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ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC

4–MANIFOLDS

PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDL

Abstract. We show that certain classes of contact 3–manifolds do not admit non-separating
contact type embeddings into any closed symplectic 4–manifolds, e.g. this is the case for all
contact manifolds that are (partially) planar or have Giroux torsion. The latter implies
that manifolds with Giroux torsion do not admit contact type embeddings into any closed
symplectic 4–manifolds. Similarly, there are symplectic 4–manifolds that can admit smoothly
embedded non-separating hypersurfaces, but not of contact type: we observe that this is the
case for all symplectic ruled surfaces.

1. Introduction

1.1. Main results. Let (W,ω) denote a closed symplectic manifold of dimension four. A
closed hypersurface M ⊂ W is of contact type if it is transverse to a Liouville vector field,
i.e. a smooth vector field Y defined near M such that LY ω = ω. Then ιY ω is a contact form
on M , and we will denote the resulting contact structure by ξ = ker ιY ω; it is independent
of Y up to isotopy. If M separates W into two components, then it is said to form a convex
boundary on the component where Y points outward, and a concave boundary on the other
component. By constructions due to Etnyre-Honda [EH02] and Eliashberg [Eli04], every
contact 3–manifold can occur as the concave boundary of some compact symplectic manifold.
This is not true for convex boundaries: for instance, Gromov [Gro85] and Eliashberg [Eli90]
showed that overtwisted contact manifolds can never occur as convex boundaries, and a finer
obstruction comes from Giroux torsion [Gay06].

In this paper, we address the question of whether a given contact 3–manifold (M, ξ) can oc-
cur as a non-separating contact hypersurface in any closed symplectic manifold, and similarly,
whether a given symplectic 4–manifold (W,ω) admits non-separating contact hypersurfaces.
Observe that separating contact hypersurfaces always exist in abundance, e.g. the boundaries
of balls in Darboux neighborhoods. We will see in Example 1.2 that non-separating contact
hypersurfaces sometimes exist, but there are restrictions, as the following Theorem shows.

Theorem 1. Suppose (M, ξ) is a closed contact 3–manifold which has any one of the following
properties:

(1) (M, ξ) has Giroux torsion
(2) (M, ξ) is planar or partially planar (see Definition 1.6 below)
(3) (M, ξ) admits a symplectic cap containing a symplectically embedded sphere of non-

negative self-intersection number

Then every contact type embedding of (M, ξ) into any closed symplectic 4–manifold is sepa-
rating.
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Remark 1.1. Theorem 1 admits an easy generalization as follows. We will say that (M, ξ)
has any given property after contact surgery if the property holds for some contact manifold
(M ′, ξ′) obtained from (M, ξ) by a (possibly trivial) sequence of contact connected sum op-
erations and contact (−1)–surgeries. The significance of these operations (see e.g. [Gei08])
is that they imply the existence of a symplectic cobordism from (M, ξ) to (M ′, ξ′): recall
that a symplectic cobordism from (M−, ξ−) to (M+, ξ+) is in general a compact symplectic
manifold (W,ω) with ∂W = (−M−)⊔M+, such that there is a Liouville vector field near ∂W
defining (M−, ξ−) and (M+, ξ+) as concave and convex boundary components respectively.
The special case where M− = ∅ is a convex filling of (M+, ξ+). If M+ = ∅ we instead get a
concave filling of (M−, ξ−), also known as a symplectic cap.

It will follow from the more general Theorem 7 below that Theorem 1 also holds whenever
properties (1) or (2) hold after contact surgery. (For property (3) this statement is trivial.)

The following example shows that non-separating contact type hypersurfaces do exist in
general.

Example 1.2 (Etnyre). Suppose (W0, ω0) is a compact symplectic manifold with a convex
boundary that has two connected components. In this case we say that (W0, ω0) is a con-
vex semifilling of each of its boundary components; the existence of such objects was first
established by McDuff [McD91]. Produce a new symplectic manifold (W1, ω1) with convex
boundary by attaching a symplectic 1–handle along a pair of 3–balls in different components
of ∂W0. Now cap W1 with a concave filling of ∂W1 as provided by [EH02]: this produces a
closed symplectic manifold (W,ω), which contains both of the components of ∂W0 as non-
separating contact hypersurfaces (see Figure 1).

Figure 1. The construction from Example 1.2 of a symplectic manifold with
non-separating contact hypersurfaces.

The example demonstrates that (M, ξ) can occur as a non-separating hypersurface in some
closed symplectic manifold whenever it arises from a convex filling with disconnected bound-
ary. There are, however, contact manifolds that never arise in this way: McDuff [McD91]
showed that this is the case for the tight 3–sphere, and the result was generalized by Etnyre
[Etn04] to all planar contact manifolds, i.e. those which are supported by planar open books.
The latter suggests that planar open books may provide an obstruction to non-separating
contact embeddings, and this is indeed true due to Theorem 1. As we’ll see shortly, there
are also non-planar contact manifolds (e.g. the standard contact 3–torus) which satisfy the
assumptions of Theorem 1, and thus also the following corollary:

Corollary 2. Given the assumptions of Theorem 1 (see also Remark 1.1), every convex
semifilling of (M, ξ) has connected boundary.

Actually one can use the same methods to give a slightly simpler proof of Corollary 2 which
is independent of the theorem; we’ll do this in §5.
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In the case of Giroux torsion, a result of Gay [Gay06] shows that (M, ξ) does not admit
any convex fillings,1 thus Theorem 1 has the following stronger consequence:

Corollary 3. If (M, ξ) has Giroux torsion (possibly after contact surgery), then it does not
admit a contact embedding into any closed symplectic 4–manifold.

Theorem 1 will follow from some more technical results stated in §2.2, which also includes a
more general statement involving contact hypersurfaces in a symplectic manifold with convex
boundary. The unifying idea can be summarized as follows. Whenever a non-separating
hypersurface M ⊂ W exists, one can use it to construct a special noncompact symplectic
manifold (V, ω) with convex boundary M . We do this by first cutting W open along M to
produce a symplectic cobordism (V1, ω) from a concave copy of M to a convex copy of M , and
then removing the concave boundary by attaching an infinite chain of copies of (V1, ω) along
matching concave and convex boundaries; a picture of this construction appears as Figure 4
in §5, where it is explained in detail. Now our assumptions on (W,ω) or (M, ξ) guarantee the
existence of an embedded holomorphic curve in (V, ω) with certain properties: in particular,
we’ll show in §4 that this curve belongs to a smooth and compact 2–dimensional moduli space
of curves that foliate (V, ω). But this would imply that (V, ω) is compact, and thus yields a
contradiction.

Remark 1.3. A contact manifold (M, ξ) is said to be weakly fillable if it occurs as the
boundary of a compact symplectic manifold (W,ω) such that ω|ξ > 0 on ∂W . A fundamental
result of Eliashberg [Eli90] and Gromov [Gro85] shows that overtwisted contact manifolds
are never weakly fillable: the original proof is based on the existence of a so-called Bishop
family of pseudoholomorphic disks with boundary on an overtwisted disk in ∂W , and derives
a contradiction using Gromov compactness (a complete exposition may be found in [Zeh03]).
In the setting described above, one can adapt the Eliashberg-Gromov argument to show that
overtwisted contact manifolds do not occur as hypersurfaces of weak contact type in any closed
symplectic manifold. If we remove the word “weak”, then this is also implied by Corollary 3
since overtwisted contact manifolds have infinite Giroux torsion.

The third condition in Theorem 1 is satisfied by any contact 3–manifold that has a con-
tact embedding into the standard symplectic R4: indeed, the latter can be identified with
CP 2 \ CP 1, and CP 1 is a symplectically embedded sphere with self-intersection 1. As Yasha
Eliashberg has pointed out to us, Theorem 1 in this case also morally follows, via the infinite
chain construction sketched above, from Gromov’s classification [Gro85] of symplectic mani-
folds that are Euclidean at infinity—one just has to be a little more careful in the noncompact
setting (cf. Prop. 5.3). Natural examples are the unit cotangent bundles of all closed surfaces
that admit Lagrangian embeddings into R4, i.e. the torus, and the connected sums of the
Klein bottle with a positive number of oriented surfaces of positive, even genus. Further
examples of symplectic caps containing nonnegative symplectic spheres have appeared in the
work of Ohta-Ono et al [OO05, BO] on contact manifolds obtained from algebraic surface
singularities.

We now explain the notion of a partially planar contact manifold, which is due to the third
author (see [Wenf]). Recall that an open book decomposition for M consists of the data
(B,π) where B ⊂ M is an oriented link, and π : M \ B → S1 is a fibration for which each
fiber π−1(point) is an embedded surface whose closure in M has oriented boundary B. These

1An alternative proof closely related to the arguments in this paper appears in [Wenc].
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fibers are called the pages of the open book (B,π), and B is called the binding. We recall the
following important concept introduced by Giroux [Gir].

Definition 1.4. A contact structure ξ on M is said to be supported by an open book
decomposition (B,π) if it admits a contact form λ such that the associated Reeb vector field
is positively transverse to the pages and is positively tangent to the link B.

In particular, the component circles of B are closed Reeb orbits for such a contact form λ.
These are referred to as the binding orbits.

Definition 1.5. A contact manifold (M, ξ) is said to be planar if it admits a supporting open
book decomposition for which each page has genus zero.

Giroux established that every contact structure on a closed 3-manifold is supported by some
open book decomposition. Entyre showed in [Etn04] that all overtwisted contact structures
are planar, though not all contact structures are.

The notion of a planar contact manifold can be generalized using the contact fiber sum;
the following is a special case of a construction originally due to Gromov [Gro86] and Geiges
[Gei97] (see also [Gei08]). For i = 1, 2, suppose (Mi, ξi) are contact manifolds with supporting
open book decompositions πi : Mi \ Bi → S1, and γi ⊂ Bi are connected components of the
bindings. Each γi is a transverse knot, thus one can identify neighborhoods N (γi) with solid
tori via an orientation preserving map

Φ : N (γ1) ∪ N (γ2) → S1 × D,

thus defining coordinates (θ, ρ, φ), where θ ∈ S1 and (ρ, φ) are polar coordinates on D (for
simplicity we shall take φ ∈ S1 = R/Z, thus the actual angle is this times 2π). We will assume
without loss of generality (and perhaps after a small isotopy of the open books) that these
coordinates have the following properties:

(1) The contact structure ξi is the kernel of λi = f(ρ) dθ + g(ρ) dφ for some pair of
functions f and g with f(0) > 0 and g(0) = 0.

(2) The pages of πi have the form {φ = const} near γi.

Note that the contact condition requires f(ρ)g′(ρ) − f ′(ρ)g(ρ) > 0 for ρ > 0 and g′′(0) > 0.
Using these choices, a new contact manifold

(M1, ξ1)#Φ(M2, ξ2)

can be defined in two steps:

(i) Modify (Mi, ξi) by “blowing up” γi to produce a contact manifold (M̂i, ξ̂i) with pre-
Lagrangian torus boundary: we do this by removing a solid torus neighborhood {ρ ≤
ǫ} and replacing it with S1× [0, ǫ]×S1 by the natural identification of the coordinates
(θ, ρ, φ) ∈ S1 × [0, ǫ] × S1. We also modify λi for ρ ∈ [0, ǫ) to define a smooth

contact form near ∂M̂i by making C0–small changes to f and g so that they become
restrictions of even and odd functions respectively, with g′(0) > 0. In terms of the
Reeb vector field defined by λi, the result of this change is to replace the single Reeb
orbit originally at {ρ = 0} by a torus S1 × S1 foliated by Reeb orbits of the form
S1 × {pt}.

