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ON SYMPLECTIC FILLINGS OF SPINAL OPEN BOOK

DECOMPOSITIONS II:

HOLOMORPHIC CURVES AND CLASSIFICATION

SAMUEL LISI, JEREMY VAN HORN-MORRIS, AND CHRIS WENDL

Abstract. In this second paper of a two-part series, we prove that whenever a contact
3-manifold admits a uniform spinal open book decomposition with planar pages, its (weak,
strong and/or exact) symplectic and Stein fillings can be classified up to deformation equiv-
alence in terms of diffeomorphism classes of Lefschetz fibrations. This extends previous
results of the third author [Wen10c] to a much wider class of contact manifolds, which we
illustrate here by classifying the strong and Stein fillings of all oriented circle bundles with
non-tangential S1-invariant contact structures. Further results include new vanishing crite-
ria for the ECH contact invariant and algebraic torsion in SFT, classification of fillings for
certain non-orientable circle bundles, and a general “symplectic quasiflexibility” result about
deformation classes of Stein structures in real dimension four.
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1. Introduction

This paper is the sequel to [LVW], which introduced the notion of a spinal open book
decomposition

π :“
´
πΣ :MΣ Ñ Σ, πP :MP Ñ S1, tmT uTĂBM

¯

of a 3-manifold M , a structure that arises naturally whenever M is the boundary of the
total space of a bordered Lefschetz fibration Π : E Ñ Σ over a compact oriented surface
Σ with boundary. A spinal open book splits M into two (not necessarily connected) pieces
MΣYMP , the spine and paper respectively. In the Lefschetz case, whenM “ BE, MΣ is the
horizontal boundary (the boundaries of all the fibers) and MP is the vertical boundary (the
union of all fibers over the boundary of the base). This means in particular that the “corner”
BMΣ “ MΣ X MP “ BMP is a disjoint union of 2-tori, and the two pieces are endowed with
smooth fibrations πΣ :MΣ Ñ Σ and πP :MP Ñ S1, where the connected components of the
fibers π´1

P p˚q Ă MP are surfaces with boundary called pages, the fibers of πΣ are S1, and
the connected components of its base are surfaces with boundary known as vertebrae.

Just as the Lefschetz fibration Π naturally determines a symplectic structure ω on E up to
deformation, π determines a contact structure ξ onM up to isotopy such that the relationship
“BΠ – π” between the two decompositions makes pE,ωq a symplectic filling of pM, ξq. One
of our main goals in the present paper is to invert this relationship and prove a far-reaching
generalization of the main result of [Wen10c]: for a particular class of spinal open books
π on a closed contact 3-manifold pM, ξq, the deformation classes of (weak, strong, exact
or Stein/Weinstein) symplectic fillings of pM, ξq are in one-to-one correspondence with the
diffeomorphism classes of Lefschetz fibrations filling π. In addition to providing a powerful
new tool for classifying symplectic fillings, this result reveals the existence of a special class
of Stein surfaces, which are quasiflexible in the sense that their Stein homotopy types are
determined by the (not necessarily exact) deformation classes of their symplectic structures.
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Main ideas and difficulties. While the proofs in this paper tend to involve a lot of moving
parts that take many pages to pin down, the underlying ideas are easy to summarize. In the
background are two fundamental geometric phenomena that are quite well known:

(1) In the tradition of Thurston-Winkelnkemper [Thu76,TW75] and Gompf [GS99,Gom04,
Gom05], spinal open books and Lefschetz fibrations uniquely determine contact and
symplectic structures respectively up to deformation;

(2) In the tradition of Gromov and McDuff [Gro85,McD90], certain types of symplectic
submanifolds give rise to foliations by J-holomorphic curves that determine the global
structure of a symplectic manifold.

In our setting, the symplectic submanifolds feeding into McDuff’s technique are the pages
of a planar spinal open book on the boundary of a symplectic filling, and the resulting J-
holomorphic foliation produces (in favorable cases) a classification of the possible fillings. This
idea has appeared before in [Wen10c,NW11,Wen13], whose main results are all special cases
of the results of the present paper. However, the level of generality considered here introduces
several new difficulties requiring novel solutions, which have contributed substantially to the
length of this paper.

One difficulty is that due to the variety of topologies possible in a spinal open book, the
moduli spaces of holomorphic curves arising from their pages does not consist exclusively of
0- and 2-dimensional families of embedded curves. It generally also includes 1-dimensional
“walls” that must be crossed, as well as multiply covered curves for which transversality is of
course a thorny issue. Considerable effort is required in the compactness arguments of §4.5
and §6.3 to either rule out the appearance of such multiple covers or show that when they do
arise (which sometimes they must), the necessary transversality results hold anyway. It is a
minor miracle that the results work out as nicely as one would hope, and we interpret this as
convincing evidence for the naturality of our approach to the filling problem.

A second difficulty concerns the precise type of symplectic fillings that one is attempting to
classify: unlike all previous papers on this problem (see §1.1 below), our approach produces
a unified framework in which to classify the full spectrum of weak, strong, exact and We-
instein/Stein fillings, each up to the corresponding notion of deformation equivalence. The
inclusion of both weak and Weinstein deformation equivalence in this list is one of the most
novel details of the present work, and it requires a quite intricate construction (carried out
in §3 and §4) of geometric data on the symplectization of a contact manifold supported by a
spinal open book.

Outline of the paper. The remainder of §1 consists of a quick review of the salient definitions
and of statements of the main theorems to be proved in later sections. In particular, the
general results on classification of fillings are stated in §1.2–1.4, followed in §1.5 by results
on computations of contact invariants. The latter computations parallel the non-fillability
results already proved in [LVW]. Section 1.6 then gives a sample application, explaining how
the main results imply a classification of the fillings of all partitioned contact S1-bundles
over oriented surfaces, and §1.7 discusses some slightly subtler examples for which our main
classification theorems do not apply but the techniques of this paper still have something to
say. Since we will need to make extensive use of J-holomorphic curves, §2 gives a review of
some of the essential technical results—its contents are mostly standard, but it also includes
(in §2.4) some useful lemmas about coherent orientations that may not have appeared in
writing before. Section 3 continues the development (begun in [LVW, §3]) of a precise model
for the half-symplectization of a contact manifold supported by a spinal open book, including



4 SAMUEL LISI, JEREMY VAN HORN-MORRIS, AND CHRIS WENDL

an explicit foliation by J-holomorphic curves with specific properties that are needed for the
proofs of the main results. The analytical properties of this holomorphic foliation are then
studied in §4, including existence and uniqueness results that are needed for the computations
of algebraic contact invariants carried out in §5. Finally, §6 carries out the holomorphic curve
arguments needed to complete the proof that planar spinal open books can be extended to
Lefschetz fibrations on fillings.

Acknowledgments. This project has taken several years to come to fruition, and we are grateful
to many people for valuable conversations along the way, including Denis Auroux, İnanç
Baykur, Michael Hutchings, Tom Mark, Patrick Massot, Richard Siefring and Otto van Koert.
We would also like to thank the American Institute of Mathematics for bringing the three of
us together at key junctures in this project.

1.1. Some remarks on the context. Spinal open books provide a unifying perspective on
many of the known classification and obstruction results for symplectic fillings in dimension
four. The first such results were those of Gromov [Gro85] and Eliashberg [Eli90], which
classified the fillings of S3 and established overtwistedness as a filling obstruction. A short time
later, McDuff [McD90] classified the fillings of the universally tight lens spaces Lpp, 1q up to
diffeomorphism, a result that was later improved by Hind [Hin03] to a classification up to Stein
deformation equivalence. In [Gir94, Eli96], Giroux and Eliashberg found the first examples
of contact 3-manifolds that are weakly but not strongly fillable, which are now understood
more generally in terms of Giroux torsion [Gay06,GHV,GH,NW11]. Further generalizations
of this filling obstruction were introduced by the third author [Wen13] and Latschev [LW11].
Classification results for weak fillings have mostly been limited to cases where the contact
manifold is a rational homology sphere (so that weak fillings can be deformed to strong
fillings)—the major exception is the planar case, for which [NW11] showed that weak fillings
are always deformable to strong fillings without the need for any topological assumption. The
techniques of the present paper can be used to provide new and in many cases conceptually
simpler proofs of all of the results just mentioned, and we suspect that this is the case for
most other previous filling results obtained via holomorphic curve methods, e.g. [OO05,Lis08,
Sta15]. In fact, proofs via spinal open books usually lead to strengthened versions of these
results, e.g. they always apply to (a subclass of) weak symplectic fillings with potentially
nontrivial cohomology at the boundary, in addition to strong and Stein fillings. Moreover,
where many of the previous results have achieved classification of fillings up to diffeomorphism,
ours also determine the symplectic and Stein deformation classes of fillings—in particular, the
Lefschetz fibration approach provides the first systematic technique beyond the isolated results
in [Eli90,CE12,Hin00,Hin03] for classifying Stein fillings up to Stein deformation equivalence.

We are also able to recover certain results that were not previously accessible via holomor-
phic curves, including some of the vanishing results for the Ozsváth-Szabó contact invariant1

due to Honda-Kazez-Matic [HKM] and Massot [Mas12]. We will see some examples in §1.6 of
classification problems that are easily solved using spinal open books but were not previously
accessible via any known techniques.

There are still some important results in this subject about which our techniques probably
have nothing to say. Prominent examples include Lisca’s filling obstruction in terms of posi-
tive scalar curvature [Lis98], Ghiggini’s examples of strongly but not exactly fillable contact

1Results about the Ozsváth-Szabó contact invariant follow from our results on the ECH contact invariant via
the isomorphism [CGHa,CGHb,CGHc] between Heegaard Floer homology and embedded contact homology.
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manifolds [Ghi05], and the recent results of Li-Mak-Yasui [LMY17] and Sivek with the second
author [SV17] on exact and Stein fillings of unit cotangent bundles over higher genus surfaces.
These results all rely in some form on gauge theory, and they seem to represent fundamentally
different phenomena from those that are studied in this paper.

1.2. Classification of fillings. We will assume in the following that the main definitions
from [LVW, §1.1] concerning types of symplectic fillings, symplectic and Stein deformation
equivalence, spinal open books, bordered Lefschetz fibrations, and the contact and symplectic
structures supported by them are already understood. If Π : E Ñ Σ is a bordered Lefschetz
fibration and π is the induced spinal open book at BE, we will continue to indicate this
relationship via the notation

BΠ – π.

Let us recall briefly what this means: breaking up BE into its horizontal and vertical boundary
BhE Y BvE, the paper πP : MP Ñ S1 is defined from the fibration Π|BvE : BvE Ñ BΣ
by identifying each connected component of BΣ with S1 and allowing the fibers of πP to

be disjoint unions of fibers of Π, while the spine πΣ : MΣ Ñ rΣ is defined by factoring

Π|BhE : BhE Ñ Σ through a suitable covering map rΣ Ñ Σ to make the fibers of πΣ connected.
We repeat the following slightly technical definitions, since they will play a substantial role
in this paper.

Definition 1.1. A 3-dimensional spinal open book will be called partially planar if its
interior contains a page of genus zero. A compact contact 3-manifold pM, ξq, possibly with
boundary, will be called a partially planar domain if ξ is supported by a partially planar
spinal open book. We then refer to any interior connected component of the paper containing
planar pages as a planar piece.

Definition 1.2. Given a spinal open book π with paper πP :MP Ñ S1 and spine πΣ :MΣ Ñ
Σ, we define the multiplicity of πP at a boundary component γ Ă BΣ as the degree

mγ P N

of the map

(1.1) γ Ñ S1 : φ ÞÑ πP pπ´1
Σ pφqq.

Recall that the map (1.1) is well defined due to the condition that boundary components
of fibers of πP are always fibers of πΣ. In general, this map is a finite cover, and mγ can
also be understood as the number of distinct boundary components of a page that lie in the
torus π´1

Σ pγq.

Remark 1.3. In this language, an ordinary open book can be defined as any spinal open book
such that the base Σ of the spine is a finite disjoint union of disks and mγ “ 1 for every
component γ Ă BΣ. Spinal open books that satisfy the first condition but not the second are
examples of rational open books in the sense of [BEV12].

Definition 1.4. A spinal open book π on a 3-manifold M will be called symmetric if

(i) BM “ H;
(ii) All pages are diffeomorphic;
(iii) For each of the vertebrae Σ1, . . . ,Σr Ă Σ, there are corresponding numbers k1, . . . , kr P

N such that every page has exactly ki boundary components in π´1
Σ pBΣiq for i “

1, . . . , r.
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We shall say that π is uniform if, in addition to the above conditions, there exists a fixed
compact oriented surface Σ0 whose boundary components correspond bijectively with the
connected components of MP such that for each i “ 1, . . . , r there exists a ki-fold branched
cover

Σi Ñ Σ0

for which the restriction to each connected boundary component γ Ă BΣi is an mγ-fold cover

of the component of BΣ0 corresponding to the component of MP touching π´1
Σ pγq, where mγ

denotes the multiplicity of πP at γ (see Definition 1.2).
Finally, π is Lefschetz-amenable if it is uniform and all branched covers satisfying the

above conditions have no branch points.

The symmetry condition played a large role in [LVW] via its presence in the definition of
planar torsion: essentially, the non-symmetric spinal open books with a planar page are those
that can be shown to obstruct symplectic filling by an argument using spine removal surgery
and holomorphic spheres.

The significance of the uniformity condition is that every spinal open book that arises as
the boundary of a bordered Lefschetz fibration Π : E Ñ Σ clearly satisfies it; in fact, in this
case the required branched covers Σi Ñ Σ0 are honest covering maps, defined as mentioned
above by factoring Π|BhE : BhE Ñ Σ so that the fibers of the spine become connected. It is
not true that spinal open books with this property must always be Lefschetz-amenable, but
there are many interesting cases (e.g. the oriented circle bundles in §1.6) where amenability
is either obvious or can be checked using the Riemann-Hurwitz formula, and Theorem 1.5
below then classifies all fillings in terms of Lefschetz fibrations. In §1.7 we will also discuss
some interesting examples that are not Lefschetz-amenable, and say what we can about the
implications.

For a given closed contact 3-manifold pM, ξq, define the sets

ΩstrongpM, ξq “ tstrong fillings of pM, ξqu
M

„,

ΩexactpM, ξq “ texact fillings of pM, ξqu
M

„,

ΩSteinpM, ξq “ tStein fillings of pM, ξqu
M

„,

where the equivalence relation is defined via strong, Liouville or Stein deformation equivalence
respectively. Since minimality is preserved under symplectic deformation, we can also define
the subset

Ωmin
strongpM, ξq “ trpW,ωqs P ΩstrongpM, ξq | pW,ωq is minimalu,

and observe that since every Stein filling is exact and every exact filling is minimal, there are
canonical maps

(1.2) ΩSteinpM, ξq Ñ ΩexactpM, ξq Ñ Ωmin
strongpM, ξq.

Likewise, for a spinal open book π we define

Lpπq “ tbordered Lefschetz fibrations Π : E Ñ Σ with BΠ – πu
M

„,

where Π : E Ñ Σ and Π1 : E1 Ñ Σ1 are considered equivalent if there exist orientation pre-
serving diffeomorphisms ϕ : Σ Ñ Σ1 and Φ : E Ñ E1, the latter restricting to diffeomorphisms
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BhE Ñ BhE
1 and BvE Ñ BvE

1, such that Π1 ˝ Φ “ ϕ ˝ Π. We also define the subset

LApπq “ trΠs P Lpπq | Π is allowableu,

where we recall that Π is called allowable if all the irreducible components of its fibers have
nonempty boundary. Whenever pM, ξq is supported by a uniform spinal open book π, the
results of [LVW, §3] yield canonical maps

Lpπq Ñ ΩstrongpM, ξq,

LApπq Ñ ΩSteinpM, ξq.
(1.3)

In §6, we will use holomorphic curve technology to prove that the above maps can sometimes
be inverted:

Theorem 1.5. Suppose pM, ξq is a closed contact 3-manifold that is strongly fillable and
contains a compact domain M0 Ă M , possibly with boundary, on which ξ is supported by a
partially planar spinal open book π. Then M “ M0 and π is uniform. Moreover, if π is also
Lefschetz-amenable, then the canonical maps of (1.2) and (1.3) are all bijections.

In addition to a classification result, the above implies many non-fillability results, since
most spinal open books are not uniform:

Corollary 1.6. If pM, ξq is a closed contact 3-manifold containing a partially planar domain
that is not uniform, then pM, ξq is not strongly fillable. �

Remark 1.7. As shown in [LVW], partially planar domains never admit non-separating contact
embeddings into closed symplectic 4-manifolds, thus the manifolds in Corollary 1.6 can never
appear at all as contact-type hypersurfaces in closed symplectic manifolds.

Even in the uniform case, it may happen that a given spinal open book cannot be the
boundary of a Lefschetz fibration because of restrictions imposed on its monodromy. This
phenomenon is familiar in the case of ordinary open books and has been exploited in [PV10,
Pla12,Wan12,KL16,Kal]. We will not consider the factorization problem in much detail here,
but will examine the simplest nontrivial case in §1.6, namely when the pages are annuli, so
that their mapping class group has a single free generator.

Remark 1.8. Theorem 1.5 does not give a classification of fillings for planar spinal open books
that are uniform but not Lefschetz-amenable. Under suitable conditions on the monodromy,
one can construct a bordered Lefschetz fibration filling a spinal open book of this type when-
ever there is a choice of surface Σ0 such that the vertebrae admit unbranched ki-fold covers
Σi Ñ Σ0, but there may be additional fillings not obtained from this construction, corre-
sponding to additional branched covers. Our proof of Theorem 1.5 will in fact produce on
any such filling a singular foliation by J-holomorphic curves which deforms smoothly under
symplectic deformations, but in general it will have singularities that cannot be understood
purely in terms of Lefschetz fibrations, including a phenomenon that we refer to as exotic
fibers. See §1.7 for more discussion and some examples.

1.3. Weak fillings deform to strong fillings. Under appropriate cohomological condi-
tions, Theorem 1.5 can also be extended to a classification of weak fillings. We recall first the
following definition from [LVW].

Definition 1.9. Suppose pM, ξq is a closed contact 3-manifold and Ω is a closed 2-form onM .
A partially planar domain M0 embedded in pM, ξq is called Ω-separating if it has a planar
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piece MP
0 Ă M̊0 such that Ω is exact on every spinal component touching MP

0 . It is called
fully separating if this is true for all closed 2-forms Ω on M .

The condition here depends only on the cohomology class rΩs P H2
dRpMq and is vacuous

if Ω is exact. Recall that every weak filling pW,ωq for which ω is exact near the boundary
can be deformed to a strong filling, cf. [Eli91, Proposition 3.1]. In the special case of disk-like
vertebrae, any closed 2-form is exact on the spine, thus the following generalizes the theorem
of Niederkrüger and the third author [NW11] that weak fillings of planar contact manifolds
can (after blowing down) always be deformed to Stein fillings.

Theorem 1.10. Suppose pM, ξq is a closed contact 3-manifold, Ω is a closed 2-form on M

and pM, ξq contains an Ω-separating partially planar domain. Then every weak filling pW,ωq
of pM, ξq for which rω|TM s “ rΩs P H2

dRpMq is weakly symplectically deformation equivalent
to a strong filling of pM, ξq. In particular, if the domain is fully separating then this is true
for all weak fillings.

One general application of this result concerns rational open books, which were defined on
contact 3-manifolds in [BEV12]: like an open book, it gives a fibration MzB Ñ S1 in the
complement of some oriented link B Ă M , but unlike an ordinary open book, the closures
of the pages may be multiply covered at their boundaries. We say that a closed contact 3-
manifold pM, ξq is rationally planar if it is supported by a rational open book with pages of
genus zero. The following extends one of the main results of [NW11] from planar to rationally
planar contact manifolds.

Corollary 1.11. If pM, ξq is a rationally planar contact 3-manifold, then all weak symplectic
fillings of pM, ξq are symplectically deformation equivalent to strong fillings.

