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ON SYMPLECTIC FILLINGS OF SPINAL OPEN BOOK

DECOMPOSITIONS I:

GEOMETRIC CONSTRUCTIONS

SAMUEL LISI, JEREMY VAN HORN-MORRIS, AND CHRIS WENDL

Abstract. A spinal open book decomposition on a contact manifold is a generalization of
a supporting open book which exists naturally e.g. on the boundary of a symplectic filling
with a Lefschetz fibration over any compact oriented surface with boundary. In this first
paper of a two-part series, we introduce the basic notions relating spinal open books to
contact structures and symplectic or Stein structures on Lefschetz fibrations, leading to the
definition of a new symplectic cobordism construction called spine removal surgery, which
generalizes previous constructions due to Eliashberg [Eli04], Gay-Stipsicz [GS12] and the
third author [Wen13b]. As an application, spine removal yields a large class of new examples
of contact manifolds that are not strongly (and sometimes not weakly) symplectically fillable.
This paper also lays the geometric groundwork for a theorem to be proved in part II, where
holomorphic curves are used to classify the symplectic and Stein fillings of contact 3-manifolds
admitting a spinal open book with a planar page.
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0. Introduction

The present paper is the first in a two-part series aimed at generalizing the well-known
interplay between contact structures with supporting open book decompositions and their
fillings by symplectic or Stein manifolds with symplectic Lefschetz fibrations. We can point
to at least two specific previous applications of open books in contact topology as inspiration
for this project:

(1) In [Wen10, NW11], the third author proved that for every contact 3-manifold sup-
ported by a planar open book, the deformation classes of its symplectic fillings are
in bijective correspondence to the diffeomorphism classes of Lefschetz fibrations over
D
2 that fill the open book. Some version of this statement is true moreover for all of

the usual notions of symplectic fillability (i.e. weak, strong, Liouville and Stein), thus
proving that for planar contact manifolds, they are all equivalent. The problem of
classifying fillings for such contact manifolds was reduced in this way to a factorization
problem on the mapping class group of surfaces, cf. [PV10,Pla12,Wan12,KL,Kal].

(2) In [Eli04], Eliashberg used non-exact symplectic 2-handles attached along the binding
of an open book to construct symplectic caps for all closed contact 3-manifolds. This
served among other things as an ingredient in Kronheimer-Mrowka’s proof of Prop-
erty P [KM04], and it was later generalized to various forms of non-exact symplectic
cobordism between contact manifolds, cf. [Gay06,GS12,Wen13b].

The motivating question behind the present project was as follows: what structure naturally
arises on the convex boundary of a Lefschetz fibration with exact symplectic fibers over a
surface with boundary other than D

2? Spinal open books are the answer to this question, and
we will show that they give rise to far-reaching generalizations of both of the results mentioned
above. One example of the first type appeared already in [Wen10], where the symplectic
fillings of T3 were classified in terms of Lefschetz fibrations over the annulus r´1, 1s ˆ S1.
This was proved using methods from the low-dimensional theory of J-holomorphic curves,
and the aim of the sequel to this paper [LVW] will be to push those techniques as far as they
can reasonably be pushed.

Here is an initial sketch of the main idea. Roughly speaking, a spinal open book decomposes
a 3-manifold M into two (possibly disconnected) pieces, called the paper MP and the spine
MΣ, where MP consists of families of pages fibering over S1, MΣ is an S1-fibration over some
collection of compact oriented surfaces, and the boundaries of fibers in MP consist of fibers
in MΣ (see Figure 1). The usual notion of open books is recovered if one takes the base of the
fibration on MΣ to be a disjoint union of disks (see Example 1.9); similarly, allowing annuli
in the base produces the notion of blown up summed open books (Example 1.11), which were
studied in [Wen13a]. One of the main results of [LVW] can be summarized as follows (see §1
below for the pertinent definitions):
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Figure 1. A spinal open book with two spine components, which are S1-
fibrations over a genus 1 surface with one boundary component and an annulus
respectively. They are connected to each other by an S1-family of pages with
genus 2, and we can also see a fragment of a second S1-family of pages attached
to the annular spine component.

Theorem A ([LVW]). Suppose pM, ξq is a closed contact 3-manifold containing a domain
M0 on which ξ is supported by an amenable spinal open book π that has a planar page in its
interior. If pM, ξq admits a weak filling that is exact on the spine of π, then M “ M0, and
the set of weak symplectic fillings of pM, ξq that are exact on the spine is, up to symplectic
deformation equivalence, in one-to-one correspondence with the set of Lefschetz fibrations (up
to diffeomorphism) that match π at their boundaries. Moreover, every such filling can be
deformed to a blowup of a Stein filling.

To focus for a moment on Stein fillings in particular: most previous results classifying
Stein fillings have classified them up to diffeomorphism or symplectic deformation, the only
exceptions we are aware of being results of Eliashberg [Eli90,CE12] and Hind [Hin00,Hin03],
which achieved uniqueness up to Stein deformation equivalence for fillings of S3, connected
sums of S1 ˆ S2, and certain lens spaces. In these examples, the classification up to Stein
deformation matches the classification up to symplectic deformation, and we will see that this
is not a coincidence—it can be seen as a symptom of a general quasiflexibility phenomenon
for Stein surfaces:

Theorem B ([LVW]). Suppose W is a compact 4-manifold with boundary, admitting two
Stein structures J0 and J1 such that pW,J0q is compatible with a Lefschetz fibration (over an
arbitrary compact oriented surface) with fibers of genus zero. Then J0 and J1 are Stein homo-
topic if and only if their induced symplectic structures are homotopic as symplectic structures
convex at the boundary.

Note that the symplectic deformation in this statement need not be in a fixed cohomol-
ogy class—in particular, quasiflexibility is a very different phenomenon from the familiar
relationship between Stein and Weinstein structures (cf. [CE12]).

While the results quoted above require holomorphic curve techniques, this first paper in
the series will focus on the less analytical but more geometric aspects of the theory of spinal
open books. We will start by giving natural constructions of contact structures supported
by spinal open books and symplectic or Stein structures related to them. The most subtle
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of these results pertains specifically to Stein (or equivalently Weinstein) structures, and gives
a verifiable criterion in terms of Lefschetz fibrations for two Stein structures to be Stein
homotopic. This will serve in [LVW] as an essential ingredient for the classification of Stein
fillings up to Stein deformation and the proof of Theorem B. The result is most easily stated in
terms almost Stein structures, which are pairs pJ, fq consisting of an almost complex structure
J and a J-convex function f . Here J is not required to be integrable, and f need not be
constant at the boundary, thus they do not immediately define a Stein structure, but if we
assume the Liouville vector field dual to ´df ˝J is outwardly transverse at the boundary, then
pJ, fq nonetheless determines a Weinstein structure canonically up to Weinstein homotopy
(see §1.1.3).

The following theorem can be interpreted as saying that the Stein homotopy class of a Stein
structure can be deduced from a Lefschetz fibration if it satisfies fairly strict compatibility
conditions near the boundary but a minimum of reasonable conditions in the interior—this
result is well suited in particular to the scenario in which fibers of a Lefschetz fibration are
J-holomorphic curves.

Theorem C (see Theorem 3.1). Suppose Π : E Ñ Σ is a Lefschetz fibration whose regular
fibers and base are each compact oriented surfaces with nonempty boundary, and write

BvE :“ Π´1pBΣq, BhE :“
ď

zPΣ

BEz.

For τ “ 0, 1, assume Jτ is an almost complex structure on E and fτ : E Ñ R is a smooth
Jτ -convex function such that the following conditions are satisfied:

(1) Jτ preserves the vertical subbundle of TE and is compatible with its orientation;
(2) fτ is constant on the boundary components of every fiber;
(3) The Liouville form λτ :“ ´dfτ ˝ Jτ restricts to both BvE and BhE as contact forms,

the induced Reeb vector field on BhE is tangent to the fibers, and its flow preserves
the maximal Jτ -complex subbundle of T pBhEq;

(4) There exists a complex structure jτ on Σ and an open neighborhood U Ă Σ of BΣ such
that the Cauchy-Riemann equation TΠ ˝ Jτ “ jτ ˝ TΠ is satisfied on E|U and BhE.

Then the Weinstein structures on E (after smoothing the corners) determined by pJ0, f0q and
pJ1, f1q are Weinstein homotopic.

With this groundwork in place, we will then introduce a new construction of non-exact
symplectic cobordisms that generalizes previous results from [Eli04,GS12,Wen13b] and arises
from a natural topological operation on spinal open books called spine removal surgery. An
informal version of the result can be stated as follows:

Theorem D (see Theorem 1.25). Assume pM, ξq is a contact 3-manifold supported by a
spinal open book π, Σrem ˆ S1 – M rem Ă MΣ is an open and closed subset of the spine of π,

and rπ is a spinal open book on a contact 3-manifold pĂM, rξq defined by deleting M rem from M

and capping off all adjacent boundary components of pages of π by disks. Then there exists
a symplectic cobordism with strongly concave boundary pM, ξq and weakly convex boundary

pĂM, rξq, defined by attaching the “handle” Σrem ˆD
2 with a product symplectic structure along

Σrem ˆ S1 – M rem.

Special cases of this operation were used in [Wen13b] to construct non-exact symplectic
cobordisms between pairs of contact 3-manifolds that do not admit exact ones, e.g. it showed
that all of the known examples of contact 3-manifolds with finite orders of algebraic torsion
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(cf. [LW11]) are symplectically cobordant to overtwisted ones. We will use the general ver-
sion in this paper to prove the vast majority of cases of Theorem A for which the contact
manifold turns out to be non-fillable, a result that can be interpreted as generalizing the
local filling obstruction defined as planar torsion in [Wen13a]. A slightly different kind of
application appears in [LW], where spine removal is used to prove that contact 3-manifolds
supported by planar spinal open books satisfy a universal bound on the geography of their
symplectic fillings. This generalizes a previous result for the case of planar open books due
to Plamenevskaya [Pla12] (see also [Kal]).

In our project we have focused specifically on dimension three, since that is where the
strongest results on classification of fillings can be proved, but it should be mentioned that
the theory of spinal open books has already had some impact on developments in higher-
dimensional contact topology. In dimension 2n ´ 1, it is natural to consider decompositions
M “ MΣ YMP whereMP is a fibration of Liouville domains over a contact manifold and MΣ

is a strict contact fibration over a Liouville domain. Taking D
2 and S1 as bases produces the

usual notion of open books in arbitrary dimensions, but it is sometimes also useful to allow
higher-dimensional bases, e.g. the first author has observed that Bourgeois’s construction
[Bou02] of contact structures on M ˆ T

2 can be understood as an operation replacing D
2

and S1 with T ˚
T
2 and T

3 as base spaces in a spinal open book (cf. [LMN]). Working with
strictly low-dimensional fibers but higher-dimensional bases, [MNW13] constructed a higher-
dimensional version of a spine removal cobordism in order to establish the first examples of
higher-dimensional tight contact manifolds that are not symplectically fillable. More recently,
Moreno [Mor18] uses high-dimensional spinal open books to construct new examples of contact
manifolds with higher-order algebraic torsion, and Acu and Moreno [AM] construct a variant
of spine removal surgery to study a higher-dimensional analogue of planar contact manifolds.

A remark on timing. While this paper is intended as the “official” introduction to spinal
open books in dimension three, the project has by now been in preparation long enough for
some of the fundamental notions to have appeared already in other papers by the authors
and their collaborators, see in particular [BV15]. We have tried to make sure all definitions
are consistent with what has previously appeared, but in the event of any discrepancies, the
present paper is meant to be definitive.

Outline of the paper. Section 1 is an extended introduction, intended to give precise versions
of all the essential definitions and main results, including some definitions that are needed
mainly for the classification discussion in [LVW]. Section 2 then proves the essential theorems
relating spinal open books and Lefschetz fibrations to their associated deformation classes of
contact and symplectic structures, and §3 proves Theorem C on Stein homotopy classes. In §4,
we construct a concrete symplectic model for collar neighborhoods (in the symplectization) of
a contact manifold supported by an arbitrary spinal open book, which is then used to prove
the main theorem on symplectic cobordisms arising from spine removal surgery. This result
is then applied in §5 to establish new criteria for nonfillability.

Acknowledgments. This project has taken several years to come to fruition, and we are grateful
to many people for valuable conversations along the way, including especially Denis Auroux,
İnanç Baykur, Michael Hutchings, Tom Mark, Patrick Massot, Richard Siefring, and Otto
van Koert. We would also like to thank the American Institute of Mathematics for bringing
the three of us together at key junctures in this project.
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1. Definitions and results

1.1. Main definitions. In this section we give the main definitions and state precise versions
of the main results of the paper.

1.1.1. Types of symplectic fillings. Throughout this paper, we assume all contact structures on
oriented 3-manifolds to be co-oriented and positive, i.e. they can always be written as ξ “ kerα
where the contact form α satisfies α^ dα ą 0. Suppose pM, ξq is a closed contact 3-manifold
and pW,ωq is a compact connected symplectic 4-manifold with boundary. Then pW,ωq is a
weak filling of pM, ξq if BW can be identified via an orientation-preserving diffeomorphism
withM such that ω|ξ ą 0. We also say in this case that ω dominates ξ at the boundary, and
that the boundary is weakly convex with respect to ω. If there additionally exists a 1-form
λ near BW that satisfies dλ “ ω and restricts to the boundary as a contact form for ξ under
the above identification BW – M , then the boundary is called convex and pW,ωq is called a
strong filling of pM, ξq. We say that two weak/strong fillings pW,ωq and pW 1, ω1q of contact
manifolds pM, ξq and pM 1, ξ1q respectively are weakly/strongly symplectically deformation
equivalent if there exists a diffeomorphism ϕ : W Ñ W 1 and smooth 1-parameter families
of symplectic structures tωτ uτPr0,1s on W and contact structures tξτuτPr0,1s on M such that

ω0 “ ω, ω1 “ ϕ˚ω1, ξ0 “ ξ, ξ1 “ ϕ˚ξ1, and pW,ωτ q is a weak/strong filling of pM, ξτ q for each
τ P r0, 1s. Note that by Gray’s stability theorem, deformation equivalence implies that pM, ξq
and pM 1, ξ1q must be contactomorphic.

Recall that a symplectic 4-manifold is said to be minimal if it does not contain any
exceptional spheres, i.e. symplectically embedded 2-spheres with self-intersection number ´1.
By an argument due to McDuff [McD90], minimality is invariant under (strong or weak)
symplectic deformation.1

We call pW,ωq an exact filling of pM, ξq if it is a strong filling such that the 1-form λ

as defined above near the boundary extends to a global primitive of ω on W . In this case
pW,dλq is also called a Liouville domain, with Liouville form λ, which determines the
Liouville vector field Vλ via the condition

ωpVλ, ¨q “ λ.

Two exact fillings are said to be Liouville deformation equivalent if they are strongly
symplectically deformation equivalent and each of the symplectic structures in the smooth
homotopy defines an exact filling. Note that for any fixed ω on a Liouville domain, the space
of Liouville forms λ satisfying dλ “ ω is convex, thus every Liouville deformation in this sense
can be realized by a smooth homotopy of Liouville forms.

Finally, a Stein filling of pM, ξq is a compact connected complex manifold pW,Jq, also
called a Stein domain, with oriented boundary identified with M such that ξ Ă TM is
the maximal complex-linear subbundle, and such that there exists a smooth function f :
W Ñ R that has the boundary as a regular level set (we say that f is exhausting) and
is plurisubharmonic. The latter means that λJ :“ ´df ˝ J is a Liouville form and the
resulting symplectic form ωJ :“ dλJ tames J , i.e.

ωJpX,JXq ą 0 for all nonzero X P TW .

1In our context, McDuff’s argument that minimality is preserved under deformations depends on the con-
ditions we impose on ω at BW : these guarantee in particular that one can always make the boundary J-convex
for a tame almost complex structure J , thus preventing J-holomorphic spheres from escaping the interior.
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Two Stein fillings are Stein deformation equivalent if they can be identified via a dif-
feomorphism so that the two complex structures are homotopic through a smooth family of
integrable complex structures that all admit exhausting plurisubharmonic functions.

Note that for a given J , the space of exhausting plurisubharmonic functions is convex,
and the plurisubharmonicity condition is open with respect to J ; one can use these facts
to show that any smooth homotopy of Stein structures can be accompanied by a smooth
homotopy of exhausting plurisubharmonic functions. By the correspondence J ÞÑ λJ ÞÑ ωJ

defined above, it follows that a Stein deformation class of Stein fillings always gives rise to a
canonical Liouville deformation class of exact symplectic fillings. The exact fillings arising in
this way have the additional feature that their Liouville vector fields are gradient-like: indeed,
any exhausting plurisubharmonic function f : W Ñ R on a Stein domain pW,Jq is also a
Lyapunov function for the Liouville vector field VJ dual to λJ , thus giving pW,ωJ , VJ , fq the
structure of a Weinstein domain. We will occasionally make use of the deep theorem from
[CE12] giving a one-to-one correspondence between deformation classes of Stein domains and
Weinstein domains respectively.

Remark 1.1. Strictly speaking, the function f in a Weinstein structure should always be
required to be Morse (or generalized Morse in the case of deformations), but on Stein domains
this can always be achieved via small perturbations of plurisubharmonic functions since the
plurisubharmonicity condition is open.

1.1.2. Spinal open books. The following topological notion will be of central importance in
this paper.

Definition 1.2. A spinal open book decomposition on a compact oriented 3-dimensional
manifold M , possibly with boundary, is a decomposition M “ MΣ Y MP , where the pieces
MΣ and MP (called the spine and paper respectively) are smooth compact 3-dimensional
submanifolds with disjoint interiors such that BMΣ Ă BMP , carrying the following additional
structure:

(1) A smooth fiber bundle πΣ :MΣ Ñ Σ with connected and oriented fibers, all of which
are either disjoint from BMΣ or contained in it. Here, Σ is a compact oriented surface
whose connected components (called vertebrae2) all have nonempty boundary.

(2) A smooth fiber bundle πP : MP Ñ S1 with oriented fibers whose connected com-
ponents (called pages) are each preserved by the monodromy map, have nonempty
boundary and meet BMP transversely. Moreover, the intersection of any fiber of πP
with MΣ consists of fibers of πΣ.

(3) At each connected boundary component T Ă BM (which is necessarily a 2-torus
component of BMP ), there is a preferred homology classmT P H1pT q with the property
that if fT P H1pT q denotes the homology class of a connected component of π´1

P p˚qXT
oriented as boundary of the fiber, then pmT , fT q defines a positively oriented basis
of H1pT q – Z

2 for the boundary orientation of BM . We call mT the preferred
meridian at T .

2The use of the bookbinding metaphor for open book decompositions was the original inspiration for our
choice of the terms “spine” and “paper”, though the alternative anatomical meaning of “spine” also has some
advantages. The term “vertebrae” makes sense especially when one observes that the fibration πΣ : MΣ Ñ Σ is
necessarily trivial, thus the spine can be foliated by vertebrae. It makes less sense perhaps in higher-dimensional
analogues of spinal open books, where πΣ : MΣ Ñ Σ need not always be a trivial fibration.
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We should emphasize that in the above definition, neither M nor its paper or spine is
required to be connected, though pages and vertebrae are connected by definition. One can
also allow the spine to be empty, in which case M must have nonempty boundary (since the
pages do). We shall typically denote the full collection of data defining a spinal open book
on M by

π :“
´
πΣ :MΣ Ñ Σ, πP :MP Ñ S1, tmT uTĂBM

¯
.

For any connected component γ Ă BΣ, the fact that boundary components of pages are also
fibers of πΣ means that there is a well-defined map

(1.1) γ Ñ S1 : φ ÞÑ πP pπ´1
Σ pφqq.

This map is always a diffeomorphism for ordinary open books (see Example 1.9), but more
generally it may be a finite cover.

Definition 1.3. Given the spinal open book π as described above, we define themultiplicity
of πP at a boundary component T Ă BMP as the number of distinct page boundary compo-
nents that touch T . If T Ă MP XMΣ, then the multiplicity can equivalently be described as
the degree of the map γ Ñ S1 defined in (1.1).

Definition 1.4. Given a spinal open book π on M , a positive contact form α on M will be
called a Giroux form for π if the following conditions hold:

(1) The 2-form dα is positive on the interior of every page;
(2) The Reeb vector field Rα is positively tangent to every oriented fiber of πΣ :MΣ Ñ Σ;
(3) At BM , Rα is positively tangent to the fibers of πP |BM : BM Ñ S1 and the character-

istic foliation defined by kerα on BM has only closed leaves, which are homologous
on each connected component T Ă BM to the preferred meridian mT .

3

A contact structure ξ on M will be said to be supported by π whenever it admits a contact
form which is a Giroux form.

In order to obtain the existence and uniqueness of contact structures supported by a given
spinal open book, technical issues will require us to examine the smooth compatibility of the
spine and paper at their common boundary components slightly closer.

Definition 1.5. We will say that a spinal open book π admits a smooth overlap if the
fibration πP : MP Ñ S1 can be extended over an open neighborhood M 1

P Ă M containing
MP such that all fibers of πΣ intersecting M 1

P are contained in fibers of the extended πP .

Remark 1.6. Any spinal open book can be modified, via a pair of smooth isotopies on the
spine and paper which match on their common boundary components, so as to produce a
spinal open book admitting a smooth overlap. The result of this “smoothing” operation is
also unique up to isotopy.

In §2.3 we shall prove the following generalization of the standard theorem of Thurston
and Winkelnkemper [TW75] on open books:

Theorem 1.7. Suppose M is a compact oriented 3-manifold, possibly with boundary, and π

is a spinal open book on M which admits a smooth overlap. Then the space of Giroux forms
for π is nonempty and contractible. In particular, any isotopy class of spinal open books gives
rise to a canonical isotopy class of supported contact structures.

3The characteristic foliation kerpα|T pBMqq Ă T pBMq is oriented by any vector field X that satisfies ΩpX, ¨q “

α|T pBMq for a positive area form Ω on BM .
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Remark 1.8. When BM ‰ H, the above statement about uniqueness up to isotopy depends
on the following version of Gray’s stability theorem for manifolds with boundary: a smooth
1-parameter family of contact structures on a compact manifold with boundary is induced
by a smooth isotopy if and only if the resulting characteristic foliations at the boundary
are all isotopic. This follows by a variation on the usual proof of the standard version (see
e.g. [Gei08]): if the characteristic foliations are isotopic, then after an isotopy near the bound-
ary one can assume they are constant, and then check that the contact isotopy constructed
in the standard way is generated by a vector field tangent to the boundary. For this reason it
is important that supported contact structures always induce characteristic foliations on BM
with closed leaves in a fixed homology class.

Example 1.9. An ordinary open book is the special case of a spinal open book where the
spine is a tubular neighborhood of a transverse link B Ă M , i.e. each connected component
of MΣ is of the form D

2 ˆS1, and the multiplicities of Definition 1.3 are all 1. Our definition
of a Giroux form in this case does not quite match the standard one, but a Giroux form in
our sense can be perturbed to the standard version, so the notion of a supported contact
structure is the same.

Example 1.10. In the previous example, relaxing the condition that all multiplicities equal 1
generalizes from open books to certain types of rational open books as in [BEV12].

Example 1.11. Any blown up summed open book as defined in [Wen13a] can be viewed as
a spinal open book whose vertebrae are all disks or annuli. For instance, one can understand
the binding sum construction of [Wen13a] as follows. Topologically, it is defined by taking an
ordinary open book π : MzB Ñ S1 with at least two binding circles B1, B2 Ă B, removing
tubular neighborhoods of B1 and B2 and attaching the resulting boundary tori by an orien-
tation reversing diffeomorphism that maps oriented boundaries of pages to each other and
maps meridians to meridians (with reversed orientation). In terms of spinal open books, this
is the same as removing two solid torus components

pD2 ˆ S1q > pD2 ˆ S1q Ă MΣ

from the spine and replacing these with pr´1, 1s ˆ S1q ˆ S1, which we view as a spinal
component with the annulus as a vertebra. In contact geometric terms, the binding sum on
a supported contact structure produces a contact fiber sum (cf. [Gei08]), and it is not hard
to show that the resulting contact structure is supported by the spinal open book described
above.

Example 1.12. Spinal open books with boundary can always be constructed from closed
spinal open books by deleting components of the spine and then choosing suitable preferred
meridians. For example, suppose π is an ordinary open book as characterized in Example 1.9,
so it is a spinal open book whose spinal components are all trivial fibrations D2ˆS1 Ñ D

2. We
can then define a new spinal open book by deleting one such component D2ˆS1 from the spine;
this produces a new boundary component on the paper, which inherits a canonical meridian,
namely rBD2 ˆ t˚us P H1pBpD2 ˆS1qq. Topologically this has the effect of removing a tubular
neighborhood of one binding component, and the effect on supported contact structures is
exactly what is described in [Wen13a] as blowing up along the binding.

