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ON SYMPLECTIC FILLINGS OF SPINAL OPEN BOOK
DECOMPOSITIONS I:
GEOMETRIC CONSTRUCTIONS

SAMUEL LISI, JEREMY VAN HORN-MORRIS, AND CHRIS WENDL

ABSTRACT. A spinal open book decomposition on a contact manifold is a generalization of
a supporting open book which exists naturally e.g. on the boundary of a symplectic filling
with a Lefschetz fibration over any compact oriented surface with boundary. In this first
paper of a two-part series, we introduce the basic notions relating spinal open books to
contact structures and symplectic or Stein structures on Lefschetz fibrations, leading to the
definition of a new symplectic cobordism construction called spine remowval surgery, which
generalizes previous constructions due to Eliashberg [EIi04], Gay-Stipsicz [GS12] and the
third author [Wen13b]. As an application, spine removal yields a large class of new examples
of contact manifolds that are not strongly (and sometimes not weakly) symplectically fillable.
This paper also lays the geometric groundwork for a theorem to be proved in part 11, where
holomorphic curves are used to classify the symplectic and Stein fillings of contact 3-manifolds
admitting a spinal open book with a planar page.
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0. INTRODUCTION

The present paper is the first in a two-part series aimed at generalizing the well-known
interplay between contact structures with supporting open book decompositions and their
fillings by symplectic or Stein manifolds with symplectic Lefschetz fibrations. We can point
to at least two specific previous applications of open books in contact topology as inspiration
for this project:

(1) In [Wenl0,[NWT1], the third author proved that for every contact 3-manifold sup-
ported by a planar open book, the deformation classes of its symplectic fillings are
in bijective correspondence to the diffeomorphism classes of Lefschetz fibrations over
D? that fill the open book. Some version of this statement is true moreover for all of
the usual notions of symplectic fillability (i.e. weak, strong, Liouville and Stein), thus
proving that for planar contact manifolds, they are all equivalent. The problem of
classifying fillings for such contact manifolds was reduced in this way to a factorization
problem on the mapping class group of surfaces, cf. [PVI0[Plal2lWan12l[KTL[Kall.

(2) In [ELi04], Eliashberg used non-exact symplectic 2-handles attached along the binding
of an open book to construct symplectic caps for all closed contact 3-manifolds. This
served among other things as an ingredient in Kronheimer-Mrowka’s proof of Prop-
erty P [KM04], and it was later generalized to various forms of non-exact symplectic

cobordism between contact manifolds, cf. [Gay006],[GS12l[Wen13b].

The motivating question behind the present project was as follows: what structure naturally
arises on the convex boundary of a Lefschetz fibration with exact symplectic fibers over a
surface with boundary other than D?? Spinal open books are the answer to this question, and
we will show that they give rise to far-reaching generalizations of both of the results mentioned
above. One example of the first type appeared already in [Wenl0], where the symplectic
fillings of T? were classified in terms of Lefschetz fibrations over the annulus [—1,1] x S*.
This was proved using methods from the low-dimensional theory of J-holomorphic curves,
and the aim of the sequel to this paper [LVW] will be to push those techniques as far as they
can reasonably be pushed.

Here is an initial sketch of the main idea. Roughly speaking, a spinal open book decomposes
a 3-manifold M into two (possibly disconnected) pieces, called the paper Mp and the spine
My, where Mp consists of families of pages fibering over S, My, is an S'-fibration over some
collection of compact oriented surfaces, and the boundaries of fibers in Mp consist of fibers
in My, (see Figure[ll). The usual notion of open books is recovered if one takes the base of the
fibration on My to be a disjoint union of disks (see Example [[9)); similarly, allowing annuli
in the base produces the notion of blown up summed open books (Example [ T1]), which were
studied in [Wenl3a]. One of the main results of [LVW] can be summarized as follows (see {II

below for the pertinent definitions):
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FIGURE 1. A spinal open book with two spine components, which are S'-
fibrations over a genus 1 surface with one boundary component and an annulus
respectively. They are connected to each other by an S'-family of pages with
genus 2, and we can also see a fragment of a second S'-family of pages attached
to the annular spine component.

Theorem A ([LVW]). Suppose (M,§) is a closed contact 3-manifold containing a domain
My on which & is supported by an amenable spinal open book 7 that has a planar page in its
interior. If (M,&) admits a weak filling that is exact on the spine of 7, then M = My, and
the set of weak symplectic fillings of (M,&) that are exact on the spine is, up to symplectic
deformation equivalence, in one-to-one correspondence with the set of Lefschetz fibrations (up
to diffeomorphism) that match m at their boundaries. Moreover, every such filling can be
deformed to a blowup of a Stein filling.

To focus for a moment on Stein fillings in particular: most previous results classifying
Stein fillings have classified them up to diffeomorphism or symplectic deformation, the only
exceptions we are aware of being results of Eliashberg [EIiI90,/[CE12] and Hind [Hin00LHin03],
which achieved uniqueness up to Stein deformation equivalence for fillings of S3, connected
sums of S! x S2, and certain lens spaces. In these examples, the classification up to Stein
deformation matches the classification up to symplectic deformation, and we will see that this
is not a coincidence—it can be seen as a symptom of a general quasiflieribility phenomenon
for Stein surfaces:

Theorem B ([LVW]). Suppose W is a compact 4-manifold with boundary, admitting two
Stein structures Jo and Jy such that (W, Jy) is compatible with a Lefschetz fibration (over an
arbitrary compact oriented surface) with fibers of genus zero. Then Jy and Jy are Stein homo-
topic if and only if their induced symplectic structures are homotopic as symplectic structures
convex at the boundary.

Note that the symplectic deformation in this statement need not be in a fixed cohomol-
ogy class—in particular, quasiflexibility is a very different phenomenon from the familiar
relationship between Stein and Weinstein structures (cf. [CE12]).

While the results quoted above require holomorphic curve techniques, this first paper in
the series will focus on the less analytical but more geometric aspects of the theory of spinal
open books. We will start by giving natural constructions of contact structures supported
by spinal open books and symplectic or Stein structures related to them. The most subtle
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of these results pertains specifically to Stein (or equivalently Weinstein) structures, and gives
a verifiable criterion in terms of Lefschetz fibrations for two Stein structures to be Stein
homotopic. This will serve in [LVW] as an essential ingredient for the classification of Stein
fillings up to Stein deformation and the proof of Theorem [Bl The result is most easily stated in
terms almost Stein structures, which are pairs (J, f) consisting of an almost complex structure
J and a J-convex function f. Here J is not required to be integrable, and f need not be
constant at the boundary, thus they do not immediately define a Stein structure, but if we
assume the Liouville vector field dual to —df oJ is outwardly transverse at the boundary, then
(J, f) nonetheless determines a Weinstein structure canonically up to Weinstein homotopy
(see §LT.3).

The following theorem can be interpreted as saying that the Stein homotopy class of a Stein
structure can be deduced from a Lefschetz fibration if it satisfies fairly strict compatibility
conditions near the boundary but a minimum of reasonable conditions in the interior—this
result is well suited in particular to the scenario in which fibers of a Lefschetz fibration are
J-holomorphic curves.

Theorem C (see Theorem B)). Suppose Il : E — ¥ is a Lefschetz fibration whose regular
fibers and base are each compact oriented surfaces with nonempty boundary, and write

0B :=1710%),  E:=|]oE..
zeX
For 7 = 0,1, assume J; is an almost complex structure on E and f; : E — R is a smooth
Jr-convex function such that the following conditions are satisfied:

(1) J; preserves the vertical subbundle of TE and is compatible with its orientation;

(2) fr is constant on the boundary components of every fiber;

(8) The Liouville form \; := —df o J; restricts to both 0,E and 0, E as contact forms,
the induced Reeb vector field on onE is tangent to the fibers, and its flow preserves
the mazimal J.-complex subbundle of T'(0pFE);

(4) There exists a complex structure jr on 3 and an open neighborhood U < ¥ of d¥ such
that the Cauchy-Riemann equation T1l o J,. = j; o TII is satisfied on Ely and opE.

Then the Weinstein structures on E (after smoothing the corners) determined by (Jo, fo) and
(Ji, f1) are Weinstein homotopic.

With this groundwork in place, we will then introduce a new construction of non-exact
symplectic cobordisms that generalizes previous results from [E04L[GST2l[Wen13b] and arises
from a natural topological operation on spinal open books called spine remowval surgery. An
informal version of the result can be stated as follows:

Theorem D (see Theorem [[25]). Assume (M,§) is a contact 3-manifold supported by a
spinal open book 1, X' x St ~ M™™ < Ms, is an open and closed subset of the spine of T,
and T is a spinal open book on a contact 3-manifold (]\7, 5) defined by deleting M*™™ from M
and capping off all adjacent boundary components of pages of w by disks. Then there exists
a symplectic cobordism with strongly concave boundary (M,§) and weakly conver boundary
(]\7, 5), defined by attaching the “handle” '™ x D? with a product symplectic structure along
yrem o Sl ~ Jjrem

Special cases of this operation were used in [Wen13b] to construct non-exact symplectic
cobordisms between pairs of contact 3-manifolds that do not admit exact ones, e.g. it showed
that all of the known examples of contact 3-manifolds with finite orders of algebraic torsion
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(cf. [LW11]) are symplectically cobordant to overtwisted ones. We will use the general ver-
sion in this paper to prove the vast majority of cases of Theorem [A] for which the contact
manifold turns out to be non-fillable, a result that can be interpreted as generalizing the
local filling obstruction defined as planar torsion in [Wenl3a]. A slightly different kind of
application appears in [LW], where spine removal is used to prove that contact 3-manifolds
supported by planar spinal open books satisfy a universal bound on the geography of their
symplectic fillings. This generalizes a previous result for the case of planar open books due
to Plamenevskaya [Plal2] (see also [Kal]).

In our project we have focused specifically on dimension three, since that is where the
strongest results on classification of fillings can be proved, but it should be mentioned that
the theory of spinal open books has already had some impact on developments in higher-
dimensional contact topology. In dimension 2n — 1, it is natural to consider decompositions
M = Ms. u Mp where Mp is a fibration of Liouville domains over a contact manifold and My,
is a strict contact fibration over a Liouville domain. Taking D? and S' as bases produces the
usual notion of open books in arbitrary dimensions, but it is sometimes also useful to allow
higher-dimensional bases, e.g. the first author has observed that Bourgeois’s construction
[BouO2] of contact structures on M x T? can be understood as an operation replacing D?
and S! with T*T? and T? as base spaces in a spinal open book (cf. [LMN]). Working with
strictly low-dimensional fibers but higher-dimensional bases, [MNW13] constructed a higher-
dimensional version of a spine removal cobordism in order to establish the first examples of
higher-dimensional tight contact manifolds that are not symplectically fillable. More recently,
Moreno [Mor18] uses high-dimensional spinal open books to construct new examples of contact
manifolds with higher-order algebraic torsion, and Acu and Moreno [AM] construct a variant
of spine removal surgery to study a higher-dimensional analogue of planar contact manifolds.

A remark on timing. While this paper is intended as the “official” introduction to spinal
open books in dimension three, the project has by now been in preparation long enough for
some of the fundamental notions to have appeared already in other papers by the authors
and their collaborators, see in particular [BVI5]. We have tried to make sure all definitions
are consistent with what has previously appeared, but in the event of any discrepancies, the
present paper is meant to be definitive.

Outline of the paper. Section [Ilis an extended introduction, intended to give precise versions
of all the essential definitions and main results, including some definitions that are needed
mainly for the classification discussion in [LVW]. Section 2l then proves the essential theorems
relating spinal open books and Lefschetz fibrations to their associated deformation classes of
contact and symplectic structures, and g3 proves Theorem [CJon Stein homotopy classes. In §4]
we construct a concrete symplectic model for collar neighborhoods (in the symplectization) of
a contact manifold supported by an arbitrary spinal open book, which is then used to prove
the main theorem on symplectic cobordisms arising from spine removal surgery. This result
is then applied in §5] to establish new criteria for nonfillability.

Acknowledgments. This project has taken several years to come to fruition, and we are grateful
to many people for valuable conversations along the way, including especially Denis Auroux,
Inan¢ Baykur, Michael Hutchings, Tom Mark, Patrick Massot, Richard Siefring, and Otto
van Koert. We would also like to thank the American Institute of Mathematics for bringing
the three of us together at key junctures in this project.
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1. DEFINITIONS AND RESULTS

1.1. Main definitions. In this section we give the main definitions and state precise versions
of the main results of the paper.

1.1.1. Types of symplectic fillings. Throughout this paper, we assume all contact structures on
oriented 3-manifolds to be co-oriented and positive, i.e. they can always be written as £ = ker «
where the contact form « satisfies a A da > 0. Suppose (M, ) is a closed contact 3-manifold
and (W,w) is a compact connected symplectic 4-manifold with boundary. Then (W,w) is a
weak filling of (M, &) if OW can be identified via an orientation-preserving diffeomorphism
with M such that w|¢ > 0. We also say in this case that w dominates { at the boundary, and
that the boundary is weakly convex with respect to w. If there additionally exists a 1-form
A near W that satisfies d\ = w and restricts to the boundary as a contact form for £ under
the above identification 0W =~ M, then the boundary is called convex and (W, w) is called a
strong filling of (M, ). We say that two weak/strong fillings (W, w) and (W', w’) of contact
manifolds (M, £) and (M’, £’) respectively are weakly/strongly symplectically deformation
equivalent if there exists a diffeomorphism ¢ : W — W' and smooth 1-parameter families
of symplectic structures {wr},e0,1] on W and contact structures {&;},e[0,1] on M such that
wo =w, w1 = @, & = ¢, & = ¢*¢, and (W, w;) is a weak/strong filling of (M, &) for each
7 € [0,1]. Note that by Gray’s stability theorem, deformation equivalence implies that (M, ¢)
and (M’,£’) must be contactomorphic.

Recall that a symplectic 4-manifold is said to be minimal if it does not contain any
exceptional spheres, i.e. symplectically embedded 2-spheres with self-intersection number —1.
By an argument due to McDuff [McD90], minimality is invariant under (strong or weak)
symplectic deformation[]

We call (W,w) an exact filling of (M, &) if it is a strong filling such that the 1-form A
as defined above near the boundary extends to a global primitive of w on W. In this case
(W,d\) is also called a Liouville domain, with Liouville form A, which determines the
Liouville vector field V) via the condition

w(Vy, ) = A

Two exact fillings are said to be Liouville deformation equivalent if they are strongly
symplectically deformation equivalent and each of the symplectic structures in the smooth
homotopy defines an exact filling. Note that for any fixed w on a Liouville domain, the space
of Liouville forms A satisfying d\ = w is convex, thus every Liouville deformation in this sense
can be realized by a smooth homotopy of Liouville forms.

Finally, a Stein filling of (M,¢) is a compact connected complex manifold (W, .J), also
called a Stein domain, with oriented boundary identified with M such that £ < TM is
the maximal complex-linear subbundle, and such that there exists a smooth function f :
W — R that has the boundary as a regular level set (we say that f is exhausting) and
is plurisubharmonic. The latter means that Ay := —df o J is a Liouville form and the
resulting symplectic form wy := d\; tames J, i.e.

wy(X,JX) > 0 for all nonzero X € TW.
n our context, McDuff’s argument that minimality is preserved under deformations depends on the con-

ditions we impose on w at 0W: these guarantee in particular that one can always make the boundary J-convex
for a tame almost complex structure J, thus preventing J-holomorphic spheres from escaping the interior.
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Two Stein fillings are Stein deformation equivalent if they can be identified via a dif-
feomorphism so that the two complex structures are homotopic through a smooth family of
integrable complex structures that all admit exhausting plurisubharmonic functions.

Note that for a given J, the space of exhausting plurisubharmonic functions is convex,
and the plurisubharmonicity condition is open with respect to J; one can use these facts
to show that any smooth homotopy of Stein structures can be accompanied by a smooth
homotopy of exhausting plurisubharmonic functions. By the correspondence J — A\j — wy
defined above, it follows that a Stein deformation class of Stein fillings always gives rise to a
canonical Liouville deformation class of exact symplectic fillings. The exact fillings arising in
this way have the additional feature that their Liouville vector fields are gradient-like: indeed,
any exhausting plurisubharmonic function f : W — R on a Stein domain (W, .J) is also a
Lyapunov function for the Liouville vector field V; dual to Ay, thus giving (W,wy, Vy, f) the
structure of a Weinstein domain. We will occasionally make use of the deep theorem from
[CE12)] giving a one-to-one correspondence between deformation classes of Stein domains and
Weinstein domains respectively.

Remark 1.1. Strictly speaking, the function f in a Weinstein structure should always be
required to be Morse (or generalized Morse in the case of deformations), but on Stein domains
this can always be achieved via small perturbations of plurisubharmonic functions since the
plurisubharmonicity condition is open.

1.1.2. Spinal open books. The following topological notion will be of central importance in
this paper.

Definition 1.2. A spinal open book decomposition on a compact oriented 3-dimensional
manifold M, possibly with boundary, is a decomposition M = My, U Mp, where the pieces
Ms, and Mp (called the spine and paper respectively) are smooth compact 3-dimensional
submanifolds with disjoint interiors such that 0Ms, € dMp, carrying the following additional
structure:

(1) A smooth fiber bundle 7y, : My, — ¥ with connected and oriented fibers, all of which
are either disjoint from ¢ My, or contained in it. Here, 3 is a compact oriented surface
whose connected components (called vertebraeﬁ) all have nonempty boundary.

(2) A smooth fiber bundle 7p : Mp — S with oriented fibers whose connected com-
ponents (called pages) are each preserved by the monodromy map, have nonempty
boundary and meet dMp transversely. Moreover, the intersection of any fiber of 7wp
with My, consists of fibers of 7.

(3) At each connected boundary component 7' < 0M (which is necessarily a 2-torus
component of 0Mp), there is a preferred homology class mp € Hy(T') with the property
that if fr € H1(T') denotes the homology class of a connected component of 77131(*) nT
oriented as boundary of the fiber, then (myp, f7) defines a positively oriented basis
of Hi(T) =~ Z? for the boundary orientation of M. We call my the preferred
meridian at 7T

2The use of the bookbinding metaphor for open book decompositions was the original inspiration for our
choice of the terms “spine” and “paper”, though the alternative anatomical meaning of “spine” also has some
advantages. The term “vertebrae” makes sense especially when one observes that the fibration 7s; : My, — X is
necessarily trivial, thus the spine can be foliated by vertebrae. It makes less sense perhaps in higher-dimensional
analogues of spinal open books, where 7s; : Msx, — ¥ need not always be a trivial fibration.
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We should emphasize that in the above definition, neither M nor its paper or spine is
required to be connected, though pages and vertebrae are connected by definition. One can
also allow the spine to be empty, in which case M must have nonempty boundary (since the
pages do). We shall typically denote the full collection of data defining a spinal open book
on M by

™= (ﬂz My, —> X mp: Mp — 517 {mT}Tc@M)-

For any connected component v < 0%, the fact that boundary components of pages are also
fibers of my, means that there is a well-defined map

(1.1) 7= 8¢ mp(ng(9)).
This map is always a diffeomorphism for ordinary open books (see Example [[L9]), but more
generally it may be a finite cover.

Definition 1.3. Given the spinal open book 7 as described above, we define the multiplicity
of mp at a boundary component 7' c 0Mp as the number of distinct page boundary compo-
nents that touch T'. If T'< Mp n My, then the multiplicity can equivalently be described as
the degree of the map v — S defined in (L.

Definition 1.4. Given a spinal open book 7 on M, a positive contact form o on M will be
called a Giroux form for 7 if the following conditions hold:

(1) The 2-form do is positive on the interior of every page;

(2) The Reeb vector field R, is positively tangent to every oriented fiber of 7y, : My, — X;

(3) At OM, R, is positively tangent to the fibers of wp|aps : OM — S* and the character-
istic foliation defined by ker a on dM has only closed leaves, which are homologous
on each connected component T < dM to the preferred meridian mTE

A contact structure £ on M will be said to be supported by 7 whenever it admits a contact
form which is a Giroux form.

In order to obtain the existence and uniqueness of contact structures supported by a given
spinal open book, technical issues will require us to examine the smooth compatibility of the
spine and paper at their common boundary components slightly closer.

Definition 1.5. We will say that a spinal open book 7 admits a smooth overlap if the
fibration mp : Mp — S' can be extended over an open neighborhood M} < M containing
Mp such that all fibers of 7y, intersecting M}, are contained in fibers of the extended mp.

Remark 1.6. Any spinal open book can be modified, via a pair of smooth isotopies on the
spine and paper which match on their common boundary components, so as to produce a
spinal open book admitting a smooth overlap. The result of this “smoothing” operation is
also unique up to isotopy.

In §2.3] we shall prove the following generalization of the standard theorem of Thurston
and Winkelnkemper [TW75] on open books:

Theorem 1.7. Suppose M is a compact oriented 3-manifold, possibly with boundary, and m
s a spinal open book on M which admits a smooth overlap. Then the space of Giroux forms
for m is nonempty and contractible. In particular, any isotopy class of spinal open books gives
rise to a canonical isotopy class of supported contact structures.

3The characteristic foliation ker(a|rany) < T(OM) is oriented by any vector field X that satisfies Q(X, ) =
a|T(aM) for a positive area form 2 on oM.
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Remark 1.8. When 0M # J, the above statement about uniqueness up to isotopy depends
on the following version of Gray’s stability theorem for manifolds with boundary: a smooth
1-parameter family of contact structures on a compact manifold with boundary is induced
by a smooth isotopy if and only if the resulting characteristic foliations at the boundary
are all isotopic. This follows by a variation on the usual proof of the standard version (see
e.g. [Gei08]): if the characteristic foliations are isotopic, then after an isotopy near the bound-
ary one can assume they are constant, and then check that the contact isotopy constructed
in the standard way is generated by a vector field tangent to the boundary. For this reason it
is important that supported contact structures always induce characteristic foliations on dM
with closed leaves in a fixed homology class.

