1 : z 7→ z/|z| restricts to a diffeomor-
phism S → S2n−1 (see Figure 2). In particular, S is then transverse to the radial
vector field

(1.6.1) Vstd :=
1

2

n∑

i=1

(
pi
∂

∂pi
+ qi

∂

∂qi

)
.

Exercise 1.6.3. Show that the vector field Vstd of (1.6.1) satisfies LVstd
ωstd =

ωstd.

Definition 1.6.4. A vector field V on a symplectic manifold (M,ω) is called a
Liouville vector field if it satisfies LV ω = ω.

By Exercise 1.6.3, star-shaped hypersurfaces in R2n are always transverse to a
Liouville vector field, and this turns out to be a very special property.

Definition 1.6.5. A hypersurface S in a symplectic manifold (M,ω) is said to
be of contact type if some neighborhood of S admits a Liouville vector field that
is transverse to S.



Lectures on Holomorphic Curves (Version 3.3) 15

Figure 2. A star-shaped hypersurface in R2.

Given a closed contact type hypersurface S ⊂ (M,ω), one can use the flow of
the Liouville vector field V to produce a very nice local picture of (M,ω) near S.
Define a 1-form on S by

α = ιV ω|S,
and choose ǫ > 0 sufficiently small so that

Φ : (−ǫ, ǫ)× S →M : (t, x) 7→ ϕt
V (x)

is an embedding, where ϕt
V denotes the flow of V .

Exercise 1.6.6.

(a) Show that the flow of V “dilates” the symplectic form, i.e. (ϕt
V )

∗ω = etω.
(b) Show that Φ∗ω = d(etα), where we define α as a 1-form on (−ǫ, ǫ) × S by

pulling it back through the natural projection to S. Hint: Show first that
if λ := ιV ω, then Φ∗λ = etα, and notice that dλ = ω by the definition of a
Liouville vector field.

(c) Show that dα restricts to a nondegenerate skew-symmetric 2-form on the
hyperplane field ξ := kerα over S. As a consequence, ξ is transverse to a
smooth line field ℓ on S characterized by the property that X ∈ ℓ if and
only if dα(X, ·) = 0.

(d) Show that on each of the hypersurfaces {c}×S for c ∈ (−ǫ, ǫ), the line field
ℓ defined above is the characteristic line field with respect to the symplectic
form d(etα).
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Several interesting consequences follow from Exercise 1.6.6. In particular, the
use of a Liouville vector field to identify a neighborhood of S with (−ǫ, ǫ)× S gives
us a smooth family of hypersurfaces Sc := {c} × S whose characteristic line fields
all have exactly the same dynamics. This provides some intuitive motivation to
believe Theorem 1.6.2: it’s sufficient to find one hypersurface in the family Sc that
admits a periodic orbit, for then they all do. As it turns out, one can prove a
variety of “almost existence” results in 1-parameter families of hypersurfaces, e.g. in
(R2n, ωstd), a result of Hofer-Zehnder [HZ90] and Struwe [Str90] implies that for any
smooth 1-parameter family of hypersurfaces, almost every (in a measure theoretic
sense) hypersurface in the family admits a closed orbit. This gives a proof of the
following generalization of Theorem 1.6.2:

Theorem 1.6.7 (C. Viterbo [Vit87]). Every contact type hypersurface in (R2n, ωstd)
admits a closed orbit.

Having generalized this far, it’s natural to wonder whether the crucial proper-
ties of a contact hypersurface can be considered independently of its embedding
into a symplectic manifold. The answer comes from the 1-form α and hyperplane
distribution ξ = kerα ⊂ TS in Exercise 1.6.6.

Definition 1.6.8. A contact form on a (2n − 1)-dimensional manifold is a
smooth 1-form α such that dα is always nondegenerate on ξ := kerα. The hyper-
plane distribution ξ is then called a contact structure.

Exercise 1.6.9. Show that the condition of dα being nondegenerate on ξ = kerα
is equivalent to α ∧ (dα)n−1 being a volume form on S, and that ξ is nowhere
integrable if this is satisfied.

Given an orientation of S, we call the contact structure ξ = kerα positive if
the orientation induced by α ∧ (dα)n−1 agrees with the given orientation. One can
show that if S ⊂ (M,ω) is a contact type hypersurface with the natural orientation
induced from M and a transverse Liouville vector field, then the induced contact
structure is always positive.

Note that Liouville vector fields are far from unique, in fact:

Exercise 1.6.10. Show that if V is a Liouville vector field on (M,ω) and XH

is any Hamiltonian vector field, then V +XH is also a Liouville vector field.

Thus the contact form α = ιV ω|S induced on a contact type hypersurface should
not be considered an intrinsic property of the hypersurface. As the next result
indicates, the contact structure is the more meaningful object.

Proposition 1.6.11. Up to isotopy, the contact structure ξ = kerα induced on
a contact type hypersurface S ⊂ (M,ω) by α = ιV ω|S is independent of the choice
of V .

The proof of this is a fairly easy exercise using a standard fundamental result of
contact geometry:

Theorem 1.6.12 (Gray’s stability theorem). If S is a closed (2n−1)-dimensional
manifold and {ξt}t∈[0,1] is a smooth 1-parameter family of contact structures on S,
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then there exists a smooth 1-parameter family of diffeomorphisms {ϕt}t∈[0,1] such
that ϕ0 = Id and (ϕt)∗ξ0 = ξt.

This is yet another application of the Moser deformation trick; we’ll explain the
proof at the end of this section. Note that the theorem provides an isotopy between
any two deformation equivalent contact structures, but there is no such result for
contact forms—that’s one of the reaons why contact structures are considered to be
more geometrically natural objects.

By now we hopefully have sufficient motivation to study odd-dimensional man-
ifolds with contact structures. The pair (S, ξ) is called a contact manifold, and
for two contact manifolds (S1, ξ1) and (S2, ξ2) of the same dimension, a smooth
embedding ϕ : S1 →֒ S2 is called a contact embedding

(S1, ξ1) →֒ (S2, ξ2)

if ϕ∗ξ1 = ξ2. If ϕ is also a diffeomorphism, then we call it a contactomorphism.
One of the main questions in contact topology is how to distinguish closed contact
manifolds that aren’t contactomorphic. We’ll touch upon this subject in the next
section.

But first there is more to say about Hamiltonian dynamics. We saw in Exer-
cise 1.6.6 that the characteristic line field on a contact type hypersurface S ⊂ (M,ω)
can be described in terms of a contact form α: it is the unique line field containing
all vectors X such that dα(X, ·) = 0, and is necessarily transverse to the contact
structure. The latter implies that α is nonzero in this direction, so we can use it to
choose a normalization, leading to the following definition.

Definition 1.6.13. Given a contact form α on a (2n− 1)-dimensional manifold
S, the Reeb vector field is the unique vector field Rα satisfying

dα(Rα, ·) = 0, and α(Rα) = 1.

Thus closed integral curves on contact hypersurfaces can be identified with closed
orbits of their Reeb vector fields.5 The “intrinsic” version of Theorems 1.6.2 and 1.6.7
is then the following famous conjecture.

Conjecture 1.6.14 (Weinstein conjecture). For every closed odd-dimensional
manifold M with a contact form α, Rα has a closed orbit.

The Weinstein conjecture is still open in general, though a proof in dimension
three was produced recently by C. Taubes [Tau07], using Seiberg-Witten theory.
Before this, there was a long history of partial results using the theory of pseudoholo-
morphic curves, such as the following (see Definition 1.7.7 below for the definition
of “overtwisted”):

Theorem 1.6.15 (Hofer [Hof93]). Every Reeb vector field on a closed 3-dimensional
overtwisted contact manifold admits a contractible periodic orbit.

5Note that since Liouville vector fields are not unique, the Reeb vector field on a contact
hypersurface is not uniquely determined, but its direction is.
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Σ̇
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{−∞} ×M

Figure 3. A three-punctured pseudoholomorphic torus in the sym-
plectization of a contact manifold.

The key idea introduced in [Hof93] was to look at J-holomorphic curves for a
suitable class of almost complex structures J in the so-called symplectization (R×
M, d(etα)) of a manifold M with contact form α. Since the symplectic form is
now exact, it’s no longer useful to consider closed holomorphic curves, e.g. a minor
generalization of (1.1.3) shows that all J-holomorphic spheres u : CP 1 → R ×M
are constant:

Area(u) = ‖du‖2L2 =

∫

CP 1

u∗d(etα) =

∫

∂CP 1

u∗(etα) = 0.

Instead, one considers J-holomorphic maps

u : Σ̇ → R×M,

where Σ̇ denotes a closed Riemann surface with finitely many punctures. It turns
out that under suitable conditions, the image of u near each puncture approaches
{±∞}×M and becomes asymptotically close to a cylinder of the form R×γ, where
γ is a closed orbit of Rα (see Figure 3). Thus an existence result for punctured
holomorphic curves in R×M implies the Weinstein conjecture on M .

To tie up a loose end, here’s the proof of Gray’s stability theorem, followed by
another important contact application of the Moser trick.

Proof of Theorem 1.6.12. Assume S is a closed manifold with a smooth
family of contact forms {αt}t∈[0,1] defining contact structures ξt = kerαt. We want
to find a time-dependent vector field Yt whose flow ϕt satisfies

(1.6.2) ϕ∗
tαt = ftα0

for some (arbitrary) smooth 1-parameter family of functions ft : S → R. Differen-

tiating this expression and writing ḟt :=
∂
∂t
ft and α̇t :=

∂
∂t
αt, we have

ϕ∗
t (α̇t + LYtαt) = ḟtα0 =

ḟt
ft
ϕ∗
tαt,

and thus

(1.6.3) α̇t + dιYtαt + ιYtdαt = gtαt,



Lectures on Holomorphic Curves (Version 3.3) 19

where we define a new family of functions gt : S → R via the relation

(1.6.4) gt ◦ ϕt =
ḟt
ft

=
∂

∂t
log ft.

Now to make life a bit simpler, we assume (optimistically!) that Yt is always tangent
to ξt, hence αt(Yt) = 0 and the second term in (1.6.3) vanishes. We therefore need
to find a vector field Yt and function gt such that

(1.6.5) dαt(Yt, ·) = −α̇t + gtαt.

Plugging in the Reeb vector field Rαt on both sides, we find

0 = −α̇t (Rαt) + gt,

which determines the function gt. Now restricting both sides of (1.6.5) to ξt, there
is a unique solution for Yt since dαt|ξt is nondegenerate. We can then integrate this
vector field to obtain a family of diffeomorphisms ϕt, and integrate (1.6.4) to obtain
ft so that (1.6.2) is satisfied. �

Exercise 1.6.16. Try to adapt the above argument to construct an isotopy such
that ϕ∗

tαt = α0 for any two deformation equivalent contact forms. But don’t try
very hard.

Finally, just as there is no local symplectic geometry, there is no local contact
geometry either:

Theorem 1.6.17 (Darboux’s theorem for contact manifolds). Near every point
in a (2n+1)-dimensional manifold S with contact form α, there are local coordinates
(p1, . . . , pn, q1, . . . , qn, z) in which α = dz +

∑
i pi dqi.

Exercise 1.6.18. Prove the theorem using a Moser argument. If you get stuck,
see [Gei08].

1.7. Symplectic fillings of contact manifolds

In the previous section, contact manifolds were introduced as objects that occur
naturally as hypersurfaces in symplectic manifolds. In particular, every contact
manifold (M, ξ) with contact form α is obviously a contact type hypersurface in its
own symplectization (R×M, d(etα)), though this example is in some sense trivial.
By contrast, it is far from obvious whether any given contact manifold can occur
as a contact hypersurface in a closed symplectic manifold, or relatedly, if it is a
“contact type boundary” of some compact symplectic manifold.

Definition 1.7.1. A compact symplectic manifold (W,ω) with boundary is said
to have convex boundary if there exists a Liouville vector field in a neighborhood
of ∂W that points transversely out of ∂W .

Definition 1.7.2. A strong symplectic filling (also called a convex filling)
of a closed contact manifold (M, ξ) is a compact symplectic manifold (W,ω) with
convex boundary, such that ∂W with the contact structure induced by a Liouville
vector field is contactomorphic to (M, ξ).
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Since we’re now considering symplectic manifolds that are not closed, it’s also
possible for ω to be exact. Observe that a primitive λ of ω always gives rise to
a Liouville vector field, since the unique vector field V defined by ιV ω = λ then
satisfies

LV ω = dιV ω = dλ = ω.

Definition 1.7.3. A strong filling (W,ω) of (M, ξ) is called an exact filling if
ω = dλ for some 1-form λ such that the vector field V defined by ιV ω = λ points
transversely out of ∂W .

Exercise 1.7.4. Show that if (W,ω) is a compact symplectic manifold with
boundary, V is a Liouville vector field defined near ∂W and λ = ιV ω, then V is
positively transverse to ∂W if and only if λ|∂W is a positive contact form.

The exercise makes possible the following alternative formulations of the above
definitions:

(1) A compact symplectic manifold (W,ω) with boundary is a strong filling if
∂W admits a contact form that extends to a primitive of ω on a neighbor-
hood of ∂W .

(2) A strong filling is exact if the primitive mentioned above can be extended
globally over W .

(3) A strong filling is exact if it has a transverse outward pointing Liouville
vector field near ∂W that can be extended globally over W .

By now you’re surely wondering what a “weak” filling is. Observe that for any
strong filling (W,ω) with Liouville vector field V and induced contact structure ξ =
ker ιV ω on the boundary, ω has a nondegenerate restriction to ξ (see Exercise 1.6.6).
The latter condition can be expressed without mentioning a Liouville vector field,
hence:

Definition 1.7.5. A weak symplectic filling of a closed contact manifold
(M, ξ) is a compact symplectic manifold (W,ω) with boundary, such that there
exists a diffeomorphism ϕ : ∂W →M and ω has a nondegenerate restriction to ϕ∗ξ.

Remark 1.7.6. One important definition that we are leaving out of the present
discussion is that of a Stein filling : this is a certain type of complex manifold with
contact boundary, which is also an exact symplectic filling. The results we’ll prove
in these notes for strong and exact fillings apply to Stein fillings as well, but we
will usually not make specific mention of this since the Stein condition itself has no
impact on our general setup. Much more on Stein manifolds can be found in the
monographs [OS04] and [CE12].

A contact manifold is called exactly/strongly/weakly fillable if it admits an ex-
act/strong/weak filling. Recall that in the smooth category, every 3-manifold is the
boundary of some 4-manifold; by contrast, we will see that many contact 3-manifolds
are not symplectically fillable.

The unit ball in (R4, ωstd) obviously has convex boundary: the contact structure
induced on S3 is called the standard contact structure ξstd. But there are other
contact structures on S3 not contactomorphic to ξstd, and one way to see this is to



Lectures on Holomorphic Curves (Version 3.3) 21

θ

ρ

Figure 4. An overtwisted contact structure.

show that they are not fillable. Indeed, it is easy (via “Lutz twists”, see [Gei08] or
[Gei06]) to produce a contact structure on S3 that is overtwisted. Note that the
following is not the standard definition6 of this term, but is equivalent due to a deep
result of Eliashberg [Eli89].

Definition 1.7.7. A contact 3-manifold (M, ξ) is overtwisted if it admits a
contact embedding of (S1 × D, ξOT), where D ⊂ R2 is the closed unit disk and ξOT

is a contact structure of the form

ξOT = ker [f(ρ) dθ + g(ρ) dφ]

with θ ∈ S1, (ρ, φ) denoting polar coordinates on D, and (f, g) : [0, 1] → R2 \ {0}
a smooth path that begins at (1, 0) and winds counterclockwise around the origin,
making at least one half turn.

For visualization, a portion of the domain (S1 × D, ξOT) is shown in Figure 4.
One of the earliest applications of holomorphic curves in contact topology was the
following nonfillability result.

Theorem 1.7.8 (M. Gromov [Gro85] and Ya. Eliashberg [Eli90]). If (M, ξ) is
closed and overtwisted, then it is not weakly fillable.

The Gromov-Eliashberg proof worked by assuming a weak filling (W,ω) of (M, ξ)
exists, then constructing a family of J-holomorphic disks inW with boundaries on a
totally real submanifold in M and showing that this family leads to a contradiction
if (M, ξ) contains an overtwisted disk. We will later present a proof that is similar
in spirit but uses slightly different techniques: instead of dealing with boundary

6It is standard to call a contact 3-manifold (M, ξ) overtwisted if it contains an embedded
overtwisted disk, which is a disk D ⊂ M such that T (∂D) ⊂ ξ but TD|∂D 6= ξ|∂D.
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conditions for holomorphic disks, we will adopt Hofer’s methods and consider punc-
tured holomorphic curves in a noncompact symplectic manifold obtained by gluing
a cylindrical end to ∂W . The advantage of this approach is that it generalizes nicely
to prove the following related result on Giroux torsion, which is much more recent.
Previous proofs due to D. Gay and Ghiggini and Honda required the large machin-
ery of gauge theory and Heegaard Floer homology respectively, but we will only use
punctured holomorphic curves.

Theorem 1.7.9 (D. Gay [Gay06], P. Ghiggini and K. Honda [GH]). Suppose
(M, ξ) is a closed contact 3-manifold that admits a contact embedding of (T 2 ×
[0, 1], ξT ), where ξT is the contact structure defined in coordinates (θ, φ, r) ∈ S1 ×
S1 × [0, 1] by

ξT = ker [cos(2πr) dθ+ sin(2πr) dφ] .

Then (M, ξ) is not strongly fillable. Moreover if the embedded torus T 2 × {0} sepa-
rates M , then (M, ξ) is also not weakly fillable.

A contact 3-manifold that admits a contact embedding of (T 2 × [0, 1], ξT ) as
defined above is said to have Giroux torsion.

Example 1.7.10. Using coordinates (θ, φ, η) ∈ S1×S1×S1 = T 3, one can define
for each N ∈ N a contact structure ξN = kerαN , where

αN = cos(2πNη) dθ + sin(2πNη) dφ.

Choosing the natural flat metric on T 2 = S1×S1, it’s easy to show that the unit circle
bundle in T ∗T 2 is a contact type hypersurface contactomorphic to (T 3, ξ1), thus this
is strongly (and even exactly) fillable. Giroux [Gir94] and Eliashberg [Eli96] have
shown that (T 3, ξN) is in fact weakly fillable for all N , but Theorem 1.7.9 implies
that it is not strongly fillable for N ≥ 2 (a result originally proved by Eliashberg
[Eli96]). Unlike the case of S3, none of these contact structures are overtwisted—one
can see this easily from Theorem 1.6.15 and the exercise below.

Exercise 1.7.11. Derive expressions for the Reeb vector fields RαN
on T 3 and

show that none of them admit any contractible periodic orbits.

Finally, we mention one case of a fillable contact manifold in which all the sym-
plectic fillings can be described quite explicitly. Earlier we defined the standard
contact structure ξstd on S3 to be the one that is induced on the convex bound-
ary of a round ball in (R4, ωstd). By looking at isotopies of convex boundaries and
using Gray’s stability theorem, you should easily be able to convince yourself that
every star-shaped hypersurface in (R4, ωstd) has an induced contact structure iso-
topic to ξstd. Thus the regions bounded by these hypersurfaces, the “star-shaped
domains” in (R4, ωstd), can all be regarded as convex fillings of (S3, ξstd). Are there
any others? Well. . .

Theorem 1.7.12 (Eliashberg [Eli90]). Every exact filling of (S3, ξstd) is sym-
plectomorphic to a star-shaped domain in (R4, ωstd).

In fact we will just as easily be able to classify all the weak fillings of (S3, ξstd) up
to symplectic deformation equivalence. Again, our proof will differ from Eliashberg’s
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in using punctured holomorphic curves asymptotic to Reeb orbits instead of compact
curves with totally real boundary conditions. But in either case, the proof has much
philosophically in common with the proof of Theorem 1.5.3 that we already sketched:
one first finds a single holomorphic curve, in this case near the boundary of the filling,
and then lets the moduli space of such curves “spread out” until it yields a geometric
decomposition of the filling.
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2.1. Almost complex manifolds and J-holomorphic curves

We now begin the study of J-holomorphic curves in earnest by defining the
nonlinear Cauchy-Riemann equation in its most natural setting, and then examining
the analytical properties of its solutions. This will be the focus for the next few
chapters.

Given a 2n-dimensional real vector space, we define a complex structure on V
to be any linear map J : V → V such that J2 = −1. It’s easy to see that a complex
structure always exists when dimV is even, as one can choose a basis to identify
V with R2n and identify this in turn with Cn, so that the natural “multiplication
by i” on Cn becomes a linear map on V . In the chosen basis, this linear map is
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represented by the matrix

Jstd :=




0 −1
1 0

. . .
0 −1
1 0



.

We call this the standard complex structure on R2n, and will alternately denote
it by Jstd or i, depending on the context. A complex structure J on V allows us
to view V as a complex n-dimensional vector space, in that we identify the scalar
multiplication by any complex number a+ib ∈ C with the linear map a1+bJ . A real-
linear map on V is then also complex linear in this sense if and only if it commutes
with J . Similarly, we call a real-linear map A : V → V complex antilinear if it
anticommutes with J , i.e. AJ = −JA. This is equivalent to the requirement that A
preserve vector addition but satisfy A(λv) = λ̄Av for all v ∈ V and complex scalars
λ ∈ C.

Exercise 2.1.1.

(a) Show that for every even-dimensional vector space V with complex struc-
ture J , there exists a basis in which J takes the form of the standard
complex structure Jstd.

(b) Show that if V is an odd-dimensional vector space, then there is no linear
map J : V → V satisfying J2 = −1.

(c) Show that all real-linear maps on R2n that commute with Jstd have positive
determinant.

Note that due to the above exercise, a complex structure J on a 2n-dimensional
vector space V induces a natural orientation on V , namely by defining any ba-
sis of the form (v1, Jv1, . . . , vn, Jvn) to be positively oriented. This is equivalent
to the statement that every finite-dimensional complex vector space has a natural
orientation as a real vector space.

The above notions can easily be generalized from spaces to bundles: if M is a
topological space and E →M is a real vector bundle of even rank, then a complex
structure on E → M is a continuous family of complex structures on the fibers
of E, i.e. a section J ∈ Γ(End(E)) of the bundle End(E) of fiber-preserving linear
maps E → E, such that J2 = −1. If E → M is a smooth vector bundle, then
we will always assume that J is smooth unless some other differentiability class is
specifically indicated. A complex structure gives E →M the structure of a complex
vector bundle, due to the following variation on Exercise 2.1.1 above.

Exercise 2.1.2.

(a) Show that whenever E → M is a real vector bundle of even rank with a
complex structure J , every point p ∈M lies in a neighborhood on which E
admits a trivialization such that J takes the form of the standard complex
structure Jstd.
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(b) Show that for any two trivializations having the above property, the transi-
tion map relating them is fiberwise complex linear (using the natural iden-
tification R2n = Cn).

For this reason, it is often convenient to denote complex vector bundles of rank n
as pairs (E, J), where E is a real bundle of rank 2n and J is a complex structure on E.
Note that not every real vector bundle of even rank admits a complex structure:
the above discussion shows that such bundles must always be orientable, and this
condition is not even generally sufficient except for the case of rank two.

For a smooth 2n-dimensional manifold M , we refer to any complex structure J
on the tangent bundle TM as an almost complex structure on M , and the pair
(M,J) is then an almost complex manifold. The reason for the word “almost”
will be explained in a moment.

Example 2.1.3. Suppose M is a complex manifold of complex dimension n,
i.e. there exist local charts covering M that identify subsets of M with subsets of
Cn such that all transition maps are holomorphic. Any choice of holomorphic local
coordinates on a subset U ⊂ M then identifies the tangent spaces TpU with Cn. If
we use this identification to assign the standard complex structure i to each tangent
space TpU , then the fact that transition maps are holomorphic implies that this
assignment doesn’t depend on the choice of coordinates (prove this!). Thus M has a
natural almost complex structure J that looks like the standard complex structure
in any holomorphic coordinate chart.

An almost complex structure is called integrable if it arises in the above manner
from a system of holomorphic coordinate charts; in this case we drop the word
“almost” and simply call J a complex structure onM . By definition, then, a real
manifoldM admits a complex structure (i.e. an integrable almost complex structure)
if and only if it also admits coordinate charts that make it into a complex manifold.
In contrast to Exercise 2.1.2, which applies to trivializations on vector bundles, one
cannot always find a coordinate chart that makes a given almost complex structure
look standard on a neighborhood. The following standard (but hard) result of
complex analysis characterizes integrable complex structures; we include it here for
informational purposes, but will not make essential use of it in the following.

Theorem 2.1.4. The almost complex structure J on M is integrable if and only
if the tensor NJ vanishes identically, where NJ is defined on two vector fields X and
Y by

(2.1.1) NJ(X, Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ].

The tensor (2.1.1) is called the Nijenhuis tensor.

Exercise 2.1.5.

(a) Verify that (2.1.1) defines a tensor.
(b) Show that NJ always vanishes if dimM = 2.
(c) Prove one direction of Theorem 2.1.4: if J is integrable, then NJ vanishes.

The converse direction is much harder to prove, see for instance [DK90, Chap-
ter 2]. But if you believe this, then Exercise 2.1.5 has the following nice consequence:
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Theorem 2.1.6. Every almost complex structure on a surface is integrable.

In other words, complex 1-dimensional manifolds are the same thing as almost
complex manifolds of real dimension two. This theorem follows from an existence
result for local pseudoholomorphic curves which we’ll prove in §2.13. Actually, that
existence result can be thought of as the first step in the proof of Theorem 2.1.4.
Complex manifolds in the lowest dimension have a special status, and deserve a
special name:

Definition 2.1.7. A Riemann surface is a complex manifold of complex di-
mension one.

By Theorem 2.1.6, a Riemann surface can equivalently be regarded as a surface
Σ with an almost complex structure j, and we will thus typically denote Riemann
surfaces as pairs (Σ, j).

Surfaces are the easy special case; in dimensions four and higher, (2.1.1) does
not usually vanish, in fact it is generically nonzero, which shows that, in some sense,
“generic” almost complex structures are not integrable. Thus in higher dimensions,
integrable complex structures are very rigid objects—too rigid for our purposes, as
it will turn out. For instance, there are real manifolds that do not admit complex
structures but do admit almost complex structures. It will be most important for
our purposes to observe that symplectic manifolds always admit almost complex
structures that are “compatible” with the symplectic form in a certain geometric
sense. We’ll come back to this in §2.2 and make considerable use of it in later
applications, but for most of the present chapter, we will focus only on the local
properties of J-holomorphic curves and thus be content to work in the more general
context of almost complex manifolds.

Definition 2.1.8. Suppose (Σ, j) is a Riemann surface and (M,J) is an al-
most complex manifold. A smooth map u : Σ → M is called J-holomorphic (or
pseudoholomorphic) if its differential at every point is complex-linear, i.e.

(2.1.2) Tu ◦ j = J ◦ Tu.
Note that in general, the equation (2.1.2) makes sense if u is only of class C1

(or more generally, of Sobolev class W 1,p) rather than smooth, but it will turn out
to follow from elliptic regularity (see §2.6 and §2.13) that J-holomorphic curves are
always smooth if J is smooth—we will therefore assume smoothness whenever con-
venient. Equation (2.1.2) is a nonlinear first-order PDE, often called the nonlinear
Cauchy-Riemann equation. If you are not accustomed to PDEs expressed in
geometric notation, you may prefer to view it as follows: choose holomorphic local
coordinates s + it on a subset of Σ, so j∂s = ∂t and j∂t = −∂s (note that we’re
assuming the integrability of j). Then (2.1.2) is locally equivalent to the equation

(2.1.3) ∂su+ J(u) ∂tu = 0.

Notation. We will sometimes write u : (Σ, j) → (M,J) to mean that u : Σ →
M is a map satisfying (2.1.2). When the domain is the open unit ball B ⊂ C (or any
other open subset of C) and we say u : B →M is J-holomorphic without specifying
the complex structure of the domain, then the standard complex structure is implied,
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i.e. u is a pseudoholomorphic map (B, i) → (M,J) and thus satisfies (2.1.3). The
symbol Br for r > 0 will be used to denote the open ball of radius r in (C, i).

Note that the standard Cauchy-Riemann equation for maps u : C → Cn can be
written as ∂su + i ∂tu = 0, thus (2.1.3) can be viewed as a perturbation of this. In
fact, due to Exercise 2.1.1, one can always choose coordinates near a point p ∈ M
so that J(p) is identified with the standard complex structure; then in a sufficiently
small neighborhood of p, (2.1.3) really is a small perturbation of the usual Cauchy-
Riemann equation. We’ll make considerable use of this perspective in the following.
Here is a summary of the most important results we aim to prove in this chapter.

Theorem. Assume (M,J) is a smooth almost complex manifold. Then:

• (regularity) Every map u : Σ → M of class C1 solving the nonlinear
Cauchy-Riemann equation (2.1.2) is smooth (cf. Theorem 2.11.1).

• (local existence) For any p ∈ M and X ∈ TpM , there exists a neigh-
borhood U ⊂ C of the origin and a J-holomorphic map u : U → M such
that u(0) = p and ∂su(0) = X in standard coodinates s+ it ∈ U (cf. Theo-
rem 2.13.2).

• (critical points) If u : Σ → M is a nonconstant J-holomorphic curve
with a critical point z ∈ Σ, then there is a neighborhood U ⊂ Σ of z such
that u|U\{z} is a k-to-1 immersion for some k ∈ N (cf. Corollary 2.4.9 and
Theorem 2.14.7).

• (intersections) Suppose u1 : Σ1 → M and u2 : Σ2 → M are two non-
constant J-holomorphic curves with an intersection u1(z1) = u2(z2). Then
there exist neighborhoods z1 ∈ U1 ⊂ Σ1 and z2 ∈ U2 ⊂ Σ2 such that the im-
ages u1(U1 \{z1}) and u2(U2 \{z2}) are either identical or disjoint (cf. The-
orem 2.14.6). In the latter case, if dimM = 4, then the intersection has
positive local intersection index, which equals 1 if and only if the intersection
is transverse (cf. Theorem 2.16.1).

This theorem amounts to the statement that locally, J-holomorphic curves be-
have much the same way as holomorphic curves, i.e. the same as in the integrable
case. But since J is usually not integrable, the methods of complex analysis cannot
be applied here, and we will instead need to employ techniques from the theory of
elliptic PDEs. As preparation, we’ll derive the natural linearization of (2.1.2) and
introduce the theory of linear Cauchy-Riemann operators, as well as some funda-
mental ideas of global analysis, all of which will be useful in the chapters to come.

2.2. Compatible and tame almost complex structures

For any given even-dimensional manifold M , it is not always immediately clear
whether an almost complex structure exists. If dimM = 2 for instance, then this is
true if and only if M is orientable, and in higher dimensions the question is more
delicate. We will not address this question in full generality, but merely show in the
present section that for the cases we are most interested in, namely for symplectic
manifolds, the answer is exactly as we might hope. The results of this section are
mostly independent of the rest of the chapter, but they will become crucial once we
discuss compactness results and applications, from Chapter 5 onwards.
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Given a manifold M and a smooth vector bundle E → M of even rank, denote
by J (E) the space of all (smooth) complex structures on E. We shall regard this as
a topological space with the C∞

loc-topology,
1 i.e. a sequence Jk ∈ J (E) converges if

and only if it is C∞-convergent on all compact subsets. As explained in §2.1 above,
any choice of J ∈ J (E) makes (E, J) into a complex vector bundle.

Notation. We shall denote by EndR(Cn) the space of real-linear endomor-
phisms of Cn, i.e. EndR(Cn) = End(R2n) under the usual identification of Cn

with R2n. The spaces of complex-linear and complex-antilinear endomorphisms of
Cn will be denoted by EndC(Cn) and EndC(Cn) respectively, or EndC(Cn, J) and
EndC(Cn, J) whenever an alternative complex structure J on Cn is specified. For a
complex vector bundle (E, J), we will analogously denote the various vector bundles
of fiber-preserving linear maps on E by EndR(E), EndC(E, J) and EndC(E, J). The
open subsets

AutR(E) := {A ∈ EndR(E) | A is invertible}
AutC(E, J) := {A ∈ EndC(E, J) | A is invertible}

are then smooth fiber bundles. Let J (Cn) ⊂ EndR(Cn) denote the space of all
complex structures on the vector space R2n = Cn.

Exercise 2.2.1. Consider the smooth map

Φ : GL(2n,R) → GL(2n,R) : A 7→ AiA−1,

where i is identified with the standard complex structure on R2n = Cn. Show that if
GL(n,C) is regarded as the subgroup of all matrices in GL(2n,R) that commute with
i, then Φ descends to an embedding of the homogeneous space GL(2n,R)/GL(n,C)
into GL(2n,R), whose image is precisely J (Cn). Deduce that J (Cn) is a noncom-
pact 2n2-dimensional smooth submanifold of EndR(Cn), and show that its tangent
space at any J ∈ J (Cn) is

TJJ (Cn) = EndC(C
n, J) ⊂ EndR(C

n).

Exercise 2.2.2. Use Exercise 2.2.1 to show that for any smooth complex vector
bundle (E, J0) → M , the space J (E) of complex structures on E can be identified
with the space of smooth sections of the fiber bundle AutR(E)/AutC(E, J0) → M .

The map Φ : GL(2n,R) → J (Cn) of Exercise 2.2.1 also yields a natural way
to construct smooth local charts on J (Cn). For instance, the standard structure
i ∈ J (Cn) is Φ(1), and on T1GL(2n,R) = EndR(Cn) we have a natural splitting

EndR(C
n) = EndC(C

n)⊕ EndC(C
n) = T1GL(n,C)⊕ TiJ (Cn),

so that matrices of the form 1 + Y for Y ∈ EndC(Cn) near 0 form a local slice
parametrizing a neighborhood of [1] in GL(2n,R)/GL(n,C). Consequently, J (Cn)
is parametrized near i by matrices of the form Φ(1 + Y ) = (1 + Y )i(1 + Y )−1 for

1Also known as the weak or compact-open C∞-topology, see e.g. [Hir94, Chapter 2].
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Y ∈ EndC(Cn). It will be convenient to modify this parametrization by a linear
transformation on EndC(Cn): consider the map

(2.2.1) Y 7→ JY :=

(
1+

1

2
iY

)
i

(
1+

1

2
iY

)−1

.

This identifies a neighborhood of 0 in TiJ (Cn) = EndC(Cn) with a neighborhood
of i in J (Cn), and the following exercise shows that it can be thought of informally
as a kind of “exponential map” on J (Cn).

Exercise 2.2.3. Show that the derivative of the map (2.2.1) at 0 is the identity
transformation on EndC(Cn).

Remark 2.2.4. Since all complex structures on Cn are equivalent up to a change
of basis, the above discussion also shows that a neighborhood of any J0 ∈ J (Cn)
can be identified with a neighborhood of 0 in EndC(Cn, J0) via the map Y 7→ J :=(
1+ 1

2
J0Y

)
J0
(
1+ 1

2
J0Y

)−1
.

Suppose next that (E, ω) is a symplectic vector bundle, i.e. a vector bundle
whose fibers are equipped with a nondegenerate skew-symmetric bilinear 2-form ω
that varies smoothly. It is straightforward to show that such a bundle admits local
trivializations that identify every fiber symplectically with (R2n, ωstd); see [MS98].
On (E, ω), we will consider two special subspaces of J (E):

J τ (E, ω) := {J ∈ J (E) | ω(v, Jv) > 0 for all v 6= 0},
J (E, ω) := {J ∈ J (E) | gJ(v, w) := ω(v, Jw) is a Euclidean bundle metric}.

We say that J is tamed by ω if J ∈ J τ (E, ω), and it is compatible with (some
authors also say callibrated by) ω if J ∈ J (E, ω). Clearly J (E, ω) ⊂ J τ (E, ω).
The taming condition is weaker than compatibility because we do not require the
bilinear form (v, w) 7→ ω(v, Jw) to be symmetric, but one can still symmetrize it to
define a bundle metric,

(2.2.2) gJ(v, w) :=
1

2
[ω(v, Jw) + ω(w, Jv)] ,

which is identical to the above definition in the case J ∈ J (E, ω).

Exercise 2.2.5. Show that a tamed complex structure J ∈ J τ (E, ω) is also ω-
compatible if and only if ω is J-invariant, i.e. ω(Jv, Jw) = ω(v, w) for all v, w ∈ E.

Exercise 2.2.6. Suppose (E, ω) is a symplectic vector bundle and F ⊂ E is a
symplectic subbundle, i.e. a smooth subbundle such that ω|F is also nondegenerate.
Denote its symplectic complement by

F⊥ω = {v ∈ E | ω(v, ·)|F = 0},
and recall that ω|F⊥ω is necessarily also nondegenerate, and E = F ⊕ F⊥ω (see
e.g. [MS98]). Show that if j and j′ are tame/compatible complex structures on
(F, ω) and (F⊥ω, ω) respectively, then j ⊕ j′ defines a tame/compatible complex
structure on (E, ω).
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Exercise 2.2.7. Show that for any symplectic vector bundle (E, ω), a complex
structure J ∈ J (E) is compatible with ω if and only if there exists a system of local
trivializations that simultaneously identify ω and J with the standard symplectic
and complex structures ωstd and i respectively on R2n = Cn. Hint: If J is ω-
compatible, then the pairing 〈v, w〉 := ω(v, Jw) + iω(v, w) ∈ C defines a Hermitian
bundle metric on (E, J).

The main result of this section is the following.

Theorem 2.2.8. For any finite rank symplectic vector bundle (E, ω) → M , the
spaces J (E, ω) and J τ (E, ω) are both nonempty and contractible.

Exercise 2.2.9. The following is a converse of sorts to Theorem 2.2.8, but is
much easier. Given a smooth vector bundle E →M , define the space of symplectic
vector bundle structures Ω(E) as the space of smoothly varying nondegenerate
skew-symmetric bilinear 2-forms ω on the fibers of E, and assign to this space the
natural C∞

loc-topology. Show that on any complex vector bundle (E, J), the spaces

Ωτ (E, J) := {ω ∈ Ω(E) | J ∈ J τ (E, ω)} ,
Ω(E, J) := {ω ∈ Ω(E) | J ∈ J (E, ω)}

are each nonempty convex subsets of vector spaces and are thus contractible. Hint:
To show nonemptiness, choose a Hermitian metric and consider its imaginary part.

Before proving the theorem, let us give some initial indications of the role that
tameness plays in the theory of J-holomorphic curves. We will usually assume
(E, ω) := (TM, ω) for some symplectic manifold (M,ω), and in this case use the
notation

J (M) := J (TM), J τ (M,ω) := J τ (TM, ω), J (M,ω) := J (TM, ω).

Most simple examples of almost complex structures one can write down on symplec-
tic manifolds are compatible: e.g. this is true for the standard (integrable) complex
structures on (Cn = R2n, ωstd) and (CP n, ωstd), and for any complex structure com-
patible with the canonical orientation on a 2-dimensional symplectic manifold. Since
every almost complex structure looks like the standard one at a point in appropriate
coordinates, it is easy to see that every J is locally tamed by some symplectic struc-
ture: namely, if J is any almost complex structure on a neighborhood of the origin
in R2n with J(0) = i, then J is tamed by ωstd on a possibly smaller neighborhood
of 0, since tameness is an open condition.

The key property of a tame almost complex structure on a symplectic manifold
is that every complex line in a tangent space is also a symplectic subspace, hence
every embedded J-holomorphic curve parametrizes a symplectic submanifold. At
the beginning of Chapter 1, we showed that holomorphic curves in the standard
Cn have the important property that the area they trace out can be computed by
integrating the standard symplectic structure. It is precisely this relation between
symplectic structures and tame almost complex structures that makes the compact-
ness theory of J-holomorphic curves possible. The original computation generalizes
as follows: assume (M,ω) is a symplectic manifold, J ∈ J τ (M,ω), and let gJ be
the Riemannian metric defined in (2.2.2). If u : (Σ, j) → (M,J) is a J-holomorphic
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curve and we choose holomorphic local coordinates (s, t) on a subset of Σ, then
∂tu = J∂su implies that with respect to the metric gJ , ∂su and ∂tu are orthogonal
vectors of the same length. Thus the geometric area of the parallelogram spanned
by these two vectors is simply

|∂su|gJ · |∂tu|gJ = |∂su|2gJ = ω(∂su, J∂su) = ω(∂su, ∂tu),

hence

(2.2.3) AreagJ (u) =

∫

Σ

u∗ω.

Definition 2.2.10. For any symplectic manifold (M,ω) and tame almost com-
plex structure J ∈ J τ (M,ω), we define the energy of a J-holomorphic curve
u : (Σ, j) → (M,J) by

E(u) =

∫

Σ

u∗ω.

The following is an immediate consequence of (2.2.3).

Proposition 2.2.11. If J ∈ J τ (M,ω) then for every J-holomorphic curve u :
(Σ, j) → (M,J), E(u) ≥ 0, with equality if and only if u is locally constant.2

The energy as defined above is especially important in the case where the
domain Σ is a closed surface. Then u : Σ → M represents a homology class
[u] := u∗[Σ] ∈ H2(M), and the quantity E(u) is not only nonnegative but also
topological : it can be computed via the pairing 〈[ω], [u]〉, and thus depends only
on [u] ∈ H2(M) and [ω] ∈ H2

dR(M). This implies an a priori energy bound for
J-holomorphic curves in a fixed homology class, which we’ll make considerable use
of in applications.

For the next result, we can drop the assumption thatM is a symplectic manifold,
though the proof does make use of a (locally defined) symplectic structure. The
result can be summarized by saying that for any reasonable moduli space of J-
holomorphic curves, the constant curves form an open subset.

Proposition 2.2.12. Suppose Σ is a closed surface, Jk ∈ J (M) is a sequence
of almost complex structures that converge in C∞ to J ∈ J (M), and uk : (Σ, jk) →
(M,Jk) is a sequence of non-constant pseudoholomorphic curves converging in C∞

to a pseudoholomorphic curve u : (Σ, j) → (M,J). Then u is also not constant.

Proof. Assume u is constant and its image is p ∈ M . Choosing coordinates
near p, we can assume without loss of generality that p is the origin in Cn and
uk maps into a neighborhood of the origin, with almost complex structures Jk on
Cn converging to J such that J(0) = i. Then for sufficiently large k, the standard
symplectic form ωstd tames each Jk in a sufficiently small neighborhood of the origin,
and [uk] = [u] = 0 ∈ H2(M), implying E(uk) = 〈[ωstd], [uk]〉 = 0, thus uk is also
constant. �

2The term locally constant means that the restriction of u to each connected component of
its domain Σ is constant.
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The remainder of this section is devoted to proving Theorem 2.2.8. We will
explain two quite different proofs. In the first, which is due to Gromov [Gro85],
the spaces J (E, ω) and J τ (E, ω) must be handled by separate arguments, and the
former is easier—it is also the space that is most commonly needed in applications,
so we shall explain this part first.

Proof of Theorem 2.2.8 for J (E, ω). LetM(E) denote the space of smooth
bundle metrics on E →M , also with the C∞

loc-topology. There is then a natural con-
tinuous map

J (E, ω) → M(E) : J 7→ gJ ,

where gJ := ω(·, J ·). We shall construct a continuous left inverse to this map, i.e. a
continuous map

Φ : M(E) → J (E, ω)

such that Φ(gJ) = J for every J ∈ J (E, ω). Then since M(E) is a nonempty convex
subset of a vector space and hence contractible, the identity map J 7→ Φ(gJ) can be
contracted to a point by contracting M(E).

To construct the map Φ, observe that if g ∈ M(E) happens to be of the form
gJ for some J ∈ J (E, ω), then it is related to J by ω ≡ g(J ·, ·). For more general
metrics g, this relation still determines J as a linear bundle map on E, and the
latter will not necessarily be a complex structure, but we will see that it is not hard
to derive one from it. Thus as a first step, define a continuous map

M(E) → Γ(End(E)) : g 7→ A

via the relation
ω ≡ g(A·, ·).

As is easy to check, the skew-symmetry of ω now implies that the fiberwise adjoint
of A with respect to the bundle metric g is

A∗ = −A,
so in particular A is a fiberwise normal operator, i.e. it commutes with its ad-
joint. Since A∗A is a positive definite symmetric form (again with respect to g), it
has a well-defined square root, and there is thus a continuous map Γ(End(E)) →
Γ(End(E)) that sends A to

Jg := A
√
A∗A

−1
.

Now since A is normal, it also commutes with
√
A∗A

−1
, and then A∗A = −A2

implies J2
g = −1. It is similarly straightforward to check that Jg is compatible

with ω, and Jg = J whenever g = gJ , hence the desired map is Φ(g) = Jg. �

The above implies that J τ (E, ω) is also nonempty, since it contains J (E, ω).
Gromov’s proof concludes by using certain abstract topological principles to show
that once J (E, ω) is known to be contractible, this forces J τ (E, ω) to be contractible
as well. The abstract principles in question come from homotopy theory—in partic-
ular, one needs to be familiar with the notion of a Serre fibration and the homotopy
exact sequence (see e.g. [Hat02, Theorem 4.41]), which has the following useful
corollary:
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Lemma 2.2.13. Suppose π : X → B is a Serre fibration with path-connected base.
Then the fibers π−1(∗) are weakly contractible if and only if π is a weak homotopy
equivalence. �

Recall that a map f : X → Y is said to be a weak homotopy equivalence
whenever the induced maps f∗ : πk(X) → πk(Y ) are isomorphisms for all k, and X
is weakly contractible if πk(X) = 0 for all k. Whitehead’s theorem [Hat02, The-
orem 4.5] implies that whenever X is a connected smooth manifold, contractibility
and weak contractibility are equivalent.

We will find it convenient at this point to dispense with the vector bundle E → M
and restrict attention to a single fiber. Recall that by Exercise 2.2.2, J (E) can be
regarded as the space of smooth sections of a locally trivial fiber bundle overM . We
claim that the same is true of J τ (E, ω):3 indeed, pick a compatible structure J0 ∈
J (E, ω), whose existence is guaranteed by the above proof. Then by Exercise 2.2.7,
E → M admits local trivializations that identify ω and J simultaneously with
the standard structures ωstd and i, and in such a trivialization, any J ∈ J τ (E, ω)
is identified locally with a smooth map into a fixed open subset of the manifold
GL(2n,R)/GL(n,C); see Exercise 2.2.1. The following standard topological lemma
will thus allow us to restrict attention to the various spaces of complex structures
on the vector space Cn.

Lemma 2.2.14. Suppose π : E →M is a smooth locally trivial fiber bundle over a
manifold M , and the fibers are contractible. Then the space Γ(E) of smooth sections
is nonempty and contractible (in the C∞

loc-topology).

Proof. It suffices to construct a smooth section s0 ∈ Γ(E) and a smooth map
r : [0, 1] × E → E such that r(τ, ·) : E → E is fiber preserving for all τ ∈ [0, 1],
r(1, ·) is the identity and r(0, ·) = s0 ◦ π. Note that any such map can also be
viewed as a section of a fiber bundle, namely of (π ◦ pr2)

∗E → [0, 1] × E, where
pr2 : [0, 1] × E → E denotes the natural projection, and r is required to match
a fixed section over the closed subset {0, 1} × E. Then since continuous sections
can always be approximated by smooth ones [Ste51, §6.7], it suffices to construct a
continuous map r with the above properties.

Let us therefore work in the topological category: assume π : E → M is a
topological fiber bundle with contractible fiber F , and M is a finite-dimensional
CW-complex.4 There is a standard procedure for constructing sections by induction
over the skeleta of M , see [Ste51]. Since E is necessarily trivial over each cell,
it suffices to consider the closed k-disk Dk ⊂ Rk for each k ∈ N and the trivial
bundle Dk × F → Dk: the key inductive step is then to show that any continuous
maps s0 : ∂Dk → F and r : [0, 1] × ∂Dk × F → F satisfying r(0, b, p) = s0(b)
and r(1, b, p) = p for all (b, p) ∈ ∂Dk × F can be extended with these properties
continuously over Dk and [0, 1] × Dk × F respectively. Let us first extend s0: this

3The same is also true of J (E,ω) and can be deduced from Proposition 2.2.17 or Corol-
lary 2.2.21 below, but this is not needed for the present discussion.

4The assumption that the CW-complex is finite dimensional is inessential, but lifting it involves
some logical subtleties, and we are anyway most interested in the case where M is a smooth finite-
dimensional manifold.
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is clearly possible since πk−1(F ) = 0. We then require any extension of r to satisfy
r(0, b, p) = s0(b) and r(1, b, p) = p for all (b, p) ∈ Dk × F , thus the problem is to
extend a map defined on

(
{0, 1} × Dk × F

)
∪
(
[0, 1]× ∂Dk × F

)
= ∂

(
[0, 1]× Dk

)
× F

over the interior of [0, 1]×Dk×F ∼= Dk+1×F . This can be done using a contraction
of F . �

With Lemma 2.2.14 in hand, the proof of Theorem 2.2.8 will be complete if we
can show that the space J τ (Cn, ωstd) of linear complex structures on Cn tamed by
the standard symplectic form is contractible.

Proof that J τ (Cn, ωstd) is contractible (Gromov). Let Ω(Cn) denote the
space of nondegenerate skew-symmetric bilinear forms on Cn, i.e. linear symplectic
structures. We then define the topological spaces

X(Cn) = {(ω, J) ∈ Ω(Cn)× J (Cn) | J ∈ J (Cn, ω)},
Xτ (Cn) = {(ω, J) ∈ Ω(Cn)× J (Cn) | J ∈ J τ (Cn, ω)}.

Observe that for any fixed J ∈ J (Cn), the set of all ω ∈ Ω(Cn) that tame J is
convex, and thus contractible; the same is true for the set of all ω ∈ Ω(Cn) for
which J is ω-compatible. Thus the projection maps pr2 : X(Cn) → J (Cn) and
pr2 : Xτ (Cn) → J (Cn) both have contractible fibers; one can show moreover that
both are Serre fibrations, and both are therefore weak homotopy equivalences by
Lemma 2.2.13. This implies that the inclusion X(Cn) →֒ Xτ(Cn) is also a weak
homotopy equivalence. Since the fibers J (Cn, ω) of the projection pr1 : X(Cn) →
Ω(Cn) are also contractible, the latter is also a weak homotopy equivalence, and
by commuting diagrams, we see that pr1 : Xτ (Cn) → Ω(Cn) is therefore a weak
homotopy equivalence, whose fibers J τ (Cn, ω) must then be contractible. �

Exercise 2.2.15. Show that for any vector bundle E of even rank, there is a
natural weak homotopy equivalence between the space of complex structures J (E)
and the space of symplectic vector bundle structures Ω(E) (cf. Exercise 2.2.9).

Remark 2.2.16. Exercise 2.2.15 does not immediately imply any correspondence
between the space of symplectic forms on a manifold M and the space of almost
complex structures J (M), as a symplectic vector bundle structure on TM → M
is in general a nondegenerate 2-form which need not be closed. Such a correspon-
dence does exist however if M is open, by a deep “flexibility” result of Gromov, see
e.g. [EM02] or [Gei03].

We next give a more direct proof of Theorem 2.2.8 using a variation on an
argument due to Sévennec (cf. [Aud94, Corollary 1.1.7]), which can be applied
somewhat more generally. The starting point is the observation that for any choice
of “reference” complex structure J0 ∈ J (Cn), the map

(2.2.4) Y 7→ JY :=

(
1+

1

2
J0Y

)
J0

(
1+

1

2
J0Y

)−1

.
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identifies a neighborhood of 0 in EndC(Cn, J0) smoothly with a neighborhood of J0
in J (Cn), and can thus be regarded as the inverse of a local chart on the smooth
submanifold J (Cn) ⊂ EndR(Cn); cf. Remark 2.2.4 and the discussion that precedes
it. In fact, (2.2.4) is well defined for all Y in the open subset of EndC(Cn) for which
1 + 1

2
J0Y ∈ GL(2n,R), which turns out to be a large enough domain to cover the

entirety of J τ (Cn, ω0)! In the following statement, we say that a subset U ⊂ E in a
vector bundle E is fiberwise convex if its intersection with every fiber is convex,
and we denote by Γ(U) the space of (smooth) sections of E that are everywhere
contained in U .

Proposition 2.2.17. Suppose (E, ω) → M is a symplectic vector bundle and
J0 ∈ J τ (E, ω). Then there exists an open and fiberwise convex subset Uω,J0 ⊂
EndC(E, J0) such that

J τ (E, ω) =
{
JY | Y ∈ Γ

(
Uω,J0

)}
,

where JY is defined via (2.2.4). Moreover, if J0 ∈ J (E, ω), let EndS
R(E, ω, J0) ⊂

EndR(E) denote the subbundle of linear maps that are symmetric with respect to the
bundle metric ω(·, J0·). Then

J (E, ω) =
{
JY | Y ∈ Γ

(
Uω,J0 ∩ EndS

R(E, ω, J0)
)}
.

The next exercise is a lemma needed for the proof of Proposition 2.2.17.

Exercise 2.2.18. Show that for any J0 ∈ J (Cn), the map (2.2.4) defines a
bijection
{
Y ∈ EndC(C

n, J0)
∣∣∣ 1+

1

2
J0Y ∈ GL(2n,R)

}
→ {J ∈ J (Cn) | J0 + J ∈ GL(2n,R)} ,

with inverse J 7→ 2J0(J+J0)
−1(J−J0). Hint: The identities (J±J0)J0 = J(J0±J)

and J0(J ± J0) = (J0 ± J)J hold for any J0, J ∈ J (Cn). For some additional
perspective on this exercise, see Exercise 2.2.23 and Remark 2.2.28.

Proof of Proposition 2.2.17. Suppose J0 and J are two ω-tame complex
structures on some fiber Ex ⊂ E for x ∈ M . Then J0 + J is invertible: indeed, for
any nontrivial v ∈ Ex we have

ω(v, (J0 + J)v) = ω(v, J0v) + ω(v, Jv) > 0,

thus J0+J has trivial kernel. It follows by Exercise 2.2.18 that J = JY for a unique
Y ∈ EndC(Ex, J0). Denote by Uω,J0

x the set of complex-antilinear maps Y : Ex → Ex

that arise in this way.
To show that Uω,J0

x is convex, observe that the condition Y ∈ Uω,J0
x means

ω

(
v,

(
1+

1

2
J0Y

)
J0

(
1+

1

2
J0Y

)−1

v

)
> 0 for all v ∈ Ex \ {0},

which is equivalent to

ω

((
1+

1

2
J0Y

)
v,

(
1+

1

2
J0Y

)
J0v

)
> 0 for all v ∈ Ex \ {0}.
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Given Y0, Y1 ∈ Uω,J0
x , let Yt = tY1 + (1 − t)Y0 for t ∈ [0, 1], fix a nontrivial vector

v ∈ Ex and consider the function

Pv(t) := ω

((
1+

1

2
J0Yt

)
v,

(
1+

1

2
J0Yt

)
J0v

)
∈ R.

This function is of the form Pv(t) = at2+ bt+ c, and using the fact that J0 anticom-
mutes with both Y0 and Y1, we find that its quadratic coefficient is

a = ω

(
1

2
J0(Y1 − Y0)v,

1

2
J0(Y1 − Y0)J0v

)

= −ω
(
1

2
J0(Y1 − Y0)v, J0

[
1

2
J0(Y1 − Y0)v

])
≤ 0

since J0 is tamed by ω. This implies that Pv is a concave function, and since Pv(0)
and Pv(1) are both positive, we conclude Pv(t) > 0 and hence Yt ∈ Uω,J0

x for all
t ∈ [0, 1].

Finally, if J0 is ω-compatible, we will show that JY is also compatible if and only
if Y satisfies 〈v, Y w〉 = 〈Y v, w〉 for all v, w ∈ Ex, where 〈v, w〉 := ω(v, J0w). Recall
that by Exercise 2.2.5, an ω-tame complex structure J is ω-compatible if and only
if ω is J-invariant, i.e. ω(v, w) = ω(Jv, Jw) for all v, w. Plugging in J = JY and
replacing v and w by

(
1+ 1

2
J0Y

)
v and

(
1+ 1

2
J0Y

)
w respectively, this condition is

equivalent to

ω

((
1+

1

2
J0Y

)
v,

(
1+

1

2
J0Y

)
w

)
= ω

((
1+

1

2
J0Y

)
J0v,

(
1+

1

2
J0Y

)
J0w

)

for all v, w ∈ Ex. Expanding both sides, using the fact that ω is also J0-invariant and
then cancelling everything that can be cancelled, one derives from this the condition

−ω(Y v, J0w) + ω(v, J0Y w) = 0 for all v, w ∈ Ex,

which means −〈Y v, w〉+ 〈v, Y w〉 = 0. �

As an easy corollary, we have:

Alternative proof of Theorem 2.2.8 (after Sévennec).
Using Proposition 2.2.17, each of the spaces J τ (E, ω) and J (E, ω) is contractible
if it is nonempty, as it can then be identified via (2.2.4) with a convex subset of a
vector space. Nonemptiness follows from this almost immediately: indeed, Propo-
sition 2.2.17 also implies that both J τ (E, ω) and J (E, ω) can be regarded as the
spaces of sections of certain smooth fiber bundles with contractible fibers; the fibers
are each obviously nonempty since i ∈ J (Cn, ωstd). Existence of sections then fol-
lows from Lemma 2.2.14. �

Exercise 2.2.19. Prove the following generalization of Theorem 2.2.8 for exten-
sions: given a symplectic vector bundle (E, ω) → M , a closed subset A ⊂ M and
a compatible/tame complex structure J defined on E over a neighborhood of A,
the space of compatible/tame complex structures on (E, ω) that match J near A is
nonempty and contractible.
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Exercise 2.2.20. In the setting of the previous exercise, suppose additionally
that we are given a submanifold Σ ⊂ M and a symplectic subbundle F ⊂ E|Σ. Show
that if J is a compatible/tame complex structure that is defined on a neighborhood
of A and preserves F over a neighborhood of Σ∩A in Σ, and j is a compatible/tame
complex structure on F that matches J |F near Σ∩A, then the space of all compat-
ible/tame complex structures on E that match J near A and restrict to j on F is
also nonempty and contractible. Hint: It may help to recall Exercise 2.2.6.

Proposition 2.2.17 also implies the following useful description of J (Cn, ωstd),
which we will need in Chapter 4:

Corollary 2.2.21. The space J (Cn, ωstd) is a smooth submanifold of EndR(Cn),
with tangent space at i ∈ J (Cn, ωstd) given by

TiJ (Cn, ωstd) = {Y ∈ EndC(C
n) | Y is symmetric}.

Moreover, the map Y 7→ JY of (2.2.1) identifies a neighborhood of 0 in TiJ (Cn, ωstd)
smoothly with a neighborhood of i in J (Cn, ωstd).

Remark 2.2.22. The above argument can also be used to show that for any
collection Ω of symplectic structures on a given bundle E → M , the spaces of
complex structures that are simultaneously either tamed by or compatible with every
ω ∈ Ω are contractible whenever they are nonempty, see [MNW13, Appendix A.1].
Of course, such spaces may indeed be empty if Ω has more than one element.

As an aside, it is worth mentioning an alternative way to understand Proposi-
tion 2.2.17 in terms of the classical Cayley transform; this was the original viewpoint
of Sévennec as presented in [Aud94]. The Cayley transform on C is the linear frac-
tional transformation

ϕ(z) =
z − i

z + i
,

which maps C \ {−i} conformally and bijectively to C \ {1}, sending {Im z > 0} to
{|z| < 1} and i to 0. Its inverse is ϕ−1(w) = −iw+1

w−1
.

Notice that if we identify C with the subspace of EndR(Cn) consisting of complex
multiples of the identity, then ϕ is the restriction of the map

(2.2.5) Φ(J) := (J + i)−1(J − i),

defined for all J ∈ EndR(Cn) such that J + i ∈ GL(2n,R), with i now denoting the
standard complex structure on Cn.5

Exercise 2.2.23. Show that (2.2.5) defines a diffeomorphism

{J ∈ EndR(C
n) | J + i ∈ GL(2n,R)} → {Y ∈ EndR(C

n) | Y − 1 ∈ GL(2n,R)},
with inverse Φ−1(Y ) = −i(Y + 1)(Y − 1)−1.

5Since EndR(Cn) is not commutative, there are actually two obvious extensions of ϕ to
EndR(Cn), the other being Φ(J) := (J − i)(J + i)−1. One could carry out this entire discus-
sion with the alternative choice and prove equivalent results.
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Exercise 2.2.24. Denote the natural inclusion of C →֒ EndR(Cn) as described
above by z 7→ Jz. If ωstd is the standard symplectic form on Cn = R2n, show that
ωstd(v, Jzv) > 0 holds for all nontrivial v ∈ Cn if and only if z lies in the open upper
half-plane.

With the previous exercise in mind, the fact that ϕ maps the upper half-plane
to the unit disk in C now generalizes as follows. Let ‖ · ‖ denote the operator norm
on EndR(Cn) defined via the standard Euclidean metric 〈·, ·〉 = ωstd(·, i·).

Lemma 2.2.25. Every J ∈ EndR(Cn) that satisfies ωstd(v, Jv) > 0 for all non-
trivial v ∈ Cn is in the domain of Φ, and every Y ∈ EndR(Cn) with ‖Y ‖ < 1 is
in the domain of Φ−1. Moreover, a given J in the domain of Φ satisfies the above
condtion with respect to ωstd if and only if ‖Φ(J)‖ < 1.

Exercise 2.2.26. Show that if J ∈ EndR(Cn) satisfies ωstd(v, Jv) > 0 for all v 6=
0, then J+ i is invertible, thus J is in the domain of Φ. It follows via Exercise 2.2.23
that for Y := Φ(J), Y − 1 is invertible and J = −i(Y + 1)(Y − 1)−1. Now given
v ∈ Cn, write w = (Y − 1)−1v and show that ωstd(v, Jv) = |w|2 − |Y w|2. Use this
to prove Lemma 2.2.25.

Exercise 2.2.27. If Y = Φ(J), show that J ∈ J (Cn) if and only if Y ∈
EndC(Cn). Hint: Notice that when Φ(J) = Y ∈ EndC(Cn), we have

(2.2.6) J = Φ−1(Y ) = −i(Y + 1)(Y − 1)−1 = (Y − 1)i(Y − 1)−1.

As in Exercise 2.2.18, the identities (J ± i)J = −1 ± iJ = i(i ± J) and (J ± i)i =
Ji∓ 1 = J(i± J) hold if J ∈ J (Cn).

Remark 2.2.28. In light of (2.2.6) above, one can now express the map Y 7→ JY
from (2.2.1) as the composition of Φ−1 with the linear isomorphism

EndC(C
n) → EndC(C

n) : Y 7→ −1

2
iY.

Together with our characterization of the compatible case in the proof of Proposi-
tion 2.2.17, the results of Lemma 2.2.25 and Exercise 2.2.27 can now be summarized
as follows.

Theorem 2.2.29 (Sévennec). The Cayley transform J 7→ (J+i)−1(J−i) defines
diffeomorphisms

J τ (Cn, ωstd) → {Y ∈ EndC(C
n) | ‖Y ‖ < 1},

J (Cn, ωstd) → {Y ∈ EndC(C
n) | ‖Y ‖ < 1 and Y is symmetric }.

�

Remark 2.2.30. Theorem 2.2.29 could be stated a bit more generally by replac-
ing ωstd and i with different symplectic and complex structures ω and J0 respectively,
but in this form, it does require the assumption that J0 be compatible with ω, not
just tame. Our alternative proof of Theorem 2.2.8 had the slight advantage of not re-
quiring this extra condition, and this relaxation is important in certain applications,
cf. [MNW13, Appendix A.1].
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2.3. Linear Cauchy-Riemann type operators

Many important results about solutions to the nonlinear Cauchy-Riemann equa-
tion can be reduced to statements about solutions of corresponding linearized equa-
tions, thus it is important to understand the linearized equations first. Consider a
Riemann surface (Σ, j) and a complex vector bundle (E, J) → (Σ, j) of (complex)
rank n: this means that E → Σ is a real vector bundle of rank 2n and J is a
complex structure on the bundle. We say that the bundle admits a holomorphic
structure if Σ has an open covering {Uα} with complex-linear local trivializations
E|Uα → Uα×Cn whose transition maps are holomorphic functions from open subsets
of Σ to GL(n,C).

On the space C∞(Σ,C) of smooth complex-valued functions, there are natural
first-order differential operators

(2.3.1) ∂̄ : f 7→ df + i df ◦ j
and

(2.3.2) ∂ : f 7→ df − i df ◦ j.
We can regard ∂̄ as a linear map C∞(Σ) → Γ(HomC(TΣ,C)), where the latter de-
notes the space of smooth sections of the bundle HomC(TΣ,C) of complex-antilinear
maps TΣ → C; similarly, ∂ maps C∞(Σ) to Γ(HomC(TΣ,C)).

6 Observe that the
holomorphic functions f : Σ → C are precisely those which satisfy ∂̄f ≡ 0; the
solutions of ∂f ≡ 0 are called antiholomorphic.

If (E, J) → (Σ, j) has a holomorphic structure, one can likewise define a natural
operator on the space of sections Γ(E),

∂̄ : Γ(E) → Γ(HomC(TΣ, E)),

which is defined the same as (2.3.1) on any section written in a local holomorphic
trivialization. We then call a section v ∈ Γ(E) holomorphic if ∂̄v ≡ 0, which
is equivalent to the condition that it look holomorphic in all holomorphic local
trivializations.

Exercise 2.3.1. Check that the above definition of ∂̄ : Γ(E) → Γ(HomC(TΣ, E))
doesn’t depend on the trivialization if all transition maps are holomorphic. You may
find Exercise 2.3.2 helpful. (Note that the operator ∂f := df − i df ◦ j is not simi-
larly well defined on a holomorphic bundle—it does depend on the trivialization in
general.)

Exercise 2.3.2. Show that the ∂̄-operator on a holomorphic vector bundle
satisfies the following Leibniz identity: for any v ∈ Γ(E) and f ∈ C∞(Σ,C),
∂̄(fv) = (∂̄f)v + f(∂̄v).

Definition 2.3.3. A complex-linear Cauchy-Riemann type operator on
a complex vector bundle (E, J) → (Σ, j) is a complex-linear map

D : Γ(E) → Γ(HomC(TΣ, E))

6Many authors prefer to write the spaces of sections of HomC(TΣ,C) and HomC(TΣ,C) as
Ω1,0(Σ) and Ω0,1(Σ) respectively, calling these sections “(1, 0)-forms” and “(0, 1)-forms.”
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that satisfies the Leibniz rule

(2.3.3) D(fv) = (∂̄f)v + f(Dv)

for all f ∈ C∞(Σ,C) and v ∈ Γ(E).

One can think of this definition as analogous to the simplest modern defini-
tion of a connection on a vector bundle; in fact it turns out that every complex
Cauchy-Riemann type operator is the complex-linear part of some connection (see
Proposition 2.3.6 below). The following is then the Cauchy-Riemann version of the
existence of the Christoffel symbols.

Exercise 2.3.4. Fix a complex vector bundle (E, J) → (Σ, j).

(a) Show that if D and D′ are two complex-linear Cauchy-Riemann type op-
erators on (E, J), then there exists a smooth complex-linear bundle map
A : E → HomC(TΣ, E) such that D′v = Dv + Av for all v ∈ Γ(E).

(b) Show that in any local trivialization on a subset U ⊂ Σ, every complex-
linear Cauchy-Riemann type operator D can be written in the form

Dv = ∂̄v + Av,

for some smooth map A : U → EndC(Cn).

Exercise 2.3.5. Show that if ∇ is any complex connection on E,7 then ∇+ J ◦
∇ ◦ j is a complex-linear Cauchy-Riemann type operator.

Proposition 2.3.6. For any Hermitian vector bundle (E, J) → (Σ, j) with a
complex-linear Cauchy-Riemann type operator D : Γ(E) → Γ(HomC(TΣ, E)), there
exists a unique Hermitian connection ∇ such that D = ∇+ J ◦ ∇ ◦ j.

Proof. Denote the Hermitian bundle metric by 〈 , 〉, and for any choice of
connection ∇, denote

∇1,0 := ∇− J ◦ ∇ ◦ j and ∇0,1 := ∇+ J ◦ ∇ ◦ j.
Any Hermitian connection satisfies

(2.3.4) d〈ξ, η〉 = 〈∇ξ, η〉+ 〈ξ,∇η〉,
for ξ, η ∈ Γ(E), where both sides are to be interpreted as complex-valued 1-forms.
Then applying ∂ = d− i ◦ d ◦ j and ∂̄ = d+ i ◦ d ◦ j to the function in (2.3.4) leads
to the two relations

∂〈ξ, η〉 = 〈∇0,1ξ, η〉+ 〈ξ,∇1,0η〉,
∂̄〈ξ, η〉 = 〈∇1,0ξ, η〉+ 〈ξ,∇0,1η〉.