Proof. We note first that using methods from [V07], any rational open book can be modified—
without changing the contact structure or the page genus—to one with the property that every
boundary component of the closure of a page covers the respective binding component once
(though there still may be multiple boundary components covering the same component of
the binding). One can see this by presenting a neighborhood of any k-fold covered binding
component as DˆS1 with contact form dφ` ρ2 dθ in coordinates ρeiθ P D Ă C and φ P S1 “
R{Z, such that the pages in this region are parametrized by the punctured disks

Dzt0u ãÑ D ˆ S1 : z ÞÑ pz, arg zk ` φq

for different choices of constants φ P S1. (Note that here it is possible for different choices
of φ P S1 to produce distinct subsets of the same page.) One can then choose any function
f : D Ñ C that is C8-close to z ÞÑ zk and matches it precisely for ρ ě 1{2 but has exactly k
simple and positive zeroes, and replace the pages above with

Dzf´1p0q ãÑ D ˆ S1 : z ÞÑ pz, arg fpzq ` φq.

Each zero of f now gives rise to a new page boundary component that covers the corresponding
component of f´1p0qˆS1 Ă DˆS1 exactly once, and these modified pages are also transverse
to the Reeb vector field for the contact form dφ ` ρ2 dθ.

With this modification in place, the resulting rational open book is still planar but can
also be interpreted as a spinal open book (see Remark 1.3). The result then follows from
Theorem 1.10 since the spine is a union of solid tori, on which all closed 2-forms are exact. �
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Remark 1.12. It is not known whether there exist rationally planar contact manifolds which
are not planar, though Corollary 1.11 may be interpreted as providing some evidence against
this.

1.4. Symplectic deformation implies Stein deformation. Another result closely related
to Theorem 1.5 concerns the question of to what extent the symplectic geometry of a Stein
manifold determines its Stein geometry. The following two questions express this more pre-
cisely.

Question 1. Do there exist two Stein domains that are symplectic deformation equivalent
but not Stein deformation equivalent?

Question 2. Is there a natural class of Stein domains with the property that any two domains
in the class are Stein deformation equivalent if and only if they are symplectically deformation
equivalent?

The first question is completely open. For the second, it is known in higher dimensions that
two flexible Stein structures on a given manifold will always be Stein homotopic whenever
they can be related by a symplectic deformation; this follows from an h-principle for flexible
Weinstein structures, [CE12, Chapter 14], and it suffices in this case to know that their
underlying almost complex structures are homotopic. We will show however that in real
dimension four, there exists a larger class of Stein structures answering Question 2 than what
might be suggested by known flexibility results (e.g. for the subcritical case). In the following
statement, we say that a Stein domain pW,Jq is supported by a certain Lefschetz fibration
Π : E Ñ Σ if Π admits a supported almost Stein structure that is (after smoothing corners)
almost Stein deformation equivalent to pW,Jq.2

Theorem 1.13. Suppose pW,J0q is a Stein domain of real dimension 4, supported by a
bordered Lefschetz fibration Π: E Ñ Σ with fibers of genus 0. Suppose J1 is another Stein
structure on W , and denote by ω0 and ω1 the symplectic structures induced by choices of
plurisubharmonic functions for J0 and J1 respectively. Then J0 and J1 are Stein homotopic
if and only if ω0 and ω1 are homotopic through symplectic structures convex at the boundary.

Moreover, if Σ “ D
2, then J0 and J1 are Stein homotopic if and only if there exist smooth

homotopies tωτuτPr0,1s of symplectic forms on W and contact structures tξτuτPr0,1s on BW
such that pW,ωτ q is a weak filling of pBW, ξτ q for all τ P r0, 1s.

This result would be a corollary of Theorems 1.5 and 1.10 if one could always assume
that the spinal open book induced on the boundary of a bordered Lefschetz fibration is
Lefschetz-amenable, but the latter is false in general (see Example 1.34 for a counterexample).
We will prove the theorem in §6.6 by combining the holomorphic curve arguments behind
Theorems 1.5 and 1.10 with the criterion established in [LVW, §2.4] for the canonical Stein
structure supported by a Lefschetz fibration.

Example 1.14. By the main result of [Wen10c], Theorem 1.13 applies to all Stein fillings
of planar contact 3-manifolds, which includes all subcritical fillings, but also many critical
examples such as the unit disk bundle in T ˚S2. A further class of non-subcritical examples
comes from products Σ0 ˆ Σ1 of two Riemann surfaces with boundary such that at least one
of them has genus zero but neither is a disk; this includes e.g. the unit disk bundle in T ˚

T
2,

which (after rounding corners) is a product of two annuli.

2For a brief review of almost Stein structures, see Definition 3.1.



10 SAMUEL LISI, JEREMY VAN HORN-MORRIS, AND CHRIS WENDL

Remark 1.15. Theorem 1.13 probably also holds under the slightly more general hypothesis
that the contact boundary of pW,J0q is supported by a planar spinal open book—the latter
need not be the boundary of a Lefschetz fibration since it might not be Lefschetz-amenable.
Proving the theorem in this generality would require a better geometric understanding of the
so-called exotic fibers that are possible in non-amenable cases (cf. §1.7).

Remark 1.16. If one wants to find examples of Stein surfaces that are symplectically but not
Stein deformation equivalent, then Theorem 1.13 and Remark 1.15 suggest searching among
Stein surfaces pW,Jq whose contact boundaries pM, ξq do not admit supporting spinal open
books with planar pages. The main results of this paper and [LVW] provide several mech-
anisms for recognizing contact 3-manifolds with the latter property, e.g. by [LVW, Corol-
lary 1.30], pM, ξq cannot contain a partially planar domain if it arises as a component of
a strong symplectic filling with disconnected boundary. Popular examples include the unit
disk bundles in T ˚Σ for Σ any oriented surface with genus at least two; the resulting unit
cotangent bundle is one component of an exact filling with disconnected boundary that was
famously constructed by McDuff [McD91].

1.5. Filling obstructions and contact invariants. Many special cases of the non-fillability
statement in Corollary 1.6 follow already from the results on planar torsion in [LVW], but they
can also be derived from computations of contact invariants in embedded contact homology
(cf. [Hut10,Wen13]) or symplectic field theory (cf. [EGH00,LW11]). The main invariant we
have in mind is the order of algebraic torsion, as defined in [LW11]. This is a nonnegative (or
possibly infinite) integer extracted from the full symplectic field theory algebra of a contact
manifold; it equals zero if and only if the manifold is algebraically overtwisted in the sense
of [BN10], while positive values can be interpreted as measuring the manifold’s “degree of
tightness”. The following result, which provides the main motivation behind the terminology
“planar k-torsion,” is a generalization of [LW11, Theorem 6].3

Theorem 1.17. If pM, ξq has Ω-separating planar k-torsion for some k ě 0, then it also has
Ω-twisted algebraic k-torsion.

Since our contact manifolds pM, ξq in this paper are always 3-dimensional, we can also
consider the closely related filling obstruction furnished by the ECH contact invariant, i.e. the
distinguished class in the embedded contact homology of pM, ξq, defined by Hutchings (see
e.g. [Hut10]). The next theorem is a direct generalization of the vanishing results proved in
[Wen13]:

Theorem 1.18. If pM, ξq has Ω-separating planar k-torsion for any k ě 0, then its ECH
contact invariant with twisted coefficients in ZrH2pMq{ ker Ωs vanishes.

There is also an algebraic counterpart for the theorem from [LVW] that partially planar
domains obstruct semifillings with disconnected boundary: it involves the so-called U -map
in ECH, which is defined by counting index 2 holomorphic curves through a generic point in
the symplectization. This result generalizes the ECH version of a planarity obstruction first
established by Ozsváth-Stipsicz-Szabó [OSS05] in Heegaard Floer homology and extended to
ECH in [Wen13]:

Theorem 1.19. If pM, ξq contains an Ω-separating partially planar domain, then for all
k P N, the contact invariant in ECH with twisted coefficients in ZrH2pMq{ ker Ωs is in the
image of Uk.

3See [LVW, §1.3] for the main definitions concerning planar torsion domains.
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See §1.6.2 for some sample applications of these theorems, where they are used in particular
to prove new vanishing results for contact invariants on circle bundles.

1.6. Fillings of circle and torus bundles. In [LVW, §1.4], we exhibited a large class of
S1-invariant contact structures on circle bundles which are supported by spinal open books
with annular pages. We now extend the non-fillability results from that paper to a more
comprehensive classification of fillings.

Assume throughout this section that

π :M Ñ B

is a smooth fiber bundle whose fibers are diffeomorphic to S1 and whose total space is a
closed, connected and oriented 3-manifold, while the base B is a closed connected surface
that need not necessarily be orientable. Reducing the structure group of the bundle to
Op2q then defines the notion of S1-invariant contact structures ξ on M , each of which
determines a multicurve Γ Ă B by the condition that fibers over Γ are tangent to ξ. We
say in this case that ξ is partitioned by Γ, and it follows that BzΓ must be orientable
and Γ satisfies a further technical condition (it “inverts orientations”). Conversely, for any
multicurve Γ Ă B satisfying these two conditions, there is a unique isotopy class of S1-
invariant contact structures partitioned by Γ. We shall denote contact manifolds of this type
always by

pM, ξΓq.

The existence and uniqueness of ξΓ is a famous result of Lutz in the case where B is orientable
[Lut77], and in the general case it was deduced in [LVW] from the existence and uniqueness
of contact structures supported by spinal open books. In particular, pM, ξΓq is supported by
a spinal open book whose paper is a tubular neighborhood of π´1pΓq, with annular pages,
while the vertebrae correspond to the connected components of BzΓ.

Remark 1.20. In the case when B is non-orientable, the total space is nevertheless oriented,
and there is still a well-defined Euler number. As it turns out, over a given base B, these
bundles are characterized by this Euler number. Indeed, this can be seen by viewing such
fiber bundles π : M Ñ B as Seifert fibered spaces with no exceptional fibers. For more details,
see the discussion in [Sco83, page 434].

1.6.1. Classification of fillings. Whenever π : M Ñ B corresponds to a spinal open book
that is Lefschetz-amenable, Theorem 1.5 classifies the strong fillings of pM, ξΓq as bordered
Lefschetz fibrations with annulus fibers. The amenability condition is trivial to verify when
B is orientable.

Theorem 1.21. Suppose ξΓ is an S1-invariant contact structure on a circle bundle π :M Ñ
B, partitioned by a nonempty multicurve Γ, where B is orientable. Then pM, ξΓq is strongly
fillable if and only if BzΓ has two connected components, both of them diffeomorphic to a
single surface Σ, and the Euler number epπq of the bundle satisfies

epπq ě 0.

Moreover, the Stein, Liouville and minimal strong fillings of pM, ξΓq are all unique up to
deformation equivalence and can be characterized via supporting allowable Lefschetz fibrations
over Σ with fiber r´1, 1s ˆ S1, which restrict to trivial fibrations on the horizontal boundary
and have epπq singular fibers.



12 SAMUEL LISI, JEREMY VAN HORN-MORRIS, AND CHRIS WENDL

Proof. When B is orientable, Γ necessarily divides B into two (each possibly disconnected)
components B` and B´, thus determining similar labels M˘

Σ for corresponding components
of the spine MΣ. Every page of πP : MP Ñ S1 thus has one boundary component touching
M`

Σ and the other touching M´
Σ , so symmetry of π implies that MΣ must have exactly two

connected components, each touching one boundary component of every page. This implies
that each boundary component of the spine has multiplicity 1 in the sense of Definition 1.2. If
π is also uniform, then the vertebrae of the two spinal components must also be diffeomorphic,
and the Lefschetz-amenability condition is trivially satisfied. It follows that BzΓ has exactly
two components and they are diffeomorphic to a fixed surface Σ, and minimal fillings of
pM, ξΓq correspond to Lefschetz fibrations over Σ with annulus fibers.

Observe now that any two allowable Lefschetz fibrations over Σ with annulus fibers and
with the same number of critical points are symplectic deformation equivalent. Let Π: E Ñ Σ
be such an allowable Lefschetz fibration. Fix a basepoint z0 P Σ and choose an orientation-
preserving identification of Π´1pz0q with r´1, 1s ˆ S1. Trivialize the two components of
BE Ñ Σ consistently with this. After choosing a collection of paths in Σ that connect z0
with the points in BΣ that correspond to π´1

P p1q, we obtain a well-defined monodromy map
r´1, 1s ˆS1 Ñ r´1, 1s ˆS1 for each boundary component of BΣ. Notice that by changing the
trivialization of BE Ñ Σ, we may change these monodromies, but their composition remains
invariant, and will be isotopic to a k-fold Dehn twist where k is the number of singular fibers.
In particular, by a suitable choice of trivialization of BE Ñ Σ, we arrange for the monodromy
about each boundary component of BΣ to be trivial, except for one, where we have a k-fold
Dehn twist. A computation verifies that BE is then a circle bundle over the doubled surface
Σ YBΣ p´Σq with Euler class given by k.

�

Remark 1.22. It is possible for the partitioning multicurve Γ Ă B of an S1-invariant contact
structure to be empty when B is orientable: this means that pM, ξΓq is a prequantization
bundle with its canonical contact structure. In this case Theorem 1.21 does not apply, and
in fact, the problem of classifying strong fillings of prequantization bundles is not generally
tractable: e.g. whenever B has genus g ě 2, there exists a prequantization bundle pM, ξΓq
over B admitting exact semifillings with disconnected boundary (see [McD91]), from which
one can construct an unmanageable multitude of topologically unrelated fillings of pM, ξΓq by
attaching concave fillings from [EH02] to the other boundary component.

Theorem 1.23. Suppose ξΓ is an S1-invariant contact structure on a circle bundle π : M Ñ
B, partitioned by a nonempty multicurve Γ, where B is not orientable and Γ has k ě 0
connected components that are not co-orientable.

If pM, ξΓq is strongly fillable, then BzΓ is connected and

k ď 2pg ` 1q,

where g is the genus of BzΓ.
Assuming additionally that BzΓ is connected and k “ 2pg ` 1q, pM, ξΓq is strongly fillable

if and only if its Euler number (see Remark 1.20) is non-negative. In that case, its Stein,
Liouville and minimal strong fillings are unique up to deformation equivalence.

Proof. Assume B is non-orientable and Γ consists of k components with nontrivial normal
bundle and ℓ components with trivial normal bundle. If π is symmetric, then the spine can
have at most two connected components, and it has exactly two only if every page has its
two boundary components touching different spinal components, which means k “ 0 and the
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ℓ components of Γ divide B into two connected components B` and B´. But since Γ inverts
orientations, this would imply that B is orientable and thus contradicts our assumptions. We
conclude that BzΓ is connected and has the homotopy type of a compact oriented surface Σ
with some genus g ě 0 and k ` 2ℓ boundary components. The multiplicity of πP is 2 at the
k boundary components of MΣ corresponding to curves that are not co-orientable, and 1 at
its other 2ℓ boundary components. Uniformity of π then means that there exists a double
branched cover of Σ over some surface Σ0 of arbitrary genus h ě 0 with k ` ℓ boundary
components. By the Riemann-Hurwitz formula, the algebraic count of branch points is

´χpΣq ` 2χpΣ0q “ ´p2 ´ k ´ 2ℓ´ 2gq ` 2p2 ´ k ´ ℓ´ 2hq “ 2 ´ k ` 2g ´ 4h ě 0,

hence the required branched cover is possible for any genus h ě 0 satisfying

4h ď 2pg ` 1q ´ k.

If equality is achieved, then the resulting branched cover has no branch points. In particular,
this will always be the case if k “ 2pg ` 1q, so the case of k “ 2pg ` 1q is Lefschetz-amenable.

By Theorem 1.5, it follows that, if k “ 2pg`1q, any filling of pM, ξΓq is (up to deformation)
realized as a Lefschetz fibration Π: E Ñ Σ0 with annular fibers where Σ0 has genus zero and
k ` ℓ boundary components. Furthermore, BΠ gives the spinal open book decompositions
described by B, Γ.

Notice now that k “ 2pg` 1q is even. We may thus decompose Σ0 into a collection of pairs
of pants, of annuli and of disks with the property that each subsurface has an even number
of boundary components among the k boundary components of Σ0 that correspond to the
non-co-orientable curves in Σ “ BzΓ, and all Lefschetz critical values are contained in the
disks. From this, the restrictions of the fibration to the pairs of pants and annuli are smooth
symplectic fibrations with annulus fibers. Furthermore, if the base is the annulus, they will
either be a trivial fibration or the fattened mapping torus of the “flip” (map of the annulus
by pr, θq ÞÑ p´r,´θq). If the base is a pair-of-pants, the fibration will be one of these two
models with a fiber deleted.

Now, choose a framing of the spinal open book decomposition π, i.e. a trivialization of the
circle bundle πΣ : MΣ Ñ Σ. This then allows us to define the monodromy of each component
of the paper. Notice that the “flip” map and a Dehn twist commute (up to homotopy).
From this, we observe that a change in framing has no effect on the composition of all the
monodromies. A computation now shows this composition must have the number of Dehn
twists given by the Euler number of π : M Ñ B.

Extending the framing of the spinal open book to the Lefschetz fibration Π, we obtain that
the net monodromy around the vertical boundary is some number of Dehn twists, given by
precisely the number of critical fibers.

�

1.6.2. Vanishing results for contact invariants. In [LVW] we gave a characterization of which
partioned S1-invariant contact circle bundles have planar 1-torsion. Combining that result
with Theorems 1.17 and 1.18 gives the following statement, generalizing a result for trivial
circle bundles that was proved in [LW11]:

Corollary 1.24. Suppose ξΓ is an S1-invariant contact structure on a circle bundle π :M Ñ
B, partitioned by a nonempty multicurve Γ, and that either of the following holds:

(i) BzΓ has at least three connected components;
(ii) BzΓ is disconnected and B is non-orientable.
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Then pM, ξΓq has (untwisted) algebraic 1-torsion and vanishing (untwisted) ECH contact in-
variant. �

When the bundle is trivial, we can use some input from Seiberg-Witten theory to obtain a
stronger result for the ECH contact invariant:

Theorem 1.25. Suppose π : M Ñ B is a trivial circle bundle and ξΓ is an S1-invariant
contact structure partitioned by a multicurve Γ Ă B. Then pM, ξΓq has nonzero (untwisted)
ECH contact invariant if and only if Γ divides B into exactly two connected components that
are diffeomorphic to each other.

Proof. When B “ Σ` YΓ Σ´ for a connected surface Σ` – Σ´ – Σ, the ECH contact
invariant of pB ˆ S1, ξΓq is nonzero because it has a strong filling, namely the trivial annulus
fibration over Σ. Excluding the cases covered by Corollary 1.24, it then remains to prove that
the ECH contact invariant vanishes whenever BzΓ has two connected components Σ` and
Σ´ with differing genus.

This follows from [Wen13] if either component has genus zero, but if both have positive
genus, then we must instead appeal to Seiberg-Witten theory. Denote the contact invariant by
rHs; it is an element of ECH˚pBˆS1, ξΓ, 0q, the embedded contact homology of pBˆS1, ξΓq
generated by orbit sets with total homology class 0 P H1pB ˆ S1q. By Theorem 1.19, there
exists for every k P N an element γk P ECH˚pB ˆ S1, ξΓ, 0q such that Uk

γk “ rHs. Now
observe that if Σ` fl Σ´, then c1pξΓq P H2pB ˆ S1q is not torsion; indeed,

c1pξΓq “ pχpΣ`q ´ χpΣ´qqPD
“
t˚u ˆ S1

‰
.

By the work of Taubes [Tau10], ECH˚pB ˆ S1, ξΓ, 0q is isomorphic to a certain version of
the monopole Floer homology of Kronheimer and Mrowka [KM07] for the Spinc-structure
determined by the homotopy class of ξΓ. The first Chern class of this Spinc-structure is
precisely c1pξΓq and is thus not torsion, so by results of Kronheimer and Mrowka [KM07],
the monopole Floer homology is finitely generated. Observe now that if rHs ‰ 0, then
ECH˚pBˆS1, ξΓ, 0q cannot be finitely generated, as the generators γ1,γ2, . . . will be linearly
independent, so this is a contradiction. �

Remark 1.26. Since the proof of Theorem 1.25 relies on gauge theory in addition to holo-
morphic curves, we do not know whether pB ˆ S1, ξΓq has a finite order of algebraic torsion
when Γ divides B into two connected components with differing positive genus, and there is
no apparent reason to believe that it should. It would interesting to resolve this question,
as it is not known thus far whether the filling obstructions furnished by SFT and the ECH
contact invariant in dimension three are independent.