Example 1.9. An ordinary open book is the special case of a spinal open book where the
spine is a tubular neighborhood of a transverse link B < M, i.e. each connected component
of My, is of the form D? x S, and the multiplicities of Definition are all 1. Our definition
of a Giroux form in this case does not quite match the standard one, but a Giroux form in
our sense can be perturbed to the standard version, so the notion of a supported contact
structure is the same.

Example 1.10. In the previous example, relaxing the condition that all multiplicities equal 1
generalizes from open books to certain types of rational open books as in [BEVI2].

Example 1.11. Any blown up summed open book as defined in [Wenl3a] can be viewed as
a spinal open book whose vertebrae are all disks or annuli. For instance, one can understand
the binding sum construction of [Wen13al as follows. Topologically, it is defined by taking an
ordinary open book 7 : M\B — S! with at least two binding circles By, By — B, removing
tubular neighborhoods of B; and By and attaching the resulting boundary tori by an orien-
tation reversing diffeomorphism that maps oriented boundaries of pages to each other and
maps meridians to meridians (with reversed orientation). In terms of spinal open books, this
is the same as removing two solid torus components

(D? x Y1 (D? x S) c My
from the spine and replacing these with ([—1,1] x S!) x S!, which we view as a spinal
component with the annulus as a vertebra. In contact geometric terms, the binding sum on
a supported contact structure produces a contact fiber sum (cf. [Gei0§]), and it is not hard

to show that the resulting contact structure is supported by the spinal open book described
above.

Example 1.12. Spinal open books with boundary can always be constructed from closed
spinal open books by deleting components of the spine and then choosing suitable preferred
meridians. For example, suppose 7 is an ordinary open book as characterized in Example [[L9],
so it is a spinal open book whose spinal components are all trivial fibrations D? x ST — D?. We
can then define a new spinal open book by deleting one such component D? x S' from the spine;
this produces a new boundary component on the paper, which inherits a canonical meridian,
namely [0D? x {x}] € H1(8(D? x S')). Topologically this has the effect of removing a tubular
neighborhood of one binding component, and the effect on supported contact structures is
exactly what is described in [Wenl3a] as blowing up along the binding.

Remark 1.13. Many of the notions of this section are also well defined without assuming that
M is a globally smooth manifold: to define a spinal open book, M must at minimum be a
topological manifold that is obtained by gluing together two smooth manifolds My and Mp
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along a smooth embedding 0 My, — 0Mp, so there are well-defined smooth structures on Ms;,
Mp and My, n Mp but not necessarily on a neighborhood of the latter in M. In particular,
it will be useful in the next section to take M = 0F where E is a smooth 4-manifold with
boundary and corners; here the smooth faces of the boundary are My, and Mp and the corner
is My n Mp. In this case, a Giroux form will be assumed to be the restriction to M = 0F
of a smooth 1-form on a neighborhood of the boundary in FE, such that the conditions of
Definition [[.4] are satisfied separately on each of the smooth faces My and Mp.

1.1.3. Bordered Lefschetz fibrations. The motivating example of a spinal open book is ob-
tained by considering boundaries of Lefschetz fibrations. In the following, we assume E to be
a smooth, compact, oriented and connected 4-manifold with boundary and corners such that
OF is the union of two smooth faces

OE = OhE v 0, E

which intersect at a corner of codimension two. Likewise, ¥ will denote a compact, oriented
and connected surface with nonempty boundary.

Definition 1.14. A bordered Lefschetz fibration of E over X is a smooth map I : £ — X
with finitely many interior critical points E* « E and critical values ¥ < ¥ such that
the following conditions hold:

(1) I Y(0%) = 0,F and U], g : 0,F — 0X is a smooth fiber bundle;

(2) Ijs, E : OpE — ¥ is also a smooth fiber bundle;

(3) There exist integrable complex structures near Ei® and 3! such that IT is holomor-
phic near E°"* and the critical points are nondegenerate;

(4) All fibers E, := II"!(z) for z € ¥ are connected and have nonempty boundary in 6, E.

We call E, a regular fiber if z € ¥\X" and otherwise a singular fiber; the latter are
necessarily unions of smoothly immersed connected surfaces (the irreducible components)
with positive transverse intersections. We say that II is allowable if all the irreducible
components of its fibers have nonempty boundary.

By the complex Morse lemma, one can find holomorphic coordinates near Et and it

so that II takes the form
(21, 2) = 23 + 25

near each critical point. Note also that in the standard language of vanishing cycles (cf. [GS99]),
the “allowability” condition defined above is equivalent to requiring that no vanishing cycles
be homologically trivial in the fiber

A bordered Lefschetz fibration II : £ — ¥ naturally gives rise to a spinal open book on
OF, with spine My, := 0, E and paper Mp := 0,E. The fibration 7p : 0,F — S' is defined
as the restriction Il|g, g : 0,F — 0% after choosing an orientation preserving identification
of each connected component of 0% with S'. Likewise, |5,k : OhE — X defines a smooth
fibration whose fibers are disjoint unions of finitely many circles, hence it can be factored as

hE 5y Ly,

4In some sources in the literature, it is erroneously stated that a Lefschetz fibration is allowable if and only
if its vanishing cycles are always nonseparating in the fiber. We will often want to consider situations in which
vanishing cycles are homologically nontrivial but separating, e.g. when the fiber is an annulus. In the case
where fibers have genus zero, a Lefschetz fibration is allowable if and only if it is relatively minimal.
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where 7y, : O E — 3 is a fiber bundle with connected fibers over another compact oriented
surface 3 with boundary, and p : Y — ¥ is a smooth finite covering map. As discussed
in Remark [LT3] the fact that dF is not naturally a smooth manifold does not present any
problem here. In this class of examples, every vertebra is a finite cover of the base X, the pages
are all diffeomorphic to the regular fibers of II, and the boundary components of these fibers
form the fibers on the spine. Whenever 7 is a spinal open book on a 3-manifold M admitting
a homeomorphism to 0F that restricts to diffeomorphisms My, — d,F and Mp — 0, F such
that 7r is related to II : F — X as described above, we shall indicate this relationship by
writing
oll = .

Clearly not all spinal open books can be obtained as boundaries of Lefschetz fibrations, so

those that can deserve a special name.

Definition 1.15. A spinal open book 7 on a 3-manifold M will be called symmetric if

(i) oM = &;
(ii) All pages are diffeomorphic;
(iii) For each of the vertebrae ¥1,..., %, < X, there are corresponding numbers ky, ..., k, €
N such that every page has exactly k; boundary components in g, 1(8&) for i =
1,...,7.

We shall say that 7 is uniform if, in addition to the above conditions, there exists a fixed
compact oriented surface ¥y whose boundary components correspond bijectively with the
connected components of Mp such that for each 7 = 1,...,r there exists a k;-fold branched
cover
Y — Yo

for which the restriction to each connected boundary component v < 0%; is an m.-fold cover
of the component of 0¥y corresponding to the component of Mp touching 7y, 1('y), where
m~ denotes the multiplicity of 7p at 7y, L(4) (see Definition [3). Finally, 7 is Lefschetz-
amenable if it is uniform and all branched covers satisfying the above conditions have no
branch points.

Remark 1.16. In many examples of interest—in particular for the circle bundles over oriented
surfaces studied in L4 and further in [LVW], 7 is symmetric with k; = ... = k. = 1,
in which case it is uniform if and only if all vertebrae are diffeomorphic. The Lefschetz-
amenability condition is trivially satisfied in such cases since branched covers of degree 1 are
diffeomorphisms. In more general situations, the uniformity and amenability conditions can
often both be checked via the Riemann-Hurwitz formula;ﬁ; we will use this in [LVW] to classify
the fillings of certain non-orientable contact circle bundles over non-orientable surfaces.

The discussion above shows that for any bordered Lefschetz fibration Il : £ — 3, the spinal
open book 7 := 01l is necessarily uniform, and the associated branched covers ¥; — 3 have
no branch points. The more precise version of Theorem [A] proved in [LVW] will imply that
every spinal open book which contains a planar page and supports a strongly fillable contact
structure must be uniform—moreover, if it is also amenable, then its strong fillings can be
classified entirely in terms of Lefschetz fibrations.

5Note that by capping ¥; and Yo with disks, the existence of the required branched cover ¥, — ¥ is
equivalent to a question about the existence of a branched cover of closed surfaces with certain prescribed
branching orders. Questions of this type can be subtle in general, but are trivial e.g. if the degree is 2, or more
generally if all branch points are required to be simple, cf. [EKS84 Prop. 2.8].
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Example 1.17. For any bordered Lefschetz fibration over the disk, the spinal open book
induced at its boundary is an ordinary open book (see Example [[L9). In fact, any ordinary
open book on a closed and connected 3-manifold, when regarded as a spinal open book, is
uniform and Lefschetz-amenable. Of course not every open book is the boundary of a bordered
Lefschetz fibration; this depends on its monodromy!

Example 1.18. For a bordered Lefschetz fibration over the annulus, if the fibration restricted
to the horizontal boundary is trivial, then the induced spinal open book at the boundary is
equivalent to a symmetric summed open book as defined in [Wenl3a].

We now define various types of symplectic structures that are natural to consider on the
total space of a bordered Lefschetz fibration II : £ — . Note that the orientations of E and
> give rise to a natural orientation of the fibers. We shall say that a symplectic form w on F
is supported by Il whenever the following conditions hold:

(1) Every oriented fiber is a symplectic submanifold away from Et;

(2) A neighborhood of E* admits a smooth almost complex structure J which restricts
to a positively oriented complex structure on the smooth part of each fiber and satisfies
w(v, Jv) > 0 for every nonzero vector v € TE|gerit, i.e. J is tamed by w at B,

For the following definitions, assume always that w is a symplectic structure supported

by II.

Definition 1.19. We say that w is weakly convex if it can be written near o, F as w = d\,
where \ is a smooth 1-form that restricts to 0, F as a contact form whose Reeb orbits are
boundary components of fibers.

Definition 1.20. We say that w is strongly convex if it can be written near 0F as w =
dA, where X is a smooth 1-form that restricts to dF as a Giroux form for w = JII (see

Remark [[.T3)).

Definition 1.21. We say that w is Liouville if it is strongly convex and the primitive A of
Definition [L.20] extends to a global primitive of w on F.

These three definitions are designed so that a suitable smoothing of F at the corners will
inherit the structure of a weak/strong/exact symplectic filling of (M, &), with £ supported
by 7, see §2.51

To move from the Liouville to the Stein case, it will be convenient to introduce a notion
that is intermediate between Weinstein and Stein structures.

Definition 1.22. Suppose W is a compact manifold with boundary, possibly also with cor-
ners. An almost Stein structure on W is a pair (J, f) consisting of an almost complex
structure J and a smooth function f : W — R such that, writing A := —df o J, d\ is a
symplectic form taming J (i.e. f is J-convex) and A restricts to a contact form on every
smooth face of 0W. If M := dW is smooth and § = ker(Arar), we will call (W, J, f) an
almost Stein filling of (M, ¢).

We assign the natural C*-topology to the space of almost Stein structures and say that two
such structures are almost Stein homotopic if they lie in the same connected component
of this space. Any Stein structure J determines an almost Stein structure (J, f) uniquely
up to homotopy, where uniqueness follows from the fact that the space of exhausting J-
convex functions is convex. We should point out two aspects of almost Stein structures that
differ from Stein structures: first, J is not assumed integrable, and second, f is not assumed
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constant at the boundary (indeed, it cannot be constant on dW if there are corners). The
latter has the consequence that for a fixed J, the space of functions f making (J, f) an almost
Stein structure is not generally convex—Iinear interpolations between two such functions may
fail to induce contact structures at the boundary. For this reason we can no longer regard
the J-convex function as auxiliary data. It is clear however that any almost Stein structure
(J, f) determines a Weinstein structure on the smooth manifold with boundary obtained by
rounding the corners of 0W , and this structure is canonical up to Weinstein homotopy. Indeed,
the Liouville form —df o.J is dual to a Liouville vector field that points transversely outward at
every smooth face of W, and this vector field is automatically gradient-like with respect to f.
One can therefore perturb f if necessary to make it Morse (cf. Remark [[T]), and then modify
it outside a neighborhood of its critical points to a Lyapunov function that is constant on the
smoothed boundary, the result being unique up to homotopy through Lyapunov functions
fixed near the critical points. Using [CEI2], this implies that for any manifold W with
boundary and corners, there is a canonical one-to-one correspondence between almost Stein
homotopy classes on W and Stein homotopy classes on W after smoothing corners.

Definition 1.23. Given a bordered Lefschetz fibration Il : £ — ¥, we will say that an almost
Stein structure (J, f) on E is supported by II if the following conditions are satisfied:

e There exists a complex structure j on ¥ such that IT: (E,J) — (X, ) is pseudoholo-
morphic;

e The 1-form A\j := —df o J restricts to 0F as a Giroux form for w = 0II (see Re-
mark [[T3);

e For every z € 3, f is constant on each connected component of 0F.;

e The maximal J-complex subbundle of T'(0; F) is invariant under the Reeb flow deter-
mined by As|7(, 5)-

Observe that if (J, f) is supported by II, then every fiber E, — FE inherits a Stein structure
J|rE, with plurisubharmonic function f|g,, so in particular the fibers are both J-holomorphic
and symplectic, and —d(df o J) defines a supported Liouville structure.

The following variation on results of Thurston [Thu76] and Gompf [GS99] will be proved
in §2.41
Theorem 1.24. For any 4-dimensional bordered Lefschetz fibration 11 : EE — 3, the spaces
of supported symplectic structures that are weakly or strongly convexr are both monempty and
contractible. Moreover, if the Lefschetz fibration is allowable, then the same is true for the
spaces of supported Liouville structures and almost Stein structures. In each case, the corners
can be smoothed to produce a weak/strong/exact/Stein filling of the contact manifold supported
by 7 := 0ll, and this filling is canonically defined up to deformation equivalence.

1.2. Surgery on spinal open books. There are various natural topological operations on
spinal open books that give rise to symplectic cobordisms. We now briefly describe two such
operations.

1.2.1. Spine removal surgery. The following makes precise the non-exact cobordism construc-
tion that was sketched in Theorem [D] of the introduction, generalizing previous constructions
from [ELi04L[GS12,[Wen13h] (see also the higher-dimensional analogues in [MNWT13l[DGZ14]
[KIulg]). For this discussion, it is useful to allow a slight loosening of the main definition of
this paper: we will say that a generalized spinal open book is an object satisfying all
the conditions of Definition except that fibers of the paper 7mp : Mp — S! are allowed
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to have components with no boundary. A generalized spinal open book may therefore have
some connected components that have neither spine nor boundary, but are simply fibrations
of closed pages over S'; note that a Giroux form cannot exist in this case, due to Stokes’
theorem. Such an object is then a spinal open book in the usual sense—and thus supports a
contact structure—if and only if it has no closed pages.

Suppose (M’,€) is a closed contact 3-manifold containing a compact 3-dimensional sub-
manifold M (possibly with boundary) on which ¢ is supported by a spinal open book 7 with
spine 7y, : My, — ¥ and paper 7p : Mp — S'. Choose an open and closed subset

yrem <=y,

The boundary of the corresponding union of spinal components 7y, L(xrem) = My, is a disjoint
union of 2-tori, each foliated by an S'-family of oriented circles Wthh are fibers of mx,. We
can then define a new compact manifold M from M (and a closed manifold M’ from M) by
removing the interior of m5,'(¥"™) and attaching solid tori S* x D? to each of the connected
components of 0 (s, 1(E’rem)) so that the oriented circles {#} x dD? match the leaves of the
foliation. (Some schematic pictures of this procedure are shown in Figures and [I1] in
§4.21) The new domain M < M’ inherits from 7 a generalized spinal open book 7 with spine
ME\T( (3**™) and pages that are obtained from the pages of m by attaching disks to cap
every boundary component touching g, (Erem). We say that 7 is obtained from 7 by spine
removal surgery.

The spine removal operation corresponds to a cobordism that can be understood as a form
of handle attachment. In particular, we can consider the compact 4-dimensional manifold
with boundary and corners

X = ([0,1] x M") U1 gt (sremy (27 % D?),

¢

where Y™ x 0D? is identified with 74! (X™™) via a choice of trivialization mg!(Xre™) =~
yrem xS After smoothing the corners, we have

0X = —M'ub.
The following result will be proved in §4.2

Theorem 1.25. Suppose Q is a closed 2-form on M’ such that Q¢ > 0 and Q|W£1(Erem) is

exact. Then for any choice of compact subset ¥ in the interior of 3™, the cobordism X
described above admits a symplectic structure w with the following properties:
(1) w\TM/ = Q.
(2) w is positive on the interior of every page of 7.
(8) On every connected component of M’ that is not foliated by closed pages ofﬂ' there
exists a contact structure f which is supported by T in M matches & on M’\M =
M'\M, and satisfies W|g > 0.

(4) For every z € ¥, the core {z} x D? and co-core ™™ x {0} of the handle ¥*™ x D?
are both symplectic submanifolds, the former with reversed orientation.

We will see in the proof that the disk D? in the symplectic handle "™ x D? can freely be
replaced by any other compact oriented surface with connected boundary; more generally, one
could equally well remove several spine components at once and replace them with Y™™ x §
for a compact oriented surface S with the right number of boundary components. The key
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intuition is to view S as a symplectic cap for the appropriate disjoint union of fibers in the con-
tact circle fibration ms; : My, — X, and this is also the right perspective in higher-dimensional
cases such as [DGZI14l[KIulg]. We will not comment any further on these generalizations since
the applications in this paper do not require them.

1.2.2. Fiber connected sum along pages. The following is a special case of a construction due
to R. Avdek [Avd]. As in the previous section, suppose (M’,§) is a closed contact 3-manifold
containing a compact domain M < M’ on which £ is supported by a spinal open book 7.
Suppose S'is a compact, connected and oriented surface with boundary, and Sy, S1 < Mp are
pages of w admitting orientation preserving diffeomorphisms

;0 S — 5, i=0,1.

By a minor adjustment to the proof of Theorem [[7] (see Lemma 27 in particular), one can
find a Giroux form « for m on M such that ¢¥fa = ¢fa. In the terminology of [Avd],
So and S; can then be regarded as a pair of identical Liouwville hypersurfaces in M. Choose
neighborhoods [—1,1] x.S; =~ N (S;) € Mp of S; for i = 0,1 and define the compact 4-manifold
with boundary and corners

X o= ([0,1] % M) Unsunsy) ([0,1] x [=1,1] x 5)
by identifying {i} x [—1,1] x S with N(S;) for i = 0,1. After smoothing corners, we have

0X = —M'uM’,

where M’ is obtained from M’ by performing a so-called Liouwville connected sum along Sy
and S7. Then M' contains a compact subdomain M which naturally carries a spinal open
book 7r; it is obtained from 7r by attaching 1-handles to the vertebrae and concatenating
families of pages correspondingly. The following is an immediate consequence of the main

result in [Avd]:

Theorem. The manifold X described above can be given the structure of a Stein cobordism
with concave boundary (M',£) and convex boundary (M',€), where £ is a contact structure
which matches & on M'\M = M'\M and is supported by 7 on M.

It was observed in [Avd] that the simplest case of this operation turns ordinary open books
into symmetric summed open books in the sense of [Wenl3al, i.e. disk vertebrae become
annuli. More generally, this construction can be used to give an alternative proof of the fact
that allowable bordered Lefschetz fibrations over arbitrary compact oriented surfaces always
admit Stein structures—the details of this argument have been worked out by Baykur and

the second author, see [BV15].

1.3. Partially planar domains, torsion and filling obstructions. We now state a few
theorems that are straightforward generalizations of results from [Wenl3a], and will all be
proved in §5] using spine removal surgery. Most of them can also be derived from algebraic
counterparts that we will prove in [LVW], involving contact invariants in symplectic field
theory and embedded contact homology.

The following is the basic condition needed in order to apply the machinery of pseudoholo-
morphic curves in studying spinal open books.

Definition 1.26. A 3-dimensional spinal open book will be called partially planar if its
interior contains a page of genus zero. A compact contact 3-manifold (M, ¢), possibly with
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boundary, will be called a partially planar domain if £ is supported by a partially planar
spinal open book. We then refer to any interior connected component of the paper containing
planar pages as a planar piece.

Definition 1.27. Suppose (M,§) is a closed contact 3-manifold and 2 is a closed 2-form
on M. A partially planar domain My embedded in (M, ¢) is called Q-separating if it has a
planar piece Méj c ]\Zfo such that €2 is exact on every spinal component touching Méj . It is
called fully separating if this is true for all closed 2-forms 2 on M.

Note that this condition depends only on the cohomology class [Q] € H3, (M), and it is
vacuous if ) is exact. We will see that it determines precisely which results on the strong
fillings of spinal open books admit extensions for weak fillings.

Example 1.28. Since all closed 2-forms are exact on a solid torus D? x S, every planar
open book is a fully separating partially planar domain (cf. Example [[9)). As explained in
[WenT3al[Wen10], a Giroux torsion domain can also be viewed as a partially planar domain
in terms of the binding sum construction, but its spinal components are thickened 2-tori and
thus can have cohomology, so such a domain is fully separating if and only if it separates the
ambient 3-manifold.

Our first main result about partially planar domains generalizes the main theorem from
[ABW10]; indeed, taking @ = 0 in the following statement produces an obstruction to the
existence of non-separating hypersurfaces of contact type.

Theorem 1.29. Suppose (M, &) is a closed contact 3-manifold, Q2 is a closed 2-form on M
and (M,§) contains an Q-separating partially planar domain. Then there exists no closed
symplectic 4-manifold (W,w) admitting a non-separating embedding v : M — W for which
wle > 0 and [t*w] = [Q] € H3R (M).