Now if we require ∇0,1 = D, the rest of ∇ is uniquely determined by the relation

〈∇1,0ξ, η〉 = ∂̄〈ξ, η〉 − 〈ξ,Dη〉.
Indeed, taking this as a definition of ∇1,0 and writing ∇ := 1

2
(∇1,0 + D), it is

straightforward to verify that ∇ is now a Hermitian connection. �

7By “complex connection” we mean that the parallel transport isomorphisms are complex-
linear. This is equivalent to the requirement that∇ : Γ(E) → Γ(HomR(TΣ, E)) be a complex-linear
map.
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Since connections exist in abundance on any vector bundle, there is always a
Cauchy-Riemann type operator, even if (E, J) doesn’t come equipped with a holo-
morphic structure. We now have the following analogue of Theorem 2.1.6 for bun-
dles:

Theorem 2.3.7. For any complex-linear Cauchy-Riemann type operator D on
a complex vector bundle (E, J) over a Riemann surface (Σ, j), there is a unique
holomorphic structure on (E, J) such that the naturally induced ∂̄-operator is D.

The proof can easily be reduced to the following local existence lemma, which is
a special case of an analytical result that we’ll prove in §2.7 (see Theorem 2.7.1):

Lemma 2.3.8. Suppose D is a complex-linear Cauchy-Riemann type operator on
(E, J) → (Σ, j). Then for any z ∈ Σ and v0 ∈ Ez, there is a neighborhood U ⊂ Σ
of z and a smooth section v ∈ Γ(E|U) such that Dv = 0 and v(z) = v0.

Exercise 2.3.9. Prove Theorem 2.3.7, assuming Lemma 2.3.8.

As we’ll see in the next section, it’s also quite useful to consider Cauchy-Riemann
type operators that are only real -linear, rather than complex.

Definition 2.3.10. A real-linear Cauchy-Riemann type operator on a
complex vector bundle (E, J) → (Σ, j) is a real-linear mapD : Γ(E) → Γ(HomC(TΣ, E))
such that (2.3.3) is satisfied for all f ∈ C∞(Σ,R) and v ∈ Γ(E).

Remark 2.3.11. To understand Definition 2.3.10, it is important to note that
when f is a real-valued function on Σ, the 1-form ∂̄f is still complex -valued, so
multiplication of ∂̄f by sections of E involves the complex structure.

The following is now an addendum to Exercise 2.3.4.

Exercise 2.3.12. Show that in any local trivialization on a subset U ⊂ Σ, every
real-linear Cauchy-Riemann type operator D can be written in the form

Dv = ∂̄v + Av,

for some smooth map A : U → EndR(Cn), where EndR(Cn) denotes the space of
real -linear maps on Cn = R2n.

2.4. The linearization of ∂̄J and critical points

We shall now see how linear Cauchy-Riemann type operators arise naturally
from the nonlinear Cauchy-Riemann equation. Theorem 2.3.7 will then allow us
already to prove something quite nontrivial: nonconstant J-holomorphic curves have
only isolated critical points! It turns out that one can reduce this result to the
corresponding statement about zeroes of holomorphic functions, a well-known fact
from complex analysis.

For the next few paragraphs, we will be doing a very informal version of “infinite-
dimensional differential geometry,” in which we assume that various spaces of smooth
maps can sensibly be regarded as infinite-dimensional smooth manifolds and vector
bundles. For now this is purely for motivational purposes, thus we can avoid worry-
ing about the technical details; when it comes time later to prove something using
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these ideas, we’ll have to replace the spaces of smooth maps with Banach spaces,
which will have to contain nonsmooth maps in order to attain completeness.

So, morally speaking, if (Σ, j) is a Riemann surface and (M,J) is an almost
complex manifold, then the space of smooth maps B := C∞(Σ,M) is an infinite-
dimensional smooth manifold, and there is a vector bundle E → B whose fiber Eu
at u ∈ B is the space of smooth sections,

Eu = Γ(HomC(TΣ, u
∗TM)),

where we pull back J to define a complex bundle structure on u∗TM → Σ. The
tangent vectors at a point u ∈ B are simply vector fields along u, thus

TuB = Γ(u∗TM).

Now we define a section ∂̄J : B → E by

∂̄Ju = Tu+ J ◦ Tu ◦ j.
This section is called the nonlinear Cauchy-Riemann operator, and its zeroes are pre-
cisely the J-holomorphic maps from Σ to M . Recall now that zero sets of smooth
sections on bundles generically have a very nice structure—this follows from the im-
plicit function theorem, of which we’ll later use an infinite-dimensional version. For
motivational purposes only, we state here a finite-dimensional version with geomet-
ric character. Recall that any section of a bundle can be regarded as an embedding
of the base into the total space, thus we can always ask whether two sections are
“transverse” when they intersect.

Theorem 2.4.1 (Finite dimensional implicit function theorem). Suppose E →
B is a smooth vector bundle of real rank k over an n-dimensional manifold and
s : B → E is a smooth section that is everywhere transverse to the zero section.
Then s−1(0) ⊂ B is a smooth submanifold of dimension n− k.

The transversality assumption can easily be restated in terms of the linearization
of the section s at a zero. The easiest way to define this is by choosing a connection
∇ on E → B, as one can easily show that the linear map ∇s : TpB → Ep is
independent of this choice at any point p where s(p) = 0; this follows from the fact
that TE along the zero section has a canonical splitting into horizontal and vertical
subspaces. Let us therefore denote the linearization at p ∈ s−1(0) by

Ds(p) : TpB → Ep.

Then the intersections of s with the zero section are precisely the set s−1(0), and
these intersections are transverse if and only if Ds(p) is a surjective map for all
p ∈ s−1(0).

In later chapters we will devote considerable effort to finding ways of showing that
the linearization of ∂̄J at any u ∈ ∂̄−1

J (0) is a surjective operator in the appropriate
Banach space setting. With this as motivation, let us now deduce a formula for the
linearization itself. It will be slightly easier to do this if we regard ∂̄J as a section

of the larger vector bundle Ê with fibers

Êu = Γ(HomR(TΣ, u
∗TM)).
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To choose a “connection” on Ê , choose first a connection ∇ on M and assume

that for any smoothly parametrized path τ 7→ uτ ∈ B and a section ℓτ ∈ Êuτ =

Γ(HomR(TΣ, u
∗
τTM)) along the path, the covariant derivative ∇τℓτ ∈ Êuτ should

take the form

(∇τℓτ )X = ∇τ (ℓτ (X)) ∈ (u∗TM)z = Tu(z)M

for z ∈ Σ, X ∈ TzΣ. Then ∇τℓτ doesn’t depend on the choice of ∇ at any value of
τ for which ℓτ = 0.

Now given u ∈ ∂̄−1
J (0), consider a smooth family of maps {uτ}τ∈(−1,1) with u0 =

u, and write ∂τuτ |τ=0 =: η ∈ Γ(u∗TM). By definition, the linearization

D∂̄J(u) : Γ(u
∗TM) → Γ(HomR(TΣ, u

∗TM))

will be the unique linear map such that

D∂̄J(u)η = ∇τ

(
∂̄Juτ

)∣∣
τ=0

= ∇τ [Tuτ + J(uτ) ◦ Tuτ ◦ j]|τ=0 .

To simplify this expression, choose holomorphic local coordinates s + it near the
point z ∈ Σ and consider the action of the above expression on the vector ∂s: this
gives

∇τ [∂suτ + J(uτ)∂tuτ ]|τ=0 .

The expression simplifies further if we assume ∇ is a symmetric connection on M ;
this is allowed since the end result will not depend on the choice of connection. In
this case ∇τ∂suτ |τ=0 = ∇s∂τuτ |τ=0 = ∇sη and similarly for the derivative by t, thus
the above becomes

∇sη + J(u)∇tη + (∇ηJ)∂tu.

Taking the coordinates back out, we’re led to the following expression for the lin-
earization of ∂̄J :

(2.4.1) D∂̄J(u)η = ∇η + J(u) ◦ ∇η ◦ j + (∇ηJ) ◦ Tu ◦ j.
Though it may seem non-obvious from looking at the formula, it turns out that the

right hand side of (2.4.1) belongs not only to Êu but also to Eu, i.e. it is a complex
antilinear bundle map TΣ → u∗TM .

Exercise 2.4.2. Verify that if u ∈ ∂̄−1
J (0), then for any η ∈ Γ(u∗TM), the

bundle map TΣ → u∗TM defined by the right hand side of (2.4.1) is complex-
antilinear. Hint: Show first that ∇XJ always anticommutes with J for any vector
X .

To move back into the realm of solid mathematics, let us now regard (2.4.1) as
a definition, i.e. to any smooth J-holomorphic map u : Σ → M we associate the
operator

Du := D∂̄J(u),

which is a real-linear map taking sections of u∗TM to sections of HomC(TΣ, u
∗TM).

The following exercise is straightforward but important.

Exercise 2.4.3. Show that Du is a real-linear Cauchy-Riemann type operator
on u∗TM .
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With this and Theorem 2.3.7 to work with, it is already quite easy to prove that
J-holomorphic curves have isolated critical points. The key idea, due to Ivashkovich
and Shevchishin [IS99], is to use the linearized operator Du to define a holomorphic
structure on HomC(TΣ, u

∗TM) so that du becomes a holomorphic section. Observe
first that since (Σ, j) is a complex manifold, the bundle TΣ → Σ has a natural
holomorphic structure, so one can speak of holomorphic vector fields on Σ. In
general such vector fields will be defined only locally, but this is sufficient for our
purposes.

Exercise 2.4.4. A map ϕ : (Σ, j) → (Σ, j) is holomorphic if and only if it
satisfies the low-dimensional case of the nonlinear Cauchy-Riemann equation, ∂̄jϕ =
0. The simplest example of such a map is the identity Id : Σ → Σ, and the
linearization DId gives an operator Γ(TΣ) → Γ(HomC(TΣ, TΣ)). Show that DId is
complex-linear, and in fact it is the natural Cauchy-Riemann operator determined
by the holomorphic structure of TΣ. Hint: In holomorphic local coordinates this is
almost obvious.

Lemma 2.4.5. Suppose X is a holomorphic vector field on some open subset
U ⊂ Σ, U ′ ⊂ U is another open subset and ǫ > 0 a number such that the flow
ϕt
X : U ′ → Σ is well defined for all t ∈ (−ǫ, ǫ). Then the maps ϕt

X are holomorphic.

Proof. Working in local holomorphic coordinates, this reduces to the following
claim: if U ⊂ C is an open subset containing a smaller open set U ′ ⊂ U , X : U → C
is a holomorphic function and ϕτ : U ′ → C satisfies

∂τϕ
τ (z) = X(ϕτ (z)),

ϕ0(z) = z
(2.4.2)

for τ ∈ (−ǫ, ǫ), then ϕτ is holomorphic for every τ . To see this, apply the operator
∂̄ := ∂s + i∂t to both sides of (2.4.2) and exchange the order of partial derivatives:
this gives

∂

∂τ
∂̄ϕτ (z) = X ′(ϕτ (z)) · ∂̄ϕτ (z).

For any fixed z ∈ U ′, this is a linear differential equation for the complex-valued
path τ 7→ ∂̄ϕτ (z). Since it begins at zero, uniqueness of solutions implies that it is
identically zero. �

Lemma 2.4.6. For any holomorphic vector field X defined on an open subset
U ⊂ Σ, Du [Tu(X)] = 0 on U .

Proof. By shrinking U if necessary, we can assume that the flow ϕt
X : U → Σ

is well defined for sufficiently small |t|, and by Lemma 2.4.5 it is holomorphic, hence
the maps u ◦ ϕt

X are also J-holomorphic. Then ∂̄J(u ◦ ϕt
X) = 0 and

Du [Tu(X)] = ∇t

[
∂̄J(u ◦ ϕt

X)
]∣∣

t=0
= 0.

�



Lectures on Holomorphic Curves (Version 3.3) 47

The Cauchy-Riemann type operator Du is real-linear, but one can easily define
a complex-linear operator by projecting out the antilinear part:

DC
u =

1

2
(Du − J ◦Du ◦ J) .

This defines a complex-linear map Γ(u∗TM) → Γ(HomC(TΣ, u
∗TM)).

Exercise 2.4.7. Show that DC
u is a complex-linear Cauchy-Riemann type oper-

ator.

In light of Exercise 2.4.7 and Theorem 2.3.7, the induced bundle u∗TM → Σ for
any smooth J-holomorphic curve u : Σ → M admits a holomorphic structure for
which holomorphic sections satisfy DC

uη = 0. Moreover, Lemma 2.4.6 implies that
for any local holomorphic vector field X on Σ,

DC
u [Tu(X)] =

1

2
Du [Tu(X)]− 1

2
JDu [J ◦ Tu(X)] =

1

2
JDu [Tu(jX)] = 0,

where we’ve used the nonlinear Cauchy-Riemann equation for u and the fact that
jX is also holomorphic. Thus Tu(X) is a holomorphic section on u∗TM whenever
X is holomorphic on TΣ. Put another way, the holomorphic bundle structures on
TΣ and u∗TM naturally induce a holomorphic structure on HomC(TΣ, u

∗TM), and
the section du ∈ Γ(HomC(TΣ, u

∗TM)) is then holomorphic. We’ve proved:

Theorem 2.4.8. For any smooth J-holomorphic map u : Σ → M , the complex-
linear part of the linearization Du induces on HomC(TΣ, u

∗TM) a holomorphic
structure such that du is a holomorphic section.

Corollary 2.4.9. If u : Σ → M is smooth, J-holomorphic and not constant,
then the set Crit(u) := {z ∈ Σ | du(z) = 0} is discrete.

Actually we’ve proved more: using a holomorphic trivialization of the bundle
HomC(TΣ, u

∗TM) near any z0 ∈ Crit(u), one can choose holomorphic coordinates
identifying z0 with 0 ∈ C and write du(z) in the trivialization as

du(z) = zkF (z),

where k ∈ N and F is a nonzero Cn-valued holomorphic function. This means that
each critical point of u has a well-defined and positive order (the number k), as
well as a tangent plane (the complex 1-dimensional subspace spanned by F (0) in
the trivialization). We will see this again when we investigate intersections in §2.14,
and it will also prove useful later when we discuss “automatic” transversality.

Remark 2.4.10. The above results for the critical set of a J-holomorphic curve
u remain valid if we don’t require smoothness but only assume J ∈ C1 and u ∈ C2:
then u∗TM and HomC(TΣ, u

∗TM) are complex vector bundles of class C1 and du is a
C1-section, but turns out to be holomorphic with respect to a system of non-smooth
trivializations which have holomorphic (and therefore smooth!) transition functions.
One can prove this using the weak regularity assumptions in Theorem 2.7.1 below;
in practice of course, the regularity results of §2.13 will usually allow us to avoid
such questions altogether.
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2.5. Review of distributions and Sobolev spaces

In order to delve more deeply into the analytical properties of J-holomorphic
curves, we will often need to frame the discussion in the language of distributions,
weak derivatives and Sobolev spaces. In this section we recall the basic notions.
More detailed discussions of most of these topics may be found e.g. in [Tay96,
LL01,Eva98] or in the appendices of [MS04].

Fix n ∈ N and an open subset U ⊂ Rn. We denote by

D(U) := C∞
0 (U ,C)

the space of smooth complex-valued functions with compact support in U , with a
topology such that ϕk → ϕ ∈ D(U) if and only if all functions in this sequence have
support contained in some fixed compact subset of U and their derivatives of all
orders converge uniformly. We will refer to D(U) henceforward as the space of test
functions on U . The space of (complex-valued) distributions on U , also known
as generalized functions and denoted by

D
′(U),

is the space of continuous complex-linear functionals D(U) → C. We shall denote
the action of a distribution T ∈ D ′(U) on a test function ϕ ∈ D(U) by

(T, ϕ) := T (ϕ) ∈ C,

where as an important special case, any locally integrable function f ∈ L1
loc(U)

defines a distribution via the pairing

(f, ϕ) :=

∫

U
fϕ.

To avoid possible confusion, note that ( , ) is not a Hermitian inner product—it
does not involve any complex conjugation. The topology of D ′(U) is defined such
that Tk → T ∈ D ′(U) if and only if (Tk, ϕ) → (T, ϕ) for all ϕ ∈ D(U).

The most popular example of a distribution that is not an actual function is the
“Dirac δ-function,” defined by

(δ, ϕ) := ϕ(0).

The space of distributions is a vector space, thus one can speak of finite sums of
distributions and products of distributions with scalars. Though not all distributions
are functions, all of them are differentiable as distributions: that is, one uses a formal
analogue of integration by parts to define for j = 1, . . . , n,

(2.5.1) (∂jT, ϕ) := −(T, ∂jϕ),

which extends uniquely to define higher-order derivatives of T ∈ D ′(U) as well.
These operations define continuous linear maps on D ′(U) as a consequence of the fact
that the classical differentiation operators act linearly and continuously on D(U). If
f ∈ L1

loc(U) has distributional derivatives that also happen to be locally integrable
functions, we call these weak derivatives of f ; they may be well defined even if f
is not differentiable (see Exercise 2.5.4 below).



Lectures on Holomorphic Curves (Version 3.3) 49

We should mention two more operations on distributions that are often useful.
First, the operation of multiplication by a smooth function

D(U) → D(U) : ϕ 7→ fϕ, f ∈ C∞(U)
has a continuous extension to

D
′(U) → D

′(U) : T 7→ fT, f ∈ C∞(U),
where by definition

(2.5.2) (fT, ϕ) := (T, fϕ).

Exercise 2.5.1. Verify that the usual Leibniz rule for differentiation of products
of smooth functions extends to the case where one of them is a distribution, i.e. for
any f ∈ C∞(U) and T ∈ D ′(U),
(2.5.3) ∂j(fT ) = (∂jf)T + f(∂jT ).

If U = Rn, then there is also the convolution operation

D(Rn) → D(Rn) : ϕ 7→ f ∗ ϕ, f ∈ C∞
0 (Rn),

where

(f ∗ ϕ)(x) :=
∫

Rn

f(x− y)ϕ(y) dµ(y);

here dµ(y) denotes the Lebesgue measure for integrating functions of the variable
y ∈ Rn. The convolution extends to a continuous linear map

D
′(Rn) → D

′(Rn) : T 7→ f ∗ T, f ∈ C∞
0 (Rn),

where the distribution f ∗ T is defined on test functions ϕ ∈ D(Rn) by

(2.5.4) (f ∗ T, ϕ) := (T, f− ∗ ϕ),
with f−(x) := f(−x). If you’ve never seen this formula before, you should take a
moment to convince yourself that it gives the right answer when T is also a smooth
function with compact support. Since f ∗ g = g ∗ f for functions f and g, we can
also define

T ∗ f := f ∗ T ∈ D
′(Rn) for T ∈ D

′(Rn), f ∈ C∞
0 (Rn).

The rule for differentiating convolutions is

(2.5.5) ∂j(f ∗ g) = (∂jf) ∗ g = f ∗ (∂jg)
whenever f and g are both smooth with compact support.

Exercise 2.5.2. Verify that (2.5.5) also holds whenever f ∈ C∞
0 (Rn) and g ∈

D ′(Rn).

Though it is not at all obvious from the definition above, the convolution of a
distribution with a test function is actually a smooth function. To see this, we define
for each z ∈ Rn a continuous linear operator

τz : D(Rn) → D(Rn)
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by τzϕ(x) := ϕ(z−x). Then if f and g are functions on Rn, the classical convolution
can be written as

(f ∗ g)(x) =
∫

Rn

τxf(y)g(y) dµ(y) = (g, τxf).

This formula extends in the obvious way to the case where g is a distribution:
notice that for f ∈ D(Rn), the map Rn → D(Rn) : x 7→ τxf is continuous, thus
the complex-valued function x 7→ (T, τxf) is continuous for any f ∈ D(Rn) and
T ∈ D ′(Rn). A proof of the following may be found e.g. in [LL01, §6.13].

Proposition 2.5.3. For any f ∈ D(Rn) and T ∈ D ′(Rn), the distribution f ∗T
can be represented by the continuous function

(f ∗ T )(x) = (T, τxf).

In fact, this function is smooth, as its partial derivatives ∂j(f ∗ T ) = ∂jf ∗ T are
also convolutions of test functions ∂jf ∈ D(Rn) with T , and by induction, so are all
its higher derivatives. �

Working with distributions is easy once one gets used to them, but our ability to
do this depends on a certain set of slightly nontrivial theorems, stating for instance
that a distribution T ∈ D ′(U) can be represented by a function of class C1 if and
only if it has weak derivatives that are continuous functions, in which case its weak
and classical derivatives match. A proof of the latter statement may be found in
[LL01, §6.10].

Exercise 2.5.4. Let f : R → R : x 7→ |x|. Show that f has weak derivative

f ′(x) = sgn(x) =

{
1 if x > 0,

−1 if x < 0,

and its second derivative in the sense of distributions is f ′′ = 2δ.

Exercise 2.5.5. Show that the function f(x) = ln |x| is locally integrable on R,
and its derivative in D ′(R) is given by

(f ′, ϕ) = p. v.

∫

R

ϕ(x)

x
dx := lim

ǫ→0+

∫

|x|≥ǫ

ϕ(x)

x
dx.

Here the notation p. v. stands for “Cauchy principal value” and is defined as the
limit on the right. Check that this expression gives a well-defined distribution even
though 1/x is not a locally integrable function on R.

Exercise 2.5.6. Show that for any f ∈ C∞
0 (Rn), δ ∗ f = f .

The basic Sobolev spaces are now defined as follows. If k ∈ N, p ∈ [1,∞] and
U ⊂ Rn is an open subset, then W 0,p(U) := Lp(U) is the space of (complex-valued)
functions of class Lp on U , i.e. measurable functions defined almost everywhere on
U for which the Lp norm

‖u‖Lp(U) :=

(∫

U
|u|p
)1/p

for 1 ≤ p <∞, ‖u‖L∞(U) := ess supU |f |
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is finite. Inductively, we then define W k,p(U) as the space of functions in Lp(U) that
have weak derivatives inW k−1,p(U), and define ‖u‖W k,p to be the sum of the Lp norms
of all partial derivatives of u up to order k. These are all Banach spaces, and for p = 2
they also admit Hilbert space structures, with inner products defined by summing
the L2 products for all the derivatives up to order k. We say that a function on U is of

class W k,p
loc if it is in W k,p(U ′) for every open subset U ′ with compact closure U ′ ⊂ U .

In the following, we will sometimes consider Sobolev spaces of maps valued in vector
spaces such as Rn or Cn; the target space will be specified by writing e.g.W k,p(U ,Cn)
whenever there is danger of confusion, and elements of W k,p(U ,Cn) can be regarded
simply as n-tuples of elements in W k,p(U) :=W k,p(U ,C).

We will often make use of the Sobolev embedding theorem, which implies
that if U ⊂ Rn is a bounded open domain with smooth boundary and kp > n, then
there are natural continuous inclusions

W k+d,p(U) →֒ Cd(U)
for each integer d ≥ 0. Some special cases of the proof are worked out in Exer-
cises 2.5.7, 2.5.13 and 2.5.14 below. In fact, these inclusions are compact linear
operators, meaning that bounded sequences in W k+d,p(U) have Cd-convergent sub-
sequences, and the same holds for the obvious inclusions8

W k,p(U) →֒ W k−1,p(U).
Additionally, when kp > n and U ⊂ Rn is bounded with smooth boundary, W k,p(U)
has two related properties that will be especially useful: first, it is a Banach al-
gebra, meaning that products of functions in W k,p(U) are also in W k,p(U) and
satisfy

(2.5.6) ‖uv‖W k,p ≤ c‖u‖W k,p‖v‖W k,p.

for some c > 0. Secondly, if Ω ⊂ Rn is an open subset and we denote by W k,p(U ,Ω)
the (open) set of functions u ∈ W k,p(U ,Rn) such that u(U) ⊂ Ω, then the pairing
(f, u) 7→ f ◦ u defines a continuous map

(2.5.7) Ck(Ω,RN)×W k,p(U ,Ω) → W k,p(U ,RN) : (f, u) 7→ f ◦ u.
Exercise 2.5.7. Use Hölder’s inequality to prove the following simple case of

the Sobolev embedding theorem: for every p > 1, there exists a constant C > 0
such that for all smooth functions f : (0, 1) → R with compact support,

‖f‖C0,α ≤ C‖f‖W 1,p,

where α := 1− 1/p, and the two norms are defined by

‖f‖C0,α := sup
t∈(0,1)

|f(t)|+ sup
s,t∈(0,1), s 6=t

|f(s)− f(t)|
|s− t|α ,

and

‖f‖W 1,p :=

(∫ 1

0

|f(t)|p dt
)1/p

+

(∫ 1

0

|f ′(t)|p dt
)1/p

.

8See Remark 2.5.15 for an important caveat about the compactness of the inclusionsW k+d,p →֒
Cd and W k,p →֒ W k−1,p.
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Conclude via the Arzelà-Ascoli theorem that any sequence fk ∈ C∞
0 ((0, 1)) that is

bounded in W 1,p has a C0-convergent subsequence.

For U = Rn, the entirety of the above discussion of distributions can also be
generalized to allow for a larger class of test functions that need not have compact
support: we define the Schwartz space of test functions

S (Rn) ⊂ C∞(Rn,C)

to be the smooth functions ϕ : Rn → C for which the function |xα∂βϕ(x)| is bounded
on Rn for each pair of multiindices α, β. Recall that amultiindex of degree m ≥ 0
for functions on Rn is an n-tuple of nonnegative integers α = (α1, . . . , αn) satisfying

|α| := α1 + . . .+ αn = m.

This determines a monomial of degree m in the variables (x1, . . . , xn) ∈ Rn, written
as xα :=

∏n
j=1 x

αj

j , as well as an mth-order differential operator

∂α := ∂α1
1 . . . ∂αn

n

for functions on Rn. With this notation understood, the Schwartz space consists of
all smooth functions whose derivatives of all orders decay at infinity faster than any
polynomial, so e.g. it includes functions with noncompact support but exponential
decay. The topology on S (Rn) is defined such that ϕk → ϕ ∈ S (Rn) if and only
if xα∂βϕk converges uniformly to xα∂βϕ for every α and β. There is obviously a
continuous inclusion

D(Rn) →֒ S (Rn),

and it is not hard to show using compactly supported cutoff functions that the
image of this inclusion is dense. The space S ′(Rn) of continuous linear functionals
S (Rn) → C then admits a continuous inclusion

S
′(Rn) →֒ D

′(Rn),

and objects in S ′(Rn) are known as tempered distributions. Not every locally
integrable function defines a tempered distribution, e.g. R → R : x 7→ ex grows too
fast at infinity to have a well-defined pairing with functions in S (Rn). However,
most important examples of distributions are also tempered distributions, including
all locally integrable functions that grow no faster than polynomials at infinity, so
e.g. Exercises 2.5.4, 2.5.5 and 2.5.6 still make sense in this context. One can again
use (2.5.1) to define partial derivative operators, which give continuous linear maps
on S ′(Rn) since differentiation preserves and is continuous on S (Rn). Multiplica-
tion by an arbitrary smooth function does not preserve S (Rn), but it does if the
function and its derivatives have at most polynomial growth, and the operation then
extends continuously to tempered distributions,

S
′(Rn) → S

′(Rn) : T 7→ fT, f ∈ C∞(Rn)

if |∂αf(x)| ≤ Cα(1 + |x|2)Nα for all α, some Cα > 0 and Nα ∈ N.
(2.5.8)

For the convolution, we have f ∗ϕ ∈ S (Rn) whenever f and ϕ are both in S (Rn),
so there is a continuous extension

S
′(Rn) → S

′(Rn) : T 7→ f ∗ T, f ∈ S (Rn)
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defined again by (2.5.4).

Exercise 2.5.8. Convince yourself that the differentiation rules (2.5.3) and
(2.5.5) for products and convolutions respectively also hold in the setting of Schwartz
functions and tempered distributions.

Remark 2.5.9. If T, T ′ ∈ S ′(Rn), then to prove ∂jT = T ′, it suffices to check
that (T ′, ϕ) = −(T, ∂jϕ) for all ϕ ∈ D(Rn) since D(Rn) is dense in S (Rn). In other
words, the definition of differentiation in the sense of distributions does not depend
on whether we regard D(Rn) or S (Rn) as the space of test functions. There is a
slight subtlety here if T and T ′ are represented by functions: if f ∈ L1

loc(R
n) defines

a tempered distribution and has a weak partial derivative ∂jf = g ∈ L1
loc(R

n), then
∂jf is tautologically also a tempered distribution, but this need not mean that it
can be expressed as (∂jf, ϕ) =

∫
Rn gϕ for all ϕ ∈ S (Rn), as gϕ might sometimes

fail to be Lebesgue integrable. Take for instance any bounded smooth function on

R whose first derivative has exponential growth, e.g. f(x) = eie
x2

or cos(ex). What
is always true in such cases is that for any ϕ ∈ S (Rn), one can choose a sequence
of compactly supported functions ϕk ∈ D(Rn) converging in S (Rn) to ϕ and write

(∂jf, ϕ) = lim
k→∞

∫

Rn

gϕk,

where the existence and uniqueness of this limit are guaranteed by the fact that
∂jf ∈ S ′(Rn). This subtlety does not arise if g ∈ Lp(Rn) for some p ∈ [1,∞], as
then gϕ ∈ L1(Rn) for all ϕ ∈ S (Rn), hence we can safely ignore this issue in all
discussions of Sobolev spaces.

Though ordinary distributions are easier to work with for many purposes, the
major advantage of tempered distributions is that they admit an extension of the
Fourier transform operator. For f ∈ L1(Rn), we define the Fourier transform
Ff : Rn → C as the function

(2.5.9) Ff(p) := f̂(p) :=

∫

Rn

f(x)e−2πix·p dµ(x),

where x · p denotes the standard Euclidean inner product on Rn, and the Fourier
inverse operator gives the function F∗f : Rn → C defined by

(2.5.10) F∗f(x) := f̌(x) :=

∫

Rn

f(p)e2πix·p dµ(p).

Both of these operators define bounded linear maps

F ,F∗ : L1(Rn) → C0(Rn).

They do not preserve D(Rn) since compact support of ϕ ∈ D(Rn) does not imply
the same for ϕ̂ or ϕ̌, but they do preserve S (Rn) and are inverse to each other on
this space. Moreover, Plancherel’s theorem implies that for every pair f, g ∈ S (Rn),

∫

Rn

f(x)g(x) dµ(x) =

∫

Rn

f̂(p)ĝ(p) dµ(p),
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thus F extends uniquely to a unitary operator on L2(Rn). The Plancherel identity
is equivalent to ∫

Rn

f̂(x)g(x) dµ(x) =

∫

Rn

f(p)ĝ(p) dµ(p)

for all f, g ∈ S (Rn), and this motivates the extension of F and F∗ to continuous
linear operators on tempered distributions

F ,F∗ : S
′(Rn) → S

′(Rn)

defined by
(FT, ϕ) := (T,Fϕ), (F∗T, ϕ) := (T,F∗ϕ)

for T ∈ S ′(Rn) and ϕ ∈ S (Rn).

Exercise 2.5.10. Show that F(δ) = 1 and F(1) = δ.

A straightforward computation using (2.5.9) and (2.5.10) shows that for f ∈
S (Rn), each of the partial derivatives ∂j for j = 1, . . . , n transforms as

(2.5.11) ∂̂jf(p) = 2πipj f̂(p),

and the following exercise shows that the obvious extension of this formula to tem-
pered distributions also holds.

Exercise 2.5.11. Show that (2.5.11) also holds for all f ∈ S ′(Rn), with the
right hand side interpreted in the sense of (2.5.8).

It is similarly straightforward to show that for f, g ∈ S (Rn),

(2.5.12) f̂ ∗ g(p) = f̂(p)ĝ(p).

Exercise 2.5.12. Show that (2.5.12) also holds when f ∈ S (Rn) and g ∈
S ′(Rn).

The Fourier transform gives rise to a convenient alternative definition for the
Hilbert space

Hk(Rn) := W k,2(Rn)

for each k ∈ N, namely as the space of all functions u ∈ L2(Rn) whose Fourier
transforms satisfy

(2.5.13)

∫

Rn

(1 + |p|2)k|û(p)|2 dµ(p) <∞.

Indeed, (2.5.11) and the Plancherel theorem imply that the square root of this
integral is equivalent to the usual W k,2-norm, and one can similarly define an inner
product on Hk(Rn) as a sum of L2 products of Fourier transforms multiplied by
suitable polynomials. The condition (2.5.13) also yields a natural generalization of
the space Hk(Rn) to allow nonintegral values of k ∈ R.

Exercise 2.5.13. Use the above characterization of Hk(Rn) to prove the follow-
ing case of the Sobolev embedding theorem: for any real number k > n/2, every
u ∈ Hk(Rn) is continuous and bounded, and the resulting inclusion

Hk(Rn) →֒ C0(Rn)
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is continuous. Hint: since F∗ maps L1(Rn) continuously to C0(Rn), it suffices to
bound ‖û‖L1 in terms of the norm ‖u‖Hk , defined as the square root of (2.5.13).
Use the Cauchy-Schwarz inequality: for what values of k do we have

∫

Rn

(1 + |p|2)−k dµ(p) <∞?

Exercise 2.5.14. Extend the previous exercise by induction to show that for any
k > n/2 and any integer d ≥ 0, there is a continuous inclusion Hk+d(Rn) →֒ Cd(Rn).

Remark 2.5.15. If 0 < α := k − n/2 < 1, then one can also bound the Hölder
norm ‖u‖C0,α in terms of ‖u‖Hk ; see [Tay96, Chapter 4, Prop. 1.5]. In contrast to
Exercise 2.5.7, however, this does not imply that the continuous inclusion Hk(Rn) →֒
C0(Rn) is compact, as the Arzelà-Ascoli theorem does not hold for functions on
unbounded domains; indeed, it is easy to find an example of a sequence bounded in
H1(R) that has no C0-convergent subsequence.

The obvious continuous inclusions

Hk+1(Rn) →֒ Hk(Rn)

are also not compact, though the Rellich-Kondrachov theorem implies that the in-
clusions

W k+1,p(U) →֒ W k,p(U)
are compact whenever U ⊂ Rn is a bounded open subset with smooth boundary.
More generally, this also holds for Sobolev spaces of sections of vector bundles over
compact manifolds, cf. §3.1.

2.6. Linear elliptic regularity

Up to now we’ve usually assumed that our J-holomorphic maps u : Σ → M
are smooth, but for technical reasons we’ll later want to allow maps with weaker,
Sobolev-type regularity assumptions. In the end it all comes to the same thing,
because if J is smooth, then it turns out that all J-holomorphic curves are also
smooth. In the integrable case, one can choose coordinates in M so that J = i and
J-holomorphic curves are honestly holomorphic, then this smoothness statement
is a well-known corollary of the Cauchy integral formula. The nonintegrable case
requires more work and makes heavy use of the machinery of elliptic PDE theory.
In this section we will see how to prove smoothness of solutions to linear Cauchy-
Riemann type equations, and we will also derive an important surjectivity property
of the ∂̄-operator which will be helpful later in proving local existence results. The
nonlinear case will be addressed in §2.11. It should also be mentioned that the
estimates introduced in this section have more than just local consequences: they
will be crucial later when we discuss the global Fredholm and compactness theory
of J-holomorphic curves.

2.6.1. Elliptic estimates and bootstrapping arguments. Let us first look
at a much simpler differential equation to illustrate the idea of elliptic regularity.
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Suppose F : Rn → Rn is a function of class Ck and we have a C1 solution to the
nonlinear ODE,

(2.6.1) ẋ = F (x).

Then if k ≥ 1, the right hand side is clearly of class C1, thus so is ẋ, implying that
x is actually C2. If k ≥ 2, we can repeat the argument and find that x is C3 and so
on; in the end we find x ∈ Ck+1, i.e. x is at least one step smoother than F . This
induction is the simplest example of an “elliptic bootstrapping argument”.

The above argument is extremely easy because the left hand side of (2.6.1) tells
us everything we’d ever want to know about the first derivative of our solution.
The situation for a first-order PDE is no longer so simple: e.g. consider the usual
Cauchy-Riemann operator for functions C → C,

∂̄ = ∂s + i∂t,

and the associated linear inhomogeneous equation

∂̄u = f.

Now the left hand side carries part, but not all of the information one could want
to have about du: one can say that ∂su + i∂tu is at least as smooth as f , but this
doesn’t immediately imply the same statement for each of ∂su and ∂tu. What we
need is a way to estimate du (in some suitable norm) in terms of u and ∂̄u, and this
turns out to be possible precisely because ∂̄ is an elliptic operator. We will discuss
the general notion of ellipticity in Appendix 2.B at the end of this chapter; for now,
it will suffice to think of elliptic operators as those which can be shown to satisfy
certain fundamental estimates as in Theorem 2.6.1 below, which turn out to have
powerful consequences for the solutions of local equations such as ∂̄u = f and their
global analogues.

The following example of a Calderón-Zygmund -type inequality is the basic ana-
lytical result we will need to prove regularity for linear Cauchy-Riemann equations.

Theorem 2.6.1. For each p ∈ (1,∞), there exists a constant c > 0 such that
for every u ∈ C∞

0 (B,C),
‖u‖W 1,p ≤ c‖∂̄u‖Lp.

Remark 2.6.2. It follows immediately from Theorem 2.6.1 that the same esti-
mate holds for all u ∈ C∞

0 (B,Cn) for any n ∈ N, and this is the form in which we
will usually apply the result (cf. Exercise 2.6.8 and Cor. 2.6.28).

Exercise 2.6.3. Assuming the theorem above, differentiate the equation ∂̄u = f
and argue by induction to prove the following generalization: for each k ∈ N and
p ∈ (1,∞) there is a constant c > 0 such that

‖u‖W k,p ≤ c‖∂̄u‖W k−1,p

for all u ∈ C∞
0 (B). By a density argument, show that this also holds for all u ∈

W k,p
0 (B), where the latter denotes the closure of C∞

0 (B) in W k,p(B).

We will prove the case p = 2 of this theorem in §2.6.2 below and will reduce
the general case to a result about singular integral operators, whose proof (due to
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Calderón and Zygmund [CZ52,CZ56]) appears in Appendix 2.A at the end of this
chapter. More general versions for elliptic systems of all orders appear in [DN55],
and versions with boundary conditions are treated in [ADN59,ADN64]. Before
discussing the proof, let us see how this estimate can be used to prove a basic
local regularity result for the linear inhomogeneous Cauchy-Riemann equation. The
result will be improved in §2.6.3 below to apply to weak solutions of class L1

loc (see
Theorem 2.6.27).

Proposition 2.6.4. Suppose u ∈ W 1,p(B) and ∂̄u ∈ W k,p(B) for some p ∈
(1,∞). Then u ∈ W k+1,p(Br) for any r < 1, and there is a constant c, depending
on r and p but not on u, such that

(2.6.2) ‖u‖W k+1,p(Br) ≤ c‖u‖W 1,p(B) + c‖∂̄u‖W k,p(B).

Corollary 2.6.5. If f : B → C is smooth, then every solution to ∂̄u = f of
class W 1,p for some p ∈ (1,∞) is also smooth. Moreover, given sequences fk → f
converging in C∞(B) and uk → u converging in W 1,p(B) and satisfying ∂̄uk = fk,
the sequence uk also converges in C∞

loc on B.

Exercise 2.6.6. Prove the corollary.

Proof of Prop. 2.6.4. Write ∂̄u = f . It will suffice to consider the case
k = 1, as once this is settled, the result follows from an easy induction argument
using the fact that any partial derivative ∂ju of u satisfies ∂̄∂ju = ∂jf .

Now assuming u, f ∈ W 1,p(B), we’d first like to prove that u is of class W 2,p on
Br for any r < 1. The idea is to show that ∂su (and similarly ∂tu) is of class W

1,p

by expressing it as a limit of the difference quotients,

uh(s, t) :=
u(s+ h, t)− u(s, t)

h

as h > 0 shrinks to zero. These functions are clearly well defined and belong to
W 1,p(Br) if h is sufficiently small, and it is straightforward (e.g. using approximation
by smooth functions) to show that uh → ∂su in Lp(Br) as h → 0. The significance
of Theorem 2.6.1 is that it gives us a uniform W 1,p-bound on uh with respect to h.
Indeed, pick a cutoff function β ∈ C∞

0 (B) that equals 1 on Br. Then βu
h ∈ W 1,p

0 (B)
and thus satisfies the estimate of Theorem 2.6.1 (cf. Exercise 2.6.3). We compute

(2.6.3) ‖uh‖W 1,p(Br) ≤ ‖βuh‖W 1,p(B) ≤ c‖∂̄(βuh)‖Lp(B)

= c‖(∂̄β)uh + β(∂̄uh)‖Lp(B) ≤ c′‖uh‖Lp(B) + c′‖fh‖Lp(B),

and observe that the right hand side is bounded as h → 0 because uh → ∂su and
fh → ∂sf in Lp.

In light of this bound, the Banach-Alaoglu theorem implies that any sequence uhk

with hk → 0 has a weakly convergent subsequence inW 1,p(Br). But since u
h already

converges to ∂su in Lp(Br), the latter must also be the weak W 1,p-limit, implying
∂su ∈ W 1,p(Br). Now the estimate (2.6.2) follows from (2.6.3), using Exercise 2.6.7
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below to bound theW 1,p-norm of the derivative of u in terms its difference quotients:

‖∂su‖W 1,p(Br) ≤ lim inf
h→0

‖uh‖W 1,p(Br)

≤ c‖∂su‖Lp(B) + c‖∂sf‖Lp(B) ≤ c‖u‖W 1,p(B) + c‖f‖W 1,p(B).

�

Exercise 2.6.7. If X is a Banach space and xn ∈ X converges weakly to x, show
that ‖x‖ ≤ lim inf ‖xn‖. Hint: The natural inclusion of X into (X∗)∗ is isometric,

so ‖x‖ = supλ∈X∗\{0}
|λ(x)|
‖λ‖ .

Exercise 2.6.8. Use Proposition 2.6.4 to show that for any real-linear Cauchy-
Riemann type operator D on a vector bundle (E, J) → (Σ, j), continuously differ-
entiable solutions of Dη = 0 are always smooth. Note: due to Exercise 2.3.12, this
reduces to showing that solutions u ∈ W 1,p(B,Cn) of (∂̄ + A)u = 0 are smooth if
A : B → EndR(Cn) is smooth.

2.6.2. Proof of the basic estimate for ∂̄. In this section we explain (up to a
technical result on singular integral operators) the proof of Theorem 2.6.1, as well as
a stronger statement providing a bounded right inverse for ∂̄ on bounded domains
in C.

The first important observation is that by the Poincaré inequality (see e.g. [Eva98,
§5.6, Theorem 3]), ‖u‖Lp can be bounded in terms of ‖du‖Lp for any u ∈ C∞

0 (B),
thus it will suffice to bound the first derivatives in terms of ∂̄u. For this it is natural
to consider the conjugate of the ∂̄-operator,

∂ := ∂s − i∂t,

as the expressions ∂̄u and ∂u together can produce both ∂su and ∂tu by linear
combinations. Thus we are done if we can show that ‖∂u‖Lp is bounded in terms of
‖∂̄u‖Lp.

It is easy to see why this is true in the case p = 2: the following version of a
standard integration by parts trick is borrowed from [Sik94]. Using the coordinate
z = s+ it, define the differential operators

∂z =
∂

∂z
=

1

2
(∂s − i∂t) ∂z̄ =

∂

∂z̄
=

1

2
(∂s + i∂t)

and corresponding complex-valued 1-forms

dz = d(s+ it) = ds+ i dt dz̄ = d(s− it) = ds− i dt.

Observe that ∂z and ∂z̄ are the same as ∂ and ∂̄ respectively up to a factor of two,9

and we now have du = ∂zu dz + ∂z̄u dz̄. Now if u ∈ C∞
0 (C,C), the complex-valued

1-form u dū has compact support in C, so applying Stokes’ theorem to d(u dū) =

9It is in some sense more natural to define the operators ∂̄ and ∂ with the factor of 1/2 included,
but we have dropped this for the sake of notational convenience.
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du ∧ dū on a sufficiently large ball BR ⊂ C gives

0 =

∫

∂BR

u dū =

∫

BR

du ∧ dū =

∫

BR

(∂zu dz + ∂z̄u dz̄) ∧ (∂zū dz + ∂z̄ū dz̄)

=
1

4

∫

BR

(
|∂u|2 − |∂̄u|2

)
dz ∧ dz̄,

hence ‖∂u‖L2 = ‖∂̄u‖L2.

Exercise 2.6.9. The most popular second-order elliptic operator is the Lapla-
cian

∆ = −(∂21 + . . .+ ∂2n)

for functions on Rn. Use integration by parts to show that
n∑

j,k=1

‖∂j∂ku‖2L2 = ‖∆u‖2L2 for all u ∈ C∞
0 (Rn).

For p 6= 2, a bound on ‖∂u‖Lp can be found by rephrasing the equation ∂̄u = f
in terms of fundamental solutions. By definition, a fundamental solution to the
∂̄-equation is a locally integrable function K ∈ L1

loc(C,C) satisfying

∂̄K = δ

in the sense of distributions, where δ is the Dirac δ-distribution (δ, ϕ) := ϕ(0). For
any f ∈ C∞

0 (C), a solution of ∂̄u = f can then be expressed as the convolution
u = K ∗ f , since

∂̄(K ∗ f) = ∂̄K ∗ f = δ ∗ f = f

by Exercises 2.5.2 and 2.5.6. Note that while the above computation proves ∂̄u = f
in the sense of distributions, u = K ∗ f is in fact smooth due to Proposition 2.5.3
and is representable as a convolution of functions in the classical sense,

(K ∗ f)(z) = (K, τzf) =

∫

C

f(z − ζ)K(ζ) dµ(ζ) =

∫

C

K(z − ζ)f(ζ) dµ(ζ),

thus it is also a classical solution to ∂̄u = f . The following “potential inequality”
implies that on a bounded domain such as B ⊂ C, the map sending f to u = K ∗ f
extends to a bounded linear operator on Lp(B) for every p ∈ [1,∞).

Lemma 2.6.10. Given n ∈ N, a bounded open subset U ⊂ Rn, a locally integrable
function K ∈ L1

loc(R
n) and p ∈ [1,∞], there exists a constant c > 0 such that

‖K ∗ f‖Lp(U) ≤ c‖f‖Lp(U) for all f ∈ C∞
0 (U).

In particular if 1 ≤ p <∞, then f 7→ (K ∗f)|U extends to a bounded linear operator
Lp(U) → Lp(U).

Remark 2.6.11. Both the statement and the proof given below bear some sim-
ilarity to Young’s inequality (cf. [LL01, §4.2]), which implies among other things
that if K ∈ L1(Rn) then f 7→ K ∗ f gives a bounded linear map Lp(Rn) → Lp(Rn).
For our application, however, it is crucial to avoid assuming that K is globally in-
tegrable, and we need to pay for this relaxation of conditions by restricting the
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Lp norm to a bounded domain U ⊂ Rn. For K ∈ L1
loc, K ∗ f will not always decay

fast enough at infinity to be in Lp(Rn); cf. Exercise 2.6.17.

Proof of Lemma 2.6.10. We only need the case p <∞ and will thus assume
this in the following; it is an easy exercise to modify this for the case p = ∞. Choose
R > 0 large enough so that U is contained in the ball BR ⊂ Rn of radius R; then
x− y ∈ B2R for any pair (x, y) ∈ U ×U . Now for x ∈ U , we obtain a uniform bound
∫

U
|K(x− y)| dµ(y) =

∫

x−y∈U
|K(y)| dµ(y) ≤

∫

B2R

|K(y)| dµ(y) = ‖K‖L1(B2R)

independent of x. Set q ∈ [1,∞] such that 1/p+ 1/q = 1 and write

|K(x− y)f(y)| = |K(x− y)|1/p|f(y)| · |K(x− y)|1/q,
so Hölder’s inequality gives

|(K ∗ f)(x)| ≤
∫

U
|K(x− y)f(y)| dµ(y)

≤
(∫

U
|K(x− y)||f(y)|p dµ(y)

)1/p

·
(∫

U
|K(x− y)| dµ(y)

)1/q

≤ ‖K‖1/qL1(B2R)

(∫

U
|K(x− y)||f(y)|p dµ(y)

)1/p

for all x ∈ U . We then use Fubini’s theorem to estimate

‖K ∗ f‖pLp(U) ≤ ‖K‖p/qL1(B2R)

∫

U

(∫

U
|K(x− y)||f(y)|p dµ(y)

)
dµ(x)

= ‖K‖p/qL1(B2R)

∫

U×U
|K(x− y)||f(y)|p dµ(x, y)

= ‖K‖p/qL1(B2R)

∫

U
|f(y)|p

(∫

U
|K(x− y)| dµ(x)

)
dµ(y)

≤ ‖K‖p/q+1

L1(B2R)

∫

U
|f(y)|p dµ(y) = ‖K‖p/q+1

L1(B2R)‖f‖
p
Lp(U).

�

Let us now make the discussion more concrete and consider the function K ∈
L1
loc(C,C) defined by

K(z) =
1

2πz
.

Proposition 2.6.12. The function K satisfies ∂̄K = δ in the sense of distribu-
tions, thus for any f ∈ C∞

0 (C), u := K ∗ f is smooth and satisfies ∂̄u = f .

Proof. The relation ∂̄K = δ means literally that for all test functions ϕ ∈
D(C),

−
∫

C

K(z)∂̄ϕ(z) dµ(z) = (δ, ϕ) = ϕ(0).
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To see that this holds, we can write ∂̄ϕ = 2∂z̄ϕ and dµ(z) = dz∧dz̄
−2i

, and apply Stokes’
theorem:

−
∫

C

K(z)∂̄ϕ(z)
dz ∧ dz̄
−2i

=
1

2πi

∫

C

1

z

∂ϕ

∂z̄
dz ∧ dz̄ = 1

2πi

∫

C

∂

∂z̄

(
ϕ(z)

z

)
dz ∧ dz̄

= − 1

2πi

∫

C

d

(
ϕ(z)

z
dz

)
= − 1

2πi
lim

ǫ→0,R→∞

∫

BR\Bǫ

d

(
ϕ(z)

z
dz

)

=
1

2πi
lim
ǫ→0

∫

∂Bǫ

ϕ(z)

z
dz − 1

2πi
lim
R→∞

∫

∂BR

ϕ(z)

z
dz,

where the first limit converges to ϕ(0) since ϕ is smooth and
∫
∂Bǫ

dz
z
= 2πi, while

the second converges to zero since ϕ has compact support. �

Lemma 2.6.13. For any f ∈ C∞
0 (C), K ∗ f satisfies |(K ∗ f)(z)| ≤ C

|z| for some

constant C > 0.

Proof. Choose R > 0 large enough so that supp(f) ⊂ BR, and suppose |z| ≥
2R. Then for all ζ ∈ C such that f(ζ) 6= 0, we have |z − ζ | ≥ |z| − R ≥ |z|

2
, thus

|(K ∗ f)(z)| = 1

2π

∣∣∣∣
∫

C

f(ζ)

z − ζ
dµ(ζ)

∣∣∣∣ ≤
1

2π

∫

C

|f(ζ)|
|z − ζ | dµ(ζ)

≤ 1

π|z|

∫

C

|f(ζ)| dµ(ζ) = ‖f‖L1

π|z| .

�

It is now easy to see that for u ∈ C∞
0 (C), ∂̄u = f if and only if u = K ∗ f :

indeed, the compact support of u implies that f = ∂̄u also has compact support
and thus K ∗ f is a smooth function on C satisfying ∂̄(K ∗ f) = f and decaying at
infinity. This means u − K ∗ f : C → C is a holomorphic function that decays at
infinity, thus it is identically zero.

By the above remarks, Theorem 2.6.1 will now follow if we can establish a bound
on ‖∂(K ∗f)‖Lp in terms of ‖f‖Lp for every f ∈ C∞

0 (B). The following computation
is a complex-analytic analogue of Exercise 2.5.5.

Lemma 2.6.14. The distribution ∂K = ∂sK − i∂tK ∈ D ′(C) can be written as
the principal value integral

(∂K, ϕ) = −1

π
p. v.

∫

C

ϕ(z)

z2
dµ(z) := −1

π
lim
ǫ→0+

∫

C\Bǫ

ϕ(z)

z2
dµ(z)

for every ϕ ∈ D(C).
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Proof. We write ∂ = 2∂z and dµ(z) = dz∧dz̄
−2i

, and again use Stokes’ theorem:

(∂K, ϕ) = (K,−∂ϕ) = −1

π

∫

C

1

z
∂zϕ

dz ∧ dz̄
−2i

=
1

2πi

∫

C

1

z
d(ϕdz̄) =

1

2πi
lim

ǫ→0,R→∞

∫

BR\Bǫ

[
d
(ϕ
z
dz̄
)
− d

(
1

z

)
∧ ϕdz̄

]

=
1

2πi
lim

ǫ→0,R→∞

(∫

∂BR

ϕ

z
dz̄ −

∫

∂Bǫ

ϕ

z
dz̄

)
+

1

2πi
lim

ǫ→0R→∞

∫

BR\Bǫ

ϕ

z2
dz ∧ dz̄.

In the last line, both 1-dimensional integrals vanish in the limit: the first because
ϕ has compact support, and the second because ϕ is smooth and

∫
∂Bǫ

dz̄
z
= 0. The

remaining term is precisely the desired expression; we are free to remove the limit
as R → ∞ and integrate over C \Bǫ since ϕ has compact support. �

Now applying the usual rule for differentiating convolutions (see Exercise 2.5.2)
and Proposition 2.5.3, we find that for any f ∈ C∞

0 (C),

∂(K ∗ f)(z) = (∂K ∗ f)(z) = (∂K, τzf) = −1

π
lim
ǫ→0+

∫

C\Bǫ

f(z − ζ)

ζ2
dµ(ζ)

= −1

π
lim
ǫ→0+

∫

|ζ−z|≥ǫ

f(ζ)

(z − ζ)2
dµ(ζ).

This shows that the linear map f 7→ ∂(K ∗f) = ∂K ∗f is represented by a so-called
singular integral operator; it differs essentially from the ordinary convolution op-
erator f 7→ K ∗f because its kernel ∂K(z) = −1/πz2 is not locally integrable, so we
cannot apply anything so simple as Lemma 2.6.10 to obtain a bound. Nonetheless,
a bound exists:

Theorem 2.6.15. For functions f ∈ C∞
0 (C), consider the functions Tf and Πf

in C∞(C) given by

Tf(z) := (K ∗ f)(z) = 1

2π

∫

C

f(ζ)

z − ζ
dµ(ζ),

Πf(z) := (∂K ∗ f)(z) = −1

π
lim
ǫ→0+

∫

|ζ−z|≥ǫ

f(ζ)

(z − ζ)2
dµ(ζ).

(2.6.4)

For every p ∈ (1,∞) and every bounded subset U ⊂ C, there exists a constant c > 0
such that

‖Tf‖Lp(U) ≤ c‖f‖Lp(U) for every f ∈ C∞
0 (U),

‖Πf‖Lp(C) ≤ c‖f‖Lp(C) for every f ∈ C∞
0 (C).

In particular, T and Π extend to bounded linear operators on Lp(U) and Lp(C)
respectively.

In addition to implying Theorem 2.6.1 as an immediate corollary, this result has
a stronger consequence that will turn out to have many applications. Observe that
if f ∈ C∞

0 (B) and we have a bound on ‖∂(Tf)‖Lp(B), then we actually have an
Lp bound on the entire first derivative of Tf since ∂̄(Tf) = f . Then by the density
of C∞

0 in Lp:
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Corollary 2.6.16. For each p ∈ (1,∞), the operator T of (2.6.4) extends
to a bounded linear operator T : Lp(B) → W 1,p(B), which is a right inverse of
∂̄ :W 1,p(B) → Lp(B). �

Proof of Theorem 2.6.15 for p = 2. The statement about T : Lp(U) →
Lp(U) follows already from Lemma 2.6.10 for all p ∈ [1,∞) since K is locally
integrable. The estimate for Π is much harder in general, but the Fourier transform
provides us with an easy argument for the p = 2 case.

The essential property ofK is that it is a tempered distribution satisfying ∂̄K = δ
and Πf = ∂(K ∗ f). Taking the Fourier transform of both sides of ∂̄K = δ via

Exercises 2.5.10 and 2.5.11, the Fourier transform K̂(ζ) of K(z) satisfies

(2.6.5) 2πiζK̂(ζ) = 1.

Moreover, if u = K∗f for f ∈ C∞
0 (C) ⊂ S (C), then u is also a tempered distribution

and (by Proposition 2.5.3) a smooth function on C, which by Exercise 2.5.12 satisfies

û = K̂f̂ ,

hence 2πiζû(ζ) = f̂(ζ). Now using Plancherel’s theorem, we estimate

‖Πf‖2L2 = ‖∂u‖2L2

=

∫

C

|∂̂u(ζ)|2 dµ(ζ) =
∫

C

|2πiζ̄û(ζ)|2 dµ(ζ) =
∫

C

∣∣∣∣
ζ̄

ζ
2πiζû(ζ)

∣∣∣∣
2

dµ(ζ)

=

∫

C

|f̂(ζ)|2 dµ(ζ) = ‖f̂‖2L2 = ‖f‖2L2.

�

Exercise 2.6.17. Use the Fourier transform to show that T : C∞
0 (C) → C∞(C) :

f 7→ K ∗ f does not extend to a bounded linear operator L2(C) → L2(C). Remark:
This shows that the boundedness of the domain in Lemma 2.6.10 is essential. The
above result for Π : L2 → L2 has no such restriction.

The Fourier transform argument in the above proof is one of the simplest cases
of an approach that works in general for elliptic operators of any order with constant
coefficients. See Appendix 2.B at the end of this chapter for some discussion of this
and the general definition of ellipticity.

Remark 2.6.18. If we did not already know a formula for the fundamental solu-
tion K, we could attempt to derive one from (2.6.5), i.e. by computing the Fourier
inverse of the function 1/2πiζ , interpreted as a tempered distribution. This hap-
pens to give the correct answer in this specific example (see Exercise 2.6.19 below),
but it is not a reliable method for deriving fundamental solutions in general: first
because computing Fourier inverses is often hard, and second because the relation
(2.6.5) does not immediately imply that the Fourier transform of K is the function
1/2πiζ—we do not even know a priori whether the Fourier transform of K is a func-
tion, only that it is a tempered distribution satisfying (2.6.5). For a more convincing
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illustration of this difficulty, consider the 2-dimensional Laplacian ∆ = −∂21 − ∂22 : if
G ∈ S ′(R2) satisfies ∆G = δ, then the Fourier transform of both sides gives

4π2|p|2Ĝ(p) = 1,

but 1/4π2|p|2 is not a locally integrable function on R2 and thus does not define a
distribution. Of course, it is well known that the Laplacian does admit fundamental
solutions in every dimension, see Example 2.6.23—all we’ve shown here is that the
Fourier transform is not necessarily a good method for finding one.

Exercise 2.6.19. Just for fun, show that the Fourier transform ofK(z) = 1/2πz

really is K̂(ζ) = 1/2πiζ . Hint: Though (2.6.5) does not immediately imply the an-

swer, it does imply that the difference between 1/2πiζ and K̂(ζ) is a distribution
“supported at {0}”, i.e. it vanishes when evaluated on any test function whose sup-
port doesn’t include 0. In any decent book on the theory of distributions, you will
find a theorem stating that all distributions supported at {0} are finite linear com-
binations of derivatives of the δ-function; equivalently, they are Fourier transforms
of polynomials.

The proof of Theorem 2.6.15 for p 6= 2 requires more powerful techniques from
the theory of singular integral operators. We will now state a more general result
that implies it and can also be used in a number of other contexts, e.g. it suffices for
proving similar estimates for the Laplacian (see Example 2.6.23 below). Consider a
function K : Rn \ {0} → C satisfying the following conditions:

K ∈ C1(Rn \ {0}),∫

∂B
n
ǫ

K = 0 for all ǫ > 0 sufficiently small,

|K(x)| ≤ c

|x|n for all |x| > 0,

|dK(x)| ≤ c

|x|n+1
for all |x| > 0,

(2.6.6)

where c > 0 is an arbitrary constant and Bn
ǫ ⊂ Rn denotes the open ǫ-ball about 0.

Note that a function with these properties need not be locally integrable on neighbor-
hoods of 0, though the following exercise shows that it will still define a distribution.

Exercise 2.6.20. Show that any function K : Rn \ {0} → C satisfying the first
three conditions in (2.6.6) defines a distribution via the principal value integral

(K,ϕ) := p. v.

∫

Rn

Kϕ := lim
ǫ→0+

∫

Rn\Bn
ǫ

Kϕ.

Hint: Consider the integral over domains of the form B
n

ǫ \ Bn
δ with ǫ > δ > 0

arbitrarily small, and compare with the case where ϕ is constant.

The exercise implies via Proposition 2.5.3 that for anyK satisfying the first three
conditions and any f ∈ C∞

0 (Rn), one can define a convolution K ∗ f ∈ C∞(Rn,C)
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by

(K ∗ f)(x) = lim
ǫ→0+

∫

Rn\Bn
ǫ (x)

K(x− y)f(y) dµ(y),

where Bn
ǫ (x) ⊂ Rn is the open ǫ-ball about x. It is easy to verify that the function

−1/πz2 on C \ {0} satisfies the conditions (2.6.6), and since we have already shown
that convolutions with this kernel define a bounded operator on L2(C), the next
result implies that the same holds for all p ∈ (1,∞) and thus completes the proof
of Theorem 2.6.15.

Theorem 2.6.21. Suppose K : Rn \ {0} → C is a function satisfying the condi-
tions (2.6.6), and that the operator

A : C∞
0 (Rn) → C∞(Rn) : f 7→ K ∗ f

extends to a bounded linear operator L2(Rn) → L2(Rn). Then it also extends to a
bounded linear operator Lp(Rn) → Lp(Rn) for every p ∈ (1,∞).

See §2.A in the appendices to this chapter for the proof.

Remark 2.6.22. The case p 6= 2 of Theorem 2.6.15 is considerably harder than
the p = 2 case, and in light of this, it is tempting to ask whether the L2 estimates
alone might not suffice for our applications. The main reason why not is that on a
2-dimensional domain, W 1,p embeds into C0 only for p > 2, and not for p = 2. One
can sometimes get around this problem by viewing ∂̄ as a Hilbert space operator
H2 → H1, since H2 := W 2,2 does embed into C0, but this trick is not always
available—e.g. it would not help with our proof of the similarity principle in §2.8
(see Remark 2.8.4), or with the compactness argument in §5.3 (cf. Lemma 5.3.3).

Example 2.6.23. The Laplacian ∆ := −∑n
j=1 ∂

2
j for real-valued functions on

Rn has fundamental solutions of the form

K(x) := − 1

2π
ln |x| for n = 2, K(x) :=

1

(n− 2)Vol(Sn−1)|x|n−2
for n ≥ 3,

where Vol(Sn−1) > 0 denotes the volume of the unit sphere in Rn. These functions
are locally integrable, and so are their first derivatives (in the sense of distributions),

Kj(x) := ∂jK(x) = − 1

Vol(Sn−1)

xj
|x|n .

But their second derivatives are not in L1
loc: they are distributions of the form

Kjk(x) := ∂j∂kK(x) =
1

Vol(Sn−1)

xjxk
|x|n+2

, for j 6= k,

and ∂2jK = −1

n
δ +Kjj, where

Kjj(x) :=
1

Vol(Sn−1)

∑

k

x2j − x2k
|x|n+2

,
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and the evaluation of Kjk on test functions is defined via principal value integrals

(Kjk, ϕ) := lim
ǫ→0+

∫

Rn\Bn
ǫ

Kjk(x)ϕ(x) dµ(x).

Combining Lemma 2.6.10 with Theorem 2.6.21 and a Fourier transform argument
for the p = 2 case implies that the operator f 7→ K ∗ f extends to a bounded
right inverse of ∆ : W 2,p(U) → Lp(U) for any bounded domain U ⊂ Rn and any
p ∈ (1,∞).

Exercise 2.6.24. Verify the formulas given in Example 2.6.23 for the fundamen-
tal solution of ∆ and its partial derivatives, then use the Fourier transform to show
that if f ∈ C∞

0 (Rn) and u = K ∗ f , then ‖∂j∂ku‖L2 ≤ ‖f‖L2 for each j, k = 1, . . . , n.

2.6.3. Bounded right inverses and weak regularity. In Corollary 2.6.16
above, we showed that ∂̄ :W 1,p(B) → Lp(B) has a bounded right inverse whenever
1 < p <∞. This means that the equation ∂̄u = f can be solved for any f ∈ Lp(B),
and in a way that controls the first derivatives of the solution. This can be improved
further using the previous regularity results:

Theorem 2.6.25. For any integer k ≥ 0 and p ∈ (1,∞), the operator ∂̄ :
W k+1,p(B) → W k,p(B) admits a bounded right inverse

T̂ : W k,p(B) →W k+1,p(B),

i.e. ∂̄T̂ f = f for all f ∈ W k,p(B).

Proof. Cor. 2.6.16 proves the result for k = 0, so we proceed by induction,
assuming the result is proven already for k − 1. Pick R > 1, and for each ℓ let

W ℓ,p(B) →W ℓ,p(BR) : f 7→ f̂

denote a bounded linear extension operator, i.e. f̂ satisfies f̂ |B = f and ‖f̂‖W ℓ,p(BR) ≤
c‖f‖W ℓ,p(B) for some c > 0 (see e.g. [Eva98, §5.4]). Then by assumption there is a
bounded operator

TR : W k−1,p(BR) →W k,p(BR)

that is a right inverse of ∂̄ : W k,p(BR) → W k−1,p(BR), hence u := TRf̂ satisfies

∂̄u = f̂ . But then if f̂ ∈ W k,p(BR), Prop. 2.6.4 implies that u ∈ W k+1,p(B) and

‖u‖W k+1,p(B) ≤ c‖u‖W k,p(BR) + c‖f̂‖W k,p(BR)

≤ ‖TR‖ · ‖f̂‖W k−1,p(BR) + c1‖f‖W k,p(B) ≤ c2‖f‖W k,p(B).

�

Now that we are guaranteed to have nice solutions of the equation ∂̄u = f ,
we can also improve the previous regularity results to apply to more general weak
solutions. We begin with the simple fact that “weakly” holomorphic functions are
actually smooth.

Lemma 2.6.26. If u ∈ L1(B) is a weak solution of ∂̄u = 0, then u is smooth.
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Proof. By taking real and imaginary parts, it suffices to prove the same state-
ment for real-valued weak solutions of the Laplace equation: thus consider a function
u ∈ L1(B,R) such that ∆u = 0 in the sense of distributions. On Br for any r < 1
we can approximate u by smooth functions uǫ using a standard mollifier,

uǫ = jǫ ∗ u,
so that uǫ → u in L1(Br) as ǫ → 0. Moreover, ∆uǫ = jǫ ∗ ∆u = 0, thus the uǫ
are harmonic. This implies that they satisfy the mean value property, so for every
sufficiently small ball Bδ(z) about any point z ∈ Br,

uǫ(z) =
1

πδ2

∫

Bδ(z)

uǫ(s, t) ds dt.

By L1 convergence, this expression converges pointwise in a neighborhood of z to
the map

z 7→ 1

πδ2

∫

Bδ(z)

u(s, t) ds dt.

The latter is continuous, and must be equal to u almost everywhere, thus u satisfies
the mean value property and is therefore a smooth harmonic function (see [Eva98,
§2.2.3]). �

Theorem 2.6.27. Suppose f ∈ W k,p(B) for some p ∈ (1,∞) and u ∈ L1(B) is
a weak solution of the equation ∂̄u = f . Then u ∈ W k+1,p(Br) for any r < 1.

Proof. By Theorem 2.6.25, there is a solution η ∈ W k+1,p(B) to ∂̄η = f , and
then ∂̄(u − η) = 0. Lemma 2.6.26 then implies that u − η is smooth and hence in
W k+1,p(Br) for all r < 1, thus u is also in W k+1,p(Br). �

Corollary 2.6.28. Suppose 1 < p < ∞, k is a nonnegative integer, A ∈
L∞(B,EndR(Cn)), f ∈ W k,p(B,Cn) and u ∈ Lp(B,Cn) is a weak solution of the
equation ∂̄u + Au = f . Then u ∈ W 1,p(Br,Cn) for any r < 1. Moreover if A is
smooth, then u ∈ W k+1,p(Br,Cn), and in particular u is smooth if f is smooth.

Proof. We have ∂̄u = −Au + f of class Lp, thus u ∈ W 1,p(Br,Cn) by The-
orem 2.6.27. If A is also smooth and k ≥ 1, then −Au + f is now of class W 1,p,
so u ∈ W 2,p(Br,Cn), and repeating this argument inductively, we eventually find
u ∈ W k+1,p(Br,Cn). �

The invertibility results for ∂̄ will also be useful for proving more general local
existence results, because the property of having a bounded right inverse is preserved
under small perturbations of the operator—thus any operator close enough to ∂̄ in
the appropriate functional analytic context is also surjective!

