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ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC4{MANIFOLDSPETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLAbstra
t. We show that 
ertain 
lasses of 
onta
t 3{manifolds do not admit non-separating
onta
t type embeddings into any 
losed symple
ti
 4{manifolds, e.g. this is the 
ase for all
onta
t manifolds that are (partially) planar or have Giroux torsion. The latter impliesthat manifolds with Giroux torsion do not admit 
onta
t type embeddings into any 
losedsymple
ti
 4{manifolds. Similarly, there are symple
ti
 4{manifolds that 
an admit smoothlyembedded non-separating hypersurfa
es, but not of 
onta
t type: we observe that this is the
ase for all symple
ti
 ruled surfa
es.1. Introdu
tion1.1. Main results. Let (W;!) denote a 
losed symple
ti
 manifold of dimension four. A
losed hypersurfa
e M � W is of 
onta
t type if it is transverse to a Liouville ve
tor �eld,i.e. a smooth ve
tor �eld Y de�ned near M su
h that LY ! = !. Then �Y ! is a 
onta
t formon M , and we will denote the resulting 
onta
t stru
ture by � = ker �Y !; it is independentof Y up to isotopy. If M separates W into two 
omponents, then it is said to form a 
onvexboundary on the 
omponent where Y points outward, and a 
on
ave boundary on the other
omponent. By 
onstru
tions due to Etnyre-Honda [EH02℄ and Eliashberg [Eli04℄, every
onta
t 3{manifold 
an o

ur as the 
on
ave boundary of some 
ompa
t symple
ti
 manifold.This is not true for 
onvex boundaries: for instan
e, Gromov [Gro85℄ and Eliashberg [Eli90℄showed that overtwisted 
onta
t manifolds 
an never o

ur as 
onvex boundaries, and a �nerobstru
tion 
omes from Giroux torsion [Gay06℄.In this paper, we address the question of whether a given 
onta
t 3{manifold (M; �) 
an o
-
ur as a non-separating 
onta
t hypersurfa
e in any 
losed symple
ti
 manifold, and similarly,whether a given symple
ti
 4{manifold (W;!) admits non-separating 
onta
t hypersurfa
es.Observe that separating 
onta
t hypersurfa
es always exist in abundan
e, e.g. the boundariesof balls in Darboux neighborhoods. We will see in Example 1.2 that non-separating 
onta
thypersurfa
es sometimes exist, but there are restri
tions, as the following Theorem shows.Theorem 1. Suppose (M; �) is a 
losed 
onta
t 3{manifold whi
h has any one of the followingproperties:(1) (M; �) has Giroux torsion(2) (M; �) is planar or partially planar (see De�nition 1.6 below)(3) (M; �) admits a symple
ti
 
ap 
ontaining a symple
ti
ally embedded sphere of non-negative self-interse
tion numberThen every 
onta
t type embedding of (M; �) into any 
losed symple
ti
 4{manifold is sepa-rating.2000 Mathemati
s Subje
t Classi�
ation. Primary 32Q65; Se
ondary 57R17.Key words and phrases. symple
ti
 manifolds, 
onta
t manifolds, pseudoholomorphi
 
urves, separatinghypersurfa
es. 1

2 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLRemark 1.1. Theorem 1 admits an easy generalization as follows. We will say that (M; �)has any given property after 
onta
t surgery if the property holds for some 
onta
t manifold(M 0; �0) obtained from (M; �) by a (possibly trivial) sequen
e of 
onta
t 
onne
ted sum op-erations and 
onta
t (�1){surgeries. The signi�
an
e of these operations (see e.g. [Gei08℄)is that they imply the existen
e of a symple
ti
 
obordism from (M; �) to (M 0; �0): re
allthat a symple
ti
 
obordism from (M�; ��) to (M+; �+) is in general a 
ompa
t symple
ti
manifold (W;!) with �W = (�M�)tM+, su
h that there is a Liouville ve
tor �eld near �Wde�ning (M�; ��) and (M+; �+) as 
on
ave and 
onvex boundary 
omponents respe
tively.The spe
ial 
ase where M� = ; is a 
onvex �lling of (M+; �+). If M+ = ; we instead get a
on
ave �lling of (M�; ��), also known as a symple
ti
 
ap.It will follow from the more general Theorem 7 below that Theorem 1 also holds wheneverproperties (1) or (2) hold after 
onta
t surgery. (For property (3) this statement is trivial.)The following example shows that non-separating 
onta
t type hypersurfa
es do exist ingeneral.Example 1.2 (Etnyre). Suppose (W0; !0) is a 
ompa
t symple
ti
 manifold with a 
onvexboundary that has two 
onne
ted 
omponents. In this 
ase we say that (W0; !0) is a 
on-vex semi�lling of ea
h of its boundary 
omponents; the existen
e of su
h obje
ts was �rstestablished by M
Du� [M
D91℄. Produ
e a new symple
ti
 manifold (W1; !1) with 
onvexboundary by atta
hing a symple
ti
 1{handle along a pair of 3{balls in di�erent 
omponentsof �W0. Now 
ap W1 with a 
on
ave �lling of �W1 as provided by [EH02℄: this produ
es a
losed symple
ti
 manifold (W;!), whi
h 
ontains both of the 
omponents of �W0 as non-separating 
onta
t hypersurfa
es (see Figure 1).

Figure 1. The 
onstru
tion from Example 1.2 of a symple
ti
 manifold withnon-separating 
onta
t hypersurfa
es.The example demonstrates that (M; �) 
an o

ur as a non-separating hypersurfa
e in some
losed symple
ti
 manifold whenever it arises from a 
onvex �lling with dis
onne
ted bound-ary. There are, however, 
onta
t manifolds that never arise in this way: M
Du� [M
D91℄showed that this is the 
ase for the tight 3{sphere, and the result was generalized by Etnyre[Etn04℄ to all planar 
onta
t manifolds, i.e. those whi
h are supported by planar open books.The latter suggests that planar open books may provide an obstru
tion to non-separating
onta
t embeddings, and this is indeed true due to Theorem 1. As we'll see shortly, thereare also non-planar 
onta
t manifolds (e.g. the standard 
onta
t 3{torus) whi
h satisfy theassumptions of Theorem 1, and thus also the following 
orollary:Corollary 2. Given the assumptions of Theorem 1 (see also Remark 1.1), every 
onvexsemi�lling of (M; �) has 
onne
ted boundary.A
tually one 
an use the same methods to give a slightly simpler proof of Corollary 2 whi
his independent of the theorem; we'll do this in x5.

http://arxiv.org/abs/0901.0854v3


ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 3In the 
ase of Giroux torsion, a result of Gay [Gay06℄ shows that (M; �) does not admitany 
onvex �llings,1 thus Theorem 1 has the following stronger 
onsequen
e:Corollary 3. If (M; �) has Giroux torsion (possibly after 
onta
t surgery), then it does notadmit a 
onta
t embedding into any 
losed symple
ti
 4{manifold.Theorem 1 will follow from some more te
hni
al results stated in x2.2, whi
h also in
ludes amore general statement involving 
onta
t hypersurfa
es in a symple
ti
 manifold with 
onvexboundary. The unifying idea 
an be summarized as follows. Whenever a non-separatinghypersurfa
e M � W exists, one 
an use it to 
onstru
t a spe
ial non
ompa
t symple
ti
manifold (V; !) with 
onvex boundary M . We do this by �rst 
utting W open along M toprodu
e a symple
ti
 
obordism (V1; !) from a 
on
ave 
opy ofM to a 
onvex 
opy ofM , andthen removing the 
on
ave boundary by atta
hing an in�nite 
hain of 
opies of (V1; !) alongmat
hing 
on
ave and 
onvex boundaries; a pi
ture of this 
onstru
tion appears as Figure 4in x5, where it is explained in detail. Now our assumptions on (W;!) or (M; �) guarantee theexisten
e of an embedded holomorphi
 
urve in (V; !) with 
ertain properties: in parti
ular,we'll show in x4 that this 
urve belongs to a smooth and 
ompa
t 2{dimensional moduli spa
eof 
urves that foliate (V; !). But this would imply that (V; !) is 
ompa
t, and thus yields a
ontradi
tion.Remark 1.3. A 
onta
t manifold (M; �) is said to be weakly �llable if it o

urs as theboundary of a 
ompa
t symple
ti
 manifold (W;!) su
h that !j� > 0 on �W . A fundamentalresult of Eliashberg [Eli90℄ and Gromov [Gro85℄ shows that overtwisted 
onta
t manifoldsare never weakly �llable: the original proof is based on the existen
e of a so-
alled Bishopfamily of pseudoholomorphi
 disks with boundary on an overtwisted disk in �W , and derivesa 
ontradi
tion using Gromov 
ompa
tness (a 
omplete exposition may be found in [Zeh03℄).In the setting des
ribed above, one 
an adapt the Eliashberg-Gromov argument to show thatovertwisted 
onta
t manifolds do not o

ur as hypersurfa
es of weak 
onta
t type in any 
losedsymple
ti
 manifold. If we remove the word \weak", then this is also implied by Corollary 3sin
e overtwisted 
onta
t manifolds have in�nite Giroux torsion.The third 
ondition in Theorem 1 is satis�ed by any 
onta
t 3{manifold that has a 
on-ta
t embedding into the standard symple
ti
 R4 : indeed, the latter 
an be identi�ed withC P 2 n C P 1 , and C P 1 is a symple
ti
ally embedded sphere with self-interse
tion 1. As YashaEliashberg has pointed out to us, Theorem 1 in this 
ase also morally follows, via the in�nite
hain 
onstru
tion sket
hed above, from Gromov's 
lassi�
ation [Gro85℄ of symple
ti
 mani-folds that are Eu
lidean at in�nity|one just has to be a little more 
areful in the non
ompa
tsetting (
f. Prop. 5.3). Natural examples are the unit 
otangent bundles of all 
losed surfa
esthat admit Lagrangian embeddings into R4 , i.e. the torus, and the 
onne
ted sums of theKlein bottle with a positive number of oriented surfa
es of positive, even genus. Furtherexamples of symple
ti
 
aps 
ontaining nonnegative symple
ti
 spheres have appeared in thework of Ohta-Ono et al [OO05, BO℄ on 
onta
t manifolds obtained from algebrai
 surfa
esingularities.We now explain the notion of a partially planar 
onta
t manifold, whi
h is due to the thirdauthor (see [Wenf℄). Re
all that an open book de
omposition for M 
onsists of the data(B; �) where B � M is an oriented link, and � : M n B ! S1 is a �bration for whi
h ea
h�ber ��1(point) is an embedded surfa
e whose 
losure inM has oriented boundary B. These1An alternative proof 
losely related to the arguments in this paper appears in [Wen
℄.