Remark 1.13. Many of the notions of this section are also well defined without assuming that
M is a globally smooth manifold: to define a spinal open book, M must at minimum be a
topological manifold that is obtained by gluing together two smooth manifolds MΣ and MP
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along a smooth embedding BMΣ ãÑ BMP , so there are well-defined smooth structures onMΣ,
MP and MΣ X MP but not necessarily on a neighborhood of the latter in M . In particular,
it will be useful in the next section to take M “ BE where E is a smooth 4-manifold with
boundary and corners; here the smooth faces of the boundary areMΣ andMP and the corner
is MΣ X MP . In this case, a Giroux form will be assumed to be the restriction to M “ BE
of a smooth 1-form on a neighborhood of the boundary in E, such that the conditions of
Definition 1.4 are satisfied separately on each of the smooth faces MΣ and MP .

1.1.3. Bordered Lefschetz fibrations. The motivating example of a spinal open book is ob-
tained by considering boundaries of Lefschetz fibrations. In the following, we assume E to be
a smooth, compact, oriented and connected 4-manifold with boundary and corners such that
BE is the union of two smooth faces

BE “ BhE Y BvE

which intersect at a corner of codimension two. Likewise, Σ will denote a compact, oriented
and connected surface with nonempty boundary.

Definition 1.14. A bordered Lefschetz fibration of E over Σ is a smooth map Π : E Ñ Σ
with finitely many interior critical points Ecrit Ă E̊ and critical values Σcrit Ă Σ̊ such that
the following conditions hold:

(1) Π´1pBΣq “ BvE and Π|BvE : BvE Ñ BΣ is a smooth fiber bundle;
(2) Π|BhE : BhE Ñ Σ is also a smooth fiber bundle;
(3) There exist integrable complex structures near Ecrit and Σcrit such that Π is holomor-

phic near Ecrit and the critical points are nondegenerate;
(4) All fibers Ez :“ Π´1pzq for z P Σ are connected and have nonempty boundary in BhE.

We call Ez a regular fiber if z P ΣzΣcrit and otherwise a singular fiber; the latter are
necessarily unions of smoothly immersed connected surfaces (the irreducible components)
with positive transverse intersections. We say that Π is allowable if all the irreducible
components of its fibers have nonempty boundary.

By the complex Morse lemma, one can find holomorphic coordinates near Ecrit and Σcrit

so that Π takes the form

Πpz1, z2q “ z21 ` z22

near each critical point. Note also that in the standard language of vanishing cycles (cf. [GS99]),
the “allowability” condition defined above is equivalent to requiring that no vanishing cycles
be homologically trivial in the fiber.4

A bordered Lefschetz fibration Π : E Ñ Σ naturally gives rise to a spinal open book on
BE, with spine MΣ :“ BhE and paper MP :“ BvE. The fibration πP : BvE Ñ S1 is defined
as the restriction Π|BvE : BvE Ñ BΣ after choosing an orientation preserving identification
of each connected component of BΣ with S1. Likewise, Π|BhE : BhE Ñ Σ defines a smooth
fibration whose fibers are disjoint unions of finitely many circles, hence it can be factored as

BhE
πΣÝÑ rΣ p

ÝÑ Σ,

4In some sources in the literature, it is erroneously stated that a Lefschetz fibration is allowable if and only
if its vanishing cycles are always nonseparating in the fiber. We will often want to consider situations in which
vanishing cycles are homologically nontrivial but separating, e.g. when the fiber is an annulus. In the case
where fibers have genus zero, a Lefschetz fibration is allowable if and only if it is relatively minimal.
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where πΣ : BhE Ñ rΣ is a fiber bundle with connected fibers over another compact oriented

surface rΣ with boundary, and p : rΣ Ñ Σ is a smooth finite covering map. As discussed
in Remark 1.13, the fact that BE is not naturally a smooth manifold does not present any
problem here. In this class of examples, every vertebra is a finite cover of the base Σ, the pages
are all diffeomorphic to the regular fibers of Π, and the boundary components of these fibers
form the fibers on the spine. Whenever π is a spinal open book on a 3-manifold M admitting
a homeomorphism to BE that restricts to diffeomorphisms MΣ Ñ BhE and MP Ñ BvE such
that π is related to Π : E Ñ Σ as described above, we shall indicate this relationship by
writing

BΠ – π.

Clearly not all spinal open books can be obtained as boundaries of Lefschetz fibrations, so
those that can deserve a special name.

Definition 1.15. A spinal open book π on a 3-manifold M will be called symmetric if

(i) BM “ H;
(ii) All pages are diffeomorphic;
(iii) For each of the vertebrae Σ1, . . . ,Σr Ă Σ, there are corresponding numbers k1, . . . , kr P

N such that every page has exactly ki boundary components in π´1
Σ pBΣiq for i “

1, . . . , r.

We shall say that π is uniform if, in addition to the above conditions, there exists a fixed
compact oriented surface Σ0 whose boundary components correspond bijectively with the
connected components of MP such that for each i “ 1, . . . , r there exists a ki-fold branched
cover

Σi Ñ Σ0

for which the restriction to each connected boundary component γ Ă BΣi is an mγ-fold cover

of the component of BΣ0 corresponding to the component of MP touching π´1
Σ pγq, where

mγ denotes the multiplicity of πP at π´1
Σ pγq (see Definition 1.3). Finally, π is Lefschetz-

amenable if it is uniform and all branched covers satisfying the above conditions have no
branch points.

Remark 1.16. In many examples of interest—in particular for the circle bundles over oriented
surfaces studied in §1.4 and further in [LVW], π is symmetric with k1 “ . . . “ kr “ 1,
in which case it is uniform if and only if all vertebrae are diffeomorphic. The Lefschetz-
amenability condition is trivially satisfied in such cases since branched covers of degree 1 are
diffeomorphisms. In more general situations, the uniformity and amenability conditions can
often both be checked via the Riemann-Hurwitz formula;5; we will use this in [LVW] to classify
the fillings of certain non-orientable contact circle bundles over non-orientable surfaces.

The discussion above shows that for any bordered Lefschetz fibration Π : E Ñ Σ, the spinal
open book π :“ BΠ is necessarily uniform, and the associated branched covers Σi Ñ Σ have
no branch points. The more precise version of Theorem A proved in [LVW] will imply that
every spinal open book which contains a planar page and supports a strongly fillable contact
structure must be uniform—moreover, if it is also amenable, then its strong fillings can be
classified entirely in terms of Lefschetz fibrations.

5Note that by capping Σi and Σ0 with disks, the existence of the required branched cover Σi Ñ Σ0 is
equivalent to a question about the existence of a branched cover of closed surfaces with certain prescribed
branching orders. Questions of this type can be subtle in general, but are trivial e.g. if the degree is 2, or more
generally if all branch points are required to be simple, cf. [EKS84, Prop. 2.8].
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Example 1.17. For any bordered Lefschetz fibration over the disk, the spinal open book
induced at its boundary is an ordinary open book (see Example 1.9). In fact, any ordinary
open book on a closed and connected 3-manifold, when regarded as a spinal open book, is
uniform and Lefschetz-amenable. Of course not every open book is the boundary of a bordered
Lefschetz fibration; this depends on its monodromy!

Example 1.18. For a bordered Lefschetz fibration over the annulus, if the fibration restricted
to the horizontal boundary is trivial, then the induced spinal open book at the boundary is
equivalent to a symmetric summed open book as defined in [Wen13a].

We now define various types of symplectic structures that are natural to consider on the
total space of a bordered Lefschetz fibration Π : E Ñ Σ. Note that the orientations of E and
Σ give rise to a natural orientation of the fibers. We shall say that a symplectic form ω on E
is supported by Π whenever the following conditions hold:

(1) Every oriented fiber is a symplectic submanifold away from Ecrit;
(2) A neighborhood of Ecrit admits a smooth almost complex structure J which restricts

to a positively oriented complex structure on the smooth part of each fiber and satisfies
ωpv, Jvq ą 0 for every nonzero vector v P TE|Ecrit , i.e. J is tamed by ω at Ecrit.

For the following definitions, assume always that ω is a symplectic structure supported
by Π.

Definition 1.19. We say that ω is weakly convex if it can be written near BhE as ω “ dλ,
where λ is a smooth 1-form that restricts to BhE as a contact form whose Reeb orbits are
boundary components of fibers.

Definition 1.20. We say that ω is strongly convex if it can be written near BE as ω “
dλ, where λ is a smooth 1-form that restricts to BE as a Giroux form for π “ BΠ (see
Remark 1.13).

Definition 1.21. We say that ω is Liouville if it is strongly convex and the primitive λ of
Definition 1.20 extends to a global primitive of ω on E.

These three definitions are designed so that a suitable smoothing of E at the corners will
inherit the structure of a weak/strong/exact symplectic filling of pM, ξq, with ξ supported
by π, see §2.5.

To move from the Liouville to the Stein case, it will be convenient to introduce a notion
that is intermediate between Weinstein and Stein structures.

Definition 1.22. Suppose W is a compact manifold with boundary, possibly also with cor-
ners. An almost Stein structure on W is a pair pJ, fq consisting of an almost complex
structure J and a smooth function f : W Ñ R such that, writing λ :“ ´df ˝ J , dλ is a
symplectic form taming J (i.e. f is J-convex) and λ restricts to a contact form on every
smooth face of BW . If M :“ BW is smooth and ξ “ kerpλ|TM q, we will call pW,J, fq an
almost Stein filling of pM, ξq.

We assign the natural C8-topology to the space of almost Stein structures and say that two
such structures are almost Stein homotopic if they lie in the same connected component
of this space. Any Stein structure J determines an almost Stein structure pJ, fq uniquely
up to homotopy, where uniqueness follows from the fact that the space of exhausting J-
convex functions is convex. We should point out two aspects of almost Stein structures that
differ from Stein structures: first, J is not assumed integrable, and second, f is not assumed
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constant at the boundary (indeed, it cannot be constant on BW if there are corners). The
latter has the consequence that for a fixed J , the space of functions f making pJ, fq an almost
Stein structure is not generally convex—linear interpolations between two such functions may
fail to induce contact structures at the boundary. For this reason we can no longer regard
the J-convex function as auxiliary data. It is clear however that any almost Stein structure
pJ, fq determines a Weinstein structure on the smooth manifold with boundary obtained by
rounding the corners of BW , and this structure is canonical up to Weinstein homotopy. Indeed,
the Liouville form ´df ˝J is dual to a Liouville vector field that points transversely outward at
every smooth face of BW , and this vector field is automatically gradient-like with respect to f .
One can therefore perturb f if necessary to make it Morse (cf. Remark 1.1), and then modify
it outside a neighborhood of its critical points to a Lyapunov function that is constant on the
smoothed boundary, the result being unique up to homotopy through Lyapunov functions
fixed near the critical points. Using [CE12], this implies that for any manifold W with
boundary and corners, there is a canonical one-to-one correspondence between almost Stein
homotopy classes on W and Stein homotopy classes on W after smoothing corners.

Definition 1.23. Given a bordered Lefschetz fibration Π : E Ñ Σ, we will say that an almost
Stein structure pJ, fq on E is supported by Π if the following conditions are satisfied:

‚ There exists a complex structure j on Σ such that Π : pE, Jq Ñ pΣ, jq is pseudoholo-
morphic;

‚ The 1-form λJ :“ ´df ˝ J restricts to BE as a Giroux form for π “ BΠ (see Re-
mark 1.13);

‚ For every z P Σ, f is constant on each connected component of BEz;
‚ The maximal J-complex subbundle of T pBhEq is invariant under the Reeb flow deter-
mined by λJ |T pBhEq.

Observe that if pJ, fq is supported by Π, then every fiber Ez Ă E inherits a Stein structure
J |TEz with plurisubharmonic function f |Ez , so in particular the fibers are both J-holomorphic
and symplectic, and ´dpdf ˝ Jq defines a supported Liouville structure.

The following variation on results of Thurston [Thu76] and Gompf [GS99] will be proved
in §2.4.

Theorem 1.24. For any 4-dimensional bordered Lefschetz fibration Π : E Ñ Σ, the spaces
of supported symplectic structures that are weakly or strongly convex are both nonempty and
contractible. Moreover, if the Lefschetz fibration is allowable, then the same is true for the
spaces of supported Liouville structures and almost Stein structures. In each case, the corners
can be smoothed to produce a weak/strong/exact/Stein filling of the contact manifold supported
by π :“ BΠ, and this filling is canonically defined up to deformation equivalence.

1.2. Surgery on spinal open books. There are various natural topological operations on
spinal open books that give rise to symplectic cobordisms. We now briefly describe two such
operations.

1.2.1. Spine removal surgery. The following makes precise the non-exact cobordism construc-
tion that was sketched in Theorem D of the introduction, generalizing previous constructions
from [Eli04,GS12,Wen13b] (see also the higher-dimensional analogues in [MNW13,DGZ14,
Klu18]). For this discussion, it is useful to allow a slight loosening of the main definition of
this paper: we will say that a generalized spinal open book is an object satisfying all
the conditions of Definition 1.2 except that fibers of the paper πP : MP Ñ S1 are allowed
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to have components with no boundary. A generalized spinal open book may therefore have
some connected components that have neither spine nor boundary, but are simply fibrations
of closed pages over S1; note that a Giroux form cannot exist in this case, due to Stokes’
theorem. Such an object is then a spinal open book in the usual sense—and thus supports a
contact structure—if and only if it has no closed pages.

Suppose pM 1, ξq is a closed contact 3-manifold containing a compact 3-dimensional sub-
manifold M (possibly with boundary) on which ξ is supported by a spinal open book π with
spine πΣ :MΣ Ñ Σ and paper πP :MP Ñ S1. Choose an open and closed subset

Σrem Ă Σ.

The boundary of the corresponding union of spinal components π´1
Σ pΣremq Ă MΣ is a disjoint

union of 2-tori, each foliated by an S1-family of oriented circles which are fibers of πΣ. We

can then define a new compact manifold ĂM from M (and a closed manifold ĂM 1 from M 1) by
removing the interior of π´1

Σ pΣremq and attaching solid tori S1 ˆ D
2 to each of the connected

components of B
`
π´1
Σ pΣremq

˘
so that the oriented circles t˚u ˆ BD2 match the leaves of the

foliation. (Some schematic pictures of this procedure are shown in Figures 10 and 11 in

§4.2.) The new domain ĂM Ă ĂM 1 inherits from π a generalized spinal open book rπ with spine
MΣzπ´1

Σ pΣremq and pages that are obtained from the pages of π by attaching disks to cap

every boundary component touching π´1
Σ pΣremq. We say that rπ is obtained from π by spine

removal surgery.
The spine removal operation corresponds to a cobordism that can be understood as a form

of handle attachment. In particular, we can consider the compact 4-dimensional manifold
with boundary and corners

X :“ pr0, 1s ˆM 1q Yt1uˆπ´1
Σ

pΣremq pΣrem ˆ D
2q,

where Σrem ˆ BD2 is identified with π´1
Σ pΣremq via a choice of trivialization π´1

Σ pΣremq –
Σrem ˆ S1. After smoothing the corners, we have

BX “ ´M 1 > ĂM 1.

The following result will be proved in §4.2.

Theorem 1.25. Suppose Ω is a closed 2-form on M 1 such that Ω|ξ ą 0 and Ω|π´1
Σ

pΣremq is

exact. Then for any choice of compact subset Σ0 in the interior of Σrem, the cobordism X

described above admits a symplectic structure ω with the following properties:

(1) ω|TM 1 “ Ω.
(2) ω is positive on the interior of every page of rπ.
(3) On every connected component of ĂM 1 that is not foliated by closed pages of rπ, there

exists a contact structure rξ which is supported by rπ in ĂM , matches ξ on ĂM 1zĂM “
M 1zM , and satisfies ω|rξ ą 0.

(4) For every z P Σ0, the core tzu ˆ D
2 and co-core Σrem ˆ t0u of the handle Σrem ˆ D

2

are both symplectic submanifolds, the former with reversed orientation.

We will see in the proof that the disk D
2 in the symplectic handle Σrem ˆ D

2 can freely be
replaced by any other compact oriented surface with connected boundary; more generally, one
could equally well remove several spine components at once and replace them with Σrem ˆ S

for a compact oriented surface S with the right number of boundary components. The key
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intuition is to view S as a symplectic cap for the appropriate disjoint union of fibers in the con-
tact circle fibration πΣ :MΣ Ñ Σ, and this is also the right perspective in higher-dimensional
cases such as [DGZ14,Klu18]. We will not comment any further on these generalizations since
the applications in this paper do not require them.

1.2.2. Fiber connected sum along pages. The following is a special case of a construction due
to R. Avdek [Avd]. As in the previous section, suppose pM 1, ξq is a closed contact 3-manifold
containing a compact domain M Ă M 1 on which ξ is supported by a spinal open book π.
Suppose S is a compact, connected and oriented surface with boundary, and S0, S1 Ă MP are
pages of π admitting orientation preserving diffeomorphisms

ψi : S Ñ Si, i “ 0, 1.

By a minor adjustment to the proof of Theorem 1.7 (see Lemma 2.7 in particular), one can
find a Giroux form α for π on M such that ψ˚

0α “ ψ˚
1α. In the terminology of [Avd],

S0 and S1 can then be regarded as a pair of identical Liouville hypersurfaces in M . Choose
neighborhoods r´1, 1sˆSi – N pSiq Ă MP of Si for i “ 0, 1 and define the compact 4-manifold
with boundary and corners

X :“ pr0, 1s ˆM 1q YN pS0q>N pS1q pr0, 1s ˆ r´1, 1s ˆ Sq ,

by identifying tiu ˆ r´1, 1s ˆ S with N pSiq for i “ 0, 1. After smoothing corners, we have

BX “ ´M 1 > ĂM 1,

where ĂM 1 is obtained from M 1 by performing a so-called Liouville connected sum along S0
and S1. Then ĂM 1 contains a compact subdomain ĂM which naturally carries a spinal open
book rπ; it is obtained from π by attaching 1-handles to the vertebrae and concatenating
families of pages correspondingly. The following is an immediate consequence of the main
result in [Avd]:

Theorem. The manifold X described above can be given the structure of a Stein cobordism

with concave boundary pM 1, ξq and convex boundary pĂM 1, rξq, where rξ is a contact structure

which matches ξ on ĂM 1zĂM “ M 1zM and is supported by rπ on ĂM .

It was observed in [Avd] that the simplest case of this operation turns ordinary open books
into symmetric summed open books in the sense of [Wen13a], i.e. disk vertebrae become
annuli. More generally, this construction can be used to give an alternative proof of the fact
that allowable bordered Lefschetz fibrations over arbitrary compact oriented surfaces always
admit Stein structures—the details of this argument have been worked out by Baykur and
the second author, see [BV15].

1.3. Partially planar domains, torsion and filling obstructions. We now state a few
theorems that are straightforward generalizations of results from [Wen13a], and will all be
proved in §5 using spine removal surgery. Most of them can also be derived from algebraic
counterparts that we will prove in [LVW], involving contact invariants in symplectic field
theory and embedded contact homology.

The following is the basic condition needed in order to apply the machinery of pseudoholo-
morphic curves in studying spinal open books.

Definition 1.26. A 3-dimensional spinal open book will be called partially planar if its
interior contains a page of genus zero. A compact contact 3-manifold pM, ξq, possibly with
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boundary, will be called a partially planar domain if ξ is supported by a partially planar
spinal open book. We then refer to any interior connected component of the paper containing
planar pages as a planar piece.

Definition 1.27. Suppose pM, ξq is a closed contact 3-manifold and Ω is a closed 2-form
on M . A partially planar domain M0 embedded in pM, ξq is called Ω-separating if it has a

planar piece MP
0 Ă M̊0 such that Ω is exact on every spinal component touching MP

0 . It is
called fully separating if this is true for all closed 2-forms Ω on M .

Note that this condition depends only on the cohomology class rΩs P H2
dRpMq, and it is

vacuous if Ω is exact. We will see that it determines precisely which results on the strong
fillings of spinal open books admit extensions for weak fillings.

Example 1.28. Since all closed 2-forms are exact on a solid torus D
2 ˆ S1, every planar

open book is a fully separating partially planar domain (cf. Example 1.9). As explained in
[Wen13a,Wen10], a Giroux torsion domain can also be viewed as a partially planar domain
in terms of the binding sum construction, but its spinal components are thickened 2-tori and
thus can have cohomology, so such a domain is fully separating if and only if it separates the
ambient 3-manifold.

Our first main result about partially planar domains generalizes the main theorem from
[ABW10]; indeed, taking Ω “ 0 in the following statement produces an obstruction to the
existence of non-separating hypersurfaces of contact type.

Theorem 1.29. Suppose pM, ξq is a closed contact 3-manifold, Ω is a closed 2-form on M

and pM, ξq contains an Ω-separating partially planar domain. Then there exists no closed
symplectic 4-manifold pW,ωq admitting a non-separating embedding ι : M ãÑ W for which
ι˚ω|ξ ą 0 and rι˚ωs “ rΩs P H2

dRpMq.

The following related result generalizes a planarity obstruction originally due to Etnyre
[Etn04b]. Recall that pW,ωq is called a symplectic semifilling of pM, ξq whenever it is a
filling of the disjoint union of pM, ξq with some other (possibly empty) contact manifold.

Corollary 1.30. If pM, ξq is a closed contact 3-manifold containing a partially planar do-
main, then it admits no weak semifilling pW,ωq with disconnected boundary for which the
partially planar domain is pω|TM q-separating.

Proof. We use a suggestion by Etnyre that first appeared in [ABW10]: if such a semifilling
exists, then one can attach a Weinstein 1-handle to build a weak filling of the boundary
connected sum of its two components, and then cap the result via [Eli04] or [Etn04a]. This
produces a closed symplectic manifold pW,ωq that contains pM, ξq as a non-separating hyper-
surface in violation of Theorem 1.29. �

Next, we can consider the natural generalization of the local filling obstruction known as
planar k-torsion from [Wen13a] into the spinal open book setting.

Definition 1.31. Suppose pM, ξq is a closed contact 3-manifold and Ω is a closed 2-form
on M . Then for k ě 0 an integer, a partially planar domain M0 Ă M is called a (spinal)
planar torsion domain of order k (or simply a planar k-torsion domain) if it is not

symmetric and contains an interior planar piece MP
0 Ă M̊0 whose pages have k` 1 boundary

components. Further, it is an Ω-separating planar k-torsion domain if Ω is exact on all
spinal components touching MP

0 , and a fully separating planar k-torsion domain if this is
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true for all closed 2-forms Ω on M . Any contact 3-manifold containing such a domain is said
to have (perhaps Ω-separating or fully separating) planar k-torsion.

The less general version of this definition in [Wen13a] was expressed in the framework of
blown up summed open books, i.e. spinal open books whose vertebrae are all disks and annuli.
We have inserted the word “spinal” in front of “planar torsion” in the above definition to
distinguish the new notion from the less general version, but we shall usually drop the word
“spinal” from the nomenclature: this will not cause any confusion since anything satisfying
the old definition also satisfies the new one, and the results we are able to prove with the new
definition parallel results in [Wen13a] almost exactly. For instance, the less general version of
planar 0-torsion was shown in [Wen13a] to be equivalent to overtwistedness, and this is still
true in the new framework:

Proposition 1.32. A closed contact 3-manifold is overtwisted if and only if it has planar
0-torsion.

Proof. If pM, ξq is overtwisted, then Eliashberg’s flexibility result [Eli89] implies that pM, ξq
contains a so-called Lutz tube, and any neighborhood of this contains a planar 0-torsion
domain by [Wen13a, Prop. 2.19]. For the converse, see Lemma 2.9. �

It was also shown in [Wen13a] that anything with Giroux torsion also has planar 1-torsion,
but it was left open whether the converse might be true. Working with spinal open books
makes it easy to find a counterexample to this converse:

Proposition 1.33. If pM, ξq is a closed contact 3-manifold with positive Giroux torsion then
it has planar 1-torsion. However, there exist closed contact 3-manifolds that have planar
1-torsion but no Giroux torsion.

Proof. The fact that Giroux torsion implies 1-torsion was shown in [Wen13a]; in fact, any
Giroux torsion domain has an open neighborhood that contains a planar 1-torsion domain
whose pages and vertebrae are all annuli. Some examples with planar 1-torsion but no Giroux
torsion are exhibited in §1.4; see Corollary 1.39 and Remark 1.40. �

We will prove the following statement in §5 by using spine removal surgery to reduce it to
standard results in closed holomorphic curve theory.