Exercise 2.6.29. Show that if A : X → Y is a bounded linear map between
Banach spaces and B : Y → X is a bounded right inverse of A, then any small
perturbation of A in the norm topology also has a bounded right inverse. Hint:
Recall that any small perturbation of the identity on a Banach space is invertible,
as its inverse can be expressed as a power series.
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Remark 2.6.30. In most presentations (e.g. [MS04], [HZ94]), some version of
Corollary 2.6.16 and Theorem 2.6.25 is proven by “reducing the local problem to a
global problem” so that one can apply the Fredholm theory of the Cauchy-Riemann
operator. For instance, [MS04] uses the fact that ∂̄ is a surjective Fredholm operator
fromW 1,p to Lp on the closed unit disk if suitable boundary conditions are imposed,
and a related approach is taken in [HZ94, Appendix A.4], which introduces the
fundamental solution K(z) and defines Tf as a convolution, but then compactifies
C to a sphere in order to make ker(∂̄) finite dimensional. We have chosen instead to
view the existence of a right inverse as an aspect of the basic local regularity theory
for ∂̄, which is a prerequisite for the Fredholm theory mentioned above. However, a
second proof of these results will easily present itself when we discuss the Fredholm
theory in Chapter 3, see Remark 3.4.6.

2.7. Local existence of holomorphic sections

We now prove a generalization of Lemma 2.3.8, which implies the existence
of holomorphic structures on complex vector bundles with Cauchy-Riemann type
operators. The question is a purely local one, thus we can work in the trivial bundle
over the open unit ball B ⊂ C with coordinates s + it ∈ B and consider operators
of the form

C∞(B,Cn) → C∞(B,Cn) : u 7→ ∂̄u+ Au

where ∂̄ denotes the differential operator ∂s+ i∂t, and A : B → EndR(Cn) is a family
of real-linear maps on Cn. For Lemma 2.3.8 it suffices to assume A is smooth, but
in the proof and in further applications we’ll find it convenient to assume that A
has much weaker regularity. The smoothness of our solutions will then follow from
elliptic regularity.

Theorem 2.7.1. Assume A ∈ Lp(B,EndR(Cn)) for some p ∈ (2,∞]. Then for
each finite q ∈ (2, p], there is an ǫ > 0 such that for any u0 ∈ Cn, the problem

∂̄u+ Au = 0

u(0) = u0

has a solution u ∈ W 1,q(Bǫ,Cn).

Proof. The main idea is that if we take ǫ > 0 sufficiently small, then the
restriction of ∂̄ + A to Bǫ can be regarded as a small perturbation of the standard
operator ∂̄, and we conclude from Cor. 2.6.16 and Exercise 2.6.29 that the perturbed
operator is surjective.

Since q > 2, the Sobolev embedding theorem implies that functions u ∈ W 1,q

are also continuous and bounded by ‖u‖W 1,q , thus we can define a bounded linear
operator

Φ : W 1,q(B) → Lq(B)× Cn : u 7→ (∂̄u, u(0)).

Cor. 2.6.16 implies that this operator is also surjective and has a bounded right
inverse, namely

Lq(B)× Cn →W 1,q(B) : (f, u0) 7→ Tf − Tf(0) + u0,
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where T : Lq(B) → W 1,q(B) is a right inverse of ∂̄. Thus any operator sufficiently
close to Φ in the norm topology also has a right inverse. Now define χǫ : B → R to
be the function that equals 1 on Bǫ and 0 outside of it, and let

Φǫ : W
1,q(B) → Lq(B)× Cn : u 7→ ((∂̄ + χǫA)u, u(0)).

To see that this is a bounded operator, it suffices to check that W 1,q → Lq : u 7→ Au
is bounded if A ∈ Lp; indeed,

‖Au‖Lq ≤ ‖A‖Lq‖u‖C0 ≤ c‖A‖Lp‖u‖W 1,q ,

again using the Sobolev embedding theorem and the assumption that q ≤ p. Now
by this same trick, we find

‖Φǫu− Φu‖ = ‖χǫAu‖Lq(B) ≤ c‖A‖Lp(Bǫ)‖u‖W 1,q(B),

thus ‖Φǫ − Φ‖ is small if ǫ is small, and it follows that in this case Φǫ is surjective.
Our desired solution is therefore the restriction of any u ∈ Φ−1

ǫ (0, u0) to Bǫ. �

By Exercise 2.6.8, the local solutions found above are smooth if A : B →
EndR(Cn) is smooth, thus applying this to any smooth complex vector bundle
with a complex-linear Cauchy-Riemann operator, we’ve completed the proof of
Lemma 2.3.8 and hence Theorem 2.3.7.

2.8. The similarity principle

Another consequence of the local existence result in §2.7 is that all solutions
to equations of the form ∂̄u + Au = 0, even when A is real -linear, behave like
holomorphic sections in certain respects. This will be extremely useful in studying
the local properties of J-holomorphic curves, as well as global transversality issues.
In practice, we’ll usually need this result only in the case where A is smooth, but
we’ll state it in greater generality since the proof is not any harder.

Theorem 2.8.1 (The similarity principle). Suppose A ∈ L∞(B,EndR(Cn)) and
u ∈ W 1,p(B,Cn) for some p > 2 is a solution of the equation ∂̄u + Au = 0 with
u(0) = 0. Then for sufficiently small ǫ > 0, there exist maps Φ ∈ C0(Bǫ,EndC(Cn))
and f ∈ C∞(Bǫ,Cn) such that

u(z) = Φ(z)f(z), ∂̄f = 0, and Φ(0) = 1.

The theorem says in effect that the trivial complex vector bundle B × Cn → B
admits a holomorphic structure for which the given u is a holomorphic section. In
particular, this implies that if u is not identically zero, then the zero at 0 is isolated,
a fact that we’ll often find quite useful. There’s a subtlety here to be aware of:
the holomorphic structure in question is generally not compatible with the canonical
smooth structure of the bundle, i.e. the sections that we now call “holomorphic” are
not smooth in the usual sense. They will instead be of class W 1,q for some q > 2,
which implies they’re continuous, and that’s enough to imply the above statement
about u having isolated zeroes. Of course, a holomorphic structure also induces
a smooth structure on the bundle, but it will in general be a different smooth
structure.
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Proof of Theorem 2.8.1. Given the solution u ∈ W 1,p(B,Cn), we claim that
there exists a map C ∈ L∞(B,EndC(Cn)) such that C(z)u(z) = A(z)u(z) almost
everywhere. Indeed, whenever u(z) 6= 0 it is simple enough to define

C(z)
u(z)

|u(z)| = A(z)
u(z)

|u(z)|
and extend C(z) to a complex-linear map so that it satisfies a uniform bound in z
almost everywhere; it need not be continuous. Now (∂̄+C)u = 0, and we use Theo-
rem 2.7.1 to find a basis of W 1,p-smooth solutions to (∂̄+C)v = 0 on Bǫ that define
the standard basis of Cn at 0; equivalently, this is a map Φ ∈ W 1,p(Bǫ,EndC(Cn))
that satisfies (∂̄ + C)Φ = 0 and Φ(0) = 1. Since p > 2, Φ is continuous and
we can thus assume without loss of generality that Φ(z) is invertible everywhere
on Bǫ, and the smoothness of the map GL(n,C) → GL(n,C) : Ψ 7→ Ψ−1 then
implies via (2.5.7) that Φ−1 ∈ W 1,p(Bǫ,EndC(Cn)). Then we can define a function
f := Φ−1u : Bǫ → Cn, which is of class W 1,p since W 1,p is a Banach algebra. But
since u = Φf , the Leibniz rule implies ∂̄f = 0, thus f is smooth and holomor-
phic. �

Exercise 2.8.2. By a change of local trivialization, show that a minor variation
on Theorem 2.8.1 also holds for any u : B → Cn satisfying

∂su(z) + J(z)∂tu(z) + A(z)u(z) = 0,

where J(z) is a smooth family of complex structures on Cn, parametrized by z ∈ B.
In particular, u has only isolated zeroes.

Remark 2.8.3. It will occasionally be useful to note that if the 0th-order term
A(z) is not only smooth but complex -linear, then the term Φ(z) in the factorization
u(z) = Φ(z)f(z) given by Theorem 2.8.1 will also be smooth. This is clear by a
minor simplification of the proof, since it is no longer necessary to replace A(z) by
a separate complex-linear term C(z) (which in our argument above could not be
assumed to be more regular than L∞), but suffices to find a local solution of the
equation (∂̄ + A)Φ = 0 with Φ(0) = 1. This exists due to Theorem 2.7.1 and is
smooth by the regularity results of §2.6. A similar remark holds in the generalized
situation treated by Exercise 2.8.2, whenever ∂s + J(z)∂t +A(z) defines a complex -
linear operator with smooth coefficients, e.g. it is always true if J is smooth and
A ≡ 0.

Remark 2.8.4. Many technical arguments in the theory of pseudoholomorphic
curves can be carried out using only the (easy) L2 elliptic estimates for ∂̄, instead
of the (hard) general Lp theory, but the proof of Theorem 2.8.1 seems to be one
detail for which the Lp theory with p > 2 is essential. It depends in particular
on the fact (used in the proof of Theorem 2.7.1) that ∂̄ : W 1,p(B) → Lp(B) has a
bounded right inverse for some p > 2. Attempting the same argument using only
the bounded right inverse of ∂̄ : W 1,2(B) → L2(B) would run into trouble since
W 1,2(B) does not embed into C0(B), so that one could not expect to produce a
continuous local trivialization Φ : Bǫ → EndC(Cn). It is also not an option here
to work instead with ∂̄ : W 2,2(B) → W 1,2(B), as the complex-linear zeroth order
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term C ∈ L∞(B,EndC(Cn)) in the proof cannot generally be assumed to have any
derivatives, even weakly.

We shall study a few simple applications of the similarity principle in the next
two sections.

2.9. Unique continuation

The following corollary of the similarity principle will be important when we
study the transversality question for global solutions to the linearized Cauchy-
Riemann equation.

Corollary 2.9.1. Suppose u : (Σ, j) → (M,J) is a smooth J-holomorphic
curve and η ∈ Γ(u∗TM) is in the kernel of the linearization D∂̄J(u). Then either
η ≡ 0 or the zero set of η is discrete.

On the local level, one can view this as a unique continuation result for J-
holomorphic curves. The following is a simple special case of such a result, which
we’ll generalize in a moment.

Proposition 2.9.2. Suppose J is a smooth almost complex structure on Cn and
u, v : B → Cn are smooth J-holomorphic curves such that u(0) = v(0) = 0 and
u and v have matching partial derivatives of all orders at 0. Then u ≡ v on a
neighborhood of 0.

Proof. Let h = v − u : B → Cn. We have

(2.9.1) ∂su+ J(u(z))∂tu = 0

and

∂sv + J(u(z))∂tv = ∂sv + J(v(z))∂tv + [J(u(z))− J(v(z))] ∂tv

= − [J(u(z) + h(z))− J(u(z))] ∂tv

= −
(∫ 1

0

d

dt
J(u(z) + th(z)) dt

)
∂tv

= −
(∫ 1

0

dJ(u(z) + th(z)) · h(z) dt
)
∂tv =: −A(z)h(z),

(2.9.2)

where the last step defines a smooth family of linear maps A(z) ∈ EndR(Cn). Sub-
tracting (2.9.1) from (2.9.2) gives the linear equation

∂sh(z) + J(u(z))∂th(z) + A(z)h(z) = 0,

thus by Theorem 2.8.1 and Exercise 2.8.2, h(z) = Φ(z)f(z) near 0 for some con-
tinuous Φ(z) ∈ GL(2n,R) and holomorphic f(z) ∈ Cn. Now if h has vanishing
derivatives of all orders at 0, Taylor’s formula implies

lim
z→0

|Φ(z)f(z)|
|z|k = 0

for all k ∈ N, so f must also have a zero of infinite order and thus f ≡ 0. �
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The preceding proposition is not generally as useful as one would hope, because
we’ll usually want to think of pseudoholomorphic curves not as specific maps but
as equivalence classes of maps up to parametrization, whereas the condition that
u and v have matching derivatives of all orders at a point depends heavily on the
choices of parametrizations. We shall now prove a more powerful version of unique
continuation that doesn’t have this drawback. It will be of use to us when we study
local intersection properties in §2.14.

Theorem 2.9.3. Suppose j1 and j2 are smooth complex structures on B, J
is a smooth almost complex structure on Cn, and u : (B, j1) → (Cn, J) and v :
(B, j2) → (Cn, J) are smooth nonconstant pseudoholomorphic curves which satisfy
u(0) = v(0) = 0 and have matching partial derivatives to all orders at z = 0. Then
for sufficiently small ǫ > 0 there exists an embedding ϕ : Bǫ → B with ϕ(0) = 0
such that u ≡ v ◦ ϕ on Bǫ.

A corollary is that if u, v : (B, i) → (Cn, J) are J-holomorphic curves that have
the same ∞-jet at 0 after a smooth reparametrization, then they are also identical
up to parametrization. The reparametrization may be smooth but not necessarily
holomorphic, in which case it changes i on the domain to a nonstandard complex
structure j, so that the reparametrized curve no longer satisfies ∂su + J(u)∂t = 0
and Prop. 2.9.2 thus no longer applies. We will show however that in this situation,
one can find a diffeomorphism on the domain that not only transforms j back into i
but also has vanishing derivatives of all orders at 0, thus producing the conditions
for Prop. 2.9.2.

To prepare for the next lemma, recall that if d ∈ N and u : B → Cn is a Cd-
smooth map, then its degree d Taylor polynomial at z = 0 can be expressed in terms
of the variables z = s + it and z̄ = s− it as

(2.9.3)

d∑

k=0

∑

j+ℓ=k

1

j!ℓ!
∂jz∂

ℓ
z̄u(0)z

j z̄ℓ,

where the differential operators

∂z =
∂

∂z
=

1

2
(∂s − i∂t) and ∂z̄ =

∂

∂z̄
=

1

2
(∂s + i∂t)

are defined via the formal chain rule. If you’ve never seen this before, you should take
a moment to convince yourself that (2.9.3) matches the standard Taylor’s formula
for a complex-valued function of two real variables u(s, t) = u(z). The advantage of
this formalism is that it is quite easy to recognize whether a polynomial expressed
in z and z̄ is holomorphic: the holomorphic polynomials are precisely those which
only depend on powers of z, and not z̄.

In the following, we’ll use multiindices of the form α = (j, k) to denote higher
order partial derivatives with respect to z and z̄ respectively, i.e.

Dα = ∂jz∂
k
z̄ .

Lemma 2.9.4. Suppose u : B → Cn is a smooth solution to the linear Cauchy-
Riemann type equation

(2.9.4) ∂su(z) + J(z)∂tu(z) + A(z)u(z) = 0
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with u(0) = 0, where J,A ∈ C∞(B,EndR(Cn)) with [J(z)]2 = −1 and J(0) = i. If
there exists k ∈ N such that ∂ℓzu(0) = 0 for all ℓ = 1, . . . , k, then ∂z̄∂

αu(0) = 0 for
all multiindices α with |α| ≤ k. In particular, the first k derivatives of u at z = 0
all vanish, and ∂k+1

z u(0) is the only potentially nonvanishing partial derivative of
order k + 1.

Proof. Since J(0) = i, (2.9.4) gives ∂z̄u(0) = 0, thus we argue by induction
and assume ∂z̄D

αu(0) = 0 for all multiindices α of order up to ℓ ≤ k − 1. This
implies that the first ℓ+ 1 derivatives of u vanish at z = 0. Now for any multiindex
α of order ℓ + 1, applying Dα to both sides of (2.9.4) and reordering the partial
derivatives yields

∂sD
αu(z) + J(z)∂tD

αu(z) +
∑

|β|≤ℓ+1

Cβ(z)D
βu(z),

where Cβ(z) are smooth functions that depend on the derivatives of A and J . Eval-
uating at z = 0, the term Dβu(0) always vanishes since |β| ≤ ℓ + 1, so we obtain
∂̄Dαu(0) = 0 as claimed. �

Lemma 2.9.5. Given the assumptions of Theorem 2.9.3, the complex structures
j1 and j2 satisfy j1(0) = j2(0) and also have matching partial derivatives to all orders
at z = 0.

Proof. This would be obvious if u and v were immersed at 0, since then we
could write j1 = u∗J and j2 = v∗J , so the complex structures and their derivatives
at z = 0 are fully determined by those of u, v and J . In general we cannot assume u
and v are immersed, but we shall still use this kind of argument by taking advantage
of the fact that if u and v are not constant, then Prop. 2.9.2 implies that they must
indeed have a nonvanishing derivative of some order at 0.

Write j := j2 and assume without loss of generality that j1 = i, so u satisfies
∂su+J(u)∂tu = 0. We can also assume J(0) = i. Regarding the first derivative of u
as the smooth map du : B → HomR(R2,Cn) defined by the matrix-valued function

du(z) =
(
∂su(z) ∂tu(z)

)
,

let m ∈ N denote the smallest order for which the mth derivative of u at z =
0 does not vanish. Since u also satisfies a linear Cauchy-Riemann type equation
∂su + J̄(z)∂tu with J̄(z) := J(u(z)), Lemma 2.9.4 then implies that ∂mz u(0) is the
only nonvanishingmth order partial derivative with respect to z and z̄. In particular,
∂m−1
z du(0) is then the lowest order nonvanishing derivative of du at z = 0, and the

only one of order m−1. We claim that the matrix ∂m−1
z du(0) ∈ HomR(R2,C) is not

only nonzero but also nonsingular, i.e. it defines an injective linear transformation.
Indeed, computing another mth order derivative of u which must necessarily vanish,

0 = ∂̄∂m−1
z u(0) = ∂m−1

z ∂su+ i∂m−1
z ∂tu,

which means that the transformation defined by ∂m−1
z du(0) is in fact complex-linear,

implying the claim.
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Let us now consider together the equations satisfied by u and v:

du(z)i = J(u(z))du(z),

dv(z)j(z) = J(v(z))dv(z),

where the two sides of each equation are both regarded as smooth functions B →
HomR(R2,Cn). By assumption, the right hand sides of both equations have matching
partial derivatives of all orders at z = 0, thus so do the left hand sides. Subtracting
the second from the first, we obtain the function

du(z)i− dv(z)j(z) = du(z) [i− j(z)] + [du(z)− dv(z)] j(z),

which must have vanishing derivatives of all orders at z = 0. For the second term
in the expression this is already obvious, so we deduce

(2.9.5) Dα [du · (i− j)]|z=0 = 0

for all multiindices α. Applying ∂m−1
z in particular and using the fact that Dβdu(0)

vanishes whenever |β| < m− 1, this implies

∂m−1
z du(0) · [i− j(0)] = 0,

so j(0) = i since ∂m−1
z du(0) is injective. We now argue inductively that all higher

derivatives of i−j(z) must also vanish at z = 0. Assuming it’s true for all derivatives
up to order k−1, suppose α is a multiindex of order k, and plug the operator ∂m−1

z Dα

into (2.9.5). This yields

∂m−1
z Dα [du · (i− j)]

∣∣
z=0

= c · ∂m−1
z du(0) · Dα(i− j)|z=0 = 0,

where c > 0 is a combinatorial constant; all other ways of distributing the operator
∂m−1
z Dα across this product kill at least one of the two terms. Thus using the

injectivity of ∂m−1
z du(0) once more, Dα(i− j)|z=0 = 0. �

Lemma 2.9.6. Suppose j is a smooth complex structure on C such that j(0) = i
and the derivatives Dαj(0) vanish for all orders |α| ≥ 1. If ϕ : (Bǫ, i) → (C, j) is
pseudoholomorphic with ϕ(0) = 0, then the Taylor series of ϕ about z = 0 converges
to a holomorphic function on Bǫ.

Proof. The map ϕ : Bǫ → C satisfies the linear Cauchy-Riemann equation

(2.9.6) ∂sϕ(z) + ̄(z)∂tϕ(z) = 0,

where we define ̄(z) = j(ϕ(z)). Our conditions on j imply that ̄(0) = i and ̄
also has vanishing derivatives of all orders at 0, thus for any multiindex α, applying
the differential operator Dα to both sides of (2.9.6) and evaluating at z = 0 yields
∂̄Dαϕ(0) = 0. This implies that all terms in the Taylor expansion of ϕ about z = 0
are holomorphic, as the only nonvanishing partial derivatives in (2.9.3) are of the
form ∂kzϕ(0) for k ≥ 0.

To see that this Taylor series is actually convergent, we can use a Cauchy integral
to construct the holomorphic function to which it converges: for any δ < ǫ and
z ∈ Bδ, let

f(z) =
1

2πi

∫

∂B̄δ

ϕ(ζ) dζ

ζ − z
.
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This is manifestly a holomorphic function, and its derivatives at z = 0 are given by

(2.9.7) f (n)(0) =
n!

2πi

∫

∂B̄δ

ϕ(ζ) dζ

ζn+1
.

Observe that this integral doesn’t depend on the value of δ. To compute it, write ϕ
in terms of its degree n Taylor polynomial as

ϕ(z) =
n∑

k=0

1

k!
∂kzϕ(0)z

k + |z|n+1B(z),

with B(z) a bounded function. The integral in (2.9.7) thus expands into a sum of
n + 2 terms, of which the first n are integrals of holomorphic functions and thus
vanish, the last vanishes in the limit δ → 0, and the only one left is

f (n)(0) =
n!

2πi

∫

∂B̄δ

∂nz ϕ(0)

n!

dζ

ζ
= ∂nz ϕ(0).

Thus f and ϕ have the same Taylor series. �

Proof of Theorem 2.9.3. Denote j := j2 and without loss of generality, as-
sume j1 ≡ i and J(0) = i. Since all complex structures on B are integrable, there
exists a smooth pseudoholomorphic embedding

ϕ : (B, i) → (B, j)

with ϕ(0) = 0. Now Lemma 2.9.5 implies that j − i has vanishing derivatives of all
orders at z = 0, and applying Lemma 2.9.6 in turn, we find a holomorphic function
f : B → C with f(0) = 0 whose derivatives at 0 of all orders match those of ϕ. In
particular f ′(0) = dϕ(0) is nonsingular, thus f is a biholomorphic diffeomorphism
between open neighborhoods of 0, and for sufficiently small ǫ > 0, we obtain a
pseudoholomorphic map

ϕ ◦ f−1 : (Bǫ, i) → (B, j)

whose derivatives of all orders at 0 match those of the identity map. It follows that
v ◦ ϕ ◦ f−1 : Bǫ → Cn is now a J-holomorphic curve with the same ∞-jet as u at
z = 0, so Prop. 2.9.2 implies v ◦ ϕ ◦ f−1 ≡ u. �

2.10. Intersections with holomorphic hypersurfaces

The similarity principle can also be used to prove certain basic facts about inter-
sections of J-holomorphic curves. The following is the “easy” case of an important
phenomenon known as positivity of intersections. A much stronger version of this
result is valid in dimension four and will be proved in §2.16.

Let us recall the notion of the local intersection index for an isolated intersection
of two maps. Suppose M is an oriented smooth manifold of dimension n, M1 and
M2 are oriented smooth manifolds of dimension n1 and n2 with n1 + n2 = n, and
f1 : M1 → M and f2 : M2 → M are smooth maps. We say that the pair (p1, p2) ∈
M1 ×M2 is an isolated intersection of f1 and f2 at p ∈M if f1(p1) = f2(p2) = p
and there exist neighborhoods p1 ∈ U1 ⊂ M1 and p2 ∈ U2 ⊂M2 such that

f1(U1 \ {p1}) ∩ f2(U2 \ {p2}) = ∅.
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In this case, one can define the local intersection index

ι(f1, p1; f2, p2) ∈ Z

as follows. If the intersection is transverse, we set ι(f1, p1; f2, p2) = ±1, with the
sign chosen to be positive if and only if the natural orientations defined on each side
of the decomposition

TpM = im df1(p1)⊕ im df2(p2)

match. If the intersection is not transverse, choose two neighborhoods U1 and U2

as above and make generic C∞-small perturbations of f1 and f2 to maps f ǫ
1 and f ǫ

2

such that f ǫ
1 |U1 ⋔ f ǫ

2 |U2, then define

ι(f1, p1; f2, p2) =
∑

(q1,q2)

ι(f ǫ
1 , q1; f

ǫ
2 , q2),

where the sum ranges over all pairs (q1, q2) ∈ U1 × U2 such that f ǫ
1(q1) = f ǫ

2(q2).

Exercise 2.10.1. Suppose M1 and M2 are compact oriented smooth manifolds
with boundary, M is an oriented smooth manifold such that dimM1 + dimM2 =
dimM , and

f τ
1 :M1 →M, f τ

2 :M2 →M, τ ∈ [0, 1]

are smooth homotopies of maps with the property that for all τ ∈ [0, 1],

f τ
1 (∂M1) ∩ f τ

2 (M2) = f τ
1 (M1) ∩ f τ

2 (∂M2) = ∅.
Show that if f τ

1 and f τ
2 have only transverse intersections for τ ∈ {0, 1}, then

(2.10.1)
∑

f0
1 (p1)=f0

2 (p2)

ι(f 0
1 , p1; f

0
2 , p2) =

∑

f1
1 (p1)=f1

2 (p2)

ι(f 1
1 , p1; f

1
2 , p2).

Deduce from this that the above definition of the local intersection index for an
isolated but non-transverse intersection is independent of choices. Then, show that
(2.10.1) also holds if the intersections for τ ∈ {0, 1} are assumed to be isolated but
not necessarily transverse. Hint: If you have never read [Mil97], you should.

Similarly, if f :M1 →M is a smooth map andN ⊂M is an oriented submanifold
with dimM1 + dimN = dimM , a point p ∈ M1 with f(p) ∈ N can be regarded
as an isolated intersection of f with N if it defines an isolated intersection of f1
with the inclusion map N →֒ M , and the resulting local intersection index will be
denoted by

ι(f, p;N) ∈ Z.

Theorem 2.10.2. Suppose (M,J) is an almost complex manifold of dimension
2n ≥ 4, and Σ ⊂ M is a (2n − 2)-dimensional oriented submanifold which is J-
holomorphic in the sense that J(TΣ) = TΣ and whose orientation matches the
canonical orientation determined by J |TΣ. Then for any smooth nonconstant J-
holomorphic curve u : B → M with u(0) ∈ Σ, either u(B) ⊂ Σ or the intersection
u(0) ∈ Σ is isolated. In the latter case,

ι(u, 0; Σ) ≥ 1,

with equality if and only if the intersection is transverse.
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Proof. By choosing coordinates intelligently, we can assume without loss of
generality that Σ = Cn−1 × {0} ⊂ Cn−1 × C =M , u(0) = (0, 0), and J satisfies

J(w, 0) =

(
Ĵ(w) 0
0 i

)

for all w ∈ Cn−1 near 0, where i in the lower right entry means the standard
complex structure on C and Ĵ is a smooth almost complex structure on Cn−1.
Write u(z) = (û(z), f(z)) ∈ Cn−1 × C, so that intersections of u with Σ correspond
to zeroes of f : B → C. We shall use an interpolation trick as in the proof of
Prop. 2.9.2 to show that f satisfies a linear Cauchy-Riemann type equation.

For t ∈ [0, 1], let ut(z) = (û(z), tf(z)), so u1 = u and u0 = (û, 0). Then since
∂su+ J(u) ∂tu = 0, we have

∂su+ J(u0) ∂tu = ∂su+ J(u) ∂tu− [J(u1)− J(u0)] ∂tu

= −
(∫ 1

0

d

dt
J(û, tf) dt

)
∂tu = −

(∫ 1

0

D2J(û, tf) · f dt
)
∂tu

=: −Ãf,
where the last step defines a smooth family of linear maps Ã : B → HomR(C,Cn).
Since J(u0) = J(û, 0) preserves the factors in the splitting Cn = Cn−1 × C, we can
project this expression to the second factor and obtain a smooth family of linear
maps A : B → EndR(C,C) such that the equation ∂sf + i ∂tf + Af is satisfied.

By the similarity principle, f either vanishes identically near z = 0 or has an
isolated zero there. The former would imply u(B) ⊂ Σ. In the latter case, the
isolated zero has positive order, so f can be perturbed slightly near 0 to a smooth
function with only simple zeroes, where the signed count of these is positive and
matches the signed count of transverse intersections between Σ and the resulting
perturbation of u. Moreover, the signed count is 1 if and only if the zero at z = 0 is
already simple, which means the unperturbed intersection of u with Σ is transverse.

�

2.11. Nonlinear regularity

We now extend the previous linear regularity results to the nonlinear case. In
order to understand local questions regarding pseudoholomorphic maps u : (Σ, j) →
(M,J), it suffices to study u in local coordinates near any given points on the domain
and target, where by Theorem 2.1.6, we can always take holomorphic coordinates
on the domain. We can therefore assume (Σ, j) = (B, i) and M is the unit ball
B2n ⊂ Cn, with an almost complex structure J that matches the standard complex
structure i at the origin. Denote by

Jm(B2n) =
{
J ∈ Cm(B2n,EndR(C

n)) | J2 ≡ −1
}

the space of Cm-smooth almost complex structures on B2n.

Theorem 2.11.1. Assume p ∈ (2,∞), m ≥ 1 is an integer, J ∈ Jm(B2n) with
J(0) = i and u : B → B2n is a J-holomorphic curve in W 1,p(B) with u(0) = 0.
Then u is also of class Wm+1,p

loc on B. Moreover, if Jk ∈ Jm(B2n) is a sequence with
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Jk → J in Cm and uk ∈ W 1,p(B) is a sequence of Jk-holomorphic curves in B2n

converging in W 1,p to u, then uk also converges in Wm+1,p
loc .

By the Sobolev embedding theorem, this implies that if J is smooth, then ev-
ery J-holomorphic curve is also smooth, and the topology of W 1,p

loc -convergence on a
space of pseudoholomorphic curves is equivalent to the topology of C∞

loc-convergence.
This equivalence has an important consequence for the compactness theory of holo-
morphic curves, arising from the fact that the hierarchy of Sobolev spaces

. . . ⊂W k,p ⊂W k−1,p ⊂ . . . ⊂W 1,p ⊂ Lp

comes with natural inclusions that are not only continuous but also compact. Indeed,
the following result plays a fundamental role in the proof of Gromov’s compactness
theorem, to be discussed later—it is often summarized by the phrase “gradient
bounds imply C∞-bounds.”

Corollary 2.11.2. Assume p ∈ (2,∞) and m ≥ 1, Jk ∈ Jm(B2n) is a sequence
of almost complex structures converging in Cm to J ∈ Jm(B2n), and uk : B → B2n

is a sequence of Jk-holomorphic curves satisfying a uniform bound ‖uk‖W 1,p(B) < C.

Then uk has a subsequence converging in Wm+1,p
loc to a J-holomorphic curve u : B →

B2n.

Proof. Our main task is to show that uk also satisfies a uniform bound in
Wm+1,p on every compact subset of B, as the compact embedding Wm+1,p →֒ Wm,p

then gives a convergent subsequence in Wm,p
loc , which by Theorem 2.11.1 must also

converge in Wm+1,p
loc . We begin with the observation that uk already has a C0-

convergent subsequence, since W 1,p(B) embeds compactly into C0(B); thus assume
without loss of generality that uk converges in C

0 to a continuous map u : B → B2n,
and after a change of coordinates on the target, u(0) = 0 and J(0) = i.

Theorem 2.11.1 can be rephrased in terms of the following local moduli spaces :
let

M1,p,m ⊂ Cm(B2n,EndR(C
n))×W 1,p(B,Cn)

denote the space of pairs (J, u) such that J ∈ Jm(B2n) and u : B → B2n is a
J-holomorphic curve. This is naturally a metric space due to its inclusion in the
Banach space above. Similarly, for any positive number r < 1, define the Banach
space

W 1,p
r (B,Cn) =

{
u ∈ W 1,p(B,Cn)

∣∣ u|Br ∈ Wm+1,p(Br)
}
,

whose norm is the sum of the norms on W 1,p(B) and Wm+1,p(Br), and define the
metric subspace

M1,p,m
r = {(J, u) ∈ Jm(B2n)×W 1,p

r (B,Cn) | u(B) ⊂ B2n and ∂su+ J(u)∂tu = 0}.
Theorem 2.11.1 implies that the natural inclusion

(2.11.1) M1,p,m
r →֒ M1,p,m

is a homeomorphism. Now the pairs (Jk, uk) form a bounded sequence inM1,p,m, and
we can use the following rescaling trick to replace (Jk, uk) by a sequence that stays
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within a small neighborhood of Jm(B2n) × {0}. For any ǫ > 0 and u ∈ W 1,p(B),
define the map uǫ : B → Cn by

uǫ(z) = u(ǫz).

We claim that for any δ > 0, one can choose ǫ > 0 such that ‖uǫk‖W 1,p(B) < δ for
sufficiently large k. Indeed, integrating by change of variables,

‖uǫk‖pLp(B) =

∫

B

|uǫk(z)|p ds dt =
1

ǫ2

∫

Bǫ

|uk(z)|p ds dt ≤
1

ǫ2

∫

Bǫ

‖uk‖pC0(Bǫ)
ds dt

= π‖uk‖pC0(Bǫ)
→ π‖u‖pC0(Bǫ)

,

where the latter is small for small ǫ since u(0) = 0. Likewise,

‖Duǫk‖pLp(B) =

∫

B

‖ǫDuk(ǫz)|p ds dt = ǫp−2

∫

Bǫ

|Duk(z)|p ds dt ≤ ǫp−2‖Duk‖pLp(B),

which is small due to the uniform bound on ‖uk‖W 1,p(B). Thus choosing ǫ sufficiently
small, (Jk, u

ǫ
k) ∈ M1,p,m lies in an arbitrarily small ball about (J, 0) for large k, and

the homeomorphism (2.11.1) then implies that the same is true in M1,p,m
r , thus

giving a uniform bound

‖uǫk‖Wm+1,p(Br) < C.

Rescaling again, this implies a uniform bound on ‖uk‖Wm+1,p(Bǫr). Since this same
argument can be carried out on any sufficiently small ball about an interior point in
B, and any compact subset is covered by finitely many such balls, this implies the
desired bound in Wm+1,p

loc on B. �

Theorem 2.11.1 will be proved by induction, and the hard part is the initial
step: we need to show that if J is of class C1, then the regularity of u can be
improved from W 1,p to W 2,p

loc . Observe that it suffices to find a number ǫ > 0 such
that u ∈ W 2,p(Bǫ) and the sequence uk converges in W 2,p(Bǫ), since any compact
subset of B can be covered by finitely many such balls of arbitrarily small radius.
To obtain the desired results on Bǫ, we will use much the same argument that was
used in Prop. 2.6.4 for the linear case: more bookkeeping is required since J is not
standard, but we’ll take advantage of the assumption J(0) = i, so that J is nearly
standard on Bǫ if ǫ is sufficiently small.

Proof of Theorem 2.11.1 for m = 1. We shall use the method of differ-
ence quotients as in Prop. 2.6.4 to show that u ∈ W 2,p(Bǫ) for small ǫ > 0.10 For
any r < 1 and h ∈ R \ {0} sufficiently small, define a function uh ∈ W 1,p(Br,Cn) by

uh(s, t) =
u(s+ h, t)− u(s, t)

h
,

so uh converges in Lp(Br) to ∂su as h→ 0. Our main goal is to find constants ǫ > 0
and C > 0 such that

(2.11.2) ‖uh‖W 1,p(Bǫ) < C

10The difference quotient argument explained here is adapted from the proof given in [AH,
Appendix 4].
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for all sufficiently small h 6= 0. The Banach-Alaoglu theorem then gives a sequence
hj → 0 such that uhj converges weakly in W 1,p(Bǫ), implying that its limit ∂su is
also in W 1,p(Bǫ); since exactly the same argument works for ∂tu, we will conclude
u ∈ W 2,p(Bǫ).

To prove the bound (2.11.2), assume at first that ǫ is any real number with
0 < ǫ < 1/2; its value will be further specified later. Choose a smooth cutoff
function βǫ : B → [0, 1] with support in B2ǫ such that β|Bǫ ≡ 1. It will then
suffice to show that if ǫ is taken small enough, we can find a uniform bound on
‖βǫuh‖W 1,p(B2ǫ) as h → 0. The latter has compact support in B2ǫ, so the main
elliptic estimate (Theorem 2.6.1) gives

‖βǫuh‖W 1,p(B2ǫ) ≤ c‖∂̄(βǫuh)‖Lp(B2ǫ).

We wish to take advantage of the fact that ∂̄Ju ≡ 0, where we abbreviate ∂̄J :=
∂s + J(u)∂t. The latter can be regarded as the standard Cauchy-Riemann operator
on a trivial bundle with nonstandard complex structure J(u(z)), so in particular it
satisfies the Leibniz rule ∂̄J (fv) = (∂̄Jf)v + f(∂̄Jv) for f : B → R and v : B → Cn.
The difference quotient also satisfies a Leibniz rule (fv)h = fhv+fvh. Now rewriting
∂̄(βǫu

h) in terms of ∂̄J , we have

(2.11.3) ∂̄(βǫu
h) = ∂̄J (βǫu

h) + [i− J(u)] ∂t(βǫu
h),

where the first term can be expanded as

∂̄J (βǫu
h) = (∂̄Jβǫ)u

h + βǫ∂̄J(u
h)

= (∂̄βǫ)u
h + [J(u)− i] (∂tβǫ)u

h + βǫ
(
∂su

h + J(u)∂tu
h
)

= (∂̄βǫ)u
h + [J(u)− i] (∂tβǫ)u

h + βǫ
(
(∂̄Ju)

h − [J(u)]h∂tu
)

= (∂̄βǫ)u
h + [J(u)− i] (∂tβǫ)u

h − βǫ[J(u)]
h∂tu.

(2.11.4)

The last term in (2.11.3) satisfies the bound
∥∥[i− J(u)] ∂t(βǫu

h)
∥∥
Lp(B2ǫ)

≤ ‖i− J(u)‖C0(B2ǫ)‖∂t(βǫuh)‖Lp(B2ǫ)

≤ C1(ǫ)‖βǫuh‖W 1,p(B2ǫ),

where C1(ǫ) := ‖i− J(u)‖C0(B2ǫ), and the fact that J(u(0)) = J(0) = i implies that
C1(ǫ) goes to zero as ǫ→ 0. We can find similar bounds for every term on the right
hand side of (2.11.4): the first two, ‖(∂̄βǫ)uh‖Lp and ‖[J(u)− i](∂tβǫ)uh‖Lp, are both
bounded uniformly in h since ‖uh‖Lp → ‖∂su‖Lp as h → 0. For the third term, we
use the fact that J ∈ C1 to find a pointwise bound
∣∣[J(u)]h(s, t)

∣∣ = 1

h
|J(u(s+ h, t))− J(u(s, t))| ≤ 1

h
‖J‖C1 |u(s+ h, t)− u(s, t)|

= ‖J‖C1

∣∣uh(s, t)
∣∣ ,

which implies∥∥βǫ[J(u)]h∂tu
∥∥
Lp(B2ǫ)

≤
∥∥βǫ[J(u)]h

∥∥
C0(B)

‖∂tu‖Lp(B2ǫ)

≤ C‖βǫuh‖C0(B)‖u‖W 1,p(B2ǫ)

≤ C2(ǫ)‖βǫuh‖W 1,p(B) = C2(ǫ)‖βǫuh‖W 1,p(B2ǫ),
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using the continuous embedding of W 1,p(B) into C0(B). Here C2(ǫ) is a constant
multiple of ‖u‖W 1,p(B2ǫ) and thus also decays to zero as ǫ → 0. Putting all of this
together, we have

‖βǫuh‖W 1,p(B2ǫ) ≤ C + C3(ǫ)‖βǫuh‖W 1,p(B2ǫ)

where C3(ǫ) → 0 as ǫ → 0, thus taking ǫ sufficiently small, we can move the last
term to the left hand side and obtain the desired bound,

‖βǫuh‖W 1,p(B2ǫ) ≤
C

1− C3(ǫ)
.

The statement about convergent sequences follows by a similar argument: we
assume ‖u− uk‖W 1,p(B) → 0 and use Exercise 2.6.3 to estimate ‖u− uk‖W 2,p(Bǫ) via

‖βǫ(u− uk)‖W 2,p(B2ǫ) ≤ c1‖∂̄(βǫu)− ∂̄(βǫuk)‖W 1,p(B2ǫ).

It will be important to note that the constant c1 > 0 in this relation does not depend
on the choice of ǫ > 0. Adapting the computation of (2.11.3) and (2.11.4) using
∂su+ J(u)∂tu = ∂suk + Jk(uk)∂tuk = 0, we now find

∂̄(βǫu)− ∂̄(βǫuk) = (∂̄βǫ)(u− uk)

+ (∂tβǫ)[J(u)− i](u− uk) + (∂tβǫ)[J(u)− Jk(uk)]uk

+ [Jk(uk)− J(u)]∂t(βǫu) + [i− Jk(uk)][∂t(βǫu)− ∂t(βǫuk)].

Since W 1,p is a Banach algebra, it is easy to see that for any fixed ǫ > 0 sufficiently
small, the first three terms in this expression each decay to zero in W 1,p(B2ǫ) as
‖u − uk‖W 1,p → 0; in particular for the third term, we use the fact that Jk → J
in C1 to conclude Jk(uk) → J(u) in W 1,p. The fourth term is bounded similarly
since ‖∂t(βǫu)‖W 1,p(B2ǫ) ≤ ‖βǫu‖W 2,p(B2ǫ), and we’ve already proved above that u ∈
W 2,p(Br) for sufficiently small r. The fifth term is a bit trickier: using the definition
of the W 1,p-norm, we have

∥∥[i− Jk(uk)][∂t(βǫu)− ∂t(βǫuk)]
∥∥
W 1,p(B2ǫ)

≤
∥∥[i− Jk(uk)][∂t(βǫu)− ∂t(βǫuk)]

∥∥
Lp(B2ǫ)

+
∥∥DJk(uk) ·Duk · [∂t(βǫu)− ∂t(βǫuk)]

∥∥
Lp(B2ǫ)

+
∥∥[i− Jk(uk)][D∂t(βǫu)−D∂t(βǫuk)]

∥∥
Lp(B2ǫ)

.

(2.11.5)

Since uk → u and Jk → J in C0 while J(u(0)) = i, we can fix ǫ > 0 small enough
so that for all k sufficiently large,

‖i− Jk(uk)‖C0(B2ǫ)
≤ 1

3c1
.

The first term on the right hand side of (2.11.5) is then bounded by a constant times
‖βǫu− βǫuk‖W 1,p, which goes to zero as k → ∞, and the third term is bounded by

‖i− Jk(uk)‖C0(B2ǫ)‖βǫu− βǫuk‖W 2,p(B2ǫ) ≤
1

3c1
‖βǫu− βǫuk‖W 2,p(B2ǫ).
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For the second term, we use the continuous embedding W 1,p →֒ C0 and obtain the
bound

‖DJk‖C0‖Duk‖Lp(B2ǫ)‖∂t(βǫu)− ∂t(βǫuk)‖C0(B)

≤ c2‖Jk‖C1‖uk‖W 1,p(B2ǫ)‖∂t(βǫu)− ∂t(βǫuk)‖W 1,p(B)

≤ c3‖u‖W 1,p(B2ǫ)‖βǫu− βǫuk‖W 2,p(B2ǫ),

where we observe that the constant c3 > 0 is also independent of the choice of ǫ > 0.
We can therefore shrink ǫ if necessary and assume

‖u‖W 1,p(B2ǫ) ≤
1

3c1c3
.

Putting all this together, we now have a bound of the form

‖βǫ(u− uk)‖W 2,p(B2ǫ) ≤ F (‖u− uk‖W 1,p) +
2

3
‖βǫ(u− uk)‖W 2,p(B2ǫ)

for sufficiently large k, where F (t) → 0 as t → 0, thus we conclude that ‖βǫ(u −
uk)‖W 2,p(B2ǫ) → 0 as k → ∞. �

To complete the proof of Theorem 2.11.1 by induction, we use the following
simple fact: if u is J-holomorphic, then its 1-jet can also be regarded as a pseudo-
holomorphic map. A global version of this statement is made precise in the appendix
by P. Gauduchon of [Aud94], but we will only need a local version, which is much

simpler to see. If J ∈ Jm(B2n), we can define an almost complex structure Ĵ of
class Cm−1 on B ×B2n × Cn in block form by

Ĵ(z, u,X) =




i 0 0
0 J(u) 0

A(u,X) 0 J(u)


 ,

where A(u,X) ∈ HomR(C,Cn) is defined by

A(u,X)(x+ iy) =
(
DJ(u)X ·X DJ(u)X · J(u)X

)(x
y

)
.

Using the fact that 0 = D(J2)(u)X = DJ(u)X · J(u) + J(u) · DJ(u)X , one can

easily compute that A(u,X)i+JA(u,X) = 0 and thus Ĵ is indeed an almost complex
structure. Moreover, if u : B → B2n satisfies ∂su+ J(u)∂tu = 0 then

û : B → B × B2n × Cn : z 7→ (z, u(z), ∂su(z))

satisfies ∂sû + Ĵ(û)∂tû = 0. Indeed, this statement amounts to a system of three
PDEs, of which the first is trivial, the second is ∂su+ J(u)∂tu = 0 and the third is
the latter differentiated with respect to s.

Exercise 2.11.3. Verify all of the above.

We can now carry out the inductive step in the proof of Theorem 2.11.1: assume
the theorem is proved for almost complex structures of class Cm−1. Then if J ∈
Jm(B2n) and u ∈ W 1,p(B) is J-holomorphic, we have u ∈ Wm,p

loc , and ∂su is Ĵ-

holomorphic for an almost complex structure Ĵ of class Cm−1, implying ∂su ∈ Wm,p
loc

as well. Now ∂tu = J(u)∂su is also in Wm,p
loc since Wm,p is a Banach algebra, hence
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u ∈ Wm+1,p
loc as claimed. The statement about converging sequences follows by a

similarly simple argument.

2.12. Some tools of global analysis

To understand the structure of spaces of solutions to the nonlinear Cauchy-
Riemann equation, and in particular to prove local existence in the next section,
we will use the generalization of the standard differential calculus for smooth maps
between Banach spaces. A readable and elegant introduction to this topic may be
found in the book of Lang [Lan93]; here we shall merely summarize the essential
facts.

Most of the familiar properties of derivatives and differentiable functions gener-
alize nicely to maps between arbitrary normed linear spaces X and Y , so long as
both spaces are complete. The derivative of the map f : X → Y at x ∈ X (also
often called its linearization) is by definition a continuous linear operator

df(x) ∈ L(X, Y )
such that for small h ∈ X ,

f(x+ h) = f(x) + df(x)h+ o(‖h‖X),
where o(‖h‖X) denotes an arbitrary map of the form η(h) · ‖h‖X with limh→0 η(h) =
0. If df(x) exists for all x ∈ X , one has a map between Banach spaces df : X →
L(X, Y ), which may have its own derivative, and one thus obtains the notions of
higher order derivatives and smoothness. Proving differentiability in the infinite-
dimensional setting is sometimes an intricate problem, often requiring integral in-
equalities such as Sobolev or Hölder estimates, and it is not hard to find natural
examples of maps that are everywhere continuous but nonsmooth on some dense
set.

Exercise 2.12.1. If S1 = R/Z, we can denote the Banach space of real-valued
continuous and 1-periodic functions on R by C0(S1). Show that the map Φ :
R× C0(S1) → C0(S1) defined by Φ(s, f)(t) = f(s+ t) is continuous but not differ-
entiable.

Despite these complications, having defined the derivative, one can prove infinite-
dimensional versions of the familiar differentiation rules, Taylor’s formula and the
implicit function theorem, which can become powerful tools. The proofs, in fact,
are virtually the same as in the finite-dimensional case, with occasional reference to
some simple tools of linear functional analysis such as the Hahn-Banach theorem.
Let us state the two most important results that we will make use of.

Theorem 2.12.2 (Inverse function theorem). Suppose X and Y are Banach
spaces, U ⊂ X is an open subset and f : U → Y is a map of class Ck for k ≥ 1
such that for some x0 ∈ U , df(x0) : X → Y is a continuous isomorphism. Then f
maps some neighborhood O of x0 bijectively to an open neighborhood of y0 := f(x0),
and its local inverse f−1 : f(O) → O is also of class Ck, with

d(f−1)(y0) = [df(x0)]
−1 .
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Note that while derivatives and notions of differentiability can be defined in
more general normed vector spaces, the inverse function theorem really requires
X and Y to be complete, as the proof uses Banach’s fixed point theorem (i.e. the
“contraction mapping principle”). The implicit function theorem follows from this,
though we should emphasize that it requires an extra hypothesis that is vacuous in
the finite-dimensional case:

Theorem 2.12.3 (Implicit function theorem). Suppose X and Y are Banach
spaces, U ⊂ X is an open subset and f : U → Y is a map of class Ck for k ≥ 1
such that for some x0 ∈ U , df(x0) : X → Y is surjective and admits a bounded right
inverse. Then there exists a Ck-map

Φx0 : Ox0 → X,

which maps some open neighborhood Ox0 ⊂ ker df(x0) of 0 bijectively to an open
neighborhood of x0 in f−1(y0), where y0 = f(x0).

Note that the existence of a bounded right inverse of df(x0) is equivalent to the
existence of a splitting

X = ker df(x0)⊕ V,

where V ⊂ X is a closed linear subspace, so there is a bounded linear projection
map πK : X → ker df(x0). One makes use of this in the proof as follows: assume
without loss of generality that x0 = 0 and consider the map

(2.12.1) Ψ0 : U → Y ⊕ ker df(0) : x 7→ (f(x), πK(x)).

Then dΨ0(0) = (df(0), πK) : X → Y ⊕ ker df(0) is an isomorphism, so the inverse
function theorem gives a local Ck-smooth inverse Ψ−1

0 , and the desired parametriza-
tion of f−1(y0) can be written as Φ0(v) = Ψ−1

0 (f(0), v) for sufficiently small v ∈
ker df(0).

Of course the most elegant way to state the implicit function theorem is in terms
of manifolds: a Banach manifold of class Ck is simply a topological space that
has local charts identifying neighborhoods with open subsets of Banach spaces such
that all transition maps are Ck-smooth diffeomorphisms. Then the map Φx0 in
the implicit function theorem can be regarded as the inverse of a chart, defining a
Banach manifold structure on a subset of f−1(y0). In fact, it is not hard to see that
if x1, x2 ∈ f−1(y0) are two distinct points satisfying the hypotheses of the theorem,
then the resulting “transition maps”

Φ−1
x1

◦ Φx2 : Ox2 → Ox1

are Ck-smooth diffeomorphisms. Indeed, these can be defined in terms of the Ψ-map
of (2.12.1) via

Ψx1 ◦Ψ−1
x2
(y0, v) = (y0,Φ

−1
x1

◦ Φx2(v)),

where Ψx1 and Ψx2 are Ck-smooth local diffeomorphisms. Moreover, these charts
identify the tangent space to f−1(y0) at any x0 ∈ f−1(y0) with ker df(x0) ⊂ X . Thus
we can restate the implicit function theorem as follows.
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Corollary 2.12.4. Suppose X and Y are Banach spaces, U ⊂ X is an open
subset, f : U → Y is a Ck-smooth map for k ≥ 1 and y ∈ Y is a regular value of
f such that for every x ∈ f−1(y), df(x) has a bounded right inverse. Then f−1(y)
admits the structure of a Ck-smooth Banach submanifold of X, whose tangent space
at x ∈ f−1(y) is ker df(x).

By picking local charts, one sees that a similar statement is true if X and Y are
also Banach manifolds instead of linear spaces, and one can generalize a step further
to consider smooth sections of Banach space bundles. These results will become
particularly useful when we deal with Fredholm maps, for which the linearization
has finite-dimensional kernel and thus satisfies the bounded right inverse assumption
trivially whenever it is surjective. In this way one can prove that solution sets of
certain PDEs are finite-dimensional smooth manifolds. In contrast, we’ll see an
example in the next section of a solution set that is an infinite-dimensional smooth
Banach manifold.

The differential geometry of Banach manifolds in infinite dimensions is treated
at length in [Lan99]. A more basic question is how to prove that certain spaces
which naturally “should” be Banach manifolds actually are. This rather delicate
question has been studied in substantial generality in the literature (see for example
[Eel66,Pal68,El̆ı67]): the hard part is always to show that certain maps between
Banach spaces are differentiable. The key is to consider only Banach spaces that
have nice enough properties so that certain natural classes of maps are continuous,
so that smoothness can then be proved by induction.

The next two lemmas are illustrative examples of the kinds of results one needs,
and we’ll make use of them in the next section. First a convenient piece of notation:
if U ⊂ Rm and Ω ⊂ Rn are open subsets and X(U ,Rn) denotes some Banach space
of maps U → Rn that admits a continuous inclusion into C0(U ,Rn), then denote

X(U ,Ω) = {u ∈ X(U ,Rn) | u(U) ⊂ Ω}.
Due to the continuous inclusion assumption, this is an open subset of X(U ,Rn). We
assume below for simplicity that Ω is convex, but this assumption is easy to remove
at the cost of more cumbersome notation; see [El̆ı67, Lemma 4.1] for a much more
general version.

Lemma 2.12.5. Suppose U ⊂ Rm denotes an open subset, and the symbol X as-
sociates to any Euclidean space RN a Banach space X(U ,RN) consisting of bounded
continuous maps U → RN such that the following hypotheses are satisfied:

• (C0-inclusion) The inclusion X(U ,RN) →֒ C0(U ,RN ) is continuous.
• (Banach algebra) The natural bilinear pairing

X(U ,L (Rn,RN))×X(U ,Rn) → X(U ,RN) : (A, u) 7→ Au

is well defined and continuous.
• (Ck-continuity) For some integer k ≥ 0, if Ω ⊂ Rn is any open set and
f ∈ Ck(Ω,RN), the map

(2.12.2) Φf : X(U ,Ω) → X(U ,RN) : u 7→ f ◦ u
is well defined and continuous.

86 Chris Wendl

If Ω ⊂ Rn is a convex open set and f ∈ Ck+r(Ω,RN) for some r ∈ N, then the map
Φf defined in (2.12.2) is of class Cr and has derivative

(2.12.3) dΦf(u)η = (df ◦ u)η.
Remark 2.12.6. In the formula (2.12.3) for the derivative we’re implicitly using

both the Banach algebra and Ck-continuity hypotheses: the latter implies
that df ◦u is a map inX(U ,L (Rn,RN)), which the former then embeds continuously
into L (X(U ,Rn),X(U ,RN)).

Proof of Lemma 2.12.5. We observe first that it suffices to prove differen-
tiability and the formula (2.12.3), as df ◦ u is a continuous function of u and Cr-
smoothness follows by induction. Thus assume r = 1 and η ∈ X(U ,Rn) is small
enough so that u+ η ∈ X(U ,Ω). Then

Φf (u+ η) = Φf (u) + [f ◦ (u+ η)− f ◦ u] = Φf(u) +

∫ 1

0

d

dt
f ◦ (u+ tη) dt

= Φf (u) +

[∫ 1

0

df ◦ (u+ tη) dt

]
η

= Φf (u) + (df ◦ u)η + [θf ◦ (u+ η, u)] η,

(2.12.4)

where we’ve defined θf : Ω× Ω → L (Rn,RN) by

(2.12.5) θf (x, y) =

∫ 1

0

[df((1− t)y + tx)− df(y)] dt,

and observe that θf ∈ Ck since f ∈ Ck+1. It follows that θf defines a continuous
map

X(U ,Ω× Ω) → X(U ,L (Rn,RN)) : (u, v) 7→ θf ◦ (u, v),
and in particular

lim
η→0

θf ◦ (u+ η, u) = θf (u, u) = 0,

where the limit is taken in the topology of X(U ,L (Rn,RN)). Thus (2.12.4) proves
the stated formula for dΦf (u). �

We will need something slightly more general, since we’ll also want to be able to
differentiate (f, u) 7→ f ◦ u with respect to f .

Lemma 2.12.7. Suppose U , Ω and X(U ,Rn) are as in Lemma 2.12.5, and in
addition that the pairing T (u)f := f ◦ u defines T as a continuous map

(2.12.6) T : X(U ,Ω) → L (Ck(Ω,RN ),X(U ,RN)).

Then for any r ∈ N, the map

Ψ : Ck+r(Ω,RN)×X(U ,Ω) → X(U ,RN) : (f, u) 7→ f ◦ u
is of class Cr and has derivative

dΨ(f, u)(g, η) = g ◦ u+ (df ◦ u)η.
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Proof. We’ll continue to write Φf = Ψ(f, ·) for each f ∈ Ck+r(Ω,RN); this is a
Cr-smooth map X(U ,Ω) → X(U ,RN) by Lemma 2.12.5. Observe that the pairing
T (u)f = f ◦ u of (2.12.6) also gives a map

T : X(U ,Ω) → L (Ck+r(Ω,RN ),X(U ,RN))

for each integer r ≥ 0, and we claim that this is of class Cr. The claim mostly
follows already from the proof of Lemma 2.12.5: expressing the remainder formula
(2.12.4) in new notation gives

(2.12.7) T (u+ η)f = T (u)f + [T1(u)df ] η + [T2(u+ η, u)θf ] η,

where we’ve defined the related maps

T1 : X(U ,Ω) → L (Ck+r−1(Ω,L (Rn,RN)),X(U ,L (Rn,RN))),

T2 : X(U ,Ω× Ω) → L (Ck+r−1(Ω× Ω,L (Rn,RN)),X(U ,L (Rn,RN))).

Note that the correspondence defined in (2.12.5) gives a bounded linear map

Ck+r(Ω,RN ) → Ck+r−1
(
Ω× Ω,L (Rn,RN)

)
: f 7→ θf .

Now arguing by induction, we can assume T1 and T2 are both of class Cr−1. Then
as a family of bounded linear operators acting on f , the pairing of T2(u+ η, u) with
θf goes to zero as η → 0, and (2.12.7) implies

[dT (u)η] f = [T1(u)df ] η,

so dT is of class Cr−1, proving the claim.
Next consider the derivative of the map Ψ in the case r = 1. For any small

g ∈ Ck+1(Ω,RN) and η ∈ X(U ,Ω), we compute

Ψ(f + g, u+ η) = Ψ(f, u) + [T (u+ η)(f + g)− T (u+ η)(f)] + [Φf (u+ η)− Φf (u)]

= Ψ(f, u) + T (u)g + (T (u+ η)− T (u))g + dΦf (u)η + o(‖η‖)
= Ψ(f, u) + g ◦ u+ (df ◦ u)η + o(‖(g, η)‖)).

Thus Ψ is differentiable and we can write its derivative in the form dΨ(f, u) =
T (u) + Ψ(df, u). The general result now follows easily by induction. �

In the next section we’ll apply this using the fact that if B ⊂ C is the open
unit ball and kp > 2, then the space W k,p(B) is a Banach algebra that embeds
continuously into C0, and the pairing (f, u) 7→ f ◦ u gives a continuous map

Ck(Ω,RN)×W k,p(B,Ω) → W k,p(B,RN).

Observe that by Lemma 2.12.5, the map u 7→ f ◦ u on a suitable Banach space
will be smooth if f is smooth. Things get a bit trickier if we also consider f to be a
variable in this map: e.g. if f varies arbitrarily in Ck then the map Ψ(f, u) = f ◦ u
also has only finitely many derivatives. This headache is avoided if f is allowed to
vary only in some Banach space that embeds continuously into C∞, for then one
can apply Lemma 2.12.7 for every k and conclude that Ψ is in Cr for all r. The
most obvious examples of Banach spaces with continuous embeddings into C∞ are
finite dimensional, but we will also see an infinite-dimensional example in Chapter 4
when we discuss transversality and Floer’s “Cǫ space”.
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2.13. Local existence of J-holomorphic curves

We shall now apply the machinery described in the previous section to prove
a local existence result from which Theorem 2.1.6 on the integrability of Riemann
surfaces follows as an easy corollary. As usual in studying such local questions, we
will consider J-holomorphic maps from the unit ball B ⊂ C into B2n ⊂ Cn, with the
coordinates chosen so that J(0) = i. Let Br and B

2n
r denote the balls of radius r > 0

in C and Cn respectively.
In §2.1 we stated the result that there always exists a J-holomorphic curve

tangent to any given vector at a given point. What we will actually prove is more
general: if J is sufficiently smooth, then one can find local J-holomorphic curves with
specified derivatives up to some fixed order at a point, not just the first derivatve—
moreover one can also find families of such curves that vary continuously under
perturbations of J . Some caution is in order: it would be too much to hope that
one could specify all partial derivatives arbitrarily, as the nonlinear Cauchy-Riemann
equation implies nontrivial relations, e.g. ∂tu(0) = J(u(0)) ∂su(0). What turns out
to be possible is to specify the holomorphic part of the Taylor polynomial of u at
z = 0 up to some finite order, i.e. the terms in the Taylor expansion that depend only
on z and not on z̄ (cf. Equation (2.9.3)). The relevant higher order derivatives of u
will thus be those of the form ∂kzu(0). As the following simple result demonstrates,
trying to specify more partial derivatives beyond these would yield an ill-posed
problem.

Proposition 2.13.1. Suppose J is a smooth almost complex structure on Cn

with J(0) = i, and u, v : B → Cn are a pair of J-holomorhic curves with u(0) =
v(0) = 0. If there exists d ∈ N such that

∂kzu(0) = ∂kz v(0)

for all k = 0, . . . , d, then in fact Dαu(0) = Dαv(0) for every multiindex α with
|α| ≤ d.

Proof. Recall that when we used the similarity principle to prove unique con-
tinuation in Prop. 2.9.2, we did so by showing that h := u− v : B → Cn satisfies a
linear Cauchy-Riemann type equation of the form

∂sh+ J̄(z)∂th+ A(z)h = 0,

where in the present situation J̄ : B → EndR(Cn) is a smooth family of complex
structures on Cn and A ∈ C∞(B,EndR(Cn)). Since ∂kzh(0) = 0 for all k = 0, . . . , d,
Lemma 2.9.4 now implies Dαh(0) = 0 for all |α| ≤ d. �

Here is the main local existence result.

Theorem 2.13.2. Assume p ∈ (2,∞), d ≥ 1 is an integer, m ∈ N ∪ {∞} with
m ≥ d+1, and J ∈ Jm(B2n) with J(0) = i. Then for sufficiently small ǫ > 0, there
exists a Cm−d-smooth map

Ψ : (B2n
ǫ )d+1 →W d+1,p(B,Cn)
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such that for each (w0, . . . , wd) ∈ (B2n
ǫ )d+1, u := Ψ(w0, . . . , wd) is a J-holomorphic

curve with

∂kzu(0) = wk

for each k = 0, . . . , d.

Exercise 2.13.3. Convince yourself that Theorem 2.13.2, together with elliptic
regularity, implies that smooth almost complex structures on a real 2-dimensional
manifold are always smoothly integrable, i.e. they admit smooth local charts whose
transition maps are holomorphic. (See also Corollary 2.13.13.)

Remark 2.13.4. There is also an analogue of Theorem 2.13.2 for local holomor-
phic half-disks with totally real boundary conditions; see [Zeh].

As with local existence of holomorphic sections, our proof of Theorem 2.13.2 will
be based on the philosophy that in a sufficiently small neighborhood, everything
can be understood as a perturbation of the standard Cauchy-Riemann equation.
To make this precise, we will take a closer look at the local moduli space of J-
holomorphic curves that was introduced in the proof of Corollary 2.11.2. For p ∈
(2,∞) and k ≥ 1, define

W k,p(B,B2n) = {u ∈ W k,p(B,Cn) | u(B) ⊂ B2n},
which is an open subset of W k,p(B,Cn) due to the continuous embedding of W k,p

in C0. The space of Cm-smooth almost complex structures on B2n will again be
denoted by Jm(B2n). Now for J ∈ Jm(B2n), p ∈ (2,∞) and k ∈ N, we define the
local moduli space

Mk,p(J) = {u ∈ W k,p(B,B2n) | ∂su+ J(u)∂tu = 0}.
Observe that Mk,p(J) always contains the trivial map u ≡ 0.

Proposition 2.13.5. Suppose J ∈ Jm(B2n) with J(0) = i and m ≥ k ≥ 2.
Then some neighborhood of 0 in Mk,p(J) admits the structure of a Cm−k+1-smooth
Banach submanifold of W k,p(B,Cn), and its tangent space at 0 is

T0Mk,p(J) = {η ∈ W k,p(B,Cn) | ∂̄η = 0}.
We prove this by presenting Mk,p(J) as the zero set of a differentiable map

between Banach spaces—the tricky detail here is to determine exactly for which
values of k, m and p the map in question is differentiable, and this is the essential
reason behind the condition m ≥ d+ 1 in Theorem 2.13.2. For any p ∈ (2,∞) and
k,m ∈ N with m ≥ k − 1, let J ∈ Jm(B2n) with J(0) = i and define the nonlinear
map

Φk : W
k,p(B,B2n) → W k−1,p(B,Cn) : u 7→ ∂su+ J(u)∂tu.

This is well defined due to the continuous Sobolev embedding W k,p →֒ Ck−1: then
J ◦ u is of class Ck−1 and thus defines a bounded multiplication on ∂tu ∈ W k−1,p.
One can similarly show that Φk is continuous, though we are much more interested
in establishing conditions for it to be at least C1.
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Lemma 2.13.6. If m ≥ k ≥ 2, then Φk is of class Cm−k+1, and its derivative
at 0 is

dΦk(0) : W
k,p(B,Cn) →W k−1,p(B,Cn) : η 7→ ∂̄η.

Proof. The formula for dΦk(0) will follow from Lemma 2.12.5 once we show
that Φk is at least C1. The map u 7→ ∂su is continuous and linear, thus auto-
matically smooth, so the nontrivial part is to show that the map u 7→ J(u)∂tu
from W k,p(B,B2n) to W k−1,p(B,Cn) is differentiable. Since k ≥ 2, we can use the
continuous inclusion of W k,p into W k−1,p and observe that

W k−1,p →W k−1,p : u 7→ J ◦ u
is of class of Cm−k+1 if J ∈ Cm, due to Lemma 2.12.5. Then differentiability of the
map u 7→ J(u)∂tu follows from the fact that W k−1,p is a Banach algebra. �

Now we apply the crucial ingredient from the linear regularity theory: Theo-
rem 2.6.25 implies that dΦk(0) = ∂̄ is surjective and has a bounded right inverse.
The implicit function theorem then gives (Φk)

−1(0) the structure of a differential Ba-
nach manifold near 0 and identifies its tangent space there with ker dΦk(0) = ker ∂̄,
so the proof of Prop. 2.13.5 is complete.

Proof of Theorem 2.13.2. Since m ≥ d+1, a neighborhood of 0 in the local
moduli space Md+1,p(J) is a Banach manifold of class Cm−d, and T0Md+1,p(J) =
ker ∂̄ ⊂ W d+1,p(B,Cn). Due to the continuous inclusion of W d+1,p in Cd, there is a
bounded linear evaluation map

evd : W
d+1,p(B,Cn) → (Cn)d+1 : u 7→ (u(0), ∂zu(0), ∂

2
zu(0), . . . , ∂

d
zu(0)),

which restricts to the local moduli space

evd : Md+1,p(J) → (Cn)d+1

as a Cm−d-smooth map near 0. We shall use the inverse function theorem to show
that evd maps a neighborhood of 0 inMd+1,p(J) onto a neighborhood of 0 in (Cn)d+1

and admits a Cm−d-smooth right inverse.
To see this concretely, it will be convenient to restrict to a finite-dimensional

submanifold of Md+1,p. Let

Pd ⊂ W d+1,p(B,Cn)

denote the complex n(d+ 1)-dimensional vector space consisting of all holomorphic
polynomials with degree at most d, regarded here as smooth maps B → Cn. Define
also the closed subspace

Θd+1,p(B,Cn) = im T̂ ⊂W d+1,p(B,Cn),

where T̂ : W d,p(B,Cn) →W d+1,p(B,Cn) is the bounded right inverse of ∂̄ :W d+1,p(B,Cn) →
W d,p(B,Cn) provided by Theorem 2.6.25. Note that Θd+1,p(B,Cn)∩Pd = {0} since
everything in Pd is holomorphic. Putting these together, we define the closed sub-
space

ΘPd(B,C
n) = Θd+1,p(B,Cn)⊕Pd ⊂W d+1,p(B,Cn),
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which contains an open subset

ΘPd(B,B
2n) = {u ∈ ΘPd(B,C

n) | u(B) ⊂ B2n}.
By construction, the restriction of ∂̄ : W d+1,p(B,Cn) →W d,p(B,Cn) to ΘPd(B,Cn)
is surjective and its kernel is precisely Pd. Restricting similarly the nonlinear oper-
ator that was used to define Mk,p(J), we obtain a Cm−d-smooth map

Φ̂ : ΘPd(B,B
2n) → W d,p(B,Cn) : u 7→ ∂su+ J(u)∂tu,

whose derivative at 0 is surjective and has kernel Pd, hence

M̂(J) := Φ̂−1(0) ⊂ Md+1,p(J)

is a Cm−d-smooth finite-dimensional manifold near 0, with T0M̂(J) = Pd. Consider

now the restriction of the evaluation map to M̂(J),

evd : M̂(J) → (Cn)d+1.