1.6.3. Parabolic torus bundles. A specific subclass of the contact circle bundles covered by
the results above can also be described as torus bundles with parabolic monodromy. All such
bundles can be presented in the form

T˘pkq :“ pR ˆ T
2q
M

pρ, zq „ pρ ` 1,˘Akzq

for some k P Z, where Ak “

ˆ
1 0
k 1

˙
. We will denote the coordinates on T

2 “ S1 ˆ S1 by

pφ, θq.
Given an integer m ě 0, we define a rotational contact structure ζm whose lift to R ˆ T

2

can be written as
ζm “ ker rfpρq dθ ` gpρq dφs
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for some path pf, gq : R Ñ R
2zt0u that rotates about the origin by an angle of greater than

2πm but at most 2πpm` 1q as ρ varies along a closed unit interval in R. Also, for m P N we
define

ηm “ ker
`
|k ` 1| cosp2πmφq dρ ` sinp2πmφq dθ ´ kρ sinp2πmφq dφ

˘
.

By results of Giroux [Gir99, Gir00], every universally tight contact structure on T˘pkq is
diffeomorphic to at least one of these models.

Defining a circle bundle π : T`pkq Ñ T
2 “ pR ˆ S1q{Z : rpρ, φ, θqs ÞÑ rpρ, φqs, all of the

contact structures ζm and ηm are S1-invariant and partitioned by multicurves Γ Ă T
2, where:

‚ For ζm with k ě 0, Γ consists of 2pm` 1q curves of the form tρ “ constu;
‚ For ζm with k ă 0, Γ consists of 2m curves of the form tρ “ constu;
‚ For ηm, Γ consists of 2m curves of the form tφ “ constu.

The Euler number of the bundle π : T`pkq Ñ T
2 is k.

Note that for each m P N, [Gir99, Théorème 6] proves that pT`pkq, ηmq and pT`pkq, ζm´1q
are contactomorphic when k ě 0, while pT`pkq, ηmq and pT`pkq, ζmq are contactomorphic
when k ă 0. Thus the following corollary of Theorem 1.21 covers all universally tight contact
structures on T`pkq with the exception of ζ0 for k ă 0:

Corollary 1.27. Given k P Z and m P N, pT`pkq, ηmq is strongly fillable if and only if m “ 1
and k ě 0, and its strong fillings are all Lefschetz fibrations over the annulus with annular
fibers and monodromy maps that fix the boundary. �

Similarly, both families of contact structures on T´pkq are S1-invariant for the non-orientable
circle bundle π : T´pkq Ñ K

2 : rpρ, φ, θqs ÞÑ rpρ, φqs over the Klein bottle

K
2 “ pR ˆ S1q

M
pρ, φq „ pρ ` 1,´φq.

The multicurves Γ Ă K
2 can now be described as follows:

‚ For ζm, Γ consists of 2m`1 curves of the form tρ “ constu with trivial normal bundle;
‚ For ηm, Γ includes the two curves tφ “ 0u and tφ “ 1{2u with nontrivial normal
bundles and m ´ 1 additional curves of the form tρ “ constu with trivial normal
bundles.

According to [Gir99, Théorème 6], all contact structures in this list on each individual manifold
T´pkq are pairwise non-diffeomorphic. For m ě 1, pT´pkq, ζmq has positive Giroux torsion
and is thus known to be not fillable. For pT´pkq, ζ0q, K2zΓ is homotopy equivalent to an
annulus and the condition k ď 2pg`1q in Theorem 1.23 is satisfied but with strict inequality,
so the Lefschetz-amenability condition fails and we cannot classify fillings (but see §1.7 for
more on this example). It is also not hard to check that pT´pkq, ηmq has positive Giroux
torsion for every m ě 3. We do not know if it has Giroux torsion for m “ 2. Nevertheless,
Corollary 1.24 implies that pT´pkq, η2q does have planar 1-torsion, and is thus non-fillable.
Finally, for η1 we can apply Theorem 1.23 to deduce uniqueness of fillings. Notice that the
Euler number of π : T´pkq Ñ K2 is ´k. This yields:

Corollary 1.28. Given k P Z and m P N, pT´pkq, ηmq is strongly fillable if and only if m “ 1
and k ď 0, and its strong fillings are all Lefschetz fibrations over the annulus with annular
fibers and monodromy maps that interchange boundary components. �

Example 1.29. The unique Stein filling of pT´p0q, η1q is presentable as the smooth annu-
lus fibration over the annulus r´1, 1s ˆ S1 such that the monodromy around t˚u ˆ S1 is
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r´1, 1s ˆ S1 Ñ r´1, 1s ˆ S1 : ps, tq ÞÑ p´s,´tq (i.e. the “flip” map appearing in the proof of
Theorem 1.23).

1.7. The non-amenable case and exotic fibers. The most important part of Theorem 1.5
does not hold for spinal open books that are not Lefschetz-amenable, but our arguments will
still provide something that we expect could be used to achieve a classification of fillings in
the general case. The following is a summary of some more technical results proved in §6; for
this discussion we permit ourselves the luxury of a slightly imprecise statement since we do
not intend to prove anything with it.

Proposition 1.30. Suppose pW,ωq is a weak symplectic filling of a contact 3-manifold pM, ξq
supported by a partially planar spinal open book π such that ω is exact on the spine MΣ. Then

pW,ωq admits a symplectic completion xW with a compatible almost complex structure J and
a smooth surjective map

Π : xW Ñ M,

where M is an oriented surface with cylindrical ends that are in bijective correspondence to
the connected components of MP , and every fiber Π´1p˚q is a (possibly nodal) J-holomorphic
curve with cylindrical ends asymptotic to closed Reeb orbits in pM, ξq. More precisely, M

admits a partition

M “ Mreg Y Msing Y Mexot,

where Msing and Mexot are each finite sets, and

‚ Fibers in Π´1pMregq are embedded J-holomorphic curves asymptotic to simply covered
Reeb orbits;

‚ Fibers in Π´1pMsingq are nodal J-holomorphic curves asymptotic to simply covered
Reeb orbits, each formed as the union of two embedded curves that intersect each other
exactly once, transversely;

‚ Fibers in Π´1pMexotq are embedded J-holomorphic curves with one end asymptotic to
a doubly covered Reeb orbit, and all other ends asymptotic to simply covered orbits.

For each vertebra Σi, there is also a properly embedded J-holomorphic curve Si Ă xW such
that

Π|Si
: Si Ñ M

is a proper branched cover with simple branch points and is mγ-to-1 on the cylindrical end
corresponding to each boundary component of γ Ă BΣi, where mγ P N is the corresponding
multiplicity (see Definition 1.2). Moreover, Π|Si

is an honest covering map (i.e. without
branch points) if and only if Mexot “ H. Finally, all of this data deforms smoothly under
generic deformations of J compatible with deformations of the symplectic structure.

The distinguishing feature of the Lefschetz-amenable case is that the set Mexot is guar-

anteed to be empty, in which case we will show in §6.5 that Π : xW Ñ M gives rise to a
Lefschetz fibration filling π, with singular fibers corresponding to the finite set Msing. When
this condition fails and Π|Si

: Si Ñ M has branch points, the proposition yields a more
general type of decomposition of the filling, including the so-called exotic fibers Π´1puq for
u P Mexot. These are singular in the sense that they have different topology from the nearby
regular fibers, but their singularities occur “at infinity” and resemble the multiple fibers of a
Seifert fibration on a 3-manifold. We will not attempt a more precise topological description
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of exotic fibers here, but we are fairly confident that such a description could be used in gen-
eral to prove classification results for fillings without the Lefschetz-amenability assumption.
We now give three examples where one can see that exotic fibers must appear.

Example 1.31. The parabolic torus bundles pT´pkq, ζ0q discussed in §1.6.3 can be presented
as S1-invariant contact structures on circle bundles over the Klein bottle K2, partitioned along
a single co-orientable curve Γ Ă K

2 such that K2zΓ is a cylinder. It follows that pT´pkq, ζ0q
is supported by a spinal open book π with one spine component fibering over the annulus,
and one family of annular pages whose two boundary components meet the spine at separate
boundary components, each with multiplicity 1. The uniformity condition is satisfied because
there exists a double branched cover of r´1, 1s ˆ S1 over the disk whose restriction to each
boundary component has degree 1, but since every such branched cover has (algebraically)
two branch points, π is not Lefschetz-amenable. Proposition 1.30 now endows the completion
xW of any filling of pT´pkq, ζ0q with a J-holomorphic foliation that includes exotic fibers.

Remark 1.32. Note that while fillings of pT´pkq, ζ0q cannot be presented as Lefschetz fibrations
filling π, they do sometimes exist: e.g. pT´p0q, ζ0q can be presented as a quotient of the
standard contact T

3 by a free contact Z2-action that extends over the filling T ˚
T
2 of T3 as

a symplectic Z2-action with four fixed points on the zero-section. The resulting symplectic
orbifold has four singular points with neighborhoods bounded by the standard contact RP 3,
so the singularities can be resolved by replacing these neighborhoods with neighborhoods of
the zero-section in T ˚S2. If we choose a Z2-invariant plurisubharmonic function on T ˚

T
2

with local minima at the four fixed points, then this desingularization results in a Stein filling
W of pT´p0q, ζ0q. Note that H2pW q ‰ 0, whereas the unique Stein filling of pT´p0q, η1q that
we saw in Example 1.29 has trivial second homology, so this furnishes a new proof of Giroux’s
theorem [Gir99] that ζ0 and η1 are non-isomorphic contact structures on T´p0q.

Example 1.33. The standard contact structure ξstd on S1 ˆ S2 can be written in the form
ker rfpθq dt` gpθq dφs where t P S1 “ R{Z is the standard coodinate, pθ, φq are spherical polar
coordinates on S2, and pf, gq : r0, πs Ñ R

2 traces a path that winds counterclockwise from the
positive to the negative x-axis. Choosing f and g to be odd and even functions respectively,
we can define the quotient

pM, ξq “ pS1 ˆ S2, ξstdq
M

pt, θ, φq „ p´t, π ´ θ, φ` πq,

which is a non-orientable circle bundle over RP 2 with orientable total space. The open book
pS1 ˆ S2qztθ “ 0, πu Ñ S1 : pt, θ, φq ÞÑ φ then projects to a rational open book on M

supporting ξ, with one binding component and annular pages such that the monodromy is an
involution exchanging boundary components. This can also be interpreted as a spinal open
book π, where the spine is a single solid torus and the paper is a single S1-family of annuli
touching it with multiplicity 2; in fact, this is the same construction that arises naturally if
we view pM, ξq as a circle bundle. Since the only vertebra is a disk, uniformity demands a
branched double cover of D2 over itself, and such a cover will always have one branch point,
so π is not Lefschetz-amenable. Any completed filling of pM, ξq will then carry a foliation
whose generic leaves are J-holomorphic cylinders, but that also includes exotic fibers in the
form of J-holomorphic planes asymptotic to a doubly covered Reeb orbit.

Example 1.34. We now exhibit a planar spinal open book that is not Lefschetz-amenable
for which some but not all fillings can be described as Lefschetz fibrations.
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Let Σg denote the compact connected and oriented surface with genus g, and denote by
Σg,m the compact surface with boundary obtained by punching m holes in Σg. The surface
Σ2,2 admits two double branched covers

Σ2,2
ϕ1

ÝÑ Σ1,2, Σ2,2
ϕ0

ÝÑ Σ0,2,

where both are 2-to-1 maps on each boundary component, and the Riemann-Hurwitz formula
implies that ϕ1 is unbranched, while ϕ0 has four simple branch points. The resulting deck
transformations define a pair of orientation-preserving involutions

ψ1, ψ0 : Σ2,2 Ñ Σ2,2,

which we can assume are symplectic for suitable choices of area forms on Σ2,2. Now consider a

Weinstein domain defined via the trivial annulus fibration rE “ Σ2,2 ˆΣ0,2; using the natural
correspondence between annular spinal open books and circle bundles, we can view the contact

boundary pĂM, rξq of rE as a trivial circle bundle over the symmetric double Σ5 formed by gluing

together two copies of Σ2,2 along an orientation-reversing map of their boundaries, and rξ is
an S1-invariant contact structure partitioned by BΣ2,2 Ă Σ5. The contact manifold we’re
actually interested in is a Z2-quotient of this: define the Weinstein domain

E “ pΣ2,2 ˆ Σ0,2q
M

pz, wq „ pψ1pzq, σpwqq,

where σ is the involution ps, tq ÞÑ p´s,´tq on Σ0,2 “ r´1, 1s ˆ S1. This is obviously a
symplectic manifold (for suitable choices of area forms on Σ2,2 and Σ0,2) since the involution
ψ1 ˆ σ is symplectic and without fixed points, and one can see its Weinstein structure in
terms of the natural annulus fibration over Σ2,2{Z2 “ Σ1,2 that it inherits from the trivial

annulus fibration on rE. The induced spinal open book π on the boundary pM, ξq of E has
two paper components with monodromy exchanging the boundary components of the annulus,
and these are attached to separate boundary components of a single spine component of the
form S1ˆΣ2,2. Viewing pM, ξq as an S1-invariant circle bundle, it fibers over the union of Σ2,2

with two Möbius bands, i.e. Σ2#2RP 2, with ξ partitioned by a multicurve Γ Ă Σ2#2RP 2

with two components, both not co-orientable, and pΣ2#2RP 2qzΓ is thus a genus 2 surface
with two cylindrical ends. As a consequence, the condition k ď 2pg ` 1q in Theorem 1.23 is
satisfied, but with strict inequality, so π is not Lefschetz-amenable.

In the context of Proposition 1.30, this means that there are multiple possibilities for an
unknown filling W of pM, ξq: it may indeed admit a Lefschetz fibration over Σ1,2 since there
exist unbranched double covers Σ2,2 Ñ Σ1,2, and the filling E described above is an example
of this. But the moduli space M in the proposition could also have the topology of Σ0,2, with
the branch points of ϕ0 : Σ2,2 Ñ Σ0,2 giving rise to exotic fibers. To see that this also must
sometimes happen, notice that we can define an alternative filling of pM, ξq by starting from
the symplectic orbifold

pE1 :“ pΣ2,2 ˆ Σ0,2q
M

pz, wq „ pψ0pzq, σpwqq,

as the spinal open book on B rE induced by the trivial fibration also descends to π on B pE1 “

B rE{Z2. The singularities of pE1 at fixed points of ψ0 ˆσ (two for each branch point of ϕ0) can
be resolved by replacing neighborhoods with copies of T ˚S2 (cf. Remark 1.32). Choosing a Z2-
invariant plurisubharmonic function on Σ2,2 ˆΣ0,2 with local minima at the fixed points, one
produces in this way a new Stein filling E1 of pM, ξq, in which the eight orbifold singularities

of pE1 have been replaced by Lagrangian spheres.
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We now notice that the contact manifolds BE and BE1 are both circle bundles over the same
non-orientable base, with invariant contact structures, partitioned by the same multicurve.

Furthermore, by constructing a section of B rE Ñ Σ5 that is Z2-equivariant for either of the
two Z2-actions, we deduce that these two are the same bundle. By construction, E1 has eight
Lagrangian spheres, and we claim that E has none, thus proving that E and E1 are non-

diffeomorphic Stein fillings of pM, ξq. Indeed, the map rE Ñ E is an honest 2-to-1 covering
map, so the preimage of any Lagrangian sphere in E would be a pair of Lagrangian spheres

in rE, in particular, having square ´2. But all classes in H2p rEq have self-intersection 0 by the

Künneth formula (or alternatively: none of them are represented by spheres, since π2p rEq is
trivial).

2. Generalities on punctured holomorphic curves

The contents of this section are mostly standard, but a quick review seems worthwhile in
order to fix terminology and notation in preparation for later holomorphic curve arguments.

2.1. Stable Hamiltonian structures and symplectization ends. Stable Hamiltonian
structures (or “SHS” for short) were first introduced in a dynamical context in [HZ94] and
reappeared in [BEH`03] as the natural setting for the theory of punctured holomorphic curves.
For our purposes, they provide a convenient generalization of the notion of the symplectization
of a contact manifold. The particular SHS that arise in this paper can be thought of as
degenerate limits of certain contact forms in which explicit constructions of holomorphic
curves become much easier. For a more comprehensive discussion of the topology of stable
Hamiltonian structures, see [CV].

Given an oriented p2n ´ 1q-dimensional manifold M , a pair

H “ pΩ,Λq

consisting of a smooth 2-form Ω and 1-form Λ is called a stable Hamiltonian structure if

(i) Λ ^ Ωn´1 ą 0,
(ii) dΩ “ 0,
(iii) kerΩ Ă ker dΛ.

Such a pair gives rise to two important objects: a co-oriented hyperplane distribution Ξ :“
ker Λ, and a positively transverse vector field RH determined by the conditions

ΩpRH, ¨q ” 0 and ΛpRHq ” 1.

By analogy with contact forms, we will refer to RH as the Reeb vector field of H. It reduces
to the usual contact notion of the Reeb vector field for Λ whenever the latter happens also to
be a contact form; SHS with this property will be said to be of contact type. Note that this
definition does not require Ω to exact, though pdΛ,Λq is always an example of an SHS when
Λ is contact. If dimM “ 3, we will say that H “ pΩ,Λq is of confoliation type whenever

Λ ^ dΛ ě 0,

which is equivalent to the condition dΛ|Ξ ě 0 and means that Ξ Ă TM is a confoliation in
the sense of [ET98].

Stable Hamiltonian structures arise naturally in the context of stable hypersurfaces as
defined in [HZ94]. Given a symplectic manifold pW,ωq, a compact hypersurface M Ă W is
called stable if there exists a vector field Z on a neighborhood of M in W that is everywhere
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transverse to M and determines a 1-parameter family of hypersurfaces with isomorphic char-
acteristic line fields: more precisely, this means that if Φt

Z denotes the flow of Z, then the
real line bundle

ker
`
pΦt

Zq˚ω|TM

˘
Ă TM

is independent of t near t “ 0. In this case we call Z a stabilizing vector field for M , and
the pair pΩ,Λq defined by

Ω :“ ω|TM , Λ :“ ιZω|TM

is an SHS on M . One can use the Moser deformation trick to show that a neighborhood of
M in pW,ωq is then symplectomorphic to a collar of the form

(2.1)
`
p´δ, δq ˆM,dptΛq ` Ω

˘

for sufficiently small δ ą 0, where t denotes the coordinate on p´δ, δq and the symplectomor-
phism identifies t0u ˆ M with M Ă W . Conversely, dptΛq ` Ω is symplectic on p´δ, δq ˆ M

whenever pΩ,Λq is an SHS and δ ą 0 is sufficiently small. The following variant of (2.1) is
less commonly seen in the literature but will be convenient for our purposes: defining the
alternative coordinate r :“ logpt ` 1q on the first factor and adjusting the value of δ ą 0
accordingly, (2.1) becomes

(2.2)
`
p´δ, δq ˆM,d pper ´ 1qΛq ` Ω

˘
.

As an important special case, Z is always stabilizing if it is a Liouville vector field transverse
toM , i.e. LZω “ ω. In this case λ :“ ιZω satisfies dλ “ ω and restricts toM as a contact form
α :“ λ|TM , hence the resulting stable Hamiltonian structure is pdα, αq and the symplectic
structure in (2.2) takes the form dperαq, one of the standard formulas for the symplectization
R ˆM of the contact manifold pM,Ξ “ kerαq.

By analogy with the contact case, one can define the symplectization of pM,Hq for any
stable Hamiltonian structure H “ pΩ,Λq by choosing suitable diffeomorphisms of (2.2) with
R ˆ M : equivalently, this means we consider R ˆM with the family of symplectic forms ωϕ

defined by

(2.3) ωϕ :“ d
´`
eϕprq ´ 1

˘
Λ
¯

` Ω,

where ϕ is chosen arbitrarily from the set

(2.4) T :“
 
ϕ P C8pR, p´δ, δqq

ˇ̌
ϕ1 ą 0

(
.