Theorem 1.34. If pM, ξq has planar torsion, then it is not strongly fillable. Moreover, if
pM, ξq has Ω-separating planar torsion for some closed 2-form Ω on M , then it admits no
weak filling pW,ωq with ω|TM cohomologous to M . In particular pM, ξq is not weakly fillable
whenever it has fully separating planar torsion.

1.4. Fillability of circle bundles. As an application of the filling obstructions in the pre-
vious subsection, we now exhibit a large class of non-fillable contact 3-manifolds that were
not previously accessible to holomorphic curve methods. (Some of them can be understood
using techniques from Heegaard Floer homology; see especially [HKM,Mas12].) They take
the form of circle bundles with S1-invariant contact structures partitioned by multicurves.

Throughout this subsection, assume π : M Ñ B is a smooth S1-bundle with structure
group Op2q acting on the circle by rotations and reflections, where the base B is a closed
and connected (but not necessarily orientable) surface, and the total space M is oriented.
If B is orientable, then the Op2q-structure lifts to the structure of a principal S1-bundle,
with the S1-action defined up to a sign, so we can speak of S1-invariant contact structures
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on M . More generally, we will abuse terminology and call a contact structure S1-invariant
if its expression in every Op2q-compatible local trivialization of π :M Ñ B is Op2q-invariant.
This is the same as saying that it lifts to an S1-invariant contact structure on the induced
fibration over the canonical oriented double cover of B. As usual, all contact structures in
this discussion are assumed to be positive and co-oriented.

Any S1-invariant contact structure ξ on M determines a 1-dimensional submanifold Γ Ă B

(i.e. a multicurve) consisting of all points at which the fiber is Legendrian. One says in this
case that ξ is partitioned by Γ. Notice that outside of Γ, transversality to ξ determines an
orientation of the bundle and therefore an orientation of BzΓ. Moreover, Γ automatically has
the following property:

Definition 1.35. Suppose B is a closed surface and Γ Ă B is a multicurve such that BzΓ
is oriented. We say that Γ inverts orientations if for every sufficiently small neighborhood
U Ă B that is divided by Γ into two components U` and U´, U can be given an orientation
that matches that of BzΓ on U` and is the opposite on U´.

If B is orientable, this condition simply means that Γ divides B into components B` and
B´ (each possibly disconnected) which inherit opposite orientations. Some concrete examples
where B is non-orientable (in particular the Klein bottle) can be constructed in the form of
contact parabolic torus bundles; see [LVW]. The following result is due to Lutz [Lut77] in the
orientable case, and in general it can easily be derived from Theorem 1.7 via Proposition 1.37
below.

Proposition 1.36. Suppose π :M Ñ B is a smooth circle bundle with structure group Op2q,
where B is a closed connected surface and M is oriented, and Γ Ă B is a nonempty multicurve
such that BzΓ is orientable and Γ inverts orientations. Then each choice of orientation on
BzΓ determines an S1-invariant contact structure ξΓ that is partitioned by Γ and is positively
transverse to the fibers over BzΓ. Moreover, the contact structure with these properties is
unique up to isotopy.

We will see in [LVW] that the strong symplectic fillings of each circle bundle pM, ξΓq arising
from the above proposition can be classified completely whenever its base is orientable, and
also in some cases where the base is not orientable. The basic observation behind this is that
there is a natural correspondence between S1-bundles π :M Ñ B with nonempty multicurves
Γ Ă B satisfying the stated conditions in Prop. 1.36 and spinal open book decompositions
of M with annular pages. Topologically this is easy to see: choosing a tubular neighborhood
UΓ Ă B of Γ, we identify each connected component of the closure UΓ with an interval bundle
over S1, which gives π´1pUΓq the structure of a disjoint union of smooth annulus bundles
over S1 whose fibers each have boundary equal to some pair of oriented fibers of π. We
therefore call π´1pUΓq with its associated fibration over S1 the paper πP :MP Ñ S1, and the
spine πΣ :MΣ Ñ Σ is defined as the restriction of π to π´1pBzUΓq, with the fibers oriented to
be compatible with the orientation of Σ :“ BzUΓ Ă BzΓ. Note that if B is orientable, then
every component of Γ Ă B has trivial normal bundle, so the monodromies of components
of πP : MP Ñ S1 (defined after choosing a trivialization of πΣ : MΣ Ñ Σ) can be taken
to be powers of Dehn twists, fixing the boundary of the annulus. This is not always true
if B is non-orientable: in particular, if γ Ă Γ is a component whose neighborhood in B is
a Möbius band, then the monodromy of the corresponding component of πP : MP Ñ S1

interchanges the boundary components of the annulus, meaning this component of MP has
connected boundary, with multiplicity 2 (cf. Definition 1.3).
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Proposition 1.37. The spinal open book π associated to a circle bundle π : M Ñ B and
nonempty multicurve Γ Ă B as described above supports a contact structure that is S1-
invariant and partitioned by Γ. Moreover, any S1-invariant contact structure partitioned
by Γ is isotopic to one that is supported by π.

Proof. It is easy to check that the supported contact structure constructed by Theorem 1.7
in this setting is S1-invariant and partitioned by Γ. In the other direction, suppose ξΓ is
S1-invariant and partitioned by Γ, and choose a tubular neighborhood UΓ of Γ Ă B such
that the pages of the resulting fibration πP :MP Ñ S1 are tangent to ξΓ along π´1pΓq. This
means that every contact form for ξΓ has a Reeb vector field transverse to the pages in some
neighborhood of π´1pΓq. On π´1pBzUΓq, ξΓ is positively transverse to the contact vector field
which generates a fiber-preserving S1-action, hence one can choose a contact form for which
this vector field is the Reeb field. One can now piece this together with a contact form near
π´1pΓq whose Reeb field is transverse to the pages so that the conditions of a Giroux form
are satisfied. �

Since the pages of the natural spinal open book on pM, ξΓq have genus zero, we can imme-
diately apply the Ω “ 0 case of Theorem 1.29 and Corollary 1.30 to conclude:

Corollary 1.38. For any nonempty multicurve Γ Ă B as in Proposition 1.36, the result-
ing contact circle bundle pM, ξΓq admits no non-separating contact-type embeddings into any
closed symplectic 4-manifold, and it also admits no strong semifillings with disconnected
boundary. �

It is similarly easy to identify cases in which pM, ξΓq has planar torsion, and is therefore not
strongly fillable. If there is torsion it will be of order 1, since the pages of the spinal open book
π supporting pM, ξΓq are annuli, but the key question is in which cases π is symmetric. The
vertebrae of π are equivalent to the connected components B1, . . . , Br of BzΓ, and the pages
come in S1-families corresponding to the connected components of Γ. Given a component
γ Ă Γ, if it bounds the component Bj Ă BzΓ, then Bj lies either on one side of γ or on
both, where the latter is possible only if γ has a non-orientable normal bundle, so B is non-
orientable. Symmetry then means that there exist fixed numbers k1, . . . , kr P t0, 1, 2u such
that for each j “ 1, . . . , r, every component of Γ touches Bj on exactly kj sides. Clearly none
of the kj can be 0 in this case, since it would mean there is a component Bj whose closure
does not touch Γ at all. If any kj “ 2, then it means every component of Γ must have that
particular component Bj on both sides, hence r “ 1 and B is not orientable. In the remaining
case, k1 “ . . . “ kr “ 1, and since at most two components Bj can touch each component
of Γ, we conclude r “ 2 and B is orientable with Γ splitting it into two components. We’ve
proved:

Corollary 1.39. Suppose ξΓ is an S1-invariant contact structure on a circle bundle π :M Ñ
B, partitioned by a nonempty multicurve Γ, and that either of the following holds:

(i) BzΓ has at least three connected components;
(ii) BzΓ is disconnected and B is non-orientable.

Then pM, ξΓq has (untwisted) planar 1-torsion, so in particular it is not strongly fillable. �

Remark 1.40. If B is oriented with positive genus and M is not a torus bundle, then
[Mas12, Theorem 3] implies that pM, ξΓq has zero Giroux torsion whenever no two connected
components of Γ are isotopic. Using the theorem in [LVW] that planar 1-torsion implies
algebraic 1-torsion, one can now extract from Corollary 1.39 many new examples of contact
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manifolds with algebraic 1-torsion but no Giroux torsion. This generalizes a result for trivial
circle bundles that was proved in [LW11].

Remark 1.41. Corollaries 1.38 and 1.39 do not generally hold for weak fillings or semifill-
ings. Indeed, [NW11, Theorem 5] implies that whenever every connected component of the
multicurve Γ Ă B is nonseparating, pM, ξΓq admits both a weak filling and a weak semifill-
ing with disconnected boundary. We can conclude from Corollary 1.30 and Theorem 1.34
that the symplectic structures of these weak fillings must always be nonexact on some spinal
component in pM, ξΓq.

2. Contact and symplectic structures

The main objectives of this section are the proofs of Theorems 1.7 and 1.24 about the
existence and uniqueness of supported contact and symplectic structures, plus a related result
about almost Stein structures that will be needed for the classification of Stein fillings in
[LVW]. We begin in §2.1 with a short collection of “Thurston-type” lemmas for defining
contact or symplectic structures on fibrations. Section 2.2 will then fix some notation for
collar coordinates and open coverings of spinal open books that will be useful throughout the
rest of the paper. Theorem 1.7 is proved in §2.3, and the proof of Theorem 1.24 is carried
out mainly in §2.4, with the detail about smoothing corners dealt with in §2.5.

2.1. Several varieties of the Thurston trick. Since it will be useful in a wide range of
contexts, we collect in this subsection several elementary results that are variations on the
main trick behind Thurston’s construction of symplectic forms on total spaces of symplectic
fibrations [Thu76]. All of these results have higher-dimensional analogues, but with the
exception of Remark 2.3, we will keep things as brief as possible by focusing on dimensions 3
and 4.

All manifolds in the following will be compact and oriented, and though it will not yet play
a serious role in the discussion, they may also have boundary or corners.

2.1.1. Contact forms.

Proposition 2.1. Assume M is a compact oriented 3-manifold, π :M Ñ S1 is a submersion,
σ is a positively oriented volume form on S1, and λ is a 1-form on M such that dλ is positive
on every fiber of π. Then λK :“ λ`K π˚σ is a contact form for all K " 0, and this is true
for all K ě 0 if λ is contact.

Proof. We have π˚σ ^ dλ ą 0 since dλ is positive on fibers, so the result follows by writing

λK ^ dλK “ K

ˆ
π˚σ ^ dλ `

1

K
λ^ dλ

˙
.

�

Proposition 2.2. Assume M is a compact oriented 3-manifold, Σ is a compact oriented
surface, π : M Ñ Σ is a submersion, σ is a 1-form on Σ with dσ ą 0, and λ is a 1-form
on M that is positive on every fiber of π and satisfies dλpv, ¨q “ 0 for all v P kerTπ. Then
λK :“ λ ` K π˚σ is a contact form for all K " 0, and this is true for all K ě 0 if λ is
contact.
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Proof. Since π˚σ and dλ both annihilate vertical vectors, we have π˚σ ^ dλ ” 0, but also
λ ^ π˚dσ ą 0 due to the condition dσ ą 0 and the positivity of λ on fibers. The result thus
follows by writing

λK ^ dλK “ K

ˆ
λ ^ π˚dσ `

1

K
λ^ dλ

˙
.

�

Remark 2.3. If we regard σ in Proposition 2.1 as a contact form on S1 and the fibers of
π : M Ñ S1 as Liouville domains with respect to λ, then the result has a straightforward
generalization to higher dimensions as a statement about a Liouville fibration over a contact
manifold. Proposition 2.2 similarly becomes a statement about a contact fibration over a
Liouville domain pΣ, σq, the only subtle point being the condition that dλ should annihilate
vertical vectors: if π : M Ñ Σ is a 3-dimensional fibration, then the secret meaning of
this condition is that it reduces the structure group to the group of strict contactomorphisms
on S1, i.e. diffeomorphisms that preserve a fixed contact from and not only a contact structure.
The natural generalization to higher dimensions can thus be phrased in terms of strict contact
fibrations.

2.1.2. Symplectic and Liouville forms.

Proposition 2.4. Assume E is a compact oriented 4-manifold, Σ is a compact oriented
surface, Π : E Ñ Σ is a submersion, µ is a positive area form on Σ and ω is a 2-form on E
that is positive on all fibers of Π. Then ωK :“ ω ` K Π˚µ is symplectic for all K " 0, and
this is true for all K ě 0 if ω is symplectic.

Proof. The positivity of ω on fibers implies Π˚µ^ ω ą 0, so the result follows by writing

ωK ^ ωK “ K

ˆ
2Π˚µ^ ω `

1

K
ω ^ ω

˙
.

�

If both Σ and the fibers of Π : E Ñ Σ have nonempty boundary, then we can also state
a version specially for exact symplectic forms; note that in this case E must be a manifold
with boundary and corners.

Corollary 2.5. Assume E is a compact oriented 4-manifold, Σ is a compact oriented surface,
Π : E Ñ Σ is a submersion, σ is a 1-form on Σ satifying dσ ą 0, and λ is a 1-form on E

such that dλ is positive on fibers of Π. Then λK :“ λ ` K Π˚σ is a Liouville form for all
K " 0, and this is true for all K ě 0 if λ is Liouville. �

2.1.3. J-convex functions. Recall that on an almost complex manifold pW,Jq, a smooth func-
tion f : W Ñ R is called J-convex (or plurisubharmonic) if the 1-form λJ :“ ´df ˝ J is
the primitive of a symplectic form dλJ that tames J .

Proposition 2.6. Assume pE, Jq is a compact almost complex 4-manifold, pΣ, jq is a compact
Riemann surface, Π : pE, Jq Ñ pΣ, jq is a pseudoholomorphic submersion, ϕ : Σ Ñ R is a
j-convex function and f : E Ñ R is a function whose restriction to every fiber of Π is J-
convex. Then fK :“ f `Kpϕ ˝ Πq is a J-convex function for all K " 0, and this is true for
all K ě 0 if f is J-convex.
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Proof. The 1-forms σ :“ ´dϕ ˝ j on Σ and λ “ ´df ˝ J on E satisfy the hypotheses of
Corollary 2.5, and since TΠ ˝ J “ j ˝ TΠ, we have

λK :“ ´dfK ˝ J “ ´df ˝ J ´K dpϕ ˝ Πq ˝ J “ λ`K Π˚σ.

Then for any nontrivial v P TE,

dλKpv, Jvq “ K Π˚dσpv, Jvq ` dλpv, Jvq “ K

„
dσpΠ˚v, jΠ˚vq `

1

K
dλpv, Jvq


.

This is clearly positive for all K ě 0 if dλ tames J ; more generally, the second term will
always be positive when v lies in some neighborhood of the vertical subbundle, and if v is
outside of this neighborhood, then this term will be dominated by dσpΠ˚v, jΠ˚vq as long as
K ą 0 is large enough. �

2.2. Collar neighborhoods and coordinates. In this section we fix some notation that
will be useful throughout the rest of the paper.

Fix a compact 3-manifold M with spinal open book

π “
`
πΣ :MΣ Ñ Σ, πP :MP Ñ S1, tmT uTĂBM

˘
,

and choose an oriented foliation F of BM with closed leaves that represent the homology
classes mT . The circle bundle πΣ :MΣ Ñ Σ is necessarily trivializable, so for convenience we
shall fix an identification of MΣ with Σ ˆ S1 such that

πΣ :MΣ “ Σ ˆ S1 Ñ Σ : pz, θq ÞÑ z.

This defines the coordinate θ P S1 globally on MΣ. The boundary BΣ admits a collar neigh-
borhood

N pBΣq Ă Σ

whose connected components can be identified with p´1, 0s ˆ S1, carrying coordinates ps, φq.
We shall denote the resulting collar neighborhood of BMΣ in MΣ by

N pBMΣq :“ π´1
Σ pN pBΣqq “ N pBΣq ˆ S1;

its connected components are identified with p´1, 0s ˆ S1 ˆ S1 by our chosen trivialization
and thus carry coordinates ps, φ, θq.

The paper can be identified in turn with a mapping torus

MP “ pR ˆ P q
M

„, where pτ, pq „ pτ ` 1, µppqq,

MP
πPÝÑ S1 “ R{Z : rpτ, pqs Ñ rτ s,

where the fiber P :“ π´1
P p˚q is a compact oriented (but not necessarily connected) surface with

boundary, and the monodromy µ : P Ñ P is an orientation-preserving diffeomorphism that
preserves each connected component of P . In contrast to the setting of ordinary open books,
here we must allow the possibility that µ is nontrivial near the boundary, e.g. it may permute
boundary components. We can assume without loss of generality however that BP has a collar
neighborhood N pBP q Ă P whose connected components have coordinates pt, θq P p´1, 0sˆS1

in which µpt, θq “ pt, θq, hence the corresponding collar neighborhood

N pBMP q Ă MP

of BMP is identified with
`
R ˆ p´1, 0s ˆ S1 ˆ t1, . . . , Nu

˘M
pτ, t, θ, iq „ pτ ` 1, t, θ,σpiqq Ă MP
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for N :“ #π0pBP q and some permutation σ P SN . The connected components of N pBMP q are
now in one-to-one correspondence with the invariant subsets of t1, . . . , Nu on which the cyclic
subgroup xσy Ă SN generated by σ acts transitively. Given such a subset I Ă t1, . . . , Nu, if
the action of xσy on I has order m P N, then the map rpτ, t, θ, iqs ÞÑ prτ{ms, t, θq identifies the
corresponding component of N pBMP q diffeomorphically with S1 ˆ p´1, 0s ˆ S1. Denote the
resulting coordinates on components of N pBMP q by pφ, t, θq. We now have

πP pφ, t, θq “ mφ,

where the integer m P N may vary for different components of N pBMP q. These integers
are the multiplicities of πP : MP Ñ S1 at its boundary components (cf. Definition 1.3).
Note that there is some freedom to change these coordinates on each component of N pBMP q
without changing the formula for πP , thus we can assume without loss of generality that
the chosen oriented foliation F on BM with leaves homologous to the preferred meridians is
generated by the flow of the coordinate vector field Bφ.

To summarize, we have defined collar neighborhoods of the boundary in Σ, MΣ and MP

whose connected components carry positively oriented coordinates as follows:

ps, φq P p´1, 0s ˆ S1 Ă p´1, 0s ˆ BΣ “ N pBΣq Ă Σ,

ps, φ, θq P p´1, 0s ˆ S1 ˆ S1 Ă p´1, 0s ˆ BMΣ “ N pBMΣq Ă MΣ,

pφ, t, θq P S1 ˆ p´1, 0s ˆ S1 Ă p´1, 0s ˆ BMP “ N pBMP q Ă MP .

These coordinates satisfy πΣps, φ, θq “ ps, φq P N pBΣq on N pBMΣq and πP pφ, t, θq “ mφ P S1

on N pBMP q, where the multiplicity m P N may have different values on distinct connected
components of N pBMP q. We can also assume without loss of generality that the coordinate
labels are consistent in the sense that the induced 2-torus coordinates

pφ, θq P S1 ˆ S1 Ă BMΣ

match the corresponding φ- and θ-coordinates defined on N pBMP q wherever it overlaps
N pBMΣq.

To continue, let us add the assumption that π admits a smooth overlap (see Definition 1.5).
We can then introduce a decomposition of M into open subsets

M “ |MΣ Y |MI Y |MP Y |MB

defined as follows:

‚ |MP is the complement of tt ě ´1{2u Ă N pBMP q inMP , so the connected components

of N pBMP q X |MP inherit coordinates pφ, t, θq P S1 ˆ p´1,´1{2q ˆ S1.

‚ |MΣ is the complement of ts ě ´1{2u Ă N pBMΣq in MΣ, and we will always use
the chosen trivialization of πΣ to identify this with a subset of Σ ˆ S1, denoting the

coordinate on S1 by θ. The connected components of N pBMΣq X |MΣ thus inherit
coordinates ps, φ, θq P p´1,´1{2q ˆ S1 ˆ S1.

‚ |MI is the union of N pBMΣq with the components of N pBMP q that touch MΣ, so its
connected components can each be identified with p´1, 1q ˆ S1 ˆ S1, and we assign
coordinates pρ, φ, θq to these components such that

|MI XMΣ “ tρ ď 0u, |MI XMP “ tρ ě 0u.

The smooth overlap assumption means we can also assume these coordinates are
related to the previously chosen coordinates on these subsets by ρ “ s and ρ “ ´t
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respectively, with θ and φ matching the existing coordinates on N pBMΣq and N pBMP q

in the obvious way. The region |MI will be called the interface between the spine
and the paper.

‚ |MB is the union of the components of N pBMP q that touch BM . Its connected compo-
nents therefore carry collar coordinates pφ, t, θq P S1ˆp´1, 0sˆS1, but for consistency

with |MI , we will prefer to use an alternative coordinate system

pρ, φ, θq P r0, 1q ˆ S1 ˆ S1 Ă |MB

defined by ρ :“ ´t.

Note that the above definitions imply

N pBMP q Ă |MI Y |MB,

hence we can and sometimes will use the ρ-coordinate as an alternative to the t-coordinate
on N pBMP q; they are related by ρ “ ´t.

2.3. Spinal open books support contact structures. We will say that a smooth 1-form
α on M is a fiberwise Giroux form if the following conditions hold:

‚ dα is positive on the interior of every page;
‚ α is positive on the fibers of πΣ :MΣ Ñ Σ, and the tangent spaces to these fibers are
contained in ker dα;

‚ At BM , α is positive on all boundaries of pages, the tangent spaces to these boundaries
are also contained in ker dα, and α vanishes on the foliation F chosen at the beginning
of §2.2.

A fiberwise Giroux form is a Giroux form if and only if it is contact, but since we have not
required the latter in the above definition, the space of fiberwise Giroux forms is convex. We
will show in the following that it is relatively easy to construct fiberwise Giroux forms, and
the main idea in the proof of Theorem 1.7 is—following the ideas of Thurston outlined in
§2.1—to turn these into Giroux forms by adding large multiples of certain 1-forms pulled
back from the bases of the fibrations.

Observe that since every component of Σ has nonempty boundary, we can choose a 1-form
σ on Σ satisfying

dσ ą 0 on Σ, σ “ es dφ on N pBΣq.

Similarly:

Lemma 2.7. On MP there exists a 1-form η such that dη is positive on each fiber of πP :
MP Ñ S1 and η “ et dθ in N pBMP q.

Proof. One only has to observe that since every connected component of P :“ π´1
P p˚q has

nonempty boundary by assumption, the space of Liouville forms on P which match et dθ in
the collars is nonempty and convex. The desired 1-form η can thus be constructed by choosing
such a Liouville form η0 and defining η on each fiber of the mapping torus with monodromy
µ as a suitable interpolation between η0 and µ˚η0; cf. [Etn06, Theorem 3.13]. �

In order to construct a fiberwise Giroux form, we next choose a smooth function

F :MP Ñ p0, 1s
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which is identically equal to 1 outside of N pBMP q and takes the form eρfpρq in pρ, φ, θq-

coordinates on N pBMP q Ă |MI Y|MB, where f : p´1, 1q Ñ p0, 1s is a smooth function satisfying
the conditions

‚ fpρq “ 1 for ρ ď 0;
‚ f 1pρq ă 0 for ρ ą 0;
‚ fpρq “ e´ρ for ρ near 1.

In particular, this implies that F admits a smooth extension over N pBMΣq of the form
F ps, φ, θq “ es. Now using the fiberwise Liouville form η provided by Lemma 2.7, we can
define a fiberwise Giroux form on M by

α “

#
dθ on MΣ,

Fη on MP .

It takes the form α “ fpρq dθ on |MI Y |MB.
We show next how to turn fiberwise Giroux forms into Giroux forms. For any constant

δ P p0, 1{2q, choose a pair of smooth functions gδΣ, g
δ
B : r0, 1q Ñ r0, 2s such that

‚ gδΣpρq “ eρ for ρ near 0;

‚ gδBp0q “ 0 and pgδBq1p0q ą 0;

‚ pgδΣq1pρq and pgδBq1pρq are both nonnegative for all ρ;

‚ gδΣpρq “ gδBpρq “ 2 for all ρ ě δ.

Using this, we define a smooth function Gδ :MP Ñ r0, 2s by

Gδ “

$
’&
’%

2 on |MP ,

gδΣpρq on N pBMP q X |MI ,

gδBpρq on |MB.

Then, defining the Liouville form σ as a 1-form on MΣ by identifying it with its pullback
π˚
Σσ, we define for any δ P p0, 1{2q another smooth 1-form on M by

βδ “

#
σ on MΣ,

Gδ dφ on MP .