The following related result generalizes a planarity obstruction originally due to Etnyre
[Etn04b]. Recall that (W,w) is called a symplectic semifilling of (M,¢£) whenever it is a
filling of the disjoint union of (M, &) with some other (possibly empty) contact manifold.

Corollary 1.30. If (M,€) is a closed contact 3-manifold containing a partially planar do-
main, then it admits no weak semifilling (W,w) with disconnected boundary for which the
partially planar domain is (w|rar)-separating.

Proof. We use a suggestion by Etnyre that first appeared in [ABWI0]: if such a semifilling
exists, then one can attach a Weinstein 1-handle to build a weak filling of the boundary
connected sum of its two components, and then cap the result via [Eli04] or [Efn04a]. This
produces a closed symplectic manifold (W, w) that contains (M, &) as a non-separating hyper-
surface in violation of Theorem O

Next, we can consider the natural generalization of the local filling obstruction known as
planar k-torsion from [Wenl3al into the spinal open book setting.

Definition 1.31. Suppose (M,§) is a closed contact 3-manifold and 2 is a closed 2-form
on M. Then for k > 0 an integer, a partially planar domain My < M is called a (spinal)
planar torsion domain of order k (or simply a planar k-torsion domain) if it is not
symmetric and contains an interior planar piece Méj c ]\Zfo whose pages have k + 1 boundary
components. Further, it is an (2-separating planar k-torsion domain if 2 is exact on all
spinal components touching M{", and a fully separating planar k-torsion domain if this is
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true for all closed 2-forms 2 on M. Any contact 3-manifold containing such a domain is said
to have (perhaps 2-separating or fully separating) planar k-torsion.

The less general version of this definition in [Wenl3a] was expressed in the framework of
blown up summed open books, i.e. spinal open books whose vertebrae are all disks and annuli.
We have inserted the word “spinal” in front of “planar torsion” in the above definition to
distinguish the new notion from the less general version, but we shall usually drop the word
“spinal” from the nomenclature: this will not cause any confusion since anything satisfying
the old definition also satisfies the new one, and the results we are able to prove with the new
definition parallel results in [WenI3a] almost exactly. For instance, the less general version of
planar O-torsion was shown in [Wenl3a] to be equivalent to overtwistedness, and this is still
true in the new framework:

Proposition 1.32. A closed contact 3-manifold is overtwisted if and only if it has planar
0-torsion.

Proof. If (M, €) is overtwisted, then Eliashberg’s flexibility result [Eli89] implies that (M, )
contains a so-called Lutz tube, and any neighborhood of this contains a planar 0-torsion

domain by [Wenl3al Prop. 2.19]. For the converse, see Lemma 2.9 O

It was also shown in [Wen13al that anything with Giroux torsion also has planar 1-torsion,
but it was left open whether the converse might be true. Working with spinal open books
makes it easy to find a counterexample to this converse:

Proposition 1.33. If (M, ) is a closed contact 3-manifold with positive Giroux torsion then
it has planar 1-torsion. However, there exist closed contact 3-manifolds that have planar
1-torsion but no Girouz torsion.

Proof. The fact that Giroux torsion implies 1-torsion was shown in [Wenl3al; in fact, any
Giroux torsion domain has an open neighborhood that contains a planar 1-torsion domain
whose pages and vertebrae are all annuli. Some examples with planar 1-torsion but no Giroux

torsion are exhibited in §L4t see Corollary and Remark [L400 O

We will prove the following statement in §0l by using spine removal surgery to reduce it to
standard results in closed holomorphic curve theory.

Theorem 1.34. If (M,&) has planar torsion, then it is not strongly fillable. Moreover, if
(M, &) has Q-separating planar torsion for some closed 2-form Q on M, then it admits no
weak filling (W,w) with w|rpr cohomologous to M. In particular (M,§) is not weakly fillable
whenever it has fully separating planar torsion.

1.4. Fillability of circle bundles. As an application of the filling obstructions in the pre-
vious subsection, we now exhibit a large class of non-fillable contact 3-manifolds that were
not previously accessible to holomorphic curve methods. (Some of them can be understood
using techniques from Heegaard Floer homology; see especially [HKM.Mas12].) They take
the form of circle bundles with S!'-invariant contact structures partitioned by multicurves.
Throughout this subsection, assume 7 : M — B is a smooth S'-bundle with structure
group O(2) acting on the circle by rotations and reflections, where the base B is a closed
and connected (but not necessarily orientable) surface, and the total space M is oriented.
If B is orientable, then the O(2)-structure lifts to the structure of a principal S!-bundle,
with the S'-action defined up to a sign, so we can speak of S'-invariant contact structures
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on M. More generally, we will abuse terminology and call a contact structure S'-invariant
if its expression in every O(2)-compatible local trivialization of 7 : M — B is O(2)-invariant.
This is the same as saying that it lifts to an S'-invariant contact structure on the induced
fibration over the canonical oriented double cover of B. As usual, all contact structures in
this discussion are assumed to be positive and co-oriented.

Any S'-invariant contact structure & on M determines a 1-dimensional submanifold I' ¢ B
(i.e. a multicurve) consisting of all points at which the fiber is Legendrian. One says in this
case that £ is partitioned by I'. Notice that outside of I', transversality to £ determines an
orientation of the bundle and therefore an orientation of B\I'. Moreover, I" automatically has
the following property:

Definition 1.35. Suppose B is a closed surface and I' = B is a multicurve such that B\I'
is oriented. We say that I" inverts orientations if for every sufficiently small neighborhood
U < B that is divided by I' into two components U, and U_, U can be given an orientation
that matches that of B\I" on U, and is the opposite on U_.

If B is orientable, this condition simply means that I" divides B into components B, and
B_ (each possibly disconnected) which inherit opposite orientations. Some concrete examples
where B is non-orientable (in particular the Klein bottle) can be constructed in the form of
contact parabolic torus bundles; see [LVW]. The following result is due to Lutz [Lut77] in the
orientable case, and in general it can easily be derived from Theorem [[L7 via Proposition [[.37]
below.

Proposition 1.36. Suppose m : M — B is a smooth circle bundle with structure group O(2),
where B is a closed connected surface and M is oriented, and I’ < B is a nonempty multicurve
such that B\I' is orientable and T' inverts orientations. Then each choice of orientation on
B\ determines an S'-invariant contact structure &r that is partitioned by T' and is positively
transverse to the fibers over B\I'. Moreover, the contact structure with these properties is
unique up to 1sotopy.

We will see in [LVW] that the strong symplectic fillings of each circle bundle (M, {r) arising
from the above proposition can be classified completely whenever its base is orientable, and
also in some cases where the base is not orientable. The basic observation behind this is that
there is a natural correspondence between S'-bundles 7 : M — B with nonempty multicurves
I' ¢ B satisfying the stated conditions in Prop. and spinal open book decompositions
of M with annular pages. Topologically this is easy to see: choosing a tubular neighborhood
Ur < B of T', we identify each connected component of the closure U with an interval bundle
over S!, which gives 771 (Ur) the structure of a disjoint union of smooth annulus bundles
over S' whose fibers each have boundary equal to some pair of oriented fibers of . We
therefore call W_l(ﬁp) with its associated fibration over S! the paper 7p : Mp — S', and the
spine 7, : My, — ¥ is defined as the restriction of 7 to 7—(B\Ur), with the fibers oriented to
be compatible with the orientation of ¥ := B\Ur < B\I'. Note that if B is orientable, then
every component of I' € B has trivial normal bundle, so the monodromies of components
of mp : Mp — S! (defined after choosing a trivialization of 7y, : My — X) can be taken
to be powers of Dehn twists, fixing the boundary of the annulus. This is not always true
if B is non-orientable: in particular, if v < I' is a component whose neighborhood in B is
a Mobius band, then the monodromy of the corresponding component of 7p : Mp — S!
interchanges the boundary components of the annulus, meaning this component of Mp has
connected boundary, with multiplicity 2 (cf. Definition [L3]).
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Proposition 1.37. The spinal open book 7 associated to a circle bundle # : M — B and
nonempty multicurve I' < B as described above supports a contact structure that is S'-
invariant and partitioned by T'. Moreover, any S'-invariant contact structure partitioned
by I is isotopic to one that is supported by .

Proof. It is easy to check that the supported contact structure constructed by Theorem [I7]
in this setting is S'-invariant and partitioned by I'. In the other direction, suppose & is
Sl-invariant and partitioned by I', and choose a tubular neighborhood Ur of I' = B such
that the pages of the resulting fibration 7p : Mp — S! are tangent to &r along 7~ (I'). This
means that every contact form for & has a Reeb vector field transverse to the pages in some
neighborhood of 7= 1(T"). On 7~ 1(B\Ur), &1 is positively transverse to the contact vector field
which generates a fiber-preserving S'-action, hence one can choose a contact form for which
this vector field is the Reeb field. One can now piece this together with a contact form near
7 1(I") whose Reeb field is transverse to the pages so that the conditions of a Giroux form
are satisfied. O

Since the pages of the natural spinal open book on (M, &) have genus zero, we can imme-
diately apply the Q = 0 case of Theorem [[.29] and Corollary [.30 to conclude:

Corollary 1.38. For any nonempty multicurve I' < B as in Proposition [L.30, the result-
ing contact circle bundle (M,&r) admits no non-separating contact-type embeddings into any
closed symplectic 4-manifold, and it also admits no strong semifillings with disconnected
boundary. O

It is similarly easy to identify cases in which (M, &r) has planar torsion, and is therefore not
strongly fillable. If there is torsion it will be of order 1, since the pages of the spinal open book
7 supporting (M, &r) are annuli, but the key question is in which cases 7 is symmetric. The
vertebrae of 7 are equivalent to the connected components By, ..., B, of B\I', and the pages
come in S'-families corresponding to the connected components of I'. Given a component
v < I, if it bounds the component B; < B\I', then Bj; lies either on one side of v or on
both, where the latter is possible only if v has a non-orientable normal bundle, so B is non-
orientable. Symmetry then means that there exist fixed numbers kq,..., k. € {0,1,2} such
that for each j = 1,...,7, every component of I' touches B; on exactly k; sides. Clearly none
of the k; can be 0 in this case, since it would mean there is a component B; whose closure
does not touch I' at all. If any k; = 2, then it means every component of I' must have that
particular component B; on both sides, hence r = 1 and B is not orientable. In the remaining
case, k1 = ... = k, = 1, and since at most two components B; can touch each component
of I'; we conclude » = 2 and B is orientable with I' splitting it into two components. We've
proved:

Corollary 1.39. Suppose &r is an S -invariant contact structure on a circle bundle ©: M —
B, partitioned by a nonempty multicurve I', and that either of the following holds:

(i) B\I' has at least three connected components;

(i) B\I' is disconnected and B is non-orientable.

Then (M, &r) has (untwisted) planar 1-torsion, so in particular it is not strongly fillable. [

Remark 1.40. If B is oriented with positive genus and M is not a torus bundle, then
[Mas12l Theorem 3] implies that (M, &r) has zero Giroux torsion whenever no two connected
components of I' are isotopic. Using the theorem in [LVW] that planar 1-torsion implies
algebraic 1-torsion, one can now extract from Corollary many new examples of contact
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manifolds with algebraic 1-torsion but no Giroux torsion. This generalizes a result for trivial
circle bundles that was proved in [LW1I].

Remark 1.41. Corollaries and do not generally hold for weak fillings or semifill-
ings. Indeed, [NWT1l Theorem 5] implies that whenever every connected component of the
multicurve I' © B is nonseparating, (M, {r) admits both a weak filling and a weak semifill-
ing with disconnected boundary. We can conclude from Corollary and Theorem [[.34]
that the symplectic structures of these weak fillings must always be nonexact on some spinal
component in (M, &r).

2. CONTACT AND SYMPLECTIC STRUCTURES

The main objectives of this section are the proofs of Theorems [[7 and [[L24] about the
existence and uniqueness of supported contact and symplectic structures, plus a related result
about almost Stein structures that will be needed for the classification of Stein fillings in
[LVW]. We begin in §2T] with a short collection of “Thurston-type” lemmas for defining
contact or symplectic structures on fibrations. Section will then fix some notation for
collar coordinates and open coverings of spinal open books that will be useful throughout the
rest of the paper. Theorem [[L7] is proved in §2.3] and the proof of Theorem is carried
out mainly in §2.4] with the detail about smoothing corners dealt with in §2.5

2.1. Several varieties of the Thurston trick. Since it will be useful in a wide range of
contexts, we collect in this subsection several elementary results that are variations on the
main trick behind Thurston’s construction of symplectic forms on total spaces of symplectic
fibrations [Thu76]. All of these results have higher-dimensional analogues, but with the
exception of Remark 23] we will keep things as brief as possible by focusing on dimensions 3
and 4.

All manifolds in the following will be compact and oriented, and though it will not yet play
a serious role in the discussion, they may also have boundary or corners.

2.1.1. Contact forms.

Proposition 2.1. Assume M is a compact oriented 3-manifold, 7 : M — S' is a submersion,
o is a positively oriented volume form on S, and X is a 1-form on M such that d\ is positive
on every fiber of w. Then Ak := XA+ K n*0 is a contact form for all K » 0, and this is true
for all K =0 if X is contact.

Proof. We have m*a A dA > 0 since dA\ is positive on fibers, so the result follows by writing
1
)\K/\d)\KIK(W*O'/\d)\-i-?)\/\d)\).

O

Proposition 2.2. Assume M is a compact oriented 3-manifold, Y is a compact oriented
surface, m : M — ¥ is a submersion, o is a 1-form on ¥ with do > 0, and X\ is a 1-form
on M that is positive on every fiber of m and satisfies dA(v,-) = 0 for all v € ker Tw. Then
Ak = A+ Kn*0 is a contact form for all K » 0, and this is true for all K = 0 if \ is
contact.
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Proof. Since 7*¢ and dX both annihilate vertical vectors, we have 7o A d\ = 0, but also
A A m¥do > 0 due to the condition do > 0 and the positivity of A on fibers. The result thus
follows by writing

)\KAd)\KZK()\AW*dO'Jr%)\Ad)\).
O

Remark 2.3. If we regard o in Proposition 211 as a contact form on S' and the fibers of
7w : M — S' as Liouville domains with respect to \, then the result has a straightforward
generalization to higher dimensions as a statement about a Liouville fibration over a contact
manifold. Proposition similarly becomes a statement about a contact fibration over a
Liouville domain (X, o), the only subtle point being the condition that dA should annihilate
vertical vectors: if 7 : M — ¥ is a 3-dimensional fibration, then the secret meaning of
this condition is that it reduces the structure group to the group of strict contactomorphisms
on S, i.e. diffeomorphisms that preserve a fixed contact from and not only a contact structure.
The natural generalization to higher dimensions can thus be phrased in terms of strict contact
fibrations.

2.1.2. Symplectic and Liouwville forms.

Proposition 2.4. Assume FE is a compact oriented 4-manifold, > is a compact oriented
surface, 11 : E— 3 is a submersion, u is a positive area form on ¥ and w is a 2-form on E
that is positive on all fibers of Il. Then wg = w + K II*u is symplectic for all K » 0, and
this is true for all K = 0 if w is symplectic.

Proof. The positivity of w on fibers implies II*i4 A w > 0, so the result follows by writing
1
wK/\wKzK(QH*M/\w—i—Ew/\w).
O

If both ¥ and the fibers of II : £ — ¥ have nonempty boundary, then we can also state
a version specially for exact symplectic forms; note that in this case F must be a manifold
with boundary and corners.

Corollary 2.5. Assume E is a compact oriented 4-manifold, 3 is a compact oriented surface,
II: F — X is a submersion, o is a 1-form on X satifying do > 0, and X is a 1-form on E
such that dX\ is positive on fibers of II. Then A := X+ K1I*0 is a Liouville form for all
K » 0, and this is true for all K = 0 if A is Liouville. O

2.1.3. J-convex functions. Recall that on an almost complex manifold (W, J), a smooth func-
tion f: W — R is called J-convex (or plurisubharmonic) if the 1-form A; := —df o J is
the primitive of a symplectic form dA; that tames J.

Proposition 2.6. Assume (E,J) is a compact almost complex 4-manifold, (3, 7) is a compact
Riemann surface, 11 : (E,J) — (X,7) is a pseudoholomorphic submersion, ¢ : ¥ — R is a
j-convex function and f : E — R is a function whose restriction to every fiber of 11 is J-
convex. Then fr := f+ K(poll) is a J-convez function for all K » 0, and this is true for
all K =0 if f is J-convex.
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Proof. The 1-forms ¢ := —dp o j on ¥ and A\ = —df o J on E satisfy the hypotheses of
Corollary 2.5l and since TTT o J = j o TTI, we have

Mg i=—dfgoJ=—dfoJ—Kd(poll)oJ =X+ KII*o.

Then for any nontrivial v € TF,
1
d\k (v, Jv) = KITI*do (v, Jv) + d\(v, Jv) = K {da(ﬂ*v,jﬂ*v) + Ed)\(v, Jv)

This is clearly positive for all K > 0 if d\ tames J; more generally, the second term will
always be positive when v lies in some neighborhood of the vertical subbundle, and if v is
outside of this neighborhood, then this term will be dominated by do(Il,v, jII,v) as long as
K > 0 is large enough. O

2.2. Collar neighborhoods and coordinates. In this section we fix some notation that
will be useful throughout the rest of the paper.
Fix a compact 3-manifold M with spinal open book

= (rg: Mg > %, mp: Mp—S', {mr}rconm),

and choose an oriented foliation F of dM with closed leaves that represent the homology
classes mp. The circle bundle 7y, : My — 3 is necessarily trivializable, so for convenience we
shall fix an identification of My, with ¥ x S such that

Ty My =Y xSt - ¥ (2,0) - 2

This defines the coordinate 6 € S! globally on Ms. The boundary 0% admits a collar neigh-
borhood

N(@Y)c X
whose connected components can be identified with (—1,0] x S, carrying coordinates (s, ¢).
We shall denote the resulting collar neighborhood of dMy in My, by

N(0Ms) := 75 (N(OX)) = N(0%) x S*;

its connected components are identified with (—1,0] x S* x S! by our chosen trivialization
and thus carry coordinates (s, ¢, 0).
The paper can be identified in turn with a mapping torus

Mp=(RxP)/~  where (r,p) ~ (T + 1, u(p)),
Mp =5 SV = R/Z: [(r,p)] — [7],

where the fiber P := 71131 (%) is a compact oriented (but not necessarily connected) surface with
boundary, and the monodromy u : P — P is an orientation-preserving diffeomorphism that
preserves each connected component of P. In contrast to the setting of ordinary open books,
here we must allow the possibility that p is nontrivial near the boundary, e.g. it may permute
boundary components. We can assume without loss of generality however that ¢ P has a collar
neighborhood A/ (0P) = P whose connected components have coordinates (¢,0) € (—1,0] x S*
in which p(t,0) = (¢,0), hence the corresponding collar neighborhood

N(0Mp) < Mp
of 0Mp is identified with
(R x (—1,0] x S x {1,...,N}) /(T,t,H,i) ~(r+1,4,0,0())  Mp
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for N := #my(0P) and some permutation o € Sy. The connected components of N'(0Mp) are
now in one-to-one correspondence with the invariant subsets of {1,..., N} on which the cyclic
subgroup (o) c Sy generated by o acts transitively. Given such a subset [ < {1,..., N}, if
the action of (o) on I has order m € N, then the map [(7,t,6,7)] — ([7/m],t,0) identifies the
corresponding component of N (0Mp) diffeomorphically with S' x (—1,0] x S'. Denote the
resulting coordinates on components of N (0Mp) by (¢,t,6). We now have

7TP(¢7 ta 0) = m¢7

where the integer m € N may vary for different components of N (0Mp). These integers
are the multiplicities of 7p : Mp — S! at its boundary components (cf. Definition [3).
Note that there is some freedom to change these coordinates on each component of N (0Mp)
without changing the formula for 7p, thus we can assume without loss of generality that
the chosen oriented foliation F on dM with leaves homologous to the preferred meridians is
generated by the flow of the coordinate vector field 0.

To summarize, we have defined collar neighborhoods of the boundary in ¥, My and Mp
whose connected components carry positively oriented coordinates as follows:

(s,0) € (=1,0] x St = (=1,0] x 0% = N(d%) c X,
(5,0,0) € (—1,0] x St x S' = (—1,0] x My, = N (0Mx) < Ms,
(6,t,0) € ST x (—1,0] x S' = (—=1,0] x dMp = N(0Mp) = Mp.
These coordinates satisfy ms(s, ¢, 0) = (s,¢) € N(0X) on N (0Msx) and wp(¢p,t,0) = m¢p € S*
on N (0Mp), where the multiplicity m € N may have different values on distinct connected

components of N'(0Mp). We can also assume without loss of generality that the coordinate
labels are consistent in the sense that the induced 2-torus coordinates

(6,0) € ST x ST < oMy,
match the corresponding ¢- and 6-coordinates defined on N(0Mp) wherever it overlaps
N (0Ms).
To continue, let us add the assumption that 7w admits a smooth overlap (see Definition [[3]).
We can then introduce a decomposition of M into open subsets

M:M/XjUM/IUMPUMa
defined as follows:

e Mp is the complement of {t = —1/2} €« N(0Mp) in Mp, so the connected components
of N'(0Mp) n Mp inherit coordinates (¢,¢,6) € St x (—1,—1/2) x SL.

o My is the complement of {s = —1/2} < N(0Mx) in My, and we will always use
the chosen trivialization of 7y, to identify this with a subset of ¥ x S!, denoting the
coordinate on S! by §. The connected components of N (0Ms) N Z\W/g thus inherit
coordinates (s, ¢,0) € (—1,—1/2) x St x SL.

e My is the union of A/ (0Msy) with the components of N'(0Mp) that touch My, so its

connected components can each be identified with (—1,1) x S! x S and we assign
coordinates (p, ¢, ) to these components such that

MIF\MZ:{[)QO}, MI(\MP:{p>O}.