(ii) Attach (M̂1, ξ̂1) to (M̂2, ξ̂2) along their boundaries as follows: first, define new coordi-

nates (θ̂, ρ̂, φ̂) ∈ S1×R×S1 near ∂M̂i so that they are the same as the old coordinates
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on M̂1, but on M̂2 we set

(θ̂, ρ̂, φ̂) := (θ,−ρ,−φ),

so ρ̂ ≤ 0 near ∂M̂2. We now attach M̂1 to M̂2 via a diffeomorphism such that
(θ̂, ρ̂, φ̂) ∈ S1 × [−ǫ, ǫ] × S1 become well defined coordinates after attaching. Our

assumptions on the modified functions f and g imply also that f(ρ̂) dθ̂+g(ρ̂) dφ̂ gives
a smooth contact form on M1#ΦM2 which matches the original outside the region
{ρ̂ ∈ (−ǫ, ǫ)}.

In a straightforward way, one can generalize this definition to a sum of two or more open
books on contact manifolds (M1, ξ1), . . . , (MN , ξN ) along multiple binding components: then
each of these components becomes a boundary component in its respective “blown up” man-

ifold M̂i, and it becomes a special pre-Lagrangian torus in the sum

#Φ(Mi, ξi).

Definition 1.6. We say that (M, ξ) is partially planar if it can be constructed in the above
manner as a contact fiber sum along binding orbits of open book decompositions, at least one
of which is planar.

Obviously, every planar contact manifold is also partially planar. Since there exist contact
3–manifolds that admit semifillings with disconnected boundary, a consequence of Corollary 2
is now the following:

Corollary 4. Not every contact manifold is partially planar.

Example 1.7. McDuff showed in [McD91] that for any closed oriented surface Σ of genus at
least two, if ST ∗Σ denotes the unit cotangent bundle, then there is a symplectic structure on
[0, 1] × ST ∗Σ which is convex on the boundary and induces the canonical contact structure
at {1} × ST ∗Σ. More generally, Geiges [Gei95] constructed a class of closed 3–manifolds M
which admit pairs of contact forms λ± such that

λ+ ∧ dλ+ = −λ− ∧ dλ− > 0 and λ+ ∧ dλ− = λ− ∧ dλ+ = 0.

In this situation, [0, 1]×M admits a symplectic structure such that both boundary components
are convex, giving a convex filling of (M, ker λ+) ⊔ (−M, ker λ−). It follows from Corollary 2
that none of these contact manifolds are partially planar. Moreover by Example 1.2, each of
them admits a non-separating contact type embedding into some closed symplectic manifold.

The next example shows that there are also partially planar contact manifolds that are not
planar.

Example 1.8. The standard contact S1 × S2 is planar: it admits a supporting open book
decomposition with two binding orbits connected by cylindrical pages. If we take two copies
of this, pair up both of their respective binding components and construct the fiber sum,
we obtain the standard contact T 3, which is not planar due to a result of Etnyre [Etn04].
In fact, each of the tight contact tori (T 3, ξn), where ξn = ker [cos(2πnθ) dx + sin(2πnθ) dy]
in coordinates (x, y, θ) ∈ S1 × S1 × S1, can be obtained as a fiber sum of 2n copies of the
standard S1×S2; see Figure 2. By a result of Kanda [Kan97], this includes every tight contact
structure on T 3.

By the above example, every contact structure on T 3 is partially planar. In fact, other
than the standard torus (T 3, ξ1), all contact 3–tori also have Giroux torsion, thus ξ1 is the
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Figure 2. At left, we see four copies of the tight S1×S2, represented by open
books with two binding components and cylindrical pages. For each dotted
oval surrounding two binding components, we construct the contact fiber sum
to produce the manifold at right, containing four special pre-Lagrangian tori
(the black line segments) that separate regions foliated by cylinders. The result
is the tight 3–torus (T 3, ξ2). In general, one can construct (T 3, ξn) from 2n
copies of the tight S1 × S2.

only convex fillable contact structure on T 3. Theorem 1 therefore implies that every contact
type embedding of T 3 into a closed symplectic 4–manifold separates (and the induced contact
structure must be ξ1). This result is not true for embeddings of weak contact type: in fact
all of the tight tori (T 3, ξn) admit weak symplectic semifillings with disconnected boundary
[Etn], and thus by the construction in Example 1.2, they also admit non-separating weakly
contact type embeddings.

Recall however that if (W,ω) is a weak filling of (M, ξ) and M is a homology 3–sphere,
then ω can always be deformed in a collar neighborhood of ∂W to produce a convex filling of
(M, ξ); see for instance [Gei08, Lemma 6.5.5]. Thus our results have corresponding versions
for weakly contact hypersurfaces that are homology 3–spheres. For example, since the only
tight contact structure on S3 is planar, every weakly contact type embedding of S3 into a
closed symplectic 4–manifold must separate.

Here is a more general example that also implies the observation made above about the
3–torus. Let

Σ = Σ+ ∪Γ Σ−

denote any closed oriented surface obtained as the union of two nonempty surfaces with
boundary Σ± along a multicurve Γ ⊂ Σ. By results of Giroux [Gir01] and Honda [Hon00],
the manifold MΓ := S1 × Σ admits a unique (up to isotopy) S1–invariant contact structure
ξΓ which makes Γ the dividing set on {const}×Σ. We claim that (MΓ, ξΓ) is partially planar
whenever there exists a connected component of Σ \ Γ having genus zero. Indeed, for any
connected component Σ0 ⊂ Σ\Γ, the closure of S1×Σ0 may be viewed as an open book with
page Σ0 and trivial monodromy, blown up at all its binding circles; the entirety of (MΓ, ξΓ)
can thus be obtained by attaching these blown up open books. (The tight 3–tori arise from
the case where Σ ∼= T 2 and Γ is a union of parallel curves that are primitive in H1(T

2).)
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Moreover, using Etnyre’s obstruction [Etn04] it is easy to construct many examples (MΓ, ξΓ)
which are partially planar (as just explained) but not planar. Theorem 1 now implies:

Corollary 5. If Σ\Γ has a connected component of genus zero, then the S1–invariant contact
manifold (S1 ×Σ, ξΓ) does not admit any non-separating contact type embeddings into closed
symplectic 4–manifolds.

Finally, the following demonstrates that in some settings where non-separating hypersur-
faces can be embedded smoothly, they can never be contact type. In contrast to Theorem 1,
here the assumptions are on the ambient symplectic 4-manifold and not the contact manifold.

Theorem 6. If the closed and connected symplectic 4-manifold (W,ω) contains a symplec-
tically embedded sphere S ⊂ W with self-intersection number S • S ≥ 0, then every closed
contact type hypersurface in W is separating.

The reason for this is closely related to McDuff’s results [McD90], which imply that (W,ω)
in this situation is always rational or ruled (up to symplectic blowup). In fact, the case where
S • S > 0 follows immediately from [McD90], which shows that W is then a blowup of either
S2×S2 or CP 2 and thus simply connected, so it does not admit non-separating hypersurfaces
at all (contact or otherwise). The case S • S = 0 is more interesting: the key fact here is
that one can choose a compatible almost complex structure J for which any given contact
hypersurface M ⊂ W is J–convex, and W is foliated by a family of embedded J–holomorphic
spheres (possibly including some isolated nodal spheres unless (W,ω) is minimal). If M does

not separate, then there exists a connected infinite cover (W̃ , J̃) of (W,J), constructed by
gluing together infinitely many copies of W \ M in a sequence. Now the J–holomorphic

spheres in W lift to W̃ and form a foliation, which must include a J–holomorphic sphere that
touches a lift of M tangentially from below, violating J–convexity. That’s a quick sketch of
the proof—we’ll give an alternative proof in §5 that fits into a usefully generalized context and
doesn’t assume the results of [McD90]. There are obvious examples of smoothly embedded
non-separating hypersurfaces in ruled surfaces, e.g. ℓ × S2 ⊂ Σ × S2, where Σ is any closed
oriented surface of positive genus and ℓ ⊂ Σ is a non-separating closed curve. It follows that
a hypersurface isotopic to this one is never contact type.

1.2. Open questions. Let Ξ(3) denote the collection of closed 3–manifolds with positive,
cooriented contact structures, and consider the inclusions

Ξnonsep(3) ( Ξembed(3) ( Ξ(3),

where Ξembed(3) denotes all (M, ξ) ∈ Ξ(3) that admit a contact type embedding into some
closed symplectic manifold, and Ξnonsep(3) denotes those that admit a non-separating embed-
ding. The results stated in §1.1 imply that both inclusions are proper.

Observe that if (M, ξ) is convex fillable then it is also in Ξembed(3), since a filling can
always be capped to produce a closed symplectic manifold. Conversely, if (M, ξ) admits a
separating contact type embedding, then it is fillable. While the same is not strictly true
for a non-separating embedding, the construction depicted in Figure 4 of §5 can be viewed
as a filling that is noncompact but geometrically bounded, which makes it a good setting for
J–holomorphic curves. In this context, any filling obstruction that involves J–holomorphic
curves can also serve as an obstruction to non-separating contact embeddings (cf. Corollary 3),
thus implying that (M, ξ) 6∈ Ξembed(3). This motivates the conjecture that, in fact, Ξembed(3)
is the same as the set of convex fillable contact 3–manifolds.
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Conjecture 1. If (M, ξ) is not convex fillable, then it admits no contact type embeddings
into any closed symplectic manifold.

Equivalently, this would mean there is no contact 3–manifold that admits only non-
separating contact type embeddings.

A more ambitious conjecture would arise from Example 1.2, which is the only method we
are yet aware of for constructing non-separating contact embeddings: (M, ξ) ∈ Ξnonsep(3)
whenever it admits a convex semifilling with disconnected boundary. The latter class of
contact manifolds is evidently somewhat special, and one wonders whether it might be equal
to Ξnonsep(3).

Question 1. Is there a contact 3–manifold that admits a non-separating contact type em-
bedding but not a convex semifilling with disconnected boundary?

Finally, observe that while Theorem 6 rules out the existence of a non-separating contact
hypersurface (M, ξ) ⊂ (W,ω) if (W,ω) is rational or ruled, it still allows the possibility that
(M, ξ) ∈ Ξnonsep(3) but admits a separating embedding into (W,ω). There is some reason
to suspect that this could still never happen. There are indeed cases where the existence
of a contact embedding of (M, ξ) into some particular symplectic manifold implies (M, ξ) 6∈
Ξnonsep(3), e.g. this is true if (M, ξ) →֒ (R4, ω0). Moreover, the simplest known example of a
manifold in Ξnonsep(3), the unit cotangent bundle of a higher genus surface, has been shown
by Welschinger [Wel07] to admit no contact type embeddings into rational or ruled symplectic
4–manifolds.

Question 2. Is there a contact 3–manifold that admits a contact type embedding into some
rational/ruled symplectic 4–manifold and also admits a non-separating contact type embed-
ding into some other closed symplectic manifold?