Lemma 2.8. For any fiberwise Giroux form α, there exist constants δ0 P p0, 1{2q and K0 ě 0
such that for all constants δ P p0, δ0s and K ě K0,

αK,δ :“ α `Kβδ

is a Giroux form. Moreover, whenever α itself is a Giroux form, one can take K0 “ 0.

Proof. Observe that αK,δ is automatically a fiberwise Giroux form for all K ě 0, δ P p0, 1{2q,
so we only need to show that αK,δ is contact for the right choices of these constants. Since
βδ ^ dβδ ” 0, we have

αK,δ ^ dαK,δ “ K pα ^ dβδ ` βδ ^ dαq ` α ^ dα,

thus it suffices to show that whenever δ ą 0 is sufficiently small,

(2.1) α ^ dβδ ` βδ ^ dα ą 0.

The conditions on fiberwise Giroux forms imply that αpBθq ą 0 at BMP , so this is also true
on collars of the form tρ ď δ0u Ă N pBMP q for sufficiently small δ0 ą 0. Assuming 0 ă δ ď δ0,
we shall now show that (2.1) holds everywhere on M .
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On MΣ, βδ ^ dα “ σ^ dα “ 0 since σpBθq “ dαpBθ , ¨q “ 0, but α^ dβδ ą 0 since αpBθq ą 0
and dβδ “ dσ is positive on Σ.

On MP outside of the collars tρ ď δu, we have βδ “ 2 dφ and thus dβδ “ 0, while
βδ ^ dα “ 2 dφ ^ dα ą 0 due to the assumption that dα is positive on the fibers of πP .

On the collars tρ ď δu, we have βδ “ Gδ dφ, with Gδ ą 0 on the interior of MP , hence
βδ^dα “ Gδ dφ^dα ą 0 again except at BMP . It thus remains only to show that α^dβδ ě 0,
with strict positivity at BMP . This follows from the fact that αpBθq ą 0 on this region, since
α ^ dβδ “ g1pρqα ^ dρ ^ dφ, where gpρq denotes either gδΣpρq or gδBpρq, both of which we
assumed to have nonnegative first derivatives which are strictly positive at ρ “ 0. �

Proof of Theorem 1.7. In light of the construction of a fiberwise Giroux form explained above,
the existence of a Giroux form follows immediately from Lemma 2.8.

We claim now that for any n P N, a continuous family of Giroux forms

tατ uτPSn´1

can always be extended to a family of Giroux forms parametrized by the disk D
n. As an initial

step, note that the characteristic foliations induced by ατ at BM may not be precisely the
foliation F we fixed above, but they are guaranteed to be isotopic to it and also transverse
to the coordinate vector field Bθ (which is parallel to Reeb orbits at the boundary). We
can thus alter ατ by a fiber preserving isotopy supported near BM , producing a homotopy
through Sn´1-families of Giroux forms, to a family whose characteristic foliations at BM are
all generated by Bφ. Let us therefore assume without loss of generality that the given family
ατ has this property, so all the ατ are also fiberwise Giroux forms by our definition.

Since the space of fiberwise Giroux forms is convex, tατ uτPSn´1 can now be extended via
linear interpolation to a family tα̃uτPDn of fiberwise Giroux forms. These forms are also
contact for all τ in some collar neighborhood of BDn, since the contact condition is open.
Choose a continuous “bump” function

ψ : Dn Ñ r0, 1s

that equals 0 at BDn and 1 outside this collar. Next, observe that since D
n is compact, one

can find constants K ě 0 sufficiently large and δ ą 0 sufficiently small so that Lemma 2.8
holds with the same constants for all α̃τ , τ P D

n. Then

ατ :“ α̃τ `Kψpτqβδ

defines the desired family of Giroux forms. This shows that the space of Giroux forms has
vanishing homotopy groups of all orders, so by Whitehead’s theorem, it is contractible. �

We can now fill in a loose end from §1.3 and complete the proof of Proposition 1.32.

Lemma 2.9. Every contact manifold with planar 1-torsion is overtwisted.

Proof. Suppose pM, ξq contains a planar 0-torsion domain M0, so pM0, ξq is supported by a
spinal open book π whose interior contains a page D that is a disk. Let M1

Σ Ă M0 denote the
spinal region adjacent to D. Since π is not symmetric, there is a paper component M1

P Ă M0

adjacent to M1
Σ with a page P1 Ă M1

P that is not a disk. Pick an embedded curve L in the
interior of P1 that is smoothly isotopic to a boundary component adjacent toM1

Σ, so L is also
smoothly isotopic to the boundary of D, and both page framings agree and are equal to 0.
We will show that one can realize L as a Legendrian knot with Thurston-Bennequin number
tbpLq “ 0, violating the Bennequin-Eliashberg bound if pM, ξq is tight.
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We consider two cases. First, assume that P1 has another boundary component. Then in
the construction of the Giroux form, the 1-form η of Lemma 2.7 can be chosen to vanish iden-
tically along L. Choosing the support of the monodromy away from L, it remains Legendrian
after converting η into the compatible contact form α, and the contact framing is 0 relative
to P1, and hence also relative to the disk D.

Alternatively, suppose P1 has a single boundary component (to which L is isotopic), and
since π is not symmetric, P1 has genus g ą 0. Since P1 is a convex surface (but with transverse
boundary), we can flow it along a transverse contact vector field to create a neighborhood
of the form P1 ˆ r0, 1s Ă M1

P and round the corners to produce a convex handlebody whose
dividing set is isotopic to BP1 ˆ t1{2u. On this convex surface, L is isolating (in the sense
of Honda [Hon00]), but since g ą 0, we can fold along any other (disjoint, homotopically
nontrivial, embedded) curve in P1 ˆ t1u, increasing the dividing set and making L non-
isolating. We can now Legendrian realize L, and since L is disjoint from the dividing set, we
can ensure this has contact framing 0 relative to P1 ˆ t1u. This is an absolute 0-framing since
the framings from P1 ˆ t1u, P1 and the disk D all agree. �

2.4. Lefschetz fibrations and symplectic structures. In this section we prove the main
part of Theorem 1.24 regarding the various spaces of symplectic structures supported by a
bordered Lefschetz fibration. The overall strategy is similar to that of the previous section,
and can be summarized as follows:

(1) Define spaces of “fiberwise” symplectic structures which are manifestly contractible,
and are nonempty under suitable assumptions.

(2) Use the Thurston trick to turn fiberwise structures into supported symplectic struc-
tures by adding large multiples of data pulled back from the base.

A version of Theorem 1.24 for almost Stein structures appeared already in our appendix to
[BV15], and we will repeat some of those arguments here but will generalize them substantially
in §3 below, with an eye toward classifying fillings up to Stein homotopy.

For this subsection and the next, fix a bordered Lefschetz fibration Π : E Ñ Σ. Recall that
a symplectic structure ω on E was defined to be supported by Π if it is positive on fibers and
also tames some almost complex structure J defined near the critical points Ecrit for which
the fibers are J-holomorphic. It will be useful to note that this last condition doesn’t depend
on the choice of J :

Proposition 2.10. Suppose J1 and J2 are two almost complex structures defined near Ecrit

which each restrict to positively oriented complex structures on the smooth part of every fiber.
Then J1|TEcrit “ J2|TEcrit.

Proof. By [Gom04, Lemma 4.4(a)], it will suffice to observe that J1 and J2 determine the
same oriented complex 1-dimensional subspaces in TE|Ecrit . Indeed, choosing local complex
coordinates pz1, z2q near a point p P Ecrit and a corresponding complex coordinate near Πppq
such that Πpz1, z2q “ z21 ` z22 , we see that in these coordinates every complex 1-dimensional
subspace of C2 occurs as a tangent space to a fiber in any neighborhood of p. Since such
tangent spaces are both J1- and J2-complex by assumption, the claim follows by continuity.

�

In the following, fix an integrable complex structure Jcrit near Ecrit for which Π is holomor-
phic near Ecrit. Proposition 2.10 implies that none of our definitions or results will depend
on this choice. We shall now define various spaces of smooth objects on E, each assumed to
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carry the natural C8-topology. Denote the vertical subbundles in E and BhE by

V E “ ker TΠ Ă TE and V pBhEq “ V E X T pBhEq.

Definition 2.11. Let ΛfibpBhΠq denote the space of germs of 1-forms λ defined on a neighbor-
hood of BhE in E such that λ|V pBhEq ą 0 and V pBhEq Ă ker

`
dλ|T pBhEq

˘
. Similarly, ΛfibpBΠq

will denote the space of germs of 1-forms λ defined on a neighborhood of BE in E which satisfy
the above conditions at BhE and also satisfy dλ|V E ą 0 at BvE. We call any λ P ΛfibpBhΠq or
ΛfibpBΠq a fiberwise Giroux form near BhE or BE respectively.

Observe that ΛfibpBhΠq and ΛfibpBΠq are both convex spaces.

Definition 2.12. The spaces of Giroux forms near BhE or BE respectively (cf. Re-
mark 1.13) are defined as

ΛpBhΠq :“
!
λ P ΛfibpBhΠq

ˇ̌
ˇ λ|T pBhEq is contact

)
,

ΛpBΠq :“
!
λ P ΛfibpBΠq

ˇ̌
ˇ λ|T pBhEq and λ|T pBvEq are both contact

)
.

The following variation on Theorem 1.7 follows from a simpler version of the same argument,
implementing the Thurston trick via Propositions 2.1 and 2.2. It implies in particular that
both ΛpBhΠq and ΛpBΠq are nonempty and contractible.

Proposition 2.13. The spaces ΛfibpBhΠq and ΛfibpBΠq are each nonempty. Moreover, fixing
a Liouville form σ on Σ, for any λ P ΛfibpBhΠq or ΛfibpBΠq, there exists a constant K0 ě 0
depending continuously on λ such that for every constant K ě K0, λ ` K Π˚σ belongs to
ΛpBhΠq or ΛpBΠq respectively, and we can take K0 “ 0 if λ is already in ΛpBhΠq or ΛpBΠq. �

Definition 2.14. The space of weakly convex fiberwise symplectic structures Ωfib

weakpΠq
consists of all smooth closed 2-forms ω on E such that

(1) ω is positive on all fibers in EzEcrit;
(2) At Ecrit, ω is nondegenerate and tames Jcrit;
(3) Near BhE, ω “ dλ for some λ P ΛfibpBhΠq.

The space of supported weakly convex symplectic structures is then

ΩweakpΠq :“
 
ω P Ωfib

weakpΠq | ω2 ą 0 and ω “ dλ near BhE

for some λ P ΛpBhΠq
(
.

The space of strongly convex fiberwise symplectic structures will be

Ωfib

strongpΠq :“
!
ω P Ωfib

weakpΠq
ˇ̌
ˇ ω “ dλ near BE for some λ P ΛfibpBΠq

)
,

so that the space of supported strongly convex symplectic structures is

ΩstrongpΠq :“
 
ω P Ωfib

strongpΠq | ω2 ą 0 and ω “ dλ near BE

for some λ P ΛpBΠq
(
.

We similarly define the space of fiberwise Liouville structures Ωfib
exactpΠq to consist of all

ω P Ωfib
strongpΠq for which the primitive λ P ΛfibpBΠq extends to a global primitive of ω (i.e. a

fiberwise Liouville form) on E. The space of supported Liouville structures is then

ΩexactpΠq :“
 
ω P Ωfib

exactpΠq | ω2 ą 0 and ω “ dλ on E

for some λ with λ|BE P ΛpBΠq
(
.
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Observe that there are natural inclusions

Ωfib

exactpΠq ãÑ Ωfib

strongpΠq ãÑ Ωfib

weakpΠq,

and all three spaces are convex.
To handle the Stein case, we shall consider a special space of almost complex structures.

Given any almost complex structure J on E, denote the maximal J-complex subbundle in
T pBhEq by

ξJ :“ T pBhEq X JT pBhEq Ă T pBhEq.

Definition 2.15. Let J pΠq denote the space of pairs pJ, Bθq where J is an almost complex
structure on E compatible with its orientation, Bθ is a nowhere zero vertical vector field on
BhE, oriented in the positive direction of the fibers, and the following properties are satisfied:

(1) There exists a complex structure j on Σ for which Π : pE, Jq Ñ pΣ, jq is pseudoholo-
morphic;

(2) The flow of Bθ is 1-periodic and preserves ξJ .

Note that any pJ, Bθq P J pΠq uniquely determines j on Σ. The choice of vector field Bθ is
equivalent to a choice of principal S1-bundle structure on BhE, so it defines a fiber-preserving
S1-action that preserves both ξJ and (due to the first condition) J |ξJ . We do not require J
to match Jcrit near Ecrit, though they automatically match at Ecrit due to Proposition 2.10.
Using the fact that the space of positively oriented complex structures on any oriented real
vector bundle of rank 2 is nonempty and contractible, it follows that the same is true for J pΠq.

Remark 2.16. In contact geometric terms, defining a principal S1-bundle structure on BhE is
equivalent to giving it the structure of a strict contact fiber bundle (cf. Remark 2.3), i.e. each
fiber is identified with the contact manifold pS1, dtq so that the vector field Bθ generating the
S1-action satisfies dtpBθq ” 1. Any fiberwise Giroux form λ P ΛfibpBhΠq near BhE canonically
determines a strict contact fiber bundle structure, with a positive constant multiple of λ as
the contact form on each fiber; here the condition dλpBθ, ¨q|T pBhEq ” 0 ensures that all fibers
are strictly contactomorphic since λ has the same integral on all of them, by Stokes’ theorem.

Definition 2.17. Given any pJ, Bθq P J pΠq, we will say that a smooth function f : E Ñ R

is fiberwise J-convex if, writing λJ :“ ´df ˝ J , the following conditions are satisfied:

(1) f is constant on each boundary component of each fiber Ez Ă E;
(2) dλJ P Ωfib

exactpΠq;
(3) λJ |BE P ΛfibpBΠq;
(4) λJpBθq is constant.

The space of fiberwise J-convex functions for a fixed pJ, Bθq P J pΠq will be denoted by
PSHfib

pJ,BθqpΠq.

Observe that PSHfib

pJ,BθqpΠq is convex for each pJ, Bθq P J pΠq, and there is a natural map

PSHfib

pJ,BθqpΠq Ñ Ωfib

exactpΠq : f ÞÑ ´dpdf ˝ Jq.

Definition 2.18. Let PSHpJ,BθqpΠq Ă PSHfib

pJ,BθqpΠq denote the subspace for which dλJ is also

a symplectic form taming J and λJ |BE P ΛpBΠq.

The space of supported almost Stein structures is now precisely

JSteinpΠq “ tpJ, fq | pJ, Bθq P J pΠq for some Bθ, and f P PSHpJ,BθqpΠqu.
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Note that for any pJ, fq P JSteinpΠq, the vector field Bθ is canonically determined via Re-
mark 2.16, hence there is a well-defined projection

(2.2) JSteinpΠq Ñ J pΠq : pJ, fq ÞÑ pJ, Bθq,

whose fiber over any pJ, Bθq P J pΠq is PSHpJ,BθqpΠq. Since J pΠq is homotopy equivalent to
a point, the almost Stein part of Theorem 1.24 will then be a consequence of the following
statement, to be proved at the very end of this subsection:

Proposition 2.19. If Π : E Ñ Σ is allowable, then the projection (2.2) is a Serre fibration
with contractible fibers; in particular, it is a homotopy equivalence.

Remark 2.20. The contractibility of PSHpJ,BθqpΠq for each pJ, Bθq P J pΠq is not as obvious as
it may at first appear, e.g. since functions in PSHpJ,BθqpΠq are not constant at the boundary,
PSHpJ,BθqpΠq is not generally convex (cf. the discussion of almost Stein structures preceding
Definition 1.23). The proof that PSHpJ,BθqpΠq is contractible will instead require the Thurston
trick.

We will frequently need to use the following standard lemma in constructions of J-convex
functions. Recall that a hypersurface V in an almost complex manifold pW,Jq is called J-
convex whenever the maximal J-complex subbundle in TV is a contact structure whose
canonical conformal symplectic structure tames J .

Lemma 2.21 (see e.g. [CE12, Lemma 2.7] or [LW11, Lemma 4.1]). Suppose pW,Jq is a
smooth almost complex manifold and f :W Ñ R is a smooth function such that f is J-convex
near all its critical points and all level sets of f are J-convex hypersurfaces wherever they are
regular. Then if h : R Ñ R is any smooth function with h1 ą 0 and h2 everywhere sufficiently
large, h ˝ f is a J-convex function. �

Remark 2.22. It will sometimes be useful to note that the J-convexity hypothesis on hyper-
surfaces is vacuous when dimRW “ 2.

In order to construct fiberwise symplectic structures in the nonexact case, we will need first
to be able to pick a cohomology class that evaluates positively on every irreducible component
of every fiber. For this we will make use of the following linear algebraic lemma due to Gompf.

Lemma 2.23 ([Gom05, Lemma 3.3]). For a real n-by-n symmetric matrix A “ paijq, let
GA denote the graph with n vertices v1, . . . , vn, and an edge between any two distinct vertices
vi, vj whenever aij ‰ 0. Suppose that (a) GA is connected, (b) aij ě 0 whenever i ‰ j, and
(c) there are positive real numbers m1, . . . ,mn such that

řm
i“1miaij ď 0 for all j. Fix a choice

of such numbers mi. Then the hypothesis (d), that the inequality in (c) is strict for some j,
implies rankA “ n. If (d) is not satisfied, then rankA “ n´ 1. �

Lemma 2.24. Given any λ P ΛfibpBhΠq or ΛfibpBΠq, there exists a closed 2-form η on E such
that η “ dλ near BhE or BE respectively and

ş
C
η ą 0 for every irreducible component C of

every fiber.

Proof. Extending λ arbitrarily to a smooth 1-form on E, Stokes’ theorem implies
ş
C
dλ ě 0

for all irreducible components C of fibers, with strict inequality if and only if BC ‰ H. Our
main task will be to find a closed 2-form ω supported in the interior such that

ş
C
ω ą 0 for

every component C with BC “ H, as we can then set η :“ dλ` ǫω for sufficiently small ǫ ą 0.
We construct ω as follows. The collection of all closed irreducible components of singular

fibers defines a graph Γ, with vertices corresponding to closed irreducible components and
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edges corresponding to critical points at which two such components intersect each other. Pick
any connected component of Γ and denote the corresponding closed irreducible components
of fibers by C1, . . . , Cn. Pick closed 2-forms ω1, . . . , ωn such that for i “ 1, . . . , n, ωi represents
the Poincaré dual of rCis and is supported in a neighborhood of Ci disjoint from BE. Let
n̂i denote the number of critical points at which Ci intersects other irreducible components
(i.e. not counting intersections of Ci with itself), and let ni ď n̂i denote the number of these
at which Ci intersects other closed components (this is the number of edges touching the
corresponding vertex in Γ). For i, j P 1, . . . , n, let nij denote the number of critical points at
which Ci and Cj intersect, i.e. the number of edges of Γ connecting the two corresponding
vertices. The algebraic intersections numbers rCis ¨ rCjs P Z then satisfy

rCis ¨ rCjs “ nij for i ‰ j,

rCis ¨ rCis “ ´n̂i,

thus for i “ 1, . . . , n,

(2.3)
nÿ

j“1

rCis ¨ rCjs “
ÿ

j‰i

nij ´ n̂i “ ni ´ n̂i ď 0.

Since no fiber consists exclusively of closed components, the inequality ni ´ n̂i ď 0 must be
strict for some i “ 1, . . . , n.

Define now an n-by-n symmetric matrix A “ paijq with entries aij “ rCis ¨ rCjs. By (2.3),
A satisfies the conditions of Lemma 2.23 with m1 “ . . . “ mn “ 1, including hypothesis (d),
hence rankA “ n. It follows that one can find coefficients b1, . . . , bn P R such that

ż

Ci

nÿ

j“1

bjωj “
nÿ

j“1

aijbj ą 0

for all i “ 1, . . . , n. The desired 2-form ω can thus be defined as a sum of 2-forms of this type
for each connected component of the graph Γ. �

The next proposition is the main existence result for fiberwise symplectic structures.

Proposition 2.25. Given any λ P ΛfibpBhΠq or ΛfibpBΠq, there exists ω P Ωfib
strongpΠq such that

ω “ dλ near BhE or BE respectively. In particular, the spaces Ωfib

weakpΠq and Ωfib
strongpΠq are

always nonempty. Moreover, for any pJ, Bθq P J pΠq, PSHfib

pJ,BθqpΠq (and hence also Ωfib
exactpΠq)

is nonempty if and only if Π is allowable.

Proof. If Π is not allowable, then there is a closed component in some singular fiber, thus
Stokes’ theorem implies there can be no exact 2-form that is positive on every fiber. Conse-
quently, Ωfib

exactpΠq (and therefore also PSHfib

pJ,BθqpΠq) must be empty.

In the following, we shall handle the construction of ω P Ωfib
strongpΠq and f P PSHfib

pJ,BθqpΠq

in parallel at each step. The construction of f P PSHfib

pJ,BθqpΠq depends on an arbitrary choice

of pJ, Bθq P J pΠq, which we shall assume fixed throughout. Note that while ω P Ωfib
strongpΠq is

required to match dλ for a prescribed primitive λ near the boundary, the statement for the
almost Stein case does not require this.

Given λ P ΛfibpBhΠq or ΛfibpBΠq, let η denote the closed 2-form guaranteed by Lemma 2.24.
Observe that by the fiberwise Giroux form condition, the integrals of λ over boundary com-
ponents of fibers Ez are locally constant functions of z. We proceed in three steps:
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Step 1: Neighborhoods of regular fibers. For each z P ΣzΣcrit, there exists an open neigh-
borhood z P Uz Ă ΣzΣcrit and a 1-form λz on E|Uz which restricts to λ near BhE such that
ωz :“ dλz is an area form on every fiber in E|Uz . If λ P ΛfibpBΠq then dλ is already positive
on the fibers near BvE, thus we can also arrange λz “ λ near BvE.

For the almost Stein case, observe first that the vector field ´JBθ along BhE is necessarily
vertical and points transversely outward. Choose a smooth function fz : Ez Ñ R such that
´dpdfz˝Jq ą 0 on Ez, while at BEz , fz ” cz and dfzp´JBθq ” νz for some constants cz, νz ą 0.
This can be achieved by starting with any smooth function that satisfies these conditions at
the boundary and has only Morse critical points of index 0 and 1, then modifying it by local
diffeomorphisms to make it J-convex near the critical points, and postcomposing it with a
function with very large second derivative; cf. Lemma 2.21. We can then find a neighborhood
Uz Ă ΣzΣcrit of z such that fz admits an extension to a function

fz : E|Uz Ñ R

satisfying these same properties on every fiber in E|Uz . Note that the constants cz and νz can
always be made larger without changing the neighborhood Uz. The 1-form λz :“ ´dfz ˝ J on
E|Uz now satisfies dλz ą 0 on every fiber, and its restriction to the horizontal boundary

αh
z :“ λz|T pBhEq

satisfies αh
z pBθq “ νz, α

h
z |ξJ “ 0. The invariance of ξJ under the flow of Bθ then implies

LBθα
h
z “ dαh

z pBθ, ¨q “ 0.
Step 2: Neighborhoods of singular fibers. For each z P Σcrit, let Ecrit

z denote the finite
set of critical points in Ez. For each p P Ecrit

z , choose Jcrit-holomorphic Morse coordinates
pz1, z2q on a neighborhood Up Ă E of p, and let ωcrit denote the symplectic form on Up which
looks like the standard symplectic form on C

2 in these coordinates. Choose an area form ωz

on EzzEcrit
z satisfying the following conditions:

‚ ωz restricts to dλ near BhE;
‚ ωz “ ωcrit near Ecrit

z ;
‚ For each irreducible component C Ă Ez,

ş
C
ωz “

ş
C
η.

This can be extended to a closed 2-form on E|Uz for some open neighborhood z P Uz Ă Σ

with Uz Ă Σ̊, such that the extended ωz also matches dλ near BhE and is positive on fibers.
For the almost Stein case, we must assume explicitly at this step that Π : E Ñ Σ is allow-

able, so in particular, the connected components of EzzEcrit
z are all compact oriented surfaces

with nonempty boundary and finitely many punctures. Using the same Jcrit-holomorphic
coordinates pz1, z2q as above near any p P Ecrit

z , define a function fz : Up Ñ R by

fzpz1, z2q “
1

2

`
|z1|2 ` |z2|2

˘
.