4 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDL�bers are 
alled the pages of the open book (B; �), and B is 
alled the binding. We re
all thefollowing important 
on
ept introdu
ed by Giroux [Gir℄.De�nition 1.4. A 
onta
t stru
ture � on M is said to be supported by an open bookde
omposition (B; �) if it admits a 
onta
t form � su
h that the asso
iated Reeb ve
tor �eldis positively transverse to the pages and is positively tangent to the link B.In parti
ular, the 
omponent 
ir
les of B are 
losed Reeb orbits for su
h a 
onta
t form �.These are referred to as the binding orbits.De�nition 1.5. A 
onta
t manifold (M; �) is said to be planar if it admits a supporting openbook de
omposition for whi
h ea
h page has genus zero.Giroux established that every 
onta
t stru
ture on a 
losed 3-manifold is supported by someopen book de
omposition. Entyre showed in [Etn04℄ that all overtwisted 
onta
t stru
turesare planar, though not all 
onta
t stru
tures are.The notion of a planar 
onta
t manifold 
an be generalized using the 
onta
t �ber sum;the following is a spe
ial 
ase of a 
onstru
tion originally due to Gromov [Gro86℄ and Geiges[Gei97℄ (see also [Gei08℄). For i = 1; 2, suppose (Mi; �i) are 
onta
t manifolds with supportingopen book de
ompositions �i : Mi n Bi ! S1, and 
i � Bi are 
onne
ted 
omponents of thebindings. Ea
h 
i is a transverse knot, thus one 
an identify neighborhoods N (
i) with solidtori via an orientation preserving map� : N (
1) [N (
2)! S1 � D ;thus de�ning 
oordinates (�; �; �), where � 2 S1 and (�; �) are polar 
oordinates on D (forsimpli
ity we shall take � 2 S1 = R=Z, thus the a
tual angle is this times 2�). We will assumewithout loss of generality (and perhaps after a small isotopy of the open books) that these
oordinates have the following properties:(1) The 
onta
t stru
ture �i is the kernel of �i = f(�) d� + g(�) d� for some pair offun
tions f and g with f(0) > 0 and g(0) = 0.(2) The pages of �i have the form f� = 
onstg near 
i.Note that the 
onta
t 
ondition requires f(�)g0(�) � f 0(�)g(�) > 0 for � > 0 and g00(0) > 0.Using these 
hoi
es, a new 
onta
t manifold(M1; �1)#�(M2; �2)
an be de�ned in two steps:(i) Modify (Mi; �i) by \blowing up" 
i to produ
e a 
onta
t manifold (
Mi; ^�i) with pre-Lagrangian torus boundary: we do this by removing a solid torus neighborhood f� ��g and repla
ing it with S1� [0; �℄�S1 by the natural identi�
ation of the 
oordinates(�; �; �) 2 S1 � [0; �℄ � S1. We also modify �i for � 2 [0; �) to de�ne a smooth
onta
t form near �
Mi by making C0{small 
hanges to f and g so that they be
omerestri
tions of even and odd fun
tions respe
tively, with g0(0) > 0. In terms of theReeb ve
tor �eld de�ned by �i, the result of this 
hange is to repla
e the single Reeborbit originally at f� = 0g by a torus S1 � S1 foliated by Reeb orbits of the formS1 � fptg.(ii) Atta
h (
M1; ^�1) to (
M2; ^�2) along their boundaries as follows: �rst, de�ne new 
oordi-nates (^�; ^�; ^�) 2 S1�R�S1 near �
Mi so that they are the same as the old 
oordinates



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 5on 
M1, but on 
M2 we set (^�; ^�; ^�) := (�;��;��);so ^� � 0 near �
M2. We now atta
h 
M1 to 
M2 via a di�eomorphism su
h that(^�; ^�; ^�) 2 S1 � [��; �℄ � S1 be
ome well de�ned 
oordinates after atta
hing. Ourassumptions on the modi�ed fun
tions f and g imply also that f(^�) d^�+g(^�) d^� givesa smooth 
onta
t form on M1#�M2 whi
h mat
hes the original outside the regionf^� 2 (��; �)g.In a straightforward way, one 
an generalize this de�nition to a sum of two or more openbooks on 
onta
t manifolds (M1; �1); : : : ; (MN ; �N ) along multiple binding 
omponents: thenea
h of these 
omponents be
omes a boundary 
omponent in its respe
tive \blown up" man-ifold 
Mi, and it be
omes a spe
ial pre-Lagrangian torus in the sum#�(Mi; �i):De�nition 1.6. We say that (M; �) is partially planar if it 
an be 
onstru
ted in the abovemanner as a 
onta
t �ber sum along binding orbits of open book de
ompositions, at least oneof whi
h is planar.Obviously, every planar 
onta
t manifold is also partially planar. Sin
e there exist 
onta
t3{manifolds that admit semi�llings with dis
onne
ted boundary, a 
onsequen
e of Corollary 2is now the following:Corollary 4. Not every 
onta
t manifold is partially planar.Example 1.7. M
Du� showed in [M
D91℄ that for any 
losed oriented surfa
e � of genus atleast two, if ST �� denotes the unit 
otangent bundle, then there is a symple
ti
 stru
ture on[0; 1℄ � ST �� whi
h is 
onvex on the boundary and indu
es the 
anoni
al 
onta
t stru
tureat f1g � ST ��. More generally, Geiges [Gei95℄ 
onstru
ted a 
lass of 
losed 3{manifolds Mwhi
h admit pairs of 
onta
t forms �� su
h that�+ ^ d�+ = ��� ^ d�� > 0 and �+ ^ d�� = �� ^ d�+ = 0:In this situation, [0; 1℄�M admits a symple
ti
 stru
ture su
h that both boundary 
omponentsare 
onvex, giving a 
onvex �lling of (M; ker �+) t (�M; ker ��). It follows from Corollary 2that none of these 
onta
t manifolds are partially planar. Moreover by Example 1.2, ea
h ofthem admits a non-separating 
onta
t type embedding into some 
losed symple
ti
 manifold.The next example shows that there are also partially planar 
onta
t manifolds that are notplanar.Example 1.8. The standard 
onta
t S1 � S2 is planar: it admits a supporting open bookde
omposition with two binding orbits 
onne
ted by 
ylindri
al pages. If we take two 
opiesof this, pair up both of their respe
tive binding 
omponents and 
onstru
t the �ber sum,we obtain the standard 
onta
t T 3, whi
h is not planar due to a result of Etnyre [Etn04℄.In fa
t, ea
h of the tight 
onta
t tori (T 3; �n), where �n = ker [
os(2�n�) dx+ sin(2�n�) dy℄in 
oordinates (x; y; �) 2 S1 � S1 � S1, 
an be obtained as a �ber sum of 2n 
opies of thestandard S1�S2; see Figure 2. By a result of Kanda [Kan97℄, this in
ludes every tight 
onta
tstru
ture on T 3.By the above example, every 
onta
t stru
ture on T 3 is partially planar. In fa
t, otherthan the standard torus (T 3; �1), all 
onta
t 3{tori also have Giroux torsion, thus �1 is the

6 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDL

Figure 2. At left, we see four 
opies of the tight S1�S2, represented by openbooks with two binding 
omponents and 
ylindri
al pages. For ea
h dottedoval surrounding two binding 
omponents, we 
onstru
t the 
onta
t �ber sumto produ
e the manifold at right, 
ontaining four spe
ial pre-Lagrangian tori(the bla
k line segments) that separate regions foliated by 
ylinders. The resultis the tight 3{torus (T 3; �2). In general, one 
an 
onstru
t (T 3; �n) from 2n
opies of the tight S1 � S2.only 
onvex �llable 
onta
t stru
ture on T 3. Theorem 1 therefore implies that every 
onta
ttype embedding of T 3 into a 
losed symple
ti
 4{manifold separates (and the indu
ed 
onta
tstru
ture must be �1). This result is not true for embeddings of weak 
onta
t type: in fa
tall of the tight tori (T 3; �n) admit weak symple
ti
 semi�llings with dis
onne
ted boundary[Etn℄, and thus by the 
onstru
tion in Example 1.2, they also admit non-separating weakly
onta
t type embeddings.Re
all however that if (W;!) is a weak �lling of (M; �) and M is a homology 3{sphere,then ! 
an always be deformed in a 
ollar neighborhood of �W to produ
e a 
onvex �lling of(M; �); see for instan
e [Gei08, Lemma 6.5.5℄. Thus our results have 
orresponding versionsfor weakly 
onta
t hypersurfa
es that are homology 3{spheres. For example, sin
e the onlytight 
onta
t stru
ture on S3 is planar, every weakly 
onta
t type embedding of S3 into a
losed symple
ti
 4{manifold must separate.Here is a more general example that also implies the observation made above about the3{torus. Let � = �+ [� ��denote any 
losed oriented surfa
e obtained as the union of two nonempty surfa
es withboundary �� along a multi
urve � � �. By results of Giroux [Gir01℄ and Honda [Hon00℄,the manifold M� := S1 � � admits a unique (up to isotopy) S1{invariant 
onta
t stru
ture�� whi
h makes � the dividing set on f
onstg��. We 
laim that (M�; ��) is partially planarwhenever there exists a 
onne
ted 
omponent of � n � having genus zero. Indeed, for any
onne
ted 
omponent �0 � �n�, the 
losure of S1��0 may be viewed as an open book withpage �0 and trivial monodromy, blown up at all its binding 
ir
les; the entirety of (M�; ��)
an thus be obtained by atta
hing these blown up open books. (The tight 3{tori arise fromthe 
ase where � �= T 2 and � is a union of parallel 
urves that are primitive in H1(T 2).)



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 7Moreover, using Etnyre's obstru
tion [Etn04℄ it is easy to 
onstru
t many examples (M�; ��)whi
h are partially planar (as just explained) but not planar. Theorem 1 now implies:Corollary 5. If �n� has a 
onne
ted 
omponent of genus zero, then the S1{invariant 
onta
tmanifold (S1 ��; ��) does not admit any non-separating 
onta
t type embeddings into 
losedsymple
ti
 4{manifolds.Finally, the following demonstrates that in some settings where non-separating hypersur-fa
es 
an be embedded smoothly, they 
an never be 
onta
t type. In 
ontrast to Theorem 1,here the assumptions are on the ambient symple
ti
 4-manifold and not the 
onta
t manifold.Theorem 6. If the 
losed and 
onne
ted symple
ti
 4-manifold (W;!) 
ontains a symple
-ti
ally embedded sphere S � W with self-interse
tion number S � S � 0, then every 
losed
onta
t type hypersurfa
e in W is separating.The reason for this is 
losely related to M
Du�'s results [M
D90℄, whi
h imply that (W;!)in this situation is always rational or ruled (up to symple
ti
 blowup). In fa
t, the 
ase whereS � S > 0 follows immediately from [M
D90℄, whi
h shows that W is then a blowup of eitherS2�S2 or C P 2 and thus simply 
onne
ted, so it does not admit non-separating hypersurfa
esat all (
onta
t or otherwise). The 
ase S � S = 0 is more interesting: the key fa
t here isthat one 
an 
hoose a 
ompatible almost 
omplex stru
ture J for whi
h any given 
onta
thypersurfa
eM �W is J{
onvex, andW is foliated by a family of embedded J{holomorphi
spheres (possibly in
luding some isolated nodal spheres unless (W;!) is minimal). If M doesnot separate, then there exists a 
onne
ted in�nite 
over (fW; ~J) of (W;J), 
onstru
ted bygluing together in�nitely many 
opies of W n M in a sequen
e. Now the J{holomorphi
spheres inW lift to fW and form a foliation, whi
h must in
lude a J{holomorphi
 sphere thattou
hes a lift of M tangentially from below, violating J{
onvexity. That's a qui
k sket
h ofthe proof|we'll give an alternative proof in x5 that �ts into a usefully generalized 
ontext anddoesn't assume the results of [M
D90℄. There are obvious examples of smoothly embeddednon-separating hypersurfa
es in ruled surfa
es, e.g. ` � S2 � � � S2, where � is any 
losedoriented surfa
e of positive genus and ` � � is a non-separating 
losed 
urve. It follows thata hypersurfa
e isotopi
 to this one is never 
onta
t type.1.2. Open questions. Let �(3) denote the 
olle
tion of 
losed 3{manifolds with positive,
ooriented 
onta
t stru
tures, and 
onsider the in
lusions�nonsep(3) ( �embed(3) ( �(3);where �embed(3) denotes all (M; �) 2 �(3) that admit a 
onta
t type embedding into some
losed symple
ti
 manifold, and �nonsep(3) denotes those that admit a non-separating embed-ding. The results stated in x1.1 imply that both in
lusions are proper.Observe that if (M; �) is 
onvex �llable then it is also in �embed(3), sin
e a �lling 
analways be 
apped to produ
e a 
losed symple
ti
 manifold. Conversely, if (M; �) admits aseparating 
onta
t type embedding, then it is �llable. While the same is not stri
tly truefor a non-separating embedding, the 
onstru
tion depi
ted in Figure 4 of x5 
an be viewedas a �lling that is non
ompa
t but geometri
ally bounded, whi
h makes it a good setting forJ{holomorphi
 
urves. In this 
ontext, any �lling obstru
tion that involves J{holomorphi

urves 
an also serve as an obstru
tion to non-separating 
onta
t embeddings (
f. Corollary 3),thus implying that (M; �) 62 �embed(3). This motivates the 
onje
ture that, in fa
t, �embed(3)is the same as the set of 
onvex �llable 
onta
t 3{manifolds.