2. Pseudoholomorphic curves in symplectizations

2.1. Technical background. In this section we collect a number of important technical
definitions. A positive contact form on a 3–manifold M is a 1–form λ for which λ ∧ dλ > 0.
The 2-plane distribution ξ := ker λ is then a contact structure. The equations ιXλ

dλ = 0 and
λ(Xλ) = 1 uniquely determine a vector field Xλ, called the Reeb vector field associated to λ.
Since Xλ is everywhere transverse to ξ, one obtains a splitting TM = RXλ ⊕ ξ. Moreover,
(ξ, dλ|ξ) is a symplectic vector bundle, and the flow of Xλ preserves λ, hence also (ξ, dλ|ξ).

A periodic Reeb orbit of period T > 0 for a contact form λ is a smooth map γ : R/TZ → M
satisfying γ̇(t) = Xλ(γ(t)). We identify all possible reparametrizations t 7→ γ(t + const). A
Reeb orbit is called simply covered if it has degree 1 onto its image, i.e. it is an embedding.
If γ covers a simply covered orbit with period τ > 0, we call τ the minimal period of γ.

Since the Reeb flow preserves the symplectic vector bundle (ξ, dλ|ξ), linearizing about a
periodic orbit γ determines a symplectic linear map dφT (p) : ξp → ξp for each p in the image
of γ. Then γ is said to be nondegenerate if 1 is not an eigenvalue of this map; this condition
is independent of the point p. More generally, an orbit γ of period T is Morse-Bott if it lies
in a submanifold N ⊂ M foliated by T–periodic orbits, such that the 1–eigenspace of dφT (p)
is precisely TpN . We then call N a Morse-Bott submanifold. A contact form λ is said to be
nondegenerate if all of its periodic Reeb orbits are nondegenerate, and Morse-Bott if every
periodic orbit belongs to a Morse-Bott submanifold.
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Given a symplectic trivialization Φ of (ξ, dλ) along a T–periodic orbit γ, the linearized
flow dφt(p) for t ∈ [0, T ] defines a continuous family of symplectic matrices, which has a well
defined Conley-Zehnder index if γ is nondegenerate: we denote this index by µΦ

CZ(γ) ∈ Z.
It is convenient also to express this in terms of asymptotic operators: associated to any

T–periodic Reeb orbit γ is a linear operator Aγ : Γ(x∗ξ) → Γ(x∗ξ), where x : R/Z → M
is the reparametrization x(t) := γ(Tt). If ∇ is a symmetric connection on TM and J is a
complex structure on ξ → M compatible with the symplectic structure dλ|ξ, then Aγ can be
defined on smooth sections by

Aγη = −J(∇tη − T∇ηXλ).

This expression is independent of the choice of connection. Choosing a unitary trivialization
Φ of x∗ξ, Aγ is identified with the operator

C∞(S1, R2) → C∞(S1, R2) : η 7→ −J0
d

dt
η − S · η, (2.1)

where S(t) is some smooth loop of symmetric 2–by–2 matrices. Thus the equation Aγη = 0
defines a linear Hamiltonian flow, and one can show that the resulting family of symplectic
matrices matches the family obtained from dφt(p). It follows that Aγ has trivial kernel if and
only if γ is nondegenerate, and we can use the linear Hamiltonian flow determined by (2.1)
to define an integer µΦ

CZ(Aγ), which matches µΦ
CZ(γ). The advantage of this definition is that

it does not reference the orbit directly, but makes sense for any operator that takes the form
of (2.1) in the trivialization: in particular we can define µΦ

CZ(Aγ − c) ∈ Z whenever c ∈ R is
not an eigenvalue of Aγ , even if γ is degenerate. For this we will use the shorthand notation

µΦ
CZ(γ − c) := µΦ

CZ(Aγ − c).

We now recall some of the important spectral properties of asymptotic operators. For more
details and proofs we refer to [HWZ95].

Aγ extends to an unbounded self-adjoint operator on the complexified Hilbert space L2(x∗ξ);
its spectrum σ(Aγ) consists of real eigenvalues of multiplicity at most 2 that accumulate
only at infinity. Generalizing the statement above about nondegeneracy, if γ belongs to a
Morse-Bott submanifold of dimension n ∈ {1, 2, 3}, then the 0–eigenspace of Aγ is (n − 1)–
dimensional.

Geometric properties of the eigenspaces are closely related to the Conley-Zehnder index.
Indeed, any eigenfunction η of Aγ has a well defined winding number windΦ(η) ∈ Z relative
to the trivialization, which is independent of the choice of η in its eigenspace. Thus we may
speak of the winding number windΦ(µ) ∈ Z for each eigenvalue µ ∈ σ(Aγ), and it turns out

that the map σ(Aγ) → Z : µ 7→ windΦ(µ) is non-decreasing and attains every value exactly
twice (counting multiplicity). The following integers

αΦ
−(γ) := max{windΦ(µ) | µ < 0 is an eigenvalue of Aγ}

αΦ
+(γ) := min{windΦ(µ) | µ > 0 is an eigenvalue of Aγ}

are therefore determined by the eigenfunctions with eigenvalues closest to 0 that are negative
and positive respectively. The number p(γ) := αΦ

+(γ) − αΦ
−(γ) is called the parity of γ; it is

independent of Φ and necessarily equals 0 or 1 if γ is nondegenerate. More generally, we can
replace Aγ by Aγ − c for some c ∈ R and similarly define αΦ

±(γ − c) and p(γ − c); then if
c 6∈ σ(Aγ), a result in [HWZ95] implies the relation

µΦ
CZ(γ − c) = 2αΦ

−(γ − c) + p(γ − c) = 2αΦ
+(γ − c) − p(γ − c). (2.2)
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Observe that every Morse-Bott submanifold of dimension 2 admits a nonzero vector field
and is thus either a torus or a Klein bottle. The following characterization of Morse-Bott tori
is a simple consequence of the spectral properties of Aγ (cf. [Wenb, Prop. 4.1]).

Proposition 2.1. Suppose γ is a Morse-Bott periodic orbit of Xλ belonging to a Morse-Bott
submanifold N ⊂ M diffeomorphic to T 2. Then the Morse-Bott property is satisfied for all
covers of all orbits in N , and they all have the same minimal period.

We will also need a relative version of the standard genericity result for nondegenerate
contact forms.

Lemma 2.2. Suppose N ⊂ M is a union of 2–tori which are Morse-Bott submanifolds for
some contact form λ0. Then for any T0 > 0, there exists an arbitrarily small perturbation λ
of λ0 such that λ = λ0 on a neighborhood of N and every periodic orbit of Xλ with period
less than T0 is Morse-Bott.

Proof. Since all orbits in N are Morse-Bott (including all multiple covers, due to Prop. 2.1),
for any T0 > 0 we can find an open neighborhood U of N such that U \N contains no periodic
orbits with period less than T0. By Theorem 13 in the appendix, one can then find a generic
small perturbation of λ0 with support in M \ U so that all orbits passing through M \ U are
nondegenerate. �

We now recall the basic notions of holomorphic curves in symplectizations and their asymp-
totic properties. The symplectization of a contact manifold (M, ξ = ker λ) is the product space
R × M equipped with the exact symplectic form d(eaλ), where a : R × M → R refers to the
R coordinate. An almost complex structure J on the symplectization is said to be admissible
if it is R–invariant, restricts to the symplectic vector bundle (ξ, dλ) as a compatible complex
structure, and satisfies J∂a = Xλ. Any admissible J tames the symplectic form d(eaλ), and
more generally tames every symplectic form d(ϕλ) where ϕ : R → (0,∞) is smooth with
ϕ′ > 0.

A pseudoholomorphic (or J–holomorphic or simply holomorphic) curve from a punctured

Riemann surface (Σ̇, j), into an almost complex manifold (W,J) is a solution u : Σ̇ → W to

the nonlinear Cauchy-Riemann equation Tu ◦ j = J(u) ◦ Tu. Here we take Σ̇ := Σ \ Γ for
some finite set of points Γ ⊂ Σ, where (Σ, j) is a closed connected Riemann surface.

For the rest of this section, let us consider only the case where the target is the symplecti-
zation of (M,λ), and J is an admissible almost complex structure on R × M . The simplest
case of a punctured J–holomorphic curve in this setting is the so-called trivial cylinder

u : S2 \ {0,∞} ∼= R × S1 → R × M : (s, t) 7→ (Ts, γ(Tt)),

where T > 0 and γ is any T–periodic Reeb orbit. Following [Hof93,BEH+03], the energy of

a J–holomorphic curve u : Σ̇ → R × M can be defined as follows. Fix any constant C > 0,
and let

E(u) := sup
ϕ∈T

∫

Σ̇
u∗d(ϕλ) (2.3)

where T is the set of smooth maps ϕ : R → (0, C) with ϕ′ > 0. Since J is compatible with
d(ϕλ) for all ϕ ∈ T , the integrand in (2.3) is always nonnegative, thus u is constant if and
only if its energy vanishes. Observe that the integrand of

∫
Σ̇ u∗dλ is also nonnegative, and

this integral is finite if u has finite energy: it vanishes identically if and only if u is a branched
cover of a trivial cylinder.
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Definition 2.3. We will say that u : Σ̇ → R × M is a finite energy J–holomorphic curve if
it is proper and E(u) < ∞.

Note that properness only fails when there exist punctures having neighborhoods which
are mapped into a compact set, in which case these punctures can be removed by Gromov’s
removable singularity theorem. Since d(ϕλ) is exact, Stokes’ theorem implies that not all
punctures are removable unless u is constant.

Let us recall now the behaviour of a finite energy J–holomorphic curve u : Σ̇ → R×M in the
neighborhood of a puncture. Each puncture z ∈ Γ has a neighborhood on which the R–value of
u tends to +∞ or −∞, and we say that z is a positive/negative puncture respectively. Denote
the resulting partition into positive and negative punctures by Γ = Γ+ ∪ Γ−. Restricting to
a neighborhood of a puncture, we obtain a curve whose domain is the punctured closed disc,
which is biholomorphic to both Z+ := [0,∞)×S1 and Z− := (−∞, 0]×S1 with the standard
complex structure. It is convenient to choose the domain of the restricted curve to be Z+ or
Z− for z ∈ Γ+ or z ∈ Γ− respectively, and we will write u : Z± → R × M . It was shown by
Hofer in [Hof93] that for any sequence |sk| → ∞, there exists a subsequence such that u(sk, ·)
converges in C∞(S1,M) to γ(T ·), where γ is a T–periodic Reeb orbit for some T > 0. We
say in this case that u is asymptotic to γ, and γ is an asymptotic orbit of u.

In the following statement, we choose any R–invariant connection on R × M to define the
exponential map, and use the term asymptotically trivial coordinates to refer to a diffeomor-
phism (σ, τ) : Z± → Z± such that σ(s, t) − s and τ(s, t) − t approach constants as |s| → ∞
and their derivatives of all orders decay to zero.