This map is linear on W d+1,p(B,Cn), thus its derivative is simply

d evd(0) : Pd → (Cn)d+1 : η 7→ evd(η),

which is the isomorphism that uniquely associates to any holomorphic polynomial
of degree d its derivatives of order 0 to d. Now by the inverse function theorem, the

restriction of evd to M̂(J) can be inverted on a neighborhood of 0, giving rise to
the desired Cm−d-smooth map Ψ. �

Notice that one can extract from Theorem 2.13.2 parametrized families of local
J-holomorphic curves. In particular, if N ⊂ Cn is a sufficiently small submanifold
of Cn, we can find a family of J-holomorphic disks {ux}x∈N such that ux(0) = x.
These vary continuously in W 1,p, but actually if J is smooth, then the regularity
theorem of §2.11 implies that they also vary continuously in C∞ on compact subsets.
This implies the following:

Corollary 2.13.7. If J is a smooth almost complex structure on B2n, N ⊂ B2n

is a smooth submanifold passing through 0 and X is a smooth vector field along N ,
then for some neighborhood U ⊂ N of 0 and some ǫ > 0, there exists a smooth
family of J-holomorphic curves

ux : B → Cn, x ∈ U
such that ux(0) = x and ∂sux(0) = ǫX(x).

Remark 2.13.8. The standard meaning of the term “smooth family” as used in
Cor. 2.13.7 is that the map U ×B → Cn : (x, z) 7→ ux(z) is smooth. Unfortunately,
smoothness in this sense does not follow immediately from Theorem 2.13.2; the
theorem rather provides smooth maps

Ud →W d,p(B,B2n) : x 7→ ux

for arbitrarily large integers d ≥ 2 (since J is smooth), defined on open neighbor-
hoods Ud ⊂ N whose sizes a priori depend on d. Of course more is true, as regularity
guarantees that all of these maps are actually continuous into C∞(Br, B

2n) for any
r < 1, but one still must be careful in arguing that this implies a smooth family.
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Since we don’t have any specific applications for this result in mind, we’ll leave the
details to the reader (see Exercise 2.13.9). It should however be mentioned that
this and related results are occasionally used in the literature to construct special
coordinates that make certain computations easier; see for example Exercise 2.13.10
below.

Exercise 2.13.9. Show that for any open subset U ⊂ Rm and each k ≥ 1, the
map

ev : Ck(U ,Rn)× U → Rn : (u, x) 7→ u(x)

is of class Ck. Hint: Start with the case k = 1 and show that the partial derivatives
of ev are given by

D1 ev(u, x) : C
1(U ,Rn) → Rn : η 7→ η(x),

D2 ev(u, x) : R
m → Rn : h 7→ du(x)h.

Then argue by induction on k.

Exercise 2.13.10. Use Corollary 2.13.7 to show that near any point x0 in a
smooth almost complex manifold (M,J), there exist smooth coordinates (ζ, w) ∈
C× Cn−1 in which J(x0) = i and in general J(ζ, w) takes the block form

J(ζ, w) =

(
i Y (ζ, w)
0 J ′(ζ, w)

)
,

where J ′(ζ, w) is a smooth family of complex structures on Cn−1 and Y (ζ, w) satisfies
iY + Y J ′ = 0.

Finally, we can generalize local existence by allowing our local J-holomorphic
curves to depend continuously on the choice of almost complex structure J . This
is made possible by including Jm(B2n) into the domain of the nonlinear operator,
as it will probably not surprise you to learn that the space of Cm-smooth almost
complex structures is itself a smooth Banach manifold. For our purposes, it will
suffice to consider small perturbations of the standard complex structure i.

By Exercise 2.2.2, the space Jm(B2n) of Cm-smooth almost complex struc-
tures on B2n can be identified with the space of Cm-smooth sections of the fiber
bundle AutR(TB

2n)/AutC(TB
2n), where we define AutC(TB

2n) with respect to
the standard complex structure of Cn. One can use this fact and a version of
Lemma 2.12.5 to show that Jm(B2n) is a smooth Banach submanifold of the Ba-
nach space Cm(B2n,EndR(Cn)). We will not explicitly need this fact for now, but
we will need a single chart, for which a convenient choice is provided by (2.2.1),
namely for all Y ∈ EndC(Cn) sufficiently small we can define JY ∈ J (Cn) by

(2.13.1) JY =

(
1+

1

2
iY

)
i

(
1+

1

2
iY

)−1

.

Choose δ > 0 sufficiently small so that (2.13.1) is a well-defined embedding of
{|Y | < δ} into J (Cn), and define the Banach space

Υm = Cm
(
B,EndC(C

n)
)
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and open subset

Υm
δ = {Y ∈ Υm | ‖Y ‖C0 < δ}.

Then (2.13.1) defines a smooth map

(2.13.2) Υm
δ → Cm(B2n,EndR(C

n)) : Y 7→ JY

which takes Υm
δ bijectively to a neighborhood of i in Jm(B2n).

Exercise 2.13.11. Verify that the map (2.13.2) is a smooth embedding. Lemma 2.12.5
should be useful.

Now for integers k,m ≥ 1 and p ∈ (1,∞), consider the Banach space

Xk,p,m = Cm(B2n,EndR(C
n))×W k,p(B,Cn)

and subset

Mk,p,m = {(J, u) ∈ Jm(B2n)×W k,p(B,B2n) | ∂su+ J(u)∂tu = 0} ⊂ Xk,p,m.

We will call this the local universal moduli space of pseudoholomorphic curves. Ob-
serve that it always contains pairs of the form (i, u) where u : B → B2n is holo-
morphic. Its local structure near such a point can be understood using the implicit
function theorem: define the nonlinear map

Φm
k : Υm

δ ×W k,p(B,B2n) →W k−1,p(B,Cn) : (Y, u) 7→ ∂su+ JY (u)∂tu.

The zero set of this map can be identified with the space of all pairs (J, u) ∈ Mk,p,m

such that J is within some Cm-small neighborhood of i, as then J = JY for a unique
Y ∈ Υm

δ and Φm
k (Y, u) = 0. Arguing as in Prop. 2.13.6 and applying Lemma 2.12.7,

Φm
k is of class Cm−k+1 whenever m ≥ k ≥ 2, and its derivative at any point of the

form (0, u) is simply

dΦm
k (0, u)(Y, η) = ∂̄η + Y (u)∂tu.

Since ∂̄ is surjective and has a bounded right inverse, the same is always true of
dΦm

k (0, u), and we conclude that any sufficiently small neighborhood of (i, u) in
Mk,p,m is identified with a Cm−k+1-smooth Banach submanifold ofXk,p,m. Moreover,
the natural projection

π : Mk,p,m → Jm(B2n) : (J, u) 7→ J

is differentiable, and we claim that its derivative at (i, u) is also surjective, with a
bounded right inverse. Indeed, identifying (i, u) with (0, u) ∈ (Φm

k )
−1(0), this map

takes the form

dπ(0, u)(Y, η) = Y,

where (Y, η) ∈ ker dΦm
k (0, u) and thus satisfies the equation ∂̄η+Y (u)∂tu = 0. Thus

if T̂ : W k−1,p → W k,p denotes a bounded right inverse of ∂̄, then a bounded right
inverse of dπ(0, u) is given by the map

Υm → ker dΦm
k (0, u) : Y 7→

(
Y,−T̂ [Y (u)∂tu]

)
.

With all of this in place, one can easily use an inversion trick as in the proof of
Theorem 2.13.2 to show the following:
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Theorem 2.13.12. Suppose u : B → B2n is holomorphic, i.e. it is i-holomorphic
for the standard complex structure i. Then for any p ∈ (2,∞) and integers m ≥
k ≥ 2, there exists a neighborhood Um

k ⊂ Jm(B2n) of i and a Cm−k+1-smooth map

Ψ : Um
k →W k,p(B,B2n)

such that Ψ(0) = u and Ψ(J) is J-holomorphic for each J ∈ Um
k .

We leave the proof as an exercise. The following simple consequence for Riemann
surfaces will come in useful when we study compactness issues.

Corollary 2.13.13. Suppose jk is a sequence of complex structures on a surface
Σ that converge in C∞ to some complex structure j, and ϕ : (B, i) →֒ (Σ, j) is a
holomorphic embedding. Then for sufficiently large k, there exists a sequence of
holomorphic embeddings

ϕk : (B, i) →֒ (Σ, jk)

that converge in C∞ to ϕ.

2.14. A representation formula for intersections

The main goal of this section is to prove the important fact that intersections
between distinct J-holomorphic curves are isolated unless the curves have (locally)
identical images. We saw a special case of this in §2.10: if u and v are two J-
holomorphic curves in an almost complex 4-manifold that intersect at a point where
v is immersed, then Theorem 2.10.2 implies that the intersection is isolated unless u
maps a neighborhood of the intersection into the image of v. It is easy to adapt the
proof of Theorem 2.10.2 and see that this fact is also true in arbitrary dimensions,
but it is much harder to understand what happens if u and v both have a critical
point where they intersect. For this we will need a more precise description of the
behavior of a J-holomorphic curve near a critical point.

As a first step, it’s important to understand that J-holomorphic curves have
well-defined tangent spaces at every point, even the critical points. Unless otherwise
noted, throughout this section, J will denote a smooth almost complex structure on
Cn with J(0) = i.

Proposition 2.14.1. If u : B → Cn is a nonconstant J-holomorphic curve with
u(0) = 0, then there is a unique complex 1-dimensional subspace Tu ⊂ Cn and a
number k ∈ N such that for every z ∈ B \ {0}, the limit

lim
ǫ→0+

u(ǫz)

ǫk

exists and is a nonzero vector in Tu.

Proof. Since J is smooth, the regularity results of §2.11 imply that u is smooth,
thus so is the family of complex structures defined by J̄(z) = J(u(z)) for z ∈ B.
Now u satisfies the complex-linear Cauchy-Riemann type equation

∂su+ J̄(z)∂tu = 0,
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so by the similarity principle (see Exercise 2.8.2 and Remark 2.8.3), for sufficiently
small δ > 0 there is a smooth map Φ : Bδ → EndR(Cn) with Φ(0) = 1, and a
holomorphic map f : Bδ → Cn such that

u(z) = Φ(z)f(z).

By assumption u is not constant, thus f is not identically zero and takes the form
f(z) = zkg(z) for some k ∈ N and holomorphic map g : Bδ → Cn with g(0) 6= 0.
Then for z ∈ B \ {0} and small ǫ > 0,

u(ǫz)

ǫk
=

Φ(ǫz)ǫkzkg(ǫz)

ǫk
→ zkg(0) ∈ Cg(0)

as ǫ → 0. It follows that the limit of u(ǫz)/ǫℓ is either zero or infinity for all other
positive integers ℓ 6= k. �

Definition 2.14.2. We will refer to the complex line Tu ⊂ Cn in Prop. 2.14.1
as the tangent space to u at 0, and its critical order is the integer k − 1.

Here is the easiest case of the result that intersections of two different J-holomorphic
curves must be isolated.

Exercise 2.14.3. Show that if u, v : B → Cn are two nonconstant J-holomorphic
curves with u(0) = v(0) = 0 but distinct tangent spaces Tu 6= Tv at 0, then for suf-
ficiently small ǫ > 0, u(Bǫ \ {0}) ∩ v(Bǫ \ {0}) = ∅. Hint: Compose u and v with
the natural projection Cn \ {0} → CP n−1.

To understand the case of an intersection with common tangency Tu = Tv, we
will use the following local representation formula, which contains most of the hard
work in this discussion.

Theorem 2.14.4. For any nonconstant J-holomorphic curve u : B → Cn with
u(0) = 0, there exist smooth coordinate changes on both the domain and target,
fixing the origin in both, so that in a neighborhood of 0, u is transformed into a
pseudoholomorphic map u : (Bǫ, ̂) → (Cn, Ĵ), where ̂ and Ĵ are smooth almost

complex structures on Bǫ and Cn respectively with ̂(0) = i and Ĵ(0) = i, and u
satisfies the formula

u(z) = (zk, û(z)) ∈ C× Cn−1,

where k ∈ N is one plus the critical order of u at 0, and û : Bǫ → Cn−1 is a smooth
map whose first k derivatives at 0 all vanish. In fact, û is either identically zero or
satisfies the formula

û(z) = zk+ℓuCu + |z|k+ℓuru(z)

for some constants Cu ∈ Cn−1 \ {0}, ℓu ∈ N, and a function ru(z) ∈ Cn−1 which
decays to zero as z → 0.

Moreover, if v : B → Cn is another nonconstant J-holomorphic curve with
v(0) = 0 and the same tangent space and critical order as u at 0, then the coordinates
above can be chosen on Cn so that v (after a coordinate change on its domain)
satisfies a similar representation formula v(z) = (zk, v̂(z)), with either v̂ ≡ 0 or
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v̂(z) = zk+ℓvCv+|z|k+ℓvrv(z), and any two pseudoholomorphic curves u and v written
in this way are related to each other as follows: either û ≡ v̂, or

û(z)− v̂(z) = zk+ℓ′C ′ + |z|k+ℓ′r′(z),

for some constants C ′ ∈ Cn−1 \ {0}, ℓ′ ∈ N and function r′(z) ∈ Cn−1 with
limz→0 r

′(z) = 0.

Exercise 2.14.5. Prove Theorem 2.14.4 for the case where J is integrable. In
this situation one can arrange for the coordinate changes on the domains to be
holomorphic, so ̂ ≡ i.

Theorem 2.14.4 is a weak version of a deeper result proved by Micallef and White
[MW95],11 which provides a similar formula in which the map û can be taken to
be a polynomial in z. That result is harder to prove, but it’s also more than is
needed for our purposes, as the theorem above will suffice to understand everything
we want to know about intersections of holomorphic curves. Before turning to the
proof, let us discuss some of its local applications—more such applications will be
discussed in §2.15 and 2.16.

Theorem 2.14.6. Suppose u, v : B → Cn are injective smooth J-holomorphic
curves with u(0) = v(0) = 0. Then for sufficiently small ǫ > 0, either u = v ◦ ϕ on
Bǫ for some holomorphic embedding ϕ : Bǫ → B with ϕ(0) = 0, or

u(Bǫ \ {0}) ∩ v(Bǫ \ {0}) = ∅.
Proof. By Exercise 2.14.3, the second alternative holds unless Tu = Tv, so

assume the latter, and let ku, kv denote the critical orders of u and v respectively,
plus one. Suppose kumu = kvmv = q, where q ∈ N is the least common multiple of
ku and kv, hence mu and mv are relatively prime. Then the two curves

u0(z) := u(zmu), v0(z) := v(zmv)

have the same tangent spaces and critical orders at 0. We can thus use Theo-
rem 2.14.4 to change coordinates and rewrite these two curves as

u0(z) = (zq, û0(z)), v0(z) = (zq, v̂0(z)).

For each ℓ = 1, . . . , q − 1, define also the reparametrizations

uℓ(z) = (zq, ûℓ(z)) = u0(e
2πiℓ/qz), vℓ(z) = (zq, v̂ℓ(z)) = v0(e

2πiℓ/qz).

Each of the differences û0 − v̂ℓ for ℓ = 0, . . . , q − 1 is either identically zero or
satisfies a formula of the form û0(z)− v̂ℓ(z) = zmC + |z|mr(z), in which case it has
no zeroes in some neighborhood of 0. If the latter is true for all ℓ = 0, . . . , q − 1,
then u0 has no intersections with v0 near 0, as these correspond to pairs z ∈ Bǫ and
ℓ ∈ {0, . . . , q − 1} for which û0(z) = v̂ℓ(z). It follows then that u and v have no
intersections in a neighorhood of u(0) = v(0) = 0.

Suppose now that û0 − v̂ℓ ≡ 0 for some ℓ ∈ {0, . . . , q − 1}, which means

(2.14.1) u(zmu) = u0(z) = v0(e
2πiℓ/qz) = v(e2πiℓ/kvzmv)

11Our exposition of this topic is heavily influenced by the asymptotic version of Theorem 2.14.4,
which is a more recent result due to R. Siefring [Sie08] that extends the intersection theory of
closed J-holomorphic curves to the punctured case. We’ll discuss this in a later chapter.
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for all z ∈ Bǫ. We finish by proving the following claim: mu = mv = 1. Indeed,
replacing z with e2πi/muz in (2.14.1), the left hand side doesn’t change, so we deduce
that for all z ∈ Bǫ,

v(zmv) = v(e2πimv/muzmv ).

Since v is injective by assumption, this implies mv/mu ∈ Z, yet mu and mv are
also relatively prime, so this can only be true if mu = 1. Now performing the
same argument again but inserting e2πi/mvz into (2.14.1), we similarly deduce that
mv = 1. �

The assumption of injectivity in the above theorem may seem like a serious
restriction, but it is not: it turns out that on a sufficiently small neighborhood of
each point in the domain, every nontrivial J-holomorphic curve is either injective
or is a branched cover of an injective curve.

Theorem 2.14.7. For any nonconstant smooth J-holomorphic curve u : B → Cn

with u(0) = 0, there exists an injective J-holomorphic curve v : B → Cn and a
holomorphic map ϕ : Bǫ → B for some ǫ > 0, with ϕ(0) = 0, such that u = v ◦ ϕ
on Bǫ.

Observe that if ϕ′(0) 6= 0 in the above statement then u must also be injec-
tive near 0; the interesting case is therefore when ϕ′(0) = 0, as then ϕ is locally a
branched cover, mapping a neighborhood of the origin k-to-1 to another neighbor-
hood of the origin for some k ∈ N. It follows that u : Bǫ → Cn is then also a k-fold
branched cover onto the image of v near 0.

Proof of Theorem 2.14.7. Using the coordinates provided by Theorem 2.14.4,
rewrite u as a pseudoholomorphic map (Bǫ, j) → (Cn, J) with u(z) = (zq, û(z)), and
define for each ℓ = 0, . . . , q − 1,

uℓ : (Bǫ, jℓ) → (Cn, J) : z 7→ (zq, ûℓ(z)) := u(e2πiℓ/qz).

Then for z ∈ Bǫ, there is another point ζ 6= z with u(ζ) = u(z) if and only if û(z) =
ûℓ(z) for some ℓ ∈ {1, . . . , q − 1}. Making ǫ sufficiently small, the representation
formula for û− ûℓ implies that such points do not exist unless û ≡ ûℓ, so define

m = min{ℓ ∈ {1, . . . , q} | û ≡ ûℓ}.
Since û ≡ ûm implies û ≡ ûℓm for all ℓ ∈ N, m must divide q, thus we can de-
fine a positive integer k = q/m. If k = 1 then u is injective near 0 and we are
done. Otherwise, u now satisfies u = u ◦ ψℓ for all ℓ ∈ Zk, where we define the
diffeomorphisms

ψℓ : Bǫ → Bǫ : z 7→ e2πiℓ/kz.

This makes it possible to define a continuous map

v : Bǫk → Cn : z 7→ u
(

k
√
z
)
,

which is injective if ǫ > 0 is taken sufficiently small.
In order to view v as a J-holomorphic curve, we shall switch coordinates on the

domain so that j becomes standard. Observe that since u = u◦ψℓ, pulling J back to
Ḃǫ := Bǫ \ 0 through u implies j = u∗J = ψ∗

ℓ j on Ḃǫ for all ℓ ∈ Zk, hence this holds
also on Bǫ by continuity. The maps ψℓ therefore define a cyclic subgroup of the
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group of automorphisms of the Riemann surface (Bǫ, j). Find a simply connected
Zk-invariant open neighborhood U ⊂ Bǫ of 0 which admits a holomorphic coordinate
chart Φ : (U , j) →֒ (C, i). By the Riemann mapping theorem, we can assume without
loss of generality that the image of this chart is B and Φ(0) = 0, hence the inverse
Ψ := Φ−1 defines a holomorphic embedding

Ψ : (B, i) → (Bǫ, j)

that maps the origin to itself and has a Zk-invariant image. The maps

ψ̃ℓ := Ψ−1 ◦ ψℓ ◦Ψ : (B, i) → (B, i)

for ℓ ∈ Zk now define an injective homomorphism of Zk into the group of au-
tomorphisms of (B, i) that fix 0. The latter consists of rotations, so we deduce

ψ̃ℓ(z) = e2πiℓ/kz. Then the J-holomorphic curve ũ := u ◦ Ψ : B → Cn admits the

symmetry ũ = ũ ◦ ψ̃ℓ for all ℓ ∈ Zk, and we can thus define a new J-holomorphic
curve on the punctured ball Ḃ := B \ {0} by

ṽ : Ḃ → Cn : z 7→ ũ( k
√
z).

This admits a continuous extension over B with ṽ(0) = 0, thus for all z ∈ Bǫ in a
sufficiently small neighborhood of 0, u now factors through a k-fold branched cover,
namely

u(z) = ṽ
(
[Φ(z)]k

)
.

Moreover, ṽ is injective, which we can see by identifying it with the injective map
v : Bǫk → Cn as follows: consider the continuous map

f : B → Bǫk : z 7→
[
Ψ( k

√
z)
]k
,

which is well defined because Ψ(e2πi/kz) = e2πi/kΨ(z). This is a homeomorphism
and satisfies ṽ = v ◦ f , thus ṽ is injective if and only if v is.

It remains only to show that the continuous map ṽ : B → Cn is in fact smooth
and thus J-holomorphic at 0. By elliptic regularity (Theorem 2.11.1), it suffices to
prove that ṽ ∈ W 1,p(B,Cn) for some p > 2, i.e. that it has a weak derivative of
class Lp which is defined almost everywhere and equals the smooth map dṽ on Ḃ.
Recall that u(z) = (zq, û(z)) with q = km, where û(z) = o(|z|q), thus the first q− 1
derivatives of u vanish at z = 0, and the same is therefore true for ũ = u ◦ Ψ. It
follows that there is a constant C > 0 such that

|dũ(z)| ≤ C|z|q−1

for all z ∈ B, implying that for z ∈ Ḃ,

|dṽ(z)| ≤
∣∣dũ
(

k
√
z
)∣∣ · 1

k
|z| 1k−1 ≤ C

k
|z| 1k (q−1)|z| 1k−1 =

C

k
|z|m−1.

Thus dṽ is C0-bounded on Ḃ, implying it has a finite Lp norm for any p > 2, so the
rest follows by Exercise 2.14.8 below. �

Exercise 2.14.8. Assume u is any continuous function on B which is smooth
on Ḃ = B \ {0}, and its derivative du on Ḃ satisfies ‖du‖Lp(Ḃ) < ∞. Show that

u ∈ W 1,p(B), and its weak derivative equals its strong derivative almost everywhere.
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We now turn to the proof of the representation formula, Theorem 2.14.4. A
somewhat simplified characterization of the argument would be as follows: we need
to show that for any nonconstant J-holomorphic curve u : B → Cn, assuming J(0) =
i, the “leading order” terms in its Taylor expansion about z = 0 are holomorphic.
Since terms in the Taylor series can always be expressed as constant multiples of zk z̄ℓ,
holomorphicity means the relevant terms are actually multiples of zk, thus producing
the powers of z that appear in the representation formula. In practice, things are a
bit more complicated than this, e.g. to keep full control over the remainders, we will
at one point use the similarity principle instead of Taylor’s theorem, but the above
can be seen as a motivating principle.

Proof of Theorem 2.14.4. We proceed in four steps.
Step 1: Coordinates on the target. Choose the coordinates on Cn so that J(0) = i

and Tu = C × {0} ⊂ Cn. We can make one more requirement on the coordinates
without loss of generality: we choose them so that the map

u0(z) = (z, 0) ∈ C× Cn−1

is J-holomorphic on Bǫ for sufficiently small ǫ > 0. This is a highly nontrivial
condition: the fact that it’s possible follows from the local existence result for J-
holomorphic curves with a fixed tangent vector, Theorem 2.13.2.

Step 2: Coordinates on the domain. We next seek a coordinate change near the
origin on the domain so that u becomes a map of the form z 7→ (zk, o(|z|k)) for some
k ∈ N. Applying the similarity principle as in the proof of Prop. 2.14.1, we have
u(z) = Φ(z)f(z) on Bǫ for some small ǫ > 0, a smooth map Φ : Bǫ → EndR(Cn)
with Φ(0) = 1 and a holomorphic map f : Bǫ → Cn. Moreover, f(z) = zkg(z)
for some k ∈ N (where k − 1 is the critical order of u) and a holomorphic map
g : Bǫ → Cn with g(0) 6= 0, and our assumption on Tu implies that after a complex-
linear coordinate change on the domain, we may assume g(0) = (1, 0) ∈ C × Cn−1.
Thus f(z) = (zkg1(z), z

k+1g2(z)) for some holomorphic maps g1 : Bǫ → C and
g2 : Bǫ → Cn−1, with g1(0) = 1. Let us use the splitting Cn = C × Cn−1 to write
Φ(z) in block form as

Φ(z) =

(
α(z) β(z)
γ(z) δ(z)

)
,

so α(0) and δ(0) are both the identity, while β(0) and γ(0) both vanish; note that all
four blocks are regarded as real -linear maps on complex vector spaces, i.e. they need
not commute with multiplication by i. Now u(z) takes the form (u1(z), u2(z)) ∈
C× Cn−1, where

u1(z) = α(z)zkg1(z) + β(z)zk+1g2(z),

u2(z) = γ(z)zkg1(z) + δ(z)zk+1g2(z)).

We claim that after shrinking ǫ > 0 further if necessary, there exists a smooth
function ζ : Bǫ → C such that ζ(0) = 0, dζ(0) = 1 and [ζ(z)]k = u1(z). Indeed, the
desired function can be written as

ζ(z) = z k
√
α(z)g1(z) + β(z)zg2(z),
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which can be defined as a smooth function for z near 0 since the expression under
the root lies in a neighborhood of 1; we set k

√
1 = 1. Expressing u now as a function

of the new coordinate ζ , we have

(2.14.2) u(ζ) = (ζk, û(ζ))

with û(ζ) = A(ζ)ζk for some smooth map A(ζ) ∈ HomR(C,Cn−1) with A(0) = 0.
Observe that since dζ(0) = 1, the new expression for u(ζ) is pseudoholomorphic for
a new complex structure ̂ on the domain such that ̂(0) = i.

Step 3: The leading order term in û− v̂. This is the important part. Using the
coordinates chosen above, assume now that J(0) = i and the two maps u : (Bǫ, j) →
(Cn, J) and v : (Bǫ, j

′) → (Cn, J) are pseudoholomorphic curves of the form

u(z) = (zk, û(z)),

v(z) = (zk, v̂(z)),

where û and v̂ each have vanishing derivatives up to at least order k at z = 0. Let

h(z) = u(z)− v(z) = (0, ĥ(z)),

defining a map ĥ : Bǫ → Cn−1. Our main goal is to show that the leading or-
der term in ĥ is a homogeneous holomorphic polynomial. By unique continuation
(Theorem 2.9.3), h vanishes identically on a neighborhood of 0 if and only if the
derivatives Dℓh(0) of all orders vanish, so let’s assume this is not the case. Then
there is a finite positive integer m defined by

m = min{ℓ ∈ N | Dℓh(0) 6= 0},
and m ≥ k + 1 since h(z) = o(|z|k). Now for ǫ > 0, the functions

hǫ(z) :=
h(ǫz)

ǫm

converge in C∞ as ǫ→ 0 to a nonzero homogenous polynomial in z and z̄ of degreem,
namely the mth order term in the Taylor series of h about 0. We claim that this
polynomial is holomorphic, which would imply that it has the form

h0(z) = (0, zmC)

for some constant C ∈ Cn−1.
The intuitive reason for this claim should be clear: u and v both satisfy nonlinear

Cauchy-Riemann equations that “converge” to the standard one as z → 0, so their
difference in the rescaled limit should also satisfy ∂̄h0 = 0. One complication in
making this argument precise is that since we’ve reparametrized the domains by
nonholomorphic diffeomorphisms, u and v are each pseudoholomorphic for different
complex structures j and j′ on their domains, thus it is not so straightforward to find
an appropriate PDE satisfied by u − v. Of course, since both maps are immersed
except at 0, the complex structures are uniquely determined by j = u∗J and j′ = v∗J
on Bǫ\{0}, which suggests that there should be a way to reexpress the two nonlinear
Cauchy-Riemann equations without explicit reference to j and j′. And there is: we
only need observe that outside of 0, u and v parametrize immersed surfaces in Cn

whose tangent spaces are complex, i.e. J-invariant.
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This can be expressed elegantly in the language of bivectors: recall that a
bivector is an element of the antisymmetric tensor product bundle Λ2TC2 → C2,
and thus consists of a linear combination of bilinear wedge products of the form
X ∧ Y for vectors X, Y ∈ TpCn, p ∈ Cn, where by definition X ∧ Y = −Y ∧ X .
Such a product can be thought of intuitively as representing the oriented linear
subspace in TpCn spanned by X and Y , with its magnitude giving the signed area
of the corresponding parallelogram. Let AutR(E) denote the group of invertible
real-linear smooth bundle maps on any bundle E. Then there is a natural group
homomorphism

AutR(TC
n) → AutR(Λ

2TCn) : A 7→ Ā

defined by
Ā(X ∧ Y ) = AX ∧ AY.

In particular, J2 = −1 then implies J̄2 = 1 as an operator on Λ2TCn. Now,
the action of J fixes the oriented subspace spanned by X and Y if and only if
JX ∧ JY = c(X ∧ Y ) for some c > 0, but from J̄2 = 1, we deduce that c = 1, so
the correct condition is JX ∧ JY = X ∧ Y . We conclude from this discussion that
u : Bǫ → Cn and v : Bǫ → Cn satisfy the first order nonlinear PDEs,

∂su ∧ ∂tu− J(u)∂su ∧ J(u)∂tu = 0,

∂sv ∧ ∂tv − J(v)∂sv ∧ J(v)∂tv = 0.
(2.14.3)

In order to deduce the consequence for h0, observe first that by the usual interpo-
lation trick (cf. the proof of Prop. 2.9.2), on a sufficiently small ball Bǫ there is a
smooth map A : Bǫ → EndR(Cn,EndR(Cn)) such that

J (u(z))− J(v(z)) = A(z) [u(z)− v(z)] = A(z)h(z).

Thus subtracting the second equation of (2.14.3) from the first gives

∂su ∧ ∂th+ ∂sh ∧ ∂tv − J(u)∂su ∧ J(u)∂th− J(u)∂sh ∧ J(v)∂tv
− J(u)∂su ∧ (Ah)∂tv − (Ah)∂sv ∧ J(v)∂tv = 0.

Replacing z by ǫz and dividing the entire expression by ǫk+m−2 now yields

0 =
∂su(ǫz)

ǫk−1
∧ ∂th(ǫz)

ǫm−1
+
∂sh(ǫz)

ǫm−1
∧ ∂tv(ǫz)

ǫk−1

− J(u(ǫz))
∂su(ǫz)

ǫk−1
∧ J(u(ǫz))∂th(ǫz)

ǫm−1
− J(u(ǫz))

∂sh(ǫz)

ǫm−1
∧ J(v(ǫz))∂tv(ǫz)

ǫk−1

− ǫkJ(u(ǫz))
∂su(ǫz)

ǫk−1
∧
[
A(ǫz)

h(ǫz)

ǫm

]
∂tv(ǫz)

ǫk−1

− ǫk
[
A(ǫz)

h(ǫz)

ǫm

]
∂sv(ǫz)

ǫk−1
∧ J(v(ǫz))∂tv(ǫz)

ǫk−1
.

We claim that every term in this expression converges in C∞ as ǫ→ 0. Indeed, the
terms involving h are all either hǫ(z) or one of its first derivatives, so these converge

respectively to h0 = (0, ĥ0), ∂sh0 = (0, ∂sĥ0) and ∂th0 = (0, ∂tĥ0). Since ∂su has

vanishing derivatives at 0 up until order k − 1, ∂su(ǫz)
ǫk−1 converges to the homogenous

degree k − 1 Taylor polynomial of ∂su at 0, which is precisely the first derivative
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of the leading order term in u, namely (kzk−1, 0). Likewise, ∂tu(ǫz)
ǫk−1 → (ikzk−1, 0),

and the same goes for the first derivatives of v. Finally J(u(ǫz)) and J(v(ǫz)) both
converge to i, so after the dust settles, we’re left with

(kzk−1, 0) ∧ (0, ∂tĥ0) + (0, ∂sĥ0) ∧ (ikzk−1, 0)

− (ikzk−1, 0) ∧ (0, i∂tĥ0) + (0, i∂sĥ0) ∧ (kzk−1, 0) = 0,

or equivalently

−(kzk−1, 0) ∧ (0, i∂̄ĥ0) = (ikzk−1, 0) ∧ (0, ∂̄ĥ0).

This equation means that for all z ∈ Bǫ, if (kz
k−1, 0) and (0, i∂̄h0(z)) are linearly

independent vectors in Cn, then the oriented real subspace they span is the same
as its image under multiplication by i, i.e. it is complex. But this is manifestly
untrue unless one of the vectors vanishes, so we conclude that for all z ∈ Bǫ \ {0},
∂̄h0(z) = 0, and h0 is thus a holomorphic polynomial on Bǫ.

Step 4: Conclusion. It remains only to assemble the information gathered above.
Combining Step 3 with Taylor’s theorem yields the expression

û(z)− v̂(z) = zmC + |z|mr(z),
where C ∈ Cn−1 is a constant, m > k is an integer and r(z) is a remainder function
such that limz→0 r(z) = 0. The corresponding formulas for û and v̂ individually
follow from this, because we’ve chosen coordinates so that z 7→ u0(z

k) = (zk, 0) is
also a J-holomorphic curve. The degree of the leading term in each is then simply
the degree of its lowest order nonvanishing derivative at z = 0, and the same applies
to û− v̂. �

2.15. Simple curves and multiple covers

We now prove an important global consequence of the local results from the
previous section. Recall first that if Σ and Σ′ are two closed, oriented and connected
surfaces, then every continuous map

ϕ : Σ → Σ′

has a mapping degree deg(ϕ) ∈ Z, most easily defined via the homological con-
dition that deg(ϕ) = k if ϕ∗[Σ] = k[Σ′]. Equivalently, deg(ϕ) can be defined as a
signed count of points in the preimage ϕ−1(ζ) of a generic point ζ ∈ Σ′, cf. [Mil97].

Exercise 2.15.1. Show that if (Σ, j) and (Σ′, j′) are two closed connected
Riemann surfaces with their natural orientations, then any holomorphic map ϕ :
(Σ, j) → (Σ′, j′) has deg(ϕ) ≥ 0. Moreover,

• deg(ϕ) = 0 if and only if ϕ is constant,
• deg(ϕ) = 1 if and only if ϕ is biholomorphic, i.e. a holomorphic diffeo-
morphism with holomorphic inverse, and

• if deg(ϕ) = k ≥ 2, then ϕ is a branched cover, meaning it has at most
finitely many critical points and its restriction to the punctured surface
Σ\Crit(ϕ) is a k-fold covering map, while in a neighborhood of each critical
point it admits coordinates in which ϕ(z) = zℓ for some ℓ ∈ {2, . . . , k}.
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Theorem 2.15.2. Suppose (Σ, j) is a closed connected Riemann surface, (M,J)
is a smooth almost complex manifold and u : (Σ, j) → (M,J) is a nonconstant
J-holomorphic curve. Then there exists a factorization u = v ◦ ϕ where

• (Σ′, j′) is a closed connected Riemann surface and v : (Σ′, j′) → (M,J) a
J-holomorphic curve that is embedded outside a finite set of critical points
and self-intersections, and

• ϕ : (Σ, j) → (Σ′, j′) is a holomorphic map of degree deg(ϕ) ≥ 1.

Moreover, v is unique up to biholomorphic reparametrization.

Proof. Let Crit(u) = {z ∈ Σ | du(z) = 0} denote the set of critical points, and
define ∆ ⊂ Σ to be the set of all points z ∈ Σ such that there exists ζ ∈ Σ and
neighborhoods z ∈ Uz ⊂ Σ, ζ ∈ Uζ ⊂ Σ with u(z) = u(ζ) but

u(Uz \ {z}) ∩ u(Uζ \ {ζ}) = ∅.
By Theorems 2.14.6 and 2.14.7, both of these sets are discrete and thus finite, and
the set

Σ̇′ := u (Σ \ (Crit(u) ∪∆)) ⊂M

is a smooth submanifold of M with J-invariant tangent spaces, and thus inherits
a natural complex structure j′ such that the inclusion (Σ̇′, j′) →֒ (M,J) is pseu-

doholomorphic. We shall now construct (Σ′, j′) as a compactification of (Σ̇′, j′), so
that Σ̇′ is obtained from Σ′ by removing finitely many points. Let

∆̂ = (Crit(u) ∪∆)/ ∼
where two points in Crit(u) ∪ ∆ are defined to be equivalent whenever they have

neighborhoods in Σ with identical images under u. Then for each [z] ∈ ∆̂, The-
orem 2.14.7 provides an injective J-holomorphic map u[z] from the open unit ball
B ⊂ C onto the image of a neighborhood of z under u. We define (Σ′, j′) by

Σ′ = Σ̇′ ∪Φ


 ⊔

[z]∈∆̂

B


 ,

where the gluing map Φ is the disjoint union of the maps u[z]|B\{0} : B \{0} → Σ̇′ for

each [z] ∈ ∆̂, and j = j′ on Σ̇′ and i on B. The surface Σ′ is clearly compact, and

combining the maps u[z] with the inclusion Σ̇′ →֒ M defines a pseudoholomorphic

map v : (Σ′, j′) → (M,J) whose restriction to the punctured surface Σ̇′ = Σ′ \ ∆̂
is an embedding. Moreover, the restriction of u to Σ \ (Crit(u) ∪ ∆) defines a

holomorphic map to (Σ̇′, j′) which extends over the punctures to a holomorphic
map ϕ : (Σ, j) → (Σ′, j′) such that u = v ◦ ϕ.

We leave the uniqueness statement as an exercise for the reader. The positivity
of deg(ϕ) follows from Exercise 2.15.1. �

Definition 2.15.3. A closed, connected and nonconstant pseudoholomorphic
curve u : (Σ, j) → (M,J) is called simple if it does not admit any factorization
u = v ◦ ϕ as in Theorem 2.15.2 with deg(ϕ) > 1. If u is not simple, we say that it
is multiply covered.
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With this definition in hand, the theorem above can be reformulated as follows:

Corollary 2.15.4. A closed, connected and nonconstant pseudoholomorphic
curve is simple if and only if it is embedded outside of a finite (possibly empty) set
of critical points and self-intersections.

2.16. Positivity of intersections

We saw in §2.10 that a J-holomorphic curve and a J-holomorphic hypersurface
(i.e. a J-invariant submanifold of real codimension two) always intersect positively.
This fact is especially powerful in dimension four, where a J-holomorphic hypersur-
face is simply the image of an embedded J-holomorphic curve—but we would also
like to understand what happens when two holomorphic curves intersect at a point
where neither is locally embedded. This is made possible by the representation for-
mula of §2.14, and in this section we will use it to prove two much more powerful
local results about intersections of holomorphic curves in dimension four. Both play
major roles in applications to symplectic 4-manifolds and contact 3-manifolds that
we will discuss in later chapters.

Throughout this section, J denotes a smooth almost complex structure on C2

with J(0) = i. We shall also assume that J is tamed by the standard symplectic
form ωstd; since i is already ωstd-tame and we will only really be concerned with a
neighborhood of the origin, this condition does not pose a restriction in practice.

Theorem 2.16.1. Suppose u, v : B → C2 are J-holomorphic curves with an
isolated intersection u(0) = v(0) = 0. Then the local intersection index satisfies

ι(u, 0; v, 0) ≥ 1,

with equality if and only if the intersection is transverse.

Before proving the theorem, we would also like to formulate a similar result for
singularities of a single curve. Recall that by Theorem 2.14.7, every nonconstant J-
holomorphic curve is locally either injective (perhaps with isolated critical points) or
a branched cover of an injective curve. Since a nontrivial branched cover necessarily
has infinitely many self-intersections, we restrict in the following statement to the
locally injective case. It will be most relevant in particular to curves that are simple
in the sense of Definition 2.15.3.

Theorem 2.16.2. Suppose u : B → C2 is an injective J-holomorphic curve with
u(0) = 0 and an isolated critical point du(0) = 0. Then there exists an integer
δ(u, 0) > 0, depending only on the germ of u near 0, such that for any ρ > 0, one
can find a smooth map uǫ : B → C2 satisfying the following conditions:

(1) uǫ is C
∞-close to u and matches u outside Bρ and at 0;

(2) uǫ is a symplectic immersion with respect to the standard symplectic struc-
ture ωstd, i.e. it satisfies u

∗
ǫωstd > 0;

(3) uǫ has finitely many self-intersections and satisfies

(2.16.1)
1

2

∑

(z,ζ)

ι(uǫ, z; uǫ, ζ) = δ(u, 0),
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where the sum ranges over all pairs (z, ζ) ∈ B × B such that z 6= ζ and
uǫ(z) = uǫ(ζ).

12

Remark 2.16.3. Our proof will show in fact that the tangent spaces spanned by
the perturbation uǫ can be arranged to be uniformly close to i-complex subspaces
(or equivalently J-complex subspaces, since J and i may also be assumed uniformly
close in a small enough neighborhood of 0). This implies that it is a symplectic
immersion, since the condition of being a symplectic subspace is open. In practice,
the crucial point in applications will be that the complex structure on the bundle
(u∗ǫTC

2, J) admits a homotopy supported near 0 to a new complex structure for
which im duǫ becomes a complex subbundle.

As a prelude to the proofs of the two theorems above, the following exercise
should provide a concrete feeling for what is involved.

Exercise 2.16.4. Consider the intersecting holomorphic maps u, v : C → C2

defined by

u(z) = (z3, z5), v(z) = (z4, z6).

(a) Show that u admits a C∞-small perturbation to a map uǫ such that uǫ
and v have exactly 18 intersections in a neighbourhood of the origin, all
transverse and positive.

(b) Show that for any neighbourhood U ⊂ C of 0, u admits a C∞-small per-
turbation to an immersion uǫ such that

1

2
#{(z, ζ) ∈ U × U | uǫ(z) = uǫ(ζ), z 6= ζ} = 10.

We now prove Theorem 2.16.1. Recall from §2.14 that even if u and v have
critical points at 0, they both have well-defined tangent spaces and critical orders.
We first prove the theorem in the case where the tangent spaces at the intersection
are distinct.

Proposition 2.16.5. Under the assumptions of Theorem 2.16.1, suppose u and
v have distinct tangent spaces Tu 6= Tv ⊂ C2 at the intersection, with critical orders
ku − 1 and kv − 1 respectively. Then

ι(u, 0; v, 0) = kukv.

In particular, the intersection index is positive, and equals 1 if and only if the inter-
section is transverse.

Proof. By Theorem 2.14.4, we can smoothly change coordinates such that
without loss of generality, u(z) =

(
zku , |z|ku+1f(z)

)
for some bounded function f :

B → C. The condition of distinct tangent spaces implies (cf. Exercise 2.14.3) that
if π : C2 \ {0} → CP 1 denotes the natural projection, the images of the maps

π ◦ u|Bǫ\{0}, π ◦ v|Bǫ\{0} : Bǫ \ {0} → CP 1

12Notice that each geometric double-point u(z) = u(ζ) appears twice in the summation over
pairs (z, ζ), hence the factor of 1/2 in (2.16.1).
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lie in arbitrarily small neighborhoods of two distinct points for small ǫ > 0. This
remains true if we replace u by any of the maps

uτ : B → Cn : z 7→
(
zku , τ |z|ku+1f(z)

)

for τ ∈ [0, 1]. Thus by homotopy invariance of the local intersection index (Exer-
cise 2.10.1), ι(u, 0; v, 0) = ι(u0, 0; v, 0). After applying the same homotopy argument
in different coordinates adapted to v and then choosing new coordinates so that the
tangent spaces of u and v match C× {0} and {0} × C respectively, the problem is
reduced to computing ι(u0, 0; v0, 0), where

u0(z) =
(
zku , 0

)
, v0(z) =

(
0, zkv

)
.

Choose ǫ > 0 and perturb these maps to
(
zku + ǫ, 0

)
and

(
0, zkv + ǫ

)
respectively.

Both are then holomorphic for the standard complex structure on C2 and they have
exactly kukv intersections, all transverse. �

Exercise 2.16.6. Suppose u, v : B → C2 are J-holomorphic curves with an
isolated intersection u(0) = v(0) = 0, and for k, ℓ ∈ N, define the J-holomorphic
branched covers uk, vℓ : B → C2 by

uk(z) := u(zk), vℓ(z) := v(zℓ).

Show that ι(uk, 0; vℓ, 0) = kℓ · ι(u, 0; v, 0).
The remaining cases of Theorem 2.16.1 are covered by the following result, in

which the intersection can never be transverse.

Proposition 2.16.7. Under the assumptions of Theorem 2.16.1, suppose u and
v have identical tangent spaces Tu = Tv ⊂ C2 at the intersection, with critical orders
ku − 1 and kv − 1 respectively. Then

ι(u, 0; v, 0) ≥ kukv + 1.

Proof. Since ku and kv may be different, we first replace u and v with suitable
branched covers so that their critical orders become the same: let

m = kukv ∈ N,

and define u′, v′ : B → C2 by

u′(z) := u(zkv), v′(z) := v(zku),

so that in particular u′ and v′ both have critical order m − 1 at the intersection
u′(0) = v′(0) = 0, as well as matching tangent spaces. Now by Theorem 2.14.4, we
find new choices of local coordinates in B and C2 near 0 such that

u′(z) = (zm, û(z)), v′(z) = (zm, v̂(z))

for z ∈ Bρ, with ρ > 0 and some smooth functions û, v̂ : Bρ → C with van-
ishing derivatives up to order m at 0. For each j = 0, . . . , m − 1, there are also
J-holomorphic disks (in general with different complex structures on their domains)
v′j : Bρ → C2 defined by

v′j(z) := v′(e2πij/mz) = (zm, v̂j(z)), where v̂j(z) = v̂(e2πij/mz).
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If û− v̂j is identically zero for some j = 0, . . . , m− 1, then we have

u′(z) = v′(e2πij/mz) for all z ∈ Bρ,

implying that u′ and v′ have identical images on some neighborhood of the inter-
section, in which case so do u and v; this is impossible since the intersection was
assumed isolated. Now Theorem 2.14.4 gives for each j = 0, . . . , m− 1 the formula

(2.16.2) û(z)− v̂j(z) = zm+ℓjCj + |z|m+ℓjrj(z),

where Cj ∈ C \ {0}, ℓj ∈ N and rj(z) ∈ C is a function with rj(z) → 0 as z → 0.
We can now compute ι(u′, 0; v′, 0) by choosing ǫ ∈ C \ {0} close to 0 and defining
the perturbation

u′ǫ(z) := (zm, û(z) + ǫ).

This curve does not intersect v′ at z = 0 since ǫ 6= 0. If u′ǫ(z) = v′(ζ), then zm = ζm,
hence ζ = e2πij/mz for some j = 0, . . . , m−1, and equality in the second factor then
implies

(2.16.3) v̂j(z)− û(z) = ǫ.

By (2.16.2), the zero of v̂j(z) − û(z) at z = 0 has order m + ℓj ≥ m + 1, thus if
ǫ 6= 0 is sufficiently close to 0 and chosen generically so that it is a regular value
of v̂j − û, we conclude that (2.16.3) has exactly m + ℓj solutions near z = 0, all of
them simple (positive or negative) zeroes of v̂j − û − ǫ and thus corresponding to
transverse (positive or negative) intersections of u′ with v′. Adding these up with
the correct signs for all choices of j = 0, . . . , m− 1, we conclude

ι(u′, 0; v′, 0) =
m−1∑

j=0

(m+ ℓj) ≥ m(m+ 1) = kukv(kukv + 1).

Exercise 2.16.6 then implies ι(u, 0; v, 0) ≥ kukv + 1. �

Exercise 2.16.8. Find examples to show that in the situation described in
Proposition 2.16.7, the bound ι(u, 0; v, 0) ≥ kukv+1 is sharp, and there is no similar
upper bound for ι(u, 0; v, 0) in terms of ku and kv. Hint: Set J ≡ i and consider
holomorphic maps of the form z 7→ (zk, zk+ℓ).

The proof of Theorem 2.16.2 will be similar, but there are some additional
subtleties involved in proving that the immersed perturbation uǫ is symplectically
immersed—intuitively this should be unsurprising since ωstd tames J and the sym-
plectic subspace condition is open, but the change in tangent subspaces cannot be
understood as a C0-small perturbation due to the singularity of du at 0. Our strat-
egy will be to show that the tangent spaces spanned by duǫ are in fact C0-close to
the tangent spaces spanned by another map which is a holomorphic immersion. In
order to make this notion precise, we need a practical way of measuring the “dis-
tance” between two subspaces of a vector space, in particular for the case when both
subspaces arise as images of injective linear maps.
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Definition 2.16.9. Fix the standard Euclidean norm on Rn. Given two sub-
spaces V,W ⊂ Rn of the same positive dimension, define

dist(V,W ) := max
v∈V,|v|=1

dist(v,W ) := max
v∈V,|v|=1

min
w∈W

|v − w|.

Definition 2.16.10. The injectivity modulus of a linear map A : Rk → Rn

is

Inj(A) = min
v∈Rk\{0}

|Av|
|v| ≥ 0.

Clearly Inj(A) > 0 if and only if A is injective.

Lemma 2.16.11. For any pair of injective linear maps A,B : Rk → Rn,

dist (imA, imB) ≤ ‖A− B‖
Inj(A)

.

Proof. Pick any nonzero vector v ∈ Rn. Then Av 6= 0 since A is injective, and
we have

dist

(
Av

|Av| , imB

)
= min

w∈Rk

∣∣∣∣A
v

|Av| − Bw

∣∣∣∣ ≤
∣∣∣∣A

v

|Av| − B
v

|Av|

∣∣∣∣

≤ ‖A− B‖ |v|
|Av| ≤

‖A−B‖
Inj(A)

.

�

Lemma 2.16.12. There exists ǫ > 0 such that if V ⊂ C2 is a complex 1-
dimensional subspace, then all real 2-dimensional subspaces W ⊂ C2 satisfying
dist(V,W ) < ǫ are ωstd-symplectic.

Exercise 2.16.13. Prove the lemma. Hint: CP 1 is compact.

Proof of Theorem 2.16.2. By Theorem 2.14.4, we can assume after smooth
coordinate changes near 0 ∈ B and 0 ∈ C2 that

u(z) = (zk, û(z))

for some integer k ≥ 2 and a map û : Bρ → C on a ball of some radius ρ > 0, such
that the other branches

uj(z) := u(e2πij/kz) = (zk, ûj(z)), ûj(z) := û(e2πij/kz),

for j = 1, . . . , k − 1 are related by

(2.16.4) ûj(z)− û(z) = zk+ℓjCj + |z|k+ℓjrj(z)

for some ℓj ∈ N, Cj ∈ C \ {0} and rj : Bρ → C with rj(z) → 0 as z → 0. Here
we’ve used the assumption that u is injective in order to conclude that ûj − û is
not identically zero, and by shrinking ρ > 0 if necessary, we can also assume u is
embedded on Bρ \ {0}. Fix a smooth cutoff function β : Bρ → [0, 1] that equals 1
on Bρ/2 and has compact support. Then for ǫ ∈ C sufficiently close to 0, consider
the perturbation

uǫ(z) := (zk, û(z) + ǫβ(z)z),
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which satisfies uǫ(0) = 0 and is immersed if ǫ 6= 0. Since u is embedded on Bρ \Bρ/2,
we may assume for |ǫ| sufficiently small that uǫ has no self-intersections outside of
the region where β ≡ 1. Then a self-intersection uǫ(z) = uǫ(ζ) with z 6= ζ occurs
wherever ζ = e2πij/kz 6= 0 for some j = 1, . . . , k−1 and û(z)+ ǫz = ûj(z)+ ǫe

2πij/kz,
which by (2.16.4) means

zk+ℓjCj + |z|k+ℓjrj(z) + ǫ
(
e2πij/k − 1

)
z = 0.

Assume ǫ ∈ C \ {0} is chosen generically so that the zeroes of this function are all
simple (see Exercise 2.16.15 below). Then each zero other than the “trivial” solution
at z = 0 represents a transverse (positive or negative) self-intersection of uǫ, and the
algebraic count of these (discounting the trivial solution) for |ǫ| sufficiently small is
k + ℓj − 1 ≥ k. Adding these up for all j = 1, . . . , k − 1, we obtain

(2.16.5) δ(u, 0) :=
1

2

∑

(z,ζ)

ι(uǫ, z; uǫ, ζ) =
1

2

k−1∑

j=1

(k + ℓj − 1) ≥ 1

2
k(k − 1),

which is strictly positive since k ≥ 2.
It remains to show that uǫ satisfies u

∗
ǫωstd > 0, which is equivalent to showing

that im duǫ(z) ⊂ C2 is an ωstd-symplectic subspace for all z. Let us write û in the
form

û(z) = zk+ℓC + |z|k+ℓr(z)

as guaranteed by Theorem 2.14.4, where C ∈ C \ {0}, ℓ ∈ N and limz→0 r(z) = 0.
We shall compare uǫ with the holomorphic map

Pǫ : Bρ → C2 : z 7→ (zk, zk+ℓC + ǫz),

obtained by dropping the remainder term from û. Note that Pǫ is simply the degree
k+ℓ Taylor polynomial of uǫ; indeed, both have the same derivatives at 0 up to order
k+ℓ. Setting ǫ = 0 and differentiating both, it follows that dP0 : Bρ → HomR(C,C2)
is the degree k + ℓ− 1 Taylor polynomial of du0 : Bρ → HomR(C,C2), thus

du0(z) = dP0(z) + |z|k+ℓ−1R(z)

for some function R(z) with R(z) → 0 as z → 0. Reintroducing the ǫ-dependent
linear term, it follows that

duǫ(z) = dPǫ(z) + |z|k+ℓ−1R(z)

for all ǫ ∈ C, where the function R(z) is independent of ǫ and is bounded. Now
abbreviate Aǫ(z) := dPǫ(z) and Bǫ(z) := duǫ(z). The Taylor formula above then
gives an estimate of the form

‖Aǫ(z)−Bǫ(z)‖ ≤ c1|z|k+ℓ−1

for some constant c1 > 0 independent of ǫ. Computing dPǫ(0), we find similarly a
constant c2 > 0 independent of ǫ such that

|Aǫ(z)v| ≥ c2|z|k−1|v| for all v ∈ C,

thus Inj(Aǫ(z)) ≥ c2|z|k−1, and

‖Aǫ(z)− Bǫ(z)‖
Inj(Aǫ(z))

≤ c3|z|ℓ
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for some constant c3 > 0 independent of ǫ. Now since Pǫ is holomorphic (for the
standard complex structure) for all ǫ, imAǫ(z) ⊂ C2 is always complex linear, so
the above estimates imply together with Lemmas 2.16.11 and 2.16.12 that for a
sufficiently small radius ρ0 > 0, the images of duǫ(z) for all z ∈ Bρ0 \{0} and ǫ ∈ Bρ0

are ωstd-symplectic. This is also true for z = 0 if ǫ 6= 0, since then duǫ(0) = dPǫ(0)
is complex linear.

To conclude, fix ρ0 > 0 as above and choose ǫ ∈ C \ {0} sufficiently close to 0
so that outside of Bρ0 , uǫ is C

1-close enough to u for its tangent spaces to be ωstd-
symplectic (recall that J is also ωstd-tame). The previous paragraph then implies
that the tangent spaces of uǫ are ωstd-symplectic everywhere. �

Exercise 2.16.14. Verify that the formula obtained in (2.16.5) for δ(u, 0) does
not depend on any choices.

Exercise 2.16.15. Assume f : U → C is a smooth map on a domain U ⊂ C
containing 0, with f(0) = 0 and df(0) = 0. Show that for almost every ǫ ∈ C, the
map fǫ : U → C : z 7→ f(z) + ǫz has 0 as a regular value. Hint: Use the implicit
function theorem to show that the set

X := {(ǫ, z) ∈ C× (U \ {0}) | fǫ(z) = 0}
is a smooth submanifold of C2, and a point (ǫ, z) ∈ X is regular for the projection
π : X → C : (ǫ, z) 7→ ǫ if and only if z is a regular point of fǫ. Then apply Sard’s
theorem to π.

Exercise 2.16.16. The proof of Theorem 2.16.2 showed that if u : B → C2 is
J-holomorphic and injective with critical order k− 1 at 0, then 2δ(u, 0) ≥ k(k− 1).
Find examples to show that this bound is sharp, and that there is no similar upper
bound for δ(u, 0) in terms of k. (Compare Exercise 2.16.8.)

2.A. Appendix: Singular integral operators

The Lp estimates for the Cauchy-Riemann operator in §2.6 were dependent on a
general result (Theorem 2.6.21) stating that certain singular integral operators are
bounded on Lp for all p ∈ (1,∞) if they are bounded on L2. The purpose of this
appendix is to prove that result. Here is the statement again.

Theorem 2.A.1. Assume K : Rn \ {0} → C satisfies the following conditions:

(1) K ∈ C1(Rn \ {0});
(2)

∫

∂B
n
ǫ

K = 0 for all ǫ > 0 sufficiently small;

(3) |K(x)| ≤ c/|x|n and |dK(x)| ≤ c/|x|n+1 for all |x| > 0 and some constant
c > 0.

Associate to K the singular integral operator A : C∞
0 (Rn) → C∞(Rn), where

Af(x) = (K ∗ f)(x) = lim
ǫ→0+

∫

Rn\Bn
ǫ (x)

K(x− y)f(y) dµ(y).

If A extends to a bounded linear operator L2(Rn) → L2(Rn), then it also extends to
a bounded linear operator Lp(Rn) → Lp(Rn) for every p ∈ (1,∞).
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This is by no means the most general singular integral estimate that one can
formulate, but it is the most convenient for our purposes. The first two hypotheses
and the growth condition on |K(x)| are mainly meant to ensure that K actually
defines a distribution via principal value integration, cf. Exercise 2.6.20. The proof
given below requires the additional growth condition on |dK(x)| in order to control
‖K ∗ f‖Lp. For more general statements of this type involving various relaxations
of these conditions, see [Ste70].

To begin the proof, we observe that it will suffice to establish the case 1 < p < 2,
as once this is done, the case p > 2 will follow by an easy duality argument. This is
the content of Lemma 2.A.3 below.

Exercise 2.A.2. Show that for any K : Rn \ {0} → C satisfying the conditions
in Theorem 2.A.1 and any two functions f, g ∈ C∞

0 (Rn),
∫

Rn

(K ∗ f) · g =
∫

Rn

f · (K− ∗ g),

where K−(x) := K(−x). Hint: Prove it first with K replaced by the locally inte-
grable function Kǫ, defined to equal 0 in Bn

ǫ and K everywhere else. Then prove
that for any f ∈ C∞

0 , Kǫ ∗ f → K ∗ f uniformly on Rn as ǫ → 0; you can use an
argument similar to Exercise 2.6.20 for this.

Lemma 2.A.3. If Theorem 2.A.1 holds for some p ∈ (1, 2) then it also holds for
p′ > 2 with 1/p+ 1/p′ = 1.

Proof. Given K satisfying the conditions of the theorem, the same conditions
are satisfied by K−(x) := K(−x), so if the theorem holds for some particular p ∈
(1, 2), then we obtain a bounded linear operator

A− : Lp(Rn) → Lp(Rn) : f 7→ K− ∗ f.
Identifying Lp′ with the dual space of Lp via the pairing (f, g) =

∫
Rn fg and using

the density of C∞
0 in Lp along with Exercise 2.A.2 and Hölder’s inequality, we then

have for every f ∈ C∞
0 (Rn),

‖Af‖Lp′ = sup
g∈C∞

0 (Rn)\{0}

∣∣∫
Rn(Af)g

∣∣
‖g‖Lp

= sup
g∈C∞

0 (Rn)\{0}

∣∣∫
Rn fA

−g
∣∣

‖g‖Lp

≤ sup
g∈C∞

0 (Rn)\{0}

‖f‖Lp′‖A−g‖Lp

‖g‖Lp

= ‖A−‖Lp‖f‖Lp′ .

�

It now remains only to prove that f 7→ K ∗ f satisfies Lp bounds for every
p ∈ (1, 2), and for this purpose we will introduce two quite powerful tools. The
first is a special case of the Marcinkiewicz interpolation lemma, which provides a
measure-theoretic criterion for showing that a bounded linear operator on L2 is also
bounded on Lp for 1 < p < 2. The hard work is then reduced to proving that the
criterion of Marcinkiewicz holds for our singular integral operators, and the main
step in this argument as a way of decomposing functions into “good” and “bad”
parts, known as the Calderón-Zygmund decomposition.
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Let µ(S) ∈ [0,∞] denote the Lebesgue measure of a set S ⊂ Rn, and for any
measurable function f : Rn → C and number t > 0, define the subset

Sf
t :=

{
x ∈ Rn

∣∣∣ |f(x)| > t
}
⊂ Rn.

The triangle inequality implies that for any f, g : Rn → C and t > 0, Sf+g
t ⊂

Sf
t/2 ∪ S

g
t/2, thus

(2.A.1) µ(Sf+g
t ) ≤ µ(Sf

t/2) + µ(Sg
t/2).

Moreover, for any p ∈ [1,∞), the Lp norm of a function f : Rn → C satisfies

(2.A.2) tpµ(Sf
t ) ≤ ‖f‖pLp ∈ [0,∞]

for every t > 0, as well as

(2.A.3) ‖f‖pLp = p

∫ ∞

0

tp−1µ(Sf
t ) dt ∈ [0,∞].

To see the latter, consider the function F : [0,∞)× Rn → [0,∞) defined by

F (t, x) =

{
ptp−1 if x ∈ Sf

t ,

0 otherwise,

and use Fubini’s theorem:
∫

Rn

|f(x)|p dµ(x) =
∫

Rn

(∫ |f(x)|

0

ptp−1 dt

)
dµ(x) =

∫

[0,∞)×Rn

F (t, x) dµ(t, x)

=

∫ ∞

0

(∫

Sf
t

ptp−1 dµ(x)

)
dt =

∫ ∞

0

ptp−1µ(Sf
t ) dt.

Exercise 2.A.4. Show that if 1 < p < 2, then L2(Rn) ∩ L1(Rn) is a dense
subspace of Lp(Rn).

Lemma 2.A.5 (Marcinkiewicz). Suppose T : L2(Rn) → L2(Rn) is a bounded
linear operator and there exists a constant C > 0 such that for every t > 0 and
f ∈ L2(Rn) ∩ L1(Rn),

µ(STf
t ) ≤ C‖f‖L1

t
.

Then if 1 < p < 2, there exists a constant c > 0 depending only on C, p and ‖T‖L2

such that

‖Tf‖Lp ≤ c‖f‖Lp for every f ∈ L2(Rn) ∩ L1(Rn).

Proof. Fix f ∈ L2(Rn)∩L1(Rn), and for each t ≥ 0, decompose f into f+
t +f−

t ,
where

f+
t (x) :=

{
f(x) if |f(x)| > t,

0 if |f(x)| ≤ t,
f−
t (x) :=

{
0 if |f(x)| > t,

f(x) if |f(x)| ≤ t.
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Then using (2.A.1) and (2.A.2) together with the hypothesis relating µ(STf
t ) to

‖f‖L1, we have

µ(STf
t ) ≤ µ(S

Tf+
t

t/2 ) + µ(S
Tf−

t

t/2 ) ≤ C‖f+
t ‖L1

t/2
+

1

(t/2)2
(t/2)2µ(S

Tf−
t

t/2 )

≤ 2C‖f+
t ‖L1

t
+

4

t2
‖Tf−

t ‖2L2 ≤ 2C‖f+
t ‖L1

t
+

4‖T‖2L2

t2
‖f−

t ‖2L2 .

Use this to estimate ‖Tf‖Lp via (2.A.3):

‖Tf‖pLp = p

∫ ∞

0

tp−1µ(STf
t ) dt

≤ 2Cp

∫ ∞

0

tp−2‖f+
t ‖L1 dt+ 4p‖T‖2L2

∫ ∞

0

tp−3‖f−
t ‖2L2 dt.

(2.A.4)

These last two integrals can each be rewritten using Fubini’s theorem: the first
requires the assumption that p > 1, so that

∫ ∞

0

tp−2‖f+
t ‖L1 dt =

∫

[0,∞)×Rn

tp−2|f+
t (x)| dµ(t, x)

=

∫

Rn

(∫ |f(x)|

0

tp−2|f(x)| dt
)
dµ(x)

=

∫

Rn

|f(x)| |f(x)|
p−1

p− 1
dµ(x) =

1

p− 1
‖f‖pLp.

In the second, we use the assumption p < 2:
∫ ∞

0

tp−3‖f−
t ‖2L2 dt =

∫

[0,∞)×Rn

tp−3|f−
t (x)|2 dµ(t, x)

=

∫

Rn

(∫ ∞

|f(x)|
tp−3|f(x)|2 dt

)
dµ(x)

=

∫

Rn

|f(x)|2 |f(x)|
p−2

2− p
dµ(x) =

1

2− p
‖f‖pLp.

Plugging these into (2.A.4) gives

‖Tf‖pLp ≤
(

2Cp

p− 1
+

4p‖T‖2L2

2− p

)
‖f‖pLp.

�

Our task will thus be to establish a bound of the form

(2.A.5) µ(SAf
t ) ≤ C‖f‖L1

t
for all f ∈ L1(Rn) ∩ L2(Rn) and t > 0,

so that the interpolation lemma implies the 1 < p < 2 cases of Theorem 2.A.1.
For this purpose, we now introduce the Calderón-Zygmund decomposition of an
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integrable function. In the following, we denote the mean value of an integrable
function f : Rn → C on a domain U ⊂ Rn of finite measure by

avgU (f) :=
1

µ(U)

∫

U
f.

Lemma 2.A.6. Suppose f ∈ L1(Rn,C) ∩ L2(Rn,C) and t > 0. Then there exist
subsets F,Ω ⊂ Rn with the following properties:

(1) F ∪ Ω = Rn and F ∩ Ω = ∅;
(2) |f | ≤ t almost everywhere on F ;
(3) Ω =

⋃
k∈NQk, where each Qk ⊂ Rn is a closed cube, intQk ∩ intQj = ∅ for

k 6= j, and the average value of |f | on each Qk satisfies

t < avgQk
(|f |) ≤ 2nt.

Proof. Let R :=
(‖f‖L1(Rn)

t

)1/n
, so that if Q ⊂ Rn is any cube of side length R,

then

avgQ (|f |) = 1

Rn

∫

Q

|f | ≤ ‖f‖L1(Rn)

Rn
= t.

Now for each integer k ≥ 0, denote by Ck the (countable) collection of all closed
cubes in Rn of side length R/2k with vertices in 2−kRZn; in particular, each cube in
Ck contains 2n cubes in Ck+1, obtained by bisection. This is a countable collection,
and we define Ω as the union of the countable subcollection consisting of all Q ∈ Ck
for k ∈ N such that if Q′ denotes the unique cube in Ck−1 containing Q, then

avgQ′ (|f |) ≤ t but avgQ (|f |) > t.

Then since µ(Q′) = 2nµ(Q), we have

avgQ (|f |) = 1

µ(Q)

∫

Q

|f | = 2n

µ(Q′)

∫

Q

|f | ≤ 2n

µ(Q′)

∫

Q′
|f | = 2n · avgQ′ (|f |) ≤ 2nt.

To finish the proof, we claim that for almost every x ∈ F := Rn \ Ω, |f(x)| ≤ t.
Indeed, x 6∈ Ω means that for every k ≥ 0, any cube Q ∈ Ck containing x satisfies
avgQ (|f |) ≤ t, so we obtain a nested sequence of shrinking cubes {Q′

k}k∈N that all

satisfy this condition and are contained in balls of radius
√
nR/2k about x. We

therefore have

lim sup
k→∞

avgQ′
k
(|f |) ≤ t,

and by the Lebesgue differentiation theorem (see e.g. [Rud87, Theorem 7.10]), the
limit of such a sequence exists and equals |f(x)| for almost every x ∈ F . �

For the rest of this appendix, assume Af := K ∗ f is a singular integral operator
satisfying the hypotheses of Theorem 2.A.1. The following lemma is the only step
in the proof where the specific hypotheses on K are required.

Lemma 2.A.7. There exists a constant c > 0, depending only on the function K
and the dimension n, such that for any function h ∈ L1(Rn) ∩ L2(Rn) that satisifes

avgRn (h) = 0
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and has support contained in a closed cube Q ⊂ Rn with center q ∈ Q and side
length 2r > 0, we have ∫

Rn\Bn
2
√

nr
(q)

|Ah(x)| dµ(x) ≤ c‖h‖L1.

Proof. We would like to use the convolution formula to write Ah(x), but there
is a slightly subtle point to deal with first since we are not assuming h ∈ C∞

0 , hence
it is not always clear whether the principal value integral defining (K ∗ f)(x) is well
defined. Since h is supported in Q, however, this will not be a problem for x 6∈ Q:
to see this, choose a sequence hk ∈ C∞

0 (Q) converging to h in L2, and observe that
for x ∈ Rn \Q,

Ahk(x) = lim
ǫ→0+

∫

Rn\Bn
ǫ (x)

K(x− y)hk(y) dµ(y) =

∫

Q

K(x− y)hk(y) dµ(y)

→
∫

Q

K(x− y)h(y)

since the function y 7→ K(x− y) is of class L2 on Q. The continuity of A on L2 thus
implies

Ah(x) =

∫

Q

K(x− y)h(y) for almost every x ∈ Rn \Q.