8 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLConje
ture 1. If (M; �) is not 
onvex �llable, then it admits no 
onta
t type embeddingsinto any 
losed symple
ti
 manifold.Equivalently, this would mean there is no 
onta
t 3{manifold that admits only non-separating 
onta
t type embeddings.A more ambitious 
onje
ture would arise from Example 1.2, whi
h is the only method weare yet aware of for 
onstru
ting non-separating 
onta
t embeddings: (M; �) 2 �nonsep(3)whenever it admits a 
onvex semi�lling with dis
onne
ted boundary. The latter 
lass of
onta
t manifolds is evidently somewhat spe
ial, and one wonders whether it might be equalto �nonsep(3).Question 1. Is there a 
onta
t 3{manifold that admits a non-separating 
onta
t type em-bedding but not a 
onvex semi�lling with dis
onne
ted boundary?Finally, observe that while Theorem 6 rules out the existen
e of a non-separating 
onta
thypersurfa
e (M; �) � (W;!) if (W;!) is rational or ruled, it still allows the possibility that(M; �) 2 �nonsep(3) but admits a separating embedding into (W;!). There is some reasonto suspe
t that this 
ould still never happen. There are indeed 
ases where the existen
eof a 
onta
t embedding of (M; �) into some parti
ular symple
ti
 manifold implies (M; �) 62�nonsep(3), e.g. this is true if (M; �) ,! (R4 ; !0). Moreover, the simplest known example of amanifold in �nonsep(3), the unit 
otangent bundle of a higher genus surfa
e, has been shownby Wels
hinger [Wel07℄ to admit no 
onta
t type embeddings into rational or ruled symple
ti
4{manifolds.Question 2. Is there a 
onta
t 3{manifold that admits a 
onta
t type embedding into somerational/ruled symple
ti
 4{manifold and also admits a non-separating 
onta
t type embed-ding into some other 
losed symple
ti
 manifold?2. Pseudoholomorphi
 
urves in symple
tizations2.1. Te
hni
al ba
kground. In this se
tion we 
olle
t a number of important te
hni
alde�nitions. A positive 
onta
t form on a 3{manifold M is a 1{form � for whi
h � ^ d� > 0.The 2-plane distribution � := ker � is then a 
onta
t stru
ture. The equations �X�d� = 0 and�(X�) = 1 uniquely determine a ve
tor �eld X�, 
alled the Reeb ve
tor �eld asso
iated to �.Sin
e X� is everywhere transverse to �, one obtains a splitting TM = RX� � �. Moreover,(�; d�j�) is a symple
ti
 ve
tor bundle, and the 
ow of X� preserves �, hen
e also (�; d�j�).A periodi
 Reeb orbit of period T > 0 for a 
onta
t form � is a smooth map 
 : R=TZ!Msatisfying _
(t) = X�(
(t)). We identify all possible reparametrizations t 7! 
(t + 
onst). AReeb orbit is 
alled simply 
overed if it has degree 1 onto its image, i.e. it is an embedding.If 
 
overs a simply 
overed orbit with period � > 0, we 
all � the minimal period of 
.Sin
e the Reeb 
ow preserves the symple
ti
 ve
tor bundle (�; d�j�), linearizing about aperiodi
 orbit 
 determines a symple
ti
 linear map d�T (p) : �p ! �p for ea
h p in the imageof 
. Then 
 is said to be nondegenerate if 1 is not an eigenvalue of this map; this 
onditionis independent of the point p. More generally, an orbit 
 of period T is Morse-Bott if it liesin a submanifold N �M foliated by T{periodi
 orbits, su
h that the 1{eigenspa
e of d�T (p)is pre
isely TpN . We then 
all N a Morse-Bott submanifold. A 
onta
t form � is said to benondegenerate if all of its periodi
 Reeb orbits are nondegenerate, and Morse-Bott if everyperiodi
 orbit belongs to a Morse-Bott submanifold.
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ti
 trivialization � of (�; d�) along a T{periodi
 orbit 
, the linearized
ow d�t(p) for t 2 [0; T ℄ de�nes a 
ontinuous family of symple
ti
 matri
es, whi
h has a wellde�ned Conley-Zehnder index if 
 is nondegenerate: we denote this index by ��CZ(
) 2 Z.It is 
onvenient also to express this in terms of asymptoti
 operators: asso
iated to anyT{periodi
 Reeb orbit 
 is a linear operator A
 : �(x��) ! �(x��), where x : R=Z ! Mis the reparametrization x(t) := 
(T t). If r is a symmetri
 
onne
tion on TM and J is a
omplex stru
ture on � !M 
ompatible with the symple
ti
 stru
ture d�j�, then A
 
an bede�ned on smooth se
tions by A
� = �J(rt� � Tr�X�):This expression is independent of the 
hoi
e of 
onne
tion. Choosing a unitary trivialization� of x��, A
 is identi�ed with the operatorC1(S1;R2)! C1(S1;R2 ) : � 7! �J0 ddt� � S � �; (2.1)where S(t) is some smooth loop of symmetri
 2{by{2 matri
es. Thus the equation A
� = 0de�nes a linear Hamiltonian 
ow, and one 
an show that the resulting family of symple
ti
matri
es mat
hes the family obtained from d�t(p). It follows that A
 has trivial kernel if andonly if 
 is nondegenerate, and we 
an use the linear Hamiltonian 
ow determined by (2.1)to de�ne an integer ��CZ(A
), whi
h mat
hes ��CZ(
). The advantage of this de�nition is thatit does not referen
e the orbit dire
tly, but makes sense for any operator that takes the formof (2.1) in the trivialization: in parti
ular we 
an de�ne ��CZ(A
 � 
) 2 Z whenever 
 2 R isnot an eigenvalue of A
 , even if 
 is degenerate. For this we will use the shorthand notation��CZ(
 � 
) := ��CZ(A
 � 
):We now re
all some of the important spe
tral properties of asymptoti
 operators. For moredetails and proofs we refer to [HWZ95℄.A
 extends to an unbounded self-adjoint operator on the 
omplexi�ed Hilbert spa
e L2(x��);its spe
trum �(A
) 
onsists of real eigenvalues of multipli
ity at most 2 that a

umulateonly at in�nity. Generalizing the statement above about nondegenera
y, if 
 belongs to aMorse-Bott submanifold of dimension n 2 f1; 2; 3g, then the 0{eigenspa
e of A
 is (n � 1){dimensional.Geometri
 properties of the eigenspa
es are 
losely related to the Conley-Zehnder index.Indeed, any eigenfun
tion � of A
 has a well de�ned winding number wind�(�) 2 Z relativeto the trivialization, whi
h is independent of the 
hoi
e of � in its eigenspa
e. Thus we mayspeak of the winding number wind�(�) 2 Z for ea
h eigenvalue � 2 �(A
), and it turns outthat the map �(A
) ! Z : � 7! wind�(�) is non-de
reasing and attains every value exa
tlytwi
e (
ounting multipli
ity). The following integers���(
) := maxfwind�(�) j � < 0 is an eigenvalue of A
g��+(
) := minfwind�(�) j � > 0 is an eigenvalue of A
gare therefore determined by the eigenfun
tions with eigenvalues 
losest to 0 that are negativeand positive respe
tively. The number p(
) := ��+(
) � ���(
) is 
alled the parity of 
; it isindependent of � and ne
essarily equals 0 or 1 if 
 is nondegenerate. More generally, we 
anrepla
e A
 by A
 � 
 for some 
 2 R and similarly de�ne ���(
 � 
) and p(
 � 
); then if
 62 �(A
), a result in [HWZ95℄ implies the relation��CZ(
 � 
) = 2���(
 � 
) + p(
 � 
) = 2��+(
 � 
)� p(
 � 
): (2.2)

10 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLObserve that every Morse-Bott submanifold of dimension 2 admits a nonzero ve
tor �eldand is thus either a torus or a Klein bottle. The following 
hara
terization of Morse-Bott toriis a simple 
onsequen
e of the spe
tral properties of A
 (
f. [Wenb, Prop. 4.1℄).Proposition 2.1. Suppose 
 is a Morse-Bott periodi
 orbit of X� belonging to a Morse-Bottsubmanifold N � M di�eomorphi
 to T 2. Then the Morse-Bott property is satis�ed for all
overs of all orbits in N , and they all have the same minimal period.We will also need a relative version of the standard generi
ity result for nondegenerate
onta
t forms.Lemma 2.2. Suppose N � M is a union of 2{tori whi
h are Morse-Bott submanifolds forsome 
onta
t form �0. Then for any T0 > 0, there exists an arbitrarily small perturbation �of �0 su
h that � = �0 on a neighborhood of N and every periodi
 orbit of X� with periodless than T0 is Morse-Bott.Proof. Sin
e all orbits in N are Morse-Bott (in
luding all multiple 
overs, due to Prop. 2.1),for any T0 > 0 we 
an �nd an open neighborhood U of N su
h that U nN 
ontains no periodi
orbits with period less than T0. By Theorem 13 in the appendix, one 
an then �nd a generi
small perturbation of �0 with support in M n U so that all orbits passing through M n U arenondegenerate. �We now re
all the basi
 notions of holomorphi
 
urves in symple
tizations and their asymp-toti
 properties. The symple
tization of a 
onta
t manifold (M; � = ker�) is the produ
t spa
eR �M equipped with the exa
t symple
ti
 form d(ea�), where a : R �M ! R refers to theR 
oordinate. An almost 
omplex stru
ture J on the symple
tization is said to be admissibleif it is R{invariant, restri
ts to the symple
ti
 ve
tor bundle (�; d�) as a 
ompatible 
omplexstru
ture, and satis�es J�a = X�. Any admissible J tames the symple
ti
 form d(ea�), andmore generally tames every symple
ti
 form d('�) where ' : R ! (0;1) is smooth with'0 > 0.A pseudoholomorphi
 (or J{holomorphi
 or simply holomorphi
) 
urve from a pun
turedRiemann surfa
e ( _�; j), into an almost 
omplex manifold (W;J) is a solution u : _� ! W tothe nonlinear Cau
hy-Riemann equation Tu Æ j = J(u) Æ Tu. Here we take _� := � n � forsome �nite set of points � � �, where (�; j) is a 
losed 
onne
ted Riemann surfa
e.For the rest of this se
tion, let us 
onsider only the 
ase where the target is the symple
ti-zation of (M;�), and J is an admissible almost 
omplex stru
ture on R �M . The simplest
ase of a pun
tured J{holomorphi
 
urve in this setting is the so-
alled trivial 
ylinderu : S2 n f0;1g �= R � S1 ! R �M : (s; t) 7! (Ts; 
(T t));where T > 0 and 
 is any T{periodi
 Reeb orbit. Following [Hof93,BEH+03℄, the energy ofa J{holomorphi
 
urve u : _� ! R �M 
an be de�ned as follows. Fix any 
onstant C > 0,and let E(u) := sup'2T Z _� u�d('�) (2.3)where T is the set of smooth maps ' : R ! (0; C) with '0 > 0. Sin
e J is 
ompatible withd('�) for all ' 2 T , the integrand in (2.3) is always nonnegative, thus u is 
onstant if andonly if its energy vanishes. Observe that the integrand of R _� u�d� is also nonnegative, andthis integral is �nite if u has �nite energy: it vanishes identi
ally if and only if u is a bran
hed
over of a trivial 
ylinder.