The smooth overlap assumption means we can also assume these coordinates are
related to the previously chosen coordinates on these subsets by p = s and p = —t
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respectively, with 6 and ¢ matching the existing coordinates on N (0Msx) and N (0Mp)
in the obvious way. The region Z\W/I will be called the interface between the spine
and the paper.

o ]\7@ is the union of the components of N (0Mp) that touch M. Its connected compo-
nents therefore carry collar coordinates (¢,t,6) € S* x (—1,0] x S*, but for consistency
with ]T/I/I, we will prefer to use an alternative coordinate system

(p,¢,0)€[0,1) x St x ' M;

defined by p := —t.
Note that the above definitions imply

N(0Mp) c ]T/I/I U ]\7@,

hence we can and sometimes will use the p-coordinate as an alternative to the t-coordinate
on N (0Mp); they are related by p = —t.

2.3. Spinal open books support contact structures. We will say that a smooth 1-form
o on M is a fiberwise Giroux form if the following conditions hold:

e da is positive on the interior of every page;

e « is positive on the fibers of 7y : My — ¥, and the tangent spaces to these fibers are
contained in ker da;

e At OM, « is positive on all boundaries of pages, the tangent spaces to these boundaries
are also contained in ker da, and « vanishes on the foliation F chosen at the beginning

of §2.21

A fiberwise Giroux form is a Giroux form if and only if it is contact, but since we have not
required the latter in the above definition, the space of fiberwise Giroux forms is conver. We
will show in the following that it is relatively easy to construct fiberwise Giroux forms, and
the main idea in the proof of Theorem [[.7] is—following the ideas of Thurston outlined in
2.1 to turn these into Giroux forms by adding large multiples of certain 1-forms pulled
back from the bases of the fibrations.

Observe that since every component of > has nonempty boundary, we can choose a 1-form
o on X satisfying

do>0on X, o =e¢’d¢ on N(0%).
Similarly:

Lemma 2.7. On Mp there exists a 1-form n such that dn is positive on each fiber of wp :
Mp — St and n = et df in N(0Mp).

Proof. One only has to observe that since every connected component of P := 711;1(*) has
nonempty boundary by assumption, the space of Liouville forms on P which match e’ df in
the collars is nonempty and convex. The desired 1-form 7 can thus be constructed by choosing
such a Liouville form 79 and defining 7 on each fiber of the mapping torus with monodromy
i as a suitable interpolation between 79 and p*ng; cf. [Etn06, Theorem 3.13]. O

In order to construct a fiberwise Giroux form, we next choose a smooth function

F:Mp—>(0,1]
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which is identically equal to 1 outside of N (0Mp) and takes the form e”f(p) in (p,,0)-
coordinates on N'(0Mp) < Mz U M;, where f - (—1,1) — (0, 1] is a smooth function satisfying
the conditions

e f(p) =1 for p <O0;

e f'(p) <0 for p > 0;

e f(p) =e P for p near 1.
In particular, this implies that F admits a smooth extension over N (J0My) of the form
F(s,¢,0) = e*. Now using the fiberwise Liouville form 7 provided by Lemma 27 we can
define a fiberwise Giroux form on M by

dfd  on My,
o =
Fn on Mp.

It takes the form o = f(p) df on Mz o M.
We show next how to turn fiberwise Giroux forms into Giroux forms. For any constant
§ € (0,1/2), choose a pair of smooth functions g%, g : [0,1) — [0,2] such that
e g2(p) = e for p near 0;

93(0) = 0 and (g3)'(0) > 0;
(¢%)(p) and (g3)'(p) are both nonnegative for all p;
9%(p) = g3(p) =2 for all p = 4.
Using this, we define a smooth function Gs : Mp — [0, 2] by

2 on Mp,

Gs = {9%(p) on N(dMp) n Mg,
92(p)  on Mp.

Then, defining the Liouville form ¢ as a 1-form on My, by identifying it with its pullback
my.0, we define for any § € (0,1/2) another smooth 1-form on M by

o on My,
Bs =
Gsdo on Mp.

Lemma 2.8. For any fiberwise Giroux form «, there exist constants dg € (0,1/2) and Ko = 0
such that for all constants 6 € (0,00] and K = Ky,

Qg5 = o+ KpBs
is a Giroux form. Moreover, whenever a itself is a Girouz form, one can take Ko = 0.

Proof. Observe that ag s is automatically a fiberwise Giroux form for all K >0, § € (0,1/2),
so we only need to show that ag s is contact for the right choices of these constants. Since
Bs A dfBs =0, we have

ags ANdags =K (a A dBs + Bs A da) + a A dao,
thus it suffices to show that whenever § > 0 is sufficiently small,
(2.1) a A dBs + Bs A da > 0.

The conditions on fiberwise Giroux forms imply that a(dp) > 0 at dMp, so this is also true
on collars of the form {p < dp} = N (0Mp) for sufficiently small 6y > 0. Assuming 0 < § < do,
we shall now show that (21I) holds everywhere on M.
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On My, Bs Anda = o A da = 0 since 0(0g) = da(dy,-) = 0, but a A dfs > 0 since a(dg) > 0
and dfs = do is positive on X.

On Mp outside of the collars {p < 40}, we have 5 = 2d¢ and thus dfs = 0, while
Bs A da =2dp A da > 0 due to the assumption that da is positive on the fibers of 7p.

On the collars {p < d}, we have 5 = Gsd¢p, with G5 > 0 on the interior of Mp, hence
Bs Ada = Ggdp Ada > 0 again except at dMp. It thus remains only to show that oA dfs = 0,
with strict positivity at 0Mp. This follows from the fact that «(dp) > 0 on this region, since
andBs = g(p)a A dp A dg, where g(p) denotes either g (p) or g3(p), both of which we
assumed to have nonnegative first derivatives which are strictly positive at p = 0. U

Proof of Theorem [1.7 In light of the construction of a fiberwise Giroux form explained above,
the existence of a Giroux form follows immediately from Lemma
We claim now that for any n € N, a continuous family of Giroux forms

{aT}TES”_l

can always be extended to a family of Giroux forms parametrized by the disk D™. As an initial
step, note that the characteristic foliations induced by «, at dM may not be precisely the
foliation F we fixed above, but they are guaranteed to be isotopic to it and also transverse
to the coordinate vector field dp (which is parallel to Reeb orbits at the boundary). We
can thus alter o, by a fiber preserving isotopy supported near dM, producing a homotopy
through S™!-families of Giroux forms, to a family whose characteristic foliations at 0M are
all generated by Jy. Let us therefore assume without loss of generality that the given family
«, has this property, so all the o, are also fiberwise Giroux forms by our definition.

Since the space of fiberwise Giroux forms is convex, {c;},cgn-1 can now be extended via
linear interpolation to a family {&},epr of fiberwise Giroux forms. These forms are also
contact for all 7 in some collar neighborhood of dD", since the contact condition is open.
Choose a continuous “bump” function

D" — [0,1]

that equals 0 at D™ and 1 outside this collar. Next, observe that since D™ is compact, one
can find constants K > 0 sufficiently large and § > 0 sufficiently small so that Lemma 2.§]
holds with the same constants for all &, 7 € D™. Then

ar = a, + Ki(1)ps

defines the desired family of Giroux forms. This shows that the space of Giroux forms has
vanishing homotopy groups of all orders, so by Whitehead’s theorem, it is contractible. [

We can now fill in a loose end from .3l and complete the proof of Proposition [[L32i
Lemma 2.9. Every contact manifold with planar 1-torsion is overtwisted.

Proof. Suppose (M,§) contains a planar O-torsion domain My, so (Mjy,§) is supported by a
spinal open book 7 whose interior contains a page D that is a disk. Let My < My denote the
spinal region adjacent to D. Since 7 is not symmetric, there is a paper component M 113 c M
adjacent to Mé with a page P, ¢ M 11; that is not a disk. Pick an embedded curve L in the
interior of P; that is smoothly isotopic to a boundary component adjacent to Mé, so L is also
smoothly isotopic to the boundary of D, and both page framings agree and are equal to O.
We will show that one can realize L as a Legendrian knot with Thurston-Bennequin number
tb(L) = 0, violating the Bennequin-Eliashberg bound if (M, ¢) is tight.
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We consider two cases. First, assume that P; has another boundary component. Then in
the construction of the Giroux form, the 1-form 7 of Lemma 2.7l can be chosen to vanish iden-
tically along L. Choosing the support of the monodromy away from L, it remains Legendrian
after converting 7 into the compatible contact form «, and the contact framing is 0 relative
to P, and hence also relative to the disk D.

Alternatively, suppose P; has a single boundary component (to which L is isotopic), and
since 7 is not symmetric, P; has genus g > 0. Since P; is a convex surface (but with transverse
boundary), we can flow it along a transverse contact vector field to create a neighborhood
of the form Py x [0,1] € M} and round the corners to produce a convex handlebody whose
dividing set is isotopic to 0P, x {1/2}. On this convex surface, L is isolating (in the sense
of Honda [Hon00]), but since g > 0, we can fold along any other (disjoint, homotopically
nontrivial, embedded) curve in P; x {1}, increasing the dividing set and making L non-
isolating. We can now Legendrian realize L, and since L is disjoint from the dividing set, we
can ensure this has contact framing 0 relative to P; x {1}. This is an absolute 0-framing since
the framings from P; x {1}, P; and the disk D all agree. O

2.4. Lefschetz fibrations and symplectic structures. In this section we prove the main
part of Theorem [[.24] regarding the various spaces of symplectic structures supported by a
bordered Lefschetz fibration. The overall strategy is similar to that of the previous section,
and can be summarized as follows:

(1) Define spaces of “fiberwise” symplectic structures which are manifestly contractible,
and are nonempty under suitable assumptions.

(2) Use the Thurston trick to turn fiberwise structures into supported symplectic struc-
tures by adding large multiples of data pulled back from the base.

A version of Theorem for almost Stein structures appeared already in our appendix to
[BV15], and we will repeat some of those arguments here but will generalize them substantially
in §3] below, with an eye toward classifying fillings up to Stein homotopy.

For this subsection and the next, fix a bordered Lefschetz fibration IT : £ — Y. Recall that
a symplectic structure w on E was defined to be supported by 1I if it is positive on fibers and
also tames some almost complex structure J defined near the critical points E* for which
the fibers are J-holomorphic. It will be useful to note that this last condition doesn’t depend
on the choice of J:

Proposition 2.10. Suppose J; and Jy are two almost complex structures defined near E
which each restrict to positively oriented complex structures on the smooth part of every fiber.
Then J1|TEcrit == J2|TEcrit.

Proof. By [Gom04, Lemma 4.4(a)], it will suffice to observe that J; and J; determine the
same oriented complex 1-dimensional subspaces in TFE|gaic. Indeed, choosing local complex
coordinates (z1,22) near a point p € E* and a corresponding complex coordinate near II(p)
such that TI(z1,22) = 27 + 23, we see that in these coordinates every complex 1-dimensional
subspace of C? occurs as a tangent space to a fiber in any neighborhood of p. Since such
tangent spaces are both Ji- and J-complex by assumption, the claim follows by continuity.

O

In the following, fix an integrable complex structure J crit near E' for which II is holomor-
phic near £, Proposition ZZI0 implies that none of our definitions or results will depend
on this choice. We shall now define various spaces of smooth objects on F, each assumed to
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carry the natural C'-topology. Denote the vertical subbundles in F and d, E by
VE=kerTII cTE and V(hE)=VEnT(OLE).

Definition 2.11. Let Afi?(9,IT) denote the space of germs of 1-forms A defined on a neighbor-
hood of 04 E in E such that Ay, g) > 0 and V(0,E) < ker (dA|7(, y). Similarly, AfP(QTI)
will denote the space of germs of 1-forms A defined on a neighborhood of ¢F in E which satisfy
the above conditions at 0, F and also satisfy d\|yg > 0 at d,E. We call any A e AfP(9,1T) or
AfiP(OT) a fiberwise Giroux form near 0, F or 0F respectively.

Observe that AfiP(9,1T) and AfiP(T1) are both convex spaces.

Definition 2.12. The spaces of Giroux forms near 0, FE or 0F respectively (cf. Re-
mark [[LT3]) are defined as

A(0p10) = {)\ e AfiP(4),10) ‘ Ao, B) 18 contact},
A(0Il) := {)\ e Afib(otT) ‘ A7, B) and A, g) are both contact} .

The following variation on Theorem [[.7 follows from a simpler version of the same argument,
implementing the Thurston trick via Propositions 2.1 and It implies in particular that
both A(0,II) and A(OII) are nonempty and contractible.

Proposition 2.13. The spaces AP(0,11) and AP(OII) are each nonempty. Moreover, firing
a Liowville form o on %, for any A € AP(0,11) or AfiP(OT1), there exists a constant Ko = 0
depending continuously on X\ such that for every constant K > Ky, A + KII*o belongs to
A(0pIT) or A(O1I) respectively, and we can take Ko = 0 if X is already in A(0p11) or A(0IT). O

Definition 2.14. The space of weakly convex fiberwise symplectic structures Q@Eak(ﬂ)
consists of all smooth closed 2-forms w on E such that

(1) w is positive on all fibers in E\Eeit, _
(2) At E“' w is nondegenerate and tames Jt;
(3) Near 0, F, w = d\ for some X\ € AfiP(9,11).
The space of supported weakly convex symplectic structures is then
Qweak (IT) 1= {w € Qfib | (I1) | w? > 0 and w = d\ near O, F
for some X € A(d,11)}.

The space of strongly convex fiberwise symplectic structures will be

Qfb (M) := {w e Qfib | (1I) ’ w = d\ near 0F for some \ € Aﬁb(ﬁﬂ)} ,

strong weak
so that the space of supported strongly convex symplectic structures is
Qstrong (1) 1= {w € thl]’fong(ﬂ) | w? > 0 and w = d\ near 0F
for some A € A(JII)}.

We similarly define the space of fiberwise Liouville structures Qf> . (IT) to consist of all

exact
we Qfgong(ﬂ) for which the primitive A\ € AfiP(AIT) extends to a global primitive of w (i.e. a

fiberwise Liouville form) on E. The space of supported Liouville structures is then
Qexact (1) 1= {w e QI (IT) | w? > 0 and w = d\ on E
for some A with Ao € A(CIT)}.
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Observe that there are natural inclusions
Qﬁb (H) . Qﬁb

exact strong

(IT) = 2 (TD),

weak

and all three spaces are convex.

To handle the Stein case, we shall consider a special space of almost complex structures.
Given any almost complex structure J on E, denote the maximal J-complex subbundle in
T(0nE) by

SJ = T(ahE) M JT(ahE) c T(&hE)

Definition 2.15. Let J(II) denote the space of pairs (J, 0p) where J is an almost complex
structure on £ compatible with its orientation, dy is a nowhere zero vertical vector field on
Op E, oriented in the positive direction of the fibers, and the following properties are satisfied:
(1) There exists a complex structure j on X for which IT: (E,J) — (X, ) is pseudoholo-
morphic;
(2) The flow of dy is 1-periodic and preserves & .

Note that any (J, dp) € J(II) uniquely determines j on 3. The choice of vector field 0y is
equivalent to a choice of principal S'-bundle structure on 0, E, so it defines a fiber-preserving
S'-action that preserves both &; and (due to the first condition) J|¢,. We do not require .J
to match J near E°'t, though they automatically match at E'* due to Proposition 10l
Using the fact that the space of positively oriented complex structures on any oriented real
vector bundle of rank 2 is nonempty and contractible, it follows that the same is true for 7 (II).

Remark 2.16. In contact geometric terms, defining a principal S'-bundle structure on 0, F is
equivalent to giving it the structure of a strict contact fiber bundle (cf. Remark [23)), i.e. each
fiber is identified with the contact manifold (S',dt) so that the vector field dy generating the
Sl-action satisfies dt(dy) = 1. Any fiberwise Giroux form A € AfiP(9,IT) near 0, F canonically
determines a strict contact fiber bundle structure, with a positive constant multiple of A as
the contact form on each fiber; here the condition dA(dy, )|r(s, z) = 0 ensures that all fibers
are strictly contactomorphic since A has the same integral on all of them, by Stokes’ theorem.

Definition 2.17. Given any (J,0p) € J(II), we will say that a smooth function f: E — R
is fiberwise J-convex if, writing A; := —df o J, the following conditions are satisfied:

(1) f is constant on each boundary component of each fiber E, c F;
(2) dXy € Q. (I0);

(3) Aslom € AP(oID);

(4) As(0g) is constant.

The space of fiberwise J-convex functions for a fixed (J,0p) € J(II) will be denoted by
PSH?‘?%)(H)'

Observe that PSH?},’, 2y) 1) is convex for each (J,p) € J(II), and there is a natural map

exact

(IT) : f — —d(df o J).
Definition 2.18. Let PSH(;,,)(II) = PSH?}’,(?G) (IT) denote the subspace for which d\; is also
a symplectic form taming J and Aj|sg € A(JII).

The space of supported almost Stein structures is now precisely

Tstein(I1) = {(J, f) | (J,09) € J(II) for some g, and f € PSH;;,)(II)}.
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Note that for any (J, f) € Jstein(II), the vector field dy is canonically determined via Re-
mark 216l hence there is a well-defined projection

(2.2) Tstein(IT) — J(T0) : (J, f) — (J, 0p),
whose fiber over any (J,0p) € J(II) is PSH(;4,)(Il). Since J(II) is homotopy equivalent to

a point, the almost Stein part of Theorem [[.24] will then be a consequence of the following
statement, to be proved at the very end of this subsection:

Proposition 2.19. IfI1: E — X is allowable, then the projection (2.2) is a Serre fibration
with contractible fibers; in particular, it is a homotopy equivalence.

Remark 2.20. The contractibility of PSH(;,)(II) for each (J,0p) € J(II) is not as obvious as
it may at first appear, e.g. since functions in PSH;;,y(I) are not constant at the boundary,
PSHj5,)(I1) is not generally convex (cf. the discussion of almost Stein structures preceding
Definition [L23]). The proof that PSH;4,(II) is contractible will instead require the Thurston
trick.

We will frequently need to use the following standard lemma in constructions of J-convex
functions. Recall that a hypersurface V' in an almost complex manifold (W, .J) is called J-
convex whenever the maximal J-complex subbundle in TV is a contact structure whose
canonical conformal symplectic structure tames J.

Lemma 2.21 (see e.g. [CE12] Lemma 2.7] or [LWI1I, Lemma 4.1]). Suppose (W,J) is a
smooth almost complex manifold and f : W — R is a smooth function such that f is J-convex
near all its critical points and all level sets of f are J-convex hypersurfaces wherever they are
reqular. Then if h : R — R is any smooth function with h’ > 0 and h" everywhere sufficiently
large, h o f is a J-convex function. U

Remark 2.22. It will sometimes be useful to note that the J-convexity hypothesis on hyper-
surfaces is vacuous when dimgp W = 2.

In order to construct fiberwise symplectic structures in the nonexact case, we will need first
to be able to pick a cohomology class that evaluates positively on every irreducible component
of every fiber. For this we will make use of the following linear algebraic lemma due to Gompf.

Lemma 2.23 ([Gom05, Lemma 3.3]). For a real n-by-n symmetric matric A = (a;j), let
G 4 denote the graph with n vertices vy, ..., vy, and an edge between any two distinct vertices
v;,vj whenever a;; # 0. Suppose that (a) G4 is connected, (b) a;; = 0 whenever i # j, and
(c) there are positive real numbers my, ..., my such that Z:ll m;ai; < 0 for all j. Fiz a choice
of such numbers m;. Then the hypothesis (d), that the inequality in (c) is strict for some j,
implies rank A = n. If (d) is not satisfied, then rank A =n — 1. O

Lemma 2.24. Given any A € AP(0,11) or AfiP(011), there exists a closed 2-form 1 on E such
that n = d\ near dpE or OF respectively and Scn > 0 for every irreducible component C' of
every fiber.

Proof. Extending A\ arbitrarily to a smooth 1-form on E, Stokes’ theorem implies SC d\A =0
for all irreducible components C' of fibers, with strict inequality if and only if 6C' # ¢F. Our
main task will be to find a closed 2-form w supported in the interior such that Scw > 0 for
every component C' with 0C = ¢, as we can then set 1 := d\ + ew for sufficiently small € > 0.

We construct w as follows. The collection of all closed irreducible components of singular
fibers defines a graph I', with vertices corresponding to closed irreducible components and
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edges corresponding to critical points at which two such components intersect each other. Pick
any connected component of I' and denote the corresponding closed irreducible components
of fibers by C1,...,C,. Pick closed 2-forms wy, ... ,w, such that for i = 1,...,n, w; represents
the Poincaré dual of [C;] and is supported in a neighborhood of C; disjoint from 0E. Let
n; denote the number of critical points at which C; intersects other irreducible components
(i.e. not counting intersections of C; with itself), and let n; < n; denote the number of these
at which C; intersects other closed components (this is the number of edges touching the
corresponding vertex in I'). For i,j € 1,...,n, let n;; denote the number of critical points at
which C; and Cj intersect, i.e. the number of edges of I' connecting the two corresponding
vertices. The algebraic intersections numbers [C;] - [C;] € Z then satisfy

[Ci] - [C}] = nyj for i # j,
[Ci] - [Ci] = —,

thus for ¢ =1,...,n,

n
(2.3) Z[CZ] . [C]] = Z N5 — n;=mn; —n; <0.
=1 i
Since no fiber consists exclusively of closed components, the inequality n; — n; < 0 must be
strict for some i = 1,...,n.
Define now an n-by-n symmetric matrix A = (a;;) with entries a;; = [C;] - [C;]. By (Z3),

A satisfies the conditions of Lemma [Z23] with m; = ... = m,, = 1, including hypothesis (d),
hence rank A = n. It follows that one can find coefficients b1, ..., b, € R such that
n n
f Z bjw]' = Z aijbj >0
Ci j=1 j=1
forall © = 1,...,n. The desired 2-form w can thus be defined as a sum of 2-forms of this type
for each connected component of the graph I. O

The next proposition is the main existence result for fiberwise symplectic structures.