Now observe that every point in Q is at most a distance
√
nr away from q, hence

for any x ∈ Rn \Q, since h has mean value zero,

|Ah(x)| =
∣∣∣∣
∫

Q

K(x− y)h(y) dµ(y)

∣∣∣∣ =
∣∣∣∣
∫

Q

[K(x− y)−K(x− q)]h(y) dµ(y)

∣∣∣∣

≤ sup
y∈Q

|K(x− y)−K(x− q)|
∫

Q

|h(y)|dµ(y)

≤ sup
y∈Q

|dK(x− y)| ·
√
nr‖h‖L1 ≤ c

√
nr

(dist(x,Q))n+1‖h‖L1

for some constant c > 0, where in the last step we’ve used the bound |dK(x)| ≤
c/|x|n+1 from the hypotheses of Theorem 2.A.1. Next we use the fact that for any
x ∈ Rn \B2

√
nr(q), dist(x,Q) ≥ |x− q| − √

nr, thus
∫

Rn\B2
√

nr(q)

|Ah(x)| dµ(x) ≤ c
√
nr‖h‖L1

∫

Rn\B2
√

nr(q)

1

(|x− q| − √
nr)n−1

dµ(x)

= cVol(Sn−1)
√
nr‖h‖L1

∫ ∞

2
√
nr

1

(ρ−√
nr)n+1

ρn−1 dρ

= cVol(Sn−1)
√
nr‖h‖L1

∫ ∞

√
nr

(u+
√
nr)n−1

un+1
du

≤ cVol(Sn−1)
√
nr‖h‖L1

∫ ∞

√
nr

un−1

un+1
du

= cVol(Sn−1)
√
nr‖h‖L1

1√
nr

= cVol(Sn−1)‖h‖L1,

116 Chris Wendl

where Vol(Sn−1) > 0 denotes the volume of the unit sphere in Rn. �

We now finish the proof of Theorem 2.A.1 by showing that A satisfies the con-
dition (2.A.5). Given f ∈ L1(Rn) ∩ L2(Rn) and t > 0, let F,Ω ⊂ Rn denote the
subsets provided by Lemma 2.A.6, with Ω defined as a countable union of cubes
Qk ⊂ Ω with disjoint interiors, centered at points qk ∈ Qk and with side lengths
2rk > 0. Note that the measure of Ω is bounded since f satisfies

1

µ(Qk)

∫

Qk

|f | > t ⇒ µ(Qk) <
1

t
‖f‖L1(Qk)

for each k, and thus

(2.A.6) µ(Ω) <
‖f‖L1(Rn)

t
.

Decompose f as g + b, defining its “good” and “bad” parts by

g(x) :=

{
f(x) for x ∈ F ,

avgQk
(f) for x ∈ Qk, k ∈ N,

b(x) := f(x)− g(x).

Then ‖g‖L1 ≤ ‖f‖L1 and ‖b‖L1 ≤ 2‖f‖L1, while b|F ≡ 0 and avgQk
(b) = 0 for each

k ∈ N. Observe also that since the mean values of |f | on cubes Qk are bounded
above by 2nt and |f | ≤ t on F , we have |g| ≤ 2nt almost everywhere on Rn and thus

(2.A.7) ‖g‖2L2 =

∫

Rn

|g|2 ≤ 2nt

∫

Rn

|g| = 2nt‖g‖L1.

Since distinct cubes Qk and Qj can intersect only on their boundaries, we can
write b =

∑
k bk almost everywhere, where bk is defined to equal b on Qk and zero

everywhere else. Then if

BΩ :=
⋃

k∈N
B2

√
nrk(qk) ⊂ Rn,

applying Lemma 2.A.7 to each bk gives∫

Rn\BΩ

|Ab(x)| dµ(x) ≤
∑

k∈N

∫

Rn\B2
√

nrk
(qk)

|Abk(x)| dµ(x) ≤
∑

k∈N
c‖bk‖L1 = c‖b‖L1 ,

where the constant c > 0 depends only on K and n. Observe that since the volumes
of both Qk and B2

√
nrk(qk) are each proportional to rnk , we have

µ(B2
√
nrk(qk)) ≤ c′µ(Qk)

for some constant c′ > 0 depending only on n, thus

µ(BΩ) ≤
∑

k∈N
µ(B2

√
nrk(qk)) ≤ c′

∑

k∈N
µ(Qk) = c′µ(Ω) <

c′‖f‖L1

t

by (2.A.6). Using the p = 1 case of (2.A.2), this implies

µ(SAb
t ) ≤ µ(BΩ) + µ

( {
x ∈ Rn \BΩ

∣∣ |Ab(x)| > t
} )

<
c′‖f‖L1

t
+

1

t

∫

Rn\BΩ

|Ab| ≤ c′‖f‖L1

t
+
c‖b‖L1

t
≤ (c′ + 2c)‖f‖L1

t
.
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To estimate µ(SAg
t ), we use the p = 2 case of (2.A.2), together with (2.A.7) and the

boundedness of A : L2(Rn) → L2(Rn), giving

µ(SAg
t ) ≤ ‖Ag‖2L2

t2
≤ ‖A‖2L2

‖g‖2L2

t2
≤ 2n‖A‖2L2

‖g‖L1

t
≤ 2n‖A‖2L2‖f‖L1

t
.

Combining these last two estimates via (2.A.1) gives

µ(SAf
t ) ≤ µ(SAg

t/2) + µ(SAb
t/2) ≤

c1‖f‖L1

t/2
+
c2‖f‖L1

t/2
=:

C‖f‖L1

t
,

where the constants c1, c2 > 0 depend only on n, ‖A‖L2 and the hypotheses on
the function K. The interpolation lemma can now be applied to establish a bound
‖Af‖Lp ≤ c‖f‖Lp for f ∈ L1 ∩ L2 with any p ∈ (1, 2), and since L1 ∩ L2 is in this
case dense in Lp, the proof of Theorem 2.A.1 is now complete.

2.B. Appendix: Elliptic operators in general

In the proof of Theorem 2.6.15 for p = 2, we used a simple argument via the
Fourier transform to establish the estimate ‖u‖H1 ≤ c‖∂̄u‖L2 for u ∈ C∞

0 (C,C). In
this appendix, we will discuss precisely what kinds of partial differential operators are
amenable to this method of proof, and what it implies for solutions of those PDEs.
In particular, this leads directly to the general notion of ellipticity, an important
concept in many branches of both differential geometry and analysis. The contents
of this appendix are not used in the rest of the text.

The natural geometric setting for linear PDEs is as follows. Let F denote either
R or C, fix a smooth manifold M with two smooth F-linear vector bundles E → M
and F → M of rank r and s respectively, and consider an F-linear partial differential
operator

D : Γ(E) → Γ(F )

of order m ∈ N, which by definition can be written for any choice of local trivializa-
tions of E and F over the same coordinate neighborhood in M in the form

(2.B.1) (Du)(x) =
∑

|α|≤m

cα(x)∂
αu(x).

In this expression, U ⊂ Rn is the image of a chosen coordinate chart on some region
in M , u : U → Fr and Du : U → Fs represent sections of E and F respectively in
the chosen local trivializations and coordinates, the sum ranges over all multiindices
α of degree at most m, and the cα are functions

cα : U → Fs×r

taking values in the vector space of s-by-r matrices over F. We assume the highest
order terms cα for |α| = m are not all identically zero.

We will discuss in §3.1 how to define Sobolev norms on spaces of sections of vector
bundles if the base M is compact, in which case D can be viewed for instance as a
bounded linear operator from Wm,p(E) to Lp(F ). One can then try to prove global
regularity results, saying e.g. that if Du = f and f is smooth, then u must also be
smooth. The first step in proving such results is to localize near an arbitrary point
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x0 ∈ M and consider the unique operator with constant coefficients that matches
(2.B.1) at x0, i.e. consider an operator of the form

(2.B.2) D =
∑

|α|≤m

cα∂
α : C∞(Rn,Fr) → C∞(Rn,Fs)

for a set of fixed matrices cα ∈ Fs×r. If the functions cα(x) in (2.B.1) are sufficiently
smooth, then the operator with variable coefficients can be regarded as an arbitrarily
small perturbation of the operator with constant coefficients, as long as we restrict to
a sufficiently small neighborhood of x0—thus many properties of the operator with
constant coefficients can (with some effort) be carried over to the general case. For
a simple example of how this works in the case of Cauchy-Riemann type operators,
see Lemma 3.3.2.

With this motivation in mind, we now consider the general mth-order F-linear
partial differential operator (2.B.2) on Rn with constant coefficients, and ask: if
Du = f and we have some control over the derivatives of f up to some order
k ∈ N, can we use this to control all the derivatives of u up to order m + k? More
concretely, if u ∈ C∞

0 (Rn) and Du = f , can we bound ‖u‖Hm+k(Rn) in terms of
‖f‖Hk(Rn)? Taking the Fourier transform of the equation Du = f gives

σD(p)û(p) = f̂(p),

where σD : Rn → Cs×r is a polynomial of degree m in the real variables p1, . . . , pn
with complex matrix-valued coefficients; specifically,

σD(p) =
∑

|α|≤m

(2πip)αcα.

This polynomial is called the symbol of the differential operatorD, and its behavior
for large |p| is determined by the sum of the highest order terms, called the principal
symbol,

σD
m(p) :=

∑

|α|=m

pαcα ∈ Fs×r,

hence σD(p) = (2πi)mσD
m(p) + O(|p|m−1). We can now try to estimate the Hm+k-

norm of u by expressing it in terms of the Fourier transform as in §2.5:
(2.B.3)

‖u‖2Hm+k =

∫

Rn

(1 + |p|2)m+k|û(p)|2 dµ(p) =
∫

Rn

(1 + |p|2)k(1 + |p|2)m|û(p)|2 dµ(p).

Since σD(p) is a polynomial of degree m, |σD(p)û(p)|2 is bounded above for large
|p| by something of the form c(1 + |p|2)m|û(p)|2, but what we’d actually like is the

reverse of this: if we can bound (1+ |p|2)m|û(p)|2 in terms of |σD(p)û(p)|2 = |f̂(p)|2,
the result will be a bound for ‖u‖Hm+k in terms of ‖f‖Hk . Not every polynomial
has the right properties to make this idea work, but it is easy to characterize those
that do:

Exercise 2.B.1. Assume P : Rn → Fs×r is a polynomial of degree m with
coefficients in Fs×r, and Pm denotes the sum of its degree m terms. Show that the
following are equivalent:
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(1) There exist constants R ≥ 0 and c > 0 such that

|P (x)v| ≥ c|x|m|v| for all v ∈ Fr, x ∈ Rn with |x| ≥ R;

(2) There exist constants R ≥ 0 and c > 0 such that

|P (x)v|2 ≥ c(1 + |x|2)m|v|2 for all v ∈ Fr, x ∈ Rn with |x| ≥ R;

(3) For all x ∈ Rn \ {0}, Pm(x) ∈ Fs×r is injective.

Hint: Use the fact that Pm is a homogeneous polynomial.

In light of Exercise 2.B.1, let us assume going forward that D satisfies the fol-
lowing condition:

(2.B.4) σD
m(p) ∈ Fs×r is injective for all p ∈ Rn \ {0}.

Now using the constants R ≥ 0 and c > 0 provided by the exercise, the estimate we
began in (2.B.3) can be completed as follows:

‖u‖2Hm+k =

∫

Bn
R

(1 + |p|2)k+m|û(p)|2 dµ(p) +
∫

Rn\Bn
R

(1 + |p|2)k(1 + |p|2)m|û(p)|2 dµ(p)

≤ (1 +R2)k+m‖û‖2L2 +
1

c

∫

Rn\Bn
R

(1 + |p|2)k|σD(p)û(p)|2 dµ(p)

≤ (1 +R2)k+m‖u‖2L2 +
1

c

∫

Rn

(1 + |p|2)k|f̂(p)|2 dµ(p)

= (1 +R2)k+m‖u‖2L2 +
1

c
‖f‖2Hk .

This proves a generalization of the p = 2 case of Theorem 2.6.1 to a much larger
class of partial differential operators:

Theorem 2.B.2. Suppose D : C∞(Rn,Fr) → C∞(Rn,Fs) is an F-linear partial
differential operator on Rn of order m ∈ N with constant coefficients, whose principal
symbol σD

m satisfies the condition (2.B.4). Then for every integer k ≥ 0, there exists
a constant c > 0 such that

‖u‖Hm+k(Bn) ≤ c‖u‖L2(Bn) + c‖Du‖Hk(Bn) for all u ∈ C∞
0 (Bn,Fr),

where Bn ⊂ Rn denotes the unit ball. �

Remark 2.B.3. By density, the estimate in the theorem also extends to all u in
Hm+k

0 (Bn,Fr), the closure of C∞
0 (Bn) in the Hm+k-norm.

Using this estimate, one can now prove the following general regularity result
by adapting the argument of Proposition 2.6.4 (via difference quotients and the
Banach-Alaoglu theorem). We leave the details of the proof as an exercise for the
enthusiastic reader.

Theorem 2.B.4. Any operator D of order m as in Theorem 2.B.2 has the fol-
lowing property: if u ∈ Hm(Bn,Fr) and Du ∈ Hk(Bn,Fs) for some k ≥ 1, then
for every r < 1, the restriction of u to the ball Bn

r ⊂ Rn of radius r belongs to
Hm+k(Bn

r ,F
r) and satisfies the estimate

‖u‖Hm+k(Bn
r )

≤ c‖u‖Hm(Bn) + c‖Du‖Hk(Bn).

120 Chris Wendl

In particular, any solution to Du = f with f ∈ C∞(Bn) is smooth. �

This result provides a convincing reason to give a name to condition (2.B.4), but
the actual definition of ellipticity is even a bit stronger:

Definition 2.B.5. An F-linear partial differential operator D : C∞(Rn,Fr) →
C∞(Rn,Fs) of order m with constant coefficients is elliptic if its principle symbol
σD
m : Rn → Fs×r has the property that for all p ∈ Rn\{0}, σD

m(p) ∈ Fs×r is invertible.
(In particular, this requires r = s.)

To justify the strengthening from injectivity to invertibility in the above def-
inition, one can consider the formal adjoint of D, which is the unique partial
differential operator D∗ : C∞(Rn,Fs) → C∞(Rn,Fr) satisfying

〈v,Du〉L2(Rn,Fs) = 〈D∗v, u〉L2(Rn,Fr) for all u ∈ C∞
0 (Rn,Fr), v ∈ C∞

0 (Rn,Fs).

Using integration by parts, one obtains the formula

D∗ =
∑

|α|≤m

(−1)|α|c†α∂
α,

where c†α ∈ Fr×s is the usual adjoint matrix of cα. The principal symbols of D and
D∗ are thus related by

(2.B.5) σD∗

m (p) = (−1)m
(
σD
m(p)

)†
,

so the following characterization of ellipticity arises from the basic fact that a matrix
is injective if and only if its adjoint is surjective.

Proposition 2.B.6. For any linear partial differential operator D : C∞(Rn,Fr) →
C∞(Rn,Fs) of order m with constant coefficients, with formal adjoint D∗, the fol-
lowing conditions are equivalent:

(1) D is elliptic;
(2) D∗ is elliptic;
(3) D and D∗ both satisfy condition (2.B.4).

We will have much more to say about formal adjoints in §3.2, because in the
global picture of operators D : Γ(E) → Γ(F ) on vector bundles, they play a key role
in showing that elliptic operators have the Fredholm property; this means among
other things that solutions to Du = f not only are smooth (for f ∈ C∞) but also
exist, at least for f in a subspace of finite codimension.

Example 2.B.7. The standard Cauchy-Riemann operator ∂̄ : C∞(C,Cn) →
C∞(C,Cn) is a first order operator with principal symbol σ∂̄

1 (p1, p2) = (p1+ ip2)1 ∈
Cn×n, which is invertible for all (p1, p2) 6= 0, hence ∂̄ is elliptic. The same is true of
∂ = ∂s − i∂t, whose principal symbol is σ∂

1 (p1, p2) = (p1 − ip2)1.

Example 2.B.8. A real-linear Cauchy-Riemann type operatorD : C∞(C,R2n) →
C∞(C,R2n) with constant coefficients takes the general form

D = 1∂s + J0∂t + A,
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where J0 =

(
0 −1
1 0

)
∈ GL(2n,R) and A ∈ R2n×2n is arbitrary. The zeroth order

term makes no difference to the principal symbol, which takes the form

σD(p1, p2) = p11+ p2J0 =

(
p11 −p21
p21 p11

)
∈ R2n×2n,

hence det
(
σD(p1, p2)

)
= (p21 + p22)

n 6= 0 unless p1 = p2 = 0, so again D is elliptic.

Example 2.B.9. For functions u : Cn → Cr, the Cauchy-Riemann equations
can be written as ∂̄u := (∂̄1u, . . . , ∂̄nu) = 0, where for each j = 1, . . . , n, we define
∂̄j = ∂sj+i∂tj as the usual Cauchy-Riemann operator with respect to the jth complex

variable zj = sj+itj in (z1, . . . , zn) ∈ Cn. Thus ∂̄ is a first order differential operator
C∞(Cn,Cr) → C∞(Cn,Cnr), and since nr > r for n ≥ 2, the several variable
version of ∂̄ cannot be elliptic. It does however satisfy the condition (2.B.4); indeed,
writing its principle symbol as a polynomial in the variables p1, q1, . . . , pn, qn with
ζj := pj + iqj for j = 1, . . . , n, we have

σ∂̄
1 (ζ1, . . . , ζn) =



ζ11
...
ζn1


 ∈ Cnr×r,

which is injective unless ζ1 = . . . = ζn = 0. As a consequence, Theorem 2.B.4
implies the fact that holomorphic functions of several complex variables are always
smooth; see [Hör90, Theorem 2.2.1] for a more classical proof of this result.

Example 2.B.10. A general second order operator with constant coefficients
acting on functions u : Rn → R can be written in the form

Du =
∑

j,k

ajk∂
j∂ku+

∑

k

bk∂
ku+ cu

for some ajk, bk, c ∈ R with indices j, k = 1, . . . , n, where without loss of generality
the n-by-n matrix formed by {ajk} may be assumed symmetric. The principle
symbol σD

2 is thus the quadratic form defined by this matrix, and D is elliptic if and
only if this form is (positive or negative) definite. The best known example is the
Laplacian,

∆ = −
∑

j

∂2j ,

which has principle symbol σ∆
2 (p) = −|p|2 ∈ R and is thus elliptic. In contrast, the

heat equation operator ∂1 −
∑n

j=2 ∂
2
j and the wave equation operator ∂21 −

∑n
j=2 ∂

2
j

have indefinite principle symbols −∑n
j=2 p

2
j and p21 − ∑n

j=2 p
2
j respectively, thus

neither is elliptic, though the former is known to satisfy regularity results similar
to the elliptic case (see e.g. [Eva98, §2.3]). It is easy to see that regularity fails
for the wave equation, which e.g. in dimension two admits solutions of the form
ϕ(x1, x2) = f(x1 ± x2) for arbitrary (possibly nonsmooth) functions f : R → R.

We conclude this digression by returning to the global setting of an mth order
F-linear partial differential operator D : Γ(E) → Γ(F ) between vector bundles
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E, F → M , which locally takes the form (2.B.1), with smooth but nonconstant
coefficients. Having chosen local coordinates and trivializations, one can use the
expression D =

∑
α cα(x)∂

α to define an x-dependent principal symbol

σD
m(x, p) =

∑

|α|=m

pαcα(x) ∈ Fs×r,

and D is then said to be elliptic if σD
m(x, p) is invertible whenever p 6= 0; in other

words, D is elliptic if for every point x ∈ M , the unique operator with constant
coefficients matching D at x is elliptic. This definition is rather clumsy since it
seems to depend on the choice of coordinates and trivializations, but there is an
elegant way to see that it does not actually depend on these choices. Fix a point
x0 in the coordinate neighborhood U ⊂ M and a vector p = (p1, . . . , pn) ∈ Rn, and
choose a smooth function f : M → R such that f(x0) = 0 and ∂jf(x0) = pj for
j = 1, . . . , n. Then all partial derivatives of fm up to order m − 1 vanish at x0, so
for any u ∈ Γ(E) expressed locally as a function u : U → Fr, we have

D(fmu)(x0) =
∑

|α|≤m

cα(x0)∂
α(fmu)(x0) = m!

∑

|α|=m

cα(x0)p
αu(x0)

= m! · σD
m(x0, p)u(x0).

This computation shows that the following notion is well defined and equivalent to
the local definition of ellipticity given above.

Definition 2.B.11. Suppose E, F → M are vector bundles and D : Γ(E) →
Γ(F ) is a linear partial differential operator of order m ∈ N. The principal symbol
of D is a fiber-preserving map

σD
m : T ∗M ⊕E → F : (p, v) 7→ σD

m(p)v

such that for every x ∈ M and p ∈ T ∗
xM , σD

m(p) : Ex → Fx is linear, and it is
characterized uniquely by the property that for any u ∈ Γ(E) and f ∈ C∞(M,R)
with f(x) = 0,

σD
m(df(x))u(x) =

1

m!
D(fmu)(x).

We say that D is elliptic if and only if for every nonzero cotangent vector p ∈ T ∗M ,
σD
m(p) is an isomorphism.

Example 2.B.12. For a complex vector bundle E over a Riemann surface (Σ, j),
a real-linear Cauchy-Riemann type operatorD : Γ(E) → Γ(F ) with F := HomC(TΣ, E)
is characterized by the Leibniz rule (2.3.3), which means its principal symbol is

σD
1 (p)u = (p+ i ◦ p ◦ j)u.

This is an isomorphism for any nonzero p ∈ T ∗Σ, hence D is elliptic.

Exercise 2.B.13. Show that if E, F, F ′ → M are vector bundles and D :
Γ(E) → Γ(F ) and D′ : Γ(F ) → Γ(F ′) are linear partial differential operators of
order m and n respectively, then D′ ◦D : Γ(E) → Γ(F ′) is a linear partial differen-
tial operator of order m+ n and

σD′◦D
m+n (p) = σD′

n (p) ◦ σD
m(p)
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for all p ∈ T ∗M .

Example 2.B.14. On any smooth manifold M , the exterior derivative

d : Ωk(M) = Γ(ΛkT ∗M) → Γ(Λk+1T ∗M) = Ωk+1(M)

is a first order linear operator with principal symbol σd
1(p)α = p ∧ α, and it is

obviously not elliptic since usually ΛkT ∗M and Λk+1T ∗M have different rank. If M
also carries a Riemannian metric g, then this induces natural L2 products 〈α, β〉L2 =∫
M
g(α, β) d vol on each of the bundles ΛkT ∗M , so that d has a formal adjoint

d∗ : Ωk+1(M) → Ωk(M). We define the Laplace-Beltrami operator, also known as
the Hodge Laplacian or Hodge-de Rham operator, by

∆ := dd∗ + d∗d : Ωk(M) → Ωk(M).

This is a second order elliptic operator. To see that it is elliptic, one can first write
down the adjoint of σd

1(p) using the relation

(2.B.6) g(α, p ∧ β) = g(ιp#α, β),

where p# ∈ TM is defined by p = g(p#, ·). This relation can be proved easily by
choosing an orthonormal basis of TxM that includes a multiple of p# and verifying
that it holds on corresponding basis elements in Λ∗T ∗

xM . Then (2.B.5) gives

σd∗

1 (p)β = −ιp#β,
and by Exercise 2.B.13, we obtain

σ∆
2 (p)α = −ιp#(p ∧ α)− p ∧ ιp#α.

Now, choosing a unit cotangent vector p ∈ T ∗
xM and completing it to an orthonormal

basis of T ∗
xM , one can check by evaluation on the resulting basis of k-forms that

ιp#(p∧α)+p∧ιp#α = α for all α ∈ ΛkT ∗
xM ; since σ∆

2 (p) is a homogeneous quadratic
polynomial with respect to p, thus implies

σ∆
2 (p)α = −|p|2α.
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3.1. Some Banach spaces and manifolds

In this chapter we begin the study of J-holomorphic curves in global settings. We
will fix the following data throughout: (Σ, j) is a closed connected Riemann surface,
and (M,J) is a 2n-dimensional manifold with a smooth almost complex structure.
Our goal will be to understand the local structure of the space of solutions to the
nonlinear Cauchy-Riemann equation, that is,

(3.1.1) {u ∈ C∞(Σ,M) | Tu ◦ j = J ◦ Tu}.

We assign to this space the natural topology defined by C∞-convergence of maps
Σ → M . Recall that since J is smooth, elliptic regularity implies that all solutions
of at least class W k,p

loc for some k ∈ N and p > 1 with kp > 2 are actually smooth,
and the C∞-topology is equivalent to the W k,p topology on the solution space. The
main result of this chapter will be that under sufficiently fortunate circumstances,
this space is a finite-dimensional manifold, and we will compute its dimension in
terms of the given topological data. We will put off until the next chapter the
question of when such “fortunate circumstances” are guaranteed to exist, i.e. when
transversality is achieved. It should also be noted that in later applications to
symplectic topology, the space (3.1.1) will not really be the one we want to consider:
it has two unnatural features, namely that it fixes an arbitrary complex structure
on the domain, and that it may include different curves that are reparametrizations
of each other, and thus should really be considered “equivalent”. We will address
these issues in Chapter 4, when we give the proper definition of the moduli space of
J-holomorphic curves.

For now, (3.1.1) will be the space of interest, and we sketched already in §2.4 how
to turn the study of this space into a problem of nonlinear functional analysis. It is
time to make that discussion precise by defining the appropriate Banach manifolds
and bundles.
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We must first understand how to define Sobolev spaces of sections on vector
bundles. In general, for any smooth vector bundle E → Σ one can define the space
W k,p

loc (E) to consist of all sections whose expressions in all choices of local coordinates
and trivializations are of classW k,p on compact subsets. One can analogously define
maps of class W k,p

loc between two smooth manifolds. When Σ is also compact, we

define the space W k,p(E) to be simply W k,p
loc (E), and give it the structure of a

Banach space as follows. Choose a finite open cover
⋃

j Uj = Σ, and assume that

for each set Uj ⊂ Σ, there is a smooth chart ϕj : Uj → Ωj , where Ωj = ϕj(Uj) ⊂ C,
as well as a local trivialization Φj : E|Uj

→ Uj × Cn. Then if {ρj : Σ → [0, 1]} is a
partition of unity subordinate to {Uj}, define for any section v : Σ → E,

(3.1.2) ‖v‖W k,p(E) =
∑

j

‖ pr2 ◦Φj ◦ (ρjv) ◦ ϕ−1
j ‖W k,p(Ωj).

This definition depends on plenty of choices, and the norm on W k,p(E) is thus not
canonically defined; really one should call W k,p(E) a Banachable space rather than
a Banach space. The exercise below shows that at least the resulting topology on
W k,p(E) is canonical. In a completely analogous way, one can also define the Banach
spaces Ck(E) and Ck,α(E).

Exercise 3.1.1.

(a) Show that any alternative choice of finite open covering, charts, trivializa-
tions and partition of unity gives an equivalent norm on W k,p(E). Hint:
Given two complete norms on the same vector space, it’s enough to show
that the identity map from one to the other is continuous (in one direction!).

(b) Verify that your favorite embedding theorems hold: in particular, there are
continuous and compact embeddings W k,p(E) →֒ W k−1,p(E) and, if kp > 2,
W k+d,p(E) →֒ Cd(E).

Remark 3.1.2. If Σ is not compact, then the topology ofW k,p(E) is not generally
well defined without some extra choices, and even after these choices are made, the
embeddings in Exercise 3.1.1 cannot be expected to be compact (cf. Remark 2.5.15).
We’ll need to deal with this issue later when we discuss punctured holomorphic
curves.

Exercise 3.1.3. For kp > 2, a topological vector bundle E → Σ is said to be a
vector bundle of Sobolev class W k,p if it admits a system of local trivializations
whose transition maps are of class W k,p. Show that W k,p(E) is also a well-defined
Banachable space in this case, though one cannot speak of sections of any better
regularity than W k,p. Why doesn’t any of this make sense if kp ≤ 2?

Next we consider maps of Sobolev-type regularity between the manifolds Σ and
M ; we’ll restrict our attention to the case kp > 2, so that all such maps are contin-
uous. It was already remarked that the space W k,p

loc (Σ,M) can be defined naturally
by expressing maps Σ →M in local charts, though since it isn’t a vector space, the
question of precisely what structure this space has is a bit subtle. Intuitively, we
expect spaces of maps Σ → M to be manifolds, and this motivates the following
definition.
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Definition 3.1.4. For any k ∈ N and p > 1 such that kp > 2, choose any smooth
connection on M , and for any smooth map f ∈ C∞(Σ,M), choose a neighborhood
Uf of the zero section in f ∗TM such that for all z ∈ Σ, the restriction of exp to
Tf(z)M ∩Uf is an embedding. Then we define the space of W k,p-smooth maps from
Σ to M by

W k,p(Σ,M) = {u ∈ C0(Σ,M) | u = expf η for some f ∈ C∞(Σ,M) and

η ∈ W k,p(f ∗TM) with η(Σ) ⊂ Uf}.
We’ve not yet assigned a topology to W k,p(Σ,M), but a topology emerges nat-

urally from the nontrivial observation that our definition gives rise to a smooth
Banach manifold structure. Indeed, the charts are the maps expf η 7→ η which take

subsets of W k,p(Σ,M) into open subsets of Banach spaces, namely

W k,p(Uf ) := {η ∈ W k,p(f ∗TM) | η(Σ) ⊂ Uf}.
Since the exponential map is smooth, a slight generalization of Lemma 2.12.5 shows
that the resulting transition maps are smooth—this depends fundamentally on the
same three properties of W k,p that were listed in the lemma: it embeds into C0, it
is a Banach algebra, and it behaves continuously under composition with smooth
functions. In the same manner, one shows that the transition maps arising from
different choices of connection on M are also smooth, thus the smooth structure of
W k,p(Σ,M) doesn’t depend on this choice. The complete details of these arguments
(in a very general context) are carried out in [El̆ı67]. The same paper also shows
that the tangent spaces to W k,p(Σ,M) are canonically isomorphic to exactly what
one would expect:

TuW
k,p(Σ,M) =W k,p(u∗TM).

Note that in general, u∗TM → Σ is only a bundle of class W k,p, but the resulting
Banach space of sections is well defined due to Exercise 3.1.3 above.

Exercise 3.1.5. Assuming kp > 2 as in the above discussion, show that for any
chosen point z0 ∈ Σ, the natural evaluation map

W k,p(Σ,M) →M : u 7→ u(z0)

is smooth. Hint: This depends essentially on the fact that (1) the exponential map
onM is smooth, and (2) for any smooth vector bundle E → Σ, the inclusion ofW k,p

into C0 implies that W k,p(E) → Ez0 : η 7→ η(z0) defines a bounded linear operator.

Exercise 3.1.6. Show that the map W k,p(Σ,M) × Σ → M : (u, z) 7→ u(z) is
not smooth.

The definition of Banach manifold that we have been using thus far is absurdly
general: indeed, a topological space with an atlas of smoothly compatible charts gen-
erally need not be either Hausdorff or paracompact (see [Lan99]). It will be useful
to note that the particular Banach manifolds we are considering are topologically
not nearly so exotic.

Proposition 3.1.7. The Banach manifold W k,p(Σ,M) defined above is metriz-
able and separable.
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Proof. Choose a smooth embedding of M into RN for some sufficiently large
N ∈ N. Using [El̆ı67, Theorem 5.3], one can show that this induces a smooth
embedding of W k,p(Σ,M) into the linear Banach space W k,p(Σ,RN ) as a smooth
submanifold. The latter is metrizable and separable, so we conclude the same for
W k,p(Σ,M). �

One can take these ideas further and speak of vector bundles whose fibers are
Banach spaces: a Banach space bundle of class Ck is defined by a system of local
trivializations whose transition maps are of class Ck from open subsets of the base
to the Banach space of bounded endomorphisms L (X) on some Banach space X .
Note that if g : U → L (X) is a transition map and z ∈ U , x ∈ X , it is not enough
to require continuity or smoothness of the map (z, x) 7→ g(z)x; that is a significantly
weaker condition in infinite dimensions. We refer to [Lan99] for more on the general
properties of Banach space bundles.

For our purposes, it will be important to consider the Banach manifold

Bk,p := W k,p(Σ,M)

with a Banach space bundle Ek−1,p → Bk,p whose fiber at u ∈ Bk,p is

Ek−1,p
u := W k−1,p(HomC(TΣ, u

∗TM)).

You should take a moment to convince yourself that for any u ∈ Bk,p, it makes sense
to speak of sections of class W k−1,p on the bundle HomC(TΣ, u

∗TM) → Σ. As it
turns out, the general framework of [El̆ı67] implies that Ek−1,p → Bk,p admits the
structure of a smooth Banach space bundle such that

∂̄J : Bk,p → Ek−1,p : u 7→ Tu+ J ◦ Tu ◦ j
is a smooth section. Note that in the last observation, we are using the assumption
that J is smooth, as the question can be reduced to yet another application of
Lemma 2.12.5: the section ∂̄J contains the map W k,p → W k,p : u 7→ J ◦ u, which
has only as many derivatives as J (minus some constant). For this reason, we will
assume whenever possible from now on that J is smooth.

The zero set of ∂̄J is the space of solutions (3.1.1), and as we already observed,
the topology of this solution space will have no dependence on k or p. To show
that ∂̄−1

J (0) has a nice structure, we want to apply the infinite-dimensional bundle
version of the implicit function theorem, which will apply near any point u ∈ ∂̄−1

J (0)
at which the linearization

Du := D∂̄J(u) : TuBk,p → Ek−1,p
u

is surjective and has a bounded right inverse. Here Du is the operator we derived
in §2.4; at the time we were assuming everything was smooth, but the result clearly
extends to a bounded linear operator

Du : W k,p(u∗TM) → W k−1,p(HomC(TΣ, u
∗TM))

η 7→ ∇η + J(u) ◦ ∇η ◦ j + (∇ηJ)Tu ◦ j,
where ∇ is an arbitrary symmetric connection on M , and this operator must be
identical to D∂̄J(u) since C

∞ is dense in all the spaces under consideration.
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The condition that Du have a bounded right inverse will turn out to be trivially
satisfied whenever Du is surjective, because kerDu is finite dimensional. This is an
important new feature of the global setting that did not exist locally, and we will
spend the rest of this chapter proving it and computing the dimension. The main
result can be summarized as follows.

Theorem 3.1.8. For any u ∈ ∂̄−1
J (0), Du is a Fredholm operator with index

ind(Du) = nχ(Σ) + 2〈c1(TM), [u]〉,
where [u] := u∗[Σ] ∈ H2(M) and c1(TM) ∈ H2(M) is the first Chern class of the
complex vector bundle (TM, J).

Recall that a bounded linear operator D : X → Y between Banach spaces is
called Fredholm if both kerD and Y/ imD are finite dimensional; the latter space
is called the cokernel of D, often written as cokerD. The Fredholm index of D
is then defined to be

ind(D) = dimker(D)− dim coker(D).

Fredholm operators have many nice things in common with linear maps on finite-
dimensional spaces. Proofs of the following standard facts may be found in e.g. [Tay96,
Appendix A] and [AA02, §4.4].

Proposition 3.1.9. Assume X and Y are Banach spaces, and let Fred(X, Y ) ⊂
L (X, Y ) denote the space of Fredholm operators from X to Y .

(1) Fred(X, Y ) is an open subset of L (X, Y ).
(2) The map ind : Fred(X, Y ) → Z is continuous.
(3) If D ∈ Fred(X, Y ) and K ∈ L (X, Y ) is a compact operator, then D+K ∈

Fred(X, Y ).
(4) If D ∈ Fred(X, Y ) then imD is a closed subspace of Y , and there exists a

closed linear subspace V ⊂ X and finite-dimensional subspace W ⊂ Y such
that

X = ker(D)⊕ V, Y = im(D)⊕W,

and D|V : V → im(D) is a Banach space isomorphism.

Note that the continuity of the map ind : Fred(X, Y ) → Z means it is locally
constant, thus for any continuous family of Fredholm operators {Dt}t∈[0,1], ind(Dt)
is constant. This fact is extremely useful for index computations, and is true de-
spite the fact that the dimensions of kerDt and Y/ imDt may each change quite
drastically. As a simple application, this implies that for any compact operator K,
ind(D+K) = ind(D), as these two are connected by the continuous family D+ tK.

Exercise 3.1.10. The definition of a Fredholm operator D : X → Y often
includes the assumption that imD is closed, but this is redundant. Convince yourself
that for any D ∈ L (X, Y ), if Y/ imD is finite dimensional then imD is closed. If
you get stuck, see [AA02, Corollary 2.17].

Theorem 3.1.8 is of course most interesting in the case where Du is surjective,
as then the implicit function theorem yields:
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Corollary 3.1.11. If u ∈ ∂̄−1
J (0) and Du is surjective, then a neighborhood of

u in ∂̄−1
J (0) admits the structure of a smooth finite-dimensional manifold, with

dim ∂̄−1
J (0) = nχ(Σ) + 2〈c1(TM), [u]〉.

3.2. Formal adjoints

The Fredholm theory for the operator Du fits naturally into the more general
context of Cauchy-Riemann type operators on vector bundles. For the next three
sections, we will consider an arbitrary smooth complex vector bundle (E, J) → (Σ, j)
of (complex) rank n, where (Σ, j) is a closed connected Riemann surface unless
otherwise noted. We will often abbreviate the first Chern number of (E, J) by
writing

c1(E) := 〈c1(E, J), [Σ]〉 ∈ Z.

Let D : Γ(E) → Γ(HomC(TΣ, E)) denote a (real- or complex-) linear Cauchy-
Riemann type operator. In order to understand the properties of this operator, it
will be extremely useful to observe that it has a formal adjoint,

D∗ : Γ(HomC(TΣ, E)) → Γ(E),

which will turn out to have all the same nice properties of a Cauchy-Riemann type
operator. We’ll use this in the next section to understand the cokernel of D, which
turns out to be naturally isomorphic to the kernel of D∗.

Choose a Hermitian bundle metric 〈 , 〉 on E, and let ( , ) denote its real part,
which is a real bundle metric that is invariant under the action of J . Choose also a
Riemannian metric g on Σ that is compatible with the conformal structure defined
by j; this defines a volume form µg on Σ, and conversely (since dimR Σ = 2), such
a volume form uniquely determines the compatible metric g via the relation

µg(X, Y ) = g(jX, Y ).

These choices naturally induce a bundle metric ( , )g on HomC(TΣ, E)), and both
Γ(E) and Γ(HomC(TΣ, E)) now inherit natural L2 inner products, defined by

〈ξ, η〉L2 =

∫

Σ

(ξ, η)µg, 〈α, β〉L2 =

∫

Σ

(α, β)g µg

for ξ, η ∈ Γ(E) and α, β ∈ Γ(HomC(TΣ, E)). We say that an operator D∗ :
Γ(HomC(TΣ, E)) → Γ(E) is the formal adjoint of D if it satisfies

(3.2.1) 〈α,Dη〉L2 = 〈D∗α, η〉L2.

for all smooth sections η ∈ Γ(E) and α ∈ Γ(HomC(TΣ, E)). The existence of such
operators is a quite general phenomenon that is easy to see locally using integration
by parts: roughly speaking, if D has the form D = ∂̄+A in some local trivialization,
then we expect D∗ in the same local picture to take the form −∂ + AT . One sees
also from this local expression that D∗ is almost a Cauchy-Riemann type operator;
to be precise, it is conjugate to a Cauchy-Riemann type operator. The extra minus
sign can be removed by an appropriate bundle isomorphism, and one can always
transform ∂ = ∂s − i∂t into ∂̄ = ∂s + i∂t by reversing the complex structure on the
bundle. Globally, the result will be the following.
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Proposition 3.2.1. For any choice of Hermitian bundle metric on (E, J) →
(Σ, j) and Riemannian metric g on Σ compatible with j, every linear Cauchy-
Riemann type operator D : Γ(E) → Γ(HomC(TΣ, E)) admits a formal adjoint

D∗ : Γ(HomC(TΣ, E)) → Γ(E)

which is conjugate to a linear Cauchy-Riemann type operator in the following sense.

Defining a complex vector bundle (Ê, Ĵ) over Σ by

(Ê, Ĵ) := (HomC(TΣ, E),−J),
there exist smooth real-linear vector bundle isomorphisms

Φ : Ê → HomC(TΣ, E), Ψ : E → HomC(TΣ, Ê)

such that Ψ ◦D∗ ◦ Φ is a linear Cauchy-Riemann type operator on Ê.

We will prove this by deriving a global expression for D∗. One can construct
it by a generalization of the same procedure by which one constructs the formal
adjoint of d on the algebra of differential forms, so let us recall this first. If M is
any smooth oriented manifold of real dimension m with a Riemannian metric g, let
µg denote the induced volume form, and use g also to denote the natural extension
of g to a bundle metric on each of the skew-symmetric tensor bundles ΛkT ∗M for
k = 0, . . . , m. We will denote Ωk(M) := Γ(ΛkT ∗M), i.e. this is simply the vector
space of smooth differential k-forms on M . Now for each k = 0, . . . , m, there is a
unique bundle isomorphism,

∗ : ΛkT ∗M → Λm−kT ∗M

the Hodge star operator, which has the property that for all α, β ∈ Ωk(M),

(3.2.2) g(α, β)µg = α ∧ ∗β.
One can easily show that ∗ is a bundle isometry and satisfies ∗2 = (−1)k(m−k). With
this, one can associate to the exterior derivative d : Ωk(M) → Ωk+1(M) a formal
adjoint

d∗ : Ωk(M) → Ωk−1(M),

d∗ = (−1)m(k+1)+1 ∗ d∗,
which satisfies ∫

M

g(α, dβ)µg =

∫

M

g(d∗α, β)µg

for any α ∈ Ωk(M) and β ∈ Ωk−1(M) with compact support. The proof of this
relation is an easy exercise in Stokes’ theorem, using (3.2.2).

We can extend this discussion to bundle-valued differential forms: given a real
vector bundle E → M , let Ωk(M,E) := Γ(ΛkT ∗M⊗E), which is naturally identified
with the space of smooth k-multilinear antisymmetric bundle maps TM ⊕ . . . ⊕
TM → E. Choosing a bundle metric ( , ) on E, the combination of g and ( , )
induces a natural tensor product metric on ΛkT ∗M⊗E, which we’ll denote by ( , )g.
There is also an isomorphism of E to its dual bundle E∗ →M , defined by

E → E∗ : v 7→ v̄ := (v, ·),
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which extends naturally to an isomorphism

ΛkT ∗M ⊗ E → ΛkT ∗M ⊗ E∗ : α 7→ ᾱ.

There is no natural product structure on Λ∗T ∗M ⊗E, but the wedge product does
define a natural pairing

(Λ∗T ∗M ⊗ E∗)⊕ (Λ∗T ∗M ⊗ E) → Λ∗T ∗M : (α⊗ λ, β ⊗ v) 7→ λ(v) · α ∧ β,
as well as a fiberwise module structure,

ΛkT ∗M ⊕ (ΛℓT ∗M ⊗E) → Λk+ℓT ∗M ⊗E : (α, β) 7→ α ∧ β,
so that in particular Ω∗(M,E) becomes an Ω∗(M)-module.

Now if ∇ : Γ(E) → Γ(Hom(TM,E)) = Ω1(M,E) is a connection on E → M ,
this has a natural extension to a covariant exterior derivative, which is a degree 1
linear map d∇ : Ω∗(M,E) → Ω∗(M,E) satisfying the graded Leibniz rule

d∇(α ∧ β) = dα ∧ β + (−1)kα ∧ d∇β
for all α ∈ Ωk(M) and β ∈ Ωℓ(M,E). This also has a formal adjoint d∗∇ :
Ω∗(M,E) → Ω∗(M,E), which is a linear map of degree −1. We can write it down
using a slight generalization of the Hodge star operator:

∗ : ΛkT ∗M ⊗E → Λm−kT ∗M ⊗ E : α⊗ v 7→ ∗α⊗ v,

in other words for any p ∈ M , α ∈ ΛkT ∗
pM and v ∈ Ep, the product αv defines a

skew-symmetric k-form on TpM with values in Ep, and we define ∗(αv) to be (∗α)v.
This map has the property that for all α, β ∈ Ωk(M,E),

(α, β)g µg = ᾱ ∧ ∗β,
and it is then straightforward to verify that

d∗∇ : Ωk(M,E) → Ωk−1(M,E),

d∗∇ = (−1)m(k+1)+1 ∗ d∇∗
(3.2.3)

has the desired property, namely that

(3.2.4)

∫

M

(α, d∇β)g µg =

∫

M

(d∗∇α, β)g µg

for all α ∈ Ωk(M,E) and β ∈ Ωk−1(M,E) with compact support.
Let us now extend some of these constructions to a complex vector bundle (E, J)

of rank n over a complex manifold (Σ, j) of (complex) dimension m. Here it becomes
natural to split the space of bundle-valued 1-forms Ω1(Σ, E) into the subspaces
of complex-linear and antilinear forms, often called (1, 0)-forms and (0, 1)-forms
respectively,

Ω1(Σ, E) = Ω1,0(Σ, E)⊕ Ω0,1(Σ, E),

where by definition Ω1,0(Σ, E) = Γ(HomC(TΣ, E)) and Ω0,1(Σ, E) = Γ(HomC(TΣ, E)).
Choosing holomorphic local coordinates (z1, . . . , zm) on some open subset of Σ, all
the (1, 0)-forms can be written on this subset as

α =

m∑

j=1

αj dz
j
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for some local sections αj of E, and the (0, 1)-forms likewise take the form

α =

m∑

j=1

αj dz̄
j.

The space of bundle-valued k-forms then splits into subspaces of (p, q)-forms for
p+ q = k,

Ωk(Σ, E) =
⊕

p+q=k

Ωp,q(Σ, E),

where any α ∈ Ωp,q(Σ, E) can be written locally as a linear combination of terms of
the form

dzj1 ∧ . . . ∧ dzjp ∧ dz̄k1 ∧ . . . ∧ dz̄kq
multiplied with local sections of E. The (p, q)-forms are sections of a vector bundle

Λp,qT ∗Σ⊗ E,

which is a subbundle of Λp+qT ∗Σ⊗ E.
As a special case, let Ωp,q(Σ) := Ωp,q(Σ,Σ × C) denote the space of complex-

valued (p, q)-forms. Then the image of the exterior derivative on Ωp,q(Σ) splits
naturally:

d : Ωp,q(Σ) → Ωp+1,q(Σ)⊕ Ωp,q+1(Σ),

and with respect to this splitting we can define linear operators

∂ : Ωp,q(Σ) → Ωp+1,q(Σ), ∂̄ : Ωp,q(Σ) → Ωp,q+1(Σ)

such that d = ∂ + ∂̄. The restriction to Ω0,0(Σ) = C∞(Σ,C) gives (up to a factor of
two)1 the usual operators ∂ and ∂̄ on smooth functions f : Σ → C, namely

∂f =
1

2
(df − i df ◦ j), ∂̄f =

1

2
(df + i df ◦ j).

It follows now almost tautologically that ∂ and ∂̄ satisfy graded Leibniz rules,

∂(α ∧ β) = ∂α ∧ β + (−1)p+qα ∧ ∂β,
∂̄(α ∧ β) = ∂̄α ∧ β + (−1)p+qα ∧ ∂̄β

for α ∈ Ωp,q(Σ) and β ∈ Ωr,s(Σ).
Choosing a Hermitian metric on the bundle (E, J) → (Σ, j), we can similarly

split the derivation d∇ : Ωk(Σ, E) → Ωk+1(Σ, E) defined by any Hermitian connec-
tion, giving rise to complex-linear operators

∂∇ : Ωp,q(Σ, E) → Ωp+1,q(Σ, E),

∂̄∇ : Ωp,q(Σ, E) → Ωp,q+1(Σ, E)

which satisfy similar Leibniz rules,

∂∇(α ∧ β) = ∂α ∧ β + (−1)p+qα ∧ ∂∇β,
∂̄∇(α ∧ β) = ∂̄α ∧ β + (−1)p+qα ∧ ∂̄∇β

(3.2.5)

1For this section only, we are modifying our usual definition of the operators ∂̄ and ∂ on
C∞(Σ,C) to include the extra factor of 1/2. The difference is harmless.
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for α ∈ Ωp,q(Σ) and β ∈ Ωr,s(Σ, E). In particular, this shows that ∂̄∇ : Ωp,q(Σ, E) →
Ωp,q+1(Σ, E) can be regarded as a complex-linear Cauchy-Riemann type operator on
the bundle Λp,qT ∗Σ⊗E, where we identify HomC(TΣ,Λ

p,qT ∗Σ⊗E) naturally with
Λp,q+1T ∗Σ ⊗ E. Restricting to Ω0,0(Σ, E) = Γ(E), ∂̄∇ : Γ(E) → Ω0,1(Σ, E) has the
form

∂̄∇ =
1

2
(∇+ J ◦ ∇ ◦ j) .

We are now almost ready to write down the formal adjoint of this operator. For
simplicity, we restrict to the case where Σ has complex dimension one, since this
is all we need. Observe that the Hodge star then defines a bundle isomorphism of
Λ1T ∗Σ to itself, whose natural extension to Λ1T ∗Σ⊗E is complex-linear.

Exercise 3.2.2.

(a) Show that for any choice of local holomorphic coordinates z = s+ it on Σ,
∗ds = dt and ∗dt = −ds.

(b) Show that for any α ∈ T ∗Σ, ∗α = −α ◦ j.
(c) Show that for any α ∈ Λ1,0T ∗Σ⊗E, ∗α = −Jα and for any α ∈ Λ0,1T ∗Σ⊗E,

∗α = Jα. In particular, ∗ respects the splitting Ω1(Σ, E) = Ω1,0(Σ, E) ⊕
Ω0,1(Σ, E).

We claim now that the formal adjoint of ∂̄∇ is defined by a formula analogous
to the operator d∗∇ of (3.2.3), namely

(3.2.6) ∂̄∗∇ := − ∗ ∂∇∗ : Ω0,1(Σ, E) → Ω0(Σ, E).

In fact, this is simply the restriction of d∗∇ to Ω0,1(Σ, E), as we observe that ∂̄∇ maps
Ω0,1(Σ, E) to Ω0,2(Σ, E), which is trivial since Σ has only one complex dimension.
Thus the claim follows easily from (3.2.4) and the following exercise.

Exercise 3.2.3. Show that Λ1,0T ∗Σ⊗ E and Λ0,1T ∗Σ⊗ E are orthogonal sub-
bundles with respect to the metric ( , )g on Λ1T ∗Σ⊗E.

It is now easy to write down the formal adjoint of a more general Cauchy-
Riemann type operator.

Proof of Prop. 3.2.1. Choosing any Hermitian connection ∇ on E, Exer-
cise 2.3.4 allows us to write

D = ∂̄∇ + A,

where A : E → HomC(TΣ, E) is a smooth real-linear bundle map. (Note that
Exercise 2.3.4 dealt only with the complex-linear case, but the generalization to the
real case is obvious.) Extending a well-known fact from linear algebra to the context
of bundles, there is a unique smooth real-linear bundle map AT : HomC(TΣ, E) → E
such that

(α,Aη)g = (ATα, η)

for all z ∈ Σ, η ∈ Ez and α ∈ Λ0,1T ∗
zΣ⊗Ez. Then the desired operator D∗ is given

by

D∗ = ∂̄∗∇ + AT .
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From (3.2.6), we see that D∗ is conjugate to an operator of the form

D1 = ∂∇ + A1 : Ω
0,1(Σ, E) → Ω1,1(Σ, E),

where A1 : Λ
0,1T ∗Σ⊗E → Λ1,1T ∗Σ⊗E is some smooth bundle map, i.e. a “zeroth

order term.” By (3.2.5), this satisfies the Leibniz rule,

(3.2.7) D1(fα) = (∂f)α + fD1α

for all smooth functions f : Σ → C. We can turn this into the Leibniz rule for an
actual Cauchy-Riemann type operator on the bundle,

(Ê, Ĵ) = (HomC(TΣ, E),−J).

Indeed, the identity Ê → HomC(TΣ, E) is then a complex-antilinear bundle isomor-
phism, and there are canonical isomorphisms

Λ1,1T ∗Σ⊗ E = HomC(TΣ,Λ
0,1T ∗Σ⊗ E) = HomC(TΣ, Ê),

so that D1 is now conjugate to an operator

D2 : Γ(Ê) → Γ(HomC(TΣ, Ê))

which satisfies D2(fβ) = (∂̄f)β + fD2β due to (3.2.7). �

Exercise 3.2.4. Show that the bundle (Ê, Ĵ), as defined in Prop. 3.2.1 satisfies

c1(Ê) = −c1(Λ0,1T ∗Σ⊗E) = −c1(E)− nχ(Σ).

Remark 3.2.5. It’s worth noting that if (Σ, j) is a general complex manifold
with a Hermitian vector bundle (E, J) → (Σ, j) and Hermitian connection ∇, the
resulting complex-linear Cauchy-Riemann type operator

∂̄∇ : Γ(E) → Γ(HomC(TΣ, E))

does not necessarily define a holomorphic structure if dimC Σ ≥ 2. It turns out that
the required local existence result for holomorphic sections is true if and only if the
map

∂̄∇ ◦ ∂̄∇ : Γ(E) → Ω0,2(Σ, E)

is zero. It’s easy to see that this condition is necessary, because if there is a holomor-
phic structure, then ∂̄∇ looks like the standard ∂̄-operator in a local holomorphic
trivialization and ∂̄ ◦ ∂̄ = 0 on Ω∗(Σ, E). The converse is, in some sense, a complex
version of the Frobenius integrability theorem: indeed, the corresponding statement
in real differential geometry is that vector bundles with connections locally admit
flat sections if and only if d∇ ◦ d∇ = 0, which means the curvature vanishes. A
proof of the complex version may be found in [DK90, § 2.2.2], and the first step in
this proof is the local existence result for the case dimCΣ = 1 (our Theorem 2.7.1).
Observe that the integrability condition is trivially satisfied when dimC Σ = 1, since
then Ω0,2(Σ, E) is a trivial space.
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3.3. The Fredholm property

For the remainder of this chapter, (Σ, j) will be a closed Riemann surface and
(E, J) → (Σ, j) will be a complex vector bundle of rank n with a real-linear Cauchy-
Riemann operator D. We shall now prove the Fredholm property for the obvious
extension of D to a bounded linear map

(3.3.1) D : W k,p(E) →W k−1,p(F ),

with k ∈ N and p ∈ (1,∞), where

F := HomC(TΣ, E).

Theorem 3.3.1. The operator D of (3.3.1) is Fredholm, and neither kerD nor
ind(D) depends on the choice of k and p.

This result depends essentially on three ingredients: first, the main elliptic esti-
mate of §2.6 gives a bound for ‖η‖W k,p in terms of ‖Dη‖W k−1,p, from which we will
be able to show quite easily that kerD is finite dimensional. The second ingredient
is the formal adjoint D∗ that was derived in the previous section: since D∗ is also
conjugate to a Cauchy-Riemann type operator, the previous step implies that its
kernel is also finite dimensional. The final ingredient is elliptic regularity, which we
can use to identify the cokernel of D with the kernel of D∗. The regularity theory
also implies that both of these kernels consist only of smooth sections, and are thus
completely independent of k and p.

As sketched above, the first step in proving Theorem 3.3.1 is an a priori estimate
that follows from the linear regularity theory of §2.6. In particular, Theorem 2.6.1
and Exercise 2.6.3) give

(3.3.2) ‖η‖W k,p ≤ c‖∂̄η‖W k−1,p for all η ∈ W k,p
0 (B,Cn).

To turn this into a global estimate for D acting on sections of E, fix the following
data:

(1) A finite open covering {Uj}j∈I of Σ;
(2) Holomorphic coordinate charts identifying each of the subsets Uj ⊂ Σ with

the unit ball B ⊂ C;
(3) Smooth complex trivializations for each j ∈ I identifying E|Uj

with B×Cm;
(4) A smooth partition of unity {ρj}j∈I subordinate to {Uj}j∈I .

Observe that the combination of the coordinate chart and trivialization on each
Uj ⊂ Σ naturally induces a trivialization of F |Uj

, identifying it with B × Cm. For
any global sections η ∈ Γ(E), ξ ∈ Γ(F ) and any j ∈ I, let us denote by

ηj : B → Cm, ξj : B → Cm

the expressions of these sections in the chosen coordinates and trivializations over Uj ;
we shall also abuse notation and write ρj : B → [0, 1] for the composition of ρj : Uj →
[0, 1] with the corresponding inverse coordinate chart B → Uj . In this notation, the
global Sobolev norms introduced in §3.1 can be written as

‖η‖W k,p(E) =
∑

j∈I
‖ρjηj‖W k,p(B), ‖ξ‖W k−1,p(F ) =

∑

j∈I
‖ρjξj‖W k−1,p(B),
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and the Cauchy-Riemann type operator D : Γ(E) → Γ(F ) takes the local form

(Dη)j = (∂̄ + Aj)ηj,

where ∂̄ = ∂s + i∂t as usual and we associate to each j ∈ I some smooth real-linear
zeroth order term Aj : B → EndR(Cm). Putting all this together and applying the
local estimate (3.3.2), we have for any η ∈ W k,p(E),

‖η‖W k,p(E) =
∑

j∈I
‖ρjηj‖W k,p(B) ≤ c

∑

j∈I
‖∂̄(ρjηj)‖W k−1,p(B)

= c
∑

j∈I
‖(∂̄ρj)ηj + ρj ∂̄ηj‖W k−1,p(B)

≤ c
∑

j∈I
‖(∂̄ρj)ηj‖W k−1,p(B) + c

∑

j∈I
‖ρj · [(Dη)j − Ajηj ] ‖W k−1,p(B)

≤ c′‖η‖W k−1,p(E) + c
∑

j∈I
‖ρj(Dη)j‖W k−1,p(B)

= c′‖η‖W k−1,p(E) + c‖Dη‖W k−1,p(F ),

where in the penultimate line we’ve used the fact that ∂̄ρj and Aj are smooth and
‖ηj‖W k−1,p(B) ≤ cj‖η‖W k−1,p(E) for suitable constants cj > 0. We’ve proved:

Lemma 3.3.2. For each k ∈ N and p ∈ (1,∞), there exists a constant c > 0 such
that for every η ∈ W k,p(E),

‖η‖W k,p(E) ≤ c‖Dη‖W k−1,p(F ) + c‖η‖W k−1,p(E).

�

Observe that the inclusion W k,p(E) →֒ W k−1,p(E) is compact. This will allow
us to make use of the following general result.

Proposition 3.3.3. Suppose X, Y and Z are Banach spaces, A ∈ L (X, Y ),
K ∈ L (X,Z) is compact, and there is a constant c > 0 such that for all x ∈ X,

(3.3.3) ‖x‖X ≤ c‖Ax‖Y + c‖Kx‖Z .
Then kerA is finite dimensional and imA is closed.

Proof. A vector space is finite dimensional if and only if the unit ball in that
space is a compact set, so we begin by proving the latter holds for kerA. Suppose
xk ∈ kerA is a bounded sequence. Then since K is a compact operator, Kxk has
a convergent subsequence in Z, which is therefore Cauchy. But (3.3.3) then implies
that the corresponding subsequence of xk in X is also Cauchy, and thus converges.

Since we now know kerA is finite dimensional, we also know there is a closed
complement V ⊂ X with kerA ⊕ V = X . Then the restriction A|V has the same
image as A, thus if y ∈ imA, there is a sequence xk ∈ V such that Axk → y. We
claim that xk is bounded. If not, then A(xk/‖xk‖X) → 0 and K(xk/‖xk‖X) has
a convergent subsequence, so (3.3.3) implies that a subsequence of xk/‖xk‖X also
converges to some x∞ ∈ V with ‖x∞‖ = 1 and Ax∞ = 0, a contradiction. But now
since xk is bounded, Kxk also has a convergent subsequence and Axk converges by
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assumption, thus (3.3.3) yields also a convergent subsequence of xk, whose limit x
satisfies Ax = y. This completes the proof that imA is closed. �

The above implies that every Cauchy-Riemann type operator has finite-dimensional
kernel and closed image; operators with these two properties are called semi-
Fredholm. Note that by elliptic regularity, kerD only contains smooth sections,
and is thus the same space for every k and p.

By Prop. 3.2.1, the same results obviously apply to the formal adjoint, after
extending it to a bounded linear operator

D∗ : W k,p(F ) → W k−1,p(E).

Proposition 3.3.4. Using the natural inclusion W k,p →֒ W k−1,p to inject kerD
and kerD∗ into W k−1,p, there are direct sum splittings

W k−1,p(F ) = imD ⊕ kerD∗

W k−1,p(E) = imD∗ ⊕ kerD.

Thus the projections along imD and imD∗ yield natural isomorphisms cokerD =
kerD∗ and cokerD∗ = kerD.

Proof. We will prove only the first of the two splittings, as the second is entirely
analogous. We claim first that imD ∩ kerD∗ = {0}. Indeed, if α ∈ W k−1,p(F ) with
D∗α = 0, then since D∗ is conjugate to a Cauchy-Riemann type operator via smooth
bundle isomorphisms, elliptic regularity implies that α is smooth. Then if α = Dη
for some η ∈ W k,p(E), η must also be smooth, and we find

0 = 〈D∗α, η〉L2 = 〈α,Dη〉L2 = ‖α‖2L2.

To show that imD + kerD∗ =W k−1,p(F ), it will convenient to address the case
k = 1 first. Note that imD + kerD∗ is a closed subspace since imD is closed
and kerD∗ is finite dimensional. Then if it is not all of Lp, there exists a nonzero
α ∈ Lq(F ), where 1

p
+ 1

q
= 1, such that

〈α,Dη〉L2 = 0 for all η ∈ W 1,p(E),

〈α, β〉L2 = 0 for all β ∈ kerD∗.

The first relation is valid in particular for all smooth η, and this means that α is
a weak solution of the equation D∗α = 0, so by regularity of weak solutions (see
Corollary 2.6.28), α is smooth and belongs to kerD∗. Then we can plug β = α into
the second relation and conclude α = 0.

Now we show that imD + kerD∗ = W k−1,p(F ) when k ≥ 2. Given α ∈
W k−1,p(F ), α is also of class Lp and thus the previous step gives η ∈ W 1,p(E)
and β ∈ kerD∗ such that

Dη + β = α.

Then β is smooth, and Dη = α−β is of class W k−1,p, so regularity (Corollary 2.6.28
again) implies that η ∈ W k,p(E), and we are done. �

We are now finished with the proof of Theorem 3.3.1, as we have shown that
both kerD and kerD∗ ∼= cokerD are finite-dimensional spaces consisting only of
smooth sections, which are thus contained in W k,p for all k and p.
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Exercise 3.3.5. This exercise is meant to convince you that “boundary condi-
tions are important.” Recall that the elliptic estimate ‖u‖W 1,p ≤ c‖∂̄u‖Lp is valid for
smooth Cn-valued functions u with compact support in the open unit ball B ⊂ C.
Show that this inequality cannot be extended to functions without compact support;
in fact there is not even any estimate of the form

‖u‖W 1,p ≤ c‖∂̄u‖Lp + c‖u‖Lp

for general functions u ∈ C∞(B) ∩ W 1,p(B). Why not? For contrast, see Exer-
cise 3.4.5 below.

3.4. The Riemann-Roch formula and transversality criteria

It is easy to see that the index of a Cauchy-Riemann type operatorD : W k,p(E) →
W k−1,p(HomC(TΣ, E)) depends only on the isomorphism class of the bundle (E, J) →
(Σ, j). Indeed, by Exercise 2.3.4, the difference between any two such operators D
and D′ on the same bundle defines a smooth real-linear bundle map A : E →
HomC(TΣ, E) such that

D′η −Dη = Aη.

We often refer to this bundle map as a “zeroth order term.” It defines a bounded
linear map from W k,p(E) to W k,p(HomC(TΣ, E)), which is then composed with the
compact inclusion into W k−1,p(HomC(TΣ, E)) and is therefore a compact operator.
We conclude that all Cauchy-Riemann type operators on the same bundle are com-
pact perturbations of each other,2 and thus have the same Fredholm index. Since
complex vector bundles over a closed surface are classified up to isomorphism by
the first Chern number, the index will therefore depend only on the topological type
of Σ and on c1(E). To compute it, we can use the fact that every complex bundle
admits a complex-linear Cauchy-Riemann operator (cf. Exercise 2.3.5), and restrict
our attention to the complex-linear case. Then E is a holomorphic vector bundle,
and kerD is simply the vector space of holomorphic sections. We’ll see below that
in some important examples, it is not hard to compute this space explicitly. The key
observation is that one can identify holomorphic sections on vector bundles over Σ
with complex-valued meromorphic functions on Σ that have prescribed poles and/or
zeroes. The problem of understanding such spaces of meromorphic functions is a
classical one, and its solution is the Riemann-Roch formula.

Theorem 3.4.1 (Riemann-Roch formula). ind(D) = nχ(Σ) + 2c1(E).

We should emphasize, especially for readers who are more accustomed to alge-
braic geometry, that this is the real index, i.e. the difference between dim kerD and
dim cokerD as real vector spaces—these dimensions may indeed by odd in general
since we’ll be interested in cases where D is not complex-linear, but ind(D) will
always be even, a nontrivial consequence of the fact that D is always homotopic to
a complex-linear operator. We will later see cases (on punctured Riemann surfaces
or surfaces with boundary) where ind(D) can also be odd.

2This statement is false when Σ is not compact: we’ll see when we later discuss Cauchy-
Riemann type operators on domains with cylindrical ends that the zeroth order term is no longer
compact, and the index does depend on the behavior of this term at infinity.
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A complete proof of the Riemann-Roch formula may be found in [MS04, Ap-
pendix C] or, from a more classical perspective, any number of books on Riemann
surfaces. Below we will explain a proof for the genus 0 case and give a heuristic
argument to justify the rest. An important feature will be the following “transver-
sality” criterion, which will also have many important applications in the study of
J-holomorphic curves. It is a consequence of the identification kerD ≡ cokerD∗,
combined with the similarity principle (recall §2.8).

Theorem 3.4.2. Suppose n = 1, i.e. (E, J) → (Σ, j) is a complex line bundle.

• If c1(E) < 0, then D is injective.
• If c1(E) > −χ(Σ), then D is surjective.

Proof. The criterion for injectivity is an easy consequence of the similarity
principle, for which we don’t really need to know anything about D except that it’s
a Cauchy-Riemann type operator. If E → Σ has complex rank 1 and kerD contains
a nontrivial section η, then by the similarity principle, η has only isolated (and thus
finitely many) zeroes, each of which counts with positive order. The count of these
computes the first Chern number of E, thus c1(E) ≥ 0, and D must be injective if
c1(E) < 0.

The second part follows now from the observation that D is surjective if and only

if D∗ is injective, and the latter is guaranteed by the condition c1(Ê) < 0, which by
Prop. 3.2.1 and Exercise 3.2.4 is equivalent to c1(E) > −χ(Σ). �

Observe that we did not need to know the index formula in order to deduce the
last result. In fact, this already gives enough information to deduce the index formula
in the special case Σ = S2, which will be the most important in our applications.

Proof of Theorem 3.4.1 in the case Σ = S2. We assume first that n = 1.
In this situation, at least one of the criteria c1(E) < 0 or c1(E) > −χ(Σ) = −2 from
Theorem 3.4.2 is always satisfied, hence D is always injective or surjective; in fact if
c1(E) = −1 it is an isomorphism. By considering D∗ instead of D if necessary, we
can restrict our attention to the case where D is surjective, so indD = dimkerD.
We will now construct for each value of c1(E) ≥ 0 a “model” holomorphic line
bundle, which is sufficiently simple so that we can identify the space of holomorphic
sections explicitly.

For the case c1(E) = 0, the model bundle is obvious: just take the trivial line
bundle S2×C → S2, so the holomorphic sections are holomorphic functions S2 → C,
which are necessarily constant and therefore dim kerD = 2, as it should be. A more
general model bundle can be defined by gluing together two local trivializations: let
E(1) and E(2) denote two copies of the trivial holomorphic line bundle C× C → C,
and for any k ∈ Z, define

Ek := (E(1) ⊔ E(2))/(z, v) ∼ Φk(z, v),

where Φk : E(1)|C\{0} → E(2)|C\{0} is a bundle isomorphism covering the biholomor-
phic map z 7→ 1/z and defined by Φk(z, v) = (1/z, gk(z)v), with

gk(z)v :=
1

zk
v.
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The function gk(z) is a holomorphic transition map, thus Ek has a natural holomor-
phic structure. Regarding a function f : C → C as a section of E(1), we have

Φk(1/z, f(1/z)) = (z, zkf(1/z)),

which means that f extends to a smooth section of Ek if and only if the function
g(z) = zkf(1/z) extends smoothly to z = 0. It follows that c1(Ek) = k, as one
can choose f(z) = 1 for z in the unit disk and then modify g(z) = zk to a smooth
function that algebraically has k zeroes at 0 (note that an actual modification is
necessary only if k < 0). Similarly, the holomorphic sections of Ek can be identified
with the entire functions f : C → C such that zkf(1/z) extends holomorphically
to z = 0; if k < 0 this implies f ≡ 0, and if k ≥ 0 it means f(z) is a polynomial
of degree at most k, hence dim kerD = 2 + 2k. The proof of the index formula for
Σ = S2 and n = 1 is now complete.