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 11De�nition 2.3. We will say that u : _� ! R �M is a �nite energy J{holomorphi
 
urve ifit is proper and E(u) <1.Note that properness only fails when there exist pun
tures having neighborhoods whi
hare mapped into a 
ompa
t set, in whi
h 
ase these pun
tures 
an be removed by Gromov'sremovable singularity theorem. Sin
e d('�) is exa
t, Stokes' theorem implies that not allpun
tures are removable unless u is 
onstant.Let us re
all now the behaviour of a �nite energy J{holomorphi
 
urve u : _�! R�M in theneighborhood of a pun
ture. Ea
h pun
ture z 2 � has a neighborhood on whi
h the R{value ofu tends to +1 or �1, and we say that z is a positive/negative pun
ture respe
tively. Denotethe resulting partition into positive and negative pun
tures by � = �+ [ ��. Restri
ting toa neighborhood of a pun
ture, we obtain a 
urve whose domain is the pun
tured 
losed dis
,whi
h is biholomorphi
 to both Z+ := [0;1)�S1 and Z� := (�1; 0℄�S1 with the standard
omplex stru
ture. It is 
onvenient to 
hoose the domain of the restri
ted 
urve to be Z+ orZ� for z 2 �+ or z 2 �� respe
tively, and we will write u : Z� ! R �M . It was shown byHofer in [Hof93℄ that for any sequen
e jskj ! 1, there exists a subsequen
e su
h that u(sk; �)
onverges in C1(S1;M) to 
(T �), where 
 is a T{periodi
 Reeb orbit for some T > 0. Wesay in this 
ase that u is asymptoti
 to 
, and 
 is an asymptoti
 orbit of u.In the following statement, we 
hoose any R{invariant 
onne
tion on R �M to de�ne theexponential map, and use the term asymptoti
ally trivial 
oordinates to refer to a di�eomor-phism (�; �) : Z� ! Z� su
h that �(s; t) � s and �(s; t) � t approa
h 
onstants as jsj ! 1and their derivatives of all orders de
ay to zero.Theorem ([HWZ96a,HWZ96b,Mor03℄). Suppose u : Z� ! R �M has �nite energy and isasymptoti
 to a Morse-Bott Reeb orbit 
 of period T > 0. Then there exist asymptoti
allytrivial 
oordinates (�; �) su
h that for suÆ
iently large j�j, either u(�; �) = (T�; 
(T�)) oru(�; �) = exp(T�;
(T�)) [e��(e�(�) + r(�; �))℄ ; (2.4)where e� is an eigenfun
tion of A
 with eigenvalue � 2 �(A
) su
h that �� < 0, and the\remainder" term r(�; �) 2 �
(T�) de
ays to zero uniformly with all derivatives as j�j ! 1.De�nition 2.4. When (2.4) holds, we 
all e� the asymptoti
 eigenfun
tion of u at thepun
ture, and say that u has transversal 
onvergen
e rate j�j. In the 
ase where u(�; �) =(T�; 
(T�)), we de�ne the asymptoti
 eigenfun
tion to be 0 and the transversal 
onvergen
erate to be 1.Observe that the asymptoti
 eigenfun
tion e� is determined uniquely on
e a parametriza-tion of 
 is �xed. We know also from the monotoni
ity of winding numbers that wind�(e�) ����(
) if the pun
ture is positive, and wind�(e�) � ��+(
) if it is negative.Let �� : TM ! � denote the natural proje
tion with respe
t to the splitting TM = RX���and suppose u = (uR; uM ) : _� ! R �M is a �nite energy J{holomorphi
 
urve. Then the
omposition �� Æ TuM de�nes a se
tion of the bundle of 
omplex linear homomorphisms(T _�; j) ! (u��; J). As shown in [HWZ95℄, this se
tion satis�es a linear Cau
hy-Riemanntype equation, and thus is either trivial or has a dis
rete set of zeros, all of positive order.The former holds if and only if any asymptoti
 eigenfun
tion of u vanishes, in whi
h 
asethey all do: then R _� u�d� = 0 and u is a bran
hed 
over of a trivial 
ylinder. Otherwise, (2.4)implies that �� Æ TuM has �nitely many zeros, and we denote the algebrai
 
ount of these bywind�(u) 2 Z:Clearly wind�(u) � 0, with equality if and only if uM : _�!M is an immersion.

12 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDL2.2. Property (?) and the main results. We now use holomorphi
 
urves to de�ne twote
hni
al 
onditions on 
onta
t manifolds whi
h imply the results stated in x1. Property (?)and its weak version, introdu
ed below, will serve as obstru
tions to the existen
e of non-separating 
onta
t embeddings. They are implied by ea
h of the 
onta
t topologi
al assump-tions mentioned in Theorem 1, and in fa
t are more general (see also [Wenf℄).De�nition 2.5. A 
losed three-dimensional 
onta
t manifold (M; �) satis�es property (?) ifthere exists a 
onta
t form � with ker � = � and an admissible R{invariant almost 
omplexstru
ture J on the symple
tization R � M , whi
h admits a �nite energy J{holomorphi
pun
tured sphere u = (uR; uM ) : _� = S2 n fz1; : : : ; zNg ! R �Mwith the following properties:(1) uM is an embedding, and the 
losure of uM ( _�) � M is an embedded surfa
e whoseoriented boundary is a union of Reeb orbits, 
alled the \asymptoti
 orbits" of u.(2) Ea
h asymptoti
 orbit of u is nondegenerate or Morse-Bott.(3) If T1; : : : ; TN are the periods of the asymptoti
 orbits of u, then every Reeb orbit notin the same Morse-Bott submanifold with one of these has period stri
tly greater thanT1 + : : : + TN .(4) u has no asymptoti
 orbit that is nondegenerate with Conley-Zehnder index zero,relative to the natural trivialization determined by the image of uM near the pun
ture.(5) If any asymptoti
 orbit of u belongs to a 2{dimensional Morse-Bott manifold N �Mdisjoint from uM ( _�), then N is a torus and 
ontains no other asymptoti
 orbits of u.Remarks.� The fa
t that Reeb orbits 
omprise the oriented boundary of uM ( _�) implies that everypun
ture of u is positive. Moreover, ea
h pun
ture is asymptoti
 to a distin
t Reeborbit, whi
h is simply 
overed.� The asymptoti
 formula (2.4) implies that on ea
h 
ylindri
al end of _�, uM does notinterse
t the 
orresponding asymptoti
 orbit, thus it de�nes a natural trivializationof � along this orbit. One 
an then show (
f. (2.2)) that relative to this trivialization,the orbit always has nonnegative Conley-Zehnder index if it is nondegenerate|thusour de�nition requires this index to be anything stri
tly larger than the minimumpossible value.De�nition 2.6. We say that a 
losed three-dimensional 
onta
t manifold (M; �) satis�esweak property (?) if there is a symple
ti
 
obordism (W;!) from (M; �) to a 
onta
t manifold(M 0; �0), su
h that either (W;!) 
ontains a symple
ti
ally embedded sphere of nonnegativeself-interse
tion number or (M 0; �0) satis�es property (?).For example, (M; �) satis�es weak property (?) if it admits a symple
ti
 
ap 
ontaining anonnegative symple
ti
 sphere, or if it 
an be made to satisfy property (?) after a sequen
eof 
onta
t (�1){surgeries or 
onne
ted sum operations. Obviously property (?) implies weakproperty (?), and it's plausible that the 
onverse may also be true, though this is presumablyhard to prove.We 
an now state some more te
hni
al results that imply Theorem 1. These will be provedin x5, using the ma
hinery of x4.Theorem 7. Let (W;!) be a 
losed and 
onne
ted symple
ti
 4-manifold whi
h 
ontains a
losed 
onta
t type hypersurfa
e M �W satisfying weak property (?). Then M separates W .



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 13Theorem 8. Let (W;!) be a 
ompa
t and 
onne
ted symple
ti
 4-manifold with 
onvex bound-ary 
ontaining a 
onne
ted 
omponent M � �W that satis�es weak property (?). Then �Wis 
onne
ted.Theorem 9. Let (W;!) be a 
ompa
t and 
onne
ted 4-manifold with 
onvex boundary (M; �)satisfying weak property (?). Then any 
losed 
onta
t type hypersurfa
e H in W nM separatesW into a 
onvex �lling of H and a symple
ti
 
obordism from H to M . In parti
ular, H alsosatis�es the weak (?) property.Remark 2.7. A 
ompa
t 
onne
ted symple
ti
 manifold with 
onvex boundary 
an never
ontain a symple
ti
 sphere of nonnegative self-interse
tion. This follows easily from thearguments we will use to prove the above results: otherwise one would �nd a family ofembedded holomorphi
 spheres foliating the positive end of the symple
tization of the 
onvexboundary, and thus violating the maximum prin
iple.Remark 2.8. Note that property (?) depends only on the 
onta
t stru
ture: we do notassume in any of these theorems that the 
onta
t form indu
ed on M by a Liouville ve
tor�eld is the same one whi
h appears in De�nition 2.5.We will show in x3 that any 
onta
t manifold (M; �) with Giroux torsion satis�es Prop-erty (?). It turns out that this is also true for a 
onta
t �ber sum of open books (M; �) =#�(Mi; �i) whenever any of the summands (Mi; �i) is planar. This follows from an importantrelationship between open books and holomorphi
 
urves: namely, it is shown in [Abb,Wend℄that if the open book on (Mi; �i) is planar, one 
an take its pages to be proje
ted imagesof embedded index 2 holomorphi
 
urves. A minor variation on this 
onstru
tion in [Wene℄extends it to the blown up manifold (
Mi; ^�i): the di�eren
e here is that ea
h holomorphi
 pageis asymptoti
 to a di�erent orbit in a Morse-Bott family foliating the boundary. Moreover,one 
an easily arrange the 
onta
t form in this 
onstru
tion so that all the asymptoti
 orbitsare either ellipti
 or Morse-Bott and have mu
h smaller period than any other Reeb orbitin #�(Mi; �i). It follows that #�(Mi; �i) satis�es property (?) if any of its 
onstituent openbooks is planar. 3. Giroux torsionFollowing a 
onstru
tion in ([Wen
℄) but being more 
areful about periods, we now establishthe following.Proposition 3.1. Let (M; �) be a 
losed 
onta
t manifold having Giroux torsion. Then (M; �)satis�es property (?).Proof. By de�nition, Giroux torsion means that (M; �) 
ontains a subset T that 
an beidenti�ed with a thi
kened torus S1 � S1 � [0; 1℄, on whi
h � has the form� = ker [
os(2��)dx+ sin(2��)dy℄ (3.1)in 
oordinates (x; y; �) 2 S1 � S1 � [0; 1℄. Let us assume � = ker � for some 
onta
t form �that is Morse-Bott outside of T , and in T has the form � = f(�) dx + g(�) dy for smoothfun
tions f; g : [0; 1℄! R with
(�) := (f(�); g(�)) = h(�)e2�i� 2 R2 ;where h(�) > 0 and h(�) = 1 for � near 0 and 1. The path 
 is thus 
losed and bounds astar-shaped region in R2 , and we will show that � has the desired properties if 
 bounds asuitably oblong oval.
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tor �eld of � on T is given byX� = 1D(�)(g0(�)�x � f 0(�)�y); (3.2)where D(�) := f(�)g0(�)�f 0(�)g(�) > 0. Sin
e this has no �� 
omponent, ea
h torus N(�0) :=f(x; y; �0) j (x; y) 2 S1�S1g � T is invariant under the Reeb 
ow. Moreover, the Reeb 
owon ea
h N(�) is linear and has 
losed orbits if and only if dx(X�)=dy(X�) 2 Q [ f1g. From(3.2), this ratio is �g0(�)=f 0(�) = � slope(
0(�)), so N(�) has 
losed orbits pre
isely whenslope(
0(�)) is rational or in�nite. In this 
ase every orbit in N(�) is 
losed and representsthe same 
lass in H1(N(�)) = Z2, whi
h we will denote by a pair of integers (p(�); q(�)) withg
d(jp(�)j; jq(�)j) = 1 and p(�)q(�) = � slope(
0(�)) 2 Q [ f1g: (3.3)Sin
e d� vanishes on N(�), all 
losed simply 
overed orbits in N(�) have the same period,whi
h we will denote by T (�) > 0. If � : R=Z! N(�) parametrizes su
h an orbit, we 
omputeT (�) = Z 10 ��� = p(�)f(�) + q(�)g(�): (3.4)Lemma 3.2. Fix � > 0 small and assume that in addition to the above 
onditions, 
(�) =h(�)e2�i� bounds a 
onvex set symmetri
 about both axes, h(1=4) = h(3=4) = � and 
0(�)and 
00(�) are always linearly independent. Then:(1) � is Morse-Bott.(2) X� = 1��y on N(1=4) and �1��y on N(3=4).(3) T (1=4) = T (3=4) = �, and T (�) > 1=4 for all other � at whi
h N(�) has 
losed orbits.Proof. It follows by straightforward 
omputation from the assumption that 
0(�) and 
00(�)are linearly independent that ea
h N(�) with 
losed orbits is a Morse-Bott submanifold. These
ond 
laim follows immediately from (3.2) sin
e symmetry requires g0(1=4) = g0(3=4) = 0,and it is then 
lear that T (1=4) = T (3=4) = �.To show that all other values of � have T (�) > 1=4, observe �rst that by symmetry, we
an always assume g0 and �f 0 have the same sign as f and g respe
tively. Thus sign(p) =sign(dx(X�)) = sign(g0) = sign(f) and sign(q) = sign(dy(X�)) = sign(�f 0) = sign(g), soformula (3.4) be
omes T (�) = jp(�)jjf(�)j+ jq(�)jjg(�)j: (3.5)Let � denote the diamond shaped region in the xy{plane for whi
h jxj + jyj � 1=2 (seeFigure 3). We deal separately with two 
ases.Case 
(�) 2 �: In this region, outside of the spe
ial values � = 1=4; 3=4 we have 0 <j slope(
0(�))j < 2�, and by 
onvexity, jg(�)j > �=2. With the slope nonzero, it follows from(3.3) that both p and q are nonzero: in parti
ular jpj � 1. Then from the previous inequality,jqj = jqjjpj jpj = 1j slope(
0(�))j jpj > 12� jpj � 12� ;and using (3.5), T (�) � jq(�)jjg(�)j > 12� �2 = 1=4:Case 
(�) =2 �: After verifying expli
itly that T (0) = T (1) = 1, we 
an ex
lude these two
ases and assume on
e more that both p(�) and q(�) are nonzero. Then (3.5) givesT (�) � jf(�)j+ jg(�)j > 1=2
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 and (shaded) region � in Lemma 3.2.by the de�nition of �. �Using the lemma, we 
an arrange � in T without 
hanging it in M n T so that T (1=4) =T (3=4) = � is less than half the period of every other periodi
 orbit in M . Now 
opyingthe 
onstru
tion in [Wen
, Example 2.11℄, we 
onstru
t a family of embedded J{holomorphi