Proposition 2.25. Given any A € AP(0,11) or AiP(OT1), there exists w € Qfgong(ﬂ) such that
w = d\ near O, E or OF respectively. In particular, the spaces QP (I1) and QP (11) are

weak strong

always nonempty. Moreover, for any (J,0y) € J(II), PSH?l])’ae)(H) (and hence also Qb . (I1))
is monempty if and only if 11 is allowable.

Proof. If 11 is not allowable, then there is a closed component in some singular fiber, thus
Stokes’ theorem implies there can be no exact 2-form that is positive on every fiber. Conse-
quently, Qb (IT) (and therefore also PSH?}’ 2y) 1)) must be empty.

exact
(I1) and f € PSH{},(IT)
in parallel at each step. The construction of f € PSH?? 69)(1_[) depends on an arbitrary choice
of (J,09) € J(IT), which we shall assume fixed throughout. Note that while w e Qb (IT) is

stron
required to match d\ for a prescribed primitive A near the boundary, the statement %or the
almost Stein case does not require this.
Given A € AfiP(9,11) or AP(QIT), let i denote the closed 2-form guaranteed by Lemma Z241
Observe that by the fiberwise Giroux form condition, the integrals of A over boundary com-

ponents of fibers E, are locally constant functions of z. We proceed in three steps:

In the following, we shall handle the construction of w e thl]’fong
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Step 1: Neighborhoods of regular fibers. For each z € ¥\X there exists an open neigh-
borhood z € U, = ¥\X" and a 1-form A, on El;. which restricts to A near d, E such that
w, := d), is an area form on every fiber in E|y.. If A € AP(0II) then d) is already positive
on the fibers near 0, F, thus we can also arrange A\, = A\ near 0, F.

For the almost Stein case, observe first that the vector field —J0dy along 0y F is necessarily
vertical and points transversely outward. Choose a smooth function f, : E, — R such that
—d(df,oJ) > 0on E,, while at 0F,, f, = ¢, and df,(—J0dy) = v, for some constants ¢, v, > 0.
This can be achieved by starting with any smooth function that satisfies these conditions at
the boundary and has only Morse critical points of index 0 and 1, then modifying it by local
diffeomorphisms to make it J-convex near the critical points, and postcomposing it with a
function with very large second derivative; cf. Lemma[2.2I] We can then find a neighborhood
U, = S\XU of 2 such that f, admits an extension to a function

fz:E‘Z/{z —>R

satisfying these same properties on every fiber in E|,,. Note that the constants ¢, and v, can
always be made larger without changing the neighborhood .. The 1-form A, := —df, o J on
E|y, now satisfies d\, > 0 on every fiber, and its restriction to the horizontal boundary

ol == X:|r o, m)

satisfies af(0p) = v., O/Z‘|§J = 0. The invariance of £; under the flow of dy then implies
La,al = dal(dp,-) = 0.

Step 2: Neighborhoods of singular fibers. For each z € X let B denote the finite
set of critical points in E,. For each p € ES) choose J*-holomorphic Morse coordinates
(21, 22) on a neighborhood U,, = E of p, and let wit denote the symplectic form on U, which
looks like the standard symplectic form on C? in these coordinates. Choose an area form w,
on E,\E satisfying the following conditions:

e w, restricts to d\ near oy F;

o w, = W™t near £

e For each irreducible component C' c F,, SC W, = SC n.
This can be extended to a closed 2-form on E|y, for some open neighborhood z € U, %
with U, Zo], such that the extended w, also matches dA near d, E and is positive on fibers.

For the almost Stein case, we must assume explicitly at this step that II : F — 3 is allow-

able, so in particular, the connected components of E,\ES® are all compact oriented surfaces
with nonempty boundary and finitely many punctures. Using the same J*-holomorphic
coordinates (z1,22) as above near any p € ESt, define a function f, : 4, — R by

1
fo(21,20) = 3 (Iz1]? + |22]%) -

This function is J-convex, and we claim that it is also J-convex on a sufficiently small
neighborhood of p. To see this, recall that J and J* match at p due to Proposition 210
Since df.(p) = 0, the 1-forms —df.o.J and —df,oJ!" have the same 1-jet at p, so their exterior
derivatives match at that point, and the claim follows. By shrinking 4, if necessary, we can
therefore assume —df, o J is the primitive of a positive symplectic form in U, that tames J
and restricts symplectically to the vertical subspaces. Now since every connected component
of E.\ES" has nonempty boundary, we can extend f, over E, so that it is .J-convex on E,
and satisfies f, = ¢,, df.(—Jdy) = v, at JE,. Using the fact that J-convexity is an open
condition, we can then extend f, over E|;, for some neighborhood z € U, < ¥ so that it has
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these same properties on each fiber. The constants ¢, and v, can again be made larger if
desired without changing the neighborhood U, .

Step 3: Partition of unity. Since Y is compact, there is a finite subset I < ¥ such that the
open sets {U,},er cover ¥. Choose a partition of unity {p, : U, — [0,1]}.c; subordinate to
this cover. For each z € I, the 2-form w, —n on E|y, is exact by construction, thus we can
pick a 1-form 6, on E|;,, with

w, =1n+db,,

and since w, and 1 both match dA on a neighborhood of d,FE or 0F respectively, we can
choose . such that 6, = 0 on such a neighborhood. We can then define w e Qfit_ (1) by

strong
w=mn+d (Z(Pz OHWZ) .

zel

For the almost Stein case, consider the same partition of unity with the functions f, :
Ely, — R constructed in the first two steps, for z € I. By making these functions more
convex near 0pF, we can increase the constants ¢, > 0 for all z € I so that they match a
single constant ¢ > 0, and likewise increase v, for z € I to match some large number v > 0.
The function

fi=2pz0I)f
zel
is then constant at 0, F. Writing Ay = —df o J, we also have d\; > 0 on all fibers, while d\;
is symplectic and tames J near E“" and the 1-form o/ := X J|T(ah ) satisfies

") =v>0, and o', =0,
thus the invariance of £; under the flow of dp implies
dah(ég, ) = L'aeah =0.
O

Remark 2.26. It will occasionally (e.g. in Lemma[3.12]) be useful to observe that in the almost
Stein case, the above proof did not make any use of the assumption that IT: (E, J) — (X, j)
is pseudoholomorphic. The conditions on (J,dy) we used were merely that every fiber is
J-holomorphic and the S'-action defined by dp on J,F preserves &7 := T(0LE) n JT(0LE)
and Jl¢,.

To move from fiberwise structures to honest symplectic structures, we apply the Thurston
trick. Fix a Liouville form o on 3. For the almost Stein case, we may also assume

o= 7d900j5

where ¢ : ¥ — R is a smooth function constant at the boundary and j is the unique complex
structure on X for which IT : (E, J) — (X, ) is pseudoholomorphic.

Proposition 2.27. Given w in QP (1), Qb (11) or Qb  (IT), there exists a constant

weak strong exact
Ky = 0, depending continuously on w, such that for every K > Ky,

wi = w + K1I*do

belongs to Qyeak (I1), Qstrong (II) 0r Qexact (II) respectively.
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Similarly, given (J,0p) € J(II) and f € PSH’E%Q)(H), there exists Koy = 0, depending
continuously on J and f, such that for every K = Ky,

fK :=f+K(QDOH)

belongs to PSHj 5,)(IT).
Moreover, if w is already in Qyeak (IT), Qstrong (I1) 07 Qexact (1), or f is already in PSH(Jﬁe)(H)
respectively, then for both statements it suffices to set Ko = 0.

Proof. Let Ut = E denote a neighborhood of E“'* on which the integrable complex structure
Ji s defined and Il[yeie is holomorphic; more precisely for each p € E| a neighborhood
of II(p) in ¥ admits a complex structure j, such that the restriction of II to the connected
component U, of U™ containing p is a holomorphic map (U, J™*) — (IL(U,), jp). Assume
to start with that w € Q@Eak(ﬂ). By shrinking U if necessary, we may assume wleric is
symplectic and tames J*. Now for any nonzero vector v e TE |, for p e Et we have

wi (v, J") = w(v, J"") + K do(I,v, j,1Tw),

in which the first term is positive and the second is nonnegative for any K > 0, hence wg |erit
is symplectic and positive on the fibers. In the almost Stein case, we write Ay := —df o J and
o := —dpoj and observe that the holomorphicity of IT implies —d(poll)oJ = II*(—dpoj) =
IT*o, hence )\g( = —dfgoJ =X+ KII*o. We then have

A5 (v, Jv) = d\j (v, Jv) + K do([,v, jT,v),

and for any v # 0 near E this is again positive since d\; tames J* and, by Prop. 210,
the latter matches J at Et,
Outside a neighborhood of Et, the rest follows by direct application of the results in

.11 O

Applying Whitehead’s theorem as in the proof of Theorem [.7] Propositions and
together imply that the various spaces of supported symplectic structures in Theorem
are nonempty and contractible as claimed. They also imply that the fibers of the projection
Tstein(II) — JII) : (J, f) — (J,0g) are nonempty and contractible. To see that this pro-
jection is also a Serre fibration, it suffices to observe that due to the continuous dependence
on J and f, the construction in Proposition of the J-convex function fx can be done
parametrically. This completes the proof of Proposition 2191

2.5. Smoothing corners. To finish the proof of Theorem [[24] we must show that the
corners of 0F can be smoothed in a way that yields a symplectic filling canonically up to
deformation. For strong fillings this is mostly obvious because we have a Liouville vector
field transverse to both smooth faces of dF, but the case of weak fillings requires a bit more
thought since there is no Liouville vector field. We will consider a specific class of smoothings
defined as follows.

Fix a collar neighborhood N (0%) = (—1,0] x 0¥ < ¥ and a corresponding collar neighbor-
hood E|y(ox) =: N(0,E) = (—1,0] x 0, < E such that

lx(o, ) : N(OE) = N(0X) : (s,p) — (s,11(p)).
Fix also a collar N (0, E) = (—1,0] x d,E < E such that
| x@, 8 : N(OhE) = 32 (t,p) — T(p).



ON SYMPLECTIC FILLINGS OF SPINAL OPEN BOOK DECOMPOSITIONS I 35

g t
-1 —€ /X —€
| | f | ﬁ 7 S
| | T \ |
Ve € Me
T € f /I """" NG ;*6
/ E
£ 1
\\
FicUure 2. The path 7, and FiGURE 3. The smoothed
region I'c < (—1,0] x (—1,0] corner of M, = oW, with the
used for smoothing corners. transverse vector field Vi .

The intersection of these two collars is then a neighborhood of the corner
N(OyE N OpE) := N(OhE) n N (0, E) = (—1,0] x (=1,0] x (OhE n 0, E),

and in coordinates (s,t,p) on this neighborhood we have Il(s,t,p) = (s,II(p)). Given a
constant € € (0,1), choose a pair of smooth functions fe,g. : (—1,1) — (=1, 1) satisfying the
following conditions:

e For 7 < f()—TandgE(T)zo,

e For 7 € (—€,¢), fl(7) > 0 and ¢.(1) <0,
e For 7 > ¢, fe(7) =0 and ge(7) = —7.
Denote by 7. < (—1,0] x (—1,0] the image of the smooth path (fe(7), ge(7)) for 7 € (—1,1);
this divides (—1 O x (—1,0] into two connected components. We shall denote the component
\

]
of ((~1,0] x (~1,0])

domain

« containing (0,0) by I'c (see Figure [2), and then define the compact

We=FE\(Te x N(O,E N OxE)) .
This is a smooth manifold with boundary M, := 0W,, and the latter can be identified with
0F canonically up to a continuous isotopy which is smooth outside the corner.

Proposition 2.28. Suppose w € Qyeax(II), Qstrong (II) 0r Qexact (II), or w = —d(df o J) for
some (J, f) € Tstein(I1). Then for sufficiently small € > 0, the domain W, with its symplectic
or almost Stein data is a weak, strong, exact or almost Stein filling respectively of (M, &),
where & is a contact structure supported by a spinal open book with smooth overlap that is
isotopic (in the sense of Remark[1.0) to JIl. Moreover, any two fillings obtained in this way
by different choices of smoothing are deformation equivalent.

Proof. Assume w € Queax(II), so w = dX near JpE for some A € A(J,II). One can extend
A to a neighborhood of dF so that A € AfP(0F); this follows from Proposition (or a
simpler variant focusing only on a neighborhood of ¢, F). Choosing a Liouville form ¢ on X,
Proposition 2-T3] then implies that for sufficiently large constants K > 0, the 1-form

Ak == A+ K1II*o
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defines a Giroux form near 0F. Further, we claim that if K > 0 is sufficiently large, then
Ar A w > 0 restricts positively to both d,F and ¢, FE. On 0y F this is immediate since w = dA
near 0pF and )\|T(ahE) is contact, hence

)\K A W|T(6hE) = ()\ + KH*U) A\ d>‘|T(ahE) =AA d)‘|T(8hE) > 0,

where the term (IT*o A d))|7 (s, gy vanishes because both II*o and dA|r, g kill V (0, E). On
OuE, we have

Ak AwWlp@,p) = (A + KII*o) A Wlre,E) = KII*o A w|T(5UE) + A A wlre,E),

in which the first term is positive since w is positive on fibers, hence the sum is positive for
K >» 0.

Since w is symplectic, there is a vector field Vi defined near 0F by the condition w(Vik, ) =
Ar, and Ag A w is then positive on any given oriented hypersurface if and only if Vi is posi-
tively transverse to that hypersurface. It follows that Vi is everywhere positively transverse
to both d,F and ¢, F, so if € > 0 is chosen sufficiently small, then Vi has positive ds and 0
components (in the coordinates (s,t,p)) everywhere on

(—€,0] % (—€,0] X (BhE A 0 E) € N(0,E n O E).

For this choice of €, Vi is then positively transverse to W, everywhere (Figure B)), and it
follows that

)\K A W|TM6 > 0.

Thus (W,,w) is a weak filling of (M, &), where & := ker (A |rar)-

To see that this filling is unique up to symplectic deformation, note first that by the
results of the previous subsection, w € Qyeax (1) is unique up to homotopy through Qyear (I1).
Given any such homotopy w; € Qyeak(II), 7 € [0,1], one can choose a continuous family of
primitives A\, € A(d,IT), then extend these to A, € AP(ATI) and choose K > 0 large enough so
that A, + K II*o defines a continuous family of Giroux forms near 0F with (A, + K II*0) A w,
positive on both J,F and 0,FE. Then for some continuous deformation of the parameter
e; > 0, shrinking it as small as necessary for 7 € (0,1), we can arrange for (W, _,w;) to be a
weak filling of (M., ker(\; + K II*0)) for all 7 € [0, 1].

The corresponding statements for strong, exact or almost Stein fillings are proved by a
simplification of the above arguments: if w is strongly convex, we may assume w = d\ with
A € A(QI), thus A A dA is positive on both boundary faces and the corresponding Liouville
vector field plays the role that Vi played above.

It remains to show that the contact structure induced on M, is supported by a spinal open
book isotopic to JII. It will suffice to show this for a particular choice of w € Qgtrong(II).
Choose a coordinate ¢ € S! for each connected component of 0%, so the collar N (0¥) can
be viewed as a disjoint union of components (—1,0] x S* with coordinates (s,¢), and we
can choose 0 = e*d¢ in these collars. Choose also a trivialization of the S'-bundle 0,F n
0vE — 0% and denote the fiber coordinate by 6§ € S', so each component of o,E N 0,F
now has coordinates (¢,6) € T?, and the components of N'(0,F n d,E) inherit coordinates
(s,t,¢,0) € (—1,0] x (—1,0] x T? with

(s, t,$,0) = (s,¢).

One can then construct a fiberwise Giroux form A near 0F that takes the form efdf in
N(OyE n 0pE), and extend d\ by Proposition 220] to a fiberwise symplectic structure w €
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Qg;ong(l'[). Applying Proposition [2.27] this yields a supported strongly convex symplectic
structure with a primitive of the form

A\g = e'df + Ke®do

on N(0,E n opE) = (—1,0] x (—1,0] x S x S'. Defining W, as above for any choice of
e € (0,1), M := 0W, inherits a spinal open book defined as follows: the spine My is the
complement in &, E of the region (—¢,0] x {0} x T? € N(0,E n 0, F), with the fibration

7wy My, — %

induced by II, where ¥’ is the complement of the collars (—¢, 0] x S in X. The closure
of M\ My, then constitutes the paper Mp, with the ¢-coordinate defining the fibration 7p :
Mp — S'. The restriction of A\ to M is now a Giroux form for this spinal open book. [

3. A CRITERION FOR THE CANONICAL STEIN HOMOTOPY TYPE

The characterization of supported almost Stein structures given in Definition [[L23] is nat-
ural, but not general enough to be useful in classifying fillings up to Stein homotopy. In
particular, the proof of Theorem [Bl stated in the introduction will require us to consider bor-
dered Lefschetz fibrations II : E' — 3 with almost Stein structures (.J, f) for which the fibers
are almost complex submanifolds but the projection II is not pseudoholomorphic. The more
general characterization given by Theorem [C] will therefore be useful, and it can be restated
as follows.

Theorem 3.1. Suppose Il : E — 3 is an allowable bordered Lefschetz fibration, j is a complex
structure on X and (J, f) is an almost Stein structure on E with the following properties:
(1) J restricts to a positively oriented complex structure on the smooth part of every fiber;
(2) f is constant on the boundary components of every fiber;
(8) The restriction of —df o J to OF is a Girouz form for 01l (cf. Remark[113).
(4) There exists an open neighborhood U < ¥ of 0¥ such that the map

(Bl J) = U, )
18 pseudoholomorphic;
(5) The mazimal J-complex subbundle £&5 < T(0RE) is preserved under the Reeb flow
defined via —df o J|r, gy, and J|¢, = 11*j.
Then (J, f) is almost Stein homotopic to an almost Stein structure supported by II.

Remark 3.2. We will not use this fact, but one can show that whenever the first and fifth
conditions in Theorem [B.1] hold, the projection II is pseudoholomorphic (for a suitable choice
of complex structure on the base) whenever the Nijenhuis tensor takes values in the vertical
subbundle. In particular, this is always true if J is integrable.

We begin by generalizing the space [J (II) from Definition

Definition 3.3. Given an open subset U < 3, let J(IL;U) denote the space of pairs (J, dg),
where J is an almost complex structure on E defining the correct orientation, dg is a positively
oriented nowhere zero vertical vector field on Jp F, and ¥ admits a complex structure j so
that the following conditions are satisfied:
(1) J restricts to a positively oriented complex structure on the smooth part of every
fiber;
(2) The equation TTI o J = j o T'1I is satisfied in E|y and along 0y, F;
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(3) The flow of dy on 0y E is 1-periodic and preserves £; := T(0pE) n JT (0 E).

Observe that J(II;X) = J(II), and J(ILU") < J(IL;U) whenever U < U’; moreover,
J(IL;U) is contractible for every choice of Y < ¥. Theorem Bl would thus follow immedi-
ately if we could show that every (J,dg) € J(II;U) admits a suitable J-convex function, but
this is probably not true in general—we at least have been unable to prove it except when
U = ¥X. What we will show instead is that if ¢ contains 0¥, then every (J,0y) € J(IL;U)
has a perturbation that admits a suitable J-convex function, and this perturbation can be ar-
ranged to depend continuously on parameters. Here is the more technical result that implies

Theorem 3.1k

Proposition 3.4. Assume Il : E — X is allowable, U < X is an open neighborhood of 0%,
X is a compact cell complex, A < X is a subcomplex, and

X > JALU) : 7 — (Jr,05),
A->C®E): 17— f;

are continuous maps such that for every T € A, (J-, fr) is an almost Stein structure, fr is
constant on all boundary components of fibers, and A\ := —dfoJ, restricts to OF as a Giroux
form for OI1 (in the sense of Remark [L13) satisfying A+(0j) = const. Then there exists a
continuous (with respect to the C*-topology) family of almost Stein structures {(J., f1)} cx
matching (Jr, fr) for all T € A such that J. is C*-close to J; for all T € X.

The proof of Proposition [3.4] requires several steps and will occupy the remainder of this
section, so here is an initial sketch. Let {j;};ex denote the uniquely determined family of
complex structures on ¥ such that I : (E, J;) — (%, j;) is holomorphic in E|;; and along 0, F
for all 7. Since U is open, we can choose a function ¢ : ¥ — R which has all its critical
points in U and is jr-convex for every 7. Holomorphicity of II then allows the construction
of Jr-convex functions on E|; using the Thurston trick as in Prop. Outside of E|y, the
function ¢ o II has level sets that are unions of J -holomorphic fibers and are thus Levi-flat,
i.e. the maximal complex subbundle in each level set is a foliation. A suitable choice of
fiberwise Liouville structure then allows us to perturb these foliations to contact structures
as in the Thurston-Winkelnkemper construction [TW75| of contact forms supported by open
books (cf. Prop. 21]). The almost complex structures admit corresponding perturbations J.
that preserve these contact structures, so that the function ¢ o I1, after modifying ¢ to make
¢" sufficiently large, becomes J.-convex. This makes use of Lemma 221} and it produces J/-
convex functions f, that match ¢ oIl away from Ecuit(p) and take the form o IT + ¢ f near
E|cyit(p)- Actually proving that (JL, f1) are almost Stein structures requires also showing that
the Liouville forms —df, o J. restrict to the smooth faces of JE as contact forms. Moreover,
we need to be able to keep this condition under linear interpolations between our constructed
functions f! and the original f; in order solve the extension problem. Both steps will make
essential use of the holomorphicity of IT at dF, as well as the Thurston trick: a crucial detail
for the latter is that the original family of .J,-convex functions { f;};c4 can easily be extended
to 7 € X as a family of fiberwise J.-convex functions, which we use in the construction of .J.
and f7.