More generally, suppose pW,ωq is a compact 2n-dimensional symplectic manifold with stable
boundary BW “ ´M´

š
M`, equipped with a stabilizing vector field Z that points inward

at M´ and outward at M`. Denote the induced SHS on M˘ by H˘ “ pΩ˘,Λ˘q; note that
the orientation conventions here are chosen such that Λ˘ ^ Ωn´1

˘ ą 0 on M˘. We can now
identify neighborhoods of M˘ in pW,ωq symplectically with collars of the form

`
r0, δq ˆM`, d

`
per ´ 1qΛ`

˘
` Ω`

˘
,

`
p´δ, 0s ˆM´, d

`
per ´ 1qΛ´

˘
` Ω´

˘
.

Modifying (2.4) to

(2.5) T :“
 
ϕ P C8pR, p´δ, δqq

ˇ̌
ϕ1 ą 0 and ϕprq “ r for r near 0

(
,

we can use any ϕ P T to define a symplectic completion pxW,ωϕq of pW,ωq by

xW :“
`
p´8, 0s ˆM´

˘
YM´

W YM`

`
r0,8q ˆM`

˘
,
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where the above collar neighborhoods are used to glue the pieces together smoothly and the
symplectic form is defined by

ωϕ :“

$
’&
’%

d
`
peϕprq ´ 1qΛ´

˘
` Ω´ on p´8, 0s ˆM´,

ω on W,

d
`
peϕprq ´ 1qΛ`

˘
` Ω` on r0,8q ˆM`.

2.2. Finite energy holomorphic curves. Given a stable Hamiltonian structureH “ pΩ,Λq
with induced hyperplane field Ξ “ ker Λ and Reeb vector field RH, we denote by J pHq
the space of R-invariant almost complex structures on the symplectization R ˆ M that are
compatible with H, meaning that for J P J pHq,

(i) JBr “ RH, where Br denotes the unit vector in the R-direction;
(ii) JpΞq “ Ξ and Ωp¨, J ¨q defines a bundle metric on Ξ.

In the special case pΩ,Λq “ pdα, αq with α a contact form, this reproduces the standard
definition for almost complex structures compatible with contact forms, and we shall in this
case abbreviate

J pαq :“ J pHq, where H :“ pdα, αq.

The following trivial observation will be helpful because it permits the use of a slightly non-
standard stable Hamiltonian structure (in particular with Ω non-exact) for computing holo-
morphic curve invariants that are usually defined in terms of contact forms.

Proposition 2.1. Suppose dimM “ 3, α is a contact form, and Ω is any closed 2-form for
which H :“ pΩ, αq is a stable Hamiltonian structure. Then J pHq “ J pαq.

Proof. Since α is contact, the Reeb vector field RH is the same as the contact Reeb vector
field for α. The only difference between the conditions defining J pHq and J pαq is thus that
J : Ξ Ñ Ξ must be compatible with Ω|Ξ in the first case and compatible with dα|Ξ in the
second case. Since Ξ is complex 1-dimensional and Ω|Ξ and dα|Ξ induce the same orientation,
these conditions are identical. �

Any given J P J pHq is tamed by all of the symplectic forms ωϕ in (2.3) on the sym-
plectization R ˆ M if the constant δ ą 0 in (2.4) is chosen sufficiently small; in the case
dimM “ 3, which will be our primary interest, J is also ωϕ-compatible for all ϕ P T . Given a
Riemann surface pS, jq and J-holomorphic curve u : pS, jq Ñ pR ˆM,Jq, we therefore define
the energy of u by

(2.6) Epuq :“ sup
ϕPT

ż

S

u˚ωϕ.

The same formula can be used to define the energy of a J-holomorphic curve u : pS, jq Ñ

pxW,Jq, where xW denotes the completion of a cobordism pW,ωq with stable boundary ´M´
š
M`

as in §2.1, and J is chosen from the space

J pω,H`,H´q

consisting of almost complex structures J on xW such that J |W is compatible with ω and

J` :“ J |r0,8qˆM`
P J pH`q,

J´ :“ J |p´8,0sˆM´
P J pH´q.

Any J P J pω,H`,H´q is ωϕ-tame on xW for every ϕ P T , hence the energy (2.6) is always
nonnegative, and is positive unless the curve is constant.
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Remark 2.2. The notion of energy described here is slightly different from the one defined in
[BEH`03], but is equivalent to it in the sense that uniform bounds on either imply uniform
bounds on the other.

We will always take the domain of our holomorphic curves to be punctured Riemann
surfaces 9S “ SzΓ, i.e. pS, jq is a closed Riemann surface and Γ Ă S is a finite ordered set.

The surface 9S will also be assumed to be connected unless otherwise specified. When this

needs to be emphasized, we will call a curve u : 9S Ñ xW connected whenever its domain is
connected; if 9S is disconnected, then the connected components of u are defined to be its

restriction to the connected components of 9S. A punctured J-holomorphic curve u : 9S Ñ xW
with positive finite energy is either positively or negatively asymptotic to periodic orbits
of RH`

or RH´
respectively at each of its nonremovable punctures; in short, finite energy

punctured J-holomorphic curves are asymptotically cylindrical, cf. [BEH`03].

Remark 2.3. The terms “finite energy” and “asymptotically cylindrical” are often used as
synonyms when describing J-holomorphic curves, and we shall generally consider these con-
ditions to be implied whenever we refer to “punctured” holomorphic curves. The underlying
presumption, unless stated otherwise, is always that the domain is the complement of a finite
(sometimes empty) set of points in a closed Riemann surface, and that all the punctures are
non-removable.

We consider two holomorphic curves equivalent if they are related to each other by biholo-
morphic maps of their domains that take punctures to punctures with the ordering of punc-
tures preserved. The resulting equivalence classes are called unparametrized J-holomorphic

curves. We will often abuse notation and use a parametrized map u : 9S Ñ xW to refer to
the unparametrized curve that it represents. When speaking of moduli spaces, we will always
mean a space of unparametrized J-holomorphic curves that are asymptotically cylindrical,
with a topology such that a sequence is considered to converge if and only if one can find
parametrizations with a fixed punctured domain 9S “ SzΓ such that the complex structures

on S converge in C8 while the maps 9S Ñ xW converge in C8 on compact subsets and in
C0 up to the cylindrical ends (measured via any choice of translation-invariant metric on the
ends). For a given J , the corresponding moduli will typically be denoted by

MpJq.

In the R-invariant case J P J pHq, an important example of a finite energy holomorphic
curve is the trivial cylinder

u : R ˆ S1 Ñ R ˆM : ps, tq ÞÑ pTs, xpT tqq

over any orbit x : R Ñ M with xpT q “ xp0q for T ą 0; this curve can be parametrized as a
punctured sphere with one positive and one negative puncture, both approaching the same
orbit. We shall sometimes abbreviate the unparametrized curve represented by the trivial
cylinder described above as

R ˆ γ,

where γ : S1 Ñ M : t ÞÑ xpT tq specifies the periodic orbit in question, which may in general
be multiply covered.

If the asymptotic orbits of a finite energy J-holomorphic curve u are all nondegenerate
or Morse-Bott, then the moduli space MpJq near u can be described as the zero set of a
Fredholm section whose index corresponds to the virtual dimension of the moduli space
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near u. We will call this virtual dimension the index of u and denote it by indpuq P Z.
By a punctured version of the Riemann-Roch theorem (see [Sch95]), the index of a curve

u : 9S Ñ xW can be written as

(2.7) indpuq “ pn´ 3qχp 9Sq ` 2cΦ1 pu˚TxW q `
ÿ

zPΓ`

µΦCZpγzq ´
ÿ

zPΓ´

µΦCZpγzq,

where dimR
xW “ 2n, Γ “ Γ`

š
Γ´ are the positive and negative punctures with asymptotic

orbits tγzuzPΓ, Φ is an arbitrary choice of complex trivializations for the bundles Ξ˘ “ ker Λ˘

along these orbits, µΦCZpγzq P Z are the Conley-Zehnder indices relative to these trivializations,

and cΦ1 pu˚TxW q is the relative first Chern number of u˚TxW Ñ 9S with respect to the asymptotic
trivialization determined up to homotopy by Φ. The curve u is said to be Fredholm regular
if it represents a transverse intersection of the aforementioned Fredholm section with the zero
section: in this case a neighborhood of u in MpJq is a smooth orbifold (or manifold if u has
no automorphisms) of dimension indpuq. For further discussion of Fredholm regularity, see
for example [Wen10b].

Every asymptotically cylindrical holomorphic curve is either simple (and thus somewhere
injective) or multiply covered, where the latter means that it factors as the composition of
another J-holomorphic curve with a branched cover of closed Riemann surfaces with degree at
least two. By various standard transversality results (see for example [MS04,Dra04,Wenb]),
the relevant spaces of compatible almost complex structures admit comeager subsets for which
all simple curves are Fredholm regular. We will generally say that J is generic whenever it
belongs to the comeager subset for which the relevant transversality result of this type holds.

It is sometimes useful to observe that if dimM “ 3 and J P J pHq where H “ pΩ,Λq is a

confoliation-type SHS, then every J-holomorphic curve u : 9S Ñ R ˆ M satisfies u˚dΛ ě 0.
Since the period of any closed orbit of RH parametrized by a loop γ : S1 Ñ M is given byş
S1 γ

˚Λ, the following is an immediate consequence of Stokes’ theorem:

Proposition 2.4. Suppose dimM “ 3, H “ pΩ,Λq is a confoliation-type stable Hamiltonian

structure, J P J pHq and u : 9S Ñ R ˆ M is a nonconstant finite energy J-holomorphic
curve with positive and/or negative punctures Γ “ Γ` Y Γ´ asymptotic to the periodic orbits
tγzuzĂΓ. Then #Γ` ě 1, and the periods T pγzq ą 0 of the orbits γz satisfy

ÿ

zPΓ`

T pγzq ´
ÿ

zPΓ´

T pγzq ě 0.

�

Given J P J pω,H`,H´q with the closed orbits of RH`
and RH´

assumed nondegenerate or

Morse-Bott, moduli spaces of punctured J-holomorphic curves in pxW,Jq with uniform energy
bounds satisfy a compactness theorem described in [BEH`03]. The compactified moduli space

MpJq

consist of so-called (stable) holomorphic buildings, which generalize the “broken” holo-
morphic curves familiar from Floer homology. For our purposes,4 the objects in this compact-

ification can be described as follows. A nodal J-holomorphic curve in xW , also sometimes

4In our description of holomorphic buildings we ignore certain technical details such as decorations, which
play no role in our arguments; these details are explained fully in [BEH`03].
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called a holomorphic building of height 1, is an equivalence class of tuples

pS, j,Γ, u,∆q

where pS, jq is a closed but not necessarily connected Riemann surface, Γ Ă S is a finite

ordered set defining the punctured surface 9S :“ SzΓ, u : p 9S, jq Ñ pxW,Jq is an asymptotically
cylindrical J-holomorphic curve and ∆ is a finite unordered set of unordered pairs tz`, z´u

of distinct points in 9S such that upz`q “ upz´q. Each pair tz`, z´u P ∆ is called a node,

and we sometimes also refer to the individual points z˘ P 9S as nodal points. Two nodal
curves are equivalent if they are related by a biholomorphic identification of their domains
that preserves all the structure (including ordering of the punctures and pairing of the nodal
points). Note that the asymptotically cylindrical behavior of u automatically partitions Γ into
sets of positive and negative punctures Γ “ Γ`

š
Γ´. Nodal curves in the symplectizations

R ˆM˘ can be defined in the same way, with the additional feature that R-translations act
on the space of nodal curves, so that one can also strengthen the equivalence relation and
consider R-equivalence classes of nodal curves.

A holomorphic building in pxW,Jq can now be regarded as a finite ordered list of nodal
curves u “ pu1, . . . , uN q for some N P N, which are called levels of u, and have the following
properties and additional data:

‚ Exactly one of the levels uM for some M P t1, . . . , Nu is a nodal curve in xW ; this
is called the main level of the building. It is also allowed to be empty, meaning its
domain is the empty set.

‚ Every level uℓ for ℓ ‰ M is a nonempty R-equivalence class of nodal curves in one of
the symplectizations R ˆ M˘; M´ for ℓ ă M and M` for ℓ ą M . These are called
lower and upper levels respectively.

‚ For each ℓ P t1, . . . , N ´ 1u, u is endowed with the additional data of a bijection from
the positive punctures of uℓ to the negative punctures of uℓ`1 such that the asymptotic
orbits of punctures that correspond under this bijection are identical. We will refer
to corresponding pairs of punctures as breaking punctures and their asymptotic
orbits as breaking orbits.

The positive and negative punctures of the building u “ pu1, . . . , uN q are defined as the
positive punctures of uN and the negative punctures of u1 respectively, and the connected
components of u are the connected components of its constituent levels. One can define

from u a topological surface pS obtained from the disjoint union of the domains of all the
levels by performing connected sums along all the paired-up nodal points forming nodes and
all the corresponding breaking punctures. The building is then said to be connected if

and only if pS is connected, and its arithmetic genus is the genus of pS. This punctured
surface is diffeomorphic to the domain of any sequence of smooth curves that converge to
the building in the SFT-topology; in particular, any such sequence admits a sequence of

parametrizations uk : 9S Ñ xW that can be transformed into a C0-convergent sequence of
continuous maps 9S Ñ W by projecting cylindrical ends and upper/lower levels to M˘ and
gluing the components of the limiting building together along nodes and breaking orbits. The
buildings that form MpJq are also always assumed to be stable, which means that none of
the upper or lower levels is a disjoint union of trivial cylinders, and any connected component
with genus zero on which the map is constant (a so-called ghost bubble) has at least three
nodal points. This condition guarantees that limits in the SFT-topology are unique. We shall
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PSfrag replacements

S1

xW

R ˆM`

R ˆM´

Figure 1. The picture at the left shows a holomorphic building with arith-
metic genus two, which is broken up at the right into three maximal non-nodal
subbuildings, one with arithmetic genus 1 and two with arithmetic genus 0.

generally describe a connected component of a holomorphic building as nontrivial if it is
nonconstant and is not a trivial cylinder.

For moduli spaces of curves in a symplectization pRˆM,Jq with J P J pHq, the distinction
between lower/main/upper levels is meaningless: instead, one compactifies MpJq{R to obtain
a space MpJq of buildings with at least one and at most finitely many levels, all of them
consisting of R-equivalence classes of (possibly disconnected and nodal) unparametrized curves
in R ˆM .

Within the space of holomorphic buildings, we shall sometimes make a distinction between
nontrivial buildings and smooth curves: the latter means buildings that have only one
level and no nodes, hence they are also elements of MpJq, whereas by “nontrivial buildings”
we mean everything in MpJqzMpJq.

Since the index of a holomorphic curve depends only on its asymptotic ends and relative
homology class, the index of a building can be defined formally by a natural generalization

of (2.7) replacing 9S with pS, and in this way the index extends to a continuous Z-valued
function on MpJq.

For the purposes of the next statement, observe that given any building u, deleting the
nodes from all levels changes u into a disjoint union of some unique collection of (not nec-
essarily stable) connected holomorphic buildings u1, . . . , um, each endowed with the extra
structure of a finite set of points in their domains (the former nodal points). We shall in this
case call u1, . . . , um the maximal non-nodal subbuildings of u (see Figure 1). The relation
in the following proposition is an immediate consequence of (2.7) via the observation that if
9S is a surface obtained from a collection of surfaces 9S1, . . . , 9Sm by performing connected sums
at a set of N distinct pairs of distinct points tz`

j , z
´
j u Ă 9S1

š
. . .

š
9Sm for j “ 1, . . . , N , then

χp 9Sq “
řm

i“1 χp 9Siq ´ 2N .
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Proposition 2.5. For any holomorphic building u in xW with N ě 0 nodes and Ni ě 0 nodal
points on each of its maximal non-nodal subbuildings ui for i “ 1, . . . ,m,

indpuq “
mÿ

i“1

rindpuiq ´ pn´ 3qNis “
mÿ

i“1

indpuiq ´ 2pn ´ 3qN,

where dimxW “ 2n. �

Let us specialize the above result to dimension four and consider the role played by constant
components. These have no punctures but must have nodal points; setting n “ 2, (2.7) implies
that a constant component ui with domain S of genus g has index ´χpSq “ 2g ´ 2, which
is nonnegative except in the case of ghost bubbles. Stability requires however that the Euler
characteristic of S should always become negative after removing nodal points, thus

indpuiq `Ni “ ´χpSq `Ni ą 0.

This gives rise to the following corollary of Proposition 2.5:

Proposition 2.6. Assume dimR
xW “ 4 and u is a holomorphic building with m nonconstant

maximal non-nodal subbuildings u1, . . . , um, each with Ni ě 0 nodal points. Then

indpuq ě
mÿ

i“1

rindpuiq `Nis ,

with equality if and only if u has no constant components. In particular, if u has arithmetic
genus 0 and has at least one node, then

indpuq ě 2 `
mÿ

i“1

indpuiq

with equality if and only if there is exactly one node and no ghost bubbles.

Proof. The second statement follows because in the case of arithmetic genus zero, every
ghost bubble has at least three nodal points and this implies the existence of at least three
nodal points on nonconstant components as well; any other scenario would lead to positive
arithmetic genus. �

2.3. Intersection theory. In this section we summarize some useful facts from the intersec-
tion theory of asymptotically cylindrical holomorphic curves, due to Siefring [Sie11]. A more
elementary introduction to this theory can also be found in [Wen20]. See also the summary
given in [FS18, Section 3.3].

Assume as in §2.1 that xW is the completion of a symplectic cobordism pW,ωq with stable
boundary BW “ ´M´

š
M` carrying stable Hamiltonian structures H˘ “ pΩ˘,Λ˘q, and

J P J pω,H`,H´q. Siefring’s intersection theory associates to any pair of asymptotically

cylindrical (but not necessarily J-holomorphic) maps u and v into xW with nondegenerate
asymptotic orbits an intersection number

u ˚ v P Z,

which depends only on the asymptotic orbits of the two maps and their relative homology
classes. It is nonnegative whenever u and v are J-holomorphic curves with non-identical
images, and strictly positive whenever these have nonempty intersection. It also extends
in a continuous way to the compactified moduli space of holomorphic curves as defined in
[BEH`03]: one can define u ˚ v for two holomorphic buildings, and it is additive across levels
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(with extra nonnegative breaking contributions for common breaking orbits between two
levels) and invariant under homotopies through the compactified moduli space, including “in-
finite R-translations” which shove levels up or down or insert or delete trivial cylinders. When
u and v are holomorphic curves with non-identical images, u ˚ v counts their actual intersec-
tions (with multiplicity when they are non-transverse), in addition to a nonnegative count of
asymptotic contributions, i.e. “hidden” intersections that can emerge from infinity under
perturbations. The latter can be expressed in terms of asymptotic winding numbers: fixing
a choice of complex trivialization Φ for each of the bundles Ξ˘ “ ker Λ˘ along closed Reeb
orbits, every nondegenerate Reeb orbit γ has certain extremal winding numbers

αΦ
´pγq ď αΦ

`pγq P Z

such that by the asymptotic formula of [HWZ96], the asymptotic winding of any holomorphic
curve approaching γ at a positive end is bounded from above by αΦ

´pγq, and at a negative

end it is bounded from below by αΦ
`pγq. These are the winding numbers relative to Φ of

the so-called (positive and negative) extremal eigenfunctions that appear in asymptotic
formulas, and they are related to the Conley-Zehnder index by the formulas

µΦCZpγq “ 2αΦ
´pγq ` ppγq “ 2αΦ

`pγq ´ ppγq,

ppγq “ αΦ
`pγq ´ αΦ

´pγq P t0, 1u,
(2.8)

proved in [HWZ95]. The general definition of u ˚ v expresses it in terms of the relative
intersection number

u ‚Φ v P Z,

which is homotopy invariant but depends on the choice of trivialization Φ whenever u and v
have asymptotic orbits in common: u‚Φv is the algebraic count of intersections between u and
a generic small perturbation of v that pushes it in the direction determined by Φ at infinity.
Notice that this notion is also well defined when u “ v and it extends in a natural way to the
case where u and v are holomorphic buildings, simply by adding relative intersection numbers
across levels. The following is then a direct consequence of the definition in [Sie11] and will
suffice for computing u ˚ v in our applications:

Lemma 2.7. Suppose u and v are holomorphic buildings with only positive punctures, and
that for each asymptotic orbit γ of u or v, there exists a trivialization Φ along the underlying
simple orbit covered by γ such that in the induced trivialization along γ, αΦ

´pγq “ 0. Then
u ˚ v “ u ‚Φ v. �

The usual adjunction formula for the closed case can now be generalized to somewhere
injective punctured holomorphic curves in the form

(2.9) u ˚ u “ 2 rδpuq ` δ8puqs ` cN puq ` rσ̄puq ´ #Γs .