Theorem ([HWZ96a,HWZ96b,Mor03]). Suppose u : Z± → R × M has finite energy and is
asymptotic to a Morse-Bott Reeb orbit γ of period T > 0. Then there exist asymptotically
trivial coordinates (σ, τ) such that for sufficiently large |σ|, either u(σ, τ) = (Tσ, γ(Tτ)) or

u(σ, τ) = exp(Tσ,γ(Tτ)) [eµσ(eµ(τ) + r(σ, τ))] , (2.4)

where eµ is an eigenfunction of Aγ with eigenvalue µ ∈ σ(Aγ) such that ±µ < 0, and the
“remainder” term r(σ, τ) ∈ ξγ(Tσ) decays to zero uniformly with all derivatives as |σ| → ∞.

Definition 2.4. When (2.4) holds, we call eµ the asymptotic eigenfunction of u at the
puncture, and say that u has transversal convergence rate |µ|. In the case where u(σ, τ) =
(Tσ, γ(Tτ)), we define the asymptotic eigenfunction to be 0 and the transversal convergence
rate to be ∞.

Observe that the asymptotic eigenfunction eµ is determined uniquely once a parametriza-

tion of γ is fixed. We know also from the monotonicity of winding numbers that windΦ(eµ) ≤

αΦ
−(γ) if the puncture is positive, and windΦ(eµ) ≥ αΦ

+(γ) if it is negative.
Let πλ : TM → ξ denote the natural projection with respect to the splitting TM = RXλ⊕ξ

and suppose u = (uR, uM ) : Σ̇ → R × M is a finite energy J–holomorphic curve. Then the
composition πλ ◦ TuM defines a section of the bundle of complex linear homomorphisms
(T Σ̇, j) → (u∗ξ, J). As shown in [HWZ95], this section satisfies a linear Cauchy-Riemann
type equation, and thus is either trivial or has a discrete set of zeros, all of positive order.
The former holds if and only if any asymptotic eigenfunction of u vanishes, in which case
they all do: then

∫
Σ̇ u∗dλ = 0 and u is a branched cover of a trivial cylinder. Otherwise, (2.4)

implies that πλ ◦ TuM has finitely many zeros, and we denote the algebraic count of these by

windπ(u) ∈ Z.

Clearly windπ(u) ≥ 0, with equality if and only if uM : Σ̇ → M is an immersion.
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2.2. Property (⋆) and the main results. We now use holomorphic curves to define two
technical conditions on contact manifolds which imply the results stated in §1. Property (⋆)
and its weak version, introduced below, will serve as obstructions to the existence of non-
separating contact embeddings. They are implied by each of the contact topological assump-
tions mentioned in Theorem 1, and in fact are more general (see also [Wenf]).

Definition 2.5. A closed three-dimensional contact manifold (M, ξ) satisfies property (⋆) if
there exists a contact form λ with ker λ = ξ and an admissible R–invariant almost complex
structure J on the symplectization R × M , which admits a finite energy J–holomorphic
punctured sphere

u = (uR, uM ) : Σ̇ = S2 \ {z1, . . . , zN} → R × M

with the following properties:

(1) uM is an embedding, and the closure of uM (Σ̇) ⊂ M is an embedded surface whose
oriented boundary is a union of Reeb orbits, called the “asymptotic orbits” of u.

(2) Each asymptotic orbit of u is nondegenerate or Morse-Bott.
(3) If T1, . . . , TN are the periods of the asymptotic orbits of u, then every Reeb orbit not

in the same Morse-Bott submanifold with one of these has period strictly greater than
T1 + . . . + TN .

(4) u has no asymptotic orbit that is nondegenerate with Conley-Zehnder index zero,
relative to the natural trivialization determined by the image of uM near the puncture.

(5) If any asymptotic orbit of u belongs to a 2–dimensional Morse-Bott manifold N ⊂ M

disjoint from uM (Σ̇), then N is a torus and contains no other asymptotic orbits of u.

Remarks.

• The fact that Reeb orbits comprise the oriented boundary of uM (Σ̇) implies that every
puncture of u is positive. Moreover, each puncture is asymptotic to a distinct Reeb
orbit, which is simply covered.

• The asymptotic formula (2.4) implies that on each cylindrical end of Σ̇, uM does not
intersect the corresponding asymptotic orbit, thus it defines a natural trivialization
of ξ along this orbit. One can then show (cf. (2.2)) that relative to this trivialization,
the orbit always has nonnegative Conley-Zehnder index if it is nondegenerate—thus
our definition requires this index to be anything strictly larger than the minimum
possible value.

Definition 2.6. We say that a closed three-dimensional contact manifold (M, ξ) satisfies
weak property (⋆) if there is a symplectic cobordism (W,ω) from (M, ξ) to a contact manifold
(M ′, ξ′), such that either (W,ω) contains a symplectically embedded sphere of nonnegative
self-intersection number or (M ′, ξ′) satisfies property (⋆).

For example, (M, ξ) satisfies weak property (⋆) if it admits a symplectic cap containing a
nonnegative symplectic sphere, or if it can be made to satisfy property (⋆) after a sequence
of contact (−1)–surgeries or connected sum operations. Obviously property (⋆) implies weak
property (⋆), and it’s plausible that the converse may also be true, though this is presumably
hard to prove.

We can now state some more technical results that imply Theorem 1. These will be proved
in §5, using the machinery of §4.

Theorem 7. Let (W,ω) be a closed and connected symplectic 4-manifold which contains a
closed contact type hypersurface M ⊂ W satisfying weak property (⋆). Then M separates W .
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Theorem 8. Let (W,ω) be a compact and connected symplectic 4-manifold with convex bound-
ary containing a connected component M ⊂ ∂W that satisfies weak property (⋆). Then ∂W
is connected.

Theorem 9. Let (W,ω) be a compact and connected 4-manifold with convex boundary (M, ξ)
satisfying weak property (⋆). Then any closed contact type hypersurface H in W \M separates
W into a convex filling of H and a symplectic cobordism from H to M . In particular, H also
satisfies the weak (⋆) property.

Remark 2.7. A compact connected symplectic manifold with convex boundary can never
contain a symplectic sphere of nonnegative self-intersection. This follows easily from the
arguments we will use to prove the above results: otherwise one would find a family of
embedded holomorphic spheres foliating the positive end of the symplectization of the convex
boundary, and thus violating the maximum principle.

Remark 2.8. Note that property (⋆) depends only on the contact structure: we do not

assume in any of these theorems that the contact form induced on M by a Liouville vector
field is the same one which appears in Definition 2.5.

We will show in §3 that any contact manifold (M, ξ) with Giroux torsion satisfies Prop-
erty (⋆). It turns out that this is also true for a contact fiber sum of open books (M, ξ) =
#Φ(Mi, ξi) whenever any of the summands (Mi, ξi) is planar. This follows from an important
relationship between open books and holomorphic curves: namely, it is shown in [Abb,Wend]
that if the open book on (Mi, ξi) is planar, one can take its pages to be projected images
of embedded index 2 holomorphic curves. A minor variation on this construction in [Wene]

extends it to the blown up manifold (M̂i, ξ̂i): the difference here is that each holomorphic page
is asymptotic to a different orbit in a Morse-Bott family foliating the boundary. Moreover,
one can easily arrange the contact form in this construction so that all the asymptotic orbits
are either elliptic or Morse-Bott and have much smaller period than any other Reeb orbit
in #Φ(Mi, ξi). It follows that #Φ(Mi, ξi) satisfies property (⋆) if any of its constituent open
books is planar.

3. Giroux torsion

Following a construction in ([Wenc]) but being more careful about periods, we now establish
the following.

Proposition 3.1. Let (M, ξ) be a closed contact manifold having Giroux torsion. Then (M, ξ)
satisfies property (⋆).

Proof. By definition, Giroux torsion means that (M, ξ) contains a subset T that can be
identified with a thickened torus S1 × S1 × [0, 1], on which ξ has the form

ξ = ker [cos(2πθ)dx + sin(2πθ)dy] (3.1)

in coordinates (x, y, θ) ∈ S1 × S1 × [0, 1]. Let us assume ξ = ker λ for some contact form λ
that is Morse-Bott outside of T , and in T has the form λ = f(θ) dx + g(θ) dy for smooth
functions f, g : [0, 1] → R with

γ(θ) := (f(θ), g(θ)) = h(θ)e2πiθ ∈ R2,

where h(θ) > 0 and h(θ) = 1 for θ near 0 and 1. The path γ is thus closed and bounds a
star-shaped region in R2, and we will show that λ has the desired properties if γ bounds a
suitably oblong oval.
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The Reeb vector field of λ on T is given by

Xλ =
1

D(θ)
(g′(θ)∂x − f ′(θ)∂y), (3.2)

where D(θ) := f(θ)g′(θ)−f ′(θ)g(θ) > 0. Since this has no ∂θ component, each torus N(θ0) :=
{(x, y, θ0) | (x, y) ∈ S1×S1} ⊂ T is invariant under the Reeb flow. Moreover, the Reeb flow
on each N(θ) is linear and has closed orbits if and only if dx(Xλ)/dy(Xλ) ∈ Q ∪ {∞}. From
(3.2), this ratio is −g′(θ)/f ′(θ) = − slope(γ′(θ)), so N(θ) has closed orbits precisely when
slope(γ′(θ)) is rational or infinite. In this case every orbit in N(θ) is closed and represents
the same class in H1(N(θ)) = Z2, which we will denote by a pair of integers (p(θ), q(θ)) with
gcd(|p(θ)|, |q(θ)|) = 1 and

p(θ)

q(θ)
= − slope(γ′(θ)) ∈ Q ∪ {∞}. (3.3)

Since dλ vanishes on N(θ), all closed simply covered orbits in N(θ) have the same period,
which we will denote by T (θ) > 0. If σ : R/Z → N(θ) parametrizes such an orbit, we compute

T (θ) =

∫ 1

0
σ∗λ = p(θ)f(θ) + q(θ)g(θ). (3.4)

Lemma 3.2. Fix ǫ > 0 small and assume that in addition to the above conditions, γ(θ) =
h(θ)e2πiθ bounds a convex set symmetric about both axes, h(1/4) = h(3/4) = ǫ and γ′(θ)
and γ′′(θ) are always linearly independent. Then:

(1) λ is Morse-Bott.
(2) Xλ = 1

ǫ
∂y on N(1/4) and −1

ǫ
∂y on N(3/4).

(3) T (1/4) = T (3/4) = ǫ, and T (θ) > 1/4 for all other θ at which N(θ) has closed orbits.

Proof. It follows by straightforward computation from the assumption that γ′(θ) and γ′′(θ)
are linearly independent that each N(θ) with closed orbits is a Morse-Bott submanifold. The
second claim follows immediately from (3.2) since symmetry requires g′(1/4) = g′(3/4) = 0,
and it is then clear that T (1/4) = T (3/4) = ǫ.

To show that all other values of θ have T (θ) > 1/4, observe first that by symmetry, we
can always assume g′ and −f ′ have the same sign as f and g respectively. Thus sign(p) =
sign(dx(Xλ)) = sign(g′) = sign(f) and sign(q) = sign(dy(Xλ)) = sign(−f ′) = sign(g), so
formula (3.4) becomes

T (θ) = |p(θ)||f(θ)| + |q(θ)||g(θ)|. (3.5)

Let ∆ denote the diamond shaped region in the xy–plane for which |x| + |y| ≤ 1/2 (see
Figure 3). We deal separately with two cases.