We now proceed with the details of the argument sketched above. As in the statement of
Proposition [3.4] all families of objects parametrized by X will be assumed in the following to
be continuous in the C'*-topology, and U/ < ¥ will be an open neighborhood of 0%X. We will
sometimes find it convenient to replace U with a smaller neighborhood of 0%, which is not a
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loss of generality since it enlarges the space J(II;U). In particular, since all critical values of
IT are in the interior, let us start by assuming

Un Xt =g
3.1. Weinstein structures on the base.

Lemma 3.5. There exists a smooth function ¢ : ¥ — R which is j,-convex for all T and
constant on 0%, and has all its critical points in U\OX.

Proof. Start by choosing a Morse function ¢ : ¥ — R that is regular and constant on the
boundary and has no local maxima. By composing with a suitable diffeomorphism of ¥, we
can arrange that Crit(y) < U\02. Now since every critical point has Morse index 0 or 1, we
can fix local coordinates (z,y) near each critical point so that, up to addition of constants,
¢(z,y) takes the form 22 + y? or 22 — y2. Given any constant ¢ > 0, we can further modify
@ by composing with a diffeomorphism supported near the index 1 critical points so that
these (in the same coordinates!) now take the form cz? —42. Since the parameter space X is
compact, Lemma below now implies that by selecting ¢ sufficiently large, we can assume
¢ is jr-convex near Crit(p) for all 7 € X. Lemma 221 (with Remark 2.22]) can then be
applied to make ¢ into a globally j.-convex function for all 7 € X by postcomposing it with
a sufficiently convex function R — R. O

The above proof required the following lemma:

Lemma 3.6. Suppose j is a smooth almost complex structure on a neighborhood of 0 in C,
compatible with the canonical orientation, and let g, 1 : C — R denote the functions

po(z +iy) = 2> +y°,  pi(z+iy) = ca® =y,
where ¢ > 0 is a constant. Then @q is j-convex near 0, and @1 is also j-convex near O

whenever c¢ is sufficiently large.

Proof. Let jy denote the “constant” complex structure on C that matches j at the origin, in
other words jo(z) := j(0) for all z € C. We claim first that the statement of the lemma is
true if j is replaced by jg. Indeed, jo can be written as the matrix

jo= (¢ —le
0 b —a )
where a and b are real constants with b > 0 (due to the orientation assumption). Then we

compute:

1+a?

—d(dgo © jo) = 2 ( + b) dx A dy,

1+a?

—d(de1 0 jo) =2 <c - b> dx A dy.

The first is always positive, and the second is positive if and only if ¢ > b?/(1 + a?), so
this proves the claim about jy. To generalize this to j, it suffices to observe that since
dpo(0) = dp1(0) = 0, the 1-jets of —dpg o j and —dy1 o j at 0 (and hence also the question of
j-convexity on some neighborhood of that point) depend on j(0) but not on the derivatives
of j, so the fact that j(0) = jo(0) implies the result. O
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For the remainder of this section, we fix a function ¢ : ¥ — R as given by Lemma and
define the family of 1-forms
or = —dpoj;.
By construction, do, > 0 everywhere and dy A o, > 0 away from Crit(p), for all 7 € X.
In particular, this means that do., together with ¢ and the family of Liouville vector fields
do,-dual to o, define a family of Weinstein structures on X.

3.2. Perturbing J near Lefschetz critical points. Define the function
F=ypoll: E—>R.

We shall now define a family of perturbations of J; near E* that make F plurisubharmonic
on this neighborhood. For any p € E let A'(p) denote an open neighborhood of p, which
we will always assume is arbitrarily small in order to satisfy various conditions. The first
such condition is that N(p) admits complex coordinates (z1, 20) identifying p with (0, 0) € C?
so that TI(z1, z2) = 2% + 22 for a suitable choice of complex coordinate z on a neighborhood
N(II(p)) < ¥ of TI(p), identifying II(p) with 0 € C. We shall abbreviate the pair of coordinates
on N (p) together as ( = (21, 22), and write the real and imaginary parts as

C = (2’1,2’2) = (.%'1 + Z.yth + Zy?) EN(p)7 Z=T+ Zy 6N<H(p))

Note that the formula for II(z1, z2) is invariant under simultaneous coordinate changes of the
form

(21, 22) — (az1,az2), 2 a’z
for any a € C, thus we can choose a suitable constant a and make such a transformation such
that without loss of generality, the local coordinate expression for ¢ near II(p) satisfies

dp(0) = dx.

This is possible because we have already arranged for all critical points of ¢ to be separate
from X indeed, Crit(p) U and U n X = f, where the latter can always be achieved
by making U a smaller neighborhood of 0%. In particular, ¢ then has the same 1-jet at II(p)
as the locally defined function

oz + iy) := z + ¢(0).
We shall repeatedly make use of this fact via the following lemma, which is an easy conse-
quence of the fact that dyo(0) = dp(0) and dI1(0,0) = 0.

Lemma 3.7. The functions F = poll: E — R and Fy := pg oIl : N(p) — R have the same
2-jet at p. Moreover, for any smooth bundle endomorphism A : N(p) — End (TE|N(p)), the
1-forms dF o A and dFy o A have matching 1-jets at p, which depend on A(p) but not on the
derivatives of A at p. O

Denote by 4 the standard complex structure on C? and identify this with an integrable
complex structure on N (p) via the coordinates (21,22). For any i-antilinear map Y on C2
sufficiently close to 0, one can define another complex structure close to i by

(YY) = <11 + %zY) i (11 + %¢Y>_1.

Indeed, ® can be regarded as the inverse of a local chart for the manifold of complex structures
J(C?), identifying a neighborhood of i in J(C?) with a neighborhood of 0 in 737 (C?) such
that d®(0) is the identity on the space of i-antilinear maps. By Proposition 10| J(p) = ¢
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for all 7 € X, thus there is a family of smooth maps Y, : N(p) — T;7(C?) such that for all
(eN(p),

and Y;(0) = 0.
Working in real coordinates (z1,y1,22,y2), define the i-antilinear matrix

0O -1 0 0
-1 0 0 O
o 0 0 -1
0O 0 -1 0

Y =

We use this to define for all ¢ > 0 sufficiently small a family of perturbed almost complex
structures on N (p) by
JHO) = BV,(Q) + V).

Let

0
VO = 50|

Then since Y;(0,0) = 0 and d®(0) is the identity, we have Y/(0,0) =Y. Let

AL = —dF o J;,
and for € > 0, define smooth families of 1-forms 7 via the formula
(3.1) AS = A% + et
There is a smooth extension of 75 to € = 0, namely
7= hi%ATng = %A; T —dF oY

Lemma 3.8. There exists a constant ey > 0 such that for all € € (0,¢0] and T € X, dAS is
symplectic on N'(p) and tames both i and JS. Moreover, di is also symplectic on N'(p) and
tames Jr for all T € X.

Proof. We first prove the claim about di?, for which it suffices to show that di?|, tames i
since J-(p) =i for all 7 € X and the taming condition is open. Consider the slightly simpler
1-form
flo 1= —d(po o 1) 0 V",

where we recall @g(z + iy) = z + (0). We then have ¢ o II(z1, 22) — ¢(0) = Re (2§ + 23) =
Y1} —y3) and

drjoY' = —dy;, dy;oY' = —dx; for j =1,2,
thus

2
o =2 (x;dy; — y; da;)
j=1

2
giving dig = 4 Z dzj A dy;, which clearly tames i. Now Lemma B.7] implies that 72 and 7o
j=1
have the same 1-jet at p, hence di2|, = dijo|p, and the claim follows.
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Next we show that dAS tames both ¢ and J¢ on N (p) when € is positive but small. Observe
first that dA?|, = 0: indeed, by Lemma B.7 this holds if the 1-form X := —d(ppo1Il)oi satisfies

d\|, = 0, and since ¢g o II(21, 22) = Z?zl(azz - yJQ) + ¢(0), an explicit computation shows

2
A= —d(pgoTl)oi=2)" (x;dy; +y;dx;),
j=1
which is everywhere closed. It will now suffice to show that for any 7 € X and any nonzero
vector v € T, I/, the derivatives
d

L TaAs (v, )

d .. .
(3.2) —dA% (v, iv) o

de

e=0 e=0

are both positive. Since %A§'|e:0 = 7Y, both of these are equal to di%(v, iv), which is positive

by the first claim proved above. Note that in computing the expression on the right in ([8.2)),
derivative of J¢ with respect to € does not appear since dA2|p = 0. U

To summarize this step so far, we have defined a family of almost complex structures
{Jﬁ}ee[o co],rex Dear Et such that J? = J, and F = poll is Jé-convex for € > 0. Moreover,

the Liouville forms AS = —dF o J¢ for € > 0 can be written as AS = A% + i, where 7 is
a smooth family of 1-forms that define fiberwise Liouville forms near E* and converge as
¢ — 0 to a fiberwise Liouville form 7° such that di® tames both i and J,. The main point of
this construction was that it gives rise to a family of contact structures on the level sets of F":
indeed, define on NV(p)\{p} a family of co-oriented 2-plane distributions

& = ker dF' n ker A%.

These are Jt-invariant, so the fact that F'is J¢-convex for € > 0 implies that they are contact
on each level set of F' whenever ¢ > 0. For ¢ = 0 this is not the case, as

&=VE

is the vertical subbundle of the Lefschetz fibration and thus defines foliations on the level sets
of F. In the next step, we will use the Liouville forms o, from 3.1l to extend &£ over the
rest of E\ (E“" U E |Crit(¢)). To do this we will need Lemma [B17] below, for which the next
two lemmas are preparation. In the following, we use the coordinates ¢ = (z1,22) to define
Euclidean norms |v| of vectors v € T'E|x (), and keep in mind that NV (p) can always be made
smaller if necessary.

Lemma 3.9. There exists a constant ¢; > 0 and a family of smooth vector fields R, on
N(p)\{p} such that |R;|=1, dF(R;) =0, and

ANR-(Q)) = eil¢|  for all ¢ € N(p)\{p}.

Proof. Choose a family of J.-invariant Riemannian metrics g, on NV (p) and let V™ F denote
the corresponding gradient vector fields of F'. Note that since 7 lives in a compact parameter
space, the norms defined via g, are uniformly (with respect to 7) equivalent to the Euclidean
norm. By Lemma [3.7] the Hessian of F' at p matches that of ¢goIl(() = Z?:l(l? —yjz) +¢(0),
thus the critical point of F' at { = 0 is nondegenerate. It follows that one can find a constant
k > 0 such that

IVTF(C)| = k[¢| forall (e N(p), T€ X.

A family of vector fields with the desired properties can then be defined by R, = |§: gi;l' O
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Lemma 3.10. On N (p)\{p}, dA%|co =0, A A dAY|, .. =0, and
0
— (AS A dAS |ker 0.
5 (A7 A dATfier ar) 7

Proof. Since ker (Ag\ker dF) = ¢0 = VE, the first two statements are both equivalent to the
fact that V E defines a foliation on every level set of F'. We will now prove that the third claim
holds after shrinking the neighborhood N (p) sufficiently. Recall from the proof of Lemma [B.8]

that dA?|, = 0, and similarly, 72 = —dF o Y/ vanishes at p. Since both are smooth, this
implies there is a constant cs > 0 such that

(33) [dAZlc] < calcl, [A2lc] < ezlcl for Ce N(p),

where we denote by | - | the natural norm induced on tensors from the Euclidean norm in the

coordinates. Now for any ¢ € N (p)\{p}, fix v € T¢ E with v € VE and |v| = 1, so the vector
iv € Te B is also vertical and also has norm 1. Denote the value at ¢ of the vector field from
Lemma B9 by R := R-(() € ker dF'|¢, which according to the lemma, satisfies

(3.4) A2(R) = ail¢]

T

for some constant ¢; > 0 independent of ¢ and 7. The triple (R,v,iv) now form a positively
oriented basis of ker dF'|¢, and AS A dAS(R,v,iv) is proportional to

AL (R) dAS (vyiv) + AL (v) dAS (iv, R) + AL(iv) dAS (R, v).
Differentiating this with respect to e and setting ¢ = 0, three terms drop out since A%(v) =
A2(iv) = dA%(v,iv) = 0, and we are left with
AY(R) diig (v, iv) + 17 (v) A2 (iv, R) + 72 (iv) dAZ (R, v)
> e[| dife (v, iv) = 263/C* = [¢] - (ex difp (v, iv) = 265[C])
where we've used ([B.3]) to bound the magnitude of the last two terms from above and (3.4))
to bound the first from below. Since di? tames i and |v| = 1, the term di2(v,iv) satisfies a

uniform positive lower bound on A (p), thus the entire expression becomes positive as soon
as |C] is sufficiently small. O

Lemma 3.11. There exists a family of smooth 1-forms nS on N (p)\{p}, for 7 € X and
e € [0,e0], such that dnllyr > 0 and

& =kerdF nker (IT*o, + ent).
Moreover, the 0t decay (uniformly in 7 and €) to zero at p.
Proof. On N (p)\{p}, the kernels of A2 and IT*c, restricted to level sets of F are both ¢¥ = VE,
thus there is a family of smooth positive functions g, : N'(p)\{p} — (0,00) such that
(3.5) 0z lyer ar = 9707 or g -

We can plug in the unit vector field R, from Lemma [B9] to compute g, in coordinates, and
since II*o, vanishes at p, the estimate in the lemma gives rise to an estimate

H*UT RT C C2 C C2
0. = o) 0l _
AR all o«
for some constants ¢y, co > 0, so that the functions g, are uniformly bounded near p.
The relation (B3] together with (B now implies

gTAs—‘kerdF = (H*UT + EgTﬁ:—)‘kerdF7
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thus we can set
ne =g, for ee[0,¢], 7€ X.
Observe that 7|, = 0 for all 7 and € by definition, so the boundedness of g, implies that 7¢
also decays uniformly to zero at p.
Our remaining task is to show that dn®|yz > 0 in some (possibly smaller) open set of the
form N (p)\{p}. Since g-AS A d(grAS)|iorqr = 92 AS A dA;‘kerdF’ Lemma implies that
on a sufficiently small neighborhood N (p)\{p},

a € €
0< 93& (A7 A AT |yer are)
e=0

0
= % [(IFor + eng) A d(IT* o7 + €nf)ler ar]
_ 0 I* Y A dnt = IT* d
- & [6' ( Or +€77¢) A nT‘kerdF] - Or A an

e=0

where we’ve used the fact that IT*o, is closed on the level sets of F' since o, is (obviously)

closed on the level sets of ¢. The kernel of IT*0|ye; g7 is V E, so this last relation is equivalent

to d772|v g > 0. 0

e=0

o
Tlker dF’

3.3. Perturbing from Levi flat to contact. By assumption, there is a subcomplex A ¢ X
and a family of smooth functions { f; : E — R};c4 such that \; := —df,oJ; are Liouville forms
and restrict to 0F as Giroux forms in the sense of Remark[[.13l Recall from Definition 217 the
convex space PSH?}’, 2y) () of fiberwise .J-convex functions associated to each (J,dp) € J(II).

It will be convenient to observe that this definition still makes sense and PSH?}; 69)(1_[) is still

convex if (J,dp) is only assumed to belong to J(II;U). For example, f; € PSH?};T’ ag)(l'[) for
each 7 € A.

Lemma 3.12. The family of functions {fr : E — R},ca can be extended to a family {f, :
E — R}.ex such that f; € PS (}1 ag)(H) for every T € X.

Proof. Independently of the given functions f., we first observe that there exists a family
{g- € PSH?}’T ag)(H)}TE x. In light of Remark [226] this follows from the partition of unity

argument in the proof of Proposition 225} the only meaningful difference is that one needs
to consider families depending continuously on 7 at every step, though since X is compact,
one can also use Lemmas 2.2T] and to construct g, so that it is independent of 7 away
from 0 FE. This establishes the lemma in the case A = (.

To solve the extension problem in general, it suffices to consider the case where X is a
disk D* and A = oD* = S+~ for some k € N. We start by extending the given family
{fr}rea arbitrarily to a family of smooth functions f; : E — R for 7 € X such that each
ﬁ|ah £ is invariant under the S'-action defined by the flow of Jp and the normal derivatives
d J?T(—JT%) are locally constant for each 7. Since each J, has an S'-invariant restriction to

onE, the 1-forms o := —d ﬁ o Jr|r(a, ) are also Sl-invariant and thus satisfy
0= Logar =d(ar(d)) + da- (5, ).

In this expression, the first term at the right vanishes since a.(05) = fdﬁ(JTﬁg) is locally
constant, thus do,(0j,-) = 0. The remaining conditions in the definition of a fiberwise J,-

convex function are all open, so it follows that f, is also fiberwise J,-convex for every 7 in
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some open neighborhood A’ ¢ X of A. Finally, choose a cutoff function 5 : X — [0, 1] that
is supported in A" and satisfies 8|4 = 1, and set f; := (1) fr +[1 —5(7)]g-. This is fiberwise
Jr-convex for every 7 € X since the space PSH?}’T ag)(H) is convex. O

From now on, denote by
A\ = —dfyoJ,, 71X

the family of fiberwise Liouville forms on E' that arise from the above lemma. Choose a
neighborhood N (E“') < E of E such that the 1-forms 7¢ from Lemmal[3IT are defined and

satisfy dn®|yz > 0 on an open neighborhood of A/(E<tit)\ Eit, For any smaller neighborhood
N'(EiY) of B with compact closure in N (E), we can choose ¢y > 0 small enough so
that

dnlye >0 on N(ET)\N'(E™) for all € € [0, ).
The following lemma should be understood to be true after a possible further shrinking of
the neighborhoods N (E) and N’(E?) together with the number €y > 0.

Lemma 3.13. The family of 1-forms nt on N'(E)\N"(E“") for 7€ X and € € [0, €] can
be extended over E\N'(E) so that dntlye > 0 everywhere and nS = \; near opLE and in
Ely for some neighborhood U' < X of Crit(p) U 0X.

Proof. We again use a variant of the partition of unity argument from Proposition For
step 1, choose an open neighborhood U’ < ¥ of Crit(p) U dX with closure in U, and for each
regular value z € X\t of II, choose a neighborhood U, = X\X of 2 together with a family
of 1-forms 75 , on Ely, such that dnj . is positive on fibers and 77, = A; near J,E. We can
arrange this moreover so that U, is disjoint from U’ whenever z ¢ U’ and U, < U for z € U’,
which permits the choice 07 , := A; in the latter case.

Step 2 is to define 75 , on Ely, for a neighborhood U, = X of each z € Y matching the
given 7¢ near Ei*, We start by extending 7¢ over each component of E,\ES® as a Liouville
form, which is possible since II is allowable, though there is a slightly subtle point if we
want to arrange 77, = A, near dpE: Stokes’ theorem may make this impossible if there are
vanishing cycles C' c E, near E™* on which {7t , is too large. Recall however that while ¢
may fail to be smooth at Et, it does have a (uniformly in 7 and €) continuous extension that
vanishes at E® so its integrals along cycles in A(E) can be assumed arbitrarily small
if we replace N (E“) by a suitably smaller neighborhood (which may necessitate making
N'(E) and ¢y smaller as well). With this understood, the required extension of 7¢ from
N(E™*) to a fiberwise Liouville form n¢ , on Ely, exists for some neighborhood U, < S\U/
of z.

Step 3 is then to choose a finite subcover {U.},er of ¥\U’ with a subordinate partition of
unity {p, : U, — [0, 1]}.e; and define the desired extension by 15 = >, _;(p. o I)n; .. O

Since the smaller neighborhood U’ < U in the above lemma contains Crit(p) U 0%, we
can now relabel U’ as U without loss of generality, and let &’ < U denote a still smaller
neighborhood of Crit(¢) u 0% with closure in ¢. Choose a smooth cutoff function

B:% —[0,1]

with compact support in U such that S|y = 1, and define from this a family of smooth
functions
Ff=:poll+e¢Boll)f,: E—>R



46 SAMUEL LISI, JEREMY VAN HORN-MORRIS, AND CHRIS WENDL

for € € [0,€0] and 7 € X. Observe that FS = F = ¢ oIl outside of E|;. On E\N'(E®), we
can also define the family of smooth 1-forms

O =10, + ens,
which are Liouville for € > 0 sufficiently small (cf. Proposition [2Z.27]).
Lemma 3.14. For all € > 0 sufficiently small and all T € X, FE is J.-convex on El|y, and
dFEAOL AdOS >0 on E\ (N'(E™™) U E|crivy))-
Proof. Consider first the region E|ys. Here II is J-j,-holomorphic and oIl = 1, thus
~dFfoJ; = I (~dpo j.) + e(~df, 0 J;) = o, + €A, = 65
Proposition then implies that Ff is J.-convex on E|y for ¢ > 0 sufficiently small, and
consequently that ©F is contact on all the regular level sets of F¢ in this region.
On E\ (N'(E'Y) U Elyr), we compute
dFE A OS5 A dOS = (IT¥dp + ed[(BoIT) f]) A (ITFo, + ent) A (IT*do, + edns)
= eIT*(dp A 07) A dn + O(e?).
This is positive for all € > 0 sufficiently small since outside of any neighborhood of Crit(yp)

and of B respectively, dg A o, and dn¢|y g can each be assumed to satisfy uniform positive
lower bounds; note that the latter depends on the fact that dnS|y g > 0 holds even for e = 0

(cf. Lemma B.1T). O

In light of Lemma B.11] the family of 2-plane distributions {7 can now be extended from
N (E) over the entirety of E\ (Ecrlt V) E|Crit(¢)) by setting

& = ker dF; N ker ©F.