The case n ≥ 2 can easily be derived from the above. It suffices to prove that
ind(D) = 2n + 2c1(E) for some model holomorphic bundle of rank n with a given
value of c1(E). Indeed, for any k ∈ Z, take E to be the direct sum of n holomorphic
line bundles,

E := E−1 ⊕ . . .⊕ E−1 ⊕Ek,

which has c1(E) = k−(n−1). By construction, the natural Cauchy-Riemann opera-
tor D on E splits into a direct sum of Cauchy-Riemann operators on its summands,
and it is an isomorphism on each of the E−1 factors, thus we conclude as in the line
bundle case that D is injective if k < 0 and surjective if k ≥ 0. By replacing D
with D∗ if necessary, we can now assume without loss of generality that k ≥ 0 and
D is surjective. The space of holomorphic sections is then simply the direct sum
of the corresponding spaces for its summands, which are trivial for E−1 and have
dimension 2 + 2k for Ek. We therefore have

ind(D) = dimkerD = 2 + 2k = 2n + 2[k − (n− 1)] = nχ(Σ) + 2c1(E).

�

One should not conclude from the above proof that every Cauchy-Riemann type
operator on the sphere is either injective or surjective, which is true on line bundles
but certainly not for bundles of higher rank—above we only used the fact that
for every value of c1(E), one can construct a bundle that has this property. The
proof is not so simple for general Riemann surfaces because it is less straightforward
to identify spaces of holomorphic sections. One lesson to be drawn from the above
argument, however, is that holomorphic sections on a line bundle with c1(E) = k can
also be regarded as holomorphic sections on some related bundle with c1(E) = k+1,
but with an extra zero at some chosen point. This suggests that an increment in
the value of c1(E) should also enlarge the space of holomorphic sections by two
real dimensions, because one can add two linearly independent sections that do not
vanish at the chosen point. What’s true for line bundles in this sense is also true
for bundles of higher rank, because one can always construct model bundles that
are direct sums of line bundles. We will not attempt to make this argument precise,
but it should give some motivation to believe that ind(D) scales with 2c1(E): to be
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exact, there exists a constant C = C(Σ, n) such that

ind(D) = C(Σ, n) + 2c1(E).

If you believe this, then we can already deduce the general Riemann-Roch formula
by comparing D with its formal adjoint. Indeed, D∗ has index

ind(D∗) = C(Σ, n) + 2c1(Ê) = C(Σ, n)− 2c1(E)− 2nχ(Σ)

according to Exercise 3.2.4, and since cokerD = kerD∗ and vice versa, ind(D∗) =
− ind(D). Thus adding these formulas together yields

0 = 2C(Σ, n)− 2nχ(Σ).

We conclude C(Σ, n) = nχ(Σ), and the Riemann-Roch formula follows.
With the index formula understood, we can derive some alternative formulations

of the transversality criteria in Theorem 3.4.2 which will often be useful. First,
compare the formulas for ind(D) and ind(D∗):

ind(D) = χ(Σ) + 2c1(E),

ind(D∗) = χ(Σ) + 2c1(Ê),

where Ê is the line bundle constructed in the proof of Prop. 3.2.1. Since ind(D) =
− ind(D∗), subtracting the second formula from the first yields

ind(D) = c1(E)− c1(Ê),

and thus c1(Ê) < 0 if and only if ind(D) > c1(E), which implies by Theorem 3.4.2
that D∗ is injective and thus D is surjective. We state this as a corollary.

Corollary 3.4.3. If n = 1 and ind(D) > c1(E), then D is surjective.

Exercise 3.4.4. Show that another equivalent formulation of Theorem 3.4.2 for
Cauchy-Riemann operators on complex line bundles is the following:

• If ind(D) < χ(Σ) then D is injective.
• If ind(D) > −χ(Σ) then D is surjective.

This means that for line bundles, D is always surjective (or injective) as soon as its
index is large (or small) enough. Observe that when Σ = S2, one of these conditions
is always satisfied, but there is always an “interval of uncertainty” in the higher
genus case.

A different approach to the proof of Riemann-Roch, which is taken in [MS04], is
to cut up E → Σ into simpler pieces on which the index can be computed explicitly,
and then conclude the general result by a “linear gluing argument”. We’ll come back
to this idea in a later chapter when we discuss the generalization of the Riemann-
Roch formula to open surfaces with cylindrical ends. The proof in [MS04] instead
considers Cauchy-Riemann operators on surfaces with boundary and totally real
boundary conditions: the upshot is that the problem can be reduced in this way to
the following exercise, in which one computes the index for the standard Cauchy-
Riemann operator on a closed disk.
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Exercise 3.4.5. Let D ⊂ C denote the closed unit disk and E the trivial bundle
D×C → D. For a given integer µ ∈ Z, define a real rank 1 subbundle ℓµ ⊂ E|∂D by

(ℓµ)eiθ = eiπµθR ⊂ C.

We call ℓµ in this context a totally real subbundle of D× C at the boundary, and
the integer µ is its Maslov index. Let ∂̄ = ∂s + i∂t, and for kp > 2 consider the
operator

∂̄ :W k,p
ℓµ

(D,C) →W k−1,p(D,C),

where the domain is defined by

W k,p
ℓµ

(D,C) = {η ∈ W k,p(D,C) | η(∂D) ⊂ ℓµ}.
Show that as an operator between these particular spaces, ker ∂̄ has dimension 1 +
µ = χ(D) + µ if µ ≥ −1, and ∂̄ is injective if µ ≤ −1. (You may find it helpful to
think in terms of Fourier series.) By constructing the appropriate formal adjoint of
∂̄ in this setting (which will also satisfy a totally real boundary condition), one can
also show that ∂̄ is surjective if µ ≥ −1, and one can similarly compute the kernel
of the formal adjoint if µ ≤ −1, concluding that ∂̄ is in fact Fredholm and has index
ind(∂̄) = χ(D) + µ. By considering direct sums of line bundles with totally real
boundary conditions, this generalizes easily to bundles of general rank n ∈ N as

ind(∂̄) = nχ(D) + µ.

One should think of this as another instance of the Riemann-Roch formula, in which
the Maslov index now plays the role of 2c1(E). The details are carried out in
[MS04, Appendix C].

Remark 3.4.6. The Fredholm theory of Cauchy-Riemann operators gives a new
proof of a local regularity result that we made much use of in Chapter 2: the standard
∂̄-operator on the open unit ball B ⊂ C,

∂̄ : W k,p(B,Cn) →W k−1,p(B,Cn)

has a bounded right inverse (see Theorem 2.6.25). This follows from our proof of
Theorem 3.4.1 in the case Σ = S2, because any f ∈ W k−1,p(B,Cn) can be extended
to a section in W k−1,p(HomC(TS

2, S2 ×Cn)), and we can then use the fact that the
standard Cauchy-Riemann operator on the trivial bundle S2 × Cn is a surjective
Fredholm operator, its kernel consisting of the constant sections. Alternatively, one
can use the fact established by Exercise 3.4.5, that the restriction of ∂̄ to the domain
W k,p

ℓ0
(D,Cn) of functions with the totally real boundary condition η(∂D) ⊂ Rn is a

surjective Fredholm operator with index n; its kernel is again the space of constant
functions.
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4.1. The moduli space of closed J-holomorphic curves

In the previous chapter we considered the local structure of the space of J-
holomorphic maps (Σ, j) → (M,J) from a fixed closed Riemann surface to a fixed
almost complex manifold of dimension 2n. From a geometric point of view, this is
not the most natural space to study: geometrically, we prefer to picture holomorphic
curves as 2-dimensional submanifolds1 whose tangent spaces are invariant under the
action of J . In the symplectic context in particular, this means they give rise to
symplectic submanifolds. From this perspective, the interesting object is not the
parametrization u but its image u(Σ), thus we should regard all reparametrizations
of u to be equivalent. Moreover, the choice of parametrization fully determines
j = u∗J , thus one cannot choose j in advance, but must allow it to vary over the
space of all complex structures on Σ. The interesting solution space is therefore the
following.

Definition 4.1.1. Given an almost complex manifold (M,J) of real dimension
2n, integers g,m ≥ 0 and a homology class A ∈ H2(M), we define the moduli

1This description is of course only strictly correct for holomorphic curves that are embedded,
which they need not be in general—though we’ll see that in many important applications, they
are.
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space of J-holomorphic curves in M with genus g and m marked points
representing A to be

MA
g,m(J) = {(Σ, j, u, (z1, . . . , zm))}/ ∼,

where (Σ, j) is any closed connected Riemann surface of genus g, u : (Σ, j) → (M,J)
is a pseudoholomorphic map with [u] := u∗[Σ] = A, and (z1, . . . , zm) is an ordered
set of distinct points in Σ, which we’ll often denote by

Θ = (z1, . . . , zm).

We say (Σ, j, u,Θ) ∼ (Σ′, j′, u′,Θ′) if and only if there exists a biholomorphic diffeo-
morphism ϕ : (Σ, j) → (Σ′, j′) such that u = u′ ◦ϕ and ϕ(Θ) = Θ′ with the ordering
preserved.

We will often abbreviate the union of all these moduli spaces by

M(J) =
⋃

g,m,A

MA
g,m(J).

Elements of M(J) are sometimes called unparametrized J-holomorphic curves,
since the choice of parametrization u : Σ → M is considered auxiliary. We will
nonetheless sometimes abuse the notation by writing an equivalence class of tuples
[(Σ, j, u,Θ)] simply as (Σ, j, u,Θ) or u ∈ M(J) when there is no danger of confusion.
The significance of the marked points Θ = (z1, . . . , zm) is that they give rise to a
well-defined evaluation map

(4.1.1) ev = (ev1, . . . , evm) : MA
g,m(J) → M × . . .×M,

where evi takes [(Σ, j, u,Θ)] to u(zi) ∈ M for each i = 1, . . . , m. One can use this
to find relations between the topology of M and the structure of the moduli space,
which will be important in later applications to symplectic geometry.

A natural topology on M(J) can be defined via the following notion of conver-
gence: we say [(Σk, jk, uk,Θk)] → [(Σ, j, u,Θ)] if for sufficiently large k, the sequence
has representatives of the form (Σ, j′k, u

′
k,Θ) such that j′k → j and u′k → u in the

C∞-topology. In particular, Σk must be diffeomorphic to Σ and have the same num-
ber of marked points for sufficiently large k; observe that when this is the case, one
can always choose a diffeomorphism to fix the positions of the marked points. In
this topology, MA

g,m(J) and MA′
g′,m′(J) for distinct triples (g,m,A) and (g′, m′, A′)

form distinct components of M(J), each of which may or may not be connected.
The main goal of this chapter will be to show that under suitable hypotheses,

a certain subset of M(J) is a smooth finite-dimensional manifold, with various
dimensions on different components. Its “expected” or virtual dimension on the
component containing a given curve u ∈ MA

g,m(J) is essentially a Fredholm index
with some correction terms, and depends on the topological data g, m and A. We’ll
use the convenient abbreviation,

c1(A) = 〈c1(TM, J), A〉.
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Definition 4.1.2. If dimRM = 2n, define the virtual dimension of the moduli
space MA

g,m(J) to be the integer

(4.1.2) vir-dimMA
g,m(J) = (n− 3)(2− 2g) + 2c1(A) + 2m.

For a curve u ∈ MA
g,0(J) without marked points, this number is also called the

index of u and denoted by

(4.1.3) ind(u) := vir-dimMA
g,0(J) = (n− 3)(2− 2g) + 2c1(A).

It is both interesting and important to consider the special case where M is a
single point: then MA

g,m(J) reduces to the moduli space of Riemann surfaces
with genus g and m marked points:

Mg,m = {(Σ, j, (z1, . . . , zm))}/ ∼,
with the equivalence and topology defined the same as above (all statements involv-
ing the map u are now vacuous). The elements (Σ, j,Θ) ∈ Mg,m are called pointed
Riemann surfaces, and each comes with an automorphism group

Aut(Σ, j,Θ) =
{
ϕ : (Σ, j) → (Σ, j) biholomorphic

∣∣ ϕ|Θ = Id
}
.

Similarly, a J-holomorphic curve (Σ, j, u,Θ) ∈ M(J) has an automorphism group

Aut(u) := Aut(Σ, j,Θ, u) := {ϕ ∈ Aut(Σ, j,Θ) | u = u ◦ ϕ}.
It turns out that in understanding the local structure of M(J), a special role is
played by holomorphic curves with trivial automorphism groups. The following
simple result was proved as Theorem 2.15.2 in Chapter 2, and it implies (via Ex-
ercise 4.1.6 below) that whenever any nontrivial holomorphic curves exist, one can
also find curves with trivial automorphism group.

Proposition 4.1.3. For any closed, connected and nonconstant J-holomorphic
curve u : (Σ, j) → (M,J), there exists a factorization u = v ◦ ϕ where

• v : (Σ′, j′) → (M,J) is a closed J-holomorphic curve that is embedded
outside a finite set of critical points and self-intersections, and

• ϕ : (Σ, j) → (Σ′, j′) is a holomorphic map of degree deg(ϕ) ≥ 1.

Moreover, v is unique up to biholomorphic reparametrization. �

Definition 4.1.4. The degree of ϕ : Σ → Σ′ in Prop. 4.1.3 is called the covering
number or covering multiplicity of u. If this is 1, then we say u is simple.

Definition 4.1.5. Given a smooth map u : Σ → M , a point z ∈ Σ is called an
injective point for u if du(z) : TzΣ → Tu(z)M is injective and u−1(u(z)) = {z}.
The map u is called somewhere injective if it has at least one injective point.

Proposition 4.1.3 implies that a closed connected J-holomorphic curve is some-
where injective if and only if it is simple. (For a word of caution about this statement,
see Remark 4.1.11 below.) We denote by

M∗(J) ⊂ M(J)
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the open subset consisting of all curves in M(J) that are somewhere injective. It
will also be useful to generalize this as follows: given an open subset U ⊂ M , define
the open subset

M∗
U(J) = {u ∈ M(J) | u has an injective point mapped into U}.

Exercise 4.1.6. Show that if u : (Σ, j) → (M,J) is somewhere injective then
Aut(u) is trivial (for any choice of marked points).

Exercise 4.1.7. Show that if u : (Σ, j) → (M,J) has covering multiplicity k ∈ N
then for any set of marked points Θ, the order of Aut(Σ, j,Θ, u) is at most k.

Recall that a subset Y in a complete metric space X is called a Baire subset or
said to be of second category if it is a countable intersection of open dense sets.2

The Baire category theorem implies that such subsets are also dense, and Baire
subsets are often used to define an infinite-dimensional version of the term “almost
everywhere,” i.e. they are analogous to sets whose complements have Lebesgue mea-
sure zero. It is common to say that a property is satisfied for generic choices of
data if the set of all possible data contains a Baire subset for which the property is
satisfied.

Since it is important for applications, we shall assume throughout this chapter
that M carries a symplectic structure ω, and focus our attention on the space of
ω-compatible almost complex structures J (M,ω) that was defined in §2.2; see Re-
mark 4.1.9 below on why this is not actually a restriction. We will also allow the
following generalization: given Jfix ∈ J (M,ω) and an open subset U ⊂M , define

J (M,ω ; U , Jfix) = {J ∈ J (M,ω) | J = Jfix on M \ U}.
If U has compact closure, then this space carries a natural C∞-topology and is
a Fréchet manifold.3 In the following sections we will prove several results which,
taken together, imply the following local structure theorem. Note that the important
special case U =M is allowed if M is compact, and in this case the choice of Jfix is
irrelevant.

Theorem 4.1.8. Suppose (M,ω) is a symplectic manifold without boundary,
U ⊂ M is an open subset with compact closure, and Jfix ∈ J (M,ω). Then there
exists a Baire subset Jreg(M,ω ; U , Jfix) ⊂ J (M,ω ; U , Jfix) such that for every J ∈
Jreg(M,ω ; U , Jfix), the space M∗

U(J) of J-holomorphic curves with injective points

2While this usage of the terms “Baire subset” and “second category” is considered standard
among symplectic topologists, the reader should beware that it is slightly at odds with the usage
in other fields. For instance, [Roy88] and other standard references define a subset Y ⊂ X to be
of second category (or nonmeager) if and only if it is not of first category (or meager), where the
latter means Y is a countable union of nowhere dense sets and thus is the complement of what we
are calling a Baire subset. Thus it would be better in principle to say comeager instead of “Baire”
or “second category”—but I will not attempt to change the habits of the symplectic community
single-handedly.

3We are not justifying the claim that it is a Fréchet manifold because we will not need to use
it, but this is not hard to prove using the local charts for J (Cn) defined in §2.2, together with a
bit of infinite-dimensional calculus from §2.12. In §4.4.1 we will make use of certain related spaces
which are Banach manifolds.
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mapped into U naturally admits the structure of a smooth finite-dimensional mani-
fold, and the evaluation map on this space is smooth. The dimension of M∗

U(J) ∩
MA

g,m(J) for any g,m ≥ 0 and A ∈ H2(M) is precisely the virtual dimension of

MA
g,m(J).

Note that M in the above statement need not be compact, but U must have
compact closure. In the case where M is compact and U = M , we will denote the
space Jreg(M,ω ; U , Jfix) simply by Jreg(M,ω).

Remark 4.1.9. The above theorem and all other important results in this chap-
ter remain true if J (M,ω) is replaced by the spaces of ω-tame or general almost
complex structures J τ (M,ω) or J (M); in fact, the equivalence of these last two
variations is obvious since J τ (M,ω) is an open subset of J (M). The symplectic
structure will play no role whatsoever in the proofs except to make one detail slightly
harder (see Lemma 4.4.12), thus it will be immediate that minor alterations of the
same proofs imply the same results for tame or general almost complex structures.

One of the important consequences of Theorem 4.1.8 is that for generic choices
of J , every connected component of the moduli space M∗(J) must have nonneg-
ative virtual dimension, as a smooth manifold of negative dimension is empty by
definition. Put another way, if a somewhere injective curve of negative index exists,
then one can always eliminate it by a small perturbation of J :

Corollary 4.1.10. If J ∈ Jreg(M,ω ; U , Jfix), then every curve u ∈ M(J) that
maps an injective point into U satisfies ind(u) ≥ 0.

Remark 4.1.11. By Proposition 4.1.3, a closed J-holomorphic curve u maps an
injective point into an open set U if and only if u is simple and intersects U . It should
be noted however that the equivalence of “simple” and “somewhere injective” does
not always hold in more general contexts, e.g. for holomorphic curves with totally
real boundary [Laz00,KO00]; in such cases, Corollary 4.1.10 generalizes in the form
stated.

An important related problem is to consider the space of Js-holomorphic curves,
where {Js} is a smooth homotopy of almost complex structures. Suppose {ωs}s∈[0,1]
is a smooth homotopy of symplectic forms on a closed manifold M , and given J0 ∈
J (M,ω0) and J1 ∈ J (M,ω1), define

J (M, {ωs} ; J0, J1)
to be the space of all smooth 1-parameter families {Js}s∈[0,1] connecting J0 to J1 such
that Js ∈ J (M,ωs) for all s. One can similarly define the spaces J τ (M,ω ; J0, J1)
and J (M ; J0, J1) of ω-tame or general 1-parameter families respectively, or more
general spaces of structures that are fixed outside an open subset U ⊂ M with
compact closure (in which case M need not be closed). All of these spaces have nat-
ural C∞-topologies. Given {Js} ∈ J (M, {ωs} ; J0, J1), we define the “parametric”
moduli space,

M({Js}) = {(s, u) | s ∈ [0, 1], u ∈ M(Js)},
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along with the corresponding space of somewhere injective curves M∗({Js}) and
the components MA

g,m({Js}) for each g,m ≥ 0, A ∈ H2(M). These also have natu-
ral topologies, and intuitively, we expect M∗({Js}) to be a manifold with boundary
M∗(J0)⊔M∗(J1). The only question is what should be the proper notion of “gener-
icity” to make this statement correct. Given a homotopy {Js} ∈ J (M, {ωs} ; J0, J1)
where J0 ∈ Jreg(M,ω0) and J1 ∈ Jreg(M,ω1), it would be too much to hope that
one can always perturb {Js} so that Js ∈ Jreg(M,ωs) for every s; by analogy with
the case of smooth Morse functions on a manifold, any two Morse functions are
indeed smoothly homotopic, but not through a family of Morse functions. What is
true however is that one can find “generic homotopies,” for which Js ∈ Jreg(M,ωs)
for almost every s ∈ (0, 1), and M∗({Js}) is indeed a manifold. The following is a
special case of more general results we will prove in §4.5.

Theorem 4.1.12. Assume M is a closed manifold with a smooth 1-parameter
family {ωs}s∈[0,1] of symplectic forms, J0 ∈ Jreg(M,ω0) and J1 ∈ Jreg(M,ω1). Then
there exists a Baire subset Jreg(M, {ωs} ; J0, J1) ⊂ J (M, {ωs} ; J0, J1) such that
for every {Js} ∈ Jreg(M, {ωs} ; J0, J1), the parametric space of somewhere injective
curves M∗({Js}) admits the structure of a smooth finite-dimensional manifold with
boundary

∂M∗({Js}) = ({0} ×M∗(J0)) ⊔ ({1} ×M∗(J1)) .

Its dimension near any (s, u) ∈ M∗({Js}) with u ∈ MA
g,m(Js) is vir-dimMA

g,m(Js)+
1. Moreover, for each s ∈ [0, 1] at which Js ∈ Jreg(M,ωs), s is a regular value of
the natural projection M∗({Js}) → [0, 1] : (s, u) 7→ s.

Corollary 4.1.13. For generic homotopies of compatible almost complex struc-
tures {Js} ∈ Jreg(M, {ωs} ; J0, J1) in the setting of Theorem 4.1.12, every somewhere
injective curve u ∈ M(Js) for any s ∈ [0, 1] satisfies ind(u) ≥ −1.

Remark 4.1.14. The result of Corollary 4.1.13 can actually be improved to
ind(u) ≥ 0 due to the numerical coincidence that according to (4.1.3), ind(u) is
always an even number. This observation is sometimes quite useful in applications,
but it fails to hold in more general settings, e.g. as we will see in later chapters,
moduli spaces of punctured holomorphic curves in symplectic cobordisms can have
odd dimension, in which case the natural generalization of Corollary 4.1.13 as stated
above is usually the best result possible.

Remark 4.1.15. Obvious generalizations of Theorem 4.1.12 and Corollary 4.1.13
also hold for ω-tame or general almost complex structures, and for structures fixed
outside an open precompact subset U (with curves required to have injective points
in U). This generalization requires no significantly new ideas outside of what we
will describe in the proof of Theorem 4.1.8.

The intuition behind Theorems 4.1.8 and 4.1.12 is roughly as follows. As we’ve
already seen, spaces of J-holomorphic curves typically can be described, at least
locally, as zero sets of sections of certain Banach space bundles, and we’ll show in
§4.3 precisely how to set up the appropriate section

∂̄J : B → E
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whose zero set locally describes MA
g,m(J). The identification between ∂̄−1

J (0) and

MA
g,m(J) near a given curve u ∈ MA

g,m(J) will in general be locally k-to-1, where
k is the order of the automorphism group Aut(u), and this means that even if
∂̄−1
J (0) is a manifold, MA

g,m(J) is at best an orbifold. This is a moot point of
course if u is somewhere injective, since it then has a trivial automorphism group
by Exercise 4.1.6. Thus once the section ∂̄J is set up, the main task is to show that
generic choices of J make ∂̄−1

J (0) a manifold (at least near the somewhere injective
curves), which means showing that the linearization of ∂̄J is always surjective. This
is a question of transversality, i.e. if we regard ∂̄J as an embedding of B into the
total space E and denote the zero section by Z ⊂ E , then ∂̄−1

J (0) is precisely the
intersection,

∂̄J (B) ∩ Z,
and it will be a manifold if this intersection is everywhere transverse. Intuitively,
one expects this to be true after a generic perturbation of ∂̄J , and it remains to check
whether the most geometrically natural perturbation, defined by perturbing J , is
“sufficiently generic” to achieve this.

The answer is yes and no: it turns out that perturbations of J are sufficiently
generic if we only consider somewhere injective curves, but not for multiple covers.
It’s not hard to see why transversality must sometimes fail: if ũ is a multiple cover
of u, then even if M(J) happens to be a manifold near u, there are certain obvious
relations between the components of M(J) containing u and ũ that will often cause
the latter to have “the wrong” dimension, i.e. something other than ind(ũ). For
example, suppose n = 4, so M is 8-dimensional, and for some J ∈ Jreg(M,ω)
there exists a simple J-holomorphic sphere u ∈ MA

0,0(J) with c1(A) = −1. Then
by (4.1.3), ind(u) = 0, and Theorem 4.1.8 implies that the component of M∗(J)
containing u is a smooth 0-dimensional manifold, i.e. a discrete set. In fact, the
implicit function theorem implies much more (cf. Theorem 4.3.8): it implies that
for any other Jǫ ∈ J (M,ω) sufficiently close to J , there is a unique Jǫ-holomorphic
curve uǫ that is a small perturbation of u. Now for each of these curves and some
k ∈ N, consider the k-fold cover

ũǫ : S
2 →M : z 7→ uǫ(z

k),

where as usual S2 is identified with the extended complex plane, so that z 7→ zk

defines a k-fold holomorphic branched cover S2 → S2. We have [ũǫ] = k[uǫ] = kA,
and thus

ind(ũǫ) = (n− 3)χ(S2) + 2c1(kA) = 2− 2k,

so if k ≥ 2 then ũǫ are Jǫ-holomorphic spheres with negative index. By construction,
these cannot be “perturbed away”: they exist for all Jǫ sufficiently close to J , which
shows that perturbations of J do not suffice to make M(J) into a smooth manifold
of the right dimension near ũ. In this situation it is not even clear if M(J) is a
manifold near ũ at all—in a few lucky situations one might be able to prove this,
but it is not true in general.

The failure of Theorems 4.1.8 and 4.1.12 for multiply covered J-holomorphic
curves is one of the great headaches of symplectic topology, and the major reason
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why fully general definitions of the various invariants based on counting holomor-
phic curves (Gromov-Witten theory, Floer homology, Symplectic Field Theory) are
often so technically difficult as to be controversial. There have been many sug-
gested approaches to the problem, most requiring the introduction of complicated
new structures, e.g. virtual moduli cycles, Kuranishi structures, polyfolds. In some
fortunate situations one can avoid these complications by using topological con-
straints to rule out the appearance of any multiple covers in the moduli space of
interest—we’ll see examples of this in our applications, especially in dimension four.

Remark 4.1.16. As indicated above, we normally will not need to assume M
is compact in this discussion, but the region U where we permit perturbations of
the almost complex structure is required to have compact closure. This restriction
is useful for various technical reasons, e.g. it makes it relatively straightforward to
define Banach manifolds in which the perturbed almost complex structures live;
without this assumption, one can still do something, but it requires considerably
more care.

Here is an important class of examples where M is noncompact: suppose M is a
symplectic cobordism with cylindrical ends, in which case it can be decomposed as

M = ((−∞, 0]× V−) ∪M0 ∪ ([0,∞)× V+),

where V± are closed manifolds and M0 is compact with ∂M0 = V− ⊔ V+. One can
then restrict attention to a space of almost complex structures that are fixed on the
cylindrical ends, but can vary on the compact subset M0, and a generic subset of
this space ensures regularity for all holomorphic curves in M that send an injective
point to the interior of M0. For curves that live entirely in the cylindrical ends, one
can exploit the fact that V± is compact and argue separately that a generic choice of
R-invariant almost complex structure on the ends achieves transversality. We will
come back to this in a later chapter.

4.2. Classification of pointed Riemann surfaces

4.2.1. Automorphisms and Teichmüller space. In order to understand the
local structure of the moduli space of J-holomorphic curves, we will first need to
consider the space of pointed Riemann surfaces, which appear as domains of such
curves. In particular, we will need suitable local parametrizations of Mg,m near any
given complex structure on Σ. The discussion necessarily begins with the following
classical result, which is proved e.g. in [FK92].

Theorem 4.2.1 (Uniformization theorem). Every simply connected Riemann
surface is biholomorphically equivalent to either the Riemann sphere S2 = C∪{∞},
the complex plane C or the upper half plane H = {Im z > 0} ⊂ C.

We will always use i to denote the standard complex structure on the Riemann
sphere S2 = C ∪ {∞} ∼= CP 1 or the plane C. The pullback of i via the diffeomor-
phism

(4.2.1) R× S1 → C \ {0} : (s, t) 7→ e2π(s+it)
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yields a natural complex structure on the cylinder R × S1, which we’ll also denote
by i; it satisfies i∂s = ∂t.

The uniformization theorem implies that every Riemann surface can be presented
as a quotient of either (S2, i), (C, i) or (H, i) by some freely acting discrete group of
biholomorphic transformations. We will be most interested in the punctured surfaces
(Σ̇, j) where (Σ, j,Θ) is a pointed Riemann surface and Σ̇ = Σ\Θ. The only surface
of this form that has S2 as its universal cover is S2 itself. It is almost as easy to see
which surfaces are covered by C, as the only biholomorphic transformations on (C, i)
with no fixed points are the translations, so every freely acting discrete subgroup of
Aut(C, i) is either trivial, a cyclic group of translations or a lattice. The resulting
quotients are, respectively, (C, i), (R×S1, i) ∼= (C\{0}, i) and the unpunctured tori
(T 2, j). All other punctured Riemann surfaces have (H, i) as their universal cover,
and not coincidentally, these are precisely the cases in which χ(Σ \Θ) < 0.

Proposition 4.2.2. There exists on (H, i) a complete Riemannian metric gP of
constant curvature −1 that defines the same conformal structure as i and has the
property that all conformal transformations on (H, i) are also isometries of (H, gP ).

Proof. We define gP at z = x+ iy ∈ H by

gP =
1

y2
gE,

where gE is the Euclidean metric. The conformal transformations on (H, i) are given
by fractional linear transformations

Aut(H, i) =

{
ϕ(z) =

az + b

cz + d

∣∣∣ a, b, c, d ∈ R, ad− bc = 1

}/
{±1}

= SL(2,R)/{±1} =: PSL(2,R),

and one can check that each of these defines an isometry with respect to gP . One
can also compute that gP has curvature −1, and the geodesics of gP are precisely
the lines and semicircles that meet R orthogonally, parametrized so that they exist
for all forward and backward time, thus gP is complete. For more details on all of
this, the book by Hummel [Hum97] is highly recommended. �

By lifting to universal covers, this implies the following.

Corollary 4.2.3. For every pointed Riemann surface (Σ, j,Θ) such that χ(Σ \
Θ) < 0, the punctured Riemann surface (Σ \ Θ, j) admits a complete Riemannian
metric gP of constant curvature −1 that defines the same conformal structure as j,
and has the property that all biholomorphic transformations on (Σ \ Θ, j) are also
isometries of (Σ \Θ, gP ).

The metric gP in Prop. 4.2.2 and Cor. 4.2.3 is often called the Poincaré metric.
The above discussion illustrates a general pattern in the study of pointed Rie-

mann surfaces: it divides naturally into the study of punctured surfaces with nega-
tive Euler characteristic and finitely many additional cases.

Definition 4.2.4. A pointed surface (Σ,Θ) is said to be stable if χ(Σ\Θ) < 0.

154 Chris Wendl

Lemma 4.2.5. If (Σ, j,Θ) is a pointed Riemann surface with χ(Σ \ Θ) < 0 and
ϕ ∈ Aut(Σ, j,Θ) is not the identity, then ϕ is also not homotopic to the identity.

Proof. By assumption ϕ 6= Id, thus by a simple unique continuation argument,
it has finitely many fixed points, each of which counts with positive index since ϕ
is holomorphic. The algebraic count of fixed points is thus at least m = #Θ. But if
ϕ is homotopic to Id, then this count must equal χ(Σ) by the Lefschetz fixed point
theorem, contradicting the assumption χ(Σ) < #Θ. �

The lemma implies that Aut(Σ, j,Θ) is always a discrete group when (Σ,Θ) is
stable. In fact more is true:

Proposition 4.2.6. If (Σ, j,Θ) is a closed pointed Riemann surface with either
genus at least 1 or #Θ ≥ 3, then Aut(Σ, j,Θ) is compact.

Corollary 4.2.7. If (Σ,Θ) is stable then Aut(Σ, j,Θ) is finite.

Prop. 4.2.6 follows from the more general Lemma 4.2.8 below, which we’ll use
to show that Mg,m is Hausdorff, among other things. We should note that the
corollary can be strengthened considerably, for instance one can find a priori bounds
on the order of Aut(Σ, j) in terms of the genus, cf. [SS92, Theorem 3.9.3]. For our
purposes, the knowledge that Aut(Σ, j,Θ) is finite will be useful enough. As we’ll
review below, automorphism groups in the non-stable cases are not discrete and
sometimes not even compact, though they are always smooth Lie groups.

It will be convenient to have an alternative (equivalent) definition of Mg,m, the
moduli space of Riemann surfaces. Fix any smooth oriented closed surface Σ with
genus g and an ordered set of distinct points Θ = (z1, . . . , zm) ⊂ Σ. Then Mg,m is
homeomorphic to the quotient

M(Σ,Θ) := J (Σ)/Diff+(Σ,Θ),

where J (Σ) is the space of smooth almost complex structures on Σ and Diff+(Σ,Θ)
is the space of orientation-preserving diffeomorphisms ϕ : Σ → Σ such that ϕ|Θ = Id.
Here the action of Diff+(Σ,Θ) on J (Σ) is defined by the pullback,

Diff+(Σ,Θ)×J (Σ) → J (Σ) : (ϕ, j) 7→ ϕ∗j.

Informally speaking, J (Σ) is an infinite-dimensional manifold, and we expect
M(Σ,Θ) also to be a manifold if Diff+(Σ,Θ) acts freely and properly. The trouble is
that in general, it does not: each j ∈ J (Σ) is preserved by the subgroup Aut(Σ, j,Θ).
A solution to this complication is suggested by Lemma 4.2.5: if we consider not the
action of all of Diff+(Σ,Θ) but only the subgroup

Diff0(Σ,Θ) = {ϕ ∈ Diff+(Σ,Θ) | ϕ is homotopic to Id},
then at least in the stable case, the group acts freely on J (Σ). We take this as
motivation to study, as something of an intermediate step, the quotient

T (Σ,Θ) := J (Σ)/Diff0(Σ,Θ).

This is the Teichmüller space of genus g, m-pointed surfaces. It is useful mainly
because its local structure is simpler than that of M(Σ,Θ)—we’ll show below that it
is always a smooth finite-dimensional manifold, and its dimension can be computed
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using the Riemann-Roch formula. The actual moduli space of Riemann surfaces can
then be understood as the quotient of Teichmüller space by a discrete group:

M(Σ,Θ) = T (Σ,Θ)/M(Σ,Θ),

where M(Σ,Θ) is the mapping class group,

M(Σ,Θ) := Diff+(Σ,Θ)/Diff0(Σ,Θ).

Recall that a topological group G acting continuously on a topological space X
is said to act properly if the map G × X → X × X : (g, x) 7→ (gx, x) is proper:
this means that for any sequences gn ∈ G and xn ∈ X such that both xn and gnxn
converge, gn has a convergent subsequence. This is the condition one needs in order
to show that the quotient M/G is Hausdorff. Thus for the action of Diff+(Σ,Θ) or
Diff0(Σ,Θ) on J (Σ), we need the following compactness lemma, which also implies
Prop. 4.2.6. We’ll state it for now without proof, but will later be able to prove it
using a simple case of the “bubbling” arguments in the next chapter.

Lemma 4.2.8. Suppose either Σ has genus at least 1 or #Θ ≥ 3. If ϕk ∈
Diff+(Σ,Θ) and jk ∈ J (Σ) are sequences such that jk → j and ϕ∗

kjk → j′ in the
C∞-topology, then ϕk has a subsequence that converges in C∞ to a diffeomorphism
ϕ ∈ Diff+(Σ,Θ) with ϕ∗j = j′.

This implies that both Diff+(Σ,Θ) and Diff0(Σ,Θ) act properly on J (Σ), so
M(Σ,Θ) and T (Σ,Θ) are both Hausdorff. This is also trivially true in the cases
g = 0, m ≤ 2, as then Diff0(S

2,Θ) = Diff+(S
2,Θ) and the uniformization theorem

implies that M(S2,Θ) = T (S2,Θ) is a one point space.
We now examine the extent to which the discrete group M(Σ,Θ) does not act

freely on T (Σ,Θ).

Exercise 4.2.9. Show that for any stable pointed Riemann surface (Σ, j,Θ),
the restriction to Aut(Σ, j,Θ) of the natural quotient map Diff+(Σ,Θ) → M(Σ,Θ)
defines an isomorphism from Aut(Σ, j,Θ) to the stabilizer of [j] ∈ T (Σ,Θ) under
the action of M(Σ,Θ).

Combining Exercise 4.2.9 with Corollary 4.2.7 above, we see that every point in
Teichmüller space has a finite isotropy group under the action of the mapping class
group; we’ll see below that this is also true in the non-stable cases. This gives us the
best possible picture of the local structure of Mg,m: it is not a manifold in general,
but locally it looks like a quotient of Euclidean space by a finite group action.
Hausdorff topological spaces with this kind of local structure are called orbifolds.
The curious reader may consult the first section of [FO99] for the definition and
basic properties of orbifolds, which we will not go into here, except to state the
following local structure result for Mg,m.

Theorem 4.2.10. Mg,m is a smooth orbifold whose isotropy subgroup at (Σ, j,Θ) ∈
Mg,m is Aut(Σ, j,Θ); in particular, Mg,m is a manifold in a neighborhood of any
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pointed Riemann surface (Σ, j,Θ) that has trivial automorphism group. Its dimen-
sion is

dimMg,m =





6g − 6 + 2m if 2g +m ≥ 3,

2 if g = 1 and m = 0,

0 otherwise.

Note that the inequality 2g + m ≥ 3 is precisely the stability condition for a
genus g surface with m marked points.

The main piece of hard work that needs to be done now is proving that Te-
ichmüller space really is a smooth manifold of the correct dimension, and in fact
it will be useful to have local slices in J (Σ) that can serve as charts for T (Σ,Θ).
To that end, fix a pointed Riemann surface (Σ, j,Θ) and consider the nonlinear
operator

∂̄j : B1,p
Θ → E0,p : ϕ 7→ Tϕ+ j ◦ Tϕ ◦ j,

where p > 2,

B1,p
Θ =

{
ϕ ∈ W 1,p(Σ,Σ)

∣∣ ϕ|Θ = Id
}
,

and E0,p →W 1,p(Σ,Σ) is the Banach space bundle with fibers

E0,p
ϕ = Lp(HomC(TΣ, ϕ

∗TΣ)).

The zeroes of ∂̄j are the holomorphic maps from Σ to itself that fix the marked
points, and in particular a neighborhood of Id in ∂̄−1

j (0) gives a local description of
Aut(Σ, j,Θ). We have

TIdB1,p
Θ =W 1,p

Θ (TΣ) := {X ∈ W 1,p(TΣ) | X(Θ) = 0},
which is a closed subspace ofW 1,p(TΣ) with real codimension 2m. The linearization

D(j,Θ) := D∂̄j(Id) : W
1,p
Θ (TΣ) → Lp(EndC(TΣ))

is then the restriction to W 1,p
Θ (TΣ) of the natural linear Cauchy-Riemann operator

defined by the holomorphic structure of (TΣ, j). By Riemann-Roch, the latter has
index χ(Σ) + 2c1(TΣ) = 3χ(Σ), thus D(j,Θ) has index

(4.2.2) ind(D(j,Θ)) = 3χ(Σ)− 2m.

Exercise 4.2.11. Show that if A : X → Y is a Fredholm operator and X0 ⊂ X
is a closed subspace of codimension N , then A|X0 is also Fredholm and has index
ind(A)−N .

Proposition 4.2.12. If χ(Σ \Θ) < 0 then D(j,Θ) is injective.

Proof. By the similarity principle, any nontrivial section X ∈ kerD(j,Θ) has
finitely many zeroes, each of positive order, and there are at least m of them since
X|Θ = 0. Thus χ(Σ) = c1(TΣ) ≥ m, which contradicts the stability assumption. �

Observe that Prop. 4.2.12 provides an alternative proof of the fact that Aut(Σ, j,Θ)
is always discrete in the stable case.
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The target space of D(j,Θ) contains Γ(EndC(TΣ)), which one can think of as the
“tangent space” to J (Σ) at j. In particular, any smooth family jt ∈ J (Σ) with
j0 = j has

∂tjt|t=0 ∈ Γ(EndC(TΣ)).

We shall now use D(j,Θ) to define a special class of smoothly parametrized families
in J (Σ).

Definition 4.2.13. For any j ∈ J (Σ), a Teichmüller slice through j is a
smooth family of almost complex structures parametrized by an injective map

O → J (Σ) : τ 7→ jτ ,

where O is a neighborhood of 0 in some finite-dimensional Euclidean space, with
j0 = j and the following transversality property. If TjT ⊂ Γ(EndC(TΣ)) denotes the
vector space of all “tangent vectors” ∂tjτ(t)|t=0 determined by smooth paths τ(t) ∈ O
through τ(0) = 0, then

Lp(EndC(TΣ)) = imD(j,Θ) ⊕ TjT .
We will typically denote a Teichmüller slice simply by the image

T := {jτ | τ ∈ O} ⊂ J (Σ),

and think of this as a smoothly embedded finite-dimensional submanifold of J (Σ)
whose tangent space at j is TjT . Note that the definition doesn’t depend on p; in
fact, one would obtain an equivalent definition by regarding D(j,Θ) as an operator

from W k,p
Θ to W k−1,p for any k ∈ N and p > 2.

It is easy to see that Teichmüller slices always exist. Given j ∈ J (Σ), pick
any complement of imD(j,Θ), i.e. a subspace C ⊂ Lp(EndC(TΣ)) of dimension
dim cokerD(j,Θ) whose intersection with imD(j,Θ) is trivial. By approximation, we
may assume every section in C is smooth. We can then choose a small neighborhood
O ⊂ C of 0 and define the map

(4.2.3) O → J (Σ) : y 7→ jy =

(
1+

1

2
jy

)
j

(
1+

1

2
jy

)−1

,

which has the properties j0 = j and ∂tjty|t=0 = y, thus it is injective ifO is sufficiently
small. This family is a Teichmüller slice through j.

Let πΘ : J (Σ) → T (Σ,Θ) : j 7→ [j] denote the quotient projection.

Theorem 4.2.14. T (Σ,Θ) admits the structure of a smooth finite-dimensional
manifold, and for any (Σ, j,Θ) there are natural isomorphisms

TId Aut(Σ, j,Θ) = kerD(j,Θ), T[j]T (Σ,Θ) = cokerD(j,Θ).

In particular,

(4.2.4) dim T (Σ,Θ)− dimAut(Σ, j,Θ) = − indD(j,Θ) = 6g − 6 + 2m.

Moreover for any Teichmüller slice T ⊂ J (Σ) through j, the projection

(4.2.5) πΘ|T : T → T (Σ,Θ)

is a local diffeomorphism near j.
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We’ll prove this in the next few sections separately for the non-stable and stable
cases. Observe that in the stable case, dimAut(Σ, j,Θ) = 0 and thus (4.2.4) gives
6g − 6 + 2m as the dimension of Teichmüller space.

It should be intuitively clear why kerD(j,Θ) is the same as TId Aut(Σ, j,Θ),
though since D(j,Θ) will usually not be surjective, we still have to do something—it
doesn’t follow immediately from the implicit function theorem. The relationship
between T[j]T (Σ,Θ) and cokerD(j,Θ) is also not difficult to understand, though here
we’ll have to deal with a few analytical subtleties. Intuitively, T[j]T (Σ,Θ) should
be complementary to the tangent space at j ∈ J (Σ) to its orbit under the action of
Diff0(Σ,Θ). Without worrying about the analytical details for the moment, consider
a smooth family of diffeomorphisms ϕτ ∈ Diff0(Σ,Θ) with ϕ0 = Id and

∂τϕτ |τ=0 = X,

a smooth vector field that vanishes at the marked points Θ. Then choosing a sym-
metric complex connection on Σ and differentiating the action (ϕτ , j) 7→ ϕ∗

τj, a short
computation yields

∂

∂τ
ϕ∗
τj

∣∣∣∣
τ=0

=
∂

∂τ

[
(Tϕτ )

−1 ◦ j ◦ Tϕτ

]∣∣∣∣
τ=0

= −∇X ◦ j + j ◦ ∇X

= j(∇X + j ◦ ∇X ◦ j).
(4.2.6)

Note that ∇ can be chosen to be the natural connection in some local holomorphic
coordinates, in which case the last expression in parentheses above is simply the
natural linear Cauchy-Riemann operator on TΣ with complex structure j. Since
this operator is complex-linear, its image is not changed by multiplication with j,
and we conclude that the tangent space to the orbit is precisely the image of D(j,Θ),
acting on smooth vector fields that vanish at the marked points.

4.2.2. Spheres with few marked points. A pointed surface (Σ,Θ) of genus g
with m marked points is stable whenever 2g+m ≥ 3. The alternative includes three
cases for g = 0, and here uniformization tells us that (S2, j) is equivalent to (S2, i)
for every possible j. Further, one can choose a fractional linear transformation to
map up to three marked points to any points of our choosing, thus Mg,m is a one
point space in each of these cases. We can now easily identify the automorphism
groups for each.

• g = 0, m = 0: (Σ, j) ∼= (S2, i), and Aut(S2, i) is the real 6-dimensional
group of fractional linear transformations,

Aut(S2, i) =

{
ϕ(z) =

az + b

cz + d

∣∣∣ a, b, c, d ∈ C, ad− bc = 1

}/
{±1}

= SL(2,C)/{±1} =: PSL(2,C).

These are also called the Möbius transformations.
• g = 0, m = 1: (Σ, j,Θ) = (S2, i, (∞)) and

Aut(S2, i, (∞)) = Aut(C, i) = {ϕ(z) = az + b | a, b ∈ C},
a real 4-dimensional group.
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• g = 0, m = 2: (Σ, j,Θ) = (S2, i, (0,∞)) and

Aut(S2, i, (0,∞)) = {ϕ(z) = az | a ∈ C},
a real 2-dimensional group. Using the biholomorphic map (4.2.1), one can
equivalently think of this as the group of translations on the standard cylin-
der (R× S1, i).

Proposition 4.2.15. For each (S2, i,Θ) ∈ M0,m with m ≤ 2, D(i,Θ) is surjective
and dim kerD(i,Θ) = dimAut(S2, i,Θ).

Proof. From (4.2.2), ind(D(i,Θ)) = 3χ(Σ)− 2m = 6− 2m = dimAut(S2, i,Θ),
so it will suffice to prove that dim kerD(i,Θ) is not larger than 6 − 2m. To see this,
pick 3−m distinct points ζ1, . . . , ζ3−m ∈ Σ \Θ and consider the linear map

Φ : kerD(i,Θ) → Tζ1Σ⊕ . . .⊕ Tζ3−m
Σ : X 7→ (X(ζ1), . . . , X(ζ3−m)).

The right hand side is a vector space of real dimension 6 − 2m, so the result will
follow from the claim that Φ is injective. Indeed, if η ∈ kerD(i,Θ) and Φ(η) = 0,
then the similarity principle implies that each zero counts positively, and the points
ζ1, . . . , ζ3−m combined with Θ imply c1(TS

2) ≥ 3−m+m = 3, giving a contradiction
unless X ≡ 0. �

By the above proposition, the implicit function theorem defines a smooth man-
ifold structure on ∂̄−1

i (0) ⊂ B1,p
Θ near Id and yields a natural isomorphism

TId Aut(S
2, i,Θ) = kerD(i,Θ).

Exercise 4.2.16. Show that for m ≥ 3, Aut(S2, i,Θ) is always trivial and M0,m

is a smooth manifold of real dimension 2(m− 3).

4.2.3. The torus. The remaining item on the list of non-stable pointed sur-
faces is the torus with no marked points, and this is the one case where both the
automorphism groups and the Teichmüller space have positive dimension. Thus
we’ll see that D(j,Θ) is neither surjective nor injective, but fortunately the torus is a
simple enough manifold so that everything can be computed explicitly.

The universal cover of (T 2, j) is the complex plane, which implies that (T 2, j)
is biholomorphically equivalent to (C/Λ, i) for some lattice Λ ⊂ C. Without loss of
generality, we can take Λ = Z + λZ for some λ ∈ H. Then choosing a real-linear
map that sends 1 to itself and λ to i, we can write T 2 = C/(Z+ iZ) and identify

(C/Λ, i) ∼= (T 2, jλ),

where jλ is some translation invariant complex structure on C that is compatible
with the standard orientation. Conversely, every such translation invariant complex
structure can be obtained in this way and descends to a complex structure on T 2.

Proposition 4.2.17. [jλ] = [jλ′ ] in T (T 2) if and only if λ = λ′.

Proof. If jλ = ϕ∗jλ′ for some ϕ ∈ Diff0(T
2), then ϕ can be lifted to a diffeomor-

phism of C that (after composing with a translation) fixes the lattice Z+ iZ. Now
composing with the linear map mentioned above, this gives rise to a biholomorphic
map ψ : C → C such that ψ(0) = 0, ψ(1) = 1 and ψ(λ) = λ′. But all biholomorphic
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maps on C have the form ψ(z) = az + b, and the conditions at 0 and 1 imply b = 0
and a = 1, thus λ = λ′. �

This shows that T (T 2) is a smooth 2-manifold that can be identified naturally
with the upper half plane H, and the set of translation invariant complex structures

T := {jλ ∈ J (T 2) | λ ∈ H}
defines a global parametrization. We’ll see below that it is also a Teichmüller slice
in the sense of Definition 4.2.13.

To understand the action of M(T 2) = Diff+(T
2)/Diff0(T

2) on T (T 2), note that
every element of M(T 2) can be represented uniquely as a matrix A ∈ SL(2,Z),
which is determined by its induced isomorphism on H1(T

2) = Z2. Then A∗jλ is
another translation invariant complex structure jλ′ for some λ′ ∈ H, and

[A] · [jλ] = [A∗jλ] = [jλ′ ].

Thus the stabilizer of [jλ] under this action is the subgroup

Gλ := {A ∈ SL(2,Z) | A∗jλ = jλ}.
This is also a subgroup of Aut(T 2, jλ), and a complementary (normal) subgroup is
formed by the intersection Aut(T 2, jλ) ∩Diff0(T

2).

Proposition 4.2.18. Every ϕ ∈ Aut(T 2, jλ) that fixes (0, 0) ∈ T 2 belongs to
Gλ, and every ϕ ∈ Aut(T 2, jλ) ∩ Diff0(T

2) is a translation ϕ(z) = z + ζ for some
ζ ∈ T 2.

Proof. The first statement follows by a repeat of the argument used in the
proof of Prop. 4.2.17 above: if ϕ ∈ Aut(T 2, jλ) fixes (0, 0), then regarding it as a
diffeomorphism on C/Λ, it lifts to a biholomorphic map on C which must be of the
form ψ(z) = cz for c ∈ C \ {0}, implying that ϕ is the projection to T 2 = C/Z2 of
a real-linear map on C which preserves the lattice Z+ iZ, and thus ϕ ∈ SL(2,Z).

The second statement follows because one can compose any ϕ ∈ Aut(T 2, jλ) ∩
Diff0(T

2) with translations until it fixes (0, 0), and conclude that the composed map
is in SL(2,Z) ∩ Diff0(T

2) = {1}. �

Denoting the translation subgroup by T 2 ⊂ Aut(T 2, jλ), we see now that the
total automorphism group is the semidirect product

Aut(T 2, jλ) = T 2 ⋊Gλ,

and is thus a smooth 2-dimensional manifold.

Proposition 4.2.19. For each [jλ] ∈ T (T 2), Gλ is finite.

Proof. The claim follows from the fact that Gλ is compact, which we show
as follows. Choose a new real basis (ê1, ê2) for C = R2 such that ê1 is a positive
multiple of e1, ê2 = jλê1 and the parallelogram spanned by ê1 and ê2 has area 1.
Expressing any matrix A ∈ Gλ in this basis, A now belongs to both GL(1,C) and
SL(2,R), whose intersection

GL(1,C) ∩ SL(2,R) = U(1)

is compact. �
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By this result, Aut(T 2, j) is always compact, as was predicted by Prop. 4.2.6.
Moreover, the stabilizer of any element of T (T 2) under the action ofM(T 2) is finite,
so we conclude that

M2,0
∼= T (T 2)/M(T 2) ∼= H/ SL(2,Z)

is a smooth 2-dimensional orbifold, and is a manifold near any [jλ] for which Gλ is
trivial.

Exercise 4.2.20. Show that Gλ is trivial for all λ in an open and dense subset
of H.

Let us now relate the above descriptions of T (T 2) and Aut(T 2, j) to the natural
Cauchy-Riemann operator

Dj :W
1,p(TT 2) → Lp(EndC(TT

2))

on (TT 2, j). After an appropriate diffeomorphism we can assume without loss of
generality that j = jλ ∈ T for some λ ∈ H. Then identifying TT 2 with T 2 × C via
the natural global complex trivialization, Dj is equivalent to the standard Cauchy-
Riemann operator

∂̄ = ∂s + i∂t : W
1,p(T 2,C) → Lp(T 2,C),

whose kernel is the real 2-dimensional space of constant functions, which is precisely
TId Aut(T

2, jλ) since Aut(T
2, jλ) consists infinitessimally of translations. Meanwhile,

the formal adjoint D∗
j is equivalent to

∂ = ∂s − i∂t :W
1,p(T 2,C) → Lp(T 2,C),

whose kernel is again the space of constant functions, and this is precisely TjλT .

4.2.4. The stable case. Assume 2g +m ≥ 3. We’ve already seen that in this
case Aut(Σ, j,Θ) is finite and D(j,Θ) is injective, so Theorem 4.2.14 now reduces
to the statement that T (Σ,Θ) is a smooth manifold whose tangent space at [j] is
cokerD(j,Θ), and local charts are given by Teichmüller slices. We argued informally
above that the tangent space at j ∈ J (Σ) to its orbit under Diff0(Σ,Θ) is the image
of D(j,Θ), which motivates the belief that T (Σ,Θ) should locally look like a quotient
of this image, i.e. the cokernel of D(j,Θ).

A naive attempt to make this precise might now proceed by considering Banach
manifold completions of J (Σ) and Diff0(Σ,Θ) and arguing that the extension of

Φ : Diff0(Σ,Θ)× J (Σ) → J (Σ) : (ϕ, j) 7→ ϕ∗j

to these completions defines a smooth Banach Lie group action that is free and
proper, so the quotient is a manifold whose tangent space is the quotient of the rel-
evant tangent spaces. But this approach runs into a subtle analytical complication:
the partial derivative of the map Φ with respect to the first factor must have the
form

D1Φ(Id, j)X = jD(j,Θ)X,
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and if j is not smooth, then the right hand side will always be one step less smooth
than j. Indeed, D(j,Θ) is in this case a nonsmooth Cauchy-Riemann type opera-
tor, and we can see it more clearly by redoing the computation (4.2.6) in smooth
coordinates that are not holomorphic: this yields a local expression of the form

∂

∂τ
ϕ∗
τj

∣∣∣∣
τ=0

= j(dX + j ◦ dX ◦ j) + dj(X).

Since this involves the first derivative of j, the expression for D1Φ(Id, j)X can never
lie in the appropriate Banach space completion of TjJ (Σ), but rather in a larger
Banach space that contains it. This means that Φ is not differentiable—indeed,
this is another example (cf. Exercise 2.12.1) of a natural map between infinite-
dimensional spaces that can never be differentiable in any conventional Banach
space setting. It is probably still true that one can make a precise argument out of
this idea, but it would require a significantly different analytical framework than just
smooth maps on Banach manifolds, e.g. one might attempt to use the category of sc-
smooth Banach manifolds (cf. [Hof]). Another alternative, using the correspondence
between conformal structures and hyperbolic metrics on stable Riemann surfaces, is
explained in [Tro92].

Instead of trying to deal with global Banach Lie group actions, we will prove
the theorem by constructing smooth charts directly via local Teichmüller slices T ⊂
J (Σ). We will indeed need to enlarge Diff0(Σ,Θ) and J (Σ) to Banach manifolds
containing non-smooth objects, but the key observation is that since every object in
the slice T is smooth by assumption, the orbit of any j ∈ T can still be understood
as a smooth Banach submanifold. The following argument was explained to me by
Dietmar Salamon, on a napkin.

Proof of Theorem 4.2.14 in the stable case. For k ∈ N and p > 2, let
J k,p(Σ) denote the space of W k,p-smooth almost complex structures on Σ, and for
k ≥ 2, let

Dk,p
Θ ⊂W k,p

Θ (Σ,Σ)

denote the open subset consisting of all ϕ ∈ W k,p
Θ (Σ,Σ) which are C1-smooth dif-

feomorphisms. Choose j0 ∈ J (Σ) and suppose T ⊂ J (Σ) is a Teichmüller slice
through j0. This implies that Tj0T ⊂ Γ(EndC(TΣ)) is complementary to the image
of

D(j0,Θ) : W
k,p
Θ (TΣ) →W k−1,p(EndC(TΣ))

for all k ∈ N.
Since every j ∈ T is smooth, the orbit of j under the natural action of Dk+1,p

Θ is
in J k,p(Σ); in fact the map

(4.2.7) F : Dk+1,p
Θ × T → J k,p(Σ) : (ϕ, j) 7→ ϕ∗j

is smooth and has derivative

dF (Id, j0) : W
k+1,p
Θ ⊕ Tj0T → W k,p(EndC(TΣ))

(X, y) 7→ j0D(j0,Θ)X + y.
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This map is an isomorphism, thus by the inverse function theorem, F is a smooth
diffeomorphism between open neighborhoods of (Id, j0) ∈ Dk+1,p

Θ × T and j0 ∈
J k,p(Σ).

We claim now that after shrinking T if necessary, the projection πΘ : T →
T (Σ,Θ) is a bijection onto a neighborhood of [j0]. It is clearly surjective, since
every j ∈ J (Σ) in some neighborhood of j0 is in the image of F . To see that
it is injective, we essentially use the fact that Diff0(Σ,Θ) acts freely and properly
on J (Σ). Indeed, we need to show that there is no pair of sequences jk 6= j′k ∈ T
both converging to j0, such that jk = ϕ∗

kj
′
k for some ϕk ∈ Diff0(Σ,Θ). If there are

such sequences, then by Lemma 4.2.8, ϕk also has a subsequence converging to some
ϕ ∈ Diff0(Σ,Θ) with ϕ∗j0 = j0, thus ϕ = Id. But then ϕk is near the identity in

Dk+1,p
Θ for sufficiently large k, and F (ϕk, j

′
k) = jk implies (ϕk, j

′
k) = (Id, jk) since F

is locally invertible.
Finally, we show that the bijection induced by any other choice of slice T ′ through

j0 to a neighborhood of [j0] in T (Σ,Θ) yields a smooth transition map T ′ → T :
j′ 7→ j. Indeed, this transition map must satisfy the relation

(ϕ, j) = F−1 ◦ F ′(ϕ′, j′)

for any ϕ, ϕ′ ∈ Dk+1,p
Θ , where F ′ : Dk+1,p

Θ × T ′ → J k,p(Σ) is the corresponding local
diffeomorphism defined for T ′ as in (4.2.7). Explicitly then, j = pr2 ◦F−1◦F ′(Id, j′),
which is clearly a smooth map. �

Exercise 4.2.21. Using the Banach manifold charts constructed in the above
proof, show that for any j ∈ J (Σ) and Teichmüller slice T through j, the projection

Lp(EndC(TΣ)) → TjT
along imD(j,Θ) descends to an isomorphism cokerD(j,Θ) → T[j]T (Σ,Θ) that is inde-
pendent of all choices.

4.3. Fredholm regularity and the implicit function theorem

With the local structure of Mg,m understood, we now turn our attention back to
M(J), the moduli space of J-holomorphic curves. It is unfortunately not true that
M(J) is always locally a finite-dimensional manifold, nor even an orbifold. We need
an extra condition to guarantee this, called Fredholm regularity. To understand it,
we must first set up the appropriate version of the implicit function theorem.

The setup will be analogous to the case of Mg,m in the following sense. In the
previous section, we analyzed Mg,m by first understanding the Teichmüller space
T (Σ,Θ). The latter is a somewhat unnatural object in that its definition depends
on choices (i.e. the surface Σ and marked points Θ ⊂ Σ), but it has the advantage
of being a smooth finite-dimensional manifold. Then the moduli space Mg,m was
understood as the quotient of T (Σ,Θ) by a discrete group action with finite isotropy
groups: in fact, locally near a given [j] ∈ T (Σ,Θ), a neighborhood in Mg,m looks
like a quotient of T (Σ,Θ) by a finite group (Aut(Σ, j,Θ) in the stable case), which
makes Mg,m an orbifold of the same dimension as T (Σ,Θ).
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In the more general setup, we will be able to identify MA
g,m(J) locally near a

curve (Σ, j,Θ, u) with a quotient of the form

∂̄−1
J (0)/Aut(u),

where ∂̄J is a generalization of the nonlinear Cauchy-Riemann operator that we con-
sidered in Chapter 3, using local Teichmüller slices to incorporate varying complex
structures on the domain. Its zero set thus contains all J-holomorphic curves in
some neighborhood of u, but it may also include seemingly distinct curves that are
actually equivalent in the moduli space, thus one must still divide by an appropriate
symmetry group, which locally turns out to be the finite group Aut(u). Thus ∂̄−1

J (0)
in this context plays a role analogous to that of Teichmüller space in the previous
section: it is a somewhat unnatural object whose local structure is nonetheless very
nice. Unlike with Teichmüller space however, the nice local structure of ∂̄−1

J (0)
doesn’t come without an extra assumption, as we need the linearization of ∂̄J to be
a surjective operator in order to apply the implicit function theorem. When this
condition is satisfied, the result will be a smooth orbifold structure for MA

g,m(J),

with its dimension determined by the index of the linearization of ∂̄. That’s the
general idea; we now proceed with the details.

Suppose (Σ, j,Θ, u) ∈ MA
g,m(J), and choose a Teichmüller slice T ⊂ J (Σ)

through j. For any p > 2, denote

B1,p = W 1,p(Σ,M),

and define a Banach space bundle E0,p → T × B1,p whose fibers are

E0,p
(j′,u′) = Lp

(
HomC((TΣ, j

′), ((u′)∗TM, J))
)
.

This bundle admits the smooth section

∂̄J : T × B1,p → E0,p : (j′, u′) 7→ Tu′ + J ◦ Tu′ ◦ j′,
whose linearization at (j, u) is

D∂̄J(j, u) : TjT ⊕W 1,p(u∗TM) → Lp(HomC(TΣ, u
∗TM)),

(y, η) 7→ J ◦ Tu ◦ y +Duη,
(4.3.1)

where on the right hand side we take j to be the complex structure on the bundle
TΣ.

Definition 4.3.1. We say that the curve (Σ, j,Θ, u) ∈ MA
g,m(J) is Fredholm

regular if the linear operator D∂̄J(j, u) of (4.3.1) is surjective.

The following lemma implies that our definition of Fredholm regularity doesn’t
depend on the choice of Teichmüller slice. Observe that it is also an open condition:
if D∂̄J (j, u) is surjective then it will remain surjective after small changes in j, u
and J .

Lemma 4.3.2. The image of D∂̄J(j, u) doesn’t depend on the choice of T .
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Proof. Let L = D∂̄J(j, u) as in (4.3.1), and note that TjT is a subspace of

Lp(EndC(TΣ)), so L can be extended to

L : Lp(EndC(TΣ))⊕ TuB → E(j,u),
(y, η) 7→ J ◦ Tu ◦ y +Duη.

We claim imL = imL. Indeed, note first that if D(j,Θ) denotes the natural linear
Cauchy-Riemann operator on (TΣ, j) and y = D(j,Θ)X ∈ imD(j,Θ) for some X ∈
W 1,p

Θ (TΣ), then

L(y, 0) = J ◦ Tu ◦ y = Tu(jy) = Tu(D(j,Θ)(jX))

since u is J-holomorphic and D(j,Θ) is complex-linear. Now the following relation
isn’t hard to show: for any smooth vector field X ∈ Γ(TΣ) vanishing on Θ,

(4.3.2) Du(Tu(X)) = Tu(D(j,Θ)X).

By the density of smooth sections, this extends to all X ∈ W 1,p
Θ (TΣ), and we

conclude
L(y, 0) ∈ imDu

whenever y ∈ imD(j,Θ). Since Lp(EndC(TΣ)) = imD(j,Θ) ⊕ TjT , it follows that L

and L have the same image. �

Exercise 4.3.3. Prove the relation (4.3.2) for all smooth vector fields X ∈
Γ(TΣ). (Compare the proof of Lemma 2.4.6.)

Since TjT is finite dimensional and Du is Fredholm, D∂̄J(j, u) is also Fredholm
and has index

indD∂̄J(j, u) = dim T (Σ,Θ) + indDu

= dimAut(Σ, j,Θ)− indD(j,Θ) + indDu

= dimAut(Σ, j,Θ)− (3χ(Σ)− 2m) + (nχ(Σ) + 2c1(u
∗TM))

= dimAut(Σ, j,Θ) + vir-dimMA
g,m(J),

(4.3.3)

where we’ve applied (4.2.4), the Riemann-Roch formula and the definition of the
virtual dimension.

Lemma 4.3.4. For every j ∈ J (Σ), one can choose a Teichmüller slice T through
j that is invariant under the action of Aut(Σ, j,Θ).

Proof. In the case (Σ,Θ) = (T 2, ∅), one can assume after a diffeomorphism that
j is translation invariant, and T can then be taken to be the global Teichmüller slice
defined in §4.2.3, consisting of all translation invariant complex structures compat-
ible with the orientation. In all other cases where T (Σ,Θ) is nontrivial, (Σ,Θ) is
stable, thus the group G := Aut(Σ, j,Θ) is finite. Using the construction of (4.2.3),
it suffices to find a complement C ⊂ Lp(EndC(TΣ)) of imD(j,Θ) that is G-invariant,
as one can then compute that

jϕ∗y = ϕ∗jy
for any ϕ ∈ Aut(Σ, j,Θ). To start with, we observe that imD(j,Θ) itself is G-
invariant, since ϕ∗j = j also implies D(j,Θ)(ϕ

∗X) = ϕ∗(D(j,Θ)X) for all X ∈
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W 1,p
Θ (TΣ). A G-invariant complement C can then be defined as the L2 orthogo-

nal complement of imD(j,Θ) with respect to any G-invariant L2 inner product on

the sections of EndC(TΣ); such a complement automatically contains only smooth
sections due to linear regularity for weak solutions (cf. Corollary 2.6.28).

Since L2 inner products on Γ(EndC(TΣ)) arise naturally from j-invariant Rie-
mannian metrics on Σ, it suffices to find such a Riemannian metric g which is also
G-invariant. Recall from Corollary 4.2.3 that Σ \ Θ admits a complete j-invariant
Riemannian metric gP of constant curvature −1, the Poincaré metric, and it has the
convenient property that the biholomorphic transformations on Σ \Θ are precisely
the isometries of gP . This is not the desired metric since it does not extend over the
marked points, but we can fix this as follows: by Exercise 4.3.5 below, each z ∈ Θ
admits a G-invariant neighborhood Uz which can be biholomorphically identified
with the unit ball B ⊂ C such that G acts by rational rotations. Thus on Uz, the
Euclidean metric in these coordinates is also G-invariant, and we can interpolate
this with gP near each z ∈ Θ to define the desired G-invariant metric on Σ. �

Exercise 4.3.5. Suppose (Σ, j) is a Riemann surface and G is a finite group
of biholomorphic maps on (Σ, j) which all fix the point z ∈ Σ. Show that z has a
G-invariant neighborhood Uz with a biholomorphic map ψ : (Uz, j) → (B, i) such
that for every ϕ ∈ G, ψ ◦ ϕ ◦ ψ−1 is a rational rotation.

A quick remark about the statement of the next theorem: if (j, u) ∈ ∂̄−1
J (0) and

ϕ ∈ Aut(Σ, j,Θ), then the natural action

ϕ · (j, u) = (j, u ◦ ϕ)
preserves ∂̄−1

J (0). Linearizing this action at Id ∈ Aut(Σ, j,Θ), we obtain a natural
map of the Lie algebra aut(Σ, j,Θ) to kerD∂̄J (j, u) of the form

aut(Σ, j,Θ) → kerD∂̄J(j, u) : X 7→ (0, Tu(X)),

and this is an inclusion if u is not constant. Thus in the following, we can regard
aut(Σ, j,Θ) as a subspace of kerD∂̄J(j, u).