ylinders in R � T that foliate the region between N(1=4) and N(3=4), ea
h of the formu : R � S1 ! R �M : (s; t) 7! (�(s) + a0; x0; t; �(s));where a0 2 R and x0 2 S1 are arbitrary 
onstants, � : R ! R is a �xed fun
tion that goesto +1 at both ends and � : R ! (1=4; 3=4) is a �xed orientation reversing di�eomorphism.Any of these 
ylinders satis�es the requirements of property (?). �4. Fredholm theory, interse
tion numbers and 
ompa
tnessIn this se
tion, assume (W;!) is a 
onne
ted (and possibly non
ompa
t) symple
ti
 4{manifold with 
onvex boundary �W =M . The boundary need not be 
onne
ted or nonempty;for simpli
ity we will assume that it is 
ompa
t, though we will later be able to relax thisassumption. Choosing a Liouville ve
tor �eld Y and a smooth fun
tion f : M ! R, we de�nea 
onta
t form � onM by �Y !jM = ef� and denote by � = ker� the indu
ed 
onta
t stru
ture.We 
an then use the reverse 
ow of Y to identify a neighborhood of �W symple
ti
ally witha neighborhood of the boundary of (f(t;m) 2 R �M j t � f(m)g; d(et�)). Thus we 
ansmoothly atta
h the 
ylindri
al endE+ := (f(t;m) 2 R �M j t � f(m)gwith symple
ti
 form d(et�), forming an enlarged symple
ti
 manifold (W1; !) whi
h natu-rally 
ontains ([T;1) �M;d(et�)) for suÆ
iently large T .Assumption 4.1. With (W;!) as des
ribed above, assume either of the following:(1) (W;!) 
ontains a symple
ti
ally embedded sphere u0 : S2 ! W with self-interse
tionnumber zero.(2) (M; �) satis�es property (?).In the �rst 
ase, we 
an de�ne _� := S2 with the standard 
omplex stru
ture, 
hoose anyadmissible R{invariant almost 
omplex stru
ture J+ on ([T;1)�M;d(et�)) and extend it to
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ompatible almost 
omplex stru
ture J onW1 su
h that u0 is (after reparametrization)a J{holomorphi
 
urve. In the se
ond 
ase, we 
an (by appropriate 
hoi
e of the fun
tionf) take � and J+ to be the parti
ular 
onta
t form and almost 
omplex stru
ture arisingfrom De�nition 2.5, and again extend J+ to an !{
ompatible stru
ture J on W1. After asuÆ
iently large R{translation, the J+{holomorphi
 
urve given by De�nition 2.5 may thenbe regarded as a J{holomorphi
 
urveu0 = (uR; uM ) : _�! [T;1)�M �W1;where _� = S2 n fz1; : : : ; zNg with the standard 
omplex stru
ture of S2.Given any smooth fun
tion ' : R ! (0;1) that is monotone in
reasing and satis�es'(t) = et for t � T , we 
an de�ne a new symple
ti
 form on W1 by!' = (! in W ,d('�) in E+. (4.1)Observe that J is also 
ompatible with !'.De�nition 4.2. The energy of a J{holomorphi
 
urve u : _�!W1 isE(u) = sup'2T Z _� u�!';where !' is as de�ned in (4.1) and T is the set of all smooth fun
tions ' : R ! (0;1) thatsatisfy '0 > 0, '(t) = et for t � T and sup' � e2T .This is equivalent to the de�nition of energy given in [BEH+03℄, in the sense that uniformbounds on either imply uniform bounds on the other. As in x2.1, we will always assume that�nite energy J{holomorphi
 
urves inW1 are proper and thus have no removable pun
tures:then they also satisfy the asymptoti
 formula (2.4) and thus have well de�ned asymptoti
eigenfun
tions and transversal 
onvergen
e rates at ea
h pun
ture.Denote by M� the moduli spa
e of all proper, somewhere inje
tive �nite energy J{ho-lomorphi
 
urves in W1, with arbitrary 
onformal stru
tures on the domains and any two
urves 
onsidered equivalent if they are related by a biholomorphi
 reparametrization thatpreserves ea
h pun
ture. We assign to M� the natural topology de�ned by C1{
onvergen
eon 
ompa
t subsets and C0{
onvergen
e up to the ends, and denote by M�0 � M� the
onne
ted 
omponent 
ontaining u0. Observe that sin
e R u�!' depends only on ' andthe relative homology 
lass represented by u, the energy E(u) is uniformly bounded for allu 2M�0.We shall now de�ne spe
ial subsetsM
 �M� andM
0 �M�0, 
onsisting of J{holomorphi

urves that satisfy asymptoti
 
onstraints. If u0 has no pun
tures, we 
an simply set M
 =M� and M
0 = M�0. Otherwise, let us �x the following notation: for ea
h pun
ture z 2 �of u0, denote the 
orresponding asymptoti
 orbit of u0 by 
z, with asymptoti
 operator Az,asymptoti
 eigenfun
tion ez and transversal 
onvergen
e rate ��z, so �z 2 �(Az). Chooseany unitary trivialization � for � along ea
h of the orbits 
z. We will de�ne a new partition� = �C [ �Uin terms of the asymptoti
 behavior of u0, 
alling these the 
onstrained and un
onstrainedpun
tures respe
tively. Namely, de�ne z 2 � to be in �C if and only if 
z is either nondegen-erate or belongs to a Morse-Bott submanifold N �M that interse
ts uM ( _�).
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z belongs to a Morse-Bott submanifold N � M of dimension at least 2,then N interse
ts uM ( _�) if and only if wind�(ez) < 0, where � is the unique trivialization inwhi
h the nontrivial se
tions in kerAz have zero winding.Proof. It is obvious from the asymptoti
 formula (2.4) that uM interse
ts N if wind�(ez) <0. To prove the 
onverse, observe �rst that sin
e uM is embedded, it 
annot interse
t its ownasymptoti
 orbits. One then has to show that if u0 interse
ts any trivial 
ylinder R�
0 over anorbit 
0 in N , then it also has an \asymptoti
 interse
tion" with R�
z , whi
h 
annot be trueif wind�(ez) = 0. This follows easily from the interse
tion theory of pun
tured holomorphi

urves, see [Sie,SW℄ for details. �Lemma 4.4. For ea
h z 2 �C , there exists a number 
z < 0 su
h that 
z 62 �(Az), ���(
z �
z) = wind�(ez) and ��+(
z � 
z) = wind�(ez) + 1.Proof. Choose � so that wind�(ez) = 0; in the language of De�nition 2.5, this is the spe
ialtrivialization determined by the asymptoti
 behavior of uM near z. Then ���(
z) � 0, and if 
zis nondegenerate, (2.2) implies ��CZ(
z) � 0, with equality if and only if ���(
z) = ��+(
z) = 0.The latter is therefore ex
luded by the 
ondition ��CZ(
z) 6= 0 from De�nition 2.5. It followsthat if � 2 �(Az) is the largest eigenvalue with wind�(�) = wind�(ez), then � < 0 and we
an 
hoose 
z to be any number slightly larger than �.For the 
ase where 
z is Morse-Bott, the fa
t that uM interse
ts the Morse-Bott submanifoldmeans 0 = wind�(ez) < wind�(0) due to Lemma 4.3. Thus the eigenvalue � de�ned above isagain negative and we 
an 
hoose 
z to be slightly larger. �In the following, let 
z < 0 denote the number given by Lemma 4.4 for ea
h 
onstrainedpun
ture z 2 �C , and for z 2 �U set 
z := � > 0 small enough so that (0; �) never interse
ts�(Az).De�nition 4.5. The 
onstrained moduli spa
e M
 
onsists of all 
urves u 2 M� having atmost #� pun
tures, whi
h 
an be identi�ed with a subset of � in su
h a way that at everyz 2 �C that is a pun
ture of u, the asymptoti
 orbit of u is 
z, with transversal 
onvergen
erate stri
tly greater than j
zj. LetM
0 �M
 denote the 
onne
ted 
omponent 
ontaining u0.Proposition 4.6. Every 
urve u 2M
0 is embedded.Proof. By De�nition 2.5, ea
h asymptoti
 orbit for the 
urves inM
0 is either �xed or allowedto vary in a Morse-Bott torus that 
ontains no other asymptoti
 orbits, thus the orbits of ea
hu 2 M
0 are all distin
t and simply 
overed. It follows that embedded 
urves form an opensubset of M
0, whi
h is also non-empty sin
e it 
ontains u0. By positivity of interse
tions, itis also 
losed, so the 
laim follows from the assumption that M
0 is 
onne
ted. �Topologi
ally, M
 is a 
losed subspa
e of M�. Re
all that M� 
an lo
ally be identi�ed(up to symmetries) with the zero set of the nonlinear Cau
hy-Riemann operator ��J , regardedas a smooth se
tion of a 
ertain Bana
h spa
e bundle. The same is true for M
, but withBana
h spa
es of maps whose behavior at the ends satis�es exponential weighting 
onstraintsdetermined by the numbers 
z. We refer to [Wenb,Weng℄ for details on the general analyti
alsetup, and [HWZ99,Wena,Weng℄ for the exponential weights. A given 
urve u 2M
 is 
alledFredholm regular if the linearization of ��J at u is surje
tive. In general, this linearization isa Fredholm operator, whose index (with 
orre
tion terms for the dimensions of Tei
hm�ullerspa
e and the automorphism group) de�nes the \virtual dimension" of the moduli spa
e