This function is Jcrit-convex, and we claim that it is also J-convex on a sufficiently small
neighborhood of p. To see this, recall that J and Jcrit match at p due to Proposition 2.10.
Since dfzppq “ 0, the 1-forms ´dfz˝J and ´dfz˝Jcrit have the same 1-jet at p, so their exterior
derivatives match at that point, and the claim follows. By shrinking Up if necessary, we can
therefore assume ´dfz ˝ J is the primitive of a positive symplectic form in Up that tames J
and restricts symplectically to the vertical subspaces. Now since every connected component
of EzzEcrit

z has nonempty boundary, we can extend fz over Ez so that it is J-convex on Ez

and satisfies fz ” cz, dfzp´JBθq ” νz at BEz . Using the fact that J-convexity is an open
condition, we can then extend fz over E|Uz for some neighborhood z P Uz Ă Σ so that it has



ON SYMPLECTIC FILLINGS OF SPINAL OPEN BOOK DECOMPOSITIONS I 33

these same properties on each fiber. The constants cz and νz can again be made larger if
desired without changing the neighborhood Uz.

Step 3: Partition of unity. Since Σ is compact, there is a finite subset I Ă Σ such that the
open sets tUzuzPI cover Σ. Choose a partition of unity tρz : Uz Ñ r0, 1suzPI subordinate to
this cover. For each z P I, the 2-form ωz ´ η on E|Uz is exact by construction, thus we can
pick a 1-form θz on E|Uz with

ωz “ η ` dθz,

and since ωz and η both match dλ on a neighborhood of BhE or BE respectively, we can
choose θz such that θz “ 0 on such a neighborhood. We can then define ω P Ωfib

strongpΠq by

ω “ η ` d

˜ÿ

zPI

pρz ˝ Πqθz

¸
.

For the almost Stein case, consider the same partition of unity with the functions fz :
E|Uz Ñ R constructed in the first two steps, for z P I. By making these functions more
convex near BhE, we can increase the constants cz ą 0 for all z P I so that they match a
single constant c ą 0, and likewise increase νz for z P I to match some large number ν ą 0.
The function

f :“
ÿ

zPI

pρz ˝ Πqfz

is then constant at BhE. Writing λJ “ ´df ˝ J , we also have dλJ ą 0 on all fibers, while dλJ
is symplectic and tames J near Ecrit, and the 1-form αh :“ λJ |T pBhEq satisfies

αhpBθq ” ν ą 0, and αh|ξJ ” 0,

thus the invariance of ξJ under the flow of Bθ implies

dαhpBθ, ¨q ” LBθα
h ” 0.

�

Remark 2.26. It will occasionally (e.g. in Lemma 3.12) be useful to observe that in the almost
Stein case, the above proof did not make any use of the assumption that Π : pE, Jq Ñ pΣ, jq
is pseudoholomorphic. The conditions on pJ, Bθq we used were merely that every fiber is
J-holomorphic and the S1-action defined by Bθ on BhE preserves ξJ :“ T pBhEq X JT pBhEq
and J |ξJ .

To move from fiberwise structures to honest symplectic structures, we apply the Thurston
trick. Fix a Liouville form σ on Σ. For the almost Stein case, we may also assume

σ “ ´dϕ ˝ j,

where ϕ : Σ Ñ R is a smooth function constant at the boundary and j is the unique complex
structure on Σ for which Π : pE, Jq Ñ pΣ, jq is pseudoholomorphic.

Proposition 2.27. Given ω in Ωfib

weakpΠq, Ωfib
strongpΠq or Ωfib

exactpΠq, there exists a constant
K0 ě 0, depending continuously on ω, such that for every K ě K0,

ωK :“ ω `K Π˚dσ

belongs to ΩweakpΠq, ΩstrongpΠq or ΩexactpΠq respectively.
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Similarly, given pJ, Bθq P J pΠq and f P PSHfib

pJ,BθqpΠq, there exists K0 ě 0, depending

continuously on J and f , such that for every K ě K0,

fK :“ f `Kpϕ ˝ Πq

belongs to PSHpJ,BθqpΠq.
Moreover, if ω is already in ΩweakpΠq, ΩstrongpΠq or ΩexactpΠq, or f is already in PSHpJ,BθqpΠq

respectively, then for both statements it suffices to set K0 “ 0.

Proof. Let Ucrit Ă E denote a neighborhood of Ecrit on which the integrable complex structure
Jcrit is defined and Π|Ucrit is holomorphic; more precisely for each p P Ecrit, a neighborhood
of Πppq in Σ admits a complex structure jp such that the restriction of Π to the connected
component Up of Ucrit containing p is a holomorphic map pUp, J

critq Ñ pΠpUpq, jpq. Assume

to start with that ω P Ωfib

weakpΠq. By shrinking Ucrit if necessary, we may assume ω|Ucrit is

symplectic and tames Jcrit. Now for any nonzero vector v P TE|Up for p P Ecrit, we have

ωKpv, Jcritvq “ ωpv, Jcritvq `K dσpΠ˚v, jpΠ˚vq,

in which the first term is positive and the second is nonnegative for any K ě 0, hence ωK |Ucrit

is symplectic and positive on the fibers. In the almost Stein case, we write λJ :“ ´df ˝J and
σ :“ ´dϕ˝ j and observe that the holomorphicity of Π implies ´dpϕ˝Πq ˝J “ Π˚p´dϕ˝ jq “
Π˚σ, hence λKJ :“ ´dfK ˝ J “ λ `K Π˚σ. We then have

dλKJ pv, Jvq “ dλJ pv, Jvq `K dσpΠ˚v, jΠ˚vq,

and for any v ‰ 0 near Ecrit this is again positive since dλJ tames Jcrit and, by Prop. 2.10,
the latter matches J at Ecrit.

Outside a neighborhood of Ecrit, the rest follows by direct application of the results in
§2.1. �

Applying Whitehead’s theorem as in the proof of Theorem 1.7, Propositions 2.25 and 2.27
together imply that the various spaces of supported symplectic structures in Theorem 1.24
are nonempty and contractible as claimed. They also imply that the fibers of the projection
JSteinpΠq Ñ J pΠq : pJ, fq ÞÑ pJ, Bθq are nonempty and contractible. To see that this pro-
jection is also a Serre fibration, it suffices to observe that due to the continuous dependence
on J and f , the construction in Proposition 2.27 of the J-convex function fK can be done
parametrically. This completes the proof of Proposition 2.19.

2.5. Smoothing corners. To finish the proof of Theorem 1.24, we must show that the
corners of BE can be smoothed in a way that yields a symplectic filling canonically up to
deformation. For strong fillings this is mostly obvious because we have a Liouville vector
field transverse to both smooth faces of BE, but the case of weak fillings requires a bit more
thought since there is no Liouville vector field. We will consider a specific class of smoothings
defined as follows.

Fix a collar neighborhood N pBΣq “ p´1, 0s ˆ BΣ Ă Σ and a corresponding collar neighbor-
hood E|N pBΣq “: N pBvEq “ p´1, 0s ˆ BvE Ă E such that

Π|N pBvEq : N pBvEq Ñ N pBΣq : ps, pq ÞÑ ps,Πppqq.

Fix also a collar N pBhEq “ p´1, 0s ˆ BhE Ă E such that

Π|N pBhEq : N pBhEq Ñ Σ : pt, pq ÞÑ Πppq.
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The intersection of these two collars is then a neighborhood of the corner

N pBvE X BhEq :“ N pBhEq X N pBvEq “ p´1, 0s ˆ p´1, 0s ˆ pBhE X BvEq ,

and in coordinates ps, t, pq on this neighborhood we have Πps, t, pq “ ps,Πppqq. Given a
constant ǫ P p0, 1q, choose a pair of smooth functions fǫ, gǫ : p´1, 1q Ñ p´1, 1q satisfying the
following conditions:

‚ For τ ď ´ǫ, fǫpτq “ τ and gǫpτq “ 0,
‚ For τ P p´ǫ, ǫq, f 1

ǫpτq ą 0 and g1
ǫpτq ă 0,

‚ For τ ě ǫ, fǫpτq “ 0 and gǫpτq “ ´τ .

Denote by γǫ Ă p´1, 0s ˆ p´1, 0s the image of the smooth path pfǫpτq, gǫpτqq for τ P p´1, 1q;
this divides p´1, 0s ˆ p´1, 0s into two connected components. We shall denote the component
of pp´1, 0s ˆ p´1, 0sq zγǫ containing p0, 0q by Γǫ (see Figure 2), and then define the compact
domain

Wǫ “ Ez pΓǫ ˆ N pBvE X BhEqq .

This is a smooth manifold with boundary Mǫ :“ BWǫ, and the latter can be identified with
BE canonically up to a continuous isotopy which is smooth outside the corner.

Proposition 2.28. Suppose ω P ΩweakpΠq, ΩstrongpΠq or ΩexactpΠq, or ω “ ´dpdf ˝ Jq for
some pJ, fq P JSteinpΠq. Then for sufficiently small ǫ ą 0, the domain Wǫ with its symplectic
or almost Stein data is a weak, strong, exact or almost Stein filling respectively of pMǫ, ξǫq,
where ξǫ is a contact structure supported by a spinal open book with smooth overlap that is
isotopic (in the sense of Remark 1.6) to BΠ. Moreover, any two fillings obtained in this way
by different choices of smoothing are deformation equivalent.

Proof. Assume ω P ΩweakpΠq, so ω “ dλ near BhE for some λ P ΛpBhΠq. One can extend
λ to a neighborhood of BE so that λ P ΛfibpBEq; this follows from Proposition 2.25 (or a
simpler variant focusing only on a neighborhood of BvE). Choosing a Liouville form σ on Σ,
Proposition 2.13 then implies that for sufficiently large constants K ą 0, the 1-form

λK :“ λ`K Π˚σ
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defines a Giroux form near BE. Further, we claim that if K ą 0 is sufficiently large, then
λK ^ω ą 0 restricts positively to both BhE and BvE. On BhE this is immediate since ω “ dλ

near BhE and λ|T pBhEq is contact, hence

λK ^ ω|T pBhEq “ pλ `K Π˚σq ^ dλ|T pBhEq “ λ^ dλ|T pBhEq ą 0,

where the term pΠ˚σ^ dλq|T pBhEq vanishes because both Π˚σ and dλ|T pBhEq kill V pBhEq. On
BvE, we have

λK ^ ω|T pBvEq “ pλ `K Π˚σq ^ ω|T pBvEq “ K Π˚σ ^ ω|T pBvEq ` λ^ ω|T pBvEq,

in which the first term is positive since ω is positive on fibers, hence the sum is positive for
K " 0.

Since ω is symplectic, there is a vector field VK defined near BE by the condition ωpVK , ¨q “
λK , and λK ^ ω is then positive on any given oriented hypersurface if and only if VK is posi-
tively transverse to that hypersurface. It follows that VK is everywhere positively transverse
to both BhE and BvE, so if ǫ ą 0 is chosen sufficiently small, then VK has positive Bs and Bt
components (in the coordinates ps, t, pq) everywhere on

p´ǫ, 0s ˆ p´ǫ, 0s ˆ pBhE X BvEq Ă N pBvE X BhEq.

For this choice of ǫ, VK is then positively transverse to BWǫ everywhere (Figure 3), and it
follows that

λK ^ ω|TMǫ ą 0.

Thus pWǫ, ωq is a weak filling of pMǫ, ξǫq, where ξǫ :“ ker pλK |TMǫq.
To see that this filling is unique up to symplectic deformation, note first that by the

results of the previous subsection, ω P ΩweakpΠq is unique up to homotopy through ΩweakpΠq.
Given any such homotopy ωτ P ΩweakpΠq, τ P r0, 1s, one can choose a continuous family of
primitives λτ P ΛpBhΠq, then extend these to λτ P ΛfibpBΠq and choose K ą 0 large enough so
that λτ `K Π˚σ defines a continuous family of Giroux forms near BE with pλτ `K Π˚σq^ωτ

positive on both BhE and BvE. Then for some continuous deformation of the parameter
ǫτ ą 0, shrinking it as small as necessary for τ P p0, 1q, we can arrange for pWǫτ , ωτ q to be a
weak filling of pMǫτ , kerpλτ `K Π˚σqq for all τ P r0, 1s.

The corresponding statements for strong, exact or almost Stein fillings are proved by a
simplification of the above arguments: if ω is strongly convex, we may assume ω “ dλ with
λ P ΛpBΠq, thus λ ^ dλ is positive on both boundary faces and the corresponding Liouville
vector field plays the role that VK played above.

It remains to show that the contact structure induced on Mǫ is supported by a spinal open
book isotopic to BΠ. It will suffice to show this for a particular choice of ω P ΩstrongpΠq.
Choose a coordinate φ P S1 for each connected component of BΣ, so the collar N pBΣq can
be viewed as a disjoint union of components p´1, 0s ˆ S1 with coordinates ps, φq, and we
can choose σ “ es dφ in these collars. Choose also a trivialization of the S1-bundle BhE X
BvE Ñ BΣ and denote the fiber coordinate by θ P S1, so each component of BhE X BvE
now has coordinates pφ, θq P T 2, and the components of N pBvE X BhEq inherit coordinates
ps, t, φ, θq P p´1, 0s ˆ p´1, 0s ˆ T 2 with

Πps, t, φ, θq “ ps, φq.

One can then construct a fiberwise Giroux form λ near BE that takes the form et dθ in
N pBvE X BhEq, and extend dλ by Proposition 2.25 to a fiberwise symplectic structure ω P
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Ωfib
strongpΠq. Applying Proposition 2.27, this yields a supported strongly convex symplectic

structure with a primitive of the form

λK :“ et dθ `Kes dφ

on N pBvE X BhEq “ p´1, 0s ˆ p´1, 0s ˆ S1 ˆ S1. Defining Wǫ as above for any choice of
ǫ P p0, 1q, M :“ BWǫ inherits a spinal open book defined as follows: the spine MΣ is the
complement in BhE of the region p´ǫ, 0s ˆ t0u ˆ T 2 Ă N pBvE X BhEq, with the fibration

πΣ :MΣ Ñ Σ1

induced by Π, where Σ1 is the complement of the collars p´ǫ, 0s ˆ S1 in Σ. The closure
of MzMΣ then constitutes the paper MP , with the φ-coordinate defining the fibration πP :
MP Ñ S1. The restriction of λK to M is now a Giroux form for this spinal open book. �

3. A criterion for the canonical Stein homotopy type

The characterization of supported almost Stein structures given in Definition 1.23 is nat-
ural, but not general enough to be useful in classifying fillings up to Stein homotopy. In
particular, the proof of Theorem B stated in the introduction will require us to consider bor-
dered Lefschetz fibrations Π : E Ñ Σ with almost Stein structures pJ, fq for which the fibers
are almost complex submanifolds but the projection Π is not pseudoholomorphic. The more
general characterization given by Theorem C will therefore be useful, and it can be restated
as follows.

Theorem 3.1. Suppose Π : E Ñ Σ is an allowable bordered Lefschetz fibration, j is a complex
structure on Σ and pJ, fq is an almost Stein structure on E with the following properties:

(1) J restricts to a positively oriented complex structure on the smooth part of every fiber;
(2) f is constant on the boundary components of every fiber;
(3) The restriction of ´df ˝ J to BE is a Giroux form for BΠ (cf. Remark 1.13).
(4) There exists an open neighborhood U Ă Σ of BΣ such that the map

pE|U , Jq
Π

ÝÑ pU , jq

is pseudoholomorphic;
(5) The maximal J-complex subbundle ξJ Ă T pBhEq is preserved under the Reeb flow

defined via ´df ˝ J |T pBhEq, and J |ξJ “ Π˚j.

Then pJ, fq is almost Stein homotopic to an almost Stein structure supported by Π.

Remark 3.2. We will not use this fact, but one can show that whenever the first and fifth
conditions in Theorem 3.1 hold, the projection Π is pseudoholomorphic (for a suitable choice
of complex structure on the base) whenever the Nijenhuis tensor takes values in the vertical
subbundle. In particular, this is always true if J is integrable.

We begin by generalizing the space J pΠq from Definition 2.15.

Definition 3.3. Given an open subset U Ă Σ, let J pΠ;Uq denote the space of pairs pJ, Bθq,
where J is an almost complex structure on E defining the correct orientation, Bθ is a positively
oriented nowhere zero vertical vector field on BhE, and Σ admits a complex structure j so
that the following conditions are satisfied:

(1) J restricts to a positively oriented complex structure on the smooth part of every
fiber;

(2) The equation TΠ ˝ J “ j ˝ TΠ is satisfied in E|U and along BhE;
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(3) The flow of Bθ on BhE is 1-periodic and preserves ξJ :“ T pBhEq X JT pBhEq.

Observe that J pΠ;Σq “ J pΠq, and J pΠ;U 1q Ă J pΠ;Uq whenever U Ă U 1; moreover,
J pΠ;Uq is contractible for every choice of U Ă Σ. Theorem 3.1 would thus follow immedi-
ately if we could show that every pJ, Bθq P J pΠ;Uq admits a suitable J-convex function, but
this is probably not true in general—we at least have been unable to prove it except when
U “ Σ. What we will show instead is that if U contains BΣ, then every pJ, Bθq P J pΠ;Uq
has a perturbation that admits a suitable J-convex function, and this perturbation can be ar-
ranged to depend continuously on parameters. Here is the more technical result that implies
Theorem 3.1:

Proposition 3.4. Assume Π : E Ñ Σ is allowable, U Ă Σ is an open neighborhood of BΣ,
X is a compact cell complex, A Ă X is a subcomplex, and

X Ñ J pΠ;Uq : τ ÞÑ pJτ , B
τ
θ q,

A Ñ C8pEq : τ ÞÑ fτ

are continuous maps such that for every τ P A, pJτ , fτ q is an almost Stein structure, fτ is
constant on all boundary components of fibers, and λτ :“ ´dfτ ˝Jτ restricts to BE as a Giroux
form for BΠ (in the sense of Remark 1.13) satisfying λτ pBτθ q ” const. Then there exists a
continuous (with respect to the C8-topology) family of almost Stein structures tpJ 1

τ , f
1
τ quτPX

matching pJτ , fτ q for all τ P A such that J 1
τ is C8-close to Jτ for all τ P X.

The proof of Proposition 3.4 requires several steps and will occupy the remainder of this
section, so here is an initial sketch. Let tjτ uτPX denote the uniquely determined family of
complex structures on Σ such that Π : pE, Jτ q Ñ pΣ, jτ q is holomorphic in E|U and along BhE
for all τ . Since U is open, we can choose a function ϕ : Σ Ñ R which has all its critical
points in U and is jτ -convex for every τ . Holomorphicity of Π then allows the construction
of Jτ -convex functions on E|U using the Thurston trick as in Prop. 2.6. Outside of E|U , the
function ϕ ˝ Π has level sets that are unions of Jτ -holomorphic fibers and are thus Levi-flat,
i.e. the maximal complex subbundle in each level set is a foliation. A suitable choice of
fiberwise Liouville structure then allows us to perturb these foliations to contact structures
as in the Thurston-Winkelnkemper construction [TW75] of contact forms supported by open
books (cf. Prop. 2.1). The almost complex structures admit corresponding perturbations J 1

τ

that preserve these contact structures, so that the function ϕ ˝ Π, after modifying ϕ to make
ϕ2 sufficiently large, becomes J 1

τ -convex. This makes use of Lemma 2.21, and it produces J 1
τ -

convex functions f 1
τ that match ϕ ˝Π away from E|Critpϕq and take the form ϕ ˝Π` ǫfτ near

E|Critpϕq. Actually proving that pJ 1
τ , f

1
τ q are almost Stein structures requires also showing that

the Liouville forms ´df 1
τ ˝ J 1

τ restrict to the smooth faces of BE as contact forms. Moreover,
we need to be able to keep this condition under linear interpolations between our constructed
functions f 1

τ and the original fτ in order solve the extension problem. Both steps will make
essential use of the holomorphicity of Π at BE, as well as the Thurston trick: a crucial detail
for the latter is that the original family of Jτ -convex functions tfτuτPA can easily be extended
to τ P X as a family of fiberwise Jτ -convex functions, which we use in the construction of J 1

τ

and f 1
τ .

We now proceed with the details of the argument sketched above. As in the statement of
Proposition 3.4, all families of objects parametrized by X will be assumed in the following to
be continuous in the C8-topology, and U Ă Σ will be an open neighborhood of BΣ. We will
sometimes find it convenient to replace U with a smaller neighborhood of BΣ, which is not a
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loss of generality since it enlarges the space J pΠ;Uq. In particular, since all critical values of
Π are in the interior, let us start by assuming

sU X Σcrit “ H.

3.1. Weinstein structures on the base.

Lemma 3.5. There exists a smooth function ϕ : Σ Ñ R which is jτ -convex for all τ and
constant on BΣ, and has all its critical points in UzBΣ.

Proof. Start by choosing a Morse function ϕ : Σ Ñ R that is regular and constant on the
boundary and has no local maxima. By composing with a suitable diffeomorphism of Σ, we
can arrange that Critpϕq Ă UzBΣ. Now since every critical point has Morse index 0 or 1, we
can fix local coordinates px, yq near each critical point so that, up to addition of constants,
ϕpx, yq takes the form x2 ` y2 or x2 ´ y2. Given any constant c ą 0, we can further modify
ϕ by composing with a diffeomorphism supported near the index 1 critical points so that
these (in the same coordinates!) now take the form cx2 ´ y2. Since the parameter space X is
compact, Lemma 3.6 below now implies that by selecting c sufficiently large, we can assume
ϕ is jτ -convex near Critpϕq for all τ P X. Lemma 2.21 (with Remark 2.22) can then be
applied to make ϕ into a globally jτ -convex function for all τ P X by postcomposing it with
a sufficiently convex function R Ñ R. �

The above proof required the following lemma:

Lemma 3.6. Suppose j is a smooth almost complex structure on a neighborhood of 0 in C,
compatible with the canonical orientation, and let ϕ0, ϕ1 : C Ñ R denote the functions

ϕ0px ` iyq “ x2 ` y2, ϕ1px ` iyq “ cx2 ´ y2,

where c ą 0 is a constant. Then ϕ0 is j-convex near 0, and ϕ1 is also j-convex near 0
whenever c is sufficiently large.

Proof. Let j0 denote the “constant” complex structure on C that matches j at the origin, in
other words j0pzq :“ jp0q for all z P C. We claim first that the statement of the lemma is
true if j is replaced by j0. Indeed, j0 can be written as the matrix

j0 “

ˆ
a ´1`a2

b
b ´a

˙
,

where a and b are real constants with b ą 0 (due to the orientation assumption). Then we
compute:

´dpdϕ0 ˝ j0q “ 2

ˆ
1 ` a2

b
` b

˙
dx^ dy,

´dpdϕ1 ˝ j0q “ 2

ˆ
c
1 ` a2

b
´ b

˙
dx^ dy.

The first is always positive, and the second is positive if and only if c ą b2{p1 ` a2q, so
this proves the claim about j0. To generalize this to j, it suffices to observe that since
dϕ0p0q “ dϕ1p0q “ 0, the 1-jets of ´dϕ0 ˝ j and ´dϕ1 ˝ j at 0 (and hence also the question of
j-convexity on some neighborhood of that point) depend on jp0q but not on the derivatives
of j, so the fact that jp0q “ j0p0q implies the result. �
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For the remainder of this section, we fix a function ϕ : Σ Ñ R as given by Lemma 3.5 and
define the family of 1-forms

στ “ ´dϕ ˝ jτ .

By construction, dστ ą 0 everywhere and dϕ ^ στ ą 0 away from Critpϕq, for all τ P X.
In particular, this means that dστ , together with ϕ and the family of Liouville vector fields
dστ -dual to στ , define a family of Weinstein structures on Σ.

3.2. Perturbing J near Lefschetz critical points. Define the function

F “ ϕ ˝ Π : E Ñ R.

We shall now define a family of perturbations of Jτ near Ecrit that make F plurisubharmonic
on this neighborhood. For any p P Ecrit, let N ppq denote an open neighborhood of p, which
we will always assume is arbitrarily small in order to satisfy various conditions. The first
such condition is that N ppq admits complex coordinates pz1, z2q identifying p with p0, 0q P C

2

so that Πpz1, z2q “ z21 ` z22 for a suitable choice of complex coordinate z on a neighborhood
N pΠppqq Ă Σ of Πppq, identifying Πppq with 0 P C. We shall abbreviate the pair of coordinates
on N ppq together as ζ “ pz1, z2q, and write the real and imaginary parts as

ζ “ pz1, z2q “ px1 ` iy1, x2 ` iy2q P N ppq, z “ x` iy P N pΠppqq.

Note that the formula for Πpz1, z2q is invariant under simultaneous coordinate changes of the
form

pz1, z2q ÞÑ paz1, az2q, z ÞÑ a2z

for any a P C, thus we can choose a suitable constant a and make such a transformation such
that without loss of generality, the local coordinate expression for ϕ near Πppq satisfies

dϕp0q “ dx.