Theorem 4.3.6. The open subset

MA,reg
g,m (J) := {u ∈ MA

g,m(J) | u is Fredholm regular and not constant}
naturally admits the structure of a smooth finite-dimensional orbifold with

dimMA,reg
g,m (J) = vir-dimMA

g,m(J).

Its isotropy group at any (Σ, j,Θ, u) ∈ MA,reg
g,m (J) is isomorphic to Aut(u), so in

particular, it is a manifold near u if Aut(u) is trivial. There is then also a natural
isomorphism

TuMA
g,m(J) = kerD∂̄J(j, u)

/
aut(Σ, j,Θ).

Moreover, the evaluation map ev : MA,reg
g,m (J) →Mm is smooth.

Proof. We shall prove this in the case where 2g +m ≥ 3 and give some hints
how to adapt the argument for the non-stable cases, leaving the details as an exercise.

Suppose (Σ, j0,Θ, u0) ∈ MA
g,m(J) is Fredholm regular and T is a Teichmüller

slice through j0 which is invariant under the action of Aut(Σ, j0,Θ), as supplied
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by Lemma 4.3.4. Then constructing the smooth section ∂̄J : T × B1,p → E0,p as
described above, the implicit function theorem gives

∂̄−1
J (0) ⊂ T × B1,p

near (j0, u0) the structure of a smooth submanifold with dimension indD∂̄J(j0, u0).
The latter is equal to vir-dimMA

g,m(J) by (4.3.3), since Aut(Σ, j0,Θ) is in this case
discrete. Observe that if z1, . . . , zm ∈ Σ denote the marked points Θ, then the
evaluation map

ev : ∂̄−1
J (0) →Mm : (j, u) 7→ (u(z1), . . . , u(zm))

is smooth as a consequence of the fact that for each zi, the map B1,p →M : u 7→ u(zi)
is smooth by Exercise 3.1.5.

Since Aut(Σ, j0,Θ) preserves T and acts by biholomorphic maps, it also acts on
∂̄−1
J (0) by

Aut(Σ, j0,Θ)× ∂̄−1
J (0) → ∂̄−1

J (0) : (ϕ, (j, u)) 7→ (ϕ∗j, u ◦ ϕ).
Clearly any two pairs related by this action correspond to equivalent curves in the
moduli space, and we claim in fact that the resulting map

(4.3.4) ∂̄−1
J (0)

/
Aut(Σ, j0,Θ) → MA

g,m(J)

is a local homeomorphism onto an open neighborhood of (Σ, j0,Θ, u0). The proof
of this uses the fact that Diff0(Σ,Θ) acts freely and properly on J (Σ).

Indeed, to see that (4.3.4) is surjective onto a neighborhood, suppose we have a
sequence (Σ, jk,Θ, uk) ∈ MA

g,m(J) with jk → j0 and uk → u0. Then [jk] → [j0] in
T (Σ,Θ), so for sufficiently large k there are unique diffeomorphisms ϕk ∈ Diff0(Σ,Θ)
such that ϕ∗

kjk is a sequence in T approaching j0. Now by the properness of the
action (Lemma 4.2.8), a subsequence of ϕk converges to an element of Aut(Σ, j0,Θ)
which is homotopic to the identity, and therefore is the identity since the action is
also free (Lemma 4.2.5). It follows that ϕk → Id, thus uk ◦ϕk → u0 and for large k,
(ϕ∗

kjk, uk ◦ ϕk) lies in an arbitrarily small neighborhood of (j0, u0) in ∂̄
−1
J (0).

We show now that (4.3.4) is injective on a sufficiently small neighborhood of
(j0, u0). From Exercise 4.2.9, Aut(Σ, j0,Θ) is the stabilizer of [j0] under the action
of M(Σ,Θ) on T (Σ,Θ), thus the natural projection

T
/
Aut(Σ, j0,Θ) → M(Σ,Θ) = J (Σ)

/
Diff+(Σ,Θ)

is a local homeomorphism near [j0]. Then for any two elements (j, u) and (j′, u′)
of ∂̄−1

J (0) sufficiently close to (j0, u0) that define equivalent holomorphic curves,
[j] = [j′] ∈ M(Σ,Θ) implies that j and j′ are related by the action of Aut(Σ, j0,Θ),
and this proves the claim.

We’ve shown that in a neighborhood of any regular (Σ, j0,Θ, u0) ∈ MA
g,m(J),

the moduli space admits an orbifold chart of the correct dimension. Its isotropy
group at this point is the stabilizer of (j0, u0) under the action of Aut(Σ, j0,Θ) on
∂̄−1
J (0), and this is precisely Aut(u0). In particular, MA

g,m(J) is a manifold near u0
if Aut(u0) is trivial, and the implicit function theorem identifies its tangent space
at this point with kerD∂̄J(j0, u0).
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It remains to show that the transition maps resulting from this construction are
smooth: the zero sets ∂̄−1

J (0) inherit natural smooth structures as submanifolds of
T × B1,p, but we don’t yet know that these smooth structures are independent of
all choices. Put another away, we need to show that for any two equivalent curves
(Σ, j0,Θ, u0) and (Σ′, j′0,Θ

′, u′0) with corresponding Teichmüller slices T , T ′ and zero
sets ∂̄−1

J (0), (∂̄′J )
−1(0), there is a smooth local diffeomorphism

∂̄−1
J (0) → (∂̄′J)

−1(0)

that maps (j0, u0) 7→ (j′0, u
′
0) and maps each (j, u) ∈ ∂̄−1

J (0) smoothly to an equiv-
alent curve (j′, u′) ∈ (∂̄′J )

−1(0). Let us just consider the case where j0 = j′0 and
u0 = u′0 but the Teichmüller slices differ, as the rest is an easy exercise. For this,
we can make use of the work we already did in constructing the smooth structure
of Teichmüller space: if T and T ′ are two Teichmüller slices through j0, then there
is a diffeomorphism

T → T ′ : j 7→ j′

such that j′ = ϕ∗
jj for some ϕj ∈ Diff0(Σ,Θ). In fact, the diffeomorphism ϕj depends

smoothly on j, as we already found a formula for it in the proof of Theorem 4.2.14:

(ϕj, j) = F−1 ◦ F ′(Id, j′),

where

F : D1,p
Θ × T → J 0,p(Σ) : (ϕ, j) 7→ ϕ∗j,

F ′ : D1,p
Θ × T ′ → J 0,p(Σ) : (ϕ, j) 7→ ϕ∗j

are both smooth local diffeomorphisms near (Id, j0). From this formula it is clear
that T ′ → D1,p

Θ : j′ 7→ ϕj is a smooth map, thus in light of the diffeomorphism be-

tween T and T ′, so is T → D1,p
Θ : j 7→ ϕj . Moreover, since each ϕj is a holomorphic

map (Σ, j′) → (Σ, j) with both j and j′ smooth, elliptic regularity implies that ϕj

is also smooth. We can now define a map

∂̄−1
J (0) → J 0,p(Σ)× B1,p : (j, u) 7→ (ϕ∗

jj, u ◦ ϕj),

whose image is clearly in (∂̄′J)
−1(0) and thus consists only of smooth pairs (j′, u′)

which are equivalent to (j, u) in the moduli space. Moreover, this map is smooth
since u is always smooth, again by elliptic regularity. This is the desired local
diffeomorphism.

The proof is now complete for the case where (Σ,Θ) is stable. Non-stable cases
come in two flavors: the simpler one is the case g = 0, for then Teichmüller space
is trivial and we can fix j = i on S2. Several details then simplify, except that now
Aut(S2, i,Θ) has positive dimension—nonetheless it is straightforward to see that
(4.3.4) is still a local homeomorphism, so the only real difference in the end is the
computation of the dimension,

dimMA
g,m(J) = indD∂̄J(j, u)− dimAut(Σ, j,Θ) = vir-dimMA

g,m(J),

due to (4.3.3). In the case of MA
1,0(J), for which both Teichmüller space and the

automorphism groups have positive dimension, we can use the specific global Te-
ichmüller slice of §4.2.3, and combine ideas from the stable and genus 0 cases to
obtain the same result and same dimension formula in general. �
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Exercise 4.3.7. Work out the details of the proof of Theorem 4.3.6 in the non-
stable cases. (For a more detailed exposition of this in a more general context, see
[Wen10a, §3.2], the proof of Theorem 0.)

The implicit function theorem gives more than just a manifold or orbifold struc-
ture for MA

g,m(J): it can also be used for perturbation arguments, in which the

existence of curves in MA
g,m(J) gives rise to curves in MA

g,m(J
′) as well, for any J ′

sufficiently close to J . For example:

Theorem 4.3.8. Suppose M is compact, and (Σ, j0,Θ, u0) ∈ MA
g,0(J0) is sim-

ple and Fredholm regular with ind(u0) = 0. Then for any sufficiently C∞-small
neighborhood U ⊂ J (M) of J0, there exists a continuous map

U → J (Σ)× C∞(Σ,M) : J 7→ (jJ , uJ)

such that jJ0 = j0, uJ0 = u0 and (Σ, jJ ,Θ, uJ) ∈ MA
g,0(J) for each J ∈ U . Moreover,

this family is unique in the sense that for any C∞-convergent sequence Jk → J0 and
(Σ, j′k,Θ, u

′
k) ∈ MA

g,0(Jk) with j
′
k → j0 and u′k → u0 in the C∞-topology, we have

(Σ, j′k,Θ, u
′
k) ∼ (Σ, jJk ,Θ, uJk)

for sufficiently large k.

Proof. As with Theorem 4.3.6, we will focus on the stable case 2g ≥ 3 and
leave the rest as an exercise.

Choose a Teichmüller slice T through j0, and extend the previous functional
analytic setup as follows. Given m ∈ N, let Jm(M) denote the space of all Cm-
smooth almost complex structures onM . Using the correspondence Y 7→ JY defined
in §2.2 (see (2.2.1)), one can show that Jm(M) is a smooth Banach manifold with

TJ0Jm(M) = Cm(EndC(TM, J0)).

Moreover, our previous Banach space bundle E0,p → T ×B1,p has an obvious exten-
sion to a smooth bundle

E0,p → T × B1,p ×Jm(M),

with fibers E0,p
(j,u,J) = Lp

(
HomC((TΣ, j), (u

∗TM, J))
)
. The natural section,

∂̄ : T × B1,p × Jm(M) → E0,p : (j, u, J) 7→ Tu+ J ◦ Tu ◦ j,
is not smooth in general since J ∈ Jm(M) is usually not smooth. But as we saw
at the local level in §2.13 (cf. Lemma 2.13.6), ∂̄ will at least be of class C1 if m is
sufficiently large; in fact there exists a fixed integer ℓ, the exact value of which will
not concern us except that it is independent of m, such that ∂̄ is Cm−ℓ-smooth on
T × B1,p × Jm(M). Let us therefore assume m ≥ ℓ + 1 and examine the zero set
∂̄−1(0) near (j0, u0, J0). The linearization at this point is

D∂̄(j0, u0, J0)(y, η, Y ) = D∂̄J0(j0, u0)(y, η) + Y ◦ Tu0 ◦ j0,
which is surjective and has a bounded right inverse since D∂̄J0(j0, u0) is an isomor-
phism by assumption. The implicit function theorem then provides a neighborhood
J0 ∈ U ⊂ Jm(M) and a Cm−ℓ-smooth map

U → T × B1,p : J 7→ (jJ , uJ)
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which parametrizes a neighborhood of (j0, u0, J0) in ∂̄−1(0). Restricting this map
to the dense space of smooth almost complex structures in U provides the desired
neighborhood in J (M) and continuous map: observe that while a priori the map
J 7→ uJ is continuous into W 1,p(Σ,M), it is actually continuous into C∞(Σ,M) by
elliptic regularity (Theorem 2.11.1). �

The assumption thatM is compact is not terribly important in the above result;
we used it in the proof so that Jm(M) would be a Banach manifold, but this can be
relaxed with a little effort since u0 has its image in a compact subset. More generally,
results of this kind can be stated for any Fredholm regular curve with nonnegative
index, and for any parametrized family of almost complex structures (cf. §4.5). For
this reason, regular curves are also often referred to as unobstructed.

4.4. Transversality for generic J

In the previous section we proved that moduli spaces of J-holomorphic curves
are smooth wherever they are Fredholm regular. Since Fredholm regularity is in
general a very difficult condition to check, in this section we will examine ways of
ensuring regularity via generic perturbations of J , leading in particular to a proof
of Theorem 4.1.8.

We assume throughout this section that (M,ω) is a 2n-dimensional symplectic
manifold without boundary, and we focus on ω-compatible almost complex struc-
tures, though all of our results have easily derived analogues for ω-tame or general
almost complex structures (cf. Remark 4.1.9). We will not assume that M is com-
pact unless specifically stated, but will fix an open subset U ⊂ M with compact
closure. Recall from §4.1 the definition of the space J (M,ω ; U , Jfix) of compatible
almost complex structures that are fixed outside of U ; here Jfix ∈ J (M,ω) is an
arbitrary choice that we assume fixed in advance (which is irrelevant if U = M).
Fix also a pair of integers g,m ≥ 0 and a homology class A ∈ H2(M).

Definition 4.4.1. Let

Jreg(M,ω ; U , Jfix ; g,m,A) ⊂ J (M,ω ; U , Jfix)

denote the set of all J ∈ J (M,ω ; U , Jfix) such that every curve u ∈ MA
g,m(J) with

an injective point mapped into U is Fredholm regular.

For applications involving the evaluation map ev : MA
g,m(J) → Mm, it will be

useful to generalize this definition given the additional data of a smooth submanifold
Z ⊂ Mm without boundary. The reader who is only interested in the proof of
Theorem 4.1.8 and not the further applications in §4.6 is free in the following to
ignore all references to Z, or assume Z =Mm, in which case all conditions involving
Z will be vacuous.

Definition 4.4.2. Given the same data as in Definition 4.4.1 plus a smooth
submanifold Z ⊂Mm without boundary, let

J Z
reg(M,ω ; U , Jfix ; g,m,A) ⊂ J (M,ω ; U , Jfix)
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denote the set of all J ∈ J (M,ω ; U , Jfix) such that every curve u ∈ MA
g,m(J) that

satisfies ev(u) ∈ Z and has an injective point mapped into U is Fredholm regular,
and the intersection of ev : MA

g,m(J) →Mm with Z at u is transverse.

Here is the main result of this section.

Theorem 4.4.3. Given (M,ω) with the data U , Jfix, g, m, A and Z as described
above, J Z

reg(M,ω ; U , Jfix ; g,m,A) is a Baire subset of J (M,ω ; U , Jfix).

Taking Z =Mm, this result together with Theorem 4.3.6 implies Theorem 4.1.8,
as we can take Jreg(M,ω ; U , Jfix) to be the countable intersection

Jreg(M,ω ; U , Jfix) :=
⋂

g,m≥0, A∈H2(M)

Jreg(M,ω ; U , Jfix ; g,m,A).

Some consequences of the case Z (Mm will be described in §4.6.
The proof will proceed in two main steps, described in the next two subsections.

4.4.1. Regular almost complex structures are dense. In order to cut down
on cumbersome notation, let us assume for the remainder of §4.4 that the choices
U ⊂ M , Jfix ∈ J (M,ω), g ≥ 0, m ≥ 0, A ∈ H2(M) and Z ⊂ Mm are all fixed, so
we can abbreviate

Jreg := J Z
reg(M,ω ; U , Jfix ; g,m,A).

We begin by proving a weaker version of Theorem 4.4.3, which nonetheless suffices
for most applications.

Proposition 4.4.4. Jreg is dense in J (M,ω ; U , Jfix).

Though certainly useful on its own, this statement is less beautiful than The-
orem 4.4.3 and sometimes also less convenient, as countable intersections of dense
subsets are not generally dense (they may even be empty). It will be the purpose of
the next subsection to replace the word “dense” with “Baire,” using an essentially
topological argument originally due to Taubes.

Let us sketch the proof of Prop. 4.4.4 before getting into the details. One
must first choose a smooth Banach manifold of almost complex structures Jǫ ⊂
J (M,ω ; U , Jfix) in which to vary J . One can then define a (large) separable Ba-
nach manifold that contains all suitable holomorphic curves in all the moduli spaces
MA

g,m(J) for J ∈ Jǫ, called the universal moduli space,

U
∗(Jǫ) = {(u, J) | J ∈ Jǫ, u ∈ MA

g,m(J) maps an injective point into U},
along with its constrained variant

U
∗
Z (Jǫ) = {(u, J) ∈ U

∗(Jǫ) | ev(u) ∈ Z}.
It takes a bit of care to make sure these spaces really are Banach manifolds: as usual,
the main task will be to prove that a certain linear operator between Banach spaces
is surjective, and this is where the assumption of an injective point in U will turn out
to be crucial. It will also require the domain to be sufficiently large—in particular,
Jǫ will have to contain a certain set of C∞

0 -perturbations of a given J , and must

172 Chris Wendl

therefore be infinite dimensional. Once the universal moduli space is understood,
we have a natural smooth projection map

π : U
∗
Z (Jǫ) → Jǫ : (u, J) 7→ J,

whose preimage π−1(J) at any J ∈ Jǫ is precisely the set of all curves in u ∈
MA

g,m(J) that map an injective point into U and satisfy ev(u) ∈ Z. This will be a
smooth submanifold whenever J is a regular value of π, i.e. the derivative dπ(u, J)
is surjective for all (u, J) ∈ π−1(J). In finite dimensions, Sard’s theorem would tell
us that this is true for almost every J , and in the present situation one can apply
the following infinite-dimensional version due to Smale [Sma65].

Sard-Smale theorem. Suppose X and Y are smooth Banach manifolds which
are separable and paracompact, and f : X → Y is a smooth map whose derivative
df(x) : TxX → Tf(x)Y for every x ∈ X is Fredholm. Then the regular values of f
form a Baire subset of Y .

The theorem can be stated more generally for nonsmooth maps f ∈ Ck(X, Y ) if
k is sufficiently large, but we will not need this. A proof in the case where f maps
an open subset of a linear Banach space to another Banach space may be found in
[MS04, Appendix A.5]. The general case can be derived from this, with the aid of
the following exercise in general topology (cf. Proposition 3.1.7).

Exercise 4.4.5. Show that any Banach manifold that is both separable and
paracompact admits a countable family of charts.

To apply the Sard-Smale theorem, we need to know that dπ(u, J) is a Fredholm
operator. In the unconstrained case Z = Mm, it turns out that dπ(u, J) not only
is Fredholm but has the same index and the same kernel as the linearization (4.3.1)
that defines Fredholm regularity, thus every regular value of π belongs to Jreg. A
similar argument works in the constrained case, and the Sard-Smale theorem will
thus imply that Jreg is dense, as claimed by Prop. 4.4.4.

In fact, the argument implies that the set of regular almost complex structures
is a Baire subset of Jǫ, and you may at this point be wondering why that doesn’t
already prove Theorem 4.4.3. The answer is that we cannot simply choose Jǫ to
be J (M,ω ; U , Jfix), as the latter with its natural C∞-topology is not a Banach
manifold, so the Sard-Smale theorem does not apply. We are thus forced to choose a
somewhat less natural space of varying almost complex structures, with a sufficiently
different topology so that a Baire subset of Jǫ is not obviously a Baire subset of
J (M,ω ; U , Jfix), though we will easily see that it is dense. Extending density
to “genericity” will require an additional topological argument, given in the next
subsection.

We now carry out the details, starting with the definition of the Banach man-
ifold Jǫ. It will be convenient to have explicit local charts for the manifold of
compatible complex structures on a vector space, as provided by the following ex-
ercise.

Exercise 4.4.6. Suppose ω is a nondegenerate 2-form on a 2n-dimensional vec-
tor space V , and J (V, ω) denotes the space of all complex structures J on V such
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that ω(·, J ·) defines a symmetric inner product. Show that J (V, ω) is a smooth
submanifold of J (V ), whose tangent space at J ∈ J (V, ω) is

EndC(V, J, ω) := {Y ∈ EndC(V, J) | ω(v, Y w) + ω(Y v, w) = 0 for all v, w ∈ V }.
Show also that for any J ∈ J (V, ω), the correspondence

(4.4.1) Y 7→
(
1+

1

2
JY

)
J

(
1+

1

2
JY

)−1

maps a neighborhood of 0 in EndC(V, J, ω) diffeomorphically to a neighborhood of J
in J (V, ω). Hint: Recall Corollary 2.2.21.

There are two standard approaches for defining a Banach manifold of perturbed
almost complex structures: one of them, which is treated in [MS04, §3.2], is to
work in the space Jm(M,ω) of Cm-smooth almost complex structures for sufficiently
large m ∈ N, and afterwards argue (using the ideas described in §4.4.2 below) that
the intersection of all the spaces Jm

reg(M,ω) gives a Baire subset of J (M,ω). The
drawback of this approach is that if J is not smooth, then the Cauchy-Riemann
operator will also have only finitely many derivatives: indeed, ∂̄Ju = Tu+J(u)◦Tu◦j
involves the composition map

(4.4.2) (u, J) 7→ J ◦ u
which may be differentiable but is not smooth unless J is (recall Lemma 2.12.7).
This approach thus forces one to consider Banach manifolds and maps with only
finitely many derivatives, causing an extra headache that we’d hoped to avoid after
we proved elliptic regularity in Chapter 2.

The alternative approach is to stay within the smooth context by defining Jǫ to
be a Banach manifold that admits a continuous inclusion into J (M,ω): indeed, if
Jǫ embeds continuously into Jm(M,ω) for every m ∈ N and u belongs to a Banach
manifold such asW k,p(Σ,M), then Lemma 2.12.7 implies that (4.4.2) will be smooth.
Until now, all examples we’ve seen of Banach spaces that embed continuously into
C∞ have been finite dimensional, and we would find such a space too small to
ensure the smoothness of the universal moduli space. A suitable infinite-dimensional
example was introduced by Floer [Flo88], and has become known commonly as the
“Floer Cǫ-space”.

Fix an arbitrary “reference” almost complex structure J ref ∈ J (M,ω ; U , Jfix),
and choose a sequence of positive real numbers ǫν → 0 for integers ν ≥ 0. Re-
call from Exercise 4.4.6 the vector bundle EndC(TM, J ref , ω), whose smooth sec-
tions constitute what we think of as the “tangent space TJrefJ (M,ω).” Define
Cǫ(EndC(TM, J ref , ω) ; U) to be the space of smooth sections Y of EndC(TM, J ref , ω)
with support in U for which the norm

‖Y ‖ǫ :=
∞∑

ν=0

ǫν‖Y ‖Cν(U)

is finite. Though it is not immediately clear whether this space contains any nontriv-
ial sections, it is at least a Banach space, and it has a natural continuous inclusion
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into the space of smooth sections supported in U ,
Cǫ(EndC(TM, J ref , ω) ; U) →֒

{
Y ∈ Γ(EndC(TM, J ref , ω))

∣∣ Y |M\U ≡ 0
}
.

One can always theoretically enlarge the space by making the sequence ǫν converge
to 0 faster. As it turns out, choosing ǫν small enough makes Cǫ(EndC(TM, J ref , ω) ; U)
into an infinite-dimensional space that contains bump functions with small support
and arbitrary values at any point in U :

Lemma 4.4.7. Suppose β : B2n → [0, 1] is a smooth function with compact
support on the unit ball B2n ⊂ Cn and β(0) = 1. One can choose a sequence of
positive numbers ǫν → 0 such that for every Y0 ∈ CN and r > 0, the function
Y : Cn → CN defined by

Y (p) := β(p/r)Y0
satisfies

∑∞
ν=0 ǫν‖Y ‖Cν <∞.

Proof. Define ǫν > 0 so that for ν ≥ 1,

ǫν =
1

νν‖β‖Cν

.

Then ∞∑

ν=1

ǫν‖Y ‖Cν ≤
∞∑

ν=1

1

νν‖β‖Cν

‖β‖Cν

rν
=

∞∑

ν=1

(
1/r

ν

)ν

<∞.

�

Exercise 4.4.8 (cf. [Flo88, Lemma 5.1]). Show that by choosing ǫν as in the
lemma, one can arrange so that Cǫ(EndC(TM, J ref , ω) ; U) is dense in the space of
L2 sections of EndC(TM, J ref , ω) that vanish on M \ U .

Exercise 4.4.9. Prove that Cǫ(EndC(TM, J ref , ω) ; U) is separable.
Now choose δ > 0 sufficiently small so that the correspondence (4.4.1) with

J := J ref defines an injective map
{
Y ∈ Cǫ(EndC(TM, J ref , ω) ; U)

∣∣ ‖Y ‖ǫ < δ
}
→ J (M,ω ; U , Jfix),

and define Jǫ to be its image. By construction, Jǫ is a smooth, separable and
metrizable Banach manifold (with only one chart), which contains J ref and embeds
continuously into J (M,ω ; U , Jfix). Its tangent space at any J ∈ Jǫ can be written
naturally as

TJJǫ = Cǫ(EndC(TM, J, ω) ; U).
As already sketched above, we now define the universal moduli space U ∗(Jǫ)

to be the space of pairs (u, J) for which J ∈ Jǫ and u ∈ MA
g,m(J) has an injective

point mapped into U , and let U ∗
Z (Jǫ) = ev−1(Z) for the obvious extension of the

evaluation map
ev : U

∗(Jǫ) →Mm : (u, J) 7→ ev(u).

Proposition 4.4.10. The universal moduli space U ∗(Jǫ) admits the structure of
a smooth, separable and metrizable Banach manifold such that the natural projection
π : U ∗(Jǫ) → Jǫ : (u, J) 7→ J and the evaluation map ev : U ∗(Jǫ) → Mm are both
smooth, and the latter is a submersion.
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To prove this, choose any representative (Σ, j0,Θ, u0) of an arbitrary curve u0 ∈
MA

g,m(J0) for which (u0, J0) ∈ U ∗(Jǫ), and choose a Teichmüller slice T through j0
as in §4.3. A neighborhood of (u0, J0) in U ∗(Jǫ) can then be described4 as the zero
set of a smooth section,

∂̄ : T × B1,p ×Jǫ → E0,p : (j, u, J) 7→ Tu+ J ◦ Tu ◦ j,
where now E0,p has been extended to a Banach space bundle over T ×B1,p×Jǫ with
fiber

E0,p
(j,u,J) = Lp

(
HomC((TΣ, j), (u

∗TM, J))
)
.

The linearization D∂̄(j0, u0, J0) : Tj0T ⊕ Tu0B1,p ⊕ TJ0Jǫ → E0,p
(j0,u0,J0)

takes the form

(y, η, Y ) 7→ J0 ◦ Tu0 ◦ y +Du0η + Y ◦ Tu0 ◦ j0.
The essential technical work is now contained in the following lemma. We denote

W 1,p
Θ (u∗0TM) :=

{
η ∈ W 1,p(u∗0TM) | η(Θ) = 0

}
,

which is a closed subspace of codimension 2nm in W 1,p(u∗0TM).

Lemma 4.4.11. If u0 maps an injective point into U , then the operator

L : W 1,p
Θ (u∗0TM)⊕ Cǫ(EndC(TM, J0, ω) ; U) → Lp(HomC(TΣ, u

∗
0TM))

(η, Y ) 7→ Du0η + Y ◦ Tu0 ◦ j0
is surjective and has a bounded right inverse.

Proof. If L is surjective then the existence of a bounded right inverse follows
easily since Du0 is Fredholm. Moreover, the Fredholm property of Du0 implies that
imL is closed, thus choosing a suitable bundle metric to define the L2 pairing, it
suffices (by the Hahn-Banach theorem) to show that there is no nontrivial section
α ∈ Lq(HomC(TΣ, u

∗
0TM)) with 1

p
+ 1

q
= 1 such that 〈L(η, Y ), α〉L2 = 0 for all (η, Y )

in the specified domain. This can be broken down into two conditions:

〈Du0η, α〉L2 = 0 for all η ∈ W 1,p
Θ (u∗0TM), and

〈Y ◦ Tu0 ◦ j0, α〉L2 = 0 for all Y ∈ Cǫ(EndC(TM, J0, ω) ; U).
If such α exists, then the first of these two equations implies it is a weak solution
of the formal adjoint equation D∗

u0
α = 0 on Σ \ Θ, thus by regularity of weak

solutions (Corollary 2.6.28), it is smooth on Σ \ Θ, and the similarity principle
(§2.8) implies that its zero set cannot accumulate. The idea is now to choose Y ∈
Cǫ(EndC(TM, J0, ω) ; U) so that the second equation implies α must vanish on some
nonempty open set, yielding a contradiction. There are two important details of our
setup that make this possible:

(1) u0 has an injective point z0 ∈ Σ with u0(z0) ∈ U ;
(2) Cǫ(EndC(TM, J0, ω) ; U) contains bump functions with small support and

arbitrary values at u0(z0).

4Here we are restricting for the sake of notational simplicity to the case where (Σ,Θ) is stable;
we leave the details of the non-stable cases as an exercise.
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Indeed, since the set of injective points is open and α has only isolated zeroes,
we can assume without loss of generality that z0 ∈ U is not one of the marked
points and α(z0) 6= 0. Now choose (via Lemma 4.4.7 and Lemma 4.4.12 below)
Y ∈ Cǫ(EndC(TM, J0, ω) ; U) so that 〈Y ◦Tu0 ◦ j0, α〉 is positive on a neighborhood
of z0 and vanishes outside this neighborhood. Then 〈Y ◦ Tu0 ◦ j0, α〉L2 cannot
be zero, and we have the desired contradiction. Observe the role that somewhere
injectivity plays here: Tu0 ◦ j0 is nonzero near z0 since du0(z0) 6= 0, and since u0
passes through z0 only once (and the same is obviously true for points in a small
neighborhood of z0), fixing the value of Y near u0(z0) only affects the L2 product
near z0 and nowhere else. This is why the same proof fails for multiply covered
curves. �

In choosing the bump function Y ∈ Cǫ(EndC(TM, J0, ω) ; U) in the above proof,
we implicitly made use of a simple linear algebra lemma. This is the only point in
the argument where the symplectic structure makes any difference: it shrinks the
space of available perturbations Y along J0, but the lemma below shows that this
space is still large enough. Recall that on any symplectic vector space (V, ω) with
compatible complex structure J , one can choose a basis to identify J with i and
ω with the standard structure ωstd (cf. Exercise 2.2.7). The linear maps Y that
anticommute with i and satisfy ωstd(Y v, w) + ωstd(v, Y w) = 0 for all v, w ∈ V are
then precisely the symmetric matrices that are complex antilinear.

Lemma 4.4.12. For any nonzero vectors v, w ∈ R2n, there exists a symmetric
matrix Y that anticommutes with i and satisfies Y v = w.

Proof. We borrow the proof directly from [MS04, Lemma 3.2.2] and simply
state a formula for Y :

Y =
1

|v|2
(
wvT + vwT + i

(
wvT + vwT

)
i
)

− 1

|v|4
(
〈w, v〉

(
vvT + ivvT i

)
− 〈w, iv〉

(
ivvT − vvT i

))
,

where 〈 , 〉 denotes the standard real inner product on R2n = Cn. �

Conclusion of the proof of Proposition 4.4.10. Since T is finite dimen-
sional, W 1,p

Θ (u∗0TM) ⊕ Cǫ(EndC(TM, J0, ω) ; U) is a closed subspace of finite codi-
mension in Tj0T ⊕ Tu0B1,p ⊕ TJ0Jǫ, hence Lemma 4.4.11 implies that D∂̄(j0, u0, J0)
is also surjective and has a bounded right inverse. By the implicit function theo-
rem, a neighborhood of (j0, u0, J0) in ∂̄

−1(0) is now a smooth Banach submanifold of
T ×B1,p×Jǫ. Repeating several details of the proof of Theorem 4.3.6 and exploiting
the fact that Aut(u) is always trivial when u is somewhere injective, it follows also
that U ∗(Jǫ) is a smooth (and separable and metrizable) Banach manifold: locally,
it can be identified with ∂̄−1(0), and its tangent space at (u, J) is

T(u,J)U
∗(Jǫ) = kerD∂̄(j, u, J) ⊂ TjT ⊕W 1,p(u∗TM)⊕ Cǫ(EndC(TM, J, ω) ; U).
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Under this local identification, the projection π : U ∗(Jǫ) → Jǫ is simply the restric-
tion to ∂̄−1(0) of the projection

T × B1,p × Jǫ → Jǫ : (j, u, J) 7→ J

and is thus obviously smooth. Writing the marked points as Θ = (z1, . . . , zm), the
evaluation map is similarly the restriction to ∂̄−1(0) of

T × B1,p ×Jǫ →Mm : (j, u, J) 7→ (u(z1), . . . , u(zm)),

which is smooth by Exercise 3.1.5, and its derivative at (j, u, J) on this larger domain
is the linear map

TjT ⊕W 1,p(u∗TM)⊕ Cǫ(EndC(TM, J, ω) ; U) → Tu(z1)M ⊕ . . .⊕ Tu(zm)M,

(y, η, Y ) 7→ (η(z1), . . . , η(zm)).

To prove that ev is a submersion at (u, J) ∈ U ∗(Jǫ), we therefore need to show
that for any given set of tangent vectors ξi ∈ Tu(zi)M for i = 1, . . . , m, we can find
a triple (y, η, Y ) ∈ kerD∂̄(j, u, J) such that η(zi) = ξi for i = 1, . . . , m. To see this,
pick any smooth section ξ ∈ Γ(u∗TM) that satisfies ξ(zi) = ξi for i = 1, . . . , m, then
use Lemma 4.4.11 to find η ∈ W 1,p(u∗TM) and Y ∈ Cǫ(EndC(TM, J, ω) ; U) such
that η vanishes at each of the marked points z1, . . . , zm and

Duη + Y ◦ Tu ◦ j = −Duξ.

The desired solution is then (0, ξ + η, Y ). The proof of Proposition 4.4.10 is now
complete. �

To finish the proof of Proposition 4.4.4, note first that U ∗
Z (Jǫ) := ev−1(Z) ⊂

U ∗(Jǫ) is also a smooth Banach submanifold since ev : U ∗(Jǫ) → Mm is a sub-
mersion. Given (u, J) ∈ U ∗

Z (Jǫ) with u represented by (Σ, j,Θ, u) ∈ MA
g,m(J) and

the marked points written as Θ = (z1, . . . , zm), identify a neighborhood of (u, J) in
U ∗(Jǫ) with ∂̄

−1(0) as in the above proof. Then defining the finite-codimensional
subspace

W 1,p
Z (u∗TM) =

{
η ∈ W 1,p(u∗TM) | (η(z1), . . . , η(zm)) ∈ TZ

}
,

the tangent space T(u,J)U
∗
Z (Jǫ) is identified with

KZ := ker
(
D∂̄(j, u, J)

∣∣
TjT ⊕W 1,p

Z (u∗TM)⊕TJJǫ

)
,

which is a finite-codimensional subspace of kerD∂̄(j, u, J) = T(u,J)U
∗(Jǫ). The

smooth projection
πZ : U

∗
Z (Jǫ) → Jǫ : (u, J) 7→ J

then has derivative at (u, J) equivalent to the linear projection

KZ → TJJǫ : (y, η, Y ) 7→ Y,

and this gives a natural identification of ker dπZ(u, J) with the kernel of the operator

LZ := D∂̄J(j, u)|TjT ⊕W 1,p
Z (u∗TM),

whereD∂̄J(j, u) : TjT ⊕W 1,p(u∗TM) → Lp(HomC(TΣ, u
∗TM)) is the same operator

that appears in the definition of Fredholm regularity (see Definition 4.3.1). We claim
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that the cokernels of dπZ(u, J) and LZ are also isomorphic, so both are Fredholm
and have the same index. This is a special case of the following general fact from
linear functional analysis.

Lemma 4.4.13. Suppose X, Y and Z are Banach spaces, D : X → Z is a
Fredholm operator, A : Y → Z is another bounded linear operator and L : X ⊕Y →
Z : (x, y) 7→ Dx+ Ay is surjective. Then the projection

Π : kerL→ Y : (x, y) 7→ y

is Fredholm and there are natural isomorphisms kerΠ = kerD and coker Π =
cokerD.

Proof. The isomorphism of the kernels is clear: it is just the restriction of
the inclusion X →֒ X ⊕ Y : x 7→ (x, 0) to kerD. We construct an isomorphism
coker Π → cokerD as follows. Observe that imΠ is simply the space of all y ∈ Y
such that Ay = −Dx for any x ∈ X , hence imΠ = A−1(imD), and

coker Π = Y
/
imΠ = Y

/
A−1(imD).

Now it is easy to check that the map A : Y → imA descends to an isomorphism

A : Y
/
A−1(imD) → imA

/
(imD ∩ imA),

and similarly, the inclusion imA →֒ Z descends to an injective homomorphism

imA
/
(imD ∩ imA) → Z

/
imD.

Since every z ∈ Z can be written as z = Dx+ Ay by assumption, this map is also
surjective. �

We can now apply the Sard-Smale theorem and conclude that the regular values
of πZ form a Baire subset of Jǫ, and for each J in this subset, Lemma 4.4.13
implies that D∂̄J(j, u)|TjT ⊕W 1,p

Z
(u∗TM) is surjective onto Lp(HomC(TΣ, u

∗TM)) for

every representative (Σ, j,Θ, u) of any curve u with (u, J) ∈ U ∗
Z (Jǫ). It follows that

for such a curve, D∂̄J(j, u) is also surjective, hence u is Fredholm regular and a
neighborhood of u in MA

g,m(J) is identified with the smooth neighborhood of (j, u)

in ∂̄−1
J (0). Under this local identification, the evaluation map on MA

g,m(J) takes the
form

ev : ∂̄−1
J (0) →Mm : (j, u) 7→ (u(z1), . . . , u(zm)),

and we claim that im d(ev)(j, u) is transverse to Tev(j,u)Z. To see this, observe that
given an arbitrary m-tuple

(ξ1, . . . , ξm) ∈ Tu(z1)M ⊕ . . .⊕ Tu(zm)M = Tev(u)M
m,

we can choose a smooth section ξ ∈ Γ(u∗TM) that matches ξi at zi for i = 1, . . . , m,
and then appeal to the surjectivity of D∂̄J(j, u) on the restricted domain to find
y ∈ TjT and η ∈ W 1,p

Z (u∗TM) such that D∂̄J(j, u)(y, η) = −Duξ. Then (y, η+ ξ) ∈
kerD∂̄J(j, u) and

(ξ1, . . . , ξm) = d ev(j, u)(y, η + ξ)− (η(z1), . . . , η(zm)) ∈ im d(ev)(j, u) + Tev(j,u)Z,

proving the claim.
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Since Baire subsets are also dense, the set of regular values contains arbitrar-
ily good approximations to J ref in the Cǫ-topology, and therefore also in the C∞-
topology, and since J ref ∈ J (M,ω ; U , Jfix) was chosen arbitrarily, this implies that
Jreg is dense in J (M,ω ; U , Jfix). The proof of Prop. 4.4.4 is thus complete.

4.4.2. Dense implies generic. As promised, we shall now improve Prop. 4.4.4
to the statement that Jreg is not just dense but also is a Baire subset, i.e. a count-
able intersection of open dense subsets in J (M,ω ; U , Jfix), which implies Theo-
rem 4.4.3. The idea of this step is originally due to Taubes, and it depends on the
fact that the moduli space of somewhere injective J-holomorphic curves can always
be exhausted—in a way that depends continuously on J—by a countable collection
of compact subsets. Observe that the definition of convergence in MA

g,m(J) does
not depend in any essential way on J : thus one can sensibly speak of a convergent
sequence of curves uk ∈ MA

g,m(Jk) where Jk ∈ J (M) are potentially different almost
complex structures.

Lemma 4.4.14. For every J ∈ J (M) and c > 0, there exists a subset

MA
g,m(J, c) ⊂ MA

g,m(J)

such that the following conditions are satisfied:

• Every curve in MA
g,m(J) with an injective point mapped into U belongs to

MA
g,m(J, c) for some c > 0;

• For each c > 0 and any sequence Jk → J in J (M), every sequence uk ∈
MA

g,m(Jk, c) has a subsequence coverging to an element of MA
g,m(J, c).

Postponing the proof for a moment, we proceed to show that Jreg is a Baire
subset, because it is the intersection of a countable collection of subsets

Jreg =
⋂

c∈N
J c

reg,

which are each open and dense in J (M,ω ; U , Jfix). We define these by the condition
that J ∈ J (M,ω ; U , Jfix) belongs to J c

reg if and only if every curve u ∈ MA
g,m(J, c)

with ev(u) ∈ Z is Fredholm regular and the evaluation map ev : MA
g,m(J, c) →Mm

is transverse to Z at u. This set obviously contains Jreg, and is therefore dense due
to Prop. 4.4.4. To see that it is open, we argue by contradiction: suppose J ∈ J c

reg

and Jk ∈ J (M,ω ; U , Jfix) \ J c
reg is a sequence converging to J . Then there is also

a sequence uk ∈ MA
g,m(Jk, c) of curves that either are not Fredholm regular or fail

to satisfy the transversality condition with respect to Z. A subsequence of uk then
converges by Lemma 4.4.14 to some u ∈ MA

g,m(J, c), which must be regular and
satisfy the transversality condition since J ∈ J c

reg. But both conditions are open, so
we have a contradiction.

Theorem 4.4.3 is now established, except for the proof of Lemma 4.4.14. Let us
first sketch the intuition behind this lemma. Morally, it follows from an important
fact that we haven’t yet discussed but soon will: the moduli space MA

g,m(J) has a

natural compactification MA

g,m(J), the Gromov compactification, which is a metriz-

able topological space. In fact, one can define a metric on MA

g,m(J) which does not
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depend on J ; in a more general context, the details of this construction are carried
out in [BEH+03, Appendix B]. Thus if we denote by Mbad(J) the closed subset

that consists of the union of MA

g,m(J) \ MA
g,m(J) with all the curves in MA

g,m(J)

that have no injective point in U , one way to define MA
g,m(J, c) would be as

MA
g,m(J, c) =

{
u ∈ MA

g,m(J)
∣∣∣ dist

(
u,Mbad(J)

)
≥ 1

c

}
.

By Gromov’s compactness theorem, any sequence uk ∈ MA

g,m(Jk) with Jk → J ∈
J (M,ω ; U , Jfix) has a subsequence converging to an element of MA

g,m(J), and since

MA
g,m(J, c) ⊂ MA

g,m(J) is a closed subset, the same holds for a sequence uk ∈
MA

g,m(Jk, c) for any fixed c > 0.
We will not attempt to make the above sketch precise, as we do not actually

need Gromov’s compactness theorem to prove the lemma—in fact, the latter is true
only for almost complex structures that are tamed by a symplectic form, and we
don’t need the symplectic structure either. The following proof does however contain
most of the crucial analytical ingredients in the compactness theory of holomorphic
curves.

Proof of Lemma 4.4.14. We’ll give a proof first for the case g = 0 and then
sketch the modifications that are necessary for higher genus.

Assume g = 0 and m ≥ 3, so Σ = S2. Any pointed Riemann surface (Σ, j,Θ) is
then equivalent to one of the form (S2, i,Θ) with Θ = (0, 1,∞, z1, . . . , zm−3) for

z := (z1, . . . , zm−3) ∈ (S2)m−3 \∆,
where we define the open subset ∆ ⊂ (S2)m−3 to consist of all tuples (z1, . . . , zm−3)
such that either zi ∈ {0, 1,∞} for some i or zi = zj for some i 6= j. Choose
metrics on S2, (S2)m−3 and M , with distance functions denoted by dist( , ). We
define MA

0,m(J, c) to be the set of all equivalence classes in MA
0,m(J) which have

representatives (S2, i,Θ, u) with Θ = (0, 1,∞, z) and the following properties:

(1) (S2, i,Θ) is “not close to degenerating,” in the sense that dist(z,∆) ≥ 1

c
;

(2) u is “not close to bubbling,” in the sense that |du(z)| ≤ c for all z ∈ Σ;
(3) u is “not close to losing its injective points,” meaning there exists z0 ∈ Σ

such that

dist(u(z0),M \ U) ≥ 1

c
, |du(z0)| ≥

1

c
,

and

inf
z∈Σ\{z0}

dist(u(z0), u(z))

dist(z0, z)
≥ 1

c
.

Note that the map u automatically sends an injective point into U by the third condi-
tion, and clearly every curve (S2, i,Θ, u) with this property belongs toMA

0,m(J, c) for

sufficiently large c. Now if Jk → J ∈ J (M) and we have a sequence (S2, i,Θk, uk) ∈
MA

0,m(Jk, c) with Θk = (0, 1,∞, zk), we can take a subsequence so that zk → z ∈
(S2)m−3 \∆ with dist(z,∆) ≥ 1/c. Likewise, the images of the injective points of uk
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in U may be assumed to converge to a point at least distance 1/c away from M \ U
since U is compact. Together with the bound |duk| ≤ c, this gives a uniform C1-
bound and thus a uniform W 1,p-bound on uk. The regularity estimates of Chapter 2
(specifically Corollary 2.11.2) now give a C∞-convergent subsequence uk → u, and
we conclude (S2, i,Θk, uk) → (S2, i,Θ, u) ∈ MA

0,m(J, c), where Θ := (0, 1,∞, z).
If g = 0 and m < 3, one only need modify the above argument by fixing the

marked points to be a suitable subset of {0, 1,∞}. The first condition in the above
definition of MA

0,m(J, c) is then vacuous.
For g ≥ 1, one can no longer describe variations in j purely in terms of the marked

points Θ, so we need a different trick to obtain compactness of a sequence jk. This
requires some knowledge of the Deligne-Mumford compactification of Mg,m, which
we will discuss in a later chapter; for now we simply summarize the main ideas.
Choose a model pointed surface (Σ,Θ) with genus g and m marked points; if it is
not stable, add enough additional marked points to create a stable pointed surface
(Σ,Θ′), and let m′ = #Θ′. Since χ(Σ\Θ′) < 0, for every j ∈ J (Σ) there is a unique
complete hyperbolic metric gj of constant curvature −1 on Σ \ Θ′ that defines the
same conformal structure as j. There is also a singular pair of pants decomposition,
that is, we can fix 3g − 3 +m′ distinct classes in π1(Σ \ Θ′) and choose the unique
geodesic in each of these so that they separate Σ \Θ′ into −χ(Σ \Θ′) surfaces with
the homotopy type of a twice punctured disk. This procedure associates to each
j ∈ J (Σ) a set of real numbers

ℓ1(j), . . . , ℓ3g−3+m′(j) > 0,

the lengths of the geodesics, which depend continuously on j. Now we define
MA

g,m(J, c) by the same scheme as with MA
0,m(J, c) above, but replacing the first

condition by

1

c
≤ ℓi(j) ≤ c for each i = 1, . . . , 3g − 3 +m′.

Now any sequence (Σ, jk,Θ, uk) ∈ MA
g,m(J, c) has a subsequence for which the

lengths ℓi(jk) converge in [1/c, c], implying that jk converges in C∞ to a complex
structure j. The rest of the argument works as before. �

4.5. Generic families

We now prove a pair of results that imply Theorem 4.1.12, concerning generic ho-
motopies of almost complex structures. More generally, we shall consider parametric
moduli spaces associated to a family of almost complex structures parametrized by
a finite-dimensional manifold.

Assume M is a smooth 2n-dimensional manifold without boundary and P is a
smooth finite-dimensional manifold, possibly with boundary. To any smooth fam-
ily {Js}s∈P of almost complex structures on M , one can associate a parametric
moduli space

M({Js}s∈P ) =
{
(s, u)

∣∣∣ s ∈ P, u ∈ M(Js)
}
,

182 Chris Wendl

which we will abbreviate as M({Js}) whenever there is no danger of confusion. We
assign a topology to M({Js}) such that convergence (sk, uk) → (s, u) means sk → s
in P and uk → u in the same sense as our definition of the topology on M(J) in
§4.1. Each pair of integers g,m ≥ 0 and homology class A ∈ H2(M) then defines a
componentMA

g,m({Js}) ⊂ M({Js}) in the obvious way. It should be intuitively clear
that for any s ∈ P and a curve u ∈ M(Js) that is Fredholm regular, a neighborhood
of (s, u) in M({Js}) will be a smooth orbifold of dimension ind(u) + dimP ; in fact,
we will see below that the projection mapM({Js}) → P : (s, u) 7→ s is a submersion
in the neighborhood of such a point. But it would be too much to hope for u to
be Fredholm regular for every (s, u) ∈ M({Js}), even if we restrict to simple curves
and assume the family {Js} is generic: we do not know the topology of the space of
regular almost complex structures provided by Theorem 4.1.8, so in particular we
cannot assume that a given family on ∂P extends regularly over P . The solution
will be to introduce a more relaxed regularity condition for pairs (s, u) ∈ M({Js}),
called parametric regularity, which we will see has the following properties:

• If P = {s}, then parametric regularity for (s, u) ∈ M({Js}) = {s}×M(Js)
is equivalent to the usual notion of Fredholm regularity for u ∈ M(Js).

• If P ′ ⊂ P is a smooth submanifold and (s, u) is parametrically regular
in M({Js}s∈P ′), then it is also parametrically regular in M({Js}s∈P ); see
Prop. 4.5.6 below. In particular, if u is Fredholm regular (in the nonpara-
metric sense) then (s, u) is parametrically regular in M({Js}s∈P ), though
the converse is generally false unless dimP = 0.

• The set of parametrically regular curves in M({Js}) is open.
• M({Js}) is smooth in the neighborhood of any parametrically regular
point (s, u); see Theorem 4.5.1 below.

As in the nonparametric case, the precise definition of parametric regularity (see
Definition 4.5.5 below) is somewhat technical, and one can usually get by without
knowing it. Let us therefore postpone the definition for a moment and state the
important theorems. The first concerns the open subset

MA,reg
g,m ({Js}) ⊂ MA

g,m({Js}s∈P )
consisting of all elements (s, u) ∈ MA

g,m({Js}) such that:

(1) (s, u) is parametrically regular in MA
g,m({Js}s∈P );

(2) If s ∈ ∂P , then (s, u) is also parametrically regular in MA
g,m({Js}s∈∂P );

(3) u is not constant.

Theorem 4.5.1. Given a smooth family {Js}s∈P of almost complex structures
on M parametrized by a manifold P , possibly with boundary, for every g,m ≥ 0 and
A ∈ H2(M), the open subset MA,reg

g,m ({Js}) ⊂ MA
g,m({Js}s∈P ) naturally admits the

structure of a smooth finite-dimensional orbifold with boundary

∂MA,reg
g,m ({Js}) =

{
(s, u) ∈ MA,reg

g,m ({Js})
∣∣∣ s ∈ ∂P

}
,

with dimMA,reg
g,m ({Js}) = vir-dimMA

g,m(Js)+dimP and isotropy group at any (s, u) ∈
MA,reg

g,m ({Js}) isomorphic to Aut(u). Moreover, the maps MA,reg
g,m ({Js}) → Mm :
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(s, u) 7→ ev(u) and MA,reg
g,m ({Js}) → P : (s, u) 7→ s are smooth, and the open subset

of MA,reg
g,m ({Js}) on which the latter is a submersion is precisely the set of pairs (s, u)

such that u is Fredholm regular.

Exercise 4.5.2. The dimension formula in the above statement is a consequence
of the following simple result about Fredholm operators: suppose X and Y are
Banach spaces, V is a finite-dimensional vector space and T : X ⊕ V → Y is a
bounded linear operator such that T0 := T |X⊕{0} : X → Y is Fredholm. Show that
T is also Fredholm, and ind(T ) = ind(T0) + dimV .

To state a corresponding genericity result, fix an open subset U ⊂ M with
compact closure and a closed subset P fix ⊂ P whose complement has compact
closure. (The main example to keep in mind is P = [0, 1] with P fix = {0, 1}; more
generally, one can take P to be any compact manifold with boundary ∂P = P fix.)
Fix also a smooth family of symplectic forms {ωs}s∈P , together with a smooth family
of almost complex structures {Js}s∈P such that Js ∈ J (M,ωs) for every s ∈ P . We
then define

J (M, {ωs} ; U , {Jfix
s })

to be the space of all smooth families {Js}s∈P that satisfy:

(1) Js ∈ J (M,ωs ; U , Jfix
s ) for all s ∈ P , i.e. Js is ωs-compatible and matches

Jfix
s outside U ; and

(2) Js ≡ Jfix
s for all s ∈ P fix.

One can show that J (M, {ωs} ; U , {Jfix
s }) with its natural C∞-topology is a smooth

Fréchet manifold—note that this depends on the assumption of both U ⊂ M
and P \ P fix ⊂ P having compact closure, and this assumption will similarly
be needed in order to define suitable Banach manifolds of perturbed families in
J (M, {ωs} ; U , {Jfix

s }). For applications involving the evaluation map, we can also
pick an integer m ≥ 0 and fix a smooth submanifold (possibly with boundary)

Z ⊂ P ×Mm,

where as usual the reader uninterested in the evaluation map should set Z := P×Mm

so that all conditions involving Z become vacuous. Let us then say that an element
(s, u) ∈ MA

g,m({Js}) is (U , Z)-simple if:

(1) u has an injective point mapped into U , and
(2) (s, ev(u)) ∈ Z;

and similarly, (s, u) ∈ MA
g,m({Js}) is Z-regular if:

(1) (s, u) is parametrically regular in MA
g,m({Js}s∈P ), and

(2) (s, u) is a transverse intersection of the map MA,reg
g,m ({Js}) → P ×Mm :

(s, u) 7→ (s, ev(u)) with Z.

We then define

J Z
reg(M, {ωs} ; U , {Jfix

s } ; g,m,A) ⊂ J (M, {ωs} ; U , {Jfix
s })

as the set of all {Js} ∈ J (M, {ωs} ; U , {Jfix
s }) with the property that every (U , Z)-

simple element (s, u) ∈ MA
g,m({Js}) is also Z-regular. Now we have the following

generalization of Theorem 4.4.3.
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Theorem 4.5.3. Assume that every (U , Z)-simple element (s, u) ∈ M({Jfix
s })

with s ∈ P fix is also Z-regular. Then J Z
reg(M, {ωs} ; U , {Jfix

s } ; g,m,A) is a Baire

subset of J (M, {ωs} ; U , {Jfix
s }).

Remark 4.5.4. In typical applications, the regularity hypothesis for s ∈ P fix

can be achieved by a further application of the theorem. For instance, suppose P is
a compact smooth manifold with boundary ∂P = P fix, and Z ⊂ P ×Mm intersects
∂P × Mm transversely at ∂Z. The theorem then implies that any given family
{Jfix

s }s∈∂P admits a generic perturbation for which every (U , ∂Z)-simple element of
MA

g,m({Js}s∈∂P ) is ∂Z-regular, which implies that it is also Z-regular.

The proofs of Theorems 4.5.1 and 4.5.3 require only minor adjustments to the
proofs of their nonparametric counterparts, so we will follow the structure of those
proofs closely but without repeating every detail.

The definition of parametric regularity requires a slight generalization of the
functional analytic setup from §4.3. Given a smooth family {Js}s∈P and a curve
(Σ, j,Θ, u) ∈ MA

g,m(Js) for some s ∈ P , choose a Teichmüller slice T ⊂ J (Σ)

through j, denote B1,p = W 1,p(Σ,M) as before, and let E0,p → T ×B1,p ×P denote
the Banach space bundle with fibers

E0,p
(j′,u′,s′) = Lp

(
HomC((TΣ, j

′), ((u′)∗TM, Js′))
)
,

which has a smooth section

∂̄{Js} : T × B1,p × P → E0,p : (j′, u′, s′) 7→ Tu′ + Js′ ◦ Tu′ ◦ j′,
with linearization at (j, u, s) given by

D∂̄{Js}(j, u, s) : TjT ⊕W 1,p(u∗TM)⊕ TsP → Lp(HomC(TΣ, u
∗TM)),

(y, η, v) 7→ D∂̄Js(j, u)(y, η) + J̇v ◦ Tu ◦ j.

(4.5.1)

Here we define
J̇v := ∂τJγ(τ)

∣∣
τ=0

∈ Γ(EndC(TM, Js))

for any choice of smooth path τ 7→ γ(τ) ∈ P with γ(0) = s and γ̇(0) = v.

Definition 4.5.5. The curve (s, u) ∈ MA
g,m({Js}) is parametrically regular

in MA
g,m({Js}s∈P ) if the linear operator D∂̄{Js}(j, u, s) in (4.5.1) is surjective.

A straightforward modification of Lemma 4.3.2 shows that this definition is in-
dependent of the choice of Teichmüller slice. The following useful observation is
immediate from the definition.

Proposition 4.5.6. Given a family {Js}s∈P and a curve u ∈ M(Js) for some
s ∈ P , if u is Fredholm regular, then (s, u) ∈ M({Js}) is parametrically regular.
More generally, if P ′ ⊂ P and Z ⊂ P ×Mm are submanifolds such that the inter-
section

Z ′ := Z ∩ (P ′ ×Mm)

is transverse, then any Z ′-regular element of M({Js}s∈P ′) is also a Z-regular ele-
ment of M({Js}s∈P ). �
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Proof of Theorem 4.5.1. We shall again consider the stable case 2g+m ≥ 3
and leave the remaining cases as an exercise. Suppose s0 ∈ P and (Σ, j0,Θ, u0) ∈
MA

g,m(Js0) is a curve for which (s0, u0) ∈ M({Js}) is parametrically regular, and
assume to start with that s0 lies in the interior of P . Choose a Teichmüller slice T
through j0 that is invariant under the action of Aut(Σ, j0,Θ). Then considering the
smooth section ∂̄{Js} : T ×B1,p × P → E0,p, parametric regularity together with the
implicit function theorem and Exercise 4.5.2 imply that

∂̄−1
{Js}(0) ⊂ T × B1,p × P

is a smooth submanifold with dimension indD∂̄{Js}(j0, u0, s0) = indD∂̄Js0 (j0, u0) +

dimP = vir-dimMA
g,m(Js0) + dimP near (j0, u0, s0). The group Aut(Σ, j0,Θ) then

acts on ∂̄−1
{Js}(0) by ϕ · (j, u, s) := (ϕ∗j, u ◦ ϕ, s), and the resulting map

∂̄−1
{Js}(0)

/
Aut(Σ, j0,Θ) → MA

g,m({Js})

is a local homeomorphism onto a neighborhood of (s0, u0), by the same argument
as in the proof of Theorem 4.3.6. This gives MA

g,m({Js}) the structure of a smooth
orbifold near (s0, u0), its isotropy group being the stabilizer of (j0, u0, s0) under
the action of Aut(Σ, j0,Θ), which is precisely Aut(u0). Smoothness of the transi-
tion maps follows by the same argument as in the nonparapmetric case. The map
MA,reg

g,m ({Js}) → P ×Mm : (s, u) 7→ (s, ev(u)) is now obviously smooth since it is
represented locally by the map

∂̄−1
{Js}(0) → P ×Mm : (j, u, s) 7→ (s, u(z1), . . . , u(zm)),

which is the restriction to ∂̄−1
{Js}(0) of a smooth map T × B1,p × P → P × Mm.

Moreover, the derivative of the projection ∂̄−1
{Js}(0) → P : (j, u, s) 7→ s at (j0, u0, s0)

is simply the restriction of the natural projection Tj0T ⊕ Tu0B1,p ⊕ Ts0P → Ts0P to
the subspace

kerD∂̄{Js}(j0, u0, s0) =
{
(y, η, v)

∣∣∣ D∂̄Js0 (j0, u0)(y, η) = −J̇v ◦ Tu0 ◦ j0
}
,

hence it is surjective whenever D∂̄Js0 (j0, u0) is surjective, which means u0 is Fred-
holm regular. Conversely, whenever the restricted projection is surjective, the fact
that D∂̄{Js}(j0, u0, s0) is surjective implies that D∂̄Js0 (j0, u0) is also surjective.

It remains to deal with the case s0 ∈ ∂P . Without loss of generality, we can
assume {ωs}s∈P and {Js}s∈P are the restrictions to P of compatible smooth families
{ωs}s∈P ′ and {Js}s∈P ′ respectively, where P ′ is a smooth manifold without bound-
ary that contains P and has the same dimension; we need not assume that P ′ is
compact. The previous argument then identifies M({Js}s∈P ′) near (s0, u0) with a
neighborhood of (j0, u0, s0) in the smooth zero set of a section

∂̄{Js} : T × B1,p × P ′ → E0,p,

modulo the action of Aut(Σ, j0,Θ). If we also assume now that (s0, u0) is paramet-
rically regular in M({Js}s∈∂P ), then the linearization at (j0, u0, s0) of the restricted
section

∂̄{∂Js} := ∂̄{Js}|T ×B1,p×∂P : T × B1,p × ∂P → E0,p
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is surjective, so the implicit function theorem makes ∂̄−1
{∂Js}(0) a smooth codimen-

sion 1 submanifold of ∂̄−1
{Js}(0) near (j0, u0, s0), and it is clearly preserved by the

action of Aut(Σ, j0,Θ). The subset {∂̄{Js}(j, u, s) = 0, s ∈ P} therefore inherits the
structure of a smooth manifold with boundary, and its quotient by Aut(Σ, j0,Θ) is
identified with a neighborhood of (s0, u0) in MA

g,m({Js}s∈P ). �

Proof of Theorem 4.5.3. We first show that the set

Jreg := J Z
reg(M, {ωs} ; U , {Jfix

s } ; g,m,A)
is dense in J (M, {ωs} ; U , {Jfix

s }). Fix any {J ref
s } ∈ J (M, {ωs} ; U , {Jfix

s }), choose a
sequence of positive numbers ǫν converging to 0 sufficiently fast, and define a space
of Cǫ-smooth perturbations

Jǫ ⊂ J (M, {ωs} ; U , {Jfix
s }),

consisting of families {Js} of the form

Js =

(
1+

1

2
J ref
s Ys

)
J ref
s

(
1+

1

2
J ref
s Ys

)−1

.

Here we assume Ys := Y (s, ·), where Y is a smooth section of a vector bundle Ξ →
P ×M with fibers Ξ(s,p) = EndC(TpM,J ref

s (p), ωs|p), and Y is assumed to have small
Cǫ-norm ‖Y ‖ǫ < δ and to vanish identically when either s ∈ P fix or p 6∈ U . The latter
implies in particular that Y has compact support, even if M or P is noncompact.
This gives Jǫ the structure of a smooth, separable and metrizable Banach manifold
which contains {J ref

s } and embeds continuously into J (M, {ωs} ; U , {Jfix
s }). We then

define a universal moduli space U ∗(Jǫ) as the space of triples (s, u, {Js}) for which
{Js} ∈ Jǫ, (s, u) ∈ MA

g,m({Js}), and u has an injective point mapped into U . Let

U
∗
Z (Jǫ) =

{
(s, u, {Js}) ∈ U

∗(Jǫ)
∣∣∣ (s, ev(u)) ∈ Z

}
.

Generalizing Proposition 4.4.10, our main task is to prove that U ∗(Jǫ) admits
the structure of a smooth, separable and metrizable Banach manifold such that the
maps U ∗(Jǫ) → Jǫ : (s, u, {Js}) → {Js} and U ∗(Jǫ) → P ×Mm : (s, u, {Js}) →
(s, ev(u)) are smooth and the latter is transverse to Z. Given a family {J0

s } ∈ Jǫ

and a curve (Σ, j0,Θ, u0) ∈ MA
g,m(J

0
s0) such that (s0, u0, {J0

s }) ∈ U ∗(Jǫ), choose

a Teichmüller slice T through j0. A neighborhood of (s0, u0, {J0
s }) in U ∗(Jǫ) can

then be described as the zero set of a smooth section

∂̄ : T × B1,p × P × Jǫ → E0,p : (j, u, s, {Js}) 7→ Tu+ Js ◦ Tu ◦ j,
where E0,p is now a Banach space bundle with fiber

E0,p
(j,u,s,{Js}) = Lp

(
HomC((TΣ, j), (u

∗TM, Js))
)
.

The linearization at (j0, u0, s0, {J0
s }) then takes the form

(4.5.2) (y, η, v, {Ys}) 7→ J0
s0
◦ Tu0 ◦ y +Du0η + J̇0

v ◦ Tu0 ◦ j0 + Ys0 ◦ Tu0 ◦ j0.
If s0 ∈ P fix, then the last term vanishes, and what remains is simplyD∂̄{J0

s }(j0, s0, u0),
which is surjective since (s0, u0) is parametrically regular by assumption; it follows
that U ∗(Jǫ) is smooth near (s0, u0), and the transversality condition with respect
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to Z is similarly satisfied since (s0, u0) is assumed Z-transverse. If s0 6∈ P fix, then
it will suffice to show that (4.5.2) is a surjective operator when restricted to the
domain

{
(y, η, 0, {Ys})

∣∣∣ y ∈ Tj0T , η ∈ W 1,p
Θ (u∗0TM), {Ys} ∈ T{J0

s }Jǫ

}
,

as this implies that U ∗(Jǫ) is smooth and (s, u) 7→ (s, ev(u)) is a submersion near
(s0, u0). Since Ys0 can now be nonzero in U , where u0 has an injective point, surjec-
tivity follows by the same argument as in Lemma 4.4.11.

The above implies that U ∗
Z (Jǫ) is a smooth Banach manifold, so we apply the

Sard-Smale theorem as before to the projection U ∗
Z (Jǫ) → Jǫ to show that for

generic choices of the family {Js} ∈ Jǫ, every (U , Z)-simple (s, u) ∈ MA
g,m({Js}) is

Z-regular. In particular, since {J ref
s } was arbitrary, this is true for a dense set of

families in J (M, {ωs} ; U , {Jfix
s }).

Finally, we adapt Taubes’s topological argument from §4.4.2 to show that Jreg ⊂
J (M, {ωs} ; U , {Jfix

s }) is not only dense but is also a Baire subset. The main in-
gredient needed for this to define for each {Js} ∈ J (M, {ωs} ; U , {Jfix

s }) a suitable
exhaustion of MA

g,m({Js}) by compact subsets: more specifically, we can generalize
Lemma 4.4.14 by associating to each {Js} and each c > 0 a subset

MA
g,m({Js}, c) ⊂ MA

g,m({Js})

such that:

(1) Every (U , Z)-simple element (s, u) ∈ MA
g,m({Js}) with s 6∈ P fix belongs to

MA
g,m({Js}, c) for some c > 0;

(2) For each c > 0 and any sequence {Jk
s } → {Js} in J (M, {ωs} ; U , {Jfix

s }),
every sequence (sk, uk) ∈ MA

g,m({Jk
s }, c) has a subsequence converging to

an element of MA
g,m({Js}, c).

Choosing a metric on P , we define MA
g,m({Js}, c) to consist of all pairs (s, u)

such that u ∈ MA
g,m(Js) satisfies the three conditions described in the proof of

Lemma 4.4.14, and additionally,

(4) s is “not close to P fix,” i.e. dist(s, P fix) ≥ 1/c.

Now define J c
reg ⊂ J (M, {ωs} ; U , {Jfix

s }) by the condition that for every {Js} ∈ J c
reg,

every (s, u) ∈ MA
g,m({Js}, c) with (s, ev(u)) ∈ Z is Z-regular. These sets are open

and dense for each c > 0, and their countable intersection for all c ∈ N consists of
families {Js} ∈ J (M, {ωs} ; U , {Jfix

s }) that achieve Z-regularity for all (U , Z)-simple
elements (s, u) ∈ MA

g,m({Js}) with s 6∈ P fix. Since Z-regularity is already achieved

for elements with s ∈ P fix by assumption, the resulting Baire subset is contained
in Jreg. �

Exercise 4.5.7. Generalize Theorems 4.5.1 and 4.5.3 to the case where P is
a smooth manifold with boundary and corners. The statement of Theorem 4.5.3
should not require any change; in Theorem 4.5.1, the local structure of M({Js})
will now also include corners.
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4.6. Transversality of the evaluation map

Most applications of pseudoholomorphic curves involve the natural evaluation
map ev = (ev1, . . . , evm) : MA

g,m(J) →M × . . .×M , which can be used for instance
to count intersections of holomorphic curves with fixed points or submanifolds in
the target. Applications of this type are facilitated by the following extension of
Theorem 4.1.8.

Theorem 4.6.1. Assume (M,ω) is a 2n-dimensional symplectic manifold with-
out boundary, U ⊂ M is an open subset with compact closure, Jfix ∈ J (M,ω) and
m ∈ N are fixed, and Z ⊂ Mm is a smooth submanifold without boundary. Then
there exists a Baire subset J Z

reg(M,ω ; U , Jfix) ⊂ J (M,ω ; U , Jfix) such that for every

J ∈ J Z
reg(M,ω ; U , Jfix), the space M∗

U(J ;Z) ⊂ M(J) of J-holomorphic curves with
injective points mapped into U and m marked points satisfying the constraint

ev(u) ∈ Z

is a smooth finite-dimensional manifold. The dimension of M∗
U(J ;Z) ∩ MA

g,m(J)

for any g ≥ 0 and A ∈ H2(M) is vir-dimMA
g,m(J)− (2nm− dimZ).