18 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLnear u. We'll denote this virtual dimension by ind (u; 
), and 
all it the (
onstrained) indexof u. If u is Fredholm regular, then the impli
it fun
tion theorem implies that M
 near u isa smooth manifold, whose dimension is given by the index.Theorem 10. Every u 2 M
0 is Fredholm regular and has ind (u; 
) = 2. Moreover, aneighborhood of u in M
0 forms a smooth 2{parameter family fu�g�2D , with u0 = u, su
hthat:(1) The images u� ( _�) foliate a neighborhood of u( _�) in W .(2) For any pun
ture z 2 �U , the set of all 
urves fu�g�2D that approa
h the same orbitas u at z is a smooth 1{dimensional submanifold.Proof. We �rst verify the 
laim that ind (u; 
) = 2. For the 
ase where u is a 
losedembedded sphere with self-interse
tion zero, this follows immediately from the adjun
tionformula: 0 = u�u = 
1(u�TW1)�2, thus 
1(u�TW1) = 2 and ind (u) = �2+2
1(u�TW1) =2. In the 
ase where u0 arises from property (?), it suÆ
es to prove that ind (u0; 
) = 2 withu0 regarded as a J+{holomorphi
 
urve in R�M . Re
all from [Wena℄ that one 
an asso
iatewith u0 an integer 
N (u0; 
), 
alled the (
onstrained) normal Chern number, whi
h satis�es2
N (u0; 
) = ind (u0; 
)� 2 + 2g +#�0(
); (4.2)where g is the genus of _� (in this 
ase zero) and �0(
) is the subset of pun
tures z 2 � atwhi
h p(
z � 
z) = 0. It also satis�es
N (u0; 
) = wind�(u0) +Xz2� ����(
z � 
z)� wind�(ez)� : (4.3)By Lemma 4.4 and the fa
t that uM : _�! M is an embedding, the right hand side of (4.3)vanishes, implying 
N (u0; 
) = 0. We 
laim also that #�0(
) = 0, i.e. all pun
tures satisfyp(
z� 
z) = 1; for z 2 �C this already follows from Lemma 4.4. For un
onstrained pun
turesz 2 �U , Lemma 4.3 implies that ez has the same winding number as a nontrivial se
tion inkerAz: these also span the two eigenspa
es of Az � 
z = Az � � with negative eigenvalues
losest to zero. It follows that every positive eigenvalue of Az � � has stri
tly larger winding,thus p(
z � �) = 1 as 
laimed. Now (4.2) implies ind (u0; 
) = 2.The remainder of the proof 
onsists of minor generalizations of well established results from[HWZ99,Wen05℄, so we shall merely sket
h the main ideas. Sin
e u 2 M
0 is embedded, theregularity question 
an be redu
ed to the study of the normal Cau
hy-Riemann operator DNuas in [HLS97,HWZ99,Wenb℄. The domain of DNu is an exponentially weighted Bana
h spa
eof se
tions of the normal bundleNu ! _�, and the se
tions in kerDNu have only positive zeroes,whose algebrai
 
ount is bounded in general by 
N (u; 
), 
f. [Wenb℄. In our 
ase 
N (u; 
) =
N (u0; 
) = 0, thus every se
tion in kerDNu is zero free; a simple linear independen
e argumentthen shows that dimkerDNu � 2 = indDNu , hen
e DNu is surje
tive. This shows that M
0 is asmooth 2{manifold near u, and TuM
0 is identi�ed with a spa
e of smooth nowhere vanishingse
tions kerDNu � �(Nu), implying the 
laim that the 
urves near u foliate a neighborhood.Finally we note that for ea
h z 2 �U , one 
an apply an additional 
onstraint to studysubspa
es of 
urves in M
0 that �x the position of the asymptoti
 orbit. In the linearizationthis amounts to repla
ing 
z = � by 
z = ��; this idea is explained in detail in [Wen05,Weng℄.The problem with the additional 
onstraint then has index 1 and is again regular by anargument using the formal adjoint of DNu , as in [Wenb℄. �
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ity as-sumptions, rather it 
omes for free due to \automati
" transversality (
f. [Wenb℄). As a
onsequen
e, u0 
an be deformed with suÆ
iently small perturbations of J and � so thatTheorem 10 still applies. After su
h a perturbation (using Lemma 2.2), we 
an thereforeassume the following from now on:(1) All orbits of period less than some large 
onstant C > 0 are Morse-Bott.(2) J is generi
 outside of [T;1)�M , so that in parti
ular every 
urve u 2M
 that isn'twholly 
ontained in [T;1)�M has ind (u; 
) � 0.The exa
t details of our generi
 perturbation of J are somewhat deli
ate and spe
i�
 to theappli
ation we have in mind; this will be explained in Lemma 5.2 in x5. Note that the purposeof this assumption has nothing to do with the 
urves inM
0, whi
h are already regular|ratherwe will see below that generi
ity is needed to gain 
ontrol over the degenerations that 
ano

ur in the natural 
ompa
ti�
ation of M
0.Due to the Morse-Bott assumption, the 
ompa
tness theorem of [BEH+03℄ now applies toany sequen
e of J{holomorphi
 
urves in W1 that satisfy a suitable C0{bound and energybound: in parti
ular, su
h a sequen
e has a subsequen
e that 
onverges to a nodal holomorphi
building, typi
ally with multiple levels. In our situation, the bottom level will be a nodal J{holomorphi
 
urve in W1, and all levels above this are nodal J+{holomorphi
 
urves inR �M .Theorem 11. Suppose uk 2M
0 is a sequen
e whose images are all 
ontained in W0[E+ forsome 
ompa
t subset W0 �W . Then a subsequen
e of uk 
onverges to one of the following:(1) another smooth 
urve in M
0,(2) a holomorphi
 building with empty bottom level and one nontrivial upper level that
onsists of a smooth, embedded J+{holomorphi
 
urve in R �M satisfying the 
ondi-tions of property (?), or(3) a nodal J{holomorphi
 
urve in W1 with exa
tly two 
omponents, both in M
 andboth embedded with (
onstrained) index 0.Moreover the set of index 0 
urves that 
an appear as 
omponents of nodal 
urves in the third
ase is �nite.Before we prove the theorem we state the following important 
orollary. For this, we denoteby S �W1 the set through whi
h the �nitely many limit 
urves from part (3) of Theorem 11pass, and let C �W1 n S 
onsist of all points that are 
ontained in 
urves from M
0.Corollary 12. In addition to the assumptions of Theorem 11, assume that the images of all
urves inM
0 are 
ontained in W0[E+ for some 
ompa
t subset W0 �W . Then C =W1nS,and thus W is 
ompa
t.Proof. We 
laim that C is a non-empty, open and 
losed subset of W1 n S. It is 
learlynon-empty sin
eM
0 also is, by 
onstru
tion. Openness is a dire
t 
onsequen
e of Theorem 10part (1). To prove that C is 
losed, we 
hoose a sequen
e (pn) � C with pn ! p� 2W1 n S.Then by de�nition, there exist 
urves un 2 M
0 with pn 2 im (un). A subsequen
e of un
onverges to a holomorphi
 building u�, whi
h by Theorem 11 is either a smooth 
urve ora nodal 
urve with one level. Sin
e p� is in the image of u� and p� 62 S, we 
on
lude thatu� 2M
0 and p� 2 imu� � C.Now, sin
e S is a �nite union of images of holomorphi
 
urves, W1 n S is 
onne
ted andit follows from the above 
laim that C = W1 n S. Sin
e by assumption C � W0 [ E+, we
on
lude that W is 
ompa
t. �

20 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLIn proving Theorem 11, we will make use of a few 
on
epts from the interse
tion theory ofpun
tured holomorphi
 
urves; this theory is developed in detail in the papers [Sie,SW℄, andthe last se
tion of [Wenb℄ also 
ontains a summary. Assume v1; v2 2 M
. Then there is analgebrai
 interse
tion number i(v1; 
 j v2; 
) 2 Zwhi
h has the following properties:(1) i(v1; 
 j v2; 
) is un
hanged under 
ontinuous variations of v1 and v2 in M
.(2) If v1 and v2 are not both 
overs of the same somewhere inje
tive 
urve, theni(v1; 
 j v2; 
) � 0;and the inequality is stri
t if they interse
t.Unlike the usual homologi
al interse
tion theory applied to 
losed holomorphi
 
urves,the last statement is not an \if and only if": it is possible in general for v1 and v2 to bedisjoint even if i(v1; 
 j v2; 
) > 0, though this phenomenon is in some sense non-generi
. Theinterse
tion number 
an also be de�ned for 
urves in the symple
tization R�M , possibly withboth positive and negative pun
tures. In this 
ase one has invarian
e under R{translation,so if i(v1; 
 j v2; 
) = 0 then the proje
ted images of v1 and v2 in M never interse
t.Lemma 4.7. i(u0; 
 j u0; 
) = 0.Proof. Sin
e u0 has only simply 
overed Reeb orbits and all of them are distin
t, it satis�esthe following somewhat simpli�ed version of the adjun
tion formula from [Sie,SW℄,i(u0; 
 j u0; 
) = 2Æ(u0) + 
N (u0; 
): (4.4)Here Æ(u0) is the algebrai
 
ount of double points and singularities of u0 (see [MS04℄), whi
hvanishes sin
e u0 is embedded. As we saw in the proof of Theorem 10, 
N (u0; 
) also vanishes,so the 
laim follows. �Lemma 4.8. If v 2 M
0 is 
ontained in [T;1) �M � W1, then its proje
tion to M isembedded.Proof. Write v = (vR; vM ) : _� ! [T;1) �M . By assumption, v 
an be deformed 
ontin-uously to u0 through M
, thus i(v; 
 j v; 
) = i(u0; 
 j u0; 
) = 0 by the previous lemma,and 
N (v; 
) = 
N (u0; 
) = 0. Now (4.3) implies that wind�(v) = 0, thus vM is immersed,and the vanishing self-interse
tion number implies that v has no interse
tions with any of itsR{translations, so vM is also inje
tive. �Proof of Theorem 11. By [BEH+03℄, uk has a subsequen
e 
onverging to some holomorphi
building, whi
h we'll denote by u. Our �rst task is to show that unless u is a 2{level buildingwith empty bottom level as des
ribed in 
ase (2), it 
an have no nontrivial upper levels. Thisis already 
lear in the 
ase where u is 
losed, as 
onvexity prevents uk from venturing intothe region [T;1)�M at all. Let us therefore assume that uk has pun
tures and that u hasnontrivial upper levels. If no 
omponent in these upper levels has any negative pun
tures, thenthere must be only one nontrivial level, whi
h 
onsists of one or more 
onne
ted 
omponentsv1; : : : ; vN atta
hed to ea
h other by nodes. All of these 
omponents have pun
tures, sin
ethe symple
ti
 form in R �M is exa
t; moreover, the positive ends of ea
h vi 
orrespond tosome subset of the positive ends of u0, and sin
e these are all simply 
overed and distin
t,
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h vi is somewhere inje
tive and satis�es the asymptoti
 
onstraints de�ned by 
. Now(4.2) and (4.3) give 0 � 2wind�(vi) � 2
N (vi; 
) = ind (vi; 
)� 2;hen
e ind (vi; 
) � 2. Sin
e ind (u0; 
) = 2 as well, we 
on
lude that u 
an have at most one
onne
ted 
omponent, with no nodes, i.e. it is a smooth J+{holomorphi
 
urve in R�M withonly positive pun
tures. Up to R{translation, u 
an therefore be identi�ed with some smooth
urve inM
0 whose image is 
ontained in [T;1)�M , and the proje
tion into M is embeddeddue to Lemma 4.8. It follows that this 
urve satis�es the 
onditions of property (?).Alternatively, suppose u has nontrivial upper levels and the top level 
ontains a J+{holomorphi
 