This is possible because we have already arranged for all critical points of ϕ to be separate
from Σcrit; indeed, Critpϕq Ă U and U X Σcrit “ H, where the latter can always be achieved
by making U a smaller neighborhood of BΣ. In particular, ϕ then has the same 1-jet at Πppq
as the locally defined function

ϕ0px ` iyq :“ x` ϕp0q.

We shall repeatedly make use of this fact via the following lemma, which is an easy conse-
quence of the fact that dϕ0p0q “ dϕp0q and dΠp0, 0q “ 0.

Lemma 3.7. The functions F “ ϕ ˝Π : E Ñ R and F0 :“ ϕ0 ˝Π : N ppq Ñ R have the same
2-jet at p. Moreover, for any smooth bundle endomorphism A : N ppq Ñ End

`
TE|N ppq

˘
, the

1-forms dF ˝A and dF0 ˝A have matching 1-jets at p, which depend on Appq but not on the
derivatives of A at p. �

Denote by i the standard complex structure on C
2 and identify this with an integrable

complex structure on N ppq via the coordinates pz1, z2q. For any i-antilinear map Y on C
2

sufficiently close to 0, one can define another complex structure close to i by

ΦpY q :“

ˆ
1 `

1

2
iY

˙
i

ˆ
1 `

1

2
iY

˙´1

.

Indeed, Φ can be regarded as the inverse of a local chart for the manifold of complex structures
J pC2q, identifying a neighborhood of i in J pC2q with a neighborhood of 0 in TiJ pC2q such
that dΦp0q is the identity on the space of i-antilinear maps. By Proposition 2.10, Jτ ppq “ i
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for all τ P X, thus there is a family of smooth maps Yτ : N ppq Ñ TiJ pC2q such that for all
ζ P N ppq,

Jτ pζq “ ΦpYτ pζqq,

and Yτ p0q “ 0.
Working in real coordinates px1, y1, x2, y2q, define the i-antilinear matrix

Y 1 “

¨
˚̊
˝

0 ´1 0 0
´1 0 0 0
0 0 0 ´1
0 0 ´1 0

˛
‹‹‚.

We use this to define for all ǫ ě 0 sufficiently small a family of perturbed almost complex
structures on N ppq by

J ǫ
τ pζq “ ΦpYτ pζq ` ǫY 1q.

Let

Y 1
τ pζq “

B

Bǫ
J ǫ
τ pζq

ˇ̌
ˇ̌
ǫ“0

.

Then since Yτ p0, 0q “ 0 and dΦp0q is the identity, we have Y 1
τ p0, 0q “ Y 1. Let

Λǫ
τ “ ´dF ˝ J ǫ

τ ,

and for ǫ ą 0, define smooth families of 1-forms pηǫτ via the formula

(3.1) Λǫ
τ “ Λ0

τ ` ǫpηǫτ .
There is a smooth extension of pηǫτ to ǫ “ 0, namely

pη0τ :“ lim
ǫÑ0

Λǫ
τ ´ Λ0

τ

ǫ
“

B

Bǫ
Λǫ
τ

ˇ̌
ˇ̌
ǫ“0

“ ´dF ˝ Y 1
τ .

Lemma 3.8. There exists a constant ǫ0 ą 0 such that for all ǫ P p0, ǫ0s and τ P X, dΛǫ
τ is

symplectic on N ppq and tames both i and J ǫ
τ . Moreover, dpη0τ is also symplectic on N ppq and

tames Jτ for all τ P X.

Proof. We first prove the claim about dpη0τ , for which it suffices to show that dpη0τ |p tames i
since Jτ ppq “ i for all τ P X and the taming condition is open. Consider the slightly simpler
1-form

pη0 :“ ´dpϕ0 ˝ Πq ˝ Y 1,

where we recall ϕ0px ` iyq “ x ` ϕp0q. We then have ϕ0 ˝ Πpz1, z2q ´ ϕp0q “ Re
`
z21 ` z22

˘
“ř2

j“1px2j ´ y2j q and

dxj ˝ Y 1 “ ´dyj, dyj ˝ Y 1 “ ´dxj for j “ 1, 2,

thus

pη0 “ 2
2ÿ

j“1

pxj dyj ´ yj dxjq ,

giving dpη0 “ 4
2ÿ

j“1

dxj ^ dyj , which clearly tames i. Now Lemma 3.7 implies that pη0τ and pη0

have the same 1-jet at p, hence dpη0τ |p “ dpη0|p, and the claim follows.
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Next we show that dΛǫ
τ tames both i and J ǫ

τ on N ppq when ǫ is positive but small. Observe
first that dΛ0

τ |p “ 0: indeed, by Lemma 3.7 this holds if the 1-form λ :“ ´dpϕ0 ˝Πq˝i satisfies

dλ|p “ 0, and since ϕ0 ˝ Πpz1, z2q “
ř2

j“1px2j ´ y2j q ` ϕp0q, an explicit computation shows

λ “ ´dpϕ0 ˝ Πq ˝ i “ 2
2ÿ

j“1

pxj dyj ` yj dxjq ,

which is everywhere closed. It will now suffice to show that for any τ P X and any nonzero
vector v P TpE, the derivatives

(3.2)
d

dǫ
dΛǫ

τ pv, ivq

ˇ̌
ˇ̌
ǫ“0

,
d

dǫ
dΛǫ

τ pv, J ǫ
τ vq

ˇ̌
ˇ̌
ǫ“0

are both positive. Since B
BǫΛ

ǫ
τ

ˇ̌
ǫ“0

“ pη0τ , both of these are equal to dpη0τ pv, ivq, which is positive
by the first claim proved above. Note that in computing the expression on the right in (3.2),
derivative of J ǫ

τ with respect to ǫ does not appear since dΛ0
τ |p “ 0. �

To summarize this step so far, we have defined a family of almost complex structures
tJ ǫ

τ uǫPr0,ǫ0s,τPX near Ecrit such that J0
τ “ Jτ and F “ ϕ ˝ Π is J ǫ

τ -convex for ǫ ą 0. Moreover,

the Liouville forms Λǫ
τ “ ´dF ˝ J ǫ

τ for ǫ ą 0 can be written as Λǫ
τ “ Λ0

τ ` ǫpηǫτ , where pηǫτ is
a smooth family of 1-forms that define fiberwise Liouville forms near Ecrit and converge as
ǫ Ñ 0 to a fiberwise Liouville form pη0τ such that dpη0τ tames both i and Jτ . The main point of
this construction was that it gives rise to a family of contact structures on the level sets of F :
indeed, define on N ppqztpu a family of co-oriented 2-plane distributions

ξǫτ :“ ker dF X ker Λǫ
τ .

These are J ǫ
τ -invariant, so the fact that F is J ǫ

τ -convex for ǫ ą 0 implies that they are contact
on each level set of F whenever ǫ ą 0. For ǫ “ 0 this is not the case, as

ξ0τ “ V E

is the vertical subbundle of the Lefschetz fibration and thus defines foliations on the level sets
of F . In the next step, we will use the Liouville forms στ from §3.1 to extend ξǫτ over the
rest of Ez

`
Ecrit Y E|Critpϕq

˘
. To do this we will need Lemma 3.11 below, for which the next

two lemmas are preparation. In the following, we use the coordinates ζ “ pz1, z2q to define
Euclidean norms |v| of vectors v P TE|N ppq, and keep in mind that N ppq can always be made
smaller if necessary.

Lemma 3.9. There exists a constant c1 ą 0 and a family of smooth vector fields Rτ on
N ppqztpu such that |Rτ | ” 1, dF pRτ q ” 0, and

Λ0
τ pRτ pζqq ě c1|ζ| for all ζ P N ppqztpu.

Proof. Choose a family of Jτ -invariant Riemannian metrics gτ on N ppq and let ∇τF denote
the corresponding gradient vector fields of F . Note that since τ lives in a compact parameter
space, the norms defined via gτ are uniformly (with respect to τ) equivalent to the Euclidean

norm. By Lemma 3.7, the Hessian of F at p matches that of ϕ0˝Πpζq “
ř2

j“1px2j ´y2j q`ϕp0q,
thus the critical point of F at ζ “ 0 is nondegenerate. It follows that one can find a constant
k ą 0 such that

|∇τF pζq| ě k|ζ| for all ζ P N ppq, τ P X.

A family of vector fields with the desired properties can then be defined by Rτ “ Jτ∇
τF

|Jτ∇τF | . �
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Lemma 3.10. On N ppqztpu, dΛ0
τ |ξ0τ “ 0, Λ0

τ ^ dΛ0
τ

ˇ̌
ker dF

“ 0, and

B

Bǫ
pΛǫ

τ ^ dΛǫ
τ |ker dF q

ˇ̌
ˇ̌
ǫ“0

ą 0.

Proof. Since ker
`
Λ0
τ |ker dF

˘
“ ξ0τ “ V E, the first two statements are both equivalent to the

fact that V E defines a foliation on every level set of F . We will now prove that the third claim
holds after shrinking the neighborhood N ppq sufficiently. Recall from the proof of Lemma 3.8
that dΛ0

τ |p “ 0, and similarly, pη0τ “ ´dF ˝ Y 1
τ vanishes at p. Since both are smooth, this

implies there is a constant c2 ą 0 such that

(3.3)
››dΛ0

τ |ζ
›› ď c2|ζ|,

››pη0τ |ζ
›› ď c2|ζ| for ζ P N ppq,

where we denote by } ¨ } the natural norm induced on tensors from the Euclidean norm in the
coordinates. Now for any ζ P N ppqztpu, fix v P TζE with v P V E and |v| “ 1, so the vector
iv P TζE is also vertical and also has norm 1. Denote the value at ζ of the vector field from
Lemma 3.9 by R :“ Rτ pζq P ker dF |ζ , which according to the lemma, satisfies

(3.4) Λ0
τ pRq ě c1|ζ|

for some constant c1 ą 0 independent of ζ and τ . The triple pR, v, ivq now form a positively
oriented basis of ker dF |ζ , and Λǫ

τ ^ dΛǫ
τ pR, v, ivq is proportional to

Λǫ
τ pRq dΛǫ

τ pv, ivq ` Λǫ
τ pvq dΛǫ

τ piv,Rq ` Λǫ
τ pivq dΛǫ

τ pR, vq.

Differentiating this with respect to ǫ and setting ǫ “ 0, three terms drop out since Λ0
τ pvq “

Λ0
τ pivq “ dΛ0

τ pv, ivq “ 0, and we are left with

Λ0
τ pRq dpη0τ pv, ivq ` pη0τ pvq dΛ0

τ piv,Rq ` pη0τ pivq dΛ0
τ pR, vq

ě c1|ζ| dpη0τ pv, ivq ´ 2c22|ζ|2 “ |ζ| ¨
`
c1 dpη0τ pv, ivq ´ 2c22|ζ|

˘
,

where we’ve used (3.3) to bound the magnitude of the last two terms from above and (3.4)
to bound the first from below. Since dpη0τ tames i and |v| “ 1, the term dpη0τ pv, ivq satisfies a
uniform positive lower bound on N ppq, thus the entire expression becomes positive as soon
as |ζ| is sufficiently small. �

Lemma 3.11. There exists a family of smooth 1-forms ηǫτ on N ppqztpu, for τ P X and
ǫ P r0, ǫ0s, such that dη0τ |V E ą 0 and

ξǫτ “ ker dF X ker pΠ˚στ ` ǫηǫτ q .

Moreover, the ηǫτ decay (uniformly in τ and ǫ) to zero at p.

Proof. OnN ppqztpu, the kernels of Λ0
τ and Π˚στ restricted to level sets of F are both ξ0τ “ V E,

thus there is a family of smooth positive functions gτ : N ppqztpu Ñ p0,8q such that

(3.5) Π˚στ |ker dF “ gτΛ
0
τ

ˇ̌
ker dF

.

We can plug in the unit vector field Rτ from Lemma 3.9 to compute gτ in coordinates, and
since Π˚στ vanishes at p, the estimate in the lemma gives rise to an estimate

|gτ pζq| “
|Π˚στ pRτ pζqq|

|Λ0
τ pRτ pζqq|

ď
c2|ζ|

c1|ζ|
“
c2

c1

for some constants c1, c2 ą 0, so that the functions gτ are uniformly bounded near p.
The relation (3.5) together with (3.1) now implies

gτΛ
ǫ
τ |ker dF “ pΠ˚στ ` ǫgτ pηǫτ q|ker dF ,
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thus we can set
ηǫτ :“ gτ pηǫτ for ǫ P r0, ǫ0s, τ P X.

Observe that pηǫτ |p “ 0 for all τ and ǫ by definition, so the boundedness of gτ implies that ηǫτ
also decays uniformly to zero at p.

Our remaining task is to show that dη0τ |V E ą 0 in some (possibly smaller) open set of the
form N ppqztpu. Since gτΛ

ǫ
τ ^ d pgτΛ

ǫ
τ q|ker dF “ g2τ Λ

ǫ
τ ^ dΛǫ

τ

ˇ̌
ker dF

, Lemma 3.10 implies that
on a sufficiently small neighborhood N ppqztpu,

0 ă g2τ
B

Bǫ
pΛǫ

τ ^ dΛǫ
τ |ker dF q

ˇ̌
ˇ̌
ǫ“0

“
B

Bǫ
r pΠ˚στ ` ǫηǫτ q ^ dpΠ˚στ ` ǫηǫτ q|ker dF s

ˇ̌
ˇ̌
ǫ“0

“
B

Bǫ
rǫ ¨ pΠ˚στ ` ǫηǫτ q ^ dηǫτ |ker dF s

ˇ̌
ˇ̌
ǫ“0

“ Π˚στ ^ dη0τ
ˇ̌
ker dF

,

where we’ve used the fact that Π˚στ is closed on the level sets of F since στ is (obviously)
closed on the level sets of ϕ. The kernel of Π˚σ|ker dF is V E, so this last relation is equivalent
to dη0τ |V E ą 0. �

3.3. Perturbing from Levi flat to contact. By assumption, there is a subcomplex A Ă X

and a family of smooth functions tfτ : E Ñ RuτPA such that λτ :“ ´dfτ˝Jτ are Liouville forms
and restrict to BE as Giroux forms in the sense of Remark 1.13. Recall from Definition 2.17 the
convex space PSHfib

pJ,BθqpΠq of fiberwise J-convex functions associated to each pJ, Bθq P J pΠq.

It will be convenient to observe that this definition still makes sense and PSHfib

pJ,BθqpΠq is still

convex if pJ, Bθq is only assumed to belong to J pΠ;Uq. For example, fτ P PSHfib

pJτ ,Bτ
θ

qpΠq for

each τ P A.

Lemma 3.12. The family of functions tfτ : E Ñ RuτPA can be extended to a family tfτ :
E Ñ RuτPX such that fτ P PSHfib

pJτ ,Bτ
θ

qpΠq for every τ P X.

Proof. Independently of the given functions fτ , we first observe that there exists a family
tgτ P PSHfib

pJτ ,Bτ
θ

qpΠquτPX . In light of Remark 2.26, this follows from the partition of unity

argument in the proof of Proposition 2.25; the only meaningful difference is that one needs
to consider families depending continuously on τ at every step, though since X is compact,
one can also use Lemmas 2.21 and 3.6 to construct gτ so that it is independent of τ away
from BhE. This establishes the lemma in the case A “ H.

To solve the extension problem in general, it suffices to consider the case where X is a
disk D

k and A “ BDk “ Sk´1 for some k P N. We start by extending the given family

tfτuτPA arbitrarily to a family of smooth functions pfτ : E Ñ R for τ P X such that each
pfτ |BhE is invariant under the S1-action defined by the flow of Bτθ and the normal derivatives

d pfτ p´JτBτθ q are locally constant for each τ . Since each Jτ has an S1-invariant restriction to

BhE, the 1-forms ατ :“ ´d pfτ ˝ Jτ |T pBhEq are also S1-invariant and thus satisfy

0 “ LBτ
θ
ατ “ d pατ pBτθ qq ` dατ pBτθ , ¨q.

In this expression, the first term at the right vanishes since ατ pBτθ q “ ´d pfτ pJτBτθ q is locally
constant, thus dατ pBτθ , ¨q ” 0. The remaining conditions in the definition of a fiberwise Jτ -

convex function are all open, so it follows that pfτ is also fiberwise Jτ -convex for every τ in
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some open neighborhood A1 Ă X of A. Finally, choose a cutoff function β : X Ñ r0, 1s that

is supported in A1 and satisfies β|A ” 1, and set fτ :“ βpτq pfτ ` r1´βpτqsgτ . This is fiberwise
Jτ -convex for every τ P X since the space PSHfib

pJτ ,Bτ
θ

qpΠq is convex. �

From now on, denote by

λτ “ ´dfτ ˝ Jτ , τ P X

the family of fiberwise Liouville forms on E that arise from the above lemma. Choose a
neighborhoodN pEcritq Ă E of Ecrit such that the 1-forms ηǫτ from Lemma 3.11 are defined and

satisfy dη0τ |V E ą 0 on an open neighborhood of N pEcritqzEcrit. For any smaller neighborhood
N 1pEcritq of Ecrit with compact closure in N pEcritq, we can choose ǫ0 ą 0 small enough so
that

dηǫτ |V E ą 0 on N pEcritqzN 1pEcritq for all ǫ P r0, ǫ0s.

The following lemma should be understood to be true after a possible further shrinking of
the neighborhoods N pEcritq and N 1pEcritq together with the number ǫ0 ą 0.

Lemma 3.13. The family of 1-forms ηǫτ on N pEcritqzN 1pEcritq for τ P X and ǫ P r0, ǫ0s can
be extended over EzN 1pEcritq so that dηǫτ |V E ą 0 everywhere and ηǫτ “ λτ near BhE and in
E|U 1 for some neighborhood U 1 Ă Σ of Critpϕq Y BΣ.

Proof. We again use a variant of the partition of unity argument from Proposition 2.25. For
step 1, choose an open neighborhood U 1 Ă Σ of Critpϕq Y BΣ with closure in U , and for each
regular value z P ΣzU 1 of Π, choose a neighborhood Uz Ă ΣzΣcrit of z together with a family
of 1-forms ηǫτ,z on E|Uz such that dηǫτ,z is positive on fibers and ηǫτ,z “ λτ near BhE. We can

arrange this moreover so that Uz is disjoint from sU 1 whenever z R sU 1 and Uz Ă U for z P sU 1,
which permits the choice ηǫτ,z :“ λτ in the latter case.

Step 2 is to define ηǫτ,z on E|Uz for a neighborhood Uz Ă Σ of each z P Σcrit, matching the

given ηǫτ near Ecrit. We start by extending ηǫτ over each component of EzzEcrit
z as a Liouville

form, which is possible since Π is allowable, though there is a slightly subtle point if we
want to arrange ηǫτ,z “ λτ near BhE: Stokes’ theorem may make this impossible if there are

vanishing cycles C Ă Ez near Ecrit on which
ş
C
ηǫτ,z is too large. Recall however that while ηǫτ

may fail to be smooth at Ecrit, it does have a (uniformly in τ and ǫ) continuous extension that
vanishes at Ecrit, so its integrals along cycles in N pEcritq can be assumed arbitrarily small
if we replace N pEcritq by a suitably smaller neighborhood (which may necessitate making
N 1pEcritq and ǫ0 smaller as well). With this understood, the required extension of ηǫτ from
N pEcritq to a fiberwise Liouville form ηǫτ,z on E|Uz exists for some neighborhood Uz Ă Σz sU 1

of z.
Step 3 is then to choose a finite subcover tUzuzPI of ΣzU 1 with a subordinate partition of

unity tρz : Uz Ñ r0, 1suzPI and define the desired extension by ηǫτ “
ř

zPIpρz ˝ Πqηǫτ,z. �

Since the smaller neighborhood U 1 Ă U in the above lemma contains Critpϕq Y BΣ, we
can now relabel U 1 as U without loss of generality, and let U 1 Ă U denote a still smaller
neighborhood of Critpϕq Y BΣ with closure in U . Choose a smooth cutoff function

β : Σ Ñ r0, 1s

with compact support in U such that β|U 1 ” 1, and define from this a family of smooth
functions

F ǫ
τ “: ϕ ˝ Π ` ǫpβ ˝ Πqfτ : E Ñ R
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for ǫ P r0, ǫ0s and τ P X. Observe that F ǫ
τ “ F “ ϕ ˝ Π outside of E|U . On EzN 1pEcritq, we

can also define the family of smooth 1-forms

Θǫ
τ “ Π˚στ ` ǫηǫτ ,

which are Liouville for ǫ ą 0 sufficiently small (cf. Proposition 2.27).

Lemma 3.14. For all ǫ ą 0 sufficiently small and all τ P X, F ǫ
τ is Jτ -convex on E|U 1, and

dF ǫ
τ ^ Θǫ

τ ^ dΘǫ
τ ą 0 on Ez

`
N 1pEcritq Y E|Critpϕq

˘
.

Proof. Consider first the region E|U 1 . Here Π is Jτ -jτ -holomorphic and β ˝ Π ” 1, thus

´dF ǫ
τ ˝ Jτ “ Π˚p´dϕ ˝ jτ q ` ǫp´dfτ ˝ Jτ q “ Π˚στ ` ǫλτ “ Θǫ

τ .

Proposition 2.6 then implies that F ǫ
τ is Jτ -convex on E|U 1 for ǫ ą 0 sufficiently small, and

consequently that Θǫ
τ is contact on all the regular level sets of F ǫ

τ in this region.
On Ez

`
N 1pEcritq Y E|U 1

˘
, we compute

dF ǫ
τ ^ Θǫ

τ ^ dΘǫ
τ “ pΠ˚dϕ ` ǫ d rpβ ˝ Πqf sq ^ pΠ˚στ ` ǫηǫτ q ^ pΠ˚dστ ` ǫ dηǫτ q

“ ǫΠ˚pdϕ ^ στ q ^ dηǫτ ` Opǫ2q.

This is positive for all ǫ ą 0 sufficiently small since outside of any neighborhood of Critpϕq
and of Ecrit respectively, dϕ^στ and dηǫτ |V E can each be assumed to satisfy uniform positive
lower bounds; note that the latter depends on the fact that dηǫτ |V E ą 0 holds even for ǫ “ 0
(cf. Lemma 3.11). �

In light of Lemma 3.11, the family of 2-plane distributions ξǫτ can now be extended from
N pEcritq over the entirety of Ez

`
Ecrit Y E|Critpϕq

˘
by setting

ξǫτ “ ker dF ǫ
τ X kerΘǫ

τ .

Lemma 3.14 then implies that for all ǫ ą 0 sufficiently small, ξǫτ defines a family of contact
structures on the level sets of F ǫ

τ . Observe that by construction, ξǫτ is also preserved by Jτ
on the neighborhood E|U 1 of E|Critpϕq Y BvE, and it is preserved by J ǫ

τ in N pEcritq.

Lemma 3.15. After possibly shrinking ǫ0 ą 0, the family J ǫ
τ defined near Ecrit in §3.2 for

ǫ P r0, ǫ0s and τ P X can be extended to a family of global almost complex structures on E

that depend smoothly on ǫ, preserve ξǫτ , and satisfy J ǫ
τ “ Jτ in some fixed neighborhood of

E|Critpϕq Y BvE for all ǫ and J0
τ ” Jτ . Moreover,

(3.6) ´ dF ǫ
τ ˝ J ǫ

τ “ Gǫ
τΘ

ǫ
τ along BhE,

for a (uniquely determined) family of functions Gǫ
τ : BhE Ñ p0,8q which depend smoothly on

ǫ and satisfy G0
τ ” 1.

Proof. Pick an open set Ereg Ă E with closure disjoint from Ecrit YE|Critpϕq Y BvE such that

E “ Ereg Y E|U 1 Y N pEcritq.

Choose also a family gτ of Jτ -invariant Riemannian metrics on E and let HτE
reg Ă TEreg

denote the gτ -orthogonal complement of V E|Ereg . By construction, HτE
reg is Jτ -invariant,

and since ξ0τ “ V E, we are free to assume HτE
reg

&ξǫτ whenever ǫ ě 0 is sufficiently small.
Then the projections TEreg Ñ V E along HτE restrict to a family of bundle isomorphisms

Ψτ : ξǫτ Ñ V E, and there is a unique family of almost complex structures pJ ǫ
τ on Ereg defined

by the conditions
pJ ǫ
τ |ξǫτ “ Ψ˚

τJτ |V E , pJ ǫ
τ |HτE “ Jτ |HτE .
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These preserve ξǫτ and match Jτ for ǫ “ 0.

We next splice pJ ǫ
τ together with the existing families J ǫ

τ on N pEcritq and J ǫ
τ :“ Jτ on E|U 1 .