Case γ(θ) ∈ ∆: In this region, outside of the special values θ = 1/4, 3/4 we have 0 <
| slope(γ′(θ))| < 2ǫ, and by convexity, |g(θ)| > ǫ/2. With the slope nonzero, it follows from
(3.3) that both p and q are nonzero: in particular |p| ≥ 1. Then from the previous inequality,

|q| =
|q|

|p|
|p| =

1

| slope(γ′(θ))|
|p| >

1

2ǫ
|p| ≥

1

2ǫ
,

and using (3.5), T (θ) ≥ |q(θ)||g(θ)| > 1
2ǫ

ǫ
2 = 1/4.

Case γ(θ) /∈ ∆: After verifying explicitly that T (0) = T (1) = 1, we can exclude these two
cases and assume once more that both p(θ) and q(θ) are nonzero. Then (3.5) gives

T (θ) ≥ |f(θ)| + |g(θ)| > 1/2
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∆
1
2 1−1

ǫ

−ǫ

γ

Figure 3. The curve γ and (shaded) region ∆ in Lemma 3.2.

by the definition of ∆. �

Using the lemma, we can arrange λ in T without changing it in M \ T so that T (1/4) =
T (3/4) = ǫ is less than half the period of every other periodic orbit in M . Now copying
the construction in [Wenc, Example 2.11], we construct a family of embedded J–holomorphic
cylinders in R × T that foliate the region between N(1/4) and N(3/4), each of the form

u : R × S1 → R × M : (s, t) 7→ (α(s) + a0, x0, t, ρ(s)),

where a0 ∈ R and x0 ∈ S1 are arbitrary constants, α : R → R is a fixed function that goes
to +∞ at both ends and ρ : R → (1/4, 3/4) is a fixed orientation reversing diffeomorphism.
Any of these cylinders satisfies the requirements of property (⋆). �

4. Fredholm theory, intersection numbers and compactness

In this section, assume (W,ω) is a connected (and possibly noncompact) symplectic 4–
manifold with convex boundary ∂W = M . The boundary need not be connected or nonempty;
for simplicity we will assume that it is compact, though we will later be able to relax this
assumption. Choosing a Liouville vector field Y and a smooth function f : M → R, we define
a contact form λ on M by ιY ω|M = efλ and denote by ξ = ker λ the induced contact structure.
We can then use the reverse flow of Y to identify a neighborhood of ∂W symplectically with
a neighborhood of the boundary of ({(t,m) ∈ R × M | t ≤ f(m)}, d(etλ)). Thus we can
smoothly attach the cylindrical end

E+ := ({(t,m) ∈ R × M | t ≥ f(m)}

with symplectic form d(etλ), forming an enlarged symplectic manifold (W∞, ω) which natu-
rally contains ([T,∞) × M,d(etλ)) for sufficiently large T .

Assumption 4.1. With (W,ω) as described above, assume either of the following:

(1) (W,ω) contains a symplectically embedded sphere u0 : S2 → W with self-intersection
number zero.

(2) (M, ξ) satisfies property (⋆).

In the first case, we can define Σ̇ := S2 with the standard complex structure, choose any
admissible R–invariant almost complex structure J+ on ([T,∞)×M,d(etλ)) and extend it to
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an ω–compatible almost complex structure J on W∞ such that u0 is (after reparametrization)
a J–holomorphic curve. In the second case, we can (by appropriate choice of the function
f) take λ and J+ to be the particular contact form and almost complex structure arising
from Definition 2.5, and again extend J+ to an ω–compatible structure J on W∞. After a
sufficiently large R–translation, the J+–holomorphic curve given by Definition 2.5 may then
be regarded as a J–holomorphic curve

u0 = (uR, uM ) : Σ̇ → [T,∞) × M ⊂ W∞,

where Σ̇ = S2 \ {z1, . . . , zN} with the standard complex structure of S2.
Given any smooth function ϕ : R → (0,∞) that is monotone increasing and satisfies

ϕ(t) = et for t ≤ T , we can define a new symplectic form on W∞ by

ωϕ =

{
ω in W ,

d(ϕλ) in E+.
(4.1)

Observe that J is also compatible with ωϕ.

Definition 4.2. The energy of a J–holomorphic curve u : Σ̇ → W∞ is

E(u) = sup
ϕ∈T

∫

Σ̇
u∗ωϕ,

where ωϕ is as defined in (4.1) and T is the set of all smooth functions ϕ : R → (0,∞) that

satisfy ϕ′ > 0, ϕ(t) = et for t ≤ T and supϕ ≤ e2T .

This is equivalent to the definition of energy given in [BEH+03], in the sense that uniform
bounds on either imply uniform bounds on the other. As in §2.1, we will always assume that
finite energy J–holomorphic curves in W∞ are proper and thus have no removable punctures:
then they also satisfy the asymptotic formula (2.4) and thus have well defined asymptotic
eigenfunctions and transversal convergence rates at each puncture.

Denote by M∗ the moduli space of all proper, somewhere injective finite energy J–ho-
lomorphic curves in W∞, with arbitrary conformal structures on the domains and any two
curves considered equivalent if they are related by a biholomorphic reparametrization that
preserves each puncture. We assign to M∗ the natural topology defined by C∞–convergence
on compact subsets and C0–convergence up to the ends, and denote by M∗

0 ⊂ M∗ the
connected component containing u0. Observe that since

∫
u∗ωϕ depends only on ϕ and

the relative homology class represented by u, the energy E(u) is uniformly bounded for all
u ∈ M∗

0.
We shall now define special subsets Mc ⊂ M∗ and Mc

0 ⊂ M∗
0, consisting of J–holomorphic

curves that satisfy asymptotic constraints. If u0 has no punctures, we can simply set Mc =
M∗ and Mc

0 = M∗
0. Otherwise, let us fix the following notation: for each puncture z ∈ Γ

of u0, denote the corresponding asymptotic orbit of u0 by γz, with asymptotic operator Az,
asymptotic eigenfunction ez and transversal convergence rate −µz, so µz ∈ σ(Az). Choose
any unitary trivialization Φ for ξ along each of the orbits γz. We will define a new partition

Γ = ΓC ∪ ΓU

in terms of the asymptotic behavior of u0, calling these the constrained and unconstrained
punctures respectively. Namely, define z ∈ Γ to be in ΓC if and only if γz is either nondegen-
erate or belongs to a Morse-Bott submanifold N ⊂ M that intersects uM (Σ̇).
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Lemma 4.3. If γz belongs to a Morse-Bott submanifold N ⊂ M of dimension at least 2,
then N intersects uM (Σ̇) if and only if windΦ(ez) < 0, where Φ is the unique trivialization in
which the nontrivial sections in kerAz have zero winding.

Proof. It is obvious from the asymptotic formula (2.4) that uM intersects N if windΦ(ez) <
0. To prove the converse, observe first that since uM is embedded, it cannot intersect its own
asymptotic orbits. One then has to show that if u0 intersects any trivial cylinder R×γ′ over an
orbit γ′ in N , then it also has an “asymptotic intersection” with R×γz, which cannot be true
if windΦ(ez) = 0. This follows easily from the intersection theory of punctured holomorphic
curves, see [Sie,SW] for details. �

Lemma 4.4. For each z ∈ ΓC , there exists a number cz < 0 such that cz 6∈ σ(Az), αΦ
−(γz −

cz) = windΦ(ez) and αΦ
+(γz − cz) = windΦ(ez) + 1.

Proof. Choose Φ so that windΦ(ez) = 0; in the language of Definition 2.5, this is the special
trivialization determined by the asymptotic behavior of uM near z. Then αΦ

−(γz) ≥ 0, and if γz

is nondegenerate, (2.2) implies µΦ
CZ(γz) ≥ 0, with equality if and only if αΦ

−(γz) = αΦ
+(γz) = 0.

The latter is therefore excluded by the condition µΦ
CZ(γz) 6= 0 from Definition 2.5. It follows

that if µ ∈ σ(Az) is the largest eigenvalue with windΦ(µ) = windΦ(ez), then µ < 0 and we
can choose cz to be any number slightly larger than µ.

For the case where γz is Morse-Bott, the fact that uM intersects the Morse-Bott submanifold
means 0 = windΦ(ez) < windΦ(0) due to Lemma 4.3. Thus the eigenvalue µ defined above is
again negative and we can choose cz to be slightly larger. �

In the following, let cz < 0 denote the number given by Lemma 4.4 for each constrained
puncture z ∈ ΓC , and for z ∈ ΓU set cz := ǫ > 0 small enough so that (0, ǫ) never intersects
σ(Az).

Definition 4.5. The constrained moduli space Mc consists of all curves u ∈ M∗ having at
most #Γ punctures, which can be identified with a subset of Γ in such a way that at every
z ∈ ΓC that is a puncture of u, the asymptotic orbit of u is γz, with transversal convergence
rate strictly greater than |cz|. Let Mc

0 ⊂ Mc denote the connected component containing u0.

Proposition 4.6. Every curve u ∈ Mc

0 is embedded.

Proof. By Definition 2.5, each asymptotic orbit for the curves in Mc

0 is either fixed or allowed
to vary in a Morse-Bott torus that contains no other asymptotic orbits, thus the orbits of each
u ∈ Mc

0 are all distinct and simply covered. It follows that embedded curves form an open
subset of Mc

0, which is also non-empty since it contains u0. By positivity of intersections, it
is also closed, so the claim follows from the assumption that Mc

0 is connected. �

Topologically, Mc is a closed subspace of M∗. Recall that M∗ can locally be identified
(up to symmetries) with the zero set of the nonlinear Cauchy-Riemann operator ∂̄J , regarded
as a smooth section of a certain Banach space bundle. The same is true for Mc, but with
Banach spaces of maps whose behavior at the ends satisfies exponential weighting constraints
determined by the numbers cz. We refer to [Wenb,Weng] for details on the general analytical
setup, and [HWZ99,Wena,Weng] for the exponential weights. A given curve u ∈ Mc is called
Fredholm regular if the linearization of ∂̄J at u is surjective. In general, this linearization is
a Fredholm operator, whose index (with correction terms for the dimensions of Teichmüller
space and the automorphism group) defines the “virtual dimension” of the moduli space
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near u. We’ll denote this virtual dimension by ind (u; c), and call it the (constrained) index
of u. If u is Fredholm regular, then the implicit function theorem implies that Mc near u is
a smooth manifold, whose dimension is given by the index.

Theorem 10. Every u ∈ Mc

0 is Fredholm regular and has ind (u; c) = 2. Moreover, a
neighborhood of u in Mc

0 forms a smooth 2–parameter family {uτ}τ∈D, with u0 = u, such
that:

(1) The images uτ (Σ̇) foliate a neighborhood of u(Σ̇) in W .
(2) For any puncture z ∈ ΓU , the set of all curves {uτ}τ∈D that approach the same orbit

as u at z is a smooth 1–dimensional submanifold.

Proof. We first verify the claim that ind (u; c) = 2. For the case where u is a closed
embedded sphere with self-intersection zero, this follows immediately from the adjunction
formula: 0 = u•u = c1(u

∗TW∞)−2, thus c1(u
∗TW∞) = 2 and ind (u) = −2+2c1(u

∗TW∞) =
2.