urve u+ in R � M whi
h is not the trivial 
ylinder over an orbit and hasboth positive and negative pun
tures. Repeating the above argument about behavior at thepositive ends, u+ is somewhere inje
tive. Applying Stokes' theorem to R u�+d� � 0, the neg-ative asymptoti
 orbits of u+ have total period bounded by the total period of the positiveorbits, implying that all of the negative orbits belong to the same Morse-Bott manifolds asthe orbits of u0. We 
laim that after some R{translation, u+ interse
ts u0. This will implya 
ontradi
tion almost immediately, as positivity of interse
tions then gives an interse
tionof uk with some R{translation of u0 for suÆ
iently large k, 
ontradi
ting Lemma 4.7 sin
ei(uk; 
 j u0; 
) = i(u0; 
 j u0; 
) = 0.To prove the 
laim, it suÆ
es to show that the proje
ted images of u+ and u0 in Minterse
t ea
h other. Suppose 
 is an asymptoti
 orbit of u0 that lies in the same Morse-Bott submanifold N � M as one of the negative asymptoti
 orbits 
0 of u+. Denote the
orresponding asymptoti
 eigenfun
tions by e and e0 respe
tively. We 
onsider the following
ases:Case 1: N is a 
ir
le. Then 
 is nondegenerate and 
0 is the k{fold 
over of 
 forsome k 2 N. Choose a trivialization � along 
 so that wind�(e) = 0. By Lemma 4.4,A
 has two eigenvalues (
ounting multipli
ity) � < 0 with wind�(�) = 0. Then the k{fold
overs of their eigenfun
tions are eigenfun
tions of A
0 with negative eigenvalues and zerowinding, implying that every positive eigenvalue of A
0 has stri
tly positive winding. Thuswind�(e0) � ��+(
0) > 0, for
ing the proje
tions of u0 and u+ in M to interse
t ea
h othernear N .Case 2: N is a torus disjoint from uM . Now 
0 
an be deformed through a 1{parameter family of orbits to a k{fold 
over of 
 for some k 2 N. Choose a trivialization �along every simply 
overed orbit in N so that se
tions in the 0{eigenspa
es have zero winding.By Lemma 4.3, A
 has an eigenvalue � < 0 su
h that wind�(e) = wind�(�) = 0, and takingk{fold 
overs of eigenfun
tions, we similarly �nd eigenfun
tions of A
0 that have zero windingand eigenvalues k� < 0 and 0. This implies that wind�(e0) � ��+(
0) > 0, whi
h for
es theproje
tion of u+ inM to interse
t N , i.e. u+ interse
ts a trivial 
ylinder R�
1 for some orbit
1 � N . Then by the homotopy invarian
e of the interse
tion number, u+ also interse
tsR � 
. This interse
tion is transverse unless it o

urs at a point where �� Æ Tu+ = 0, but thesimilarity prin
iple implies that there are �nitely many su
h points (see [HWZ95℄). Thus ifne
essary we 
an use Theorem 10 to perturb u0 and thus move 
 to a nearby orbit, so thatthe interse
tion of R � 
 with u+ is transverse. This implies a transverse interse
tion of theproje
ted image of u+ in M with 
, and therefore an interse
tion of the proje
tions of u+and u0 nearby.
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ting uM . The argument is similar to
ase 2, only now we use the interse
tion of uM with N to show that uM interse
ts 
0 and thusalso the proje
ted image of u+ near 
0.We've shown now that u 
annot have any nontrivial upper level ex
ept in 
ase (2), so it musttherefore be a 1{level building in W1, i.e. a nodal J{holomorphi
 
urve. The dedu
tion of
ase (3) now pro
eeds almost exa
tly as in the proof of [Wen
, Theorem 7℄. To summarize, the
onne
ted 
omponents of u are all either pun
tured 
urves with positive ends at distin
t simply
overed orbits (and thus somewhere inje
tive), or 
losed 
urves (whi
h must be non
onstantby an index argument). The latter 
ould in general be multiple 
overs, but if v is a k{fold bran
hed 
over of some 
losed somewhere inje
tive 
urve v0, then we �nd ind (v) =k � ind (v0) + 2(k � 1). Due to our generi
ity assumption, all somewhere inje
tive 
urves haveindex at least 0, so we �nd that the total index of u be
omes more than 2 unless there isat most one node 
onne
ting two 
omponents, and in this 
ase both 
omponents must besomewhere inje
tive. The adjun
tion formula (4.4) 
an now be used to show that these two
omponents, v1 and v2, are both embedded, satisfy i(vi; 
 j vi; 
) = �1, i(vi; 
 j u0; 
) = 0 andi(v1; 
 j v2; 
) = 1; moreover, they are both Fredholm regular and have (
onstrained) index 0.There's one minor point to address whi
h was irrelevant in [Wen
℄: if there are no pun
tures,we haven't ruled out the possibility that u is a smooth multiple 
over, i.e. u = v Æ ' for some
losed somewhere inje
tive sphere v and holomorphi
 bran
hed 
over ' : S2 ! S2. Sin
e
1(u�TW1) = 2, this is allowed numeri
ally only if 
1(v�TW1) = 1 and ' has degree 2. Butthen we get a simple 
ontradi
tion using the adjun
tion formula: sin
e u � u = 0, the sameholds for v, thus 0 = v � v = 2Æ(v) + 
1(v�TW1)� 2 = 2Æ(v) � 1where Æ(v) is the algebrai
 
ount of double points and singularities. The right hand side isodd; in parti
ular it 
an never be zero.It remains to show that the set of all index 0 
urves arising from nodal degenerations of ukis �nite. Indeed, suppose vk is a sequen
e of �nite energy J{holomorphi
 
urves in W1 withuniform energy and C0{bounds su
h that(1) The pun
tures of vk are identi�ed with a subset of � and satisfy the asymptoti

onstraints of De�nition 4.5.(2) i(vk; 
 j u0; 
) = 0.(3) ind (vk; 
) = 0.Then we 
laim that vk has a 
onvergent subsequen
e. The argument is familiar: we rule outnontrivial upper levels exa
tly as before by showing that any nontrivial 
omponent v+ in su
ha level must interse
t u0. Thus the only remaining possible non-smooth limit is a nodal 
urvein W1, but the same index argument now implies that there is at most one 
omponent, thusno nodes, and the limit is somewhere inje
tive. It follows that this set of 
urves is a 
ompa
tsmooth 0{dimensional manifold, i.e. a �nite set. �5. Proofs of the main results5.1. Proofs of Theorems 6 and 7. We 
onsider a 
losed and 
onne
ted symple
ti
 4{manifold (W;!) whi
h 
ontains a 
losed 
onta
t type hypersurfa
e M su
h that W n Mis 
onne
ted. Under the assumptions of Theorem 6 or 7, we will 
onstru
t from this anon
ompa
t symple
ti
 manifold with 
onvex boundary to whi
h Corollary 12 applies, givinga 
ontradi
tion. The general idea of the 
onstru
tion is outlined in Figure 4.
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ompa
tify W n M by adding to ea
h end a 
opy of M , obtaining a
ompa
t and 
onne
ted symple
ti
 manifold (W1; !) with one 
onvex boundary 
omponentM+ and an identi
al 
on
ave boundary 
omponent M�. Indu
tively, we de�ne the 
ompa
tsymple
ti
 manifold Wn by Wn := Wn�1 [M�=M+ W1, denoting the symple
ti
 form on Wnagain by !. Note that Wn�1 is a 
ompa
t symple
ti
 submanifold of Wn in a natural way.Thus the set (W; !) := [n�1(Wn; !) (5.1)is a non
ompa
t symple
ti
 manifold with 
onvex boundary M 
orresponding to the 
onvexboundary of W1.Assume that W 
ontains a symple
ti
ally embedded sphere S � W with S � S = N � 0.Sin
e ! is exa
t on M , Stokes' theorem implies that S 
annot be 
ontained entirely in M .We 
an thus blow up W at N distin
t points in S that are not in M , modifying both Wand S so that S � S = 0 without loss of generality. Now we 
laim that S 
an be \lifted" toa symple
ti
 sphere eS in (W; !) with eS � eS = 0. To see this, 
onstru
t a symple
ti
 in�nite
over (fW; e!) of (W;!) by gluing together a sequen
e of 
opies f(W j1 ; !)gj2Z of (W1; !), withthe 
on
ave boundary of W j1 atta
hed to the 
onvex boundary of W j+11 for ea
h j 2 Z. Sin
ethe sphere is simply 
onne
ted, S has a lift eS � fW , and moreover, (fW; e!) naturally 
ontains(W; !), whi
h we may assume 
ontains eS without loss of generality.Similarly, if M with its indu
ed 
onta
t stru
ture satis�es weak property (?), then afteratta
hing a symple
ti
 
obordism to the 
onvex boundary of (W; !), we may assume withoutloss of generality that either (W; !) 
ontains a symple
ti
 sphere of zero self-interse
tion (afterblowing up) or property (?) holds for �W.In either 
ase, (W; !) now satis�es Assumption 4.1. As explained in x4, we 
an then atta
hto �W a 
ylindri
al end E+ that 
ontains ([T;1) �M;d(et�)) for suÆ
iently large T 2 Rand a suitable 
onta
t form �, obtaining an enlarged symple
ti
 manifold (W1; !), with an!{
ompatible almost 
omplex stru
ture J0 that is admissible and R{invariant on [T;1)�M ,and a non-empty moduli spa
e M
0 � M
 of J0{holomorphi
 
urves in W1. Moreover forsome n0 2 N, we 
an assume that J0 belongs to the following set.De�nition 5.1. Let J per be the spa
e of 
ompatible almost 
omplex stru
tures on (W1; !)whi
h mat
h J0 on ([T;1) �M;d(et�)) and whose restri
tions to W �= Wn+1 nWn � W1are independent of n for n � n0(J0). Su
h a J will be 
alled periodi
.Lemma 5.2. For a generi
 J 2 J per, all J{holomorphi
 
urves inM
 are Fredholm regular.Proof. Re
all that the J{holomorphi
 
urves in M
 are somewhere inje
tive, see x4. Theproof of transversality is a small variation on the standard te
hnique, as in [MS04℄: the keyis to show that the universal moduli spa
e f(u; J) j u is J{holomorphi
g is a smooth Bana
hmanifold for periodi
 J and u satisfying the relevant 
onditions. This will use the fa
t thata perturbation of J 
an be lo
alized at an inje
tive point of u without interfering at otherpoints in the image of u. Then regular values of the proje
tion (u; J) 7! J are generi
 by theSard-Smale theorem, and for these, all J{
urves are Fredholm regular.Assume J 2 J per and u 2 M
 is not fully 
ontained in [T;1) �M . If u also interse
tsWn0 [ E+, then it suÆ
es to perturb J only in this region and thus preserve periodi
ity ofJ . Thus it remains only to show that J per permits suÆ
ient perturbations of J when theimage of u is 
ontained in W nWn0 , in whi
h 
ase u must be a somewhere inje
tive 
losed
urve. Sin
e J is required to be periodi
, the only danger not present in the standard 
ase is
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 points, in the following sense. Re
all that W1 
ontains in�nitelymany identi
al 
opies of a 
ertain manifold V , in the form 
Wn := Wn+1 nWn. Thus ea
hpoint x 2 V appears in�nitely often in W1, and we 
all these di�erent points translates ofx. Then z 2 _� is a periodi
 point of u if a translate of u(z) is 
ontained in the image im (u)of u. In this 
ase a periodi
 perturbation of J 
annot be lo
alized in the image of u.We 
laim that for any somewhere inje
tive 
losed holomorphi
 
urve in W nWn0 , the setof inje
tive points whi
h are not periodi
 is open and dense. To see this, we 
an 
onsider the
overing spa
e � : fW ! W whi
h was 
onstru
ted above De�nition 5.1. Sin
e J is periodi
,the proje
tion � Æ u is a holomorphi
 
urve in W . It will suÆ
e to show that also � Æ u issomewhere inje
tive, sin
e then the set of inje
tive points of � Æ u is open and dense, andinje
tive points of � Æ u give rise to non-periodi
 inje
tive points of u. Denote by � : fW ! fWthe de
k transformation that maps fWn to fWn+1. Then if � Æ u is multiply 
overed, thefa
t that u is somewhere inje
tive implies (using unique 
ontinuation) that u and �k Æ u areequivalent 
urves for some integer k 6= 0. But then u is also equivalent to �nk Æ u for anyn 2 Z, implying that the image of u in fW is unbounded. Sin
e u was assumed to be 
losed,this is a 
ontradi
tion and shows that � Æ u is indeed somewhere inje
tive.With this, the usual proof that the universal moduli spa
e is a smooth Bana
h manifoldgoes through un
hanged. �For the remainder of this se
tion we assume that the almost 
omplex stru
ture J (formerly
alled J0) is periodi
 and generi
.Proposition 5.3. There exists N0 2 N su
h that for all u 2M�0 we haveim (u) �WN0 [E+: (5.2)Proof. We denote the 
onvex boundary of Wn � W by M+ and the 
on
ave boundary byM�n . Re
all that M+ is the same for all Wn. Then we 
laim that there exists a positive
onstant 
0 > 0 su
h that all u 2 M�0 with im (u) \M+ and im (u) \M�n both nonemptyhave energy E(u) � 
0n : (5.3)This follows from the monotoni
ity lemma (see Lemma 5.4 below) and the fa
t that the almost
omplex stru
ture is periodi
. Indeed, we �x a 
opy of W1 in Wn and denote for the momentits 
onvex and 
on
ave boundary by �W+ and �W� respe
tively. We 
laim that there exists~
 > 0 su
h that any holomorphi
 