For any point p P E with a complex structure J on TpE and sufficiently small J-antilinear
map Y : TpE Ñ TpE, define

ΦJpY q “

ˆ
1 `

1

2
JY

˙
J

ˆ
1`

1

2
JY

˙´1

.

This identifies a neighborhood of 0 in the space of J-antilinear maps on TpE with a neigh-
borhood of J in the manifold of complex structures on TpE, and moreover, if J preserves
some subspace V Ă TpE, then ΦJpY q also preserves V if and only if Y preserves V . On

Ereg X
`
N pEcritq Y E|U 1

˘
, we may assume for sufficiently small ǫ ě 0 that pJ ǫ

τ and J ǫ
τ are

each C0-close to Jτ and therefore also to each other, so there exists a family of ξǫτ -preserving
J ǫ
τ -antilinear bundle endomorphisms Y ǫ

τ such that

pJ ǫ
τ “ ΦJǫ

τ
pY ǫ

τ q ,

and Y 0
τ ” 0. Now for any choice of smooth function ψ : E Ñ r0, 1s that equals 1 outside

E|U 1 Y N pEcritq and has compact support in Ereg, a family of almost complex structures
satisfying most of the desired properties can be defined by

(3.7) J ǫ
τ :“

$
’&
’%

pJ ǫ
τ on Eregz

`
N pEcritq Y E|U 1

˘
,

J ǫ
τ on

`
N pEcritq Y E|U 1

˘
zEreg,

ΦJǫ
τ

pψY ǫ
τ q on Ereg X

`
N pEcritq Y E|U 1

˘
.

Notice that on the region where Π is holomorphic, β “ 1 and J ǫ
τ “ Jτ , we have

´dF ǫ
τ ˝ J ǫ

τ “ ´dpϕ ˝ Π ` ǫfτ q ˝ Jτ “ Π˚στ ` ǫλτ “ Θǫ
τ .

This applies in particular on a neighborhood of E|Critpϕq Y BvE, so that (3.6) is already
established with Gǫ

τ “ 1 near E|Critpϕq. In order to achieve (3.6) everywhere else, we can
modify the definition of J ǫ

τ near BhE on a subbundle transverse to ξǫτ . Indeed, observe first
that on BhE, the relation TΠ ˝ Jτ “ jτ ˝ TΠ implies ´dF 0

τ ˝ J0
τ “ Π˚στ , and the latter

is nowhere zero away from E|Critpϕq, hence so are both ´dF ǫ
τ ˝ J ǫ

τ |T pBhEq and Θǫ
τ for ǫ ě 0

sufficiently small. Our goal will thus be to achieve

kerp´dF ǫ
τ ˝ J ǫ

τ q “ kerΘǫ
τ along BhE.

Since Θǫ
τ and ´dF ǫ

τ ˝ J ǫ
τ both annihilate ξǫτ , it suffices to find a 1-dimensional subbundle of

TE|BhE that intersects ξǫτ trivially and is also annihilated by both. For Θǫ
τ there is a clear

choice: this 1-form is Liouville for sufficiently small ǫ ą 0, so its dual Liouville vector field V ǫ
τ

satisfies

Θǫ
τ pV ǫ

τ q “ dΘǫ
τ pV ǫ

τ , V
ǫ
τ q “ 0,

and we will see presently that it is not contained in V E, and therefore also not in ξǫτ for ǫ ą 0
small, outside a neighborhood of E|Critpϕq. Indeed, working in a neighborhood of BhE where
Π has no critical points and ηǫτ “ λτ , let HτE Ă TE denote the dλτ -symplectic complement
of V E. With respect to this splitting, write V ǫ

τ “ vǫτ `hǫτ for vǫτ P V E and hǫτ P HτE. Writing
Θǫ

τ “ Π˚στ ` ǫλτ and restricting the relation Θǫ
τ “ dΘǫ

τ pV ǫ
τ , ¨q to the subbundles V E and

HτE then gives

λτ |V E “ dλτ pvǫτ , ¨q|V E and pΠ˚στ ` ǫλτ q|HτE
“ pΠ˚dστ ` ǫ dλτ qphǫτ , ¨q|HτE

.
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The first relation identifies vǫτ as the “vertical Liouville vector field” Vλτ
, defined on the

smooth part of each fiber Ez as the Liouville vector field dual to λτ |TEz . In particular, the
vertical term does not depend on ǫ. The horizontal term hǫτ also has a well-behaved limit as
ǫ Ñ 0, determined by

Π˚στ |HτE “ Π˚dστ ph0τ , ¨q|HτE,

which means h0τ is the horizontal lift V #
στ of the Liouville vector field Vστ on Σ, defined by

dστ pVστ , ¨q “ στ . The latter is nowhere zero away from Critpϕq, implying that

V 0
τ :“ lim

ǫÑ0
V ǫ
τ “ Vλτ

` V #
στ

always has a nontrivial horizontal part on the region of interest. This establishes the claim
that V ǫ

τ R ξǫτ on this region for all ǫ ě 0 sufficiently small.
Now observe that at BhE for ǫ “ 0,

´dF 0
τ pJτV

0
τ q “ ´dϕpΠ˚JτVλτ

` Π˚JτV
#
στ

q “ ´dϕpjτΠ˚V
#
στ

q “ στ pVστ q “ dστ pVστ , Vστ q “ 0,

where we’ve again used the assumption that TΠ˝Jτ “ jτ ˝TΠ along BhE. In other words, on
BhE away from E|Critpϕq, V

0
τ and JτV

0
τ span a Jτ -complex subbundle of TE that is transverse

to V E and intersects ker dF 0
τ transversely in the subspace spanned by JτV

0
τ . At E|Critpϕq, the

transversality fails because V #
στ vanishes, but since ´dF ǫ

τ ˝ J ǫ
τ “ Θǫ

τ along BhE in this region,
we also have

´dF ǫ
τ pJ ǫ

τV
ǫ
τ q “ Θǫ

τ pV ǫ
τ q “ 0

here. It is therefore possible to modify the family J ǫ
τ near BhE without changing it near

E|Critpϕq or changing its action on ξǫτ anywhere so that it satisfies

J ǫ
τV

ǫ
τ P ker dF ǫ

τ

everywhere along BhE for ǫ ě 0 sufficiently small. This identifies the kernels of ´dF ǫ
τ ˝ J ǫ

τ

and Θǫ
τ along BhE and thus establishes (3.6) for a uniquely determined family of functions

Gǫ
τ : BhE Ñ p0,8q which necessarily equal 1 near E|Critpϕq. Since both families of 1-forms

match Π˚στ for ǫ “ 0, we also have G0
τ ” 1. The modified family J ǫ

τ can now be spliced
together with the previously constructed family away from BhE using the same trick as in
(3.7). �

Lemma 3.16. After replacing ϕ : Σ Ñ R by a function of the form h ˝ ϕ with h1 ą 0
and h2 " 0, the pairs pJ ǫ

τ , F
ǫ
τ q become almost Stein structures for all τ P X and all ǫ ą 0

sufficiently small.

Proof. The functions F ǫ
τ have critical points at Ecrit and in E|Critpϕq, but are J

ǫ
τ -convex near

both due to Lemmas 3.8 and 3.14. Outside these neighborhoods, the maximal J ǫ
τ -complex

subbundles on the level sets of F ǫ
τ are the contact structures ξǫτ , so F

ǫ
τ becomes J ǫ

τ -convex
after postcomposition with a sufficiently convex function, using Lemma 2.21.

It remains to check that ´dF ǫ
τ ˝ J ǫ

τ restricts to contact forms on both BvE and BhE. The
former lies in the region where ´dF ǫ

τ ˝J ǫ
τ “ Θǫ

τ “ Π˚στ `ǫλτ , and Proposition 2.1 proves that
the latter is contact on BvE for sufficiently small ǫ ą 0 since στ |T pBΣq ą 0 and λτ is fiberwise
Liouville. Using Proposition 2.2 similarly, Θǫ

τ is also contact on BhE for small ǫ ą 0, so the
contact condition on BhE follows from (3.6). �
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3.4. Interpolation of almost Stein structures. To complete the proof of Proposition 3.4,
we need to relate the family of almost Stein structures tpJ ǫ

τ , F
ǫ
τ quτPX, ǫPp0,ǫ0s constructed above

to the given family tpJτ , fτ quτPA. The functions fτ where extended to all τ P X in Lemma 3.12
but are only fiberwise Jτ -convex in general for τ R A; on the other hand, all conditions that
distinguish Jτ -convexity from its fiberwise counterpart are open, thus we can assume pJτ , fτ q
are almost Stein structures for all τ in some open neighborhood A1 Ă X of A. The same can
also be assumed for pJ ǫ

τ , fτ q for any ǫ P r0, ǫ0s if ǫ0 ą 0 is sufficiently small. Now choose a
cutoff function ρ : X Ñ r0, 1s with support in A1 and ρ|A ” 1, and consider the family of
interpolated functions

f ǫτ :“ ρpτqfτ ` r1 ´ ρpτqsF ǫ
τ

for τ P X and ǫ P r0, ǫ0s. These functions are J ǫ
τ -convex everywhere when ǫ ą 0, but we

still need to check that the remaining conditions of an almost Stein structure are satisfied for
τ P A1zA, i.e. that the interpolated Liouville forms

´df ǫτ ˝ J ǫ
τ “ ρpτq p´dfτ ˝ J ǫ

τ q ` r1 ´ ρpτqs p´dF ǫ
τ ˝ J ǫ

τ q

are contact on both faces of BE. After shrinking ǫ0 ą 0 further if necessary, this will follow
from the next two lemmas.

Lemma 3.17. For all τ P A1, ǫ ą 0 sufficiently small and ρ P r0, 1s, the 1-forms ρp´dfτ ˝
J ǫ
τ q ` p1 ´ ρqp´dF ǫ

τ ˝ J ǫ
τ q restrict to contact forms on BvE.

Proof. In a neighborhood of BvE, we have J ǫ
τ “ Jτ and thus ´dfτ ˝ J ǫ

τ “ λτ , and similarly,
F ǫ
τ “ ϕ ˝ Π ` ǫfτ and TΠ ˝ Jτ “ jτ ˝ TΠ imply ´dF ǫ

τ ˝ J ǫ
τ “ Π˚στ ` ǫλτ . The 1-form in

question is thus

ρλτ ` p1 ´ ρqpΠ˚στ ` ǫλτ q “ rρ` ǫp1 ´ ρqs

ˆ
λτ `

1 ´ ρ

ρ` ǫp1 ´ ρq
Π˚στ

˙
,

assuming ǫ ą 0 so that ρ` ǫp1 ´ ρq ą 0 for all ρ. Since λτ is fiberwise Liouville and defines a
contact form on BvE and στ |T pBΣq ą 0, the expression in parentheses is contact for all ρ P r0, 1s
by Proposition 2.1. �

Lemma 3.18. The statement of Lemma 3.17 also holds for the restriction to BhE.

Proof. Near BhE, Lemma 3.15 gives ´dF ǫ
τ ˝ J ǫ

τ “ Gǫ
τΘ

ǫ
τ for a family of functions Gǫ

τ : BhE Ñ
p0,8q satisfying G0

τ ” 1, while the 1-form Θǫ
τ “ Π˚στ ` ǫλτ is contact for ǫ ą 0 sufficiently

small due to Prop. 2.2. For ǫ “ 0, the interpolated 1-forms in question are thus

ρλτ ` p1 ´ ρqΠ˚στ “ ρ

ˆ
λτ `

1 ´ ρ

ρ
Π˚στ

˙

along BhE, and these are contact for all ρ ą 0 by another application of Prop. 2.2 since στ is
Liouville and λτ |T pBhEq satisfies the conditions of a Giroux form. The contact condition ceases
to hold for ρ “ ǫ “ 0, but since the condition is open, the lemma will follow from the claim that
ρp´dfτ ˝J ǫ

τ q`p1´ρqp´dF ǫ
τ ˝J ǫ

τ q restricted to BhE is contact for every pρ, ǫq in a neighborhood
of p0, 0q excluding p0, 0q itself. To see this, note first that since 1

G0
τ

p´dfτ ˝ J0
τ q “ λτ and

everything depends smoothly on ǫ, we can write

1

Gǫ
τ

p´dfτ ˝ J ǫ
τ q “ λτ ` ǫγǫτ
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for some family of smooth 1-forms tγǫτuτPX, ǫPr0,ǫ0s. Our family of interpolated 1-forms on BhE
can then be rewritten whenever pρ, ǫq ‰ p0, 0q as

ρ p´dfτ ˝ J ǫ
τ q ` p1 ´ ρq p´dF ǫ

τ ˝ J ǫ
τ q “ ρGǫ

τ pλτ ` ǫγǫτ q ` p1 ´ ρqGǫ
τ pΠ˚στ ` ǫλτ q

“ Gǫ
τ pcΠ˚στ ` aλτ ` ǫργǫτ q “: Gǫ

τµ,

where we are abbreviating c “ cpρq :“ 1´ ρ and a “ apρ, ǫq :“ ρ` ǫp1´ ρq. Notice that while
cpρq approaches 1, apρ, ǫq and ǫρ{apρ, ǫq each decay to 0 as pρ, ǫq Ñ p0, 0q. Since Π˚στ^dλτ “ 0
and λτ ^ Π˚dστ ą 0 by the fiberwise Giroux condition on λτ , we then find that

µ^ dµ “ pcΠ˚στ ` aλτ ` ǫργǫτ q ^ pcΠ˚dστ ` a dλτ ` ǫρ dγǫτ q

“ ac
”
λτ ^ Π˚dστ `

a

c
λτ ^ dλτ `

ǫρ

c

´
λτ ^ dγǫτ ` γǫτ ^ dλτ `

ǫρ

a
γǫτ ^ dγǫτ

¯ı

is positive as soon as pρ, ǫq gets close enough to p0, 0q. �

With this, the pairs pJ ǫ
τ , f

ǫ
τ q for all τ P X and ǫ ą 0 sufficiently small are seen to be almost

Stein structures that match pJτ , fτ q for τ P A, so the proof of Proposition 3.4 (and therefore
also of Theorem 3.1) is now complete.

4. A symplectic model of a collar neighborhood with corners

Throughout this section, assume pM 1, ξq is a closed connected contact 3-manifold, and
M Ă M 1 is a compact connected 3-dimensional submanifoldM Ă M 1, possibly with boundary,
on which ξ is supported by a spinal open book

π :“
´
πΣ :MΣ Ñ Σ, πP :MP Ñ S1, tmT uTĂBM

¯
.

The immediate purpose of this section is to construct a precise symplectic model of a collar
neighborhood of the form p´ǫ, 0s ˆ M 1 in the symplectization of pM 1, ξq, designed such that
spine removal cobordisms can be defined via an easy modification of the model. The intuition
for the construction comes from the neighborhood of BE when Π : E Ñ Σ is a bordered
Lefschetz fibration that fills a spinal open book—however, it will not be necessary to assume
in the following that pM 1, ξq is symplectically fillable, as we will instead make use of the trivial
observation that every closed contact manifold arises as the convex boundary of a noncompact
subset of its own symplectization. The model we construct will thus be a noncompact 4-
manifold E1 whose boundary has two smooth faces

BE1 “ BvE
1 Y BhE

1,

interpreted as the vertical and horizontal boundaries respectively of a (locally defined) sym-
plectic fibration, such that the smoothed contact boundary of E1 can be identified with pM 1, ξq.
We will elaborate further on this model in [LVW] by attaching cylindrical ends to both its
fibers and its base, producing the so-called double completion of E1, which will admit an
abundance of holomorphic curves modeled after the pages of π. These curves generate the
moduli space needed for classifying fillings as in Theorems A and B.

4.1. The Liouville collar.
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4.1.1. The collar and its boundary. We shall denote the union of the paper with the “rest”
of M 1 by

M 1
P :“ MP Y pM 1zMq “ M 1zM̊Σ Ă M 1,

hence M 1 is the union of MΣ with M 1
P along their common boundary BMΣ “ BM 1

P , a disjoint
union of 2-tori. Recall from §2.2 the collar neighborhoods N pBΣq, N pBMΣq and N pBMP q
with their coordinate systems ps, φq, ps, φ, θq and pφ, t, θq respectively. We will denote by

N pBMq Ă MP

the neighborhood of BM in M defined as the union of all components of N pBMP q that
touch BM . Similarly, the union of components of N pBMP q that are disjoint from BM will be
denoted by

N pBM 1
P q Ă M 1

P ,

as this forms a collar neighborhood of BM 1
P in M 1

P . For assistance in keeping track of this
notation, see Figure 4.

Now since BMΣ “ BM 1
P , we can use the collars N pBMΣq “ p´1, 0s ˆ BMΣ and N pBM 1

P q “
p´1, 0s ˆ BM 1

P to define a diffeomorphism

Φ : p´1, 0s ˆ N pBMΣq Ñ p´1, 0s ˆ N pBM 1
P q

pt, ps, xqq ÞÑ ps, pt, xqq ,

and then use this as a gluing map to define (see Figure 5)

E1 :“
`
p´1, 0s ˆMΣ

˘
YΦ

`
p´1, 0s ˆM 1

P

˘
,

along with the distinguished subdomain

E :“
`
p´1, 0s ˆMΣ

˘
YΦ

`
p´1, 0s ˆMP

˘
Ă E1.

This construction makes E1 and E into smooth noncompact 4-manifolds with boundary and
codimension 2 corners. The boundary of E1 consists of two smooth faces

BE1 “ BvE
1 Y BhE

1
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defined as follows:

‚ The vertical boundary BvE
1 is t0u ˆM 1

P , so it is a copy of M 1
P . We will denote the

resulting collar neighborhood of the vertical boundary by

N pBvE
1q :“ p´1, 0s ˆM 1

P Ă E1,

and denote the coordinate on the first factor by s. We will also want to consider the
distinguished subset

BvE :“ t0u ˆMP Ă BvE
1

and the corresponding collar

N pBvEq :“ p´1, 0s ˆMP Ă N pBvE
1q,

which are the same as BvE
1 and N pBvE

1q respectively if BM “ H.
‚ The horizontal boundary BhE

1 is t0uˆMΣ, a copy ofMΣ, and it can also be denoted
by BhE :“ BhE

1 since it lies in the subdomain E. The resulting collar neighborhood
of this face will be denoted by

N pBhEq :“ N pBhE
1q :“ p´1, 0s ˆMΣ Ă E,

with the coordinate on the first factor denoted by t.

Notice that BvE
1 YBhE

1 is naturally homeomorphic to M 1, and similarly BvEYBhE is homoe-
morphic to M , in both cases by a homeomorphism that identifies the corner BvE X BhE “
BvE

1 X BhE
1 with BMΣ “ BM 1

P “ MΣ XMP . Each connected component of the neighborhood

N pBvE X BhEq :“ N pBvEq X N pBhEq Ă E

of this corner carries coordinates

ps, φ, t, θq P p´1, 0s ˆ S1 ˆ p´1, 0s ˆ S1 Ă N pBvE X BhEq,

as the construction of the gluing map guarantees that each of these coordinates is unambigu-
ously defined. We assign to E1 and E the orientation determined by this coordinate system.
A similar coordinate system exists on each connected component of

N pBBvEq :“ p´1, 0s ˆ N pBMq Ă N pBvEq Ă E.

On the collars N pBhEq and N pBvEq, one can separately define fibrations

Πh : N pBhEq “ p´1, 0s ˆ pΣ ˆ S1q Ñ Σ :
`
t, pz, θq

˘
ÞÑ πΣpz, θq “ z,

and

Πv : N pBvEq “ p´1, 0s ˆMP Ñ p´1, 0s ˆ S1 : ps, xq ÞÑ ps, πP pxqq.

On the region where the domains of these two fibrations overlap, we can write them in
ps, φ, t, θq-coordinates as

(4.1) Πhps, φ, t, θq “ ps, φq, Πvps, φ, t, θq “ ps,mφq.

While it may not be true in general that Πh and Πv can be fit together to define a global
fibration on E, they have the same fibers on the region of overlap and thus give rise to a
well-defined vertical subbundle

V E :“ ker TΠh or kerTΠv Ă TE,

which on N pBhEq is spanned by the vector fields Bt and Bθ. Figure 5 has been drawn so that
the fibers can be represented as vertical lines in the picture.
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4.1.2. The Liouville structure on E1. We will use the fibrations Πv and Πh to construct a
Liouville structure on E via the Thurston trick as in §2.1, and then extend it to E1 using the
given contact structure on M 1.

Fix a Liouville form σ on Σ that takes the form

σ “ mes dφ on N pBΣq,

where m P N is the multiplicity of πP : MP Ñ S1 at its boundary component adjacent to
the relevant component of N pBMΣq; recall that this number may differ on distinct connected
components of N pBΣq, cf. §2.2. We will also use σ to denote the pullback of this Liouville
form under the trivial bundle projection Πh : N pBhEq Ñ Σ, and since πP pφ, t, θq “ mφ on
N pBMP q, σ extends globally to a 1-form on E satisfying

σ “ es dπP on N pBvEq,

where we are abusing notation slightly by using πP : N pBvEq Ñ S1 to denote the composition
of the fibration πP : MP Ñ S1 with the obvious projection N pBvEq “ p´1, 0s ˆ MP Ñ MP ,
hence defining dπP as a real-valued 1-form on N pBvEq.

We next define a 1-form on E that can be regarded as a fiberwise Liouville structure with
respect to the fibrations Πh and Πv. By Lemma 2.7, there exists a 1-form λ on MP such that
dλ is positive on all fibers of πP :MP Ñ S1 and

λ “ et dθ on N pBMP q.

Using the same symbol to denote the pullback of λ via the projection N pBvEq “ p´1, 0s ˆ
MP Ñ MP , we can then extend λ to a global 1-form on E satisfying

λ “ et dθ on N pBhEq.

It is fiberwise Liouville in the sense that dλ|V E ą 0 everywhere on E, and since λ|T pBhEq “ dθ,
the boundaries of the fibers of Πh are positive with respect to λ and are annihilated by
dλ|T pBhEq.

We can now apply the Thurston trick: for any constant K ě 0, we define a 1-form λK by

λK :“ Kσ ` λ.

Corollary 2.5 in conjunction with Remark 4.1 below then provides a constant K0 ą 0 such
that dλK is symplectic everywhere on E for each K ě K0. Near the boundary, we have

(4.2) λK “ K σ ` et dθ on N pBhEq, and λK “ Kes dπP ` λ on N pBvEq,

so in particular

(4.3) λK “ Kmes dφ` et dθ on N pBvE Y BhEq Y N pBBvEq.

Remark 4.1. The noncompactness of E does not pose any problem in the above use of the
Thurston trick: the reason is that if we fix on E any Riemannian metric that is independent
of the s- and/or t-coordinates wherever these are defined, then |dλ ^ dλ| is bounded above
and dσ ^ dλ is bounded away from zero. This observation will be even more useful when we
discuss the double completion in [LVW].

We will always assume from now on that K ě K0 so that dλK is symplectic, and we will
occasionally require further increases in the value of K0 for convenience. There is now a
Liouville vector field VK on pE, dλKq defined via the condition

dλKpVK , ¨q ” λK .
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From (4.2) we compute

(4.4) VK “ Vσ ` Bt on N pBhEq,

where Vσ denotes the Liouville vector field on Σ dual to σ, and from (4.3),

VK “ Bs ` Bt on N pBvE X BhEq Y N pBBvEq.

Lemma 4.2. For all K ą 0 sufficiently large, dspVKq ą 0 on N pBvEq.

Proof. It is equivalent to show that the restriction of λK “ Kes dπP `λ to tsu ˆMP for each
s P p´1, 0s is a positive contact form. Since es dπP is the pullback via πP : MP Ñ S1 of a
volume form on S1 for each fixed s P r´1, 0s, the result follows from Proposition 2.1. �

In light of the lemma, we shall assume from now on that K0 ą 0 is large enough to ensure
dspVKq ą 0 for all K ě K0. Before extending λK to the rest of E1, we must make a minor
adjustment in the neighborhood of p´1, 0s ˆ BM Ă N pBvEq.

Lemma 4.3. There exists a smooth homotopy of Liouville forms tλτKuτPr0,1s on E with the
following properties:

(1) λ0K ” λK ;
(2) The restrictions of λτK to T pBvEq are identical for every τ P r0, 1s;
(3) λτK ” λK outside a small open neighborhood of N pBBvEq for all τ P r0, 1s;
(4) For each τ P r0, 1s, the Liouville vector field V τ

K determined by λτK satisfies dspV τ
Kq ą 0

on N pBvEq;
(5) λ1K “ es

`
Kmdφ ` et dθ

˘
near p´1, 0s ˆ BM Ă N pBvEq, where m P N is the multiplic-

ity of πP at the relevant component of BM .