In the case where u0 arises from property (⋆), it suffices to prove that ind (u0; c) = 2 with
u0 regarded as a J+–holomorphic curve in R×M . Recall from [Wena] that one can associate
with u0 an integer cN (u0; c), called the (constrained) normal Chern number, which satisfies

2cN (u0; c) = ind (u0; c) − 2 + 2g + #Γ0(c), (4.2)

where g is the genus of Σ̇ (in this case zero) and Γ0(c) is the subset of punctures z ∈ Γ at
which p(γz − cz) = 0. It also satisfies

cN (u0; c) = windπ(u0) +
∑

z∈Γ

[
αΦ
−(γz − cz) − windΦ(ez)

]
. (4.3)

By Lemma 4.4 and the fact that uM : Σ̇ → M is an embedding, the right hand side of (4.3)
vanishes, implying cN (u0; c) = 0. We claim also that #Γ0(c) = 0, i.e. all punctures satisfy
p(γz − cz) = 1; for z ∈ ΓC this already follows from Lemma 4.4. For unconstrained punctures
z ∈ ΓU , Lemma 4.3 implies that ez has the same winding number as a nontrivial section in
ker Az: these also span the two eigenspaces of Az − cz = Az − ǫ with negative eigenvalues
closest to zero. It follows that every positive eigenvalue of Az − ǫ has strictly larger winding,
thus p(γz − ǫ) = 1 as claimed. Now (4.2) implies ind (u0; c) = 2.

The remainder of the proof consists of minor generalizations of well established results from
[HWZ99,Wen05], so we shall merely sketch the main ideas. Since u ∈ Mc

0 is embedded, the
regularity question can be reduced to the study of the normal Cauchy-Riemann operator DN

u

as in [HLS97,HWZ99,Wenb]. The domain of DN
u is an exponentially weighted Banach space

of sections of the normal bundle Nu → Σ̇, and the sections in kerDN
u have only positive zeroes,

whose algebraic count is bounded in general by cN (u; c), cf. [Wenb]. In our case cN (u; c) =
cN (u0; c) = 0, thus every section in ker DN

u is zero free; a simple linear independence argument
then shows that dim ker DN

u ≤ 2 = indDN
u , hence DN

u is surjective. This shows that Mc

0 is a
smooth 2–manifold near u, and TuM

c

0 is identified with a space of smooth nowhere vanishing
sections ker DN

u ⊂ Γ(Nu), implying the claim that the curves near u foliate a neighborhood.
Finally we note that for each z ∈ ΓU , one can apply an additional constraint to study

subspaces of curves in Mc

0 that fix the position of the asymptotic orbit. In the linearization
this amounts to replacing cz = ǫ by cz = −ǫ; this idea is explained in detail in [Wen05,Weng].
The problem with the additional constraint then has index 1 and is again regular by an
argument using the formal adjoint of DN

u , as in [Wenb]. �
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Note that in the above proof, Fredholm regularity does not require any genericity as-
sumptions, rather it comes for free due to “automatic” transversality (cf. [Wenb]). As a
consequence, u0 can be deformed with sufficiently small perturbations of J and λ so that
Theorem 10 still applies. After such a perturbation (using Lemma 2.2), we can therefore
assume the following from now on:

(1) All orbits of period less than some large constant C > 0 are Morse-Bott.
(2) J is generic outside of [T,∞)×M , so that in particular every curve u ∈ Mc that isn’t

wholly contained in [T,∞) × M has ind (u; c) ≥ 0.

The exact details of our generic perturbation of J are somewhat delicate and specific to the
application we have in mind; this will be explained in Lemma 5.2 in §5. Note that the purpose
of this assumption has nothing to do with the curves in Mc

0, which are already regular—rather
we will see below that genericity is needed to gain control over the degenerations that can
occur in the natural compactification of Mc

0.
Due to the Morse-Bott assumption, the compactness theorem of [BEH+03] now applies to

any sequence of J–holomorphic curves in W∞ that satisfy a suitable C0–bound and energy
bound: in particular, such a sequence has a subsequence that converges to a nodal holomorphic
building, typically with multiple levels. In our situation, the bottom level will be a nodal J–
holomorphic curve in W∞, and all levels above this are nodal J+–holomorphic curves in
R × M .

Theorem 11. Suppose uk ∈ Mc

0 is a sequence whose images are all contained in W0∪E+ for
some compact subset W0 ⊂ W . Then a subsequence of uk converges to one of the following:

(1) another smooth curve in Mc

0,
(2) a holomorphic building with empty bottom level and one nontrivial upper level that

consists of a smooth, embedded J+–holomorphic curve in R×M satisfying the condi-
tions of property (⋆), or

(3) a nodal J–holomorphic curve in W∞ with exactly two components, both in Mc and
both embedded with (constrained) index 0.

Moreover the set of index 0 curves that can appear as components of nodal curves in the third
case is finite.

Before we prove the theorem we state the following important corollary. For this, we denote
by S ⊂ W∞ the set through which the finitely many limit curves from part (3) of Theorem 11
pass, and let C ⊂ W∞ \ S consist of all points that are contained in curves from Mc

0.

Corollary 12. In addition to the assumptions of Theorem 11, assume that the images of all
curves in Mc

0 are contained in W0∪E+ for some compact subset W0 ⊂ W . Then C = W∞\S,
and thus W is compact.

Proof. We claim that C is a non-empty, open and closed subset of W∞ \ S. It is clearly
non-empty since Mc

0 also is, by construction. Openness is a direct consequence of Theorem 10
part (1). To prove that C is closed, we choose a sequence (pn) ⊂ C with pn → p∗ ∈ W∞ \ S.
Then by definition, there exist curves un ∈ Mc

0 with pn ∈ im (un). A subsequence of un

converges to a holomorphic building u∗, which by Theorem 11 is either a smooth curve or
a nodal curve with one level. Since p∗ is in the image of u∗ and p∗ 6∈ S, we conclude that
u∗ ∈ Mc

0 and p∗ ∈ im u∗ ⊂ C.
Now, since S is a finite union of images of holomorphic curves, W∞ \ S is connected and

it follows from the above claim that C = W∞ \ S. Since by assumption C ⊂ W0 ∪ E+, we
conclude that W is compact. �
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In proving Theorem 11, we will make use of a few concepts from the intersection theory of
punctured holomorphic curves; this theory is developed in detail in the papers [Sie,SW], and
the last section of [Wenb] also contains a summary. Assume v1, v2 ∈ Mc. Then there is an
algebraic intersection number

i(v1; c | v2; c) ∈ Z

which has the following properties:

(1) i(v1; c | v2; c) is unchanged under continuous variations of v1 and v2 in Mc.
(2) If v1 and v2 are not both covers of the same somewhere injective curve, then

i(v1; c | v2; c) ≥ 0,

and the inequality is strict if they intersect.

Unlike the usual homological intersection theory applied to closed holomorphic curves,
the last statement is not an “if and only if”: it is possible in general for v1 and v2 to be
disjoint even if i(v1; c | v2; c) > 0, though this phenomenon is in some sense non-generic. The
intersection number can also be defined for curves in the symplectization R×M , possibly with
both positive and negative punctures. In this case one has invariance under R–translation,
so if i(v1; c | v2; c) = 0 then the projected images of v1 and v2 in M never intersect.

Lemma 4.7. i(u0; c | u0; c) = 0.

Proof. Since u0 has only simply covered Reeb orbits and all of them are distinct, it satisfies
the following somewhat simplified version of the adjunction formula from [Sie,SW],

i(u0; c | u0; c) = 2δ(u0) + cN (u0; c). (4.4)

Here δ(u0) is the algebraic count of double points and singularities of u0 (see [MS04]), which
vanishes since u0 is embedded. As we saw in the proof of Theorem 10, cN (u0; c) also vanishes,
so the claim follows. �

Lemma 4.8. If v ∈ Mc

0 is contained in [T,∞) × M ⊂ W∞, then its projection to M is
embedded.

Proof. Write v = (vR, vM ) : Σ̇ → [T,∞) × M . By assumption, v can be deformed contin-
uously to u0 through Mc, thus i(v; c | v; c) = i(u0; c | u0; c) = 0 by the previous lemma,
and cN (v; c) = cN (u0; c) = 0. Now (4.3) implies that windπ(v) = 0, thus vM is immersed,
and the vanishing self-intersection number implies that v has no intersections with any of its
R–translations, so vM is also injective. �

Proof of Theorem 11. By [BEH+03], uk has a subsequence converging to some holomorphic
building, which we’ll denote by u. Our first task is to show that unless u is a 2–level building
with empty bottom level as described in case (2), it can have no nontrivial upper levels. This
is already clear in the case where u is closed, as convexity prevents uk from venturing into
the region [T,∞) × M at all. Let us therefore assume that uk has punctures and that u has
nontrivial upper levels. If no component in these upper levels has any negative punctures, then
there must be only one nontrivial level, which consists of one or more connected components
v1, . . . , vN attached to each other by nodes. All of these components have punctures, since
the symplectic form in R × M is exact; moreover, the positive ends of each vi correspond to
some subset of the positive ends of u0, and since these are all simply covered and distinct,
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each vi is somewhere injective and satisfies the asymptotic constraints defined by c. Now
(4.2) and (4.3) give

0 ≤ 2windπ(vi) ≤ 2cN (vi; c) = ind (vi; c) − 2,

hence ind (vi; c) ≥ 2. Since ind (u0; c) = 2 as well, we conclude that u can have at most one
connected component, with no nodes, i.e. it is a smooth J+–holomorphic curve in R×M with
only positive punctures. Up to R–translation, u can therefore be identified with some smooth
curve in Mc

0 whose image is contained in [T,∞)×M , and the projection into M is embedded
due to Lemma 4.8. It follows that this curve satisfies the conditions of property (⋆).

Alternatively, suppose u has nontrivial upper levels and the top level contains a J+–
holomorphic curve u+ in R × M which is not the trivial cylinder over an orbit and has
both positive and negative punctures. Repeating the above argument about behavior at the
positive ends, u+ is somewhere injective. Applying Stokes’ theorem to

∫
u∗

+dλ ≥ 0, the neg-
ative asymptotic orbits of u+ have total period bounded by the total period of the positive
orbits, implying that all of the negative orbits belong to the same Morse-Bott manifolds as
the orbits of u0. We claim that after some R–translation, u+ intersects u0. This will imply
a contradiction almost immediately, as positivity of intersections then gives an intersection
of uk with some R–translation of u0 for sufficiently large k, contradicting Lemma 4.7 since
i(uk; c | u0; c) = i(u0; c | u0; c) = 0.