Here δpuq is the (nonnegative) algebraic count of double points and critical points, and δ8puq
is an (also nonnegative) asymptotic contribution such that δpuq`δ8puq is homotopy invariant
and counts the double points of a generic perturbation of u. The normal Chern number
cN puq P Z is another homotopy invariant quantity which, in the immersed case, equals the
relative first Chern number of the normal bundle of u with respect to trivializations determined
by the extremal eigenfunctions at the asymptotic orbits. We denote by Γ the set of punctures
of u, and σ̄puq denotes the spectral covering number, which is the sum over all z P Γ of the
covering multiplicities of the relevant extremal eigenfunctions. In many applications one does
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not need to compute σ̄puq, as it is at least immediate from the definition that σpuq ě #Γ,
hence (2.9) gives rise to an inequality

(2.10) u ˚ u ě 2 rδpuq ` δ8puqs ` cN puq.

When more precise information is needed, the following will suffice for our purposes:

Lemma 2.8. Suppose u is a somewhere injective holomorphic curve with only positive punc-
tures which satisfy the hypothesis of Lemma 2.7. Then σ̄puq is the sum of the covering
multiplicities of the asymptotic orbits of u. In particular, σ̄puq “ #Γ whenever all asymptotic
orbits are simply covered. �

The easiest way to compute cN puq is usually via the Fredholm index, as it satisfies

(2.11) 2cN puq “ indpuq ´ 2 ` 2g ` #Γ0,

where g ě 0 is the genus of the domain of u and #Γ0 ě 0 denotes the number of punctures at
which the Conley-Zehnder indices of the asymptotic orbits are even. In the R-invariant case
xW “ R ˆM with J P J pHq for a fixed stable Hamiltonian structure H “ pΩ,Λq, the normal
Chern number also appears in the important relation

(2.12) 0 ď windπpuq ` def8puq “ cN puq,

which was originally proved by Hofer-Wysocki-Zehnder [HWZ95] and applies to any curve u
that is not a cover of a trivial cylinder. Here windπpuq ě 0 is an integer which algebraically
counts the non-immersed points of the projection of u to M , and def8puq ě 0 is an integer
measuring the difference of the asymptotic winding at each end from the relevant extremal
value αΦ

˘pγq. We refer to [Wen10a, §4] for a fuller discussion of this relation using the same
notation used here (only some of which appeared in [HWZ95]).

Remark 2.9. The theory defined in [Sie11] applies to any moduli spaces of asymptotically
cylindrical holomorphic curves with fixed asymptotic orbits satisfying a nondegeneracy or
Morse-Bott condition. One can also define a more general theory allowing moduli spaces
whose asymptotic orbits move freely in Morse-Bott families—the main results of this theory
are outlined in [Wen10b, §4], but we will not need this here.

In many applications, a special role is played by somewhere injective curves whose intersection-
theoretic properties force them not only to be embedded but also to avoid intersecting their

neighbors in the moduli space. In particular, a J-holomorphic curve u : 9S Ñ xW is called
nicely embedded if it is somewhere injective and satisfies

δpuq “ δ8puq “ 0 and u ˚ u ď 0.

This is a slight generalization of a definition that first appeared (with an extra “stability”
condition) in [Wen10b]. It simplifies slightly in the R-invariant case since every curve u can
then be perturbed via R-translation to a nearby curve, which will be different unless u is a
cover of a trivial cylinder, hence u ˚ u ě 0 always holds in such cases. The nicely embedded
condition can thus be reduced in the R-invariant case to

u ˚ u “ 0 or u is a trivial cylinder,

as (2.12) implies in this case that cN puq ě 0, so δpuq “ δ8puq “ 0 then follows from the
adjunction inequality (2.10). An additional consequence of (2.12) in the R-invariant case is
that nicely embedded curves other than trivial cylinders satisfy windπpuq “ def8puq “ 0, and
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the homotopy invariance of u˚u “ 0 implies that they never intersect their own R-translations,
hence their projections to the 3-manifold

9S
u

ÝÑ R ˆM
pr

ÝÑ M

are embedded. Nicely embedded curves in the symplectization also satisfy a strong compact-
ness theorem proved in [Wen10a], which we will make use of to prove uniqueness in §4.5.

The following lemma can be applied in the case u “ v to characterize nicely embedded
curves:

Lemma 2.10. Assume J P J pHq for a stable Hamiltonian structure H on M . For any pair
of (possibly identical) connected finite energy J-holomorphic curves u and v in R ˆM which
are not covers of trivial cylinders and have nondegenerate asymptotic orbits, we have u˚v “ 0
whenever the following conditions hold:

(1) There is no simply covered orbit γ with odd Conley-Zehnder index such that covers
of γ appear at negative ends of u and positive ends of v.

(2) For every negative asymptotic orbit γ of u, v ˚ pR ˆ γq “ 0.
(3) For every positive asymptotic orbit γ of v, u ˚ pR ˆ γq “ 0.

Proof. By the “infinite R-translation” used in [Sie11, Lemma 5.7, Theorem 5.8], we have
u ˚ v “ u` ˚ v´, where u` and v´ are 2-level holomorphic buildings defined as follows:

‚ u` has u on the top level and the trivial cylinders over its negative asymptotic orbits
on the bottom level,

‚ v´ has v on the bottom level and the trivial cylinders over its positive asymptotic
orbits on the top level.

To compute u` ˚ v´, we sum the respective intersection numbers of corresponding levels,
together with breaking contributions, all of which are nonnegative. The top level thus con-
tributes u ˚ pR ˆ γq for every positive asymptotic orbit γ of v, and the bottom level similarly
contributes v ˚ pRˆγq for every negative asymptotic orbit γ of u. The breaking contributions
come from orbits which occur as breaking orbits of both buildings, but these contributions
are zero for orbits with even Conley-Zehnder index since the the eigenvectors for the largest
negative eigenvalue and for the smallest positive eigenvalue of the corresponding asymptotic
operator have the same winding (cf. [Wen20, Appendix C.5]). �

Intersection numbers between trivial cylinders and their own covers are usually tricky to
deal with, as they need not be nonnegative in general, but they are easy at least in the
following special case:

Lemma 2.11. Suppose γ is a simply covered nondegenerate periodic orbit of RH in M with
even Conley-Zehnder index, and u and v denote any J-holomorphic covers of the trivial
cylinder R ˆ γ. Then u ˚ v “ 0.

Proof. Note that all covers γm of γ also have even Conley-Zehnder index, hence (2.8) gives
αΦ

`pγmq ´ αΦ
´pγmq “ 0. The result now follows directly from the definition of u ˚ v [Sie11,

Equation (2.3)]. �

2.4. Automatic transversality and coherent orientations. We continue under the as-
sumption that pW,ωq is a compact symplectic cobordism with stable boundary components

BW “ ´M´
š
M` carrying stable Hamiltonian structures H˘ “ pΩ˘,Λ˘q, and xW de-

notes the completion obtained by attaching cylindrical ends. The following special case of
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a transversality criterion from [Wen10b] is often useful because it requires neither genericity
nor somewhere injectivity.

Proposition 2.12. Assume J P J pω,H`,H´q, dimRW “ 4, and u : 9S Ñ xW is an immersed
finite-energy J-holomorphic curve asymptotic to nondegenerate Reeb orbits and satisfying

indpuq ą cN puq.

Then u is Fredholm regular. �

The phenomenon underlying this transversality criterion also has useful consequences for
orientations of moduli spaces, in particular for spaces of dimension 0, where orienting the
moduli space simply means associating a sign to each element. We shall use the coherent
orientations framework described by Bourgeois and Mohnke [BM04], based on earlier work of
Floer and Hofer [FH93]. Notice that by (2.11), a curve u with index 0 can satisfy indpuq ą
cN puq only if cN puq “ ´1, in which case u must have genus 0 and all its asymptotic orbits
have odd Conley-Zehnder index. The following result will play a key role in §6 for proving
stability of J-holomorphic foliations under homotopies.

Proposition 2.13. In the 4-dimensional setting of Proposition 2.12, suppose u0 and u1 are
two immersed J-holomorphic curves with the same number of punctures and identical sets of
positive and/or negative asymptotic orbits, and also satisfying

indpuiq “ 0, cN puiq “ ´1, for i “ 0, 1.

Then any choice of coherent orientations provided by [BM04] assigns to u0 and u1 the same
sign.

Let us state a corresponding result for the R-invariant setting pR ˆ M,Jq with J P J pHq
before discussing the proofs of both. Since we usually want to consider MpJq{R rather
than MpJq, the important rigid objects in this space are represented by curves of index 1
that are not covers of trivial cylinders. The relation (2.12) implies that such curves can
satisfy indpuq ą cN puq only if cN puq “ 0, in which case (2.11) implies that the genus is zero
and exactly one asymptotic orbit has even Conley-Zehnder index. Regular index 1 curves
in pR ˆ M,Jq come in 1-dimensional moduli spaces of curves related to each other by R-
translation, and the R-action thus induces a tautological orientation on these spaces. If a
global orientation of MpJq is given, one then associates a positive sign to rus P MpJq{R if
the given orientation matches the tautological one induced by the R-action, and a negative
sign otherwise.

We must briefly recall some specifics about asymptotic eigenfunctions. If u : 9S Ñ xW
has a positive/negative puncture z P Γ˘ asymptotic to a nondegenerate orbit γ, then the
asymptotic formula of [HWZ96] and later refinements in [Mor03,Sie08] describe the approach
of u to γ in terms of eigenfunctions of the asymptotic operator

Aγ : Γpγ˚Ξ˘q Ñ Γpγ˚Ξ˘q,

a symmetric first-order differential operator that depends only on γ, and whose eigenfunctions
were mentioned already in §2.3. Parametrizing the trivial cylinder over γ as uγ : RˆS1 Ñ Rˆ
M˘ : ps, tq ÞÑ pTs, γptqq and choosing a translation-invariant metric to define the exponential
map on RˆM˘, one can find coordinates ps, tq P R` ˆS1 for the cylindrical end approaching
z P Γ˘, and a section hz of u˚

γΞ˘ such that

ups, tq “ expuγps,tq hzps, tq for s close to ˘8,
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where

(2.13) hzps, tq “ eλs pezptq ` rzps, tqq .

Here λ P R is an eigenvalue of Aγ with ˘λ ă 0, ez P Γpγ˚Ξ˘q is a nontrivial section belonging
to the corresponding eigenspace, and rz P Γpu˚

γΞ˘q is a remainder term satisfying |rzps, tq| Ñ 0
uniformly as s Ñ ˘8. Let

V ˘
γ Ă Γpγ˚Ξ˘q

denote the eigenspace of Aγ with the largest negative eigenvalue if z P Γ` or the small-
est positive eigenvalue if z P Γ´. We then use (2.13) to define the leading asymptotic
eigenfunction ev8

z puq P V ˘
γ of u at z by

ev8
z puq :“

#
ez if ez P V ˘

γ ,

0 otherwise.

The case ev8
z puq “ 0 occurs if and only if the exponential decay rate in (2.13) is faster than the

slowest rate allowed by the spectrum of Aγ . As implied by the notation, ev8
z can be thought

of as an asymptotic evaluation map from the moduli space to a finite-dimensional space
of eigenfunctions, and we will treat is as such in §6, cf. Lemma 6.9.

The following result can now be summarized by saying that for a pair of immersed and
automatically regular index 1 curves with the same asymptotic orbits in the symplectization
of a 3-manifold, their signs will match if and only if they each approach their unique even
orbit “from the same side”.

Proposition 2.14. AssumeM is a 3-manifold with stable Hamiltonian structure H “ pΩ,Λq,
J P J pHq, and u0 and u1 are two immersed J-holomorphic curves that are not covers of trivial
cylinders, have the same number of punctures and identical sets of positive and/or negative
asymptotic orbits, and satisfy

indpuiq “ 1, cN puiq “ 0, for i “ 0, 1.

Let ei P V ˘
γ for i “ 0, 1 denote the leading asymptotic eigenfunction of ui at its unique

puncture asymptotic to an orbit γ with even Conley-Zehnder index. Then

e1 “ κe0 for some κ P Rzt0u,

and for any choice of coherent orientations provided by [BM04], the signs assigned to ru0s
and ru1s as elements of MpJq{R match if and only if κ ą 0.

Both propositions will be proved by similar arguments. To prepare for this, we need to
recall a few details from [BM04] and [Wen10b]; we shall use notation consistent with the
latter reference.

To any finite-energy J-holomorphic curve u : 9S Ñ xW with punctures Γ “ Γ` Y Γ´ posi-
tively/negatively asymptotic to Reeb orbits tγzuzPΓ, one can associate a Fredholm operator

Du :W 1,p,δ
`
u˚TxW

˘
‘ VΓ Ñ Lp,δ

`
HomCpT 9S, u˚TxW q

˘
,

called the linearized Cauchy-Riemann operator at u. Here p ą 2, and W 1,p,δpu˚TxW q

denotes the Banach space of Sobolev classW 1,p sections η of u˚TxW satisfying the exponential
decay condtion eδsη P W 1,ppr0,8qˆS1q in holomorphic cylindrical coordinates ps, tq P r0,8qˆ

S1 near each puncture, where δ ą 0 is a small constant. The space VΓ Ă Γpu˚TxW q is of
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dimension 2#Γ and consists of smooth sections that are constant near infinity in a suitable
choice of trivialization. Since Du is Fredholm, it has a determinant line

detpDuq “ Λmax kerDu b pΛmax cokerDuq˚.

The asymptotic form of Du near each puncture z P Γ˘ is determined by the asymptotic
operator Aγz . The procedure of [BM04] for defining orientations is then to orient the deter-
minant line bundles over the topological spaces of isomorphism classes of Cauchy-Riemann
type Fredholm operators of the above form with fixed asymptotic operators at the punctures.
This is done so as to make the orientations compatible with certain linear gluing operations,
so that the resulting orientations are called coherent. They give rise to orientations for spaces

of J-holomorphic curves in the following way. If u : p 9S, jq Ñ pxW,Jq is Fredholm regular, then
the implicit function theorem gives the moduli space MpJq of unparametrized J-holomorphic
curves the structure of a smooth orbifold of dimension indpuq near u, with its tangent space
at u idenified with

(2.14) TuMpJq “ kerDB̄Jpj, uq
L
autp 9S, jq.

Here DB̄Jpj, uq denotes the linearization of the nonlinear Cauchy-Riemann operator

B̄ : T ˆ B Ñ E : pj, uq ÞÑ Tu` Jpuq ˝ Tu ˝ j,

where B is a Banach manifold of W 1,p-smooth maps 9S Ñ xW whose tangent space at u
is the domain of Du, T is a smooth family of complex structures on 9S parametrizing a
neighborhood of rjs in Teichmüller space, and E Ñ T ˆ B is a smooth Banach space bundle

whose fiber over pj, uq is the target space of Du. The space autp 9S, jq is the Lie algebra of the

automorphism group of p 9S, jq, which embeds into kerDB̄pj, uq via the map taking vector fields

X on 9S to sections TupXq of u˚TxW . Since autp 9S, jq is naturally a complex vector space, any
orientation of kerDB̄Jpj, uq gives rise to an orientation of TuMpJq, thus it suffices to orient
the determinant line of DB̄pj, uq, which is equivalent to orienting its kernel since DB̄pj, uq is
assumed surjective in the Fredholm regular case. This operator takes the form

Lj,u :“ DB̄pj, uq : TjT ‘ TuB Ñ Epj,uq : py, ηq ÞÑ Duη ` Jpuq ˝ Tu ˝ y.

Any continuous family of J-holomorphic curves gives rise to a continuous family of Fredholm
operators of this form, all of which can be retracted through Fredholm operators to the
corresponding linearized Cauchy-Riemann operators via the homotopy

(2.15) Ls
j,upy, ηq :“ Duη ` s Jpuq ˝ Tu ˝ y, s P r0, 1s.

Taking s “ 0, we have kerL0
j,u “ TjT ‘ kerDu and cokerL0

j,u “ cokerDu. Since Teichmüller
space is also naturally complex, TjT has a canonical orientation, so that the orientation of
detpDuq defined in [BM04] induces an orientation of detpL0

j,uq, and we use the homotopy

tLs
j,uusPr0,1s to define from this an orientation of detpL1

j,uq, therefore orienting TuMpJq.

Recall now from [Wen10b] that if u : 9S Ñ xW is immersed and Nu Ñ 9S denotes its normal

bundle, the natural complex bundle splitting u˚TxW “ T 9S‘Nu decomposes Du in block form
as

(2.16) Du “

ˆ
DT

u DNT
u

0 DN
u

˙
,

whereDT
u andDN

u are real-linear Cauchy-Riemann type operators on T 9S and Nu respectively,
and the latter is called the normal Cauchy-Riemann operator of u. We can extend the
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splitting u˚TxW “ T 9S ‘ Nu over the circle compactification of the end near each puncture
z P Γ˘ so that Nu at the end is identified with γ˚

zΞ˘ and T 9S is identified with the trivial
complex subbundle generated by R and the Reeb vector field. The space VΓ can then be
chosen as a space of sections of T 9S, and DT

u identified with the standard Cauchy-Riemann

operator on 9S,

Dp 9S,jq : W
1,p,δpT 9Sq ‘ VΓ Ñ Lp,δpEndCpT 9Sqq,

i.e. the linearization at the identity of the nonlinear Cauchy-Riemann operator for asymp-
totically cylindrical holomorphic maps p 9S, jq Ñ p 9S, jq. The cokernel of this operator has a
natural identification with the tangent space to Teichmüller space, so one can always assume
that the map

TjT ‘
´
W 1,p,δpT 9Sq ‘ VΓ

¯
Ñ Lp,δpEndCpT 9Sqq

py,Xq ÞÑ jy ` Dp 9S,jqX
(2.17)

is surjective. Writing a section of u˚TxW “ T 9S ‘Nu as pX, ηq, this gives a decomposition of
Lj,u “ DB̄Jpj, uq as

(2.18) Lj,upy,X, ηq “
´
jy ` Dp 9S,jqX ` DNT

u η,DN
u η

¯
,

showing that Lj,u is surjective if and only if DN
u is surjective. Note also that kerDp 9S,jq is

naturally isomorphic to autp 9S, jq, so injecting the latter into kerLj,u as the subspace t0u ‘
kerDp 9S,jq ‘ t0u and using (2.14), we obtain from this expression a natural isomorphism

(2.19) TuMpJq “ kerLj,u

L
kerDp 9S,jq Ñ kerDN

u : rpy,X, ηqs ÞÑ η.