Proof. Working in pφ, t, θq-coordinates on a connected component ofN pBMq, let pN pBMq Ă M

denote a slightly expanded collar neighborhood in which the t-coordinate takes values in
p´1 ´ ǫ, 0s for some ǫ ą 0 small. Let us similarly extend the s-coordinate to the interval
p´1 ´ δ, 0s and consider the expanded domain

pN pBBvEq :“ p´1 ´ δ, 0s ˆ pN pBMq

for some δ ą 0 small enough so that λK “ Kmes dφ ` λ is still a Liouville form on this
domain and its Liouville vector field VK is still transverse to all hypersurfaces of the form

ts “ constu. Notice that in the region tt ě ´1u Ă pN pBBvEq, we have λK “ Kmes dφ ` et dθ

and thus VK “ Bs ` Bt. Now if ǫ ą 0 is sufficiently small, we can assume that the flow Φρ
VK

of VK in pN pBBvEq for times ρ P r´1, 0s is well defined on the small collar

tt ě ´ǫ{2u Ă N pBMq Ă BvE.

Choose a smooth vector field V on pN pBBvEq with the following properties:

(1) V ” VK throughout N pBBvEq and also in the region obtained by flowing tt ě ´ǫ{2u Ă
N pBMq backwards from time 0 to time ´1;

(2) dspV q ą 0 is close to 1 everywhere;
(3) V ” Bs in a neighborhood of tt “ ´1 ´ ǫ}.

Using the flow Φ‚
V of V , define the embedding (see Figure 6)

p´1, 0s ˆ S1 ˆ p´1 ´ ǫ, 0s ˆ S1 Ψ
ãÑ pN pBBvEq : ps, φ, t, θq ÞÑ Φs

V pφ, t, θq.

Identifying the domain of Ψ with the obvious collar neighborhood in N pBvEq, this map equals
the identity near tt “ ´1 ´ ǫu and at ts “ 0u, and by deforming the vector field V we can
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also find a smooth isotopy of embeddings tΨτuτPr0,1s with both of these properties such that
Ψ1 “ Ψ and Ψ0 “ Id. The desired family of Liouville forms can then be defined on this collar
by

λτK “ Ψ˚
τλK

and extended to the rest of E as λK . In particular, we have λ1K “ es
`
Kmdφ` et dθ

˘
for

t ě ´ǫ{2 since Ψ redefines the s-coordinate via the flow of the Liouville vector field. Since
VK “ Bs ` Bt on N pBBvEq, the condition dspV τ

Kq ą 0 is easily achieved as long as δ and ǫ are
both sufficiently small. �

Let us now replace λK with λ1K from the lemma, so as to assume without loss of generality
that λK “ es

`
Kmdφ` et dθ

˘
on p´1, 0s ˆ S1 ˆ p´δ, 0s ˆ S1 Ă N pBBvEq for some δ ą 0. We

then make one further modification on the same region and redefine λK in the form

λK “ es rfptq dθ `Kmgptq dφs ,

where f, g : p´δ, 0s Ñ r0,8q are smooth functions chosen such that (see Figure 7)

‚ pfptq, gptqq “ pet, 1q for t near ´δ;
‚ f 1g ´ fg1 ą 0;
‚ fp0q “ 1 and gp0q “ 0;
‚ f 1p0q “ 0.

These conditions guarantee that α1 :“ fptq dθ ` Kmgptq dφ defines a positive contact form
on S1 ˆ p´δ, 0s ˆ S1 Ă N pBMq satisfying α1pBφq “ 0 and dα1pBθ, ¨q “ 0 at BM . One can
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now extend α1 smoothly beyond BM so that it defines a contact form for ξ on M 1zM . The
corresponding extension of λK is defined by

λK :“ esα1 on p´1, 0s ˆ pM 1zMq Ă N pBvE
1q.

The corresponding Liouville vector field on p´1, 0s ˆ pM 1zMq is simply Bs.

4.1.3. Contact hypersurfaces and smoothing corners. It is immediate from the above construc-
tions that the Liouville vector field VK is transverse to both BvE

1 and BhE
1, so smoothing the

corners makes BE1 into a contact hypersurface. Moreover, the fiberwise Liouville condition
on λK and the specific way that it was modified in N pBBvEq mean that the induced contact
structure on the smoothing of BhE Y BvE will be isotopic to one supported by π, hence the
contact structure on BE1 is isotopic to ξ after identifying the latter with M 1.

To define the smoothing more precisely, choose a pair of smooth functions F,G : p´1, 1q Ñ
p´1, 0s that satisfy the following conditions:

‚ pF pρq, Gpρqq “ pρ, 0q for ρ ď ´1{4;
‚ pF pρq, Gpρqq “ p0,´ρq for ρ ě 1{4;
‚ G1pρq ă 0 for ρ ą ´1{4;
‚ F 1pρq ą 0 for ρ ă 1{4.

Now let

M0 Ă E1

denote the smooth hypersurface obtained from BE1 by replacing BE1 X N pBvE X BhEq in
ps, φ, t, θq-coordinates with

(4.5)
!

pF pρq, φ,Gpρq, θq
ˇ̌
ˇ φ, θ P S1, ´1 ă ρ ă 1

)
;

see Figure 8. This smoothing is transverse to VK “ Bs ` Bt by construction, thus M0 is a
contact hypersurface and inherits the contact structure

ξ0 :“ kerα0, α0 :“ λK |TM0 .

By translatingM0 a distance of ´3{4 in both the s- and t-coordinates, one obtains another
contact hypersurface

pM´, ξ´q Ă pE1, dλKq
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Figure 8. The smoothed hypersurfaces M0 and M´ sitting inside the same
model of E1 as shown in Figure 5, together with the transverse Liouville vector
field VK .

which contains portions of the two hypersurfaces t´3{4uˆMΣ Ă N pBhEq and t´3{4uˆM 1
P Ă

N pBvE
1q and a translated copy of (4.5) replacing the neighborhood of their intersection (see

the inner hypersurface in Figure 8). Since pM´, ξ´q and pM0, ξ0q can evidently be connected
by a smooth 1-parameter family of contact hypersurfaces in pE1, dλKq, their contact structures
are isotopic, so in particular ξ´ is isotopic to ξ after a suitable identification of M´ with M 1.

4.2. Spine removal cobordisms. In this section we use the model pE1, dλKq with contact
hypersurfaces pM´, ξ´q and pM0, ξ0q constructed in §4.1 to prove Theorem 1.25. In particular,
we will enlarge E1 in order to construct a symplectic spine removal cobordism whose negative
weakly contact boundary is the contact hypersurface pM´, ξ´q.

Fix a decomposition of Σ into open and closed subsets

Σ “ Σrem > Σoth,
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Figure 9. The diffeomorphism ψ : r´1{2, 0s ˆ S1 Ñ D
2zD̊2

1{2.

and assume Σrem is nonempty. Fix also a trivialization MΣ “ Σ ˆ S1, so in particular
π´1
Σ pΣremq “ Σrem ˆ S1. The choice of decomposition Σ “ Σrem > Σoth splits the horizontal

boundary BhE into a disjoint union

BhE “ Bremh E > Bothh E :“
`
Σrem ˆ S1

˘
>
´
Σoth ˆ S1

¯
,

and the collar N pBhEq decomposes accordingly as

N pBhEq “ N pBremh Eq > N pBothh Eq.

Recall that λK “ Kσ ` et dθ in N pBhEq.
We will now modify E1 by attaching a generalized notion of a “symplectic handle” to Bremh E.

Choose a diffeomorphism

ψ : r´1{2, 0s ˆ S1 –
ÝÑ D

2zD̊2
1{2,

where D
2
1{2 denotes the closed disk of radius 1{2 inside the unit disk D

2 Ă C, and assume ψ

maps t´1{2uˆS1 to BD2; see Figure 9. Using the obvious coordinates pt, θq on r´1{2, 0sˆS1,
let ωD denote any area form on D

2 that restricts to ψ˚pet dt ^ dθq outside of D2
1{2. We can

then define a new symplectic manifold with boundary and corners by

p rE1, rωKq :“ pE1, dλKq YΨ

`
Σrem ˆ D

2,K dσ ` ωD

˘
,

where dσ and ωD are each identified with their pullbacks to Σrem ˆ D
2 via the obvious pro-

jections, and the gluing map is defined by

Ψ : N pBremh Eq Ą p´1{2, 0s ˆ Σrem ˆ S1
ãÑ Σrem ˆ D

2 : pt, z, θq ÞÑ pz, ψpt, θqq.

Schematic pictures of this modification are shown in Figures 10 and 11, for cases where
Σrem has one or two connected components respectively. Since N pBremh Eq lies entirely in the
subdomain E Ă E1, we can define a corresponding subdomain

rE Ă rE1

by attaching Σrem ˆ D
2 in this way to E instead of E1. The boundary of rE1 now has two

smooth faces B rE1 “ Bh rE1 Y Bv rE1, where the “horizontal” boundary is

Bh rE1 :“ Bh rE :“ Bothh E,

and the “vertical” boundary

Bv rE1 “ BvE
1 Y pBΣrem ˆ D

2q
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is obtained from BvE
1 by gluing in BΣrem ˆ D

2—a disjoint union of solid tori—along the
boundary components of BvE

1 that touch Bremh E. Again this attachment has nothing to do
with the region E1zE, so we can define

Bv rE :“ BvE Y pBΣrem ˆ D
2q Ă Bv rE1.

Each of these gives rise to collars which are also subsets of rE1: we shall denote

N pBh rE1q :“ N pBh rEq :“ p´1, 0s ˆ Bothh E “ p´1, 0s ˆ Σoth ˆ S1 Ă rE,
with t denoting the coordinate in p´1, 0s, and

N pBv rE1q :“ p´1, 0s ˆ Bv rE1 Ă rE1,

N pBv rEq :“ p´1, 0s ˆ Bv rE Ă rE,
with the coordinate on p´1, 0s denoted by s. These collars do not cover all of Ẽ1, as we also
have

rN pBremh Eq :“ N pBremh Eq YΨ pΣrem ˆ D
2q – Σrem ˆ D

2 Ă rE;

see Figures 10 and 11. Here the slightly different notational convention is meant to emphasize

the fact that rN pBremh Eq is not actually a collar neighborhood of any part of the boundary—it
contains the original Bremh E, but this now lives in the interior of the “handle” Σrem ˆ D

2.

With this notation in place, rE1 and rE can be presented as the unions of overlapping regions

rE1 “ N pBv rE1q Y N pBh rEq Y rN pBremh Eq,

rE “ N pBv rEq Y N pBh rEq Y rN pBremh Eq.

The fibrations Πv : N pBvEq Ñ p´1, 0s ˆ S1 and Πh : N pBhEq Ñ Σ extend in obvious ways:
on the horizontal neighborhoods we have trivial projections

rΠh : N pBh rEq “ p´1, 0s ˆ Σoth ˆ S1 Ñ Σoth,

rΠh : rN pBremh Eq – Σrem ˆ D
2 Ñ Σrem,

and on the vertical collars, the formula Πvps, φ, t, θq “ ps,mφq produces an extension

rΠv : N pBv rEq Ñ p´1, 0s ˆ S1

which is defined on each connected component of the attached region p´1, 0s ˆ BΣrem ˆD
2 by

p´1, 0s ˆ S1 ˆ D
2 rΠvÝÑ p´1, 0s ˆ S1 : ps, φ, ζq ÞÑ ps,mφq,

with the multiplicity m P N as usual depending on the component under consideration.

Denote the resulting vertical subbundle by V rE Ă T rE and observe that

rωK |
V rE ą 0

by construction.

It will be useful to decompose Bv rE and Bv rE1 further into the components

Bv rE “ Bflatv
rE > Bcvxv

rE, Bv rE1 “ Bflatv
rE > Bcvxv

rE1,

with corresponding collars N pBflatv
rEq, N pBcvxv

rEq and N pBcvxv
rE1q, where Bflatv

rE is defined as

the union of all components of Bv rE such that the fibers of rΠv : N pBflatv
rEq Ñ p´1, 0s ˆ S1

have empty boundary. Such components arise whenever MP has components with boundary
contained in π´1

Σ pΣremq; see Figure 11. The notation is motivated by the fact that, as we’ll
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ĂM cvx
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Figure 10. The domain rE1 constructed from E1 of Figure 5 by gluing
Σrem ˆ D

2 (the darkly shaded region) to the spinal component at the top of
the picture. The picture is slightly misleading at its top border because there

is no actual boundary of rE1 here: one can think of this instead as the “center”

Σrem ˆ t0u of Σrem ˆD
2, and in particular, the only actual corner of rE1 shown

in the picture is the one at the bottom right. The spine removal cobordism

is defined to be the region between the two hypersurfaces M´ and ĂM cvx; the
former is contact type since it remains transverse to the same Liouville vector

field, but this vector does not extend over all of ĂM cvx, hence the latter is in
general only weakly convex.

see below, Bcvxv
rE1 inherits a natural contact structure that is dominated by rωK, hence making

Bcvxv
rE1 weakly convex, but Bflatv

rE does not; in fact for certain natural choices of almost complex

structure on rE, Bcvxv
rE1 is pseudoconvex while Bflatv

rE is Levi flat.
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Figure 11. A variant of Figure 10 in which Σrem ˆ D
2 has two connected

components, attached at both the top and the bottom of the picture. The

upper boundary of the cobordism now includes a component ĂMflat that is not
contact, as it is foliated by closed pages of a generalized spinal open book.

(Note that the only actual boundary of rE1 in this picture is at the sides; the
top and bottom represent two distinct connected components of the interior
submanifold Σrem ˆ t0u Ă Σrem ˆ D

2.)

The fibrations rΠv and rΠh induce on Bcvxv
rE Y Bh rE the structure of a spinal open book rπ

with paper Bcvxv
rE and spine Bh rE, the latter fibering over Σoth.

Lemma 4.4. After smoothing the corner of Bcvxv
rEY Bh rE, rπ supports a contact structure that

is dominated by rωK .
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Proof. We mimic the procedure that was used in §4.1 to define λK on E1: first choose a

fiberwise Liouville form rλ on Bcvxv
rE that equals et dθ in the collar neighborhoods of remaining

boundary components (i.e. those that were not capped off in the transformation from BvE

to Bcvxv
rE). Pulling back via the obvious projection defines rλ on N pBcvxv

rEq, and the formula
rλ “ et dθ extends it over N pBh rEq. (Note that by Stokes’ theorem, rλ cannot be extended

to N pBflatv
rEq.) We can then use the Thurston trick to define a Liouville form

rλK :“ Kσ ` rλ
on N pBcvxv

rEq YN pBh rEq, after possibly increasing the value of K ą 0, and this Liouville form

matches λK on the regions where rλ “ et dθ and can thus be extended to N pBv rE1qzN pBv rEq in
the same way as λK . We claim now that if K ą 0 is sufficiently large, then

rλK ^ rωK

ˇ̌
ˇ
T pBcvx

v
rE1q

ą 0 and rλK ^ rωK

ˇ̌
ˇ
T pBh rE1q

ą 0.

The second relation is immediate because λK “ rλK near Bh rE1, so we are merely rephrasing
the fact that Bothh E is a contact hypersurface in pE, dλKq. The first relation is similarly

immediate on the regions where λK “ rλK , so we only still need to check that it holds on

Bcvxv
rE. To see this, notice that rωK can be written in N pBcvxv

rEq as

rωK “ Kd
´
es drΠv

¯
` ωfib,

where ωfib is a closed 2-form that satisfies ωfib|
V rE ą 0 and is independent of K, while es drΠv

can be regarded as the pullback via rΠv of a Liouville form on r´1, 0s ˆ S1. The claim thus
follows via Proposition 2.4.

Finally, the same argument used previously for λK shows that rλK restricts to both Bh rE1

and Bcvxv
rE1 as a contact form, and by construction it matches the contact form induced by

λK in a neighborhood of the corners of Bcvxv
rE1 Y Bh rE1. It follows that we can smooth these

corners by the same procedure that was used in §4.1.3 to define the contact hypersurfaceM0,
giving rise in this case to a weakly contact hypersurface

pĂM cvx, rξq Ă p rE1, rωKq

whose contact structure rξ is defined by restricting rλK to ĂM cvx. �

The weakly contact hypersurface pĂM cvx, rξq found in the above proof is shown in Figure 10

as the smooth curve traversing the outer boundary of rE1 with some rounding at the corners.
We are now in a position to define an actual spine removal cobordism: let

X Ă rE1

denote the region that is sandwiched in between M´ Ă E1 Ă rE1 and Bflatv
rE > ĂM cvx Ă rE1,

making pX, rωKq a compact symplectic manifold with strongly concave boundary pM´, ξ´q,

weakly convex boundary pĂM cvx, rξq, and additional boundary components Bflatv
rE which are

neither concave nor convex but are fibered by closed symplectic surfaces.
To finish the proof of Theorem 1.25, we need to modify pX, rωKq to allow symplectic forms

that are not exact at the negative boundary. Suppose Ω is a closed 2-form onM 1 that satisfies
Ω|ξ ą 0 and is exact on ΣremˆS1. We can then find a closed 2-form η onM 1 with the following
properties:

(1) rηs “ rΩs P H2
dRpM 1q;
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(2) On each of the collar components S1ˆp´1, 0sˆS1 Ă N pBMP q and p´1, 0sˆS1ˆS1 Ă
N pBMΣq, η is a constant multiple of dφ ^ dθ;

(3) η vanishes on π´1
Σ pΣremq “ Σrem ˆ S1.

The third condition is possible due to the cohomological assumption, and combining this
assumption with the second condition implies that η also vanishes on all components of
N pBMP q adjacent to π´1

Σ pΣremq. We can now define η as a closed 2-form on N pBvE
1q and

N pBhE
1q by pulling back via the projections p´1, 0sˆM 1

P Ñ M 1
P and p´1, 0sˆMΣ respectively,

and the second condition implies that η remains well defined after gluing these collars together
to form E1, thus we shall regard η as a closed 2-form on E1. By construction, η vanishes near

Bremh E, hence η can also be regarded as defining a closed 2-form on rE1. Its restriction

η´ :“ η|TM´

is cohomologous to Ω after identifying M´ with M . The following is an immediate conse-
quence of the fact that the nondegeneracy of 2-forms and the “weakly contact” condition are
both open.

Lemma 4.5. There exists a constant C0 ą 0 such that for all C ě C0, the 2-form

rω1
K :“ CrωK ` η

is symplectic on X, the boundary components pM´, ξ´q and pĂM cvx, rξq are weakly concave and

convex respectively, and rω1
K is positive on the closed surface fibers in Bflatv

rE. �

Finally, observe that since Ω and η are cohomologous on M 1 and Ω|ξ ą 0, [MNW13,
Lemma 2.10] provides a symplectic form on r0, 1s ˆ M 1 that restricts to Ω on t0u ˆ M 1 and
C dα1 ` η on t1u ˆ M 1, where one has the freedom to choose α1 as any contact form for ξ
at the expense of inserting a sufficiently large constant C ą 0. We can therefore make these
choices and increase the value of C ě C0 if necessary so that the weak symplectic cobordism
pX, rω1

Kq provided by Lemma 4.5 can be attached on top of r0, 1s ˆ M 1. All together, this
provides a weak symplectic cobordism with the properties stated in Theorem 1.25 and thus
completes the proof.

5. Nonfillability via spine removal

In this section we use spine removal surgery to prove Theorems 1.29 and 1.34. Theorem 1.29
will be an immediate corollary of the following result, using the method of [ABW10]; it says
essentially that any contact manifold with a partially planar domain can be given a symplectic
cap that contains a nonnegative symplectic sphere.

Theorem 5.1. Suppose pM 1, ξq is a contact 3-manifold containing an Ω-separating partially
planar domain for some closed 2-form Ω with Ω|ξ ą 0. Then there exists a compact symplectic
manifold pX,ωq with BX “ ´M 1 and ω|TM 1 “ Ω such that pX,ωq contains a symplectically
embedded 2-sphere with vanishing self-intersection number.

Proof. Let M Ă M 1 denote the partially planar domain, Mpln
P Ă M its planar piece, and

Σ1 ˆ S1, . . . ,Σr ˆ S1 Ă MΣ the smallest collection of spinal components that contain BMpln
P .

Since Ω is exact on all these components, Theorem 1.25 provides a spine removal cobordism
pX0, ωq with

BX0 “ ´M 1 > ĂM 1
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and ω|TM 1 “ Ω, constructed by attaching handles ΣiˆD
2 along each of the spinal components

surrounding BMpln
P . The surgered manifold ĂM 1 is then disconnected and can be written as

ĂM 1 “ ĂM 1
1 > ĂM 1

2,

where ĂM 1
1 is a symplectic sphere bundle over S1, and ĂM 1

2 is either a contact manifold pĂM 1
2, ξ2q

with ω|ξ2 ą 0 or another symplectic fibration over S1 with closed fibers. Both components

can now be capped using the method of Eliashberg [Eli04], and the symplectic S2-fibers of ĂM1

give the desired symplectic spheres with vanishing self-intersection. �

We recall briefly why this result implies Theorem 1.29: if pW,ωq is a closed symplectic
4-manifold and M ãÑ W is a (weak) contact embedding that does not separate W , then by
cutting W open along M we obtain a (weak) symplectic cobordism between pM, ξq and itself.
Attaching infinitely many copies of this cobordism to each other in a sequence, one constructs
a “noncompact symplectic filling” pW8, ω8q of pM, ξq which is nonetheless geometrically
bounded. If pM, ξq contains a partially planar domain for which ω8 is exact on the spine,
then one can attach the cap from Theorem 5.1 and then choose a geometrically bounded
compatible almost complex structure J8 so that the symplectic spheres in the cap become
embedded J8-holomorphic spheres which are Fredholm regular and have index 2. Arguing
as in McDuff [McD90], the moduli space generated by these spheres is then compact and
foliates all of W8, but this is impossible since the latter is noncompact. The full details for
the case rΩs “ 0 P H2

dRpMq are carried out in [ABW10], and the generalization for nontrivial
cohomology classes following the above scheme is immediate.

For planar torsion, we will make use of the following simple lemma in the style of [McD90]:

Lemma 5.2. Suppose pW,ωq is a compact symplectic 4-manifold, possibly with boundary,
such that BW carries a positive contact structure dominated by ω. Suppose moreover that W
contains a symplectically embedded sphere S1 Ă W with vanishing self-intersection number.
Then BW “ H, and any other symplectically embedded surface S2 Ă W zS1 with vanishing
self-intersection is also a sphere and satisfiesż

S1

ω “

ż

S2

ω.

Proof. Choose a compatible almost complex structure J which preserves the contact structure
at the boundary and makes both S1 and S2 J-holomorphic. Then S1 is a Fredholm regular
index 2 curve, and arguing as in [McD90], we find that the set of all J-holomorphic curves ho-
motopic to S1 foliates W except at finitely many nodal singularities, which are intersections
of finitely many J-holomorphic exceptional spheres. Then if BW ‰ H, some holomorphic
sphere must touch BW tangentially, thus violating J-convexity. Moreover, positivity of inter-
sections implies that no curve in this family can have any isolated intersection with S2, thus
S2 itself must belong to the family, implying that it is a sphere with the same symplectic area
as S1. �

Proof of Theorem 1.34. Consider again the spine removal cobordism pX0, ωq from the proof of

Theorem 5.1 with BX0 “ ´M 1 > ĂM 1 and ĂM 1 “ ĂM 1
1 > ĂM 1

2, but now under the extra assumption
that the partially planar domainM Ă M 1 is not symmetric. This implies in particular that in

addition to the planar pieceMpln
P , the paperMP Ă M contains another connected component

Moth
P Ă MP for which at least one of the following is true:

(1) BMoth
P is not contained in Σ1 ˆ S1 Y . . . Y Σr ˆ S1;
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(2) The pages in Moth
P have positive genus;

(3) The pages in Moth
P have genus zero but there is a spinal component Σi ˆ S1 that

contains differing numbers of boundary components of pages in Mpln
P and Moth

P .

In the first case, it follows that ĂM 1
2 carries a contact structure dominated by ω, so after

capping ĂM 1
1 we have a contradiction to Lemma 5.2. In the second case, either the same

thing happens or ĂM 1
2 is a symplectic fibration over S1 with closed pages of positive genus, so

capping both ĂM 1
1 and ĂM 1

2 with Lefschetz fibrations as in [Eli04] gives disjoint symplectically
embedded surfaces with zero self-intersection, one rational and one not, again contradicting
the lemma. For the third case we instead may obtain two disjoint symplectically embedded
spheres, but they can be arranged to have different symplectic area. �
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