urve v with v�1(�W+) 6= ; and v�1(�W�) 6= ; has at leastenergy E(v) � ~
. To see this we observe that ea
h su
h v has to pass through a point in Wwith distan
e �0 > 0 to the boundary �W+[�W� of W . Thus we 
on
lude from Lemma 5.4that E(v) � C�20 for ea
h v, where C and �0 only depend on the almost 
omplex stru
ture J .Sin
e J is periodi
, and a map u 2 M�0 with im (u) \M+ 6= ; and im (u) \M�n 6= ; passesthrough the boundaries of n 
opies of W1, equation (5.3) follows. Using the uniform energybound for u 2M�0, this implies the proposition in the 
ase where u0 has pun
tures, as everyu 2M�0 is then either 
on�ned to E+ or passes through M+.A small modi�
ation is required for the 
ase without pun
tures: here u0 2M�0 is a sphere,and we 
an 
hoose its lift from W to W1 so that without loss of generality, the image ofu0 interse
ts W1 (i.e. the �rst 
opy). Then we 
laim that every u 2 M�0 interse
ts W1.Otherwise, the fa
t that M�0 is 
onne
ted implies the existen
e of some holomorphi
 sphereinM�0 that tou
hes M�1 tangentially from insideW2 nW1, and this is impossible by 
onvexity.
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on
lude that every u 2 M�0 whi
h es
apes from W1 [ E+ must also pass through M�1 ,so the above argument goes through by using M�1 in pla
e of M+. �For the sake of 
ompleteness, we in
lude here the monotoni
ity lemma, see [Hum97℄ for aproof.Lemma 5.4. For any 
ompa
t almost 
omplex manifold (W;J) with Hermitian metri
 g,there are 
onstants �0 and C > 0 su
h that the following holds. Assume (S; j) is a 
ompa
tRiemann surfa
e, possibly with boundary, and u : S ! W is a pseudoholomorphi
 
urve.Then for every z 2 Int(S) and r 2 (0; �0) su
h that u(�S) \Br(u(z)) = ;, the inequalityArea (u(S) \Br(u(z))) � Cr2holds.Sin
e WN0 is 
ompa
t, Proposition 5.3 allows us to apply Corollary 12. But this impliesthat W is 
ompa
t, and is thus a 
ontradi
tion, 
on
luding the proof of Theorems 6 and 7.5.2. Proof of Theorem 8. Theorem 8 follows immediately from Theorem 7 and Exam-ple 1.2, sin
e a symple
ti
 semi�lling with dis
onne
ted boundary 
an always be turned intoa 
losed symple
ti
 4{manifold 
ontaining non-separating 
onta
t hypersurfa
es. One 
annonetheless give a slightly easier proof as follows.Assume that the boundary �W is dis
onne
ted and 
ontains a 
omponent M satisfyingproperty (?). Thus W satis�es Assumption 4.1, and after atta
hing 
ylindri
al ends, weobtain a moduli spa
e M
0 of J{holomorphi
 
urves that �ll the enlarged manifold W1.Moreover, all J{holomorphi
 
urves have positive pun
tures going to the end 
orrespondingto M . Sin
e they �ll W1, some of these 
urves must therefore tou
h �W nM tangentially,whi
h is impossible if �W is 
onvex.5.3. Proof of Theorem 9. Let (W;!) be a 
ompa
t 
onne
ted 4-manifold with 
onvexboundary (M; �) satisfying the weak (?) property. After atta
hing a symple
ti
 
obordism to�W , we may without loss of generality remove the word \weak". Now assume thatH �W nMis a non-separating 
onta
t hypersurfa
e. Thus we 
an 
ut W open along H and 
ompa
tifyto obtain a 
onne
ted symple
ti
 
obordism W1 with two 
onvex boundary 
omponents H+and M , and one 
on
ave boundary 
omponent H�.Now we 
an repeat the 
onstru
tion in the proof of Theorems 6 and 7, namely we gluein�nitely many 
opies of W1 along H, obtaining a non
ompa
t symple
ti
 manifold W withone 
onvex boundary 
omponent H and in�nitely many 
onvex boundary 
omponents whi
hare 
opies of M . From here, we pro
eed exa
tly as in the previous proofs, using the modulispa
e of holomorphi
 
urves arising from property (?) on the �rst 
opy of M . The only newfeature is that �W is not 
ompa
t, but sin
e it 
onsists of 
opies of the same 
ompa
t and
onvex 
omponents, the results of x4 still hold, as 
onvexity prevents the holomorphi
 
urvesin M
0 from ever approa
hing the other 
opies of M . In parti
ular, Corollary 12 applies andagain yields a 
ontradi
tion.Appendix A. Relative nondegenera
y of 
onta
t formsOur main argument uses holomorphi
 
urves asymptoti
 to Morse-Bott families of periodi
orbits. We prefer not to assume from the start that the 
onta
t form is globally Morse-Bott.Thus, we need a perturbation result that preserves a given Morse-Bott submanifold and makes
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Figure 4. The 
ompa
t symple
ti
 manifold (W;!) 
ontains the non-separating 
onta
t hypersurfa
e (M; �). W n M is 
ompa
ti�ed to produ
e(W1; !), whi
h has two boundary 
omponents 
onta
tomorphi
 to M , one
onvex and one 
on
ave. Su

essively atta
hing n 
opies of W1 to itself pro-du
es (Wn; !). Then property (?) gives rise to a moduli spa
e of �nite energy
urves whi
h, due to the monotoni
ity lemma, 
annot es
ape from Wn [ E+if n is suÆ
iently large.� nondegenerate everywhere else. For this, it suÆ
es to show that one 
an perturb � in somepre
ompa
t subset to make all orbits that pass through that subset nondegenerate.



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 27Theorem 13. Suppose M is a (2n � 1){dimensional manifold with a smooth 
onta
t form�, and U �M is an open subset with 
ompa
t 
losure. Then there exists a Baire subset�reg(U) � ff 2 C1(M) j f > 0 and f jMnU � 1gsu
h that for ea
h f 2 �reg(U), every periodi
 orbit of Xf� passing through U is nondegenerate.Proof. We give a proof in two steps, �rst showing that a generi
 
hoi
e of the fun
tion fmakes all simply 
overed orbits of Xf� passing through U nondegenerate. Then we extendthis to multiple 
overs by a further perturbation.The �rst step is an adaptation of the standard Sard-Smale argument. Let � = ker �, andfor some large k 2 N, de�ne the Bana
h spa
eCkU (M) = nf 2 Ck(M;R) �� f jMnU � 0oand Bana
h manifold�k(U) = ff 2 Ck(M;R) j f > 0 and f � 1 2 CkU (M)g;whose tangent spa
e at any f 2 �k(U) 
an be identi�ed with CkU (M). We will 
onsider thenonlinear operator �(x; T; f) := _x� TXf�(x)as a se
tion of a Bana
h spa
e bundle over H1(S1;M)�(0;1)��k(U) whose �ber at (x; T; f)is L2(x�TM). Sin
eXf� depends on the �rst derivative of f , it is of 
lass Ck�1 and the se
tion� is therefore of 
lass Ck�2. Choosing any symmetri
 
onne
tion r on M , the linearizationof � at (x; T; f) 2 ��1(0) with respe
t to the �rst variable de�nes the operatorDx : H1(x�TM)! L2(x�TM) : ^x 7! rt^x� Tr^xXf�: (A.1)Sin
e _x = TXf�(x), we 
an identify the normal bundle of x with x�� and thus de�ne asplitting x�TM = TS1 � x��. A short 
al
ulation then allows us to rewrite Dx with respe
tto the splitting in the blo
k form Dx = ��t 00 DNx � ; (A.2)where DNx : H1(x��) ! L2(x��) is de�ned again by (A.1), and is a Fredholm operator ofindex 0. The orbit x is nondegenerate if and only if DNx is an isomorphism.The total linearization of � at (x; T; f) 2 ��1(0) is nowD�(x; T; f)(^x; ^T ; ^f) = Dx^x� ^TXf�(x)� T bX(x);where we de�ne the ve
tor �eld bX := ��X(f+� ^f)�j�=0. It follows from the de�nition of theReeb ve
tor �eld that bX takes the form � ^fXf�+V ^f where V ^f 2 �(�) is uniquely determinedby the 
ondition d(f�)(V ^f ; �)���� = d ^f���� : (A.3)We de�ne the universal moduli spa
e of parametrized Reeb orbits asM := ��1(0), and letM� �M denote the open subset 
onsisting of triples (x; T; f) for whi
h x is simply 
overedand x(S1) \ U 6= ;. Similarly, denoteM�(f) = f(x; T ) j (x; T; f) 2M�g:We 
laim that D�(x; T; f) is surje
tive whenever (x; T; f) 2M�, hen
eM� is a Ck�2{smoothBana
h manifold. To see this, note that one 
an always �nd � 2 H1(TS1) and ^T 2 R so that

28 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLTx(�t�)� ^TXf�(x) takes any desired value in L2(x�(RXf�)), thus it suÆ
es to show that the\normal part" H1(x��)� CkU (M)! L2(x��) : (^x; ^f) 7! DNx ^x� TV ^fis surje
tive. If it isn't, then there exists a se
tion � 6= 0 2 L2(x��) su
h that hDNx ^x; �iL2 = 0for all ^x 2 H1(x��) and hV ^f ; �iL2 = 0 for all ^f 2 CkU(M) vanishing outside of U . The�rst relation implies that � is in the kernel of the formal adjoint of DNx , a �rst order lineardi�erential operator, hen
e � is smooth and nowhere vanishing. But then if x(t0) 2 U , thenusing (A.3), ^f 
an be 
hosen near x(t0) so that the se
ond relation requires � to vanish on aneighborhood of t0, giving a 
ontradi
tion.Now applying the Sard-Smale theorem to the natural proje
tionM� ! �k(U) : (x; T; f) 7!f , we �nd a Baire subset �kreg(U) � �k(U) for whi
h every simply 
overed Reeb orbit passingthrough U is nondegenerate.For the se
ond step, denote by dist( ; ) the distan
e fun
tions resulting from any 
hoi
e ofRiemannian metri
s on S1 and M , and de�ne for ea
h positive integer N 2 N a subsetMN (f) �M�(f)
onsisting of Reeb orbits (x; T ) that satisfy the following 
onditions:(1) T � N .(2) There exists t 2 S1 su
h thatinft02S1nftg dist(x(t); x(t0))dist(t; t0) � 1N :(3) There exists t 2 S1 su
h that dist(x(t);M n U) � 1=N .Moreover, let �reg;N(U) � �1(U) denote the spa
e of all smooth fun
tions f 2 �k(U) forwhi
h all 
overs of orbits in MN (f) up to multipli
ity N are nondegenerate. Sin
e nonde-genera
y is an open 
ondition and any sequen
e (xk; Tk) 2 MN (fk) with fk ! f in C1 hasa 
onvergent subsequen
e by the Arzel�a-As
oli theorem, �reg;N (U) is an open set. We 
laimit is also dense. Indeed, any f 2 �1(U) has a perturbation f� 2 �k(U) for whi
h all thesimple orbits in MN (f�) are nondegenerate due to step 1. In this 
ase MN (f�) is a smooth
ompa
t 1{manifold, i.e. a �nite union of 
ir
les, whi
h are the parametrizations of �nitelymany distin
t nondegenerate orbits, and the spa
e is stable under small perturbations of f�.Thus by a further perturbation, we 
an make f� smooth and arrange that none of the orbitsinMN (f�) have a Floquet multiplier that is a kth root of unity for k 2 f1; : : : ; Ng. The latter
an be a
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