To prove the claim, it suffices to show that the projected images of u+ and u0 in M
intersect each other. Suppose γ is an asymptotic orbit of u0 that lies in the same Morse-
Bott submanifold N ⊂ M as one of the negative asymptotic orbits γ′ of u+. Denote the
corresponding asymptotic eigenfunctions by e and e′ respectively. We consider the following
cases:

Case 1: N is a circle. Then γ is nondegenerate and γ′ is the k–fold cover of γ for
some k ∈ N. Choose a trivialization Φ along γ so that windΦ(e) = 0. By Lemma 4.4,
Aγ has two eigenvalues (counting multiplicity) µ < 0 with windΦ(µ) = 0. Then the k–fold
covers of their eigenfunctions are eigenfunctions of Aγ′ with negative eigenvalues and zero
winding, implying that every positive eigenvalue of Aγ′ has strictly positive winding. Thus

windΦ(e′) ≥ αΦ
+(γ′) > 0, forcing the projections of u0 and u+ in M to intersect each other

near N .
Case 2: N is a torus disjoint from uM . Now γ′ can be deformed through a 1–

parameter family of orbits to a k–fold cover of γ for some k ∈ N. Choose a trivialization Φ
along every simply covered orbit in N so that sections in the 0–eigenspaces have zero winding.
By Lemma 4.3, Aγ has an eigenvalue µ < 0 such that windΦ(e) = windΦ(µ) = 0, and taking
k–fold covers of eigenfunctions, we similarly find eigenfunctions of Aγ′ that have zero winding

and eigenvalues kµ < 0 and 0. This implies that windΦ(e′) ≥ αΦ
+(γ′) > 0, which forces the

projection of u+ in M to intersect N , i.e. u+ intersects a trivial cylinder R×γ1 for some orbit
γ1 ⊂ N . Then by the homotopy invariance of the intersection number, u+ also intersects
R× γ. This intersection is transverse unless it occurs at a point where πλ ◦Tu+ = 0, but the
similarity principle implies that there are finitely many such points (see [HWZ95]). Thus if
necessary we can use Theorem 10 to perturb u0 and thus move γ to a nearby orbit, so that
the intersection of R × γ with u+ is transverse. This implies a transverse intersection of the
projected image of u+ in M with γ, and therefore an intersection of the projections of u+

and u0 nearby.
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Case 3: N is a Morse-Bott manifold intersecting uM . The argument is similar to
case 2, only now we use the intersection of uM with N to show that uM intersects γ′ and thus
also the projected image of u+ near γ′.

We’ve shown now that u cannot have any nontrivial upper level except in case (2), so it must
therefore be a 1–level building in W∞, i.e. a nodal J–holomorphic curve. The deduction of
case (3) now proceeds almost exactly as in the proof of [Wenc, Theorem 7]. To summarize, the
connected components of u are all either punctured curves with positive ends at distinct simply
covered orbits (and thus somewhere injective), or closed curves (which must be nonconstant
by an index argument). The latter could in general be multiple covers, but if v is a k–
fold branched cover of some closed somewhere injective curve v0, then we find ind (v) =
k · ind (v0) + 2(k − 1). Due to our genericity assumption, all somewhere injective curves have
index at least 0, so we find that the total index of u becomes more than 2 unless there is
at most one node connecting two components, and in this case both components must be
somewhere injective. The adjunction formula (4.4) can now be used to show that these two
components, v1 and v2, are both embedded, satisfy i(vi; c | vi; c) = −1, i(vi; c | u0; c) = 0 and
i(v1; c | v2; c) = 1; moreover, they are both Fredholm regular and have (constrained) index 0.

There’s one minor point to address which was irrelevant in [Wenc]: if there are no punctures,
we haven’t ruled out the possibility that u is a smooth multiple cover, i.e. u = v ◦ϕ for some
closed somewhere injective sphere v and holomorphic branched cover ϕ : S2 → S2. Since
c1(u

∗TW∞) = 2, this is allowed numerically only if c1(v
∗TW∞) = 1 and ϕ has degree 2. But

then we get a simple contradiction using the adjunction formula: since u • u = 0, the same
holds for v, thus

0 = v • v = 2δ(v) + c1(v
∗TW∞) − 2 = 2δ(v) − 1

where δ(v) is the algebraic count of double points and singularities. The right hand side is
odd; in particular it can never be zero.

It remains to show that the set of all index 0 curves arising from nodal degenerations of uk

is finite. Indeed, suppose vk is a sequence of finite energy J–holomorphic curves in W∞ with
uniform energy and C0–bounds such that

(1) The punctures of vk are identified with a subset of Γ and satisfy the asymptotic
constraints of Definition 4.5.

(2) i(vk; c | u0; c) = 0.
(3) ind (vk; c) = 0.

Then we claim that vk has a convergent subsequence. The argument is familiar: we rule out
nontrivial upper levels exactly as before by showing that any nontrivial component v+ in such
a level must intersect u0. Thus the only remaining possible non-smooth limit is a nodal curve
in W∞, but the same index argument now implies that there is at most one component, thus
no nodes, and the limit is somewhere injective. It follows that this set of curves is a compact
smooth 0–dimensional manifold, i.e. a finite set. �

5. Proofs of the main results

5.1. Proofs of Theorems 6 and 7. We consider a closed and connected symplectic 4–
manifold (W,ω) which contains a closed contact type hypersurface M such that W \ M
is connected. Under the assumptions of Theorem 6 or 7, we will construct from this a
noncompact symplectic manifold with convex boundary to which Corollary 12 applies, giving
a contradiction. The general idea of the construction is outlined in Figure 4.
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To start with, we compactify W \ M by adding to each end a copy of M , obtaining a
compact and connected symplectic manifold (W1, ω) with one convex boundary component
M+ and an identical concave boundary component M−. Inductively, we define the compact
symplectic manifold Wn by Wn := Wn−1 ∪M−=M+ W1, denoting the symplectic form on Wn

again by ω. Note that Wn−1 is a compact symplectic submanifold of Wn in a natural way.
Thus the set

(W, ω) :=
⋃

n≥1

(Wn, ω) (5.1)

is a noncompact symplectic manifold with convex boundary M corresponding to the convex
boundary of W1.

Assume that W contains a symplectically embedded sphere S ⊂ W with S • S = N ≥ 0.
Since ω is exact on M , Stokes’ theorem implies that S cannot be contained entirely in M .
We can thus blow up W at N distinct points in S that are not in M , modifying both W
and S so that S • S = 0 without loss of generality. Now we claim that S can be “lifted” to

a symplectic sphere S̃ in (W, ω) with S̃ • S̃ = 0. To see this, construct a symplectic infinite

cover (W̃ , ω̃) of (W,ω) by gluing together a sequence of copies {(W j
1 , ω)}j∈Z of (W1, ω), with

the concave boundary of W j
1 attached to the convex boundary of W j+1

1 for each j ∈ Z. Since

the sphere is simply connected, S has a lift S̃ ⊂ W̃ , and moreover, (W̃ , ω̃) naturally contains

(W, ω), which we may assume contains S̃ without loss of generality.
Similarly, if M with its induced contact structure satisfies weak property (⋆), then after

attaching a symplectic cobordism to the convex boundary of (W, ω), we may assume without
loss of generality that either (W, ω) contains a symplectic sphere of zero self-intersection (after
blowing up) or property (⋆) holds for ∂W.

In either case, (W, ω) now satisfies Assumption 4.1. As explained in §4, we can then attach
to ∂W a cylindrical end E+ that contains ([T,∞) × M,d(etλ)) for sufficiently large T ∈ R

and a suitable contact form λ, obtaining an enlarged symplectic manifold (W∞, ω), with an
ω–compatible almost complex structure J0 that is admissible and R–invariant on [T,∞)×M ,
and a non-empty moduli space Mc

0 ⊂ Mc of J0–holomorphic curves in W∞. Moreover for
some n0 ∈ N, we can assume that J0 belongs to the following set.

Definition 5.1. Let J per be the space of compatible almost complex structures on (W∞, ω)
which match J0 on ([T,∞) × M,d(etλ)) and whose restrictions to W ∼= Wn+1 \ Wn ⊂ W∞

are independent of n for n ≥ n0(J0). Such a J will be called periodic.

Lemma 5.2. For a generic J ∈ J per, all J–holomorphic curves in Mc are Fredholm regular.

Proof. Recall that the J–holomorphic curves in Mc are somewhere injective, see §4. The
proof of transversality is a small variation on the standard technique, as in [MS04]: the key
is to show that the universal moduli space {(u, J) | u is J–holomorphic} is a smooth Banach
manifold for periodic J and u satisfying the relevant conditions. This will use the fact that
a perturbation of J can be localized at an injective point of u without interfering at other
points in the image of u. Then regular values of the projection (u, J) 7→ J are generic by the
Sard-Smale theorem, and for these, all J–curves are Fredholm regular.

Assume J ∈ J per and u ∈ Mc is not fully contained in [T,∞) × M . If u also intersects
Wn0

∪ E+, then it suffices to perturb J only in this region and thus preserve periodicity of
J . Thus it remains only to show that J per permits sufficient perturbations of J when the
image of u is contained in W \ Wn0

, in which case u must be a somewhere injective closed
curve. Since J is required to be periodic, the only danger not present in the standard case is
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that u may have periodic points, in the following sense. Recall that W∞ contains infinitely

many identical copies of a certain manifold V , in the form Ŵn := Wn+1 \ Wn. Thus each
point x ∈ V appears infinitely often in W∞, and we call these different points translates of
x. Then z ∈ Σ̇ is a periodic point of u if a translate of u(z) is contained in the image im (u)
of u. In this case a periodic perturbation of J cannot be localized in the image of u.

We claim that for any somewhere injective closed holomorphic curve in W \ Wn0
, the set

of injective points which are not periodic is open and dense. To see this, we can consider the

covering space π : W̃ → W which was constructed above Definition 5.1. Since J is periodic,
the projection π ◦ u is a holomorphic curve in W . It will suffice to show that also π ◦ u is
somewhere injective, since then the set of injective points of π ◦ u is open and dense, and

injective points of π ◦ u give rise to non-periodic injective points of u. Denote by τ : W̃ → W̃

the deck transformation that maps W̃n to W̃n+1. Then if π ◦ u is multiply covered, the
fact that u is somewhere injective implies (using unique continuation) that u and τk ◦ u are
equivalent curves for some integer k 6= 0. But then u is also equivalent to τnk ◦ u for any

n ∈ Z, implying that the image of u in W̃ is unbounded. Since u was assumed to be closed,
this is a contradiction and shows that π ◦ u is indeed somewhere injective.

With this, the usual proof that the universal moduli space is a smooth Banach manifold
goes through unchanged. �

For the remainder of this section we assume that the almost complex structure J (formerly
called J0) is periodic and generic.

Proposition 5.3. There exists N0 ∈ N such that for all u ∈ M∗
0 we have

im (u) ⊂ WN0
∪ E+. (5.2)

Proof. We denote the convex boundary of Wn ⊂ W by M+ and the concave boundary by
M−

n . Recall that M+ is the same for all Wn. Then we claim that there exists a positive
constant c0 > 0 such that all u ∈ M∗

0 with im (u) ∩ M+ and im (u) ∩ M−
n both nonempty

have energy

E(u) ≥ c0n . (5.3)

This follows from the monotonicity lemma (see Lemma 5.4 below) and the fact that the almost
complex structure is periodic. Indeed, we fix a copy of W1 in Wn and denote for the moment
its convex and concave boundary by ∂W+ and ∂W− respectively. We claim that there exists
c̃ > 0 such that any holomorphic curve v with v−1(∂W+) 6= ∅ and v−1(∂W−) 6= ∅ has at least
energy E(v) ≥ c̃. To see this we observe that each such v has to pass through a point in W
with distance ǫ0 > 0 to the boundary ∂W+ ∪∂W− of W . Thus we conclude from Lemma 5.4
that E(v) ≥ Cǫ2

0 for each v, where C and ǫ0 only depend on the almost complex structure J .
Since J is periodic, and a map u ∈ M∗

0 with im (u) ∩ M+ 6= ∅ and im (u) ∩ M−
n 6= ∅ passes

through the boundaries of n copies of W1, equation (5.3) follows. Using the uniform energy
bound for u ∈ M∗

0, this implies the proposition in the case where u0 has punctures, as every
u ∈ M∗

0 is then either confined to E+ or passes through M+.
A small modification is required for the case without punctures: here u0 ∈ M∗

0 is a sphere,
and we can choose its lift from W to W∞ so that without loss of generality, the image of
u0 intersects W1 (i.e. the first copy). Then we claim that every u ∈ M∗

0 intersects W1.
Otherwise, the fact that M∗

0 is connected implies the existence of some holomorphic sphere
in M∗

0 that touches M−
1 tangentially from inside W2 \W1, and this is impossible by convexity.
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We conclude that every u ∈ M∗
0 which escapes from W1 ∪ E+ must also pass through M−

1 ,
so the above argument goes through by using M−

1 in place of M+. �

For the sake of completeness, we include here the monotonicity lemma, see [Hum97] for a
proof.