Proof of Proposition 2.13. Assume u0 and u1 are as stated in the proposition. Since (2.11)
implies that both have genus zero, their domains are diffeomorphic, and indpu0q “ indpu1q “ 0
implies that the complex line bundles Nu0

and Nu1
also admit a bundle isomorphism that is

asymptotic to their canonical identification at the ends. Let us assume first for simplicity that
u0 and u1 have isomorphic conformal structures on their domains, so we can represent them
by the same complex structure j on 9S and fix a single slice T parametrizing the Teichmüller
space near rjs. Then after identifying both Nu0

and Nu1
with some fixed complex line bundle

E Ñ 9S, we can assume DN
0 :“ DN

u0
and DN

1 :“ DN
u1

are Cauchy-Riemann type operators on
the same bundle over the same domain

DN
i :W 1,p,δpEq Ñ Lp,δpHomCpT 9S,Eqq, i “ 0, 1,

and these are related to Di :“ Dui
and Li :“ Lj,ui

for i “ 0, 1 as in (2.16) and (2.18) respec-
tively. Now since the space of Cauchy-Riemann type operators with fixed asymptotic orbits
is affine, we can choose a homotopy tDN

τ uτPr0,1s from DN
0 to DN

1 , which induces homotopies
tDτ u from D0 to D1 and tLτ u from L0 to L1. By [Wen10b, Proposition 2.2], the operators
DN

τ are always surjective, hence so are Lτ . Since indpu0q “ indpu1q “ 0, the kernel of Lτ is

therefore identical to the subspace autp 9S, jq for every τ P r0, 1s.
Now suppose a choice of coherent orientations as constructed in [BM04] is given. This

assigns a continuously varying orientation to the determinant of Dτ for each τ P r0, 1s. In
order to determine whether u0 and u1 have the same sign, one must consider the determinant
line bundle over a 1-parameter family of Fredholm operators from L0 to L1 constructed in
three parts:
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(1) Retract L0 to 0 ` D0 as in (2.15);
(2) Follow the homotopy Dτ from D0 to D1;
(3) Unretract from 0 ` D1 to L1, again as in (2.15).

The retractions for i “ 0, 1 transfer the given orientations of detpDiq to orientations of
detLi “ Λmax kerLi, and the sign of ui depends on whether the latter orientations match the
canonical orientation of autp 9S, jq as a complex vector space. (Note that if autp 9S, jq is trivial,
then it means the Li are isomorphisms, so that detpLiq is tautologically equal to R and the
sign of ui depends on whether the induced orientation of R matches the tautological one.)
Since the orientations of detpDτ q must be continuous in τ , following the three-part homotopy
from L0 to L1 therefore determines the relationship between the signs of u0 and u1. We notice
however that the retraction from Lτ to 0`Dτ can also be performed for every τ P r0, 1s, hence
the three-part homotopy can be deformed with fixed endpoints to tLτuτPr0,1s. The latter is
a homotopy through surjective operators, and for any continuous family of orientations of
kerLτ , either all or none of them match the orientation of autp 9S, jq. This proves that the
signs of u0 and u1 are equal as claimed.

If u0 and u1 have inequivalent conformal structures j0 and j1 on their domains, then the
above argument must be supplemented by an initial step choosing a continuous deformation
of Cauchy-Riemann type operators to accompany a deformation from j0 to j1 in the space of
complex structures and a simultaneous deformation of the corresponding Teichmüller slices.
This can always be done since the space of complex structures on 9S compatible with its
orientation is contractible. The key point is that [Wen10b, Prop. 2.2] always guarantees sur-
jectivity for the restriction of the Cauchy-Riemann type operators to a line bundle isomorphic
to Nu0

with the same asymptotic operators. �

Proof of Proposition 2.14. Most steps are the same as for Prop. 2.13, so let us merely clarify
the differences. The normal operators DN

τ now have index 1 and have 1-dimensional kernels
since [Wen10b, Prop. 2.2] again implies that they are always surjective. The normal Chern
number cN pu0q “ cN pu1q “ 0 can in this case be interpreted as the relative first Chern

number of E Ñ 9S with respect to the asymptotic trivializations that determine the extremal
winding for holomorphic sections, hence the nontrivial elements η P kerDN

τ are guaranteed
to be nowhere zero and to have extremal winding at every end (cf. [Wen10b, §2.2]). Let
z P Γ˘ denote the unique puncture for both u0 and u1 at which the asymptotic orbit γ
has even Conley-Zehnder index. The extremal eigenspace V ˘

γ is then 1-dimensional as a
consequence of (2.8) since by [HWZ95], exactly two eigenvalues of Aγ counting multiplicity
have eigenfunctions with any given winding. The extremal winding condition thus implies that
any nontrivial η P kerDN

τ has a nontrivial asymptotic eigenfunction in V ˘
γ at the puncture z.

A continuous family of such sections for τ P r0, 1s therefore determines a continuous path in
V ˘
γ zt0u.
Since 0 ď def8puiq ď cN puiq “ 0 for i “ 0, 1 by (2.12), the leading asymptotic eigenfunc-

tions ei P V ˘
γ of ui at z are also nonzero. Let ηi P kerDN

i for i “ 0, 1 denote the canonical
generators that are identified via (2.19) with the infinitesimal generator of the R-translation
action on ui. The asymptotic formula (2.13) implies that these have asymptotic eigenfunc-
tions at z of the form κiei P V ˘

γ for some constants κi ą 0. Hence there exists a continuous

family tητ uτPr0,1s of nontrivial generators of kerD
N
τ connecting η0 to η1 if and only if e0 and

e1 are positive multiples of one another.
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With this understood, the signs of ruis P MpJq{R for i “ 0, 1 are determined as follows.
The retractions as in (2.15) from Li to 0 ` Di transfer the given orientation of detpDiq to
an orientation of detpLiq “ Λmax kerLi, hence orienting kerLi. Dividing the latter by the

canonically oriented subspace autp 9S, jq and using (2.19) then induces an orientation of the
1-dimensional space kerDN

i , for which ηi is either positive or negative, so this is the sign
of ruis. To relate these signs to each other, one follows the orientations along the “three-
part homotopy” of Fredholm operators described in the proof of Prop. 2.13, which is again
homotopic to a path Lτ consisting of surjective operators with kernels isomorphic to autp 9S, jq‘
kerDN

τ . One therefore obtains the same sign for ru0s and ru1s if and only if there exists a
path tητu of generators of kerDN

τ as described in the previous paragraph, which reduces to
the question of whether e0 and e1 lie in the same component of V ˘

γ zt0u. �

3. A symplectic model of a cylindrical end

Throughout this section, assume pM, ξq is a closed connected contact 3-manifold on which
ξ is supported by a spinal open book

π :“
´
πΣ :MΣ Ñ Σ, πP :MP Ñ S1

¯
.

The purpose of this section is to construct a symplectic and almost complex model of the half-
symplectization r0,8q ˆ M of pM, ξq, designed such that given any hypothetical symplectic
filling pW,ωq of pM, ξq, we can define a symplectic completion of pW,ωq that contains an
abundance of pseudoholomorphic curves. The construction is an extension of the model collar
neighborhood described in [LVW, §4], which views pM, ξq as a smoothing of the boundary
(with corners) of a noncompact 4-manifold E whose boundary has two smooth faces

BE “ BvE Y BhE,

interpreted as the vertical and horizontal boundaries respectively of a (locally defined) sym-
plectic fibration. Here it is not necessary to assume pM, ξq admits a symplectic filling, as we
can instead identify it with the contact-type boundary of a collar neighborhood p´1, 0s ˆM

in its own symplectization. By attaching cylindrical ends to the fibers of the aforementioned
fibration and also extending it over cylindrical ends attached to the base, one obtains the

double completion pE, which contains E as a bounded subdomain. We will endow pE with
a Liouville structure λ and compatible almost complex structure J` having the following
properties:

(1) J` admits a suitable exhausting J`-convex function and thus defines almost Stein

structures on suitable subdomains of pE, homotopic to the Liouville structure λ;
(2) The corner in BE can be smoothed to produce a contact hypersurface contactomorphic

to pM, ξq;

(3) A neighborhood of infinity in pE can be identified with the half-symplectization r0,8qˆ
M of a suitable stable Hamiltonian structure H on M , with J` P J pHq;

(4) The symplectization RˆM of the aforementioned stable Hamiltonian structure admits
a foliation by embedded J`-holomorphic curves that project to MP as the pages of π;

(5) pE also contains embedded J`-holomorphic curves that intersect the holomorphic pages
transversely and project to MΣ as sections of πΣ :MΣ Ñ Σ, i.e. “holomorphic verte-
brae”.

Since it is only semi-standard, we recall the following definition from [LVW, §1.1] of a
geometric structure that is intermediate between Stein and Weinstein structures.
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Definition 3.1. An almost Stein structure pJ, fq on a smooth compact oriented manifold
W with boundary and corners consists of an almost complex structure J : TW Ñ TW and
smooth function f : W Ñ R such that λ :“ ´df ˝ J is a Liouville form with J tamed by dλ,
and λ restricts to a positive contact form on every smooth face of BW . (Note that we do not
require f |BW to be constant since BW may have corners, but it is automatic that the Liouville
vector field dual to λ is gradient-like for f and outwardly transverse to every face of BW .)

It will be immediate that the construction outlined above can also be modified by replacing
the symplectic form dλ with C dλ`η for any closed 2-form η and a sufficiently large constant
C ą 0; this makes the smoothing of BE a weakly contact hypersurface, and makes it possible
to attach the model on top of weak fillings of pM, ξq. We will see that this trick only interferes
with the construction of the stable Hamiltonian structure and resulting J`-holomorphic curves
if the symplectic structure is non-exact on the spine, so when this is not the case, we obtain
nontrivial moduli spaces in completions of weak fillings and will use them in §6 for the proofs
of Theorems 1.5, 1.10 and 1.13. After explaining the construction of the stable Hamiltonian
structure and holomorphic curves in §3, it will be the purpose of §4 to extend the construction
to the case BM ‰ H, and then to show that the data on M can be perturbed to a contact
structure isotopic to ξ and to explore the consequences of this. For genus zero pages, the
perturbation results in a finite energy foliation just as for planar open books (cf. [Wen10d]),
and this foliation will be used in §5 to prove Theorems 1.17, 1.18 and 1.19.

Remark 3.2. Some higher-dimensional analogues of the double completion model (inspired
by an earlier draft of the present paper) appear in [Mor18,Mora,Morb].

3.1. Collar neighborhoods and smoothed hypersurfaces. We will need to use the fol-
lowing notation originating in [LVW, §2.2].

We denote collar neighborhoods of the boundaries in Σ,MΣ andMP by N pBΣq – p´1, 0sˆ
BΣ, N pBMΣq – p´1, 0sˆBMΣ and N pBMP q – p´1, 0sˆBMP respectively, where it is assumed
that π´1

Σ pN pBΣqq “ N pBMΣq, and a trivialization of πΣ : MΣ Ñ Σ has been fixed so as to
identify N pBMΣq with N pBΣq ˆ S1. Fixing an identification of each component of BΣ with
S1 then determines coordinates

ps, φq P p´1, 0s ˆ S1 Ă p´1, 0s ˆ BΣ “ N pBΣq Ă Σ,

ps, φ, θq P p´1, 0s ˆ S1 ˆ S1 Ă p´1, 0s ˆ BMΣ “ N pBMΣq Ă MΣ,

which satisfy πΣps, φ, θq “ ps, φq P N pBΣq on N pBMΣq. Making suitable choices of collar
coordinates pt, θq P p´1, 0s ˆ S1 near the boundary of a fiber of πP :MP Ñ S1 and adjusting
the monodromy µ by an isotopy so that µpt, θq “ pt, θq in these coordinates (but allowing
a permutation of boundary components), we also identify each component of N pBMP q with
S1 ˆ p´1, 0s ˆ S1 and thus define coordinates

pφ, t, θq P S1 ˆ p´1, 0s ˆ S1 Ă N pBMP q Ă MP

in which

(3.1) πP pφ, t, θq “ mφ P S1 on S1 ˆ p´1, 0s ˆ S1 Ă N pBMP q

for some m P N. Here m is the multiplicity of πP at the adjacent boundary component of the
spine (see Definition 1.2), and it may have distinct values on different connected components
of N pBMP q. The coordinates defined on N pBMΣq and N pBMP q should be assumed consistent
with each other in the sense that the respective φ- and θ-coordinates match each other on
BMΣ “ BMP .
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The model collar neighborhood of M Ă p´1, 0s ˆM was defined in [LVW, §4.1] as

E :“
`
p´1, 0s ˆMΣ

˘
YΦ

`
p´1, 0s ˆMP

˘
,

where p´1, 0s ˆ N pBMΣq is glued to p´1, 0s ˆ N pBMP q via the diffeomorphism

p´1, 0s ˆ

N pBMΣqhkkkkkkkkikkkkkkkkj
p´1, 0s ˆ BMΣ

Φ
ÝÑ p´1, 0s ˆ

N pBMP qhkkkkkkkkikkkkkkkkj
p´1, 0s ˆ BMP : pt, s, xq ÞÑ ps, t, xq

for x P BMΣ “ BMP . This object is depicted as the more darkly shaded region in Figure 2,
along with the vertical and horizontal boundaries

BvE :“ t0u ˆMP Ă E, BhE :“ t0u ˆMΣ Ă E,

and their respective collar neighborhoods

N pBvEq :“ p´1, 0s ˆMP Ă E, N pBhEq :“ p´1, 0s ˆMΣ Ă E,

whose intersection (a neighborhood of the corner BvE X BhE) we sometimes denote by

N pBvE X BhEq :“ N pBvEq X N pBhEq Ă E.

The definition of the gluing map Φ gives rise to well-defined coordinates

ps, φ, t, θq P p´1, 0s ˆ S1 ˆ p´1, 0s ˆ S1 Ă N pBvE X BhEq

on each component of N pBvE X BhEq.
On the collars N pBhEq and N pBvEq there are natural fibrations

N pBhEq “ p´1, 0s ˆ pΣ ˆ S1q
ΠhÝÑ Σ :

`
t, pz, θq

˘
ÞÑ πΣpz, θq “ z,

N pBvEq “ p´1, 0s ˆMP
ΠvÝÑ p´1, 0s ˆ S1 : ps, xq ÞÑ ps, πP pxqq,

which can be written in the coordinates ps, φ, t, θq on N pBvE X BhEq as

(3.2) Πhps, φ, t, θq “ ps, φq P N pBΣq, Πvps, φ, t, θq “ ps,mφq P p´1, 0s ˆ S1.

Since the fibers of these two fibrations match on the region of overlap, they give rise to a
well-defined vertical subbundle

V E :“ ker TΠh or kerTΠv Ă TE,

which on N pBhEq is spanned by the vector fields Bt and Bθ. Figure 2 is drawn so that the
fibers would be represented as vertical lines in the picture.

Observe that in light of the canonical identifications BvE “ MP and BhE “ MΣ, the
boundary BE “ BvE Y BhE has a canonical identification with M “ MP Y MΣ, though it
cannot be regarded as a smooth submanifold due to the corner at BvEXBhE. We can however
smooth the corner to define a smooth hypersurface diffeomorphic to M . Specifically, choose
a pair of smooth functions F,G : p´1, 1q Ñ p´1, 0s that satisfy the following conditions:

‚ pF pρq, Gpρqq “ pρ, 0q for ρ ď ´1{4;
‚ pF pρq, Gpρqq “ p0,´ρq for ρ ě 1{4;
‚ G1pρq ă 0 for ρ ą ´1{4;
‚ F 1pρq ą 0 for ρ ă 1{4.
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Now let

M0 Ă E

denote the smooth hypersurface obtained from BE by replacing BE X N pBvE X BhEq in
ps, φ, t, θq-coordinates with

(3.3)
!

pF pρq, φ,Gpρq, θq
ˇ̌
ˇ φ, θ P S1, ´1 ă ρ ă 1

)
;

see Figure 2. We shall present M0 as the union of three open subsets

M0 “ |M0
P Y |M0

I Y |M0
Σ,

defined as follows (see Figure 3):

‚ |M0
P is the complement of tt ě ´1{2u Ă N pBMP q in BvE.

‚ |M0
Σ is the complement of ts ě ´1{2u in BhE.

‚ |M0
I is the smoothing region (3.3), each of whose connected components carry a posi-

tively oriented coordinate system pρ, φ, θq identifying it with p´1, 1q ˆ S1 ˆ S1.

The portion of |M0
P intersecting |M0

I carries coordinates pφ, t, θq that identify its connected

components with S1 ˆ p´1,´1{2q ˆ S1 and are related to the coordinates on |M0
I by ρ “ ´t.

Similarly, the overlap of |M0
Σ with |M0

I carries coordinates ps, φ, θq that identify its components
with p´1,´1{2q ˆ S1 ˆ S1 and satisfy s “ ρ.

It will also be convenient to define a second hypersurface

M´ Ă E

by translating M0 a distance of ´3{4 in both the s- and t-coordinates; see Figure 2. This
contains portions of the two hypersurfaces t´3{4u ˆ MΣ Ă N pBhEq and t´3{4u ˆ MP Ă
N pBvEq and a translated copy of (3.3) replacing the neighborhood of their intersection.

3.2. The double completion. The collar neighborhoods N pBΣq Ă Σ, N pBMΣq Ă MΣ and
N pBMP q Ă MP give rise to completions, constructed in each case by attaching cylindrical
ends and extending the coordinate s or t to take values in p´1,8q: we shall indicate each of
these completions by placing hats over the relevant symbol, hence

pΣ :“ Σ YBΣ pr0,8q ˆ BΣq ,

xMΣ :“ MΣ YBMΣ
pr0,8q ˆ BMΣq ,

xMP :“ MP YBMP
pr0,8q ˆ BMP q ,

and the collars become cylindrical ends whose components have coordinates

ps, φq P p´1,8q ˆ S1 Ă p´1,8q ˆ BΣ “: pN pBΣq Ă pΣ,
ps, φ, θq P p´1,8q ˆ S1 ˆ S1 Ă p´1,8q ˆ BMΣ “: pN pBMΣq Ă xMΣ,

pφ, t, θq P S1 ˆ p´1,8q ˆ S1 Ă p´1,8q ˆ BMP “: pN pBMP q Ă xMP .

We will continue to denote by πΣ and πP the natural extensions of the fibrations to xMΣ “
pΣ ˆ S1 Ñ pΣ and xMP Ñ S1 respectively. The double completion pE of E is defined as

pE :“
`
p´1,8q ˆ xMΣ

˘
YpΦ

`
p´1,8q ˆ xMP

˘
,
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Figure 2. The darkly shaded region is the model collar neighborhood E

(with boundary BE “ BvE Y BhE and corner BvE X BhE), together with the
smooth hypersurfaces M0,M´ Ă E defined in §3.1. The lightly shaded region

represents the rest of the double completion pE Ą E as defined in §3.2.
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where pΦ is the obvious extension of the previous gluing map to a diffeomorphism

p´1,8q ˆ

xN pBMΣqhkkkkkkkkikkkkkkkkj
p´1,8q ˆ BMΣ

pΦ
Ñ p´1,8q ˆ

xN pBMP qhkkkkkkkkikkkkkkkkj
p´1,8q ˆ BMP ,

pt, s, xq ÞÑ ps, t, xq.

This noncompact 4-manifold without boundary contains E as a bounded subdomain, and the
collars N pBvEq and N pBhEq are then bounded subsets of the enlarged subsets

pN pBvEq :“ p´1,8q ˆ xMP , pN pBhEq :“ p´1,8q ˆ xMΣ,

with the s- and t-coordinates now taking values in p´1,8q. Their intersection is the so-called
diagonal end

pN pBvE X BhEq :“ pN pBvEq X pN pBhEq,

whose connected components carry coordinates ps, φ, t, θq identifying them with p´1,8q ˆ
S1 ˆ p´1,8q ˆ S1. The fibrations Πh and Πv have natural extensions

pN pBhEq “ p´1,8q ˆ ppΣ ˆ S1q
ΠhÝÑ pΣ :

`
t, pz, θq

˘
ÞÑ πΣpz, θq “ z,

pN pBvEq “ p´1,8q ˆ xMP
ΠvÝÑ p´1,8q ˆ S1 : ps, xq ÞÑ ps, πP pxqq,

hence Πhps, φ, t, θq “ ps, φq and Πvps, φ, t, θq “ ps,mφq on the diagonal end. We denote the

resulting vertical subbundle by V pE Ă T pE. Figure 2 shows the complement of E in pE as the
lightly shaded region.
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3.3. Symplectic structure. The data on pE defined in this section constitute an enhance-

ment and extension of the Liouville structure already defined on E Ă pE in [LVW, §4.1].
Fix a complex structure j on Σ that takes the form

jBs “
1

m
Bφ on pN pBΣq,

where for each component of pN pBΣq, m P N is the multiplicity that appeared in (3.1); recall

that this number may differ on distinct connected components of pN pBΣq. Next, fix a j-convex

function ϕ : pΣ Ñ R with

ϕps, φq “ es on pN pBΣq.