The theorem follows immediately from Theorems 4.3.6 and 4.4.3, as we can
define J Z

reg(M,ω ; U , Jfix) as a countable intersection of the Baire subsets provided
by Theorem 4.4.3:

J Z
reg(M,ω ; U , Jfix) =

⋂

g≥0,A∈H2(M)

J Z
reg(M,ω ; U , Jfix ; g,m,A).

We are also free to shrink J Z
reg(M,ω ; U , Jfix) further by taking its intersection with

Jreg(M,ω ; U , Jfix), thus ensuring without loss of generality that all curves with
injective points in U are regular, including those with ev(u) 6∈ Z.

Example 4.6.2. Suppose Z is a single point, i.e. pick points p1, . . . , pm ∈ M
and denote the resulting 1-point subset by p ∈ {(p1, . . . , pm)} ⊂ Mm. Then The-
orem 4.6.1 implies that for generic J , the space of closed somewhere injective J-
holomorphic curves u with genus g, in homology class A and with m marked points
satisfying the constraints u(zi) = pi for i = 1, . . . , m is a smooth manifold of dimen-
sion

dim ev−1(p) = vir-dimMA
g,m(J)− dimMm

= (n− 3)(2− 2g) + 2c1(A) + 2m− 2nm

= (n− 3)(2− 2g) + 2c1(A)− 2m(n− 1).

Another simple application is the following generalization of Corollary 4.1.10.

Corollary 4.6.3. Suppose (M,ω) is a 2n-dimensional symplectic manifold
without boundary, J is an ω-compatible almost complex structure, U ⊂ M is an
open subset with compact closure, and Z1, . . . , Zm ⊂ M is a pairwise disjoint finite
collection of connected submanifolds without boundary. Then after a generic pertur-
bation of J to a new compatible almost complex structure J ′ matching J outside U ,
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every J ′-holomorphic curve that maps an injective point into U and intersects all of
the submanifolds Z1, . . . , Zm satisfies

ind(u) ≥ 2m(n− 1)−
m∑

i=1

dimZi.

Proof. Assume J ′ is generic such that for all g ≥ 0 and A ∈ H2(M), the set of
curves in MA

g,m(J
′) with injective points in U is a smooth manifold of the expected

dimension and the evaluation map on this space is transverse to Z1 × . . .× Zm. If
a curve u ∈ MA

g,0(J
′) with the stated properties exists, then by adding a marked

point zi at any point where it intersects Zi for each i = 1, . . . , m, we can regard u as
an element of ev−1(Z1× . . .×Zm) ⊂ MA

g,m(J
′), proving that the latter is nonempty

and has nonnegative dimension near u. This dimension is

0 ≤ dim ev−1(Z1 × . . .× Zm) = vir-dimMA
g,m(J

′)−
m∑

i=1

codimZi

= vir-dimMA
g,0(J

′) + 2m−
(
2mn−

m∑

i=1

dimZi

)

= ind(u) + 2m(1− n) +

m∑

i=1

dimZi.

�

Remark 4.6.4. This seems a good moment to emphasize that the definition
of the word “generic” in Example 4.6.2 and Corollary 4.6.3 depends on Z, i.e. dif-
ferent choices of submanifolds Z1, Z2 ⊂ Mm generally yield different Baire subsets
J Z1

reg(M,ω ; U , Jfix) and J Z2
reg(M,ω ; U , Jfix). For instance, one should not get the im-

pression from Example 4.6.2 that a generic choice of a single J ∈ J (M,ω) suffices
to ensure that the spaces

{
u ∈ MA

g,m(J) | u is somewhere injective and ev(u) = p
}

are smooth manifolds of dimension (n − 3)(2 − 2g) + 2c1(A) − 2m(n − 1) for all
p ∈ Mm. One could arrange this simultaneously for any countable set of points
p ∈Mm, but it is easy to see that this cannot hold for uncountable sets in general:
indeed, Corollary 4.6.3 implies that for each point p ∈Mm, taking J generic ensures
that every closed somewhere injective J-holomorphic curve u with m marked points
satisfying ev(u) = p satisfies ind(u) ≥ 2m(n − 1). If one could find a J such that
this holds for all p ∈Mm, it would imply that simple J-holomorphic curves u with
ind(u) < 2m(n − 1) do not exist, and since the choice of m ∈ N in this discussion
was arbitrary, the conclusion is clearly absurd. This illustrates the fact that an
uncountable intersection of Baire subsets may in general be empty.

For a slightly different type of application, one can prove various results along
the lines of the statement that generic J-holomorphic curves in dimension greater
than four are injective. For example:
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Corollary 4.6.5. Suppose (M,ω) is a closed symplectic manifold of dimen-
sion 2n ≥ 6. Then for generic J ∈ J (M,ω), every somewhere injective J-holomor-
phic curve u ∈ M∗(J) with ind(u) < 2n− 4 is injective.5

Proof. Choose J generic so that for every g ≥ 0 and A ∈ H2(M), the evaluation
map on the space of somewhere injective curves in MA

g,2(J) is transverse to the
diagonal

∆ := {(p, p) ∈M ×M | p ∈M}.
Then for any curve u that is somewhere injective but has a self-intersection u(z1) =
u(z2) for z1 6= z2, we can add marked points at z1 and z2 and thus view u as an
element of ev−1(∆) ⊂ MA

g,2(J), proving that ev−1(∆) is nonempty and therefore has
nonnegative dimension. This dimension is

0 ≤ vir-dimMA
g,2(J)− codim∆ = vir-dimMA

g,0(J) + 4− 2n = ind(u) + 4− 2n.

�

One consequence of this result is that in higher dimensions (i.e. 2n ≥ 6), a
simple and Fredholm regular curve of index 0 can always have its self-intersections
perturbed away by a small change in J . No such result holds in dimension four,
and there are good topological reasons for this, as positivity of intersections (The-
orem 2.16.1) implies that no self-intersection of a simple J-holomorphic curve can
ever be eliminated by small perturbations. The following exercise shows however
that triple intersections can generically be avoided, even in dimension four.

Exercise 4.6.6. Prove that in any closed symplectic manifold (M,ω) of dimen-
sion 2n ≥ 4, for generic J ∈ J (M,ω), there is no somewhere injective J-holomorphic
curve u ∈ M∗(J) with ind(u) < 4n−6 having three pairwise disjoint points z1, z2, z3
in its domain such that u(z1) = u(z2) = u(z3).

Finally, we state a generalization of Theorem 4.6.1 that is useful in defining
the rational Gromov-Witten invariants of semipositive symplectic manifolds, see
[MS04, Chapters 6 and 7]. The proof is a straightforward modification of the proof
of Theorem 4.6.1.

Theorem 4.6.7. Assume (M,ω), U ⊂ M and Jfix ∈ J (M,ω) are given as in
Theorem 4.6.1, along with finite collections of integers gi, mi ≥ 0 and homology
classes Ai ∈ H2(M) for i = 1, . . . , N , and a smooth submanifold

Z ⊂ Mm1 × . . .×MmN

without boundary. For any J ∈ J (M), let

M∗
N(J) ⊂ MA1

g1,m1
(J)× . . .×MAN

gN ,mN
(J)

denote the open subset consisting of N-tuples (u1, . . . , uN) such that each curve ui :
Σi → M for i = 1, . . . , N has an injective point zi ∈ Σi with

ui(zi) ∈ U , and ui(zi) 6∈
⋃

j 6=i

uj(Σj).

5We will strengthen this result in Corollary 4.7.3 below so that the word “injective” can be
replaced by “embedded”.
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Then there exists a Baire subset J Z
reg ⊂ J (M,ω ; U , J ref) such that for all J ∈ J Z

reg,
M∗

N(J) is a smooth manifold and the composite evaluation map

(ev1, . . . , evN) : M∗
N(J) →Mm1 × . . .×Mmm

is transverse to Z, where evi denotes the evaluation map on MAi
gi,mi

(J) for i =
1, . . . , N .

Exercise 4.6.8. Convince yourself that Theorem 4.6.7 is true. What can go
wrong if two of the curves ui and uj for i 6= j have identical images?

4.7. Generic J-holomorphic curves are immersed

The following result demonstrates a different kind of marked point constraint
than we’ve seen so far. As usual, we assume U is a precompact open subset in a 2n-
dimensional symplectic manifold (M,ω) without boundary, Jfix ∈ J (M,ω), g ≥ 0
and A ∈ H2(M) are fixed.

Theorem 4.7.1. Given J ∈ J (M), let

MA
g,crit(J) ⊂ MA

g,1(J)

denote the set of curves in MA
g,1(J) that have vanishing first derivatives at the marked

point. Then there exists a Baire subset J ′
reg ⊂ J (M,ω ; U , Jfix) such that for every

J ∈ J ′
reg, the subset of MA

g,crit(J) consisting of curves with an injective point mapped

into U is a smooth manifold with dimension equal to vir-dimMA
g,0(J)− (2n− 2).

Corollary 4.7.2. Suppose (M,ω) is a closed symplectic manifold of dimen-
sion 2n ≥ 4. Then for generic J ∈ J (M,ω), every somewhere injective J-holomorphic
curve u ∈ M∗(J) with ind(u) < 2n− 2 is immersed.

The proof of the corollary is analogous to that of Corollary 4.6.5 above: if a non-
immersed curve u ∈ MA

g,0(J) exists, one can add a marked point where du(z) = 0

and thus view u as an element of MA
g,crit(J), whose dimension is given by Theo-

rem 4.7.1 and must be nonnegative. Note that unlike Corollary 4.6.5, this gives a
nontrivial result in dimension four, showing that index 0 curves are generically im-
mersed, so one can always perturb critical points away by a small change in J ; The-
orem 2.16.2 indicates that in dimension four, such a perturbation produces new self-
intersections. In higher dimensions, the above result combines with Corollary 4.6.5
to prove:

Corollary 4.7.3. For generic J ∈ J (M,ω) in any closed symplectic manifold
(M,ω) of dimension 2n ≥ 6, every somewhere injective J-holomorphic curve u ∈
M∗(J) with ind(u) < 2n− 4 is embedded.

Remark 4.7.4. Various generalizations of Theorem 4.7.1 and the above corol-
laries can easily be proved at the cost of more cumbersome notation. The general
rule is that in any moduli space of somewhere injective pseudoholomorphic curves
with marked points satisfying any constraints, imposing an additional constraint to
make the curves critical at a particular marked point decreases the dimension of the
moduli space by 2n. (The additional 2 in the dimension formula of Theorem 4.7.1
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appears because of the two dimensions gained by switching fromMA
g,0(J) toMA

g,1(J)
before imposing the constraint.)

The proof of Theorem 4.7.1 will require a slight modification of our previous func-
tional analytic setup: writing down the Cauchy-Riemann equation on W 1,p(Σ,M)
will not work if we also want to impose a pointwise constraint on derivatives, as
maps in W 1,p(Σ,M) are not generally of class C1. This problem is easy to fix by
working in W 2,p(Σ,M) for any p > 2, which admits a continuous inclusion into
C1(Σ,M) due to the Sobolev embedding theorem. The arguments of §4.3 and §4.4
then require only minor modifications to fit into the new setup, so we will sketch
these modifications without repeating every detail.

Recall from §3.1 that since Σ is compact and dimR Σ = 2,

Bk,p := W k,p(Σ,M)

is a smooth Banach manifold for any k ∈ N and p > 2, with W k,p-neighborhoods of
smooth maps f ∈ C∞(Σ,M) identified with neighborhoods of 0 in W k,p(f ∗TM) via
the correspondence u = expf η for η ∈ W k,p(f ∗TM). The tangent space at u ∈ Bk,p

is
TuBk,p =W k,p(u∗TM),

and the Sobolev embedding theorem implies that there is a continuous inclusion

Bk,p →֒ Ck−1(Σ,M).

Recall also that for any j ∈ J (Σ) and J ∈ J (M), there is a smooth Banach space
bundle Ek−1,p → Bk,p with fibers

Ek−1,p
u :=W k−1,p

(
HomC((TΣ, j), (u

∗TM, J))
)

and a smooth section

∂̄J : Bk,p → Ek−1,p : u 7→ Tu+ J ◦ Tu ◦ j,
whose zero set is the space of pseudoholomorphic maps (Σ, j) → (M,J) of classW k,p.
Elliptic regularity implies of course that all such maps are smooth, regardless of the
values of k and p. Given a Teichmüller slice T ⊂ J (Σ) and a Banach manifold
of Floer perturbations Jǫ ⊂ J (M) as in §4.4.1, the bundle Ek−1,p has an obvious
extension over the base T × Bk,p × Jǫ, with ∂̄J extending to a smooth section

∂̄ : T × Bk,p × Jǫ → Ek−1,p : (j, u, J) 7→ Tu+ J ◦ Tu ◦ j.
Its linearization at any zero has the usual form restricted to the appropriate domain
and target. One can similarly define the smooth section

(4.7.1) ∂Ju = Tu− J ◦ Tu ◦ j,
which for u ∈ Bk,p takes values in the Banach space bundle whose fiber over u is
W k−1,p(HomC(TΣ, u

∗TM)). Its linearization takes the form

D∂J(u) : W
k,p(u∗TM) →W k−1,p(HomC(TΣ, u

∗TM))

η 7→ ∇η − J(u) ◦ ∇η ◦ j − (∇ηJ) ◦ Tu ◦ j
(4.7.2)

for any choice of symmetric connection ∇ on M , and it has a similarly obvious
extension to smooth sections of Banach space bundles over T ×Bk,p or T ×Bk,p×Jǫ.
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Suppose now that (Σ, j0, (z0), u0) represents a curve in the moduli spaceMA
g,crit(J)

defined in Theorem 4.7.1, so in particular du0(z0) = 0. We shall consider the non-
linear Cauchy-Riemann operator on the domain

B2,p
crit :=

{
u ∈ B2,p | du(z0) : Tz0Σ → Tu(z0)M is complex antilinear

}
.

Notice that since any u ∈ ∂̄−1
J (0) has complex-linear derivatives, such a map belongs

to B2,p
crit if and only if du(z0) = 0. We claim that B2,p

crit is a smooth Banach submanifold
of B2,p. Indeed, define a vector bundle V → B2,p with fibers

Vu := HomC(Tz0Σ, Tu(z0)M).

It is easy to see that V is a smooth vector bundle, as it is the pullback of the
finite-dimensional smooth vector bundle

HomC(Tz0Σ, TM) → M

via the smooth evaluation map ev : B2,p → M : u 7→ u(z0). Moreover, the inclusion
B2,p ⊂ C1(Σ,M) permits us to define a smooth section

B2,p → V : u 7→ ∂Ju(z0),

where ∂J is the operator defined in (4.7.1). The zero set of this section is precisely
B2,p
crit, and its linearization at a zero u ∈ B2,p

crit is simply the restriction of (4.7.2) to
the point z0, which gives the continuous linear map

W 2,p(u∗TM) → HomC(Tz0Σ, Tu(z0)M)

η 7→
(
∇η − J(u) ◦ ∇η ◦ j − (∇ηJ) ◦ Tu ◦ j

)∣∣∣
Tz0Σ

.
(4.7.3)

Exercise 4.7.5. Convince yourself that (4.7.3) is surjective for any u ∈ B2,p
crit.

By the exercise and the implicit function theorem, B2,p
crit is a smooth Banach

submanifold of B2,p, with codimension 2n. The zero set of the restriction

∂̄J |B2,p
crit

: B2,p
crit → E1,p

then consists of J-holomorphic maps u : Σ → M with du(z0) = 0, and the lin-
earization of this restricted section at a map u ∈ ∂̄−1

J (0) ∩ B2,p
crit is the usual linear

Cauchy-Riemann type operator Du on a restricted domain

(4.7.4) Du : W 2,p
crit(u

∗TM) →W 1,p(HomC(TΣ, u
∗TM)),

where we plug in du(z0) = 0 to (4.7.3), obtaining the space

W 2,p
crit(u

∗TM) :=
{
η ∈ W 2,p(u∗TM) | ∇η(z0) is complex antilinear

}
.

Note that since du(z0) = 0, the condition defining W 2,p
crit(u

∗TM) does not depend
on the choice of symmetric connection. Since W 2,p

crit(u
∗TM) has codimension 2n

in W 2,p(u∗TM), plugging in the index formula from Theorem 3.4.1 for a Cauchy-
Riemann type operator W 2,p(u∗TM) →W 1,p(HomC(TΣ, u

∗TM)) gives

(4.7.5) ind(Du) = nχ(Σ) + 2c1(A)− 2n.
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Let us call a curve u ∈ MA
g,crit(J) Fredholm regular for MA

g,crit(J) whenever
the operator (4.7.4) is surjective. Given a Teichmüller slice T through j0, we can
now consider the nonlinear operator ∂̄J on the finite-codimensional submanifold
{
(j, u) ∈ T × B2,p | du(z0) : (Tz0Σ, j) → (Tu(z0)M,J) is complex antilinear

}
.

With the index formula (4.7.5) in hand, a repeat of the proof of Theorem 4.3.6 in
this context shows:

Proposition 4.7.6. The open subset of MA
g,crit(J) consisting of curves that are

Fredholm regular for MA
g,crit(J) and have trivial automorphism group is a smooth

manifold of dimension

vir-dimMA
g,crit(J) := vir-dimMA

g,1(J)− 2n = (n− 3)(2− 2g) + 2c1(A) + 2− 2n.

It remains to show that the regularity condition is achieved for generic J . Follow-
ing the prescription of §4.4, choose a Banach manifold Jǫ of Cǫ-smooth perturbations
of an arbitrary reference structure J ref ∈ J (M,ω ; U , Jfix), all matching Jfix outside
of U . Define a universal moduli space U ∗

crit(Jǫ) to consist of all pairs (u, J) such
that J ∈ Jǫ, u ∈ MA

g,crit(J), and u maps an injective point into U .
Proposition 4.7.7. U ∗

crit(Jǫ) admits the structure of a smooth (separable and
metrizable) Banach manifold such that the projection π : U ∗

crit(Jǫ) → Jǫ is smooth,
and for every regular value J of π, every curve u ∈ MA

g,crit(J) with an injective point

mapped into U is Fredholm regular for MA
g,crit(J).

The proof is essentially the same as that of Proposition 4.4.10, the crucial step
being to establish the following analogue of Lemma 4.4.11:

Lemma 4.7.8. If u0 : (Σ, j0) → (M,J0) is a pseudoholomorphic curve that maps
an injective point into U and satisfies du0(z0) = 0, then the operator

L : W 2,p
crit(u

∗
0TM)⊕ Cǫ(EndC(TM, J0, ω) ; U) → W 1,p(HomC(TΣ, u

∗
0TM))

(η, Y ) 7→ Du0η + Y ◦ Tu0 ◦ j0
is surjective and has a bounded right inverse.

Proof. As in the proof of Lemma 4.4.11, the Fredholm property of Du0 implies
that L has a bounded right inverse if and only if it is surjective. To prove surjectivity,
we can appeal to the fact that the same operator is (by Lemma 4.4.11) already known
to be surjective as a map

W 1,p(u∗0TM)⊕ Cǫ(EndC(TM, J0, ω) ; U) → Lp(HomC(TΣ, u
∗
0TM)).

Thus for any f ∈ W 1,p(HomC(TΣ, u
∗
0TM)), we have f ∈ Lp and thus find η ∈ W 1,p

and Y ∈ Cǫ with Du0η + Y ◦ Tu0 ◦ j0 = f . Since Y and u0 are both smooth, this
implies that Du0η ∈ W 1,p, so by linear elliptic regularity (see e.g. Corollary 2.6.28),
η ∈ W 2,p. The first derivative of η is therefore well defined pointwise, and since
du0(z0) = 0, restricting the relation Du0η = −Y ◦ Tu0 ◦ j0 + f to the point z0 gives

∇η + J0 ◦ ∇η ◦ j0|Tz0Σ
= f(z0) ∈ HomC(Tz0Σ, Tu0(z0)M),

which implies η ∈ W 2,p
crit(u

∗
0TM). �
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The Sard-Smale theorem now implies that the space of J ∈ Jǫ that are regular for
MA

g,crit(J) is a Baire subset of Jǫ and therefore dense in J (M,ω ; U , Jfix). Finally,

one can adapt the argument of §4.4.2 and define an exhaustion of MA
g,crit(J) by

compact subsets

MA
g,crit(J, c) := MA

g,crit(J) ∩MA
g,1(J, c)

for c > 0, where MA
g,1(J, c) are defined as in §4.4.2. The sets

J ′
reg,c :=

{
J ∈ J (M,ω ; U , Jfix) | all u ∈ MA

g,crit(J, c) are

Fredholm regular for MA
g,crit(J)

}

are then open and dense, and the countable intersection
⋂

c∈NJ ′
reg,c is the desired

Baire subset, completing the proof of Theorem 4.7.1.
The approach outlined in this section can be taken quite a bit further, e.g. by

working in Banach manifolds Bk,p for k > 2, one can also impose constraints on
higher-order derivatives. One case that is important in applications is to con-
sider spaces of holomorphic curves intersecting a fixed almost complex submani-
fold with prescribed orders of tangency, see e.g. [CM07, §6]. For moduli spaces
of parametrized J-holomorphic curves (i.e. without dividing out by reparametriza-
tions), a somewhat different and very general approach to higher-order constraints
has been introduced by Zehmisch [Zeh], using the notion of holomorphic jets.

Here are a few exercises to illustrate what else can be done. They are not
necessarily easy.

Exercise 4.7.9. Recall that H2(CP 2) is generated by [CP 1] ∈ H2(CP 2), with
[CP 1] · [CP 1] = 1 and, for the standard symplectic structure ωstd and complex
structure i, c1([CP 1]) = 3 and 〈[ωstd], [CP 1]〉 > 0. For J ∈ J (CP 2, ωstd), a closed J-
holomorphic curve u : Σ → CP 2 is said to have degree d ∈ N if [u] = d[CP 1]. Show
that for any d ∈ N and any set of pairwise distinct points p1, . . . , p3d−1 ∈ CP 2, there
exists a Baire subset Jreg ⊂ J (CP 2, ωstd) such that for all J ∈ Jreg, every some-
where injective J-holomorphic sphere passing through all the points p1, . . . , p3d−1

has degree at least d, and if its degree is exactly d, then it is immersed.

In each of the following, assume (M,ω) is a closed 2n-dimensional symplectic
manifold, all almost complex structures are ω-compatible, and all J-holomorphic
curves are closed and connected.

Exercise 4.7.10. Prove that if dimRM = 4, then for generic J , every somewhere
injective J-holomorphic curve with sufficiently small index has only transverse self-
intersections. (How small must the index be?)

Exercise 4.7.11. Prove that if dimRM = 4, then for generic J , any pair
of inequivalent somewhere injective J-holomorphic curves u and v with ind(u) =
ind(v) = 0 satisfies u ⋔ v.

Exercise 4.7.12 (cf. [CM07, Prop. 6.9]). Suppose Σ ⊂ M is a symplectic
hypersurface, i.e. a symplectic submanifold of dimension 2n − 2, and A ∈ H2(M)
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satisfies c1(A) = 3− n and A · [Σ] = ℓ > 0, where ℓ is prime. Show that the space

{J ∈ J (M,ω) | J(TΣ) = TΣ}
contains a Baire subset Jreg such that for all J ∈ Jreg, every J-holomorphic sphere
u : S2 → M homologous to A either is contained in Σ or intersects it exactly ℓ
times, always transversely.
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5.1. Gromov’s nonsqueezing theorem

In the previous chapters we have developed a large part of the technical ap-
paratus needed to study J-holomorphic curves in symplectic manifolds of arbitrary
dimension. The only major component still missing is the compactness theory, which
we will tackle in earnest in the next chapter. In this chapter we shall provide some
extra motivation by explaining one of the first and most famous applications of this
technical apparatus: Gromov’s nonsqueezing theorem. The proof we shall give is
essentially Gromov’s original proof (see [Gro85, 0.3.A]), and it depends on a com-
pactness result (Theorem 5.3.1) that is one of the simplest applications of Gromov’s
compactness theorem, but can also be proved without developing the compactness
theory in its full generality. We will explain in §5.3 a proof of that result using the
standard method known as “bubbling off” analysis, which also plays an essential
role in the more general compactness theory.

Let us first recall the statement of the theorem. Throughout the following dis-
cussion, we shall use the symbol ωstd to denote the standard symplectic form on
Euclidean spaces of various dimensions, as well as on tori defined as

T 2n = R2n/NZ2n

for N > 0. Note that ωstd descends to a symplectic form on T 2n since it is invariant
under the action of Z2n on R2n by translations.

Theorem 5.1.1 (Gromov’s “nonsqueezing” theorem [Gro85]). For any n ≥ 2,
there exists a symplectic embedding of (B2n

r , ωstd) into (B2
R×R2n−2, ωstd) if and only

if r ≤ R.
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The existence of the embedding when r ≤ R is clear, so the hard part is to show
that if an embedding

ι : (B2n
r , ωstd) →֒ (B2

R × R2n−2, ωstd)

exists, then we must have r ≤ R. We shall assume r > R and argue by contradiction.
Since the theory of J-holomorphic curves is generally easier to work with in closed
manifolds, the first step is to transform this into a problem involving embeddings
into closed symplectic manifolds. To that end, choose a small number ǫ > 0 and an
area form σ on the sphere S2 such that

∫

S2

σ = π(R + ǫ)2.

Then there exists a symplectic embedding (B2
R, ωstd) →֒ (S2, σ), and hence also

(B2
R × R2n−2, ωstd) →֒ (S2 × R2n−2, σ ⊕ ωstd).

Composing this with ι above, we may regard ι as a symplectic embedding

ι : (B2n
r , ωstd) →֒ (S2 × R2n−2, σ ⊕ ωstd).

We can assume without loss of generality that the image ι(B2n
r ) ⊂ S2 × R2n−2

is bounded: indeed, this is obviously true for the image of a closed ball Br′ if
r′ < r, thus it can be made true for r by shrinking r slightly but keeping the
condition r > R. We can then choose a number N > 0 sufficiently large so that
ι(B2n

r ) ⊂ S2× [−N,N ]2n−2. Composing with the natural quotient projection on the
second factor,

R2n−2 → T 2n−2 := R2n−2/NZ2n−2

and letting ωstd descend to a symplectic form on T 2n−2, this gives rise to a symplectic
embedding

(5.1.1) ι : (B2n
r , ωstd) → (S2 × T 2n−2, σ ⊕ ωstd).

Since π2(T
2n−2) = 0, we now obtain a contradiction if we can prove the following.

Theorem 5.1.2. Suppose (M,ω) is a closed symplectic manifold of dimension
2n− 2 ≥ 2 which is aspherical, i.e. π2(M) = 0, σ is an area form on S2, and there
exists a symplectic embedding

ι : (B2n
r , ωstd) →֒ (S2 ×M,σ ⊕ ω).

Then πr2 ≤
∫
S2 σ.

We will prove this as a corollary of the following two results. The first has its
origins in the theory of minimal surfaces and is a special case of much more general
results, though it admits an easy direct proof that we will explain in §5.2. The
second will require us to apply the technical machinery developed in the previous
chapters, together with the compactness arguments explained in §5.3.

Theorem 5.1.3 (monotonicity). Suppose r0 > 0, (Σ, j) is a Riemann surface
and

u : (Σ, j) → (B2n
r0
, i)
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is a nonconstant proper holomorphic map whose image contains 0. Then for every
r ∈ (0, r0), ∫

u−1(B
2n
r )

u∗ωstd ≥ πr2.

Proposition 5.1.4. Given the setup of Theorem 5.1.2, there exists a compatible
almost complex structure J ∈ J (S2 × M,σ ⊕ ω) with ι∗J = i on B2n

r and a J-
holomorphic sphere

u : S2 → S2 ×M

with [u] = [S2 × {∗}] ∈ H2(S
2 ×M) whose image contains ι(0).

Before discussing the proof of Proposition 5.1.4, let us prove the main result. To
simplify notation, denote

(W,Ω) := (S2 ×M,σ ⊕ ω), and A0 := [S2 × {∗}] ∈ H2(W ).

Recall that in Chapter 2, we defined the energy E(u) of a J-holomorphic curve
u : Σ → W as

∫
Σ
u∗Ω, and observed that whenever J is tamed by Ω, this is also

the (nonnegative!) area traced out by u for a natural choice of Riemannian metric
on W . For the curve u : S2 → S2 ×W provided by Proposition 5.1.4, we can find
the energy by a purely homological computation:

E(u) =

∫

S2

u∗Ω = 〈[Ω], [u]〉 = 〈[σ ⊕ ω], A0〉 = 〈[σ], [S2]〉 =
∫

S2

σ.

Since the integrand u∗Ω is always nonnegative, this gives an upper bound for the
amount of energy u has in the image of the ball B2n

r , and in this ball, we can use ι−1

to pull back u to a map ι−1 ◦ u : u−1(ι(B2n
r )) → B2n

r which contains 0 in its image
and is i-holomorphic since ι∗J = i. Thus combining the above upper bound with
the lower bound from Theorem 5.1.3, we find that for any r′ ∈ (0, r),

π(r′)2 ≤
∫

u−1(ι(B2n
r′ ))

(ι−1 ◦ u)∗ωstd =

∫

u−1(ι(B2n
r′ )

u∗Ω ≤
∫

S2

u∗Ω =

∫

S2

σ.

This proves Theorem 5.1.2.
For the rest of this section, we discuss the truly nontrivial part of the proof above:

why does the J-holomorphic sphere in Proposition 5.1.4 exist? This turns out to
be true not just for a specific J but also for generic Ω-compatible almost complex
structures on W , and there is nothing special about the point ι(0), as every point
in W is in the image of some J-holomorphic sphere homologous to A0. Moreover,
this is also true for a generic subset of the special class of almost complex structures
that match the integrable complex structure ι∗i on ι(B

2n
r ). We will not be able to

find these J-holomorphic curves explicitly, as we have no concrete knowledge about
the symplectic embedding ι : B2n

r → W and thus cannot even write down an explicit
expression for J having the desired property in ι(B2n

r ). Instead, we argue from more
abstract principles by starting from a simpler almost complex structure, for which
the holomorphic curves are easy to classify, and then using a deformation argument
to show that the desired curves for our more general data must also exist. This
argument can be outlined as follows:
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(1) Find a special J0 ∈ J (W,Ω) for which the moduli space MA0
0,1(J0) of J0-

holomorphic spheres homologous to [S2 × {∗}] and with one marked point
is easy to describe precisely: in particular, the curves in MA0

0,1(J0) are all
Fredholm regular, and the moduli space is a closed 2n-dimensional man-
ifold diffeomorphic to W , with a diffeomorphism provided by the natural
evaluation map

ev : MA0
0,1(J0) →W : [(S2, j, z, u)] 7→ u(z).

(2) Choose J1 ∈ J (W,Ω) with the desired property ι∗J1 = i and show that
for a generic such choice, the moduli space MA0

0,1(J1) is also a smooth 2n-
dimensional manifold.

(3) Choose a homotopy {Jt} from J0 to J1 and show that for a generic such
choice, the resulting parametric moduli space MA0

0,1({Jt}) is a smooth (2n+
1)-dimensional manifold with boundary

∂MA0
0,1({Jt}) = MA0

0,1(J0) ⊔MA0
0,1(J1).

Moreover, MA0
0,1({Jt}) is compact.

(4) Since ev : MA0
0,1(J0) → W is a diffeomorphism, its Z2-mapping degree is 1,

and the fact that ev extends naturally over the cobordism MA0
0,1({Jt}) im-

plies that its restriction to the other boundary component MA0
0,1(J1) also

has Z2-degree 1. It follows that ev : MA0
0,1(J1) → W is surjective, so for

every p ∈ W , there is a J1-holomorphic sphere u : S2 → W with [u] = A0

and a point z ∈ S2 such that u(z) = p.

We carry out the details in the next several subsections. The only part that
cannot be proved using the tools we’ve already developed is the compactness of
MA0

0,1({Jt}), which is incidentally the only place where the assumption π2(M) = 0
is used. This compactness is a deep result which we shall prove in §5.3.

5.1.1. The moduli space for J0. Identify S2 with the Riemann sphere C ∪
{∞} with its standard complex structure i, choose any JM ∈ J (M,ω), and define
J0 ∈ J (W,Ω) via the natural direct sum decomposition T(z,p)W = TzS

2⊕TpM , that
is

J0 := i⊕ JM .

Then a map u = (uS, uM) : S2 → S2×M is J0-holomorphic if and only if uS : S2 →
S2 is holomorphic and uM : S2 → M is JM -holomorphic. If [u] = A0 = [S2 × {∗}],
then we also have

[uS] = [S2], and [uM ] = 0.

The latter implies that uM has zero energy as a JM -holomorphic curve in M ,
i.e.

∫
S2 u

∗
Mω = 〈[ω], [uM ]〉 = 0, hence uM is constant. Moreover, uS : S2 → S2

is a holomorphic map of degree 1, and thus is biholomorphic (cf. Exercise 2.15.1),
so after a reparametrization of the domain we can assume uS = Id. It follows that
the moduli space MA0

0,1(J0) can be identified with the following set:

MA0
0,1(J0) =

{
(um, ζ) | m ∈M and ζ ∈ S2

}
,
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where we define the J0-holomorphic maps

um : S2 → S2 ×M : z 7→ (z,m).

The evaluation map ev : MA0
0,1(J0) → S2 ×M then takes the form

ev(um, ζ) = (ζ,m),

and is thus clearly a diffeomorphism. Observe that there is a natural splitting of
complex vector bundles

(5.1.2) u∗mTW = TS2 ⊕ E
(n−1)
0 ,

where E
(n−1)
0 → S2 denotes the trivial complex bundle of rank n− 1 whose fiber at

every point z ∈ S2 is (TmM,JM).
The observations above imply that MA0

0,1(J0) is a smooth manifold of dimen-
sion 2n, and indeed, this is precisely the prediction made by the index formula
(4.1.2), which gives

vir-dimMA0
0,1(J0) = 2(n− 3) + 2c1(A0) + 2 = 2n

after plugging in the computation

c1(A0) = c1(u
∗
mT (S

2 ×M)) = c1(TS
2) + c1(E

n−1
0 ) = 2.

The above does not immediately imply that every curve in MA0
0,1(J0) is Fredholm

regular; in general only the converse of this statement is true. This is something
we will need to know in order to understand the local structure of the parametric
moduli space MA0

0,1({Jt}), and we must proceed with caution since our choice of J0
is definitively non-generic.1 This means that we cannot expect transversality to be
achieved for general reasons, but must instead check it explicitly. This turns out to
be not so hard, simply because the curves um(z) = (z,m) are so explicit.

Lemma 5.1.5. Every J0-holomorphic sphere of the form um : S2 → S2 ×M :
z 7→ (z,m) for m ∈M is Fredholm regular.

Proof. We recall from Definition 4.3.1 that um is Fredholm regular if and only
if a certain bounded linear operator of the form

D∂̄J0(i, um) : TiT ⊕W 1,p(u∗mTW ) → Lp(HomC(TS
2, u∗mTW ))

is surjective. Here T is a Teichmüller slice, which in the present case is trivial since
the Teichmüller space of S2 with one marked point is trivial, so we can drop this
factor and simply consider the linearized Cauchy-Riemann operator

Dum : W 1,p(u∗mTW ) → Lp(HomC(TS
2, u∗mTW )).

We can make use of the natural splitting (5.1.2) to split the domain and target of
Dum as

W 1,p(u∗mTW ) =W 1,p(TS2)⊕W 1,p(En−1
0 )

1Even if j ∈ J (S2) and JM ∈ J (M,ω) are chosen generically, product structures of the form
j ⊕ JM on S2 × M are still of a rather special type that can never be regarded as generic. See
Remark 5.1.7 for an example of just how badly things can potentially go wrong.

202 Chris Wendl

and

Lp(HomC(TS
2, u∗mTW )) = Lp(EndC(TS

2))⊕ Lp(HomC(TS
2, En−1

0 )).

In light of the split nature of the nonlinear Cauchy-Riemann equation for J0-holo-
morphic maps u : S2 → S2×M , it then turns out that the matrix form of Dum with
respect to these splittings is

Dum =

(
DS2

i 0
0 Dm

)
,

where DS2

i : W 1,p(TS2) → Lp(EndC(TS
2)) is the natural Cauchy-Riemann operator

defined by the holomorphic vector bundle structure of (TS2, i), and

Dm : W 1,p(TmM) → Lp(HomC(TS
2, TmM))

is the linearization of ∂̄JM at the constant JM -holomorphic sphere S2 →M : z 7→ m.
Specializing (2.4.1) for the case of a constant map, we see that the latter is simply
the standard Cauchy-Riemann operator on the trivial bundle En−1

0 , i.e. it is the
operator determined by the unique holomorphic structure on En−1

0 for which the
constant sections are holomorphic. As such, this operator splits further with respect
to the splitting of En−1

0 into holomorphic line bundles determined by any complex
basis of TmM . This yields a presentation of Dum in the form

Dum =




DS2

i 0 · · · 0
0 ∂̄ · · · 0
...

...
. . .

...
0 0 · · · ∂̄


 ,

where each of the diagonal terms are complex-linear Cauchy-Riemann type opera-
tors on line bundles, with the ∂̄ entries in particular denoting operators that are
equivalent to the standard operator

∂̄ : W 1,p(S2,C) → Lp(HomC(TS
2,C)) : f 7→ df + i df ◦ i.

These operators are surjective by Theorem 3.4.2 since c1(E
1
0) = 0 > −χ(S2). Simi-

larly, DS2

i is also surjective since c1(TS
2) = 2 > −χ(S2). �

Remark 5.1.6. The above is an example of a general phenomenon often called
“automatic transversality”: it refers to various situations in which despite (or in this
case even because of ) a non-generic choice of J , transversality can be achieved by
reducing it to a problem involving Cauchy-Riemann operators on line bundles and
applying Theorem 3.4.2. The case above is unusually fortunate, as it is not often
possible to split a given Cauchy-Riemann operator over a sum of line bundles in just
the right way. In dimension four, however, arguments like this do often work out in
greater generality, and we’ll make considerable use of them in later applications to
symplectic 4-manifolds.

Remark 5.1.7. The following example is meant to persuade you that no almost
complex structure of the product form j ⊕ JM can be regarded as “generic” by
any reasonable definition. Suppose (Σ, j) is a closed connected Riemann surface
of genus g, σ is a compatible area form on Σ, JM ∈ J (M,ω) is as above and
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J0 = j ⊕ JM ∈ J (Σ × M,σ ⊕ ω). Then any J0-holomorphic curve of the form
um : Σ → Σ×M : z 7→ (z,m) for m ∈ M has

c1(u
∗
mT (Σ×M)) = c1(TΣ) = χ(Σ),

so

ind(um) = (n− 3)χ(Σ) + 2c1([Σ× {∗}]) = (n− 1)χ(Σ),

which for n ≥ 2 is negative whenever g ≥ 2. Thus in this case, a generic perturbation
of J0 should eliminate such curves altogether, but it is clear that a perturbation of
the form i⊕ J ′

M for J ′
M ∈ J (M,ω) will never accomplish this. In Lemma 5.1.5, we

were simply lucky to be working with genus zero.

5.1.2. Transversality for J1. From now on, assume the symplectic embedding
ι : (B2n

r , ωstd) → (W,Ω) can be extended symplectically to a neighborhood of the

closure B
2n

r ; this can always be achieved by shrinking r slightly without violating
the assumption r > R. Now consider the closed subspace of J (W,Ω) defined by

J (W,Ω; ι) := {J ∈ J (W,Ω) | ι∗J = i on B
2n

r },
in other words this is the space of all Ω-compatible almost complex structures on W

which match the particular integrable complex structure ι∗i on the closed set ι(B
2n

r ).

Exercise 5.1.8. Convince yourself that J (W,Ω; ι) is not empty. Hint: It may
help to recall that the usual space of compatible almost complex structures is always
not only nonempty but also connected, see §2.2.

As with J0 in the previous subsection, the condition ι∗J = i is nongeneric in
some sense, but it turns out not to matter for our purposes:

Proposition 5.1.9. There exists a Baire subset Jreg(W,Ω; ι) ⊂ J (W,Ω; ι) such
that for any J ∈ Jreg(W,Ω; ι), all J-holomorphic spheres homologous to A0 are

Fredholm regular, hence MA0
0,1(J) is a smooth manifold of dimension 2n.

Proof. We begin with the following observations:

(1) The virtual dimension of MA
g,m(J) depends in general on g, m and A, but

not on J , thus our earlier computation vir-dimMA0
0,1(J0) = 2n also applies

to MA0
0,1(J) for any J .

(2) Every pseudoholomorphic curve u : S2 → W homologous to A0 is simple,
as A0 = [S2×{∗}] is not a positive multiple of any other homology class in
H2(S

2 ×M).
(3) For any J ∈ J (W,Ω; ι), there is no closed nonconstant J-holomorphic curve

u : Σ → W whose image lies entirely in ι(B
2n

r ). If such a curve did exist,
then ι−1 ◦ u would be a nonconstant closed i-holomorphic curve in R2n and
would thus have positive energy

∫

Σ

(ι−1 ◦ u)∗ωstd > 0,

but this is impossible since ωstd vanishes on every cycle in R2n.
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The result now follows by Theorem 4.1.8. The crucial point is that the set of
perturbations allowed by J (W,Ω; ι) is still large enough to prove that the universal
moduli space for somewhere injective curves is smooth, because every such curve

necessarily has an injective point outside of ι(B
2n

r ). �

In light of this result, we can choose

J1 ∈ Jreg(W,Ω; ι)

so that MA0
0,1(J1) is a smooth manifold of dimension 2n.

5.1.3. The homotopy of almost complex structures. Denote by

J (W,Ω ; J0, J1),

the space of smooth Ω-compatible homotopies between J0 and J1, i.e. this consists
of all smooth 1-parameter families {Jt}t∈[0,1] such that Jt ∈ J (W,Ω) for all t ∈ [0, 1]
and Jt matches the structures chosen above for t = 0, 1. This gives rise to the
parametric moduli space

MA0
0,1({Jt}) = {(u, t) | t ∈ [0, 1], u ∈ M(Jt)}.

The following is the fundamental input we need from the compactness theory of
holomorphic curves. It depends on certain topological details in the setup we’ve
chosen, and in particular on the fact that A0 = [S2 × {∗}] is a primitive homology
class and π2(M) = 0.

Proposition 5.1.10. For any {Jt} ∈ J (W,Ω ; J0, J1), MA0
0,1({Jt}) is compact.

We’ll come back to the proof of this in §5.3. Notice that since MA0
0,1(J1) is natu-

rally a closed subset of MA0
0,1({Jt}) and is already known to be a smooth manifold,

this implies that MA0
0,1(J1) is a closed manifold. Since Fredholm regularity is an

open condition, the same is then true for all MA0
0,1(Jt) with t in some neighborhood

of either 0 or 1, and for t in this range the natural projection

MA0
0,1({Jt}) → R : (u, t) 7→ t

is a submersion. We cannot expect this to be true for all t ∈ [0, 1], not even for
a generic choice of the homotopy, but by applying Theorem 4.1.12 we can at least
arrange for MA0

0,1({Jt}) to carry a smooth structure:

Proposition 5.1.11. There exists a Baire subset

Jreg(W,Ω ; J0, J1) ⊂ J (W,Ω ; J0, J1)

such that for any {Jt} ∈ Jreg(W,Ω ; J0, J1), MA0
0,1({Jt}) is a compact smooth mani-

fold, with boundary

∂MA0
0,1({Jt}) = MA0

0,1(J0) ⊔MA0
0,1(J1).
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5.1.4. Conclusion of the proof. We will now derive the desired existence
result using the Z2-mapping degree of the evaluation map. Recall that in general,
if X and Y are closed and connected n-dimensional manifolds and f : X → Y is a
continuous map, then the degree deg2(f) ∈ Z2 can be defined by the condition

f∗[X ] = deg2(f)[Y ] ∈ Hn(Y ;Z2),

where [X ] ∈ Hn(X ;Z2) and [Y ] ∈ Hn(Y ;Z2) denote the respective fundamental
classes with Z2-coefficients. Equivalently, if f is smooth then deg2(f) can be defined
as the modulo 2 count of points in f−1(y) for a regular point y.

Choosing a generic homotopy {Jt} ∈ Jreg(W,Ω ; J0, J1) as provided by Proposi-

tion 5.1.11, the parametric moduli space MA0
0,1({Jt}) now furnishes a smooth cobor-

dism between the two closed manifolds MA0
0,1(J0) and MA0

0,1(J1).
2 Consider the eval-

uation map

ev : MA0
0,1({Jt}) →W : ([(S2, j, z, u)], t) 7→ u(z),

and denote its restriction to the two boundary components by ev0 : MA0
0,1(J0) → W

and ev1 : MA0
0,1(J1) → W . As we saw in §5.1.1, ev0 is a diffeomorphism, thus

(ev0)∗[MA0
0,1(J0)] = [W ] ∈ H2n(W ;Z2). It follows that

(ev1)∗[MA0
0,1(J1)] = [W ] ∈ H2n(W ;Z2)

as well, hence deg2(ev1) = 1 and ev1 is therefore surjective. In particular, ev−1
1 (ι(0))

is not empty, and this proves Proposition 5.1.4.

Exercise 5.1.12. Show by a different argument that in fact for any (not nec-
essarily generic) J1 ∈ J (W,Ω) and any point p ∈ W , MA0

0,1(J1) contains a curve u
with ev(u) = p. Hint: We will see in §5.3 that the compactness result of Propo-
sition 5.1.10 does not depend on any genericity assumption. What can you prove
about the structure of the space {(u, t) ∈ MA0

0,1({Jt}) | ev(u) = p} if J0 and J1 is
fixed but {Jt} ∈ J (W,Ω ; J0, J1) is otherwise chosen generically?

5.2. Monotonicity in the integrable case

In this section, we consider only holomorphic curves in R2n = Cn with its stan-
dard complex structure i and symplectic structure ωstd. Recall that a smooth map
u : Σ → Br0 is called proper if every compact set in the target has a compact
preimage. For any r ∈ (0, r0), we define the compact subset

Σr := u−1(B
2n

r ) ⊂ Σ,

which by Sard’s theorem is a submanifold with smooth boundary for almost ev-
ery r. Our main goal is to prove the following result, which was previously stated
as Theorem 5.1.3 and was a crucial ingredient in the proof of the nonsqueezing
theorem.

2With a little more work, one can also give all of these moduli spaces natural orientations
and thus obtain an oriented cobordism. This has the consequence that our use of the Z2-mapping
degree could be replaced by the integer-valued mapping degree, but we don’t need this to prove
the nonsqueezing theorem.
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Theorem 5.2.1 (monotonicity). if u : (Σ, j) → (B2n
r0 , i) is a proper holomorphic

map whose image contains 0, then for every r ∈ (0, r0),

∫

Σr

u∗ωstd ≥ πr2.

This result gives a quantitative version of the statement that a holomorphic
curve cannot fit an arbitrarily small amount of area into some fixed neighborhood
of a point in its image. More general versions also hold for non-integrable almost
complex structures and are useful in proving a number of technical results, espe-
cially in the compactness theory; we’ll come back to this in the next chapter. We
should also mention that this kind of result is by no means unique to the theory of
holomorphic curves: monotonicity formulas are also a popular tool in the theory of
minimal surfaces (cf. [Law75,Grü88,CM99]), and indeed, Theorem 5.2.1 can be
regarded as a corollary of such results after observing that whenever J is compat-
ible with a symplectic structure ω and a Riemannian metric is defined by ω(·, J ·),
J-holomorphic curves are also area minimizing, cf. [MS04, Lemma 2.2.1]. This was
also the perspective adopted by Gromov in [Gro85]; see also [Fis11] for some more
recent results along these lines. In order to keep the discussion self-contained and
avoid delving into the theory of minimal surfaces, we shall instead present a direct
“contact geometric” proof, which is fairly simple and uses a few notions that we will
find useful in our later discussions of contact geometry.

To start with, it’s easy to see from our knowledge of the local behavior of holo-
morphic curves that the estimate of Theorem 5.2.1 holds for any given curve u
whenever r > 0 is sufficiently small. Indeed, in an appropriate choice of local co-
ordinates on a small enough neighborhood, u looks like a small perturbation of the
map

Bǫ → C× Cn−1 : z 7→ (zk, 0),

whose area is kπǫ2. (See §2.14 for a discussion of such local representation formulas.)
The result then follows from the next statement, which explains our use of the

term “monotonicity”.

Proposition 5.2.2. Given the setup of Theorem 5.2.1, the function

F (r) =
1

r2

∫

Σr

u∗ωstd

is nondecreasing.

Note that it will suffice to prove that F (R) > F (r) whenever 0 < r < R < r0
and both r and R lie in the dense set of regular values, i.e. those for which the
intersection of u with ∂Br is transverse. For regular values, Σr is a smooth manifold
with boundary and we can use Stokes’ theorem to compute

∫
Σr
u∗ωstd. In order to

uncover the dependence on r2, we shall switch perspectives and regard u as a map
into the symplectization of the standard contact sphere.
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Label the natural coordinates on R2n = Cn by (z1, . . . , zn) = (p1 + iq1, . . . , pn +
iqn), so the symplectic structure has the form

ωstd =
n∑

j=1

dpj ∧ dqj.

Recall from §1.6 that the vector field

Vstd :=
1

2

n∑

j=1

(
pj

∂

∂pj
+ qj

∂

∂qj

)

is a Liouville vector field on (R2n, ωstd), meaning it satisfies LVstd
ωstd = ωstd. Let

λstd denote the 1-form on R2n which is ω-dual to Vstd, i.e.

λstd := ωstd(Vstd, ·).
An easy computation then produces the expression

λstd =
1

2

n∑

j=1

(pj dqj − qj dpj) ,

and the fact that Vstd is Liouville is equivalent to the observation that dλstd = ωstd.
Moreover, since λstd(Vstd) = ωstd(Vstd, Vstd) = 0, we also have

LVstd
λstd = ιVstd

dλstd + dιVstd
λstd = ιVstd

ωstd = λstd.

Identify the sphere S2n−1 with the boundary of the closed unit ball B
2n ⊂ R2n, and

define the standard contact form αstd on S2n−1 as the restriction of λstd,

αstd := λstd|T(
∂B

2n
).

Now consider the diffeomorphism

Φ : R× S2n−1 → R2n \ {0} : (t,m) 7→ ϕt
Vstd

(m) = et/2m,

where ϕt
Vstd

denotes the flow of Vstd. By Exercise 1.6.6, we have

Φ∗λstd = etαstd, Φ∗ωstd = d(etαstd),

where t denotes the R-coordinate on R× S2n−1 and αstd is defined on R× S2n−1 as
the pullback via the projection R × S2n−1 → S2n−1. Define an integrable complex
structure J0 on R× S2n−1 so that this diffeomorphism is biholomorphic, i.e.

J0 := Φ∗i.

Now removing at most finitely many points from Σ to define

Σ̇ := {z ∈ Σ | u(z) 6= 0}
and defining Σ̇r ⊂ Σr similarly, we obtain a J0-holomorphic map

(uR, uS) := Φ−1 ◦ u : Σ̇ → R× S2n−1,
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so that if r = eτ/2 ∈ (0, r0) is regular, we have

F (r) =
1

r2

∫

Σr

u∗ωstd = e−τ

∫

Σ̇r

(uR, uS)
∗d(etαstd) = e−τ

∫

∂Σr

(uR, uS)
∗(etαstd)

=

∫

∂Σr

u∗Sαstd.

Thus for any two regular values 0 < r < R < r0, we now have

F (R)− F (r) =

∫

∂ΣR

u∗Sαstd −
∫

∂Σr

u∗Sαstd =

∫

ΣR\Σr

u∗Sdαstd.

Proposition 5.2.2 is then immediate from the following exercise.

Exercise 5.2.3. Show that the almost complex structure J0 = Φ∗i on R×S2n−1

has the following properties:

(1) It is invariant under the natural R-action by translation of the first factor
in R× S2n−1.

(2) For any t ∈ R, the unique hyperplane field in {t} × S2n−1 preserved by J0
is precisely the contact structure ξstd := kerαstd.

(3) The restriction of J0 to ξstd is compatible with the symplectic bundle struc-
ture dαstd|ξstd , i.e. the pairing 〈X, Y 〉 := dαstd(X, J0Y ) defines a bundle
metric on ξstd.

(4) J0 maps ∂t to the Reeb vector field of αstd, i.e. the unique vector field Rαstd

on S2n−1 satisfying the conditions

dαstd(Rαstd
, ·) ≡ 0 and αstd(Rαstd

) ≡ 1.

Derive from these properties the fact that for any J0-holomorphic curve (uR, uS) :
Σ → R× S2n−1, the integrand u∗Sdαstd is nonnegative.

5.3. Bubbling off

Our goal in this section is to provide a mostly self-contained proof of Proposi-
tion 5.1.10, as a consequence of the following result.

Theorem 5.3.1. Suppose (M,ω) is a closed symplectic manifold of dimension
2n − 2 ≥ 2 with π2(M) = 0, σ is an area form on S2, W := S2 ×M , Ω := σ ⊕ ω,
A0 := [S2 × {∗}] ∈ H2(W ) and we have the following sequences:

• Jk → J is a C∞-convergent sequence of Ω-compatible almost complex struc-
tures on W ,

• uk : (S2, i) → (W,Jk) is a sequence of pseudoholomorphic spheres with
[uk] = A0, and

• ζk ∈ S2 is a sequence of marked points.

Then after taking a subsequence, there exist biholomorphic maps ϕk : (S2, i) →
(S2, i) with ϕk(0) = ζk such that the reparametrized curves

uk ◦ ϕk : S2 → W

converge in C∞ to a J-holomorphic sphere u : (S2, i) → (W,J).
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To prove this, we shall introduce some of the crucial technical tools that underlie
the more general compactness results of the next chapter. There’s only one result
which we will need to take for now as a “black box”:

Proposition 5.3.2 (Gromov’s removable singularity theorem). Suppose (M,ω)
is a symplectic manifold with a tame almost complex structure J , and u : B \ {0} →
M is a J-holomorphic curve which has finite energy

∫
B\{0} u

∗ω < ∞ and image

contained in a compact subset of M . Then u extends smoothly over 0 to a J-
holomorphic curve B →M .

A proof may be found in the next chapter, or in [MS04,Sik94,Hum97].
As a fundamental analytical tool for our compactness arguments, we will use the

following piece of local elliptic regularity theory that was proved in Chapter 2 as
Corollary 2.11.2:

Lemma 5.3.3. Assume p ∈ (2,∞) and m ≥ 1, Jk ∈ Jm(B2n) is a sequence of
almost complex structures converging in Cm to J ∈ Jm(B2n), and uk : B → B2n is
a sequence of Jk-holomorphic curves satisfying a uniform bound ‖uk‖W 1,p(B) < C.

Then uk has a subsequence converging in Wm+1,p
loc to a J-holomorphic curve u : B →

B2n.

In our situation, we have Jk → J in Cm for all m, thus we will obtain a C∞
loc-

convergent subsequence if we can establish C1-bounds for our maps uk : S2 → W ,
since C1 embeds continuously intoW 1,p. The lemma can be applied in a more global
setting as follows. Fix Riemannian metrics on S2 and W and use these to define the
norm |du(z)| ≥ 0 of the linear map du(z) : TzS

2 → Tu(z)W for any u ∈ C1(S2,W )
and z ∈ S2. If the given sequence of Jk-holomorphic maps uk : S2 → W satisfies a
uniform bound of the form

(5.3.1) |duk(z)| < C for all k and all z ∈ S2,

then sinceW is compact, a subsequence of uk will converge in C
0 to some continuous

map u : S2 → W . We can then cover both S2 and u(S2) ⊂ W with finitely many
local coordinate charts and apply Lemma 5.3.3, obtaining:

Lemma 5.3.4. Suppose Jk → J is a C∞-convergent sequence of almost complex
structures on a closed manifold W and uk : (S2, i) → (W,Jk) is a sequence of
pseudoholomorphic curves satisfying a uniform C1-bound as in (5.3.1). Then a
subsequence of uk converges in C∞ to a pseudoholomorphic curve u : (S2, i) →
(W,J).

Remark 5.3.5. The above lemma is obviously also true ifW is not compact but
the images of the curves uk are confined to a compact subset. This generalization is
important for compactness results in contact geometry and symplectic field theory,
e.g. [BEH+03].

In most situations, one cannot expect to derive a C1-bound directly from the
given data, and in the general case such a bound does not even hold. The strategy
is however as follows: if a C1-bound does not hold, then we can find a sequence
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of points zk ∈ S2 such that |duk(zk)| → ∞, and by an intelligent choice of rescal-
ings, the restriction of uk to small neighborhoods of zk gives rise to a sequence of
holomorphic disks on expanding domains that exhaust C. These disks are always
nonconstant but satisfy a uniform C1-bound by construction, thus by Lemma 5.3.3
they will converge in C∞

loc to a J-holomorphic plane with finite energy. Since a plane
is really just a punctured sphere, this J-holomorphic plane can be extended to a
nonconstant holomorphic sphere, often called a “bubble”, and the process by which
this sphere is extracted from the original sequence is often called “bubbling off”. In
our situation, we will find that the existence of this bubble leads to a contradiction
and thus implies the desired C1-bound on the original sequence. In more general
settings, there is no contradiction and one must instead find a way of organizing the
information that these bubbles add to the limit of the original sequence—this leads
to the notion of nodal holomorphic curves, the more general objects that make up
the Gromov compactification, to be discussed in the next chapter.

We now carry out the details of the above argument, using a particular type of
rescaling trick that has been popularized by Hofer and collaborators (see e.g. [HZ94,
§6.4]). The results stated below all assume the setting described in the statement
of Theorem 5.3.1: in particular, (W,Ω) = (S2 ×M,σ ⊕ ω) and π2(M) = 0. Notice
that the curves in the sequence uk : S2 → W are all homologous and thus all have
the same energy

E(uk) =

∫

S2

u∗kΩ = 〈[Ω], A0〉 = 〈[σ], [S2]〉 =
∫

S2

σ.

For reasons that will hopefully become clear in a moment, we now give this positive
constant a special name and write

~ :=

∫

S2

σ > 0.

The following is then a very simple example of a general phenomenon known as
energy quantization.

Lemma 5.3.6. For any J ∈ J (W,Ω), every nonconstant closed J-holomorphic
sphere in W has energy at least ~.

Proof. If u = (uS, uM) : S2 → S2 ×M is J-holomorphic and not constant,
then

0 < E(u) =

∫

S2

u∗Ω = 〈[σ ⊕ ω], [uS]× [{∗}] + [{∗}]× [uM ]〉

= 〈[σ], [uS]〉+ 〈[ω], [uM ]〉.
Since π2(M) = 0, the spherical homology class [uM ] ∈ H2(M) necessarily vanishes,
so the above expression implies E(u) = 〈[σ], [uS]〉, which must be an integer multiple
of ~. Since it is also positive, the result follows. �

We next choose reparametrizations of the sequence uk so as to rule out certain
trivial possibilities, such as uk converging almost everywhere to a constant. Write
uk = (uSk , u

M
k ) : S2 → S2×M , and observe that since [uk] = [S2×{∗}], uSk : S2 → S2
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is always a map of degree 1 and hence surjective. After taking a subsequence, we
may assume that the images of the marked points in S2 converge, i.e.

uSk (ζk) → ζ∞ ∈ S2.

Assume without loss of generality that ζ∞ is neither 1 nor ∞; if it is one of these,
then the remainder of our argument will require only trivial modifications. Now
since uSk is surjective, for sufficiently large k we can always find biholomorphic maps
ϕk : (S

2, i) → (S2, i) that have the following properties:

• ϕk(0) = ζk,
• uSk ◦ ϕk(1) = 1,
• uSk ◦ ϕk(∞) = ∞.

To simplify notation, let us now replace the original sequence by these reparametriza-
tions and thus assume without loss of generality that the maps uk = (uSk , u

M
k ) : S2 →

S2 ×M and marked points ζk ∈ S2 satisfy

ζk = 0, uk(1) ∈ {1} ×M, uk(∞) ∈ {∞}×M

for all k.
If the maps uk satisfy a uniform C1-bound, then we are now finished due to

Lemma 5.3.4. Thus assume the contrary, that there is a sequence zk ∈ S2 with

|duk(zk)| → ∞,

and after taking a subsequence we may assume zk → z∞ ∈ S2. Choose a neighbor-
hood z∞ ∈ U ⊂ S2 and a biholomorphic map

ϕ : (B, i) → (U , i)
identifying U with the unit ball in C such that ϕ(0) = z∞, and write

ũk = uk ◦ ϕ : (B, i) → (W,Jk), z̃k = ϕ−1(zk).

We then have |dũk(z̃k)| → ∞ and z̃k → 0.
We now examine a rescaled reparametrization of the sequence ũk on shrinking

neighborhoods of z̃k. In particular, let Rk := |dũk(z̃k)| → ∞, pick a sequence of
positive numbers ǫk → 0 which decay slowly enough so that ǫkRk → ∞, and consider
the sequence of Jk-holomorphic maps

vk : (BǫkRk
, i) → (W,Jk) : z 7→ ũk

(
z̃k +

z

Rk

)
.

Then

|dvk(z)| =
1

Rk

∣∣∣∣dũk
(
z̃k +

z

Rk

)∣∣∣∣ ,

so in particular |dvk(0)| = 1
Rk

|dũk(z̃k)| = 1. To proceed further, we’d like to be able

to say that |dvk(z)| satisfies a uniform bound for z ∈ BǫkRk
, as then Lemma 5.3.3

would give a subsequence converging in C∞
loc on C. Such a bound is not obvious: it

would require being able to bound |dũk(z)| in terms of |dũk(z̃k)| for all z ∈ Bǫk(z̃k).
While there is no reason that such a bound should necessarily hold for the chosen
sequence, the following topological lemma due to Hofer tells us that we can always
ensure this bound after a slight adjustment.
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Lemma 5.3.7 (Hofer). Suppose (X, d) is a complete metric space, g : X → [0,∞)
is continuous, x0 ∈ X and ǫ0 > 0. Then there exist x ∈ X and ǫ > 0 such that,

(a) ǫ ≤ ǫ0,
(b) g(x)ǫ ≥ g(x0)ǫ0,
(c) d(x, x0) ≤ 2ǫ0, and

(d) g(y) ≤ 2g(x) for all y ∈ Bǫ(x).

Proof. If there is no x1 ∈ Bǫ0(x0) such that g(x1) > 2g(x0), then we can
set x = x0 and ǫ = ǫ0 and are done. If such a point x1 does exist, then we set
ǫ1 := ǫ0/2 and repeat the above process for the pair (x1, ǫ1): that is, if there is

no x2 ∈ Bǫ1(x1) with g(x2) > 2g(x1), we set (x, ǫ) = (x1, ǫ1) and are finished, and
otherwise define ǫ2 = ǫ1/2 and repeat for (x2, ǫ2). This process must eventually
terminate, as otherwise we obtain a Cauchy sequence xn with g(xn) → ∞, which is
impossible if X is complete. �

The upshot of the lemma is that the sequences ǫk > 0 and z̃k ∈ B can be modified
slightly to have the additional property that

(5.3.2) |dũk(z)| ≤ 2|dũk(z̃k)| for all z ∈ Bǫk(z̃k).

From this it follows that the rescaled sequence vk : BǫkRk
→W satisfies

|dvk(z)| ≤ 2, |dvk(0)| = 1,

so we conclude from Lemma 5.3.3 that a subsequence of vk converges in C∞
loc(C,W )

to a J-holomorphic plane

v∞ : (C, i) → (W,J)

which satisfies |dv∞(0)| = 1 and is thus not constant. We claim that v∞ also has
finite energy bounded by ~. Indeed, for any R > 0, we have

∫

BR

v∗∞Ω = lim
k

∫

BR

v∗kΩ,

while for sufficiently large k,
∫

BR

v∗kΩ ≤
∫

BǫkRk

v∗kΩ =

∫

Bǫk
(z̃k)

ũ∗kΩ =

∫

ϕ(Bǫk
(z̃k))

u∗kΩ ≤
∫

S2

u∗kΩ = ~.

Applying the removable singularity theorem (Prop. 5.3.2), v∞ thus extends to a
nonconstant J-holomorphic sphere

v∞ : (S2, i) → (W,J),

and energy quantization (Lemma 5.3.6) implies that its energy is exactly ~. This
sphere is our first real life example of a so-called “bubble”.

We claim next that if the above scenario happens, then for any other sequence
z′k ∈ S2 with |duk(z′k)| → ∞, z′k can only accumulate at the same point z∞ again.
Indeed, otherwise the above procedure produces a second bubble v′∞ : (S2, i) →
(W,J) with energy ~, and by inspecting the energy estimate above, one sees that
for large k, uk must have a concentration of energy close to ~ in small neighborhoods
of both z∞ and z′∞. That is impossible since E(uk) is already bounded by ~.
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The above implies that on any compact subset of S2\{z∞}, uk satisfies a uniform
C1-bound and thus converges in C∞

loc(S
2\{z∞}) to a J-holomorphic punctured sphere

u∞ : (S2 \ {z∞}, i) → (W,J).

Moreover, we have

u∞(0) ∈ {ζ∞} ×M, u∞(1) ∈ {1} ×M and u∞(∞) ∈ {∞}×M

unless z∞ ∈ {ζ∞, 1,∞}, in which case at least two of these three statements still
holds. It follows that u∞ cannot be constant, so by Lemma 5.3.6 it has energy at
least ~. But this again gives a contradiction if the bubble v∞ exists, as it implies
that for large k, the restrictions of uk to some large subset of S2 \ {z∞} and some
disjoint small neighborhood of z∞ each have energy at least slightly less than ~,
so that

∫
S2 u

∗
kΩ must be strictler greater than ~. This contradiction excludes the

bubbling scenario, thus establishing the desired C1-bound for uk and completing the
proof of Theorem 5.3.1.
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Linéaire 4 (1987), no. 4, 337–356 (English, with French summary).

[Wei78] A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math. (2) 108
(1978), no. 3, 507–518.

[Wen10a] C. Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in
dimension four, Comment. Math. Helv. 85 (2010), no. 2, 347–407.

[Wen10b] , Strongly fillable contact manifolds and J-holomorphic foliations, Duke Math.
J. 151 (2010), no. 3, 337–384.

[Wena] , From ruled surfaces to planar open books: holomorphic curves in sym-
plectic and contact manifolds of low dimension. Lecture notes from Mas-
ter Classes on Holomorphic Curves and Applications to Enumerative Geom-
etry, Symplectic and Contact Topology, IRMA Strasbourg, 2012, available at
http://www.homepages.ucl.ac.uk/~ucahcwe/pub/rationalRuled.pdf.

[Wenb] , Contact 3-manifolds, holomorphic curves and intersection theory. Lecture notes
from the LMS Short Course on Topology in Low Dimensions, Durham, 2013, available
at http://www.homepages.ucl.ac.uk/~ucahcwe/Durham/.

[Zeh] K. Zehmisch, Holomorphic jets in symplectic manifolds. Preprint arXiv:1303.0486.

http://www.homepages.ucl.ac.uk/~ucahcwe/pub/rationalRuled.pdf
http://www.homepages.ucl.ac.uk/~ucahcwe/Durham/
http://arxiv.org/abs/1303.0486

	Preface
	Version history
	A Note on Terminology
	Chapter 1. Introduction
	1.1. Warm up: Holomorphic curves in Cn
	1.2. Hamiltonian systems and symplectic manifolds
	1.3. Some favorite examples
	1.4. Darboux's theorem and the Moser deformation trick
	1.5. From symplectic geometry to symplectic topology
	1.6. Contact geometry and the Weinstein conjecture
	1.7. Symplectic fillings of contact manifolds

	Chapter 2. Fundamentals
	2.1. Almost complex manifolds and J-holomorphic curves
	2.2. Compatible and tame almost complex structures
	2.3. Linear Cauchy-Riemann type operators
	2.4. The linearization of J and critical points
	2.5. Review of distributions and Sobolev spaces
	2.6. Linear elliptic regularity
	2.7. Local existence of holomorphic sections
	2.8. The similarity principle
	2.9. Unique continuation
	2.10. Intersections with holomorphic hypersurfaces
	2.11. Nonlinear regularity
	2.12. Some tools of global analysis
	2.13. Local existence of J-holomorphic curves
	2.14. A representation formula for intersections
	2.15. Simple curves and multiple covers
	2.16. Positivity of intersections
	2.A. Appendix: Singular integral operators
	2.B. Appendix: Elliptic operators in general

	Chapter 3. Fredholm Theory
	3.1. Some Banach spaces and manifolds
	3.2. Formal adjoints
	3.3. The Fredholm property
	3.4. The Riemann-Roch formula and transversality criteria

	Chapter 4. Moduli Spaces
	4.1. The moduli space of closed J-holomorphic curves
	4.2. Classification of pointed Riemann surfaces
	4.3. Fredholm regularity and the implicit function theorem
	4.4. Transversality for generic J
	4.5. Generic families
	4.6. Transversality of the evaluation map
	4.7. Generic J-holomorphic curves are immersed

	Chapter 5. Bubbling and Nonsqueezing
	5.1. Gromov's nonsqueezing theorem
	5.2. Monotonicity in the integrable case
	5.3. Bubbling off

	Bibliography