Lemma [B.14] then implies that for all € > 0 sufficiently small, £¢ defines a family of contact
structures on the level sets of F7. Observe that by construction, {7 is also preserved by J-
on the neighborhood Ely of E|cyir(,) U 0uE, and it is preserved by J¢ in N (E).

Lemma 3.15. After possibly shrinking eg > 0, the family J¢ defined near E'* in 434 for
e € [0,e0] and 7 € X can be extended to a family of global almost complex structures on E

that depend smoothly on €, preserve &5, and satisfy J¢ = J. in some fized neighborhood of
Elcuit(p) Y O E for all e and J% = J.. Moreover,
(3.6) —dFfo Jf =GOS along OLE,

for a (uniquely determined) family of functions G< : 0 E — (0,00) which depend smoothly on
e and satisfy GO = 1.

Proof. Pick an open set E™8 — E with closure disjoint from Eit U Ecait(p) © Op I such that
E = E™8 U Elyp o N(E™).

Choose also a family g, of J.-invariant Riemannian metrics on F and let H E™% < TE™®
denote the g,-orthogonal complement of V E|gree. By construction, H,E™8 is J.-invariant,
and since £ = VE, we are free to assume H,E™8hEE whenever e > 0 is sufficiently small.
Then the projections TE™ — V E along H,FE restrict to a family of bundle isomorphisms
U, : & — VE, and there is a unique family of almost complex structures jﬁ on E™& defined
by the conditions

Telee = Ui |vE, I m.p = el 5.
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These preserve &£ and match J; for e = 0.

We next splice jﬁ together with the existing families J¢ on N (E“t) and J¢ := J, on E|y.
For any point p € I/ with a complex structure J on T, and sufficiently small J-antilinear
map Y : T, — T,F, define

1 1\
oY) = <11+§JY>J<]1+§JY> .
This identifies a neighborhood of 0 in the space of J-antilinear maps on 7}, with a neigh-

borhood of J in the manifold of complex structures on 7,F, and moreover, if J preserves
some subspace V' < T,E, then ®;(Y) also preserves V if and only if Y preserves V. On
E™e n (N(E“") U Ely), we may assume for sufficiently small € > 0 that J¢ and J¢ are
each C%-close to J, and therefore also to each other, so there exists a family of £¢-preserving
Jt-antilinear bundle endomorphisms Y such that
Je = Dy (YS),

and Y = 0. Now for any choice of smooth function ¢ : E — [0, 1] that equals 1 outside
Elyyr 0 N(E) and has compact support in E™8 a family of almost complex structures
satisfying most of the desired properties can be defined by

jﬁ on Ereeg\ (./\/(Ecrit) U E|u/),
(3.7) JE =1 JE on (N(E“) U Elyr) \E"™®,
Py (YYS)  on E*& A (N(ETY) U Ely).
Notice that on the region where II is holomorphic, § = 1 and J¢ = J., we have
—dFfoJi=—d(poll +e€f;)oJ, =% 0o, + e\, = OF.

This applies in particular on a neighborhood of E|cyiy(,) W OuE, so that (B.0) is already
established with G{ = 1 near E\Cm(@). In order to achieve ([B.0) everywhere else, we can
modify the definition of J¢ near d,E on a subbundle transverse to ££. Indeed, observe first
that on J,F, the relation TIl o J, = j, o TII implies —dF° o J? = II*o,, and the latter
is nowhere zero away from FE|cyi(,), hence so are both —dFf o Jt|p, gy and ©5 for € > 0
sufficiently small. Our goal will thus be to achieve

ker(—dFfo Jf) =ker©f along 0pF.

Since ©f and —dFy o J: both annihilate ££, it suffices to find a 1-dimensional subbundle of
TE|s, g that intersects £ trivially and is also annihilated by both. For ©f there is a clear
choice: this 1-form is Liouville for sufficiently small € > 0, so its dual Liouville vector field V¢
satisfies
O%(V) = dOL(VE, VE) = 0,

and we will see presently that it is not contained in V' E, and therefore also not in &£ for € > 0
small, outside a neighborhood of E|cyi¢(,)- Indeed, working in a neighborhood of J, E' where
IT has no critical points and n¢ = A;, let H.E < T'EY denote the dA--symplectic complement
of VE. With respect to this splitting, write V¢ = v$ + h$ for vf € VE and h{ € H, E. Writing
©°¢ = IT*o; + e\, and restricting the relation ©¢ = dOS(VS,-) to the subbundles VE and
H,E then gives

)‘T‘VE = d\-(v7, )‘VE and (o + 6)‘T)‘HTE = (Il"do, + edA;)(hs, )‘HTE
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The first relation identifies v$ as the “vertical Liouville vector field” V) _, defined on the

smooth part of each fiber E, as the Liouville vector field dual to A;|rg,. In particular, the
vertical term does not depend on e. The horizontal term h{ also has a well-behaved limit as
e — 0, determined by

H*UT‘HTE = H*dUT(h9'7 ')|HTE’

which means h? is the horizontal lift Vi of the Liouville vector field V. on ¥, defined by
do:(V,_,:) = o,. The latter is nowhere zero away from Crit(y), implying that

|7ARES lim V5 = Vi + v
€E—>

always has a nontrivial horizontal part on the region of interest. This establishes the claim
that V¢ ¢ £ on this region for all € > 0 sufficiently small.
Now observe that at 0, FE for e = 0,

—dF(J, V) = —dp(ILu J- Vs, + 1L VE) = —dp(j,ILVE) = 0.(V,,) = dor(V,,, Vy,) = 0,

where we’ve again used the assumption that TTlo J, = j, oTII along d, E. In other words, on
Onl away from Ecyie(p), VY and J, V) span a J,-complex subbundle of T'E that is transverse
to VE and intersects ker dF° transversely in the subspace spanned by J, V', At E |Crit(¥,), the
transversality fails because V7 vanishes, but since —dF¥ o J: = Of along 0, E in this region,
we also have

—dFE(JEVE) = O5(VE) = 0

here. It is therefore possible to modify the family J¢ near 0, E without changing it near
E|cyig(p) or changing its action on & anywhere so that it satisfies

JiVE € ker dF;

everywhere along 0p E for € > 0 sufficiently small. This identifies the kernels of —dF¢ o J¢
and ©f along 0, F and thus establishes ([B.6]) for a uniquely determined family of functions
GS @ Op 2 — (0,00) which necessarily equal 1 near E|cyjy(p)- Since both families of 1-forms
match IT*o, for € = 0, we also have GY = 1. The modified family J¢ can now be spliced
together with the previously constructed family away from 0, FE using the same trick as in

@) 0

Lemma 3.16. After replacing ¢ : ¥ — R by a function of the form h o ¢ with h' > 0
and " » 0, the pairs (J5, FS) become almost Stein structures for all T € X and all € > 0
sufficiently small.

Proof. The functions F¢ have critical points at Ei* and in F |Crit(¥,), but are J¢-convex near
both due to Lemmas and BJ4l Outside these neighborhoods, the maximal JE-complex
subbundles on the level sets of Ff are the contact structures &£, so Fy becomes Jf-convex
after postcomposition with a sufficiently convex function, using Lemma 2271

It remains to check that —dFf o J£ restricts to contact forms on both 0,FE and d,E. The
former lies in the region where —dFfo J¢ = O = [I*0, + e\, and Proposition 2Tl proves that
the latter is contact on 0, F for sufficiently small € > 0 since o,|p@es) > 0 and A, is fiberwise
Liouville. Using Proposition similarly, ©f is also contact on 0y E for small € > 0, so the
contact condition on 5 E follows from (3.6]). O
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3.4. Interpolation of almost Stein structures. To complete the proof of Proposition [3.4],
we need to relate the family of almost Stein structures {(J£, F)},ex, ce(0,¢0] cOnstructed above
to the given family {(J-, f;)}rea. The functions f; where extended to all 7 € X in Lemmal[3.12]
but are only fiberwise J -convex in general for 7 ¢ A; on the other hand, all conditions that
distinguish J,-convexity from its fiberwise counterpart are open, thus we can assume (J;, f;)
are almost Stein structures for all 7 in some open neighborhood A’ ¢ X of A. The same can
also be assumed for (JS, f;) for any € € [0,¢p] if €9 > 0 is sufficiently small. Now choose a
cutoff function p : X — [0,1] with support in A" and p|4 = 1, and consider the family of
interpolated functions

fr= () fr + 1 = p(7)1F7
for 7 € X and € € [0,€¢p]. These functions are J¢-convex everywhere when e¢ > 0, but we

still need to check that the remaining conditions of an almost Stein structure are satisfied for
7€ A\A, i.e. that the interpolated Liouville forms

—dfg o JE = p(r) (=dfy 0 JE) + [1 — p(r)] (—dFE o J5)

are contact on both faces of 0F. After shrinking ¢y > 0 further if necessary, this will follow
from the next two lemmas.

Lemma 3.17. For all 7 € A’, € > 0 sufficiently small and p € [0,1], the 1-forms p(—df; o
JE) + (1 — p)(—dF£ o JS) restrict to contact forms on O, E.

Proof. In a neighborhood of 0, F, we have J¢ = J, and thus —df; o J¢ = A\;, and similarly,
Ff = poll +¢ef and TIl o J; = j; o TIl imply —dF¢ o J¢ = II*o; + e\;. The 1-form in
question is thus

1—p
pAr+ (1 —p)IT*or + eXr) = [p+e(1 — p)] ()\T + 7H*O'T> ,
p+e(l—p)
assuming € > 0 so that p+¢(1 — p) > 0 for all p. Since A; is fiberwise Liouville and defines a
contact form on 0, F and UT|T(52) > 0, the expression in parentheses is contact for all p € [0, 1]
by Proposition 2.1 O

Lemma 3.18. The statement of Lemma[3.17 also holds for the restriction to onE.

Proof. Near 0pF, Lemma [B.I5] gives —dF¥ o J: = GLOY for a family of functions G% : o F —
(0,0) satisfying G2 = 1, while the 1-form ©¢ = [I*o, + €\, is contact for € > 0 sufficiently
small due to Prop. For € = 0, the interpolated 1-forms in question are thus

1 _
pAr + (1 — p)*o, = p ()\T + —'OH*UT)
P

along 0pF, and these are contact for all p > 0 by another application of Prop. since o is
Liouville and A |7(s, ) satisfies the conditions of a Giroux form. The contact condition ceases
to hold for p = € = 0, but since the condition is open, the lemma will follow from the claim that
p(—=df;oJS)+ (1—p)(—dFEoJS) restricted to o F is contact for every (p, €) in a neighborhood
of (0,0) excluding (0,0) itself. To see this, note first that since %(—dfT o JY%) = A, and
everything depends smoothly on €, we can write .

1
E(*dfT oJr)=A+er;

T
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for some family of smooth 1-forms {75} ex, ee[0,eo]- Our family of interpolated 1-forms on oy,
can then be rewritten whenever (p,€) # (0,0) as

p(—dfy o J%) + (1 p) (~dFF 0 J%) = pGS (Ar + €99) + (1 — p)G (07 + eAr)
=G (cll*or + als + epys) =: Gop,

where we are abbreviating ¢ = ¢(p) := 1 —p and a = a(p,€) := p+¢€(1 — p). Notice that while
¢(p) approaches 1, a(p, €) and ep/a(p, €) each decay to 0 as (p,€) — (0,0). Since I*o AdA; =0
and A\; A II*do; > 0 by the fiberwise Giroux condition on A\, we then find that

pAdp = (cIl*or + alr + epys) A (clT*dor + ad\, + epdrys)

= ac [)\T A IT*do, + %)\T A dNs + % <)\T Adys + 5 A dA: + %ﬁ A dﬁ)]

is positive as soon as (p, €) gets close enough to (0,0). O

With this, the pairs (J¢, f¢) for all 7 € X and e > 0 sufficiently small are seen to be almost
Stein structures that match (J;, f;) for 7 € A, so the proof of Proposition 34l (and therefore
also of Theorem BI]) is now complete.

4. A SYMPLECTIC MODEL OF A COLLAR NEIGHBORHOOD WITH CORNERS

Throughout this section, assume (M’,€) is a closed connected contact 3-manifold, and
M < M’ is a compact connected 3-dimensional submanifold M < M’, possibly with boundary,
on which £ is supported by a spinal open book

T = (Wz My, —» X, mp: Mp — 51,{mT}TC(?M)-

The immediate purpose of this section is to construct a precise symplectic model of a collar
neighborhood of the form (—e¢, 0] x M’ in the symplectization of (M’,§), designed such that
spine removal cobordisms can be defined via an easy modification of the model. The intuition
for the construction comes from the neighborhood of dF when II : £ — 3 is a bordered
Lefschetz fibration that fills a spinal open book—however, it will not be necessary to assume
in the following that (M’, ) is symplectically fillable, as we will instead make use of the trivial
observation that every closed contact manifold arises as the convex boundary of a noncompact
subset of its own symplectization. The model we construct will thus be a noncompact 4-
manifold £/ whose boundary has two smooth faces

OF' = 0,E' U OLE',

interpreted as the vertical and horizontal boundaries respectively of a (locally defined) sym-
plectic fibration, such that the smoothed contact boundary of E’ can be identified with (M’,¢).
We will elaborate further on this model in [LVW] by attaching cylindrical ends to both its
fibers and its base, producing the so-called double completion of E’, which will admit an
abundance of holomorphic curves modeled after the pages of w. These curves generate the
moduli space needed for classifying fillings as in Theorems [A] and

4.1. The Liouville collar.
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M
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FIGURE 4. A schematic picture of the closed manifold M’ with compact
subdomains M = Mp u My, ¢ M’ and M < M’, together with the various
collar neighborhoods N (0M) and N (0M}p) of dMp.

4.1.1. The collar and its boundary. We shall denote the union of the paper with the “rest”
of M’ by
Mp = Mpu (M"\M) = M\Ms, c M’,
hence M’ is the union of My, with M}, along their common boundary 0Ms, = 0M}, a disjoint
union of 2-tori. Recall from §2.2] the collar neighborhoods N (0X), N (éMyx) and N (0Mp)
with their coordinate systems (s, ®), (s, ¢,60) and (¢, t,0) respectively. We will denote by
N(OM) c Mp
the neighborhood of dM in M defined as the union of all components of N (0Mp) that
touch M. Similarly, the union of components of N'(¢Mp) that are disjoint from 0M will be
denoted by
N(0Mp)  Mp,

as this forms a collar neighborhood of dM}, in M. For assistance in keeping track of this
notation, see Figure [l

Now since dMy, = 0Mp, we can use the collars N (0My) = (—1,0] x dMy, and N (0M}p) =
(—1,0] x 0M}p to define a diffeomorphism

P : (—1,0] x N(0Ms) — (=1,0] x N(0Mp)
(t, (s,2)) = (s, (t, 7)),
and then use this as a gluing map to define (see Figure [
E' = ((—1,0] x M) ug ((—1,0] x Mp),
along with the distinguished subdomain
E:= ((-1,0] x My) ug ((—1,0] x Mp) < E'.

This construction makes E’ and F into smooth noncompact 4-manifolds with boundary and
codimension 2 corners. The boundary of E’ consists of two smooth faces

OE' = 0,E" L O F'
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defined as follows:
e The vertical boundary J,E’ is {0} x M}, so it is a copy of Mp. We will denote the
resulting collar neighborhood of the vertical boundary by
N(O,E") := (—1,0] x Mp < E',

and denote the coordinate on the first factor by s. We will also want to consider the
distinguished subset
OwE = {0} x Mp < 0,F’
and the corresponding collar
N(0,E) := (—1,0] x Mp < N(0,E"),
which are the same as 0, E' and N (0, E’) respectively if OM = .

e The horizontal boundary 0, F’ is {0} x My, a copy of My, and it can also be denoted
by 0, E := 0, E’ since it lies in the subdomain E. The resulting collar neighborhood
of this face will be denoted by

N(OLE) := N(OhE") :== (—1,0] x My, € E,
with the coordinate on the first factor denoted by t.

Notice that ¢, E" U 0, E' is naturally homeomorphic to M’, and similarly 0, F U 0, E is homoe-
morphic to M, in both cases by a homeomorphism that identifies the corner 0,E n dpE =
Oy E' " O E' with 0My, = 0M', = Msx, n Mp. Each connected component of the neighborhood

N(&UE M 8hE) = N(&UE) M J\/(@hE) c FE
of this corner carries coordinates
(s,0,t,0) € (—1,0] x ST x (=1,0] x S* ¢ N(0,E n O, E),

as the construction of the gluing map guarantees that each of these coordinates is unambigu-
ously defined. We assign to E’ and F the orientation determined by this coordinate system.
A similar coordinate system exists on each connected component of

N(00,E) := (—1,0] x N(0M) « N(0,F) c E.
On the collars N (d,F) and N (0, FE), one can separately define fibrations
I, : N(OE) = (—1,0] x (£ x S') — 8 (£,(2,0)) — 7s(z,0) = 2,
and
I, : N(0,E) = (—1,0] x Mp — (—1,0] x S : (s,2) — (s,7p(z)).

On the region where the domains of these two fibrations overlap, we can write them in
(s, ¢,t,0)-coordinates as

(4'1) Hh(s7 (b? t? 6) = (87 (b)’ HU<S7 ¢7 t? 0) = <S7 m¢)'

While it may not be true in general that 1I; and II, can be fit together to define a global
fibration on FE, they have the same fibers on the region of overlap and thus give rise to a
well-defined vertical subbundle

VE :=kerTIl} or kerTIl, c TE,

which on N (9, E) is spanned by the vector fields ¢; and dyp. Figure [l has been drawn so that
the fibers can be represented as vertical lines in the picture.
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FIGURE 5. The domain E’ with its boundary faces and collar neighborhoods,

shown together with a portion of the fibration IIj

: N(OpE) — X

In this

example, Mp contains at least two connected components, one (shown at the
right) that touches two separate spinal components but not the boundary, and
another (at the left) that does touch dM.

53

O E



54 SAMUEL LISI, JEREMY VAN HORN-MORRIS, AND CHRIS WENDL

4.1.2. The Liouville structure on E'. We will use the fibrations II, and II; to construct a
Liouville structure on E via the Thurston trick as in §2.1] and then extend it to £’ using the
given contact structure on M’.

Fix a Liouville form o on X that takes the form

o=me’dp on N(J%),

where m € N is the multiplicity of 7p : Mp — S' at its boundary component adjacent to
the relevant component of N (0My); recall that this number may differ on distinct connected
components of N (0X), cf. 221 We will also use o to denote the pullback of this Liouville
form under the trivial bundle projection I, : N(é,F) — X, and since 7p(¢,t,0) = m¢ on
N(0Mp), o extends globally to a 1-form on F satisfying
o=¢cdnp on N(0,F),

where we are abusing notation slightly by using 7p : N'(0,F) — S* to denote the composition
of the fibration 7p : Mp — S with the obvious projection N(6,E) = (—1,0] x Mp — Mp,
hence defining drp as a real-valued 1-form on N (0, F).

We next define a 1-form on E that can be regarded as a fiberwise Liouwville structure with

respect to the fibrations IT;, and II,,. By Lemma [Z7] there exists a 1-form A on Mp such that
d)\ is positive on all fibers of 7p : Mp — S' and

A=¢e"dfd on N(0Mp).
Using the same symbol to denote the pullback of A via the projection N (0,F) = (—1,0] x
Mp — Mp, we can then extend A to a global 1-form on F satisfying
A=¢e"df on N(O,E).
It is fiberwise Liouville in the sense that dA|y g > 0 everywhere on F, and since A|7(p, g) = db,
the boundaries of the fibers of II;, are positive with respect to A and are annihilated by
We can now apply the Thurston trick: for any constant K > 0, we define a 1-form Agx by
A = Ko + ).

Corollary in conjunction with Remark 1] below then provides a constant Ky > 0 such
that dAi is symplectic everywhere on E for each K > K. Near the boundary, we have

(4.2) Mg = Ko +e'df on N(O,E), and Ax = Ke®dnp + X on N(0,E),
so in particular
(4.3) Mg = Kme*dp +e'd)  on N(0,E U 0nE) uN(00,E).

Remark 4.1. The noncompactness of E does not pose any problem in the above use of the
Thurston trick: the reason is that if we fix on F any Riemannian metric that is independent
of the s- and/or t-coordinates wherever these are defined, then |dA A dA| is bounded above
and do A dX is bounded away from zero. This observation will be even more useful when we

discuss the double completion in [LVW].

We will always assume from now on that K > Ky so that d\g is symplectic, and we will
occasionally require further increases in the value of Ky for convenience. There is now a
Liouville vector field Vi on (E,d\k) defined via the condition

d kg (Vi) = Ak.
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From (€2]) we compute

(4.4) Vik =V, +0 on N(OLE),

where V,; denotes the Liouville vector field on ¥ dual to o, and from (@3],
Vk =0s+ 0 on N(0,E n dpE) U N(00,E).

Lemma 4.2. For all K > 0 sufficiently large, ds(Vi) >0 on N (0, E).

Proof. Tt is equivalent to show that the restriction of A\x = Ke®dmp + A to {s} x Mp for each
s € (—1,0] is a positive contact form. Since e®dnp is the pullback via 7p : Mp — St oof a
volume form on S! for each fixed s € [—1,0], the result follows from Proposition .1l O

In light of the lemma, we shall assume from now on that Ky > 0 is large enough to ensure
ds(Vi) > 0 for all K > Kj. Before extending Ak to the rest of E’, we must make a minor
adjustment in the neighborhood of (—1,0] x M < N (0, E).