Such a function can always be found by starting from a Morse function on Σ with critical
points of index 0 and 1 and then postcomposing it with a sufficiently convex function, see
e.g. [LW11, Lemma 4.1]. This gives rise to a Liouville form

σ :“ ´dϕ ˝ j

on pΣ with
σ “ mes dφ on pN pBΣq.

We will also use σ to denote the pullback of this Liouville form under the trivial bundle

projection Πh : pN pBhEq Ñ pΣ, and since πP pφ, t, θq “ mφ on pN pBMP q, σ extends globally to

a 1-form on pE satisfying

σ “ es dπP on pN pBvEq,

where we are abusing notation slightly by using πP : pN pBvEq Ñ S1 to denote the composition

of the fibration πP : xMP Ñ S1 with the obvious projection pN pBvEq “ p´1, 0s ˆ xMP Ñ xMP ,

hence defining dπP as a real-valued 1-form on pN pBvEq.

Next, choose a 1-form λ on xMP such that dλ is positive on all fibers of πP : xMP Ñ S1 and

λ “ et dθ on pN pBMP q.

Such a 1-form can easily be found by first defining it on a single fiber and then acting on
it with the monodromy and interpolating (see e.g. [Etn06, Theorem 3.13]). We will use the

same symbol to denote the pullback of λ via the projection pN pBvEq “ p´1,8q ˆ xMP Ñ xMP ,

and it then extends to a global 1-form on pE such that

λ “ et dθ on pN pBhEq.

Since dλ|
V xW ą 0 by construction, one can regard λ as a fiberwise Liouville form (cf. [LVW, §2])

on pE, and we observe also that since λ|T pBhEq “ dθ, its restriction to BE “ BvE Y BhE can
also be regarded as a fiberwise Giroux form.

For applications in the almost Stein category, it will be convenient to add another condition
on the construction of λ. Pick a smooth family Jfib of complex structures on the fibers of

πP : xMP Ñ S1 such that
JfibBt “ Bθ on pN pBMP q.

On each individual fiber, the space of smooth Jfib-convex functions that match et in the collar
near the boundary is convex. One can therefore use a partition of unity to construct a smooth

function ffib : xMP Ñ R whose restriction to each fiber has this property, and we are free to
assume

(3.4) λ
ˇ̌
V pE “ ´dffib ˝ Jfib

ˇ̌
V pE .
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We can now apply the Thurston trick as described in [LVW, §2.1]: for any constant K ě 0,
we define a 1-form λK by

λK :“ Kσ ` λ.

Then there exists a constant K0 ě 0 such that dλK is symplectic everywhere on pE for each

K ě K0. Note that the unboundedness of pE does not pose any problem here due to the
precise formulas we have for λ near infinity (cf. [LVW, Remark 4.1]). In particular, we have

(3.5) λK “ K σ ` et dθ on pN pBhEq, and λK “ Kes dπP ` λ on pN pBvEq,

hence

(3.6) λK “ Kmes dφ` et dθ on pN pBvE Y BhEq.

We will assume that the condition K ě K0 holds from now on, and we will occasionally also
enlarge K0 in order to satisfy extra conditions (e.g. for Lemma 3.3 below). Since dλK is now

symplectic, there exists a Liouville vector field VK on p pE, dλKq defined via the condition

dλKpVK , ¨q ” λK .

From (3.5) we find

(3.7) VK “ Vσ ` Bt on pN pBhEq “ p´1,8q ˆ pΣ ˆ S1,

where Vσ denotes the Liouville vector field on pΣ dual to σ; in particular, Vσ “ Bs on the

cylindrical end pN pBΣq, hence

VK “ Bs ` Bt on pN pBvE X BhEq.

Lemma 3.3. If K0 ě 0 is sufficiently large and K ě K0, then dspVKq ą 0 holds on pN pBvEq.

Proof. It suffices to show that the restriction of λK to tsu ˆ xMP for each s P p´1,8q is a
positive contact form, or equivalently,

ds^ λK ^ dλK ą 0 on pN pBvEq.

Since σ “ es dπP on pN pBvEq, we compute

ds^ λK ^ dλK “ ds^ pKes dπP ` λq ^ pKes ds ^ dπP ` dλq

“ Kes
ˆ
ds^ dπP ^ dλ `

1

Kes
ds^ λ^ dλ

˙
,

and see that the first term is a positive volume form since dλ
ˇ̌
V pE ą 0, while the second is

bounded with respect to any s-invariant metric and thus uniformly small if K is large. �

The lemma implies that for any pair of constants s0, t0 P p´1,8q, the boundary of the

region ts ď s0, t ď t0u Ă pE is a contact hypersurface in p pE, dλKq after smoothing the corner.
For applications to weak fillings, we will also need to allow certain cohomological pertur-

bations to the model p pE, dλKq. Fix on M a closed 2-form η that has support in the interior

of MP zN pBMP q, so pulling back via the projection pN pBvEq “ p´1,8q ˆ xMP Ñ xMP defines

η as a closed 2-form on pE that vanishes in pN pBhEq and is uniformly bounded on pN pBvEq
for any choice of s-invariant metric. In the following, we say that an oriented hypersurface
endowed with a co-oriented contact structure in a symplectic 4-manifold is weakly contact
if the restriction of the symplectic form to the contact structure is positive.
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Lemma 3.4. Given K ě K0, there exists a constant C0 ą 0 such that for all C ě C0, the

2-form ω1
E :“ C dλK ` η is symplectic on pE and for each s P p´1,8q, the hypersurface

Bsv pE :“ tsu ˆ xMP Ă pE

with contact structure ξsv :“ ker
´
λK |

T pBs
v
pEq

¯
is weakly contact in p pE,ω1

Eq.

Proof. This is mainly a matter of replacing dλ with dλ ` 1
C
η and then repeating the usual

calculations carefully enough to make sure that nothing goes wrong as s Ñ 8. The nonde-

generacy of ω1
E on pN pBvEq, for instance, follows by computing

1

C2
ω1
E ^ ω1

E “

ˆ
dλK `

1

C
η

˙
^

ˆ
dλK `

1

C
η

˙

“ Kes
„
2 ds ^ dπP ^

ˆ
dλ`

1

C
η

˙
`

1

Kes

ˆ
dλ`

1

C
η

˙
^

ˆ
dλ `

1

C
η

˙
,

in which the first term in the brackets is uniformly positive for sufficiently large C ą 0 and
the second is bounded with respect to any s-invariant metric. The weak contact condition

for pBsv pE, ξsvq follows by a similar modification of the proof of Lemma 3.3, showing

1

C
ds^ λK ^ ω1

E “ ds^ λK ^

ˆ
dλK `

1

C
η

˙
ą 0 on pN pBvEq.

�

For the remainder of §3, we fix K ě K0, C ě C0 as in the above lemma and consider the
rescaled symplectic form

ωE :“
1

KC
pC dλK ` ηq “ dσ `

1

K
dλ `

1

KC
η

on pE. The scaling by 1{KC has no deep significance but will be convenient for technical

reasons when we talk about stable Hamiltonian structures below. Since η vanishes in pN pBhEq,
VK is also a Liouville vector field for ωE in this region. Then the fact that VK “ Bs ` Bt in

the diagonal end implies that the boundary of any region of the form ts ď s0, t ď t0u Ă pE
can be made into a weakly contact hypersurface in p pE,ωEq by smoothing the corner, with the
contact structure defined by restricting λK . Two specific examples of smooth hypersurfaces
were defined in this way at the end of §3.1: we define contact forms and contact structures
on M0 and M´ respectively by

α0 :“ λK
ˇ̌
TM0 , ξ0 :“ kerα0 Ă TM0,

α´ :“ λK
ˇ̌
TM´, ξ´ :“ kerα´ Ă TM´.

This makes pM´, ξ´q and pM0, ξ0q into weakly contact hypersurfaces in p pE,ωEq, and the def-
inition of λK implies that both are (after suitably identifyingM0 andM´ withM) supported
by the spinal open book π, hence both are isotopic to ξ.

3.4. Stable Hamiltonian structure. We now endow the hypersurface M0 Ă pE with a
stable Hamiltonian structure that is related to its contact structure ξ0 but will be better
suited for finding holomorphic pages in its symplectization. Fix a smooth cutoff function
β : p´1,8q Ñ r0, 1s satisfying

‚ β ” 0 on p´1,´1{2s;
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Figure 4. The stabilizing vector field Z transverse to M0 Ă pE.

‚ β ” 1 on r´1{4,8q;
‚ β1 ě 0 and supppβ1q Ă p´1{2,´1{4q.

Now consider the vector field on pE defined by (see Figure 4)

Z :“

#
Vσ ` βptqBt on pN pBhEq,

Bs everywhere else.

Here again Vσ denotes the Liouville vector field dual to σ on pΣ, so we observe that Z ” VK on

the region tt ě ´1{4u Ă pN pBhEq. Everywhere else in pN pBvE X BhEq, we can plug in Vσ “ Bs
and thus write Z “ Bs ` βptqBt. This vector field is obviously transverse to M0; we will now
show that it is also a stabilizing vector field in the sense of §2.1, and thus makes M0 into a
stable hypersurface.

Lemma 3.5. The vector field Z is a stabilizing vector field for M0 in p pE,ωEq.

Proof. This is immediate in the region where Z “ VK , since VK is Liouville for ωE in that
region and all Liouville vector fields have the stabilizing property. It is similarly immediate
in the region where Z “ Bs, as the hypersurfaces obtained by flowing BvE along Bs each
have constant s-coordinate and ωE thus restricts to each of them as 1

K
dλ ` 1

KC
η, defining

a characteristic line field that does not depend on s. It remains to consider the region
´1{2 ď t ď ´1{4 in which Z “ Bs ` βptqBt, and the key point here is that the characteristic
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line field is exceedingly simple: we have ωE “ 1
K
dλK “ mes ds^dφ` 1

K
et dt^dθ in this region,

while the hypersurfaces in question still have constant s-coordinate, hence the characteristic
line field on each is spanned by Bφ, a vector field that is preserved by the flow of Z. �

The lemma implies that the pair H0 “ pΩ0,Λ0q defined by

Ω0 :“ ωE

ˇ̌
TM0 , Λ0 :“ ιZωE

ˇ̌
TM0

is a stable Hamiltonian structure on M0, cf. §2.1. We will denote the corresponding oriented
hyperplane field by Ξ0 :“ ker Λ0 Ă TM0 and the Reeb vector field by R0, where by definition

Ω0pR0, ¨q ” 0, Λ0pR0q ” 1.

One can compute the following explicit formulas for Λ0, Ω0 andR0 in the regions |M0
Σ,

|M0
I ,

|M0
P Ă

M0 defined in §3.1 (cf. Figure 3).

On |M0
Σ Ă BhE “ Σ ˆ S1, Z matches the Liouville vector field VK , which is ωE-dual to

1
K
λK , hence

pΩ0,Λ0q “

ˆ
1

K
dα0,

1

K
α0

˙
“

ˆ
dσ,

1

K
dθ ` σ

˙
on |M0

Σ.

It follows that R0 is a suitably rescaled version of the Reeb vector field for α0, that is,

R0 “ KBθ on |M0
Σ.

On |M0
P Ă BvE “ MP , Z “ Bs and thus

pΩ0,Λ0q “

ˆ
1

K
dλ`

1

KC
η, dπP

˙
on |M0

P ,

so dΛ0 “ 0 on this region and thus Ξ0 is integrable; indeed, the integral submanifolds of Ξ0

are simply the fibers of πP :MP Ñ S1. The Reeb vector field can be written as

(3.8) R0 “ e
#

S1 on |M0
P ,

where we denote by eS1 P TS1 the canonical unit vector field on S1 “ R{Z and use the
superscript “#” to denote its horizontal lift with respect to the connection on πP :MP Ñ S1

defined as the pC dλ ` ηq-symplectic complement of the vertical subbundle. In each collar

S1 ˆ p´1,´1{2q ˆ S1 Ă N pBMP q X |M0
P , we can write dπP “ mdφ for the appropriate

multiplicity m P N and use pφ, t, θq-coordinates to write

(3.9) R0 “
1

m
Bφ on |M0

P X N pBMP q.

Finally, using the coordinates pρ, φ, θq P p´1, 1q ˆS1 ˆS1 on connected components of |M0
I ,

Ω0 and Λ0 are determined by the functions F and G that were chosen in §3.1 for smoothing
the corner, as well as the cutoff function β in the definition of Z: we have

Ω0 “ meF pρqF 1pρq dρ ^ dφ `
1

K
eGpρqG1pρq dρ ^ dθ,

Λ0 “ meF pρq dφ`
1

K
eGpρqβpGpρqq dθ,

(3.10)

which leads to

(3.11) R0 “
1

βpGpρqqF 1pρq ´G1pρq

ˆ
´

1

m
e´F pρqG1pρq Bφ `Ke´GpρqF 1pρq Bθ

˙
.
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3.5. Nondegenerate perturbation. The stable Hamiltonian structure H0 “ pΩ0,Λ0q de-

fined above on M0 has the unfortunate property that the orbits of R0 in |M0
Σ are degenerate.

We will follow the standard procedure for perturbing to get nondegenerate orbits, which de-
pends on a choice of Morse function on the space parametrizing the orbits, in this case Σ.
Choose a smooth function

H : Σ Ñ r0,8q

such that

(1) H is Morse outside of N pBΣq;
(2) On N pBΣq in coordinates ps, φq, H depends only on s, and it satisfies BsH ă 0 except

on a smaller neighborhood of the boundary with closure in the region t´1{4 ă s ď 0u,
where H vanishes.

We shall denote by
CritMpHq Ă Σ

the finite set of Morse critical points of H; this excludes the critical points near BΣ where H
vanishes. Extend H to a smooth function

pH :M0 Ñ r0,8q

that vanishes on |M0
P and satisfies pHpz, θq “ Hpzq on |M0

Σ Ă Σ ˆ S1, and pHpρ, φ, θq “

HpF pρq, φq on |M0
I . Now if Φτ

Z denotes the flow of Z for time τ , we fix a small constant ε ą 0
and observe that the perturbed hypersurface (see Figure 5)

M` :“
!
Φ
ε pHpxq
Z pxq P pE

ˇ̌
ˇ x P M0

)

is still stabilized by Z; indeed, M` still matches BvE in the region where Z is not VK , and
everywhere else Z is Liouville and manifestly transverse to M`. The obvious diffeomorphism
of M0 to M` defined by flowing along Z induces a decomposition

M` “ |M`
Σ Y |M`

I
Y |M`

P

corresponding to the decomposition M0 “ |M0
Σ Y |M0

I Y |M0
P that we defined in §3.1, and we

will use the same coordinate systems on these subsets that were used on |M0
Σ,

|M0
I and |M0

P .
Let

H` :“ pΩ`,Λ`q

denote the stable Hamiltonian structure induced by Z on M`, with oriented hyperplane

field Ξ` and Reeb vector field R`. Since |M0
Σ is a contact hypersurface and |M`

Σ is ob-

tained from it by flowing along a Liouville vector field, pΩ`,Λ`q on |M`
Σ takes the form

pp1{Kq dα`, p1{Kqα`q, where α` is a contact form given by

(3.12) α` :“ λK |
T |M`

Σ

“ eε
pHα0 “ eε

pHpKσ ` dθq.

The resulting perturbed Reeb vector field takes the form

(3.13) R` “ e´ε pH pp1 ` εσpXH qqKBθ ´ εXHq on |M`
Σ ,

where XH denotes the Hamiltonian vector field of H on pΣ, dσq, determined by

dσpXH , ¨q “ ´dH.

Notice that for some large threshold T ą 0 that goes to 8 as ε Ñ 0, all periodic orbits up to

period T in |M`
Σ have image tzuˆS1 Ă ΣˆS1 for some z P CritMpHq. We will generally fix the
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Figure 5. The perturbed stable hypersurface M` Ă pE.

value of K and assume ε ą 0 is sufficiently small to arrange this whenever convenient; we can
then also assume without loss of generality that Bθ and Ξ` are transverse, so the projection

TπΣ : T|M`
Σ Ñ TΣ restricts to Ξ` as a fiberwise orientation-preserving isomorphism

(3.14) Ξ`||M`

Σ

TπΣÝÑ TΣ.

On |M`
I
, the formulas (3.10) and (3.11) can be adapted to write Ω`, Λ` and R` as

Ω` “ meF`pρqF 1
`pρq dρ ^ dφ `

1

K
eG`pρqG1

`pρq dρ ^ dθ,

Λ` “ meF`pρq dφ `
1

K
eG`pρqβpG`pρqq dθ,

R` “
1

βpG`pρqqF 1
`pρq ´G1

`pρq

ˆ
´

1

m
e´F`pρqG1

`pρq Bφ `Ke´G`pρqF 1
`pρq Bθ

˙
,

(3.15)

where the perturbed versions of the functions F and G are defined by

F`pρq :“ F pρq ` εHpF pρq, ¨q, G`pρq :“ Gpρq ` εHpF pρq, ¨q.

Let us file away for future use the following detail, which results from the particular conditions
we have imposed on G and H.
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Lemma 3.6. The function G` satisfies G1
`pρq ă 0 for all ρ P p´1, 1q, hence by (3.15),

dφpR`q ‰ 0 on |M`
I
. �

The region |M`
P is identical to |M0

P , and here pΩ`,Λ`q “ pΩ0,Λ0q, with R` also given by
(3.8) and (3.9).

3.6. The cylindrical end. As was discussed in §2.1, one can use the Moser deformation trick

to show that M` has a collar neighborhood in p pE,ωEq that can be identified symplectically
with

(3.16)
`
p´δ, δq ˆM`, d

`
per ´ 1qΛ`

˘
` Ω`

˘
,

for sufficienlty small δ ą 0, with r denoting the coordinate on p´δ, δq. This is true for
arbitrary stable Hamiltonian structures, but it will be convenient to take advantage of a few
properties of our example H` “ pΩ`,Λ`q that are nicer than the general case. To start
with, Ξ` “ ker Λ` is everywhere either a positive contact structure or a foliation, hence it
is a confoliation; equivalently, Λ` ^ dΛ` ě 0. As a consequence, the collar (3.16) remains
symplectic if we replace p´δ, δq ˆM` by an infinite half-cylinder:

(3.17)
`
r0,8q ˆM`, d

`
per ´ 1qΛ`

˘
` Ω`

˘
.

Observe that this reduces in regions where Ω` “ dΛ` to the usual half-symplectization of a
contact form, pr0,8q ˆM`, dperΛ`qq. As it turns out, a half-cylinder of the form (3.17) is

already present in the model p pE,ωEq. Denote

pN`pBEq :“
!
Φτ
Zpxq P pE

ˇ̌
ˇ τ ě 0, x P M`

)
Ă pE,

with Φτ
Z again denoting the flow of Z for time τ . This is the unbounded closed subset of pE

with boundary M`; see Figure 6.

Lemma 3.7. The region pN`pBEq is the image of an embedding Ψ : r0,8qˆM`
ãÑ pE defined

on r0,8q ˆ p1{4, 1{2q ˆ S1 ˆ S1 Ă r0,8q ˆ |M`
I

by

Ψpr, ρ, φ, θq “ pr, φ,´ρ ` logrper ´ 1qβp´ρq ` 1s, θq

P p´1,8q ˆ S1 ˆ p´1,8q ˆ S1 Ă pN pBvE X BhEq,
(3.18)

and everywhere else by

Ψpr, xq “ Φr
Zpxq,

Moreover, Ψ˚ωE “ dpper ´ 1qΛ`q ` Ω`.

Proof. It is straightforward to see that Ψ is a smooth map whose image is pN`pBEq; indeed,
since Z “ Bs ` βptqBt on the diagonal end, the definition in (3.18) matches the flow of
Z for time r on regions where βp´ρq is 0 or 1, which excludes only a compact subset of
tρ P p1{4, 1{2qu. The main thing to verify is thus the formula for Ψ˚ωE. Consider first

pr, ρ, φ, θq P r0,8q ˆ |M`
I with ρ P r1{4, 1{2s. Then F`pρq “ 0 and G`pρq “ ´ρ, so we have

Λ` “ Kmdφ ` 1
K
e´ρβp´ρq dθ and Ω` “ ´ 1

K
e´ρ dρ ^ dθ. Meanwhile, since the image of Ψ

on this region lies in pN pBvE X BhEq, we have ωE “ 1
K
dλK and λK “ Kmes dφ` et dθ, hence

Ψ˚λK “ Kmer dφ` e´ρrper ´ 1qβp´ρq ` 1s dθ.