Lemma 5.4. For any compact almost complex manifold (W,J) with Hermitian metric g,
there are constants ǫ0 and C > 0 such that the following holds. Assume (S, j) is a compact
Riemann surface, possibly with boundary, and u : S → W is a pseudoholomorphic curve.
Then for every z ∈ Int(S) and r ∈ (0, ǫ0) such that u(∂S) ∩ Br(u(z)) = ∅, the inequality

Area (u(S) ∩ Br(u(z))) ≥ Cr2

holds.

Since WN0
is compact, Proposition 5.3 allows us to apply Corollary 12. But this implies

that W is compact, and is thus a contradiction, concluding the proof of Theorems 6 and 7.

5.2. Proof of Theorem 8. Theorem 8 follows immediately from Theorem 7 and Exam-
ple 1.2, since a symplectic semifilling with disconnected boundary can always be turned into
a closed symplectic 4–manifold containing non-separating contact hypersurfaces. One can
nonetheless give a slightly easier proof as follows.

Assume that the boundary ∂W is disconnected and contains a component M satisfying
property (⋆). Thus W satisfies Assumption 4.1, and after attaching cylindrical ends, we
obtain a moduli space Mc

0 of J–holomorphic curves that fill the enlarged manifold W∞.
Moreover, all J–holomorphic curves have positive punctures going to the end corresponding
to M . Since they fill W∞, some of these curves must therefore touch ∂W \ M tangentially,
which is impossible if ∂W is convex.

5.3. Proof of Theorem 9. Let (W,ω) be a compact connected 4-manifold with convex
boundary (M, ξ) satisfying the weak (⋆) property. After attaching a symplectic cobordism to
∂W , we may without loss of generality remove the word “weak”. Now assume that H ⊂ W \M
is a non-separating contact hypersurface. Thus we can cut W open along H and compactify
to obtain a connected symplectic cobordism W1 with two convex boundary components H+

and M , and one concave boundary component H−.
Now we can repeat the construction in the proof of Theorems 6 and 7, namely we glue

infinitely many copies of W1 along H, obtaining a noncompact symplectic manifold W with
one convex boundary component H and infinitely many convex boundary components which
are copies of M . From here, we proceed exactly as in the previous proofs, using the moduli
space of holomorphic curves arising from property (⋆) on the first copy of M . The only new
feature is that ∂W is not compact, but since it consists of copies of the same compact and
convex components, the results of §4 still hold, as convexity prevents the holomorphic curves
in Mc

0 from ever approaching the other copies of M . In particular, Corollary 12 applies and
again yields a contradiction.

Appendix A. Relative nondegeneracy of contact forms

Our main argument uses holomorphic curves asymptotic to Morse-Bott families of periodic
orbits. We prefer not to assume from the start that the contact form is globally Morse-Bott.
Thus, we need a perturbation result that preserves a given Morse-Bott submanifold and makes
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(W,ω)

(M, ξ)

(Wn, ω) Wn ∪ E+

Y

Y

(W1, ω)

Figure 4. The compact symplectic manifold (W,ω) contains the non-
separating contact hypersurface (M, ξ). W \ M is compactified to produce
(W1, ω), which has two boundary components contactomorphic to M , one
convex and one concave. Successively attaching n copies of W1 to itself pro-
duces (Wn, ω). Then property (⋆) gives rise to a moduli space of finite energy
curves which, due to the monotonicity lemma, cannot escape from Wn ∪ E+

if n is sufficiently large.

λ nondegenerate everywhere else. For this, it suffices to show that one can perturb λ in some
precompact subset to make all orbits that pass through that subset nondegenerate.
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Theorem 13. Suppose M is a (2n − 1)–dimensional manifold with a smooth contact form
λ, and U ⊂ M is an open subset with compact closure. Then there exists a Baire subset

Λreg(U) ⊂ {f ∈ C∞(M) | f > 0 and f |M\U ≡ 1}

such that for each f ∈ Λreg(U), every periodic orbit of Xfλ passing through U is nondegenerate.

Proof. We give a proof in two steps, first showing that a generic choice of the function f
makes all simply covered orbits of Xfλ passing through U nondegenerate. Then we extend
this to multiple covers by a further perturbation.

The first step is an adaptation of the standard Sard-Smale argument. Let ξ = ker λ, and
for some large k ∈ N, define the Banach space

Ck
U (M) =

{
f ∈ Ck(M, R)

∣∣ f |M\U ≡ 0
}

and Banach manifold

Λk(U) = {f ∈ Ck(M, R) | f > 0 and f − 1 ∈ Ck
U (M)},

whose tangent space at any f ∈ Λk(U) can be identified with Ck
U (M). We will consider the

nonlinear operator
σ(x, T, f) := ẋ − TXfλ(x)

as a section of a Banach space bundle over H1(S1,M)×(0,∞)×Λk(U) whose fiber at (x, T, f)
is L2(x∗TM). Since Xfλ depends on the first derivative of f , it is of class Ck−1 and the section

σ is therefore of class Ck−2. Choosing any symmetric connection ∇ on M , the linearization
of σ at (x, T, f) ∈ σ−1(0) with respect to the first variable defines the operator

Dx : H1(x∗TM) → L2(x∗TM) : x̂ 7→ ∇tx̂ − T∇x̂Xfλ. (A.1)

Since ẋ = TXfλ(x), we can identify the normal bundle of x with x∗ξ and thus define a
splitting x∗TM = TS1 ⊕ x∗ξ. A short calculation then allows us to rewrite Dx with respect
to the splitting in the block form

Dx =

(
∂t 0
0 DN

x

)
, (A.2)

where DN
x : H1(x∗ξ) → L2(x∗ξ) is defined again by (A.1), and is a Fredholm operator of

index 0. The orbit x is nondegenerate if and only if DN
x is an isomorphism.

The total linearization of σ at (x, T, f) ∈ σ−1(0) is now

Dσ(x, T, f)(x̂, T̂ , f̂) = Dxx̂ − T̂Xfλ(x) − TX̂(x),

where we define the vector field X̂ := ∂τX(f+τ f̂)λ|τ=0. It follows from the definition of the

Reeb vector field that X̂ takes the form −f̂Xfλ + V
f̂

where V
f̂
∈ Γ(ξ) is uniquely determined

by the condition

d(fλ)(V
f̂
, ·)

∣∣∣
ξ

= df̂
∣∣∣
ξ
. (A.3)

We define the universal moduli space of parametrized Reeb orbits as M := σ−1(0), and let
M∗ ⊂ M denote the open subset consisting of triples (x, T, f) for which x is simply covered
and x(S1) ∩ U 6= ∅. Similarly, denote

M∗(f) = {(x, T ) | (x, T, f) ∈ M∗}.

We claim that Dσ(x, T, f) is surjective whenever (x, T, f) ∈ M∗, hence M∗ is a Ck−2–smooth

Banach manifold. To see this, note that one can always find η ∈ H1(TS1) and T̂ ∈ R so that
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Tx(∂tη)− T̂Xfλ(x) takes any desired value in L2(x∗(RXfλ)), thus it suffices to show that the
“normal part”

H1(x∗ξ) ⊕ Ck
U (M) → L2(x∗ξ) : (x̂, f̂) 7→ DN

x x̂ − TV
f̂

is surjective. If it isn’t, then there exists a section η 6= 0 ∈ L2(x∗ξ) such that 〈DN
x x̂, η〉L2 = 0

for all x̂ ∈ H1(x∗ξ) and 〈V
f̂
, η〉L2 = 0 for all f̂ ∈ Ck

U(M) vanishing outside of U . The

first relation implies that η is in the kernel of the formal adjoint of DN
x , a first order linear

differential operator, hence η is smooth and nowhere vanishing. But then if x(t0) ∈ U , then

using (A.3), f̂ can be chosen near x(t0) so that the second relation requires η to vanish on a
neighborhood of t0, giving a contradiction.

Now applying the Sard-Smale theorem to the natural projection M∗ → Λk(U) : (x, T, f) 7→
f , we find a Baire subset Λk

reg(U) ⊂ Λk(U) for which every simply covered Reeb orbit passing
through U is nondegenerate.

For the second step, denote by dist( , ) the distance functions resulting from any choice of
Riemannian metrics on S1 and M , and define for each positive integer N ∈ N a subset

MN (f) ⊂ M∗(f)

consisting of Reeb orbits (x, T ) that satisfy the following conditions:

(1) T ≤ N .
(2) There exists t ∈ S1 such that

inf
t′∈S1\{t}

dist(x(t), x(t′))

dist(t, t′)
≥

1

N
.

(3) There exists t ∈ S1 such that dist(x(t),M \ U) ≥ 1/N .

Moreover, let Λreg,N(U) ⊂ Λ∞(U) denote the space of all smooth functions f ∈ Λk(U) for
which all covers of orbits in MN (f) up to multiplicity N are nondegenerate. Since nonde-
generacy is an open condition and any sequence (xk, Tk) ∈ MN (fk) with fk → f in C∞ has
a convergent subsequence by the Arzelà-Ascoli theorem, Λreg,N (U) is an open set. We claim

it is also dense. Indeed, any f ∈ Λ∞(U) has a perturbation fǫ ∈ Λk(U) for which all the
simple orbits in MN (fǫ) are nondegenerate due to step 1. In this case MN (fǫ) is a smooth
compact 1–manifold, i.e. a finite union of circles, which are the parametrizations of finitely
many distinct nondegenerate orbits, and the space is stable under small perturbations of fǫ.
Thus by a further perturbation, we can make fǫ smooth and arrange that none of the orbits
in MN (fǫ) have a Floquet multiplier that is a kth root of unity for k ∈ {1, . . . , N}. The latter
can be achieved using a normal form for fǫλ as in [HWZ96a, Lemma 2.3] near each individual
orbit: in particular, we can perturb so that each orbit remains unchanged but the linearized
return map changes arbitrarily within the space of symplectic linear maps. This proves that
Λreg,N (U) is dense in Λ∞(U), and we can now construct Λreg(U) as a countable intersection
of open dense sets:

Λreg(U) =
⋂

N∈N

Λreg,N (U).

�
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