Lemma 4.3. There exists a smooth homotopy of Liouville forms {)\TK}TE[O,I] on E with the
following properties:
(1) Xg = Ak
(2) The restrictions of N} to T(0,E) are identical for every T € [0,1];
(3) Al = Ak outside a small open neighborhood of N'(00,E) for all T € [0,1];
(4) For each T € [0, 1], the Liouville vector field V. determined by A}, satisfies ds(VZ) > 0
on N(0,E);
(5) Ni¢ = €* (Kmde + €' df) near (—1,0] x M < N(0,E), where m € N is the multiplic-
ity of Tp at the relevant component of M .

Proof. Working in (¢, t, 6)-coordinates on a connected component of N'(0M), let N (M) c M
denote a slightly expanded collar neighborhood in which the ¢-coordinate takes values in
(=1 — ¢,0] for some ¢ > 0 small. Let us similarly extend the s-coordinate to the interval
(—1 —6,0] and consider the expanded domain

N(00,E) := (=1 — 5,0] x N'(0M)

for some § > 0 small enough so that A\x = Kme®d¢ + A is still a Liouville form on this
domain and its Liouville vector field Vi is still transverse to all hypersurfaces of the form
{s = const}. Notice that in the region {t > —1} ¢ N(00,E), we have A\ = Kme® d¢ + e’ df
and thus Vix = 0s + 0;. Now if € > 0 is sufficiently small, we can assume that the flow <I>€/K

of Vi in N'(00,E) for times p € [—1,0] is well defined on the small collar
{t > —€/2} c N(OM) c O, E.

Choose a smooth vector field V on N'(00,E) with the following properties:
(1) V = Vi throughout N (00, F) and also in the region obtained by flowing {t > —¢/2} —
N (0M) backwards from time 0 to time —1;
(2) ds(V) > 0 is close to 1 everywhere;
(3) V =0, in a neighborhood of {t = —1 — €}.
Using the flow @}, of V, define the embedding (see Figure [G)

(—1,0] x S* x (=1 —€,0] x S* & N(00,E) : (s, ¢, t,0) — i, t,0).

Identifying the domain of ¥ with the obvious collar neighborhood in N (0, F), this map equals
the identity near {t = —1 — €} and at {s = 0}, and by deforming the vector field V' we can
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FIGURE 6. The embedding ¥ in the proof of Lemma .3l

also find a smooth isotopy of embeddings {W},¢[o,1] With both of these properties such that
P, = W and ¥y = Id. The desired family of Liouville forms can then be defined on this collar
by
% =Ui\g

and extended to the rest of E as Ax. In particular, we have A} = ¢* (Km do + € d9) for
t = —¢/2 since ¥ redefines the s-coordinate via the flow of the Liouville vector field. Since
Vi = 0s + 0, on N(00,E), the condition ds(V}Z) > 0 is easily achieved as long as ¢ and € are
both sufficiently small. O

Let us now replace Ax with )\}( from the lemma, so as to assume without loss of generality
that Ax = e* (Kmdg¢ + €' df) on (—1,0] x ST x (=4,0] x ST < N(00,E) for some § > 0. We
then make one further modification on the same region and redefine Ag in the form

Ak = e [f(t) df + Kmg(t) d],
where f,g: (—9,0] — [0,00) are smooth functions chosen such that (see Figure [7))
o (f(t),g(t)) = (¢!,1) for ¢ near —5;

e flg—fg >0
e f(0) =1 and g(0) = 0;
e f'(0)=0.

These conditions guarantee that o’ := f(t)df + Kmg(t) d¢ defines a positive contact form
on St x (=4,0] x S' < N(0M) satisfying o/(d,) = 0 and da’(dp,) = 0 at 0M. One can
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FIGURE 7. The path ¢t — (f(t),g(t)) for =6 <t < 0.

now extend o smoothly beyond 0M so that it defines a contact form for & on M’\M. The
corresponding extension of Ag is defined by

Ak =’ on (—1,0] x (M"\M) = N(0,E').
The corresponding Liouville vector field on (—1,0] x (M’\M) is simply 0.

4.1.3. Contact hypersurfaces and smoothing corners. It is immediate from the above construc-
tions that the Liouville vector field Vi is transverse to both 0, F’ and 0 E’, so smoothing the
corners makes 0F’ into a contact hypersurface. Moreover, the fiberwise Liouville condition
on A\x and the specific way that it was modified in A (00, F) mean that the induced contact
structure on the smoothing of d,F U 0, will be isotopic to one supported by 7r, hence the
contact structure on JE’ is isotopic to ¢ after identifying the latter with M’.

To define the smoothing more precisely, choose a pair of smooth functions F,G : (—1,1) —
(—1,0] that satisfy the following conditions:

o (F(p),G(p)) = (p,0) for p < —1/4;
o (F(p),G(p)) = (0,—p) for p = 1/4;
e G'(p) <0 for p>—1/4;
e F'(p) >0 for p < 1/4.

Now let

MY c E
denote the smooth hypersurface obtained from 0E’ by replacing 0E' n N (0, E n dpE) in
(s, ®,t,0)-coordinates with

(45) {(F(0).0.G(0).0) | 9.0 5", -1 <p<1f;

see Figure B This smoothing is transverse to Vi = s + 0; by construction, thus MY is a
contact hypersurface and inherits the contact structure
&o = ker ay, ag = A |-

By translating M? a distance of —3/4 in both the s- and ¢-coordinates, one obtains another
contact hypersurface

(M~,6.) = (B, dAg)
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FIGURE 8. The smoothed hypersurfaces M and M~ sitting inside the same

model of £’ as shown in Figure Bl together with the transverse Liouville vector

which contains portions of the two hypersurfaces {—3/4} x My, € N (0, E) and {—3/4} x M},
N (0, E") and a translated copy of ([&H) replacing the neighborhood of their intersection (see
the inner hypersurface in Figure§]). Since (M ~,£¢_) and (M?,&y) can evidently be connected
by a smooth 1-parameter family of contact hypersurfaces in (E’, d\ ), their contact structures
are isotopic, so in particular £_ is isotopic to & after a suitable identification of M~ with M’.

4.2. Spine removal cobordisms. In this section we use the model (E’, d\x) with contact
hypersurfaces (M ~,¢_) and (M?, &) constructed in §1to prove Theorem [[25l In particular,
we will enlarge E’ in order to construct a symplectic spine removal cobordism whose negative
weakly contact boundary is the contact hypersurface (M~ ,£_).

Fix a decomposition of ¥ into open and closed subsets

3 — yrem qp Eoth
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FIGURE 9. The diffeomorphism v : [~1/2,0] x S1 — ID)Q\IB)%/Q.

and assume Y™™ is nonempty. Fix also a trivialization My, = ¥ x S!, so in particular
Tsy I(xrem) = yrem » §1. The choice of decomposition ¥ = X™™ 11 X0 splits the horizontal
boundary Jd, FE into a disjoint union

O = BN E = (S1 x §1) ur (20 x 8T
and the collar NV(0, F) decomposes accordingly as
N(OhE) = N(BF™E) uN (31 E).

Recall that A\ = Ko + €' df in N(J,E).
We will now modify E’ by attaching a generalized notion of a “symplectic handle” to J;""E.
Choose a diffeomorphism

U1 [1/2,0] x §' Z> DAD2,
where ]D)% /2 denotes the closed disk of radius 1/2 inside the unit disk D? < C, and assume 1)
maps {—1/2} x S! to dD?; see Figure[ Using the obvious coordinates (t,6) on [—1/2,0] x S,
let wp denote any area form on D? that restricts to ¥ (el dt A df) outside of ]D)% /o We can
then define a new symplectic manifold with boundary and corners by

(E,0K) := (E',d\r) vy (2™ x D, K do + wp)

where do and wp are each identified with their pullbacks to ¥'™ x D? via the obvious pro-
jections, and the gluing map is defined by

U N(GE) o (—1/2,0] x 27 x ST s 3 5 D21 (¢,2,0) v (2,9(t,0)).

Schematic pictures of this modification are shown in Figures and [[I] for cases where
Y™ has one or two connected components respectively. Since N (0™ F) lies entirely in the
subdomain F < E’, we can define a corresponding subdomain

EcFE
by attaching B x ]Di in thig way to E instead of E’. The boundary of E’ now has two
smooth faces 0E' = 0, E’ U 0,E’, where the “horizontal” boundary is
OnE = 0hE = M E,
and the “vertical” boundary

OuE' = 0,E" U (05™™ x D?)
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is obtained from 0,E’ by gluing in 0X'™ x D?—a disjoint union of solid tori—along the
boundary components of 0,E’ that touch 0;*™E. Again this attachment has nothing to do
with the region F'\E, so we can define

OuF = 0,F U (oxrem x D?) oL F.
Each of these gives rise to collars which are also subsets of E': we shall denote
N(OLE") := N(OLE) := (—1,0] x &P E = (=1,0] x £ x ' ¢ E,

with ¢ denoting the coordinate in (—1,0], and

N(0,E') := (—1,0] x 0,E' < E,

N(0,E) := (—=1,0] x 0,E c E,
with the coordinate on (—1,0] denoted by s. These collars do not cover all of E', as we also
e N(GE™E) := N(B™E) Uy (37 x D?) >~ ¥ x D? ¢ E;
see Figures[I0 and [[Il Here the slightly different notational convention is meant to emphasize

the fact that A/ (0} E) is not actually a collar neighborhood of any part of the boundary—it
contains the original ¢;°"FE, but this now lives in the interior of the “handle” X ™™ x D2.

With this notation in place E’ and E can be presented as the unions of overlapping regions
= N (0 E’) U N(é’hE) u./\/'(ﬁrem )
E = N(2,B) UN (O B) u N (3™ E).

The fibrations IT, : N(d,E) — (—1,0] x S* and I, : N (0, E) — X extend in obvious ways:
on the horizontal neighborhoods we have trivial projections

I, : N(OLE) = (—1,0] x 2O x g1 — yoth,
I, : N(Of™E) = X" x D? — xrem,
and on the vertical collars, the formula II,(s, ¢,t,8) = (s,m¢) produces an extension
I, : N(6,E) — (—1,0] x S*

which is defined on each connected component of the attached region (—1,0] x 0X"™ x D? by

(—1, O]XSlxDQ&(—l 0] x S*: (s,0,¢) — (s,m0),
with the multiplicity m € N as usual dependlng on the component under consideration.
Denote the resulting vertical subbundle by VE < TE and observe that
(.UK|V B >0
by construction.
It will be useful to decompose ¢, E and 0, F’ further into the components
o E =M ENS™E,  0,E =M EnaE,

with corresponding collars N (318 E), N (0% E) and N (0S*E'), where 01 E is defined as
the union of all components of d,E such that the fibers of II, : N(31E) — (=1,0] x S?
have empty boundary Such components arise whenever Mp has components with boundary
contained in g, (Erem), see Figure Il The notation is motivated by the fact that, as we’ll
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FIGURE 10. The domain E’ constructed from E’ of Figure Bl by gluing
yrem » D2 (the darkly shaded region) to the spinal component at the top of
the picture. The picture is slightly misleading at its top border because there
is no actual boundary of E’ here: one can think of this instead as the “center”
yrem 5 {0} of '™ x D2, and in particular, the only actual corner of E’ shown
in the picture is the one at the bottom right. The spine removal cobordism
is defined to be the region between the two hypersurfaces M_ and M VX: the
former is contact type since it remains transverse to the same Liouville vector
field, but this vector does not extend over all of M ¢v* " hence the latter is in
general only weakly convex.

see below, 65""@’ inherits a natural contact structure that is dominated by Wg, hence making
0 E' weakly convex, but o /' does not; in fact for certain natural choices of almost complex
structure on E, 05 E’ is pseudoconvex while o8 E is Levi flat.
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FIGURE 11. A variant of Figure [0l in which X*™ x D? has two connected
components, attached at both the top and the bottom of the picture. The
upper boundary of the cobordism now includes a component MUt that is not
contact, as it is foliated by closed pages of a generalized spinal open book.
(Note that the only actual boundary of E’ in this picture is at the sides; the

top and bottom represent two distinct connected components of the interior
submanifold XM x {0} < X x D2.)

The fibrations ﬁv and ﬁh induce on 65""@ U 6hE the structure of a spinal open book 7
with paper 05 F and spine 0), E, the latter fibering over %%,

Lemma 4.4. After smoothing the corner of 85""1?] V) 8hE, T supports a contact structure that
is dominated by Wy .
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Proof. We mimic the procedure that was used in §41] to define A\x on E’: first choose a
fiberwise Liouville form A on 0S"*F that equals e’ df in the collar neighborhoods of remaining
boundary components (i.e. those that were not capped off in the transformation from J,F

to 6CVXE) Pulling back via the obvious projection defines Xon N (80""E)7 and the formula
X = ¢l df extends it over N'(3,E). (Note that by Stokes’ theorem, A cannot be extended
o N'(3%8tE)).) We can then use the Thurston trick to define a Liouville form

XK :=KO’+X

on N (35*E) U N (0, E), after possibly i m(:reasmg the value of K > 0, and this Liouville form

matches Mg on the regions where A = ef df and can thus be extended to N (0, E')\N (0, E) in
the same way as Ag. We claim now that if K > 0 is sufficiently large, then

XK/\GJK . >0 and XK/\GJK L >
T(oev<E) T(onE")
The second relation is immediate because A\ = XK near 8hE~3’, so we are merely rephrasing
the fact that 8gthE is a contact hypersurface in (F,dA\r). The first relation is similarly
immediate on the regions where A\ = XK, so we only still need to check that it holds on
oS*E. To see this, notice that &k can be written in N (5*E) as

wrg = Kd (68 dﬁv> + Whb,

where wgy, is a closed 2-form that satisfies wqp||,z > 0 and is independent of K, while e* dIl,
can be regarded as the pullback via II, of a Liouville form on [-1,0] x S*. The claim thus
follows via Proposition 241

Finally, the same argument used previously for Ax shows that Mk restricts to both 8hE’
and 65""5’ as a contact form, and by construction it matches the contact form induced by
Ax in a neighborhood of the corners of 65‘”‘@’ U 8hE” . It follows that we can smooth these
corners by the same procedure that was used in §&.1.3] to define the contact hypersurface MY,
giving rise in this case to a weakly contact hypersurface

(M, &) = (E', k)
whose contact structure 5 is defined by restricting by K to Mevx, U

The weakly contact hypersurface (1\7 ovx E ) found in the above proof is shown in Figure [I0]

as the smooth curve traversing the outer boundary of E’ with some rounding at the corners.
We are now in a position to define an actual spine removal cobordism: let

XcFE

denote the region that is sandwiched in between M~ < E' < E' and 85‘“@ M < B,
making (X,0x) a compact symplectic manifold with strongly concave boundary (M~,§_),
weakly convex boundary (]\7 CVX,E), and additional boundary components 85‘“@ which are
neither concave nor convex but are fibered by closed symplectic surfaces.

To finish the proof of Theorem [[225] we need to modify (X, @) to allow symplectic forms
that are not exact at the negative boundary. Suppose € is a closed 2-form on M’ that satisfies
Q¢ > 0 and is exact on X" x S 1. We can then find a closed 2-form 7 on M’ with the following
properties:

(1) [n] = [2] € Hip(M");
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(2) On each of the collar components S x (—1,0] x S* = N (0Mp) and (—1,0] x St x St <
N (@My), n is a constant multiple of d¢ A db;

(3) 1 vanishes on wgl(zrem) = yrem » g1
The third condition is possible due to the cohomological assumption, and combining this
assumption with the second condition implies that 7 also vanishes on all components of
N (0Mp) adjacent to 75! (X™™). We can now define 1 as a closed 2-form on N(9,E’) and
N (0pE") by pulling back via the projections (—1,0]x M}y — My and (—1,0] x My, respectively,
and the second condition implies that n remains well defined after gluing these collars together
to form E’, thus we shall regard 7 as a closed 2-form on E’. By construction, n vanishes near
O™ E, hence 7 can also be regarded as defining a closed 2-form on E'. Tts restriction

n=nlru-
is cohomologous to 2 after identifying M~ with M. The following is an immediate conse-

quence of the fact that the nondegeneracy of 2-forms and the “weakly contact” condition are
both open.

Lemma 4.5. There exists a constant Cy > 0 such that for all C = Cy, the 2-form
(?}/K =CWg +n

is symplectic on X, the boundary components (M~ ,£_) and (MCVX, E) are weakly concave and
convez respectively, and &Y is positive on the closed surface fibers in Mt U

Finally, observe that since £ and 7 are cohomologous on M’ and Q¢ > 0, [MNWI3]|,
Lemma 2.10] provides a symplectic form on [0,1] x M’ that restricts to Q on {0} x M’ and
Cda' +non {1} x M’ where one has the freedom to choose o’ as any contact form for &
at the expense of inserting a sufficiently large constant C' > 0. We can therefore make these
choices and increase the value of C' = Cj if necessary so that the weak symplectic cobordism
(X, &%) provided by Lemma can be attached on top of [0,1] x M’. All together, this
provides a weak symplectic cobordism with the properties stated in Theorem and thus
completes the proof.

5. NONFILLABILITY VIA SPINE REMOVAL

In this section we use spine removal surgery to prove Theorems[T.29and[1.34] Theorem [[.29]
will be an immediate corollary of the following result, using the method of [ABWI0]; it says
essentially that any contact manifold with a partially planar domain can be given a symplectic
cap that contains a nonnegative symplectic sphere.

Theorem 5.1. Suppose (M',€) is a contact 3-manifold containing an Q-separating partially
planar domain for some closed 2-form Q with Q¢ > 0. Then there exists a compact symplectic
manifold (X,w) with 0X = —M" and w|ryr = Q such that (X,w) contains a symplectically
embedded 2-sphere with vanishing self-intersection number.

Proof. Let M < M’ denote the partially planar domain, Mgn c M its planar piece, and

Y xS ... %, x 8! © My, the smallest collection of spinal components that contain 8M]§1n.
Since € is exact on all these components, Theorem [[.25] provides a spine removal cobordism
(Xo,w) with

0Xg = —M'1u M’
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and w|ryr = Q, constructed by attaching handles ¥; x D? along each of the spinal components
surrounding 8M]I_3,ln. The surgered manifold M’ is then disconnected and can be written as

M' = M; u M,
where ]\7{ is a symplectic sphere bundle over S', and ]\75 is either a contact manifold (]\,Zfé, &9)
with wlg, > 0 or another symplectic fibration over S! with closed fibers. Both components

can now be capped using the method of Eliashberg [EIi04], and the symplectic S2-fibers of M,
give the desired symplectic spheres with vanishing self-intersection. O

We recall briefly why this result implies Theorem if (W,w) is a closed symplectic
4-manifold and M < W is a (weak) contact embedding that does not separate W, then by
cutting W open along M we obtain a (weak) symplectic cobordism between (M, &) and itself.
Attaching infinitely many copies of this cobordism to each other in a sequence, one constructs
a “noncompact symplectic filling” (W, ws) of (M,£) which is nonetheless geometrically
bounded. If (M, &) contains a partially planar domain for which wy, is exact on the spine,
then one can attach the cap from Theorem [l and then choose a geometrically bounded
compatible almost complex structure J,, so that the symplectic spheres in the cap become
embedded J,-holomorphic spheres which are Fredholm regular and have index 2. Arguing
as in McDuff [McD90], the moduli space generated by these spheres is then compact and
foliates all of W, but this is impossible since the latter is noncompact. The full details for
the case [Q2] = 0 € H3; (M) are carried out in [ABWI0], and the generalization for nontrivial
cohomology classes following the above scheme is immediate.

For planar torsion, we will make use of the following simple lemma in the style of [McD90]:

Lemma 5.2. Suppose (W,w) is a compact symplectic 4-manifold, possibly with boundary,
such that OW carries a positive contact structure dominated by w. Suppose moreover that W
contains a symplectically embedded sphere S1 < W with vanishing self-intersection number.
Then oW = &, and any other symplectically embedded surface So < W\Sy with vanishing
self-intersection is also a sphere and satisfies

S1 Sa

Proof. Choose a compatible almost complex structure J which preserves the contact structure
at the boundary and makes both S7 and S5 J-holomorphic. Then 57 is a Fredholm regular
index 2 curve, and arguing as in [McD90], we find that the set of all J-holomorphic curves ho-
motopic to Sp foliates W except at finitely many nodal singularities, which are intersections
of finitely many J-holomorphic exceptional spheres. Then if 6W # ¢, some holomorphic
sphere must touch ¢W tangentially, thus violating .J-convexity. Moreover, positivity of inter-
sections implies that no curve in this family can have any isolated intersection with So, thus
So itself must belong to the family, implying that it is a sphere with the same symplectic area
as S7. ]

Proof of Theorem [1.54 Consider agaln the splne removal cobordism (X, w) from the proof of
Theorem 50l with 0Xo = —M’1M’ and M’ = M| 11 M}, but now under the extra assumption
that the partially planar domain M < M’ is not symmetric. This implies in particular that in
addition to the planar piece M]F;ln, the paper Mp < M contains another connected component
Mgth c Mp for which at least one of the following is true:

(1) OME™ is not contained in ¥y x S'u ... U %, x SY
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(2) The pages in M&" have positive genus;
(3) The pages in MI%th have genus zero but there is a spinal component ¥; x S' that

contains differing numbers of boundary components of pages in M}iln and MI%th.

In the first case, it follows that ]\75 carries a contact structure dominated by w, so after

capping ]\7{ we have a contradiction to Lemma In the second case, either the same

thing happens or ]\75 is a symplectic fibration over S with closed pages of positive genus, so

capping both M! and M} with Lefschetz fibrations as in [Ei04] gives disjoint symplectically
embedded surfaces with zero self-intersection, one rational and one not, again contradicting
the lemma. For the third case we instead may obtain two disjoint symplectically embedded
spheres, but they can be arranged to have different symplectic area. O
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