From these formulas, a quick computation shows Ψ˚ωE “ 1
K
dpΨ˚λKq “ dpper ´ 1qΛ`q `Ω`.
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Figure 6. The grid represents the half-cylinder r0,8q ˆ M` – pN`pBEq Ă
pE. The darkly shaded region is the set pV Ă pE defined in §3.7, where the
holomorphic vertebrae live.

For x P |M`
P Ă BvE, we have Z “ Bs and thus Ψpr, xq “ pr, xq P pN pBvEq, so writing

ωE “ 1
K
dλK ` 1

KC
η with λK “ Kes dπP ` λ gives

Ψ˚ωE “
1

K
dpΨ˚λKq `

1

KC
Ψ˚η “ d

ˆ
er dπP `

1

K
λ

˙
`

1

KC
η

“ dper ´ 1q ^ dπP `
1

K
dλ `

1

KC
η.

This also reproduces dpper ´ 1qΛ`q ` Ω` when we plug in Λ` “ Λ0 “ dπP and Ω` “ Ω0 “
1
K
dλ ` 1

KC
η.

On the remaining regions, Z is the Liouville vector field VK , and Λ` and Ω` match the
restrictions of 1

K
λK and ωE “ 1

K
dλK respectively to TM`, thus

Ψ˚

ˆ
1

K
λK

˙
“ erΛ`,

implying Ψ˚ωE “ dperΛ`q “ dpper ´ 1qΛ`q ` dΛ`. The desired formula follows since Ω` “
dΛ` on this region. �
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Throughout the following, we will omit the embedding Ψ from the notation and simply

identify r0,8q ˆM` with the subdomain pN`pBEq Ă pE.

3.7. Almost complex and almost Stein structures. We shall now choose an almost
complex structure from the space J pH`q of R-invariant structures compatible with H` (see
§2.2). Any J` P J pH`q determines an ωE-compatible almost complex structure on r0,8q ˆ

M` “ pN`pBEq, and we will choose J` P J pH`q to satisfy some additional conditions that
will be convenient for our main applications. It suffices to specify an orientation-preserving
complex structure on the subbundle

J` : Ξ` Ñ Ξ`

over each of the regions |M`
Σ , |M`

I and |M`
P , as the translation-invariance condition and

J`pBrq “ R` then determine J` P J pH`q uniquely.

Recall that in §3.3 we endowed pΣ with a complex structure j satisfying

(3.19) jBs “
1

m
Bφ

on its cylindrical ends, where the multiplicity m P N may be different on distinct ends. Over
|M`

Σ Ă Σ ˆ S1, define J` : Ξ` Ñ Ξ` as the pullback of j under the fiberwise isomorphism
Ξ` Ñ TΣ defined via TπΣ (see (3.14)). This makes J` invariant under the S1-action defined
by translating the θ-coordinate.

On |M`
P , which is canonically identified with an open subset of MP Ă M “ BE, choosing

J` P J pH`q is equivalent to choosing smoothly varying complex structures on the fibers of
πP :MP Ñ S1. We already made such a choice when λ was defined in §3.3: set

J`|Ξ`
:“ Jfib on |M`

P ,

which has the property that

(3.20) J`Bt “ Bθ on N pBMP q X |M`
P .

Now using the coordinates pρ, φ, θq P p´1, 1q ˆ S1 ˆ S1 on each component of |M`
I
, the

formulas (3.15) imply that Ξ` is spanned by vector fields of the form

v1 :“ Bρ, v2 :“ apρqBφ ` bpρqBθ

for a unique choice of smooth functions a, b : p´1, 1q Ñ R such that Λ`pv2q ” 0 and

Ω`pv1, v2q ” 1. In |M`
I X |M`

Σ , we write s “ F`pρq “ ρ ` εHpρ, ¨q, t “ G`pρq “ εHpρ, ¨q ě 0
and βpG`pρqq “ 1, so the fiberwise isomorphism Ξ` Ñ TΣ takes v1 and v2 to positive
multiples of Bs and Bφ respectively, hence by (3.19), we have

(3.21) J`v1 “ hpρqv2

on |M`
I

X |M`
Σ for a suitable choice of smooth positive function h. Likewise, on |M`

I
X |M`

P ,
writing s “ F`pρq “ 0, t “ G`pρq “ ´ρ and βpG`pρqq “ 0 gives Λ` “ mdφ and Ω` “
´ 1

K
e´ρdρ ^ dθ, so v2 reduces to the form bpρqBθ with bpρq ă 0. It follows that v1 and v2 are

negative multiples of Bt and Bθ respectively, implying via (3.20) that (3.21) is again valid for
a suitable choice of positive function hpρq. We can thus use (3.21) to extend J` : Ξ` Ñ Ξ`

over the rest of |M`
I

by extending h arbitrarily to a smooth positive function on p´1, 1q.
For certain computations we will find it convenient to impose one further condition on the
function hpρq for ρ P p1{4, 1q, in particular on the “interpolation” region t1{4 ă ρ ă 1{2u.
Here we have Λ` “ mdφ ` 1

K
e´ρβp´ρq dθ and thus Λ`pv2q “ mapρq ` 1

K
e´ρβp´ρqbpρq “ 0,
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implying bpρq ‰ 0, or in other words, v2 must always have a nontrivial Bθ-component. We
are therefore free to choose hpρq to produce the obvious extension of (3.20) into this region;
since Bρ “ ´Bt, (3.21) then becomes

(3.22) J`Bρ “ ´Bθ `
1

Km
e´ρβp´ρqBφ on t1{4 ă ρ ă 1u Ă |M`

I
.

With the choices above in place, J` P J pH`q now determines an ωE-compatible almost

complex structure on pN`pBEq Ă pE, which will next be extended to the rest of pE. In order to
obtain holomorphic vertebrae, we start by making a careful choice of J` on the open subset
(see Figure 6)

pV :“ p´1,´1{2q ˆ pΣ ˆ S1 Ă pN pBhEq Ă pE.
Writing tangent spaces at points pt, z, θq P pV as Tpt,z,θq

pE “ TzpΣ ‘ SpanpBt, Bθq we set

J`pt, z, θq|
Tz

pΣ :“ jpzq, J`pt, z, θqBt “ Bθ.

Note that since Br “ Bs and R` “ R0 “ 1
m

B#φ “ 1
m

Bφ on pV X pN`pBEq, this is consistent with

the existing definition of J` on pN`pBEq. The following observation is immediate.

Proposition 3.8. For each connected component 9Σ0 Ă pΣ and each pt, θq P p´1,´1{2q ˆ S1,
the surface

ttu ˆ 9Σ0 ˆ tθu Ă pV Ă pE
is the image of a properly embedded J`-holomorphic curve whose intersection with the cylin-

drical end pN`pBEq is a union of positive trivial half-cylinders over simply covered closed orbits
of R`. �

The J`-holomorphic curves in the above proposition will be referred to henceforward as
holomorphic vertebrae.

A natural extension of J` into the region

p´1, 0s ˆ |M`
P Ă N pBvEq

is defined by requiring J` to be invariant under the flow of Bs on p´1,8q ˆ |M`
P Ă pN pBvEq.

Note that this is also compatible with previous choices on the intersection of this region

with pV.
At this point, we have defined J` everywhere on pE except in the region of pN pBhEq bounded

between tt “ ´1{2u and M`; this is roughly the region between the dark and light shading
in Figure 6. The purpose of the next two lemmas is to find an extension of J` to this region
that will also fit into an almost Stein structure.

Lemma 3.9. On the region where J` has been defined so far, it satisfies

´df` ˝ J` “ λ`

for a suitable smooth function f` : pE Ñ R and 1-form λ` on pE such that:

(1) dλ` is symplectic and compatible with the orientation of pE;
(2) df`pV 1q ą 0 everywhere, where V 1 denotes the vector field dual to λ`, i.e. defined by

dλ`pV 1, ¨q ” λ`;

(3) λ` “ 1
K
λK on pN pBhEq, and the restrictions of λ` and 1

K
λK to the vertical subbundle

V pE match everywhere;
(4) λ` restricts to M´ as a contact form inducing a contact structure isotopic to ξ´.
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Proof. We begin by finding a function f` that satisfies ´df` ˝ J` “ 1
K
λK , or equivalently

1
K
λK ˝ J` “ df`, on the regions where J` has been defined so far.

On r0,8q ˆ |M`
Σ Ă pN`pBEq this is easy because, as we saw in the proof of Lemma 3.7,

1
K
λK “ erΛ`. Since any J` P J pH`q automatically satisfies

perΛ`q ˝ J` “ dperq,

we are free to fix f` :“ er on this region.

On r0,8q ˆ |M`
I Ă pN`pBEq the same computation is valid and produces f` “ er wherever

1
K
λK “ erΛ`, which is still true for ρ ď 1{4 but ceases to be true in t1{4 ă ρ ă 1u, so here

a more careful computation is required. Since F`pρq “ 0 and G`pρq “ ´ρ in this region, we
have Ω` “ ´ 1

K
e´ρ dρ ^ dθ and Λ` “ mdφ ` 1

K
e´ρβp´ρq dθ, hence R` “ 1

m
Bφ, and J` is

determined by (3.22). In the mean time 1
K
λK “ mes dφ` 1

K
et dθ, with the s and t coordinates

related to r and ρ via the embedding defined in Lemma 3.7, namely

s “ r, t “ ´ρ` log rper ´ 1qβp´ρq ` 1s .

Evaluating 1
K
λK ˝ J` on the unit vectors in pr, ρ, φ, θq-coordinates then leads to the formula

1

K
λK ˝ J` “ er dr ´

1

K
e´ρ r1 ´ βp´ρqs dρ “ df`,

where f` :“ er ´ 1
K
gpρq, with

gpρq :“

ż ρ

0

e´x r1 ´ βp´xqs dx.

The details of gpρq are unimportant beyond the following two observations: first, it is non-
negative, and strictly positive for all ρ ě 1{2; second, its derivative for ρ ě 1{2 is e´ρ, so
using the alternative coordinates s “ r and t “ ´ρ on this region, we can rewrite f` as

f` “ es `
1

K
pet ´ cq

for some constant c P R such that et ´ c ă 0 for all t P p´1,´1{2s.

The above function can now be extended over pV using the j-convex function ϕ : pΣ Ñ R,

which we recall satisfies ´dϕ ˝ j “ σ and ϕps, φq “ es on pN pBΣq. Indeed, the function

f` :“ ϕ `
1

K
pet ´ cq

on pV has the property ´df` ˝ J` “ σ ` 1
K
et dθ “ 1

K
λK . Moreover, since ϕ is subharmonic

and equals 1 on BΣ, it is strictly less than 1 on the interior of Σ, implying that f` ă 1 on the

portion of pV disjoint from pN`pBEq. Since VK “ Vσ ` Bt, it follows that f` can be extended

over the rest of pN pBhEq satisfying df`pVKq ą 0.

We will next extend f` as a J`-convex function to pN pBvEqz pN pBvEX BhEq, which includes

the rest of pN`pBEq. For this we can use the Thurston trick for almost Stein structures, as in
[LVW, §2.4] or the appendix of [BV15]. Recall that in §3.3 we chose a function ffib :MP Ñ R

that matches et in N pBMP q and is fiberwise J`-convex; composing this function with the

projection pN pBvEq Ą p´1,8q ˆMP Ñ MP gives a function

ffib : p´1,8q ˆMP Ñ R
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such that Bsffib ” 0, ffibps, φ, t, θq “ et for t P p´1,´1{2s and the 1-form

λfib :“ ´dffib ˝ J`

is fiberwise Liouville (outside the region tt ą ´1{2u, which we are free to ignore for this
discussion). Moreover, the restriction of λfib to the vertical subspaces matches our construc-
tion of λ from §3.3. Now observe that since Br “ Bs and J`Br “ R` is a horizontal lift of
the unit vector field in S1, the projection Πv maps the region in question holomorphically to
p´1,8q ˆ S1 with its standard complex structure i, thus

´dpes ˝ Πvq ˝ J` “ Π˚
vp´dpesq ˝ iq “ es dΠv “ σ.

Extending f` by f` “ es ` 1
K
ffib, it follows that

λ` :“ ´df` ˝ J` “ σ `
1

K
λfib,

and by the usual application of the Thurston trick as in [LVW,BV15], dλ` is symplectic if
K ą 0 is sufficiently large. We are free to assume this, since none of the other data on the
region in question depends on the value of K. Note that by the same argument that was
used previously for VK (see Lemma 3.3), we can also assume after increasing K ą 0 that the

dual Liouville vector field V 1 satisfies dspV 1q ą 0 everywhere on pN pBvEq. Since λ` “ 1
K
λK

in pN pBhEq by construction, we also have V 1 “ VK in this region, so that V 1 is manifestly
transverse to M´, implying that λ`|TM´ is contact. Moreover, this contact form on M´ has
been constructed in the same manner as a Giroux form for the spinal open book, implying
that the induced contact structure is isotopic to ξ´. �

The next result is of a much more general nature.

Lemma 3.10. Assume pW,ωq is a smooth symplectic manifold with a Liouville vector field Vλ
that is nowhere zero, and denote the dual Liouville form by λ (i.e. dλ “ ω and ωpVλ, ¨q “ λ).
Suppose f :W Ñ R is a smooth function satisfying dfpVλq ą 0. Then

ξ :“ ker df X ker λ Ă TW

is a smooth symplectic subbundle of codimension 2, and there is a natural homeomorphism

J pλ, fq Ñ J pξ, ωq : J ÞÑ J |ξ,

where J pλ, fq denotes the space of ω-compatible almost complex structures J on W satisfying
λ “ ´df ˝ J , and J pξ, ωq is the space of compatible complex structures on the symplectic
vector bundle pξ, ωq. In particular, it follows that J pλ, fq is nonempty and contractible.

Proof. The fact that λ is Liouville and dfpVλq ą 0 implies that λ restricts as a contact form
to each level set of f ; the subbundle ξ is then the union of all the resulting contact structures
in the level sets. We claim first that any J P J pλ, fq preserves ξ and thus has a restriction
J |ξ in J pξ, ωq. Indeed, if λ “ ´df ˝ J then v P kerλ implies Jv P ker df and v P ker df
implies Jv P kerλ, so this proves the claim. Now let Rλ denote the unique vector field on W
satisfying

dfpRλq ” 0, λpRλq ” 1, dλpRλ, ¨q|ξ ” 0,

i.e. Rλ restricts to each level set of f as the Reeb vector field determined by λ. Then the
relation λ “ ´df ˝ J and the fact that ω is J-invariant (since J is ω-compatible) imply that
the vector field 1

dfpVλqJVλ satisfies the same conditions that define Rλ, hence

JVλ “ dfpVλqRλ.
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This relation defines the inverse of the map J pλ, fq Ñ J pξ, ωq : J ÞÑ J |ξ . �

Using the Liouville form λ` and Lyapunov function f` on pE supplied by Lemma 3.9, we

can now use Lemma 3.10 to extend J` over the rest of pE such that λ` “ ´df` ˝ J` and
J` is dλ`-compatible, hence f` is J`-convex. Note that Lemma 3.10 allows for considerable
freedom in the choice of this extension, and we shall only need to impose one further condition:

J` is S1-invariant on pN pBhEq “ p´1,8q ˆ pΣ ˆ S1.

Here S1-invariance means invariance with respect to the coordinate θ P S1; the assumption

is already satisfied on the portions of pN pBhEq where J` has been defined so far, and it is

possible on the rest because λK , pV and M` are all S1-invariant objects, and so is f` without
loss of generality.

For applications to almost Stein fillings, we will take η “ 0 and our symplectic form

on pE is thus the exterior derivative of the Liouville form 1
K
λK . We now have a minor

headache however because the model almost Stein structure pJ`, f`q arising from the above
construction produces another Liouville structure λ` “ ´df`˝J`, which is in general different

from 1
K
λK , in particular they differ on pN pBvEq. In order to define a useful notion of energy

for holomorphic curves in this setting, we will need the following interpolation.

Lemma 3.11. There exists a Liouville form Θ on pE with the following properties:

(1) Θ “ λ` on E;

(2) Θ “ 1
K
λK on rT,8q ˆM` Ă pN`pBEq for T ą 0 sufficiently large;

(3) dΘ tames J`.

Proof. We set Θ “ λ` on pN pBhEq since λ` and 1
K
λK already match on this region. On

pN pBvEq, choose Θ to be of the form

Θ “ r1 ´ gpsqs
1

K
λK ` gpsqλ`

for some smooth function g : p´1,8q Ñ r0, 1s with gpsq “ 1 for s ď 0 and gpsq “ 0 for s
sufficiently large. We then have

(3.23) dΘ “ r1 ´ gpsqs
1

K
dλK ` gpsqdλ` ` g1psq ds^

ˆ
λ` ´

1

K
λK

˙
.

Recall that J` is tamed by both 1
K
dλK and dλ`; it is compatible with the former by con-

struction, and it is tamed by the latter because λ` “ ´df` ˝ J` where f` is J`-convex. It
follows that the interpolation forming the first two terms in (3.23) is also a nondegenerate
2-form taming J`; moreover, the construction of λ` and λK guarantees that it tames J` in
a uniform way as s Ñ 8. It therefore suffices to choose g changing slowly enough so that
the g1psq term in (3.23) does not ruin nondegeneracy, and this can be done at the cost of
achieving the condition gpsq “ 0 only for s ě T with T sufficiently large. �

3.8. Holomorphic pages. The main advantage of choosing J` compatible with the stable
Hamiltonian structure H` “ pΩ`,Λ`q instead of contact data is that the pages of π can

be lifted to properly embedded J`-holomorphic curves in pN`pBEq. Since J` on pN`pBEq “
r0,8q ˆ M` belongs to J pH`q, we can equally well regard J` as an R-invariant almost
complex structure on RˆM`, and we will now use it to construct a J`-holomorphic foliation
on R ˆM`.
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Denote by TF` the 2-dimensional distribution on R ˆM` defined by

pTF`qpr,xq “

#
Ξ` for x P |M`

P ,

SpantBθ, J`Bθu for x P |M`
I

Y |M`
Σ .

This distribution is smooth and J`-invariant; indeed, Ξ` is necessarily J`-invariant since

J` P J pH`q, and since Ξ` matches the vertical subbundle of πP : MP Ñ S1 on |M`
P , it also

is spanned by Bθ and J`Bθ in the collar where the θ-coordinate is defined. It is also easy

to see that TF` is R-invariant, and it is integrable: the latter is obvious in R ˆ |M`
P , and

everywhere else it follows from the fact that J` is S1-invariant, as this implies

(3.24) rBθ, J`Bθs ” 0.

Denote by F` the set of leaves of the foliation on R ˆM` tangent to TF`. The next result
shows that each of these leaves is the image of an embedded asymptotically cylindrical J`-
holomorphic curve as defined in §2.2, hence F` is a finite energy foliation in the sense of
Hofer-Wysocki-Zehnder [HWZ03]. In the following, we use the Riemannian metric

x¨, ¨y :“ dσp¨, j¨q

on Σ in order to define the gradient vector field ∇H of H : Σ Ñ r0,8q. Observe that on the
collar N pBΣq, since σ “ mes dφ and jBs “ 1

m
Bφ for the appropriate multiplicity m P N, we

have dσp¨, j¨q “ es
`
dsb ds`m2 dφ b dφ

˘
, while Hps, φq depends only on the s-coordinate,

thus ∇H points in the s direction, orthogonal to BΣ. The Hamiltonian vector field XH

determined on pΣ, dσq by H can now be written as

(3.25) XH “ j∇H.

Proposition 3.12. The leaves of the R-invariant foliation F` are the images of asymptot-
ically cylindrical J`-holomorphic curves. In fact, each leaf of this foliation is one of the
following:

(1) A trivial cylinder R ˆ γ, where γ Ă M` is a closed Reeb orbit of the form γ “

tzu ˆ S1 Ă |M`
Σ Ă Σ ˆ S1 for some z P CritMpHq.

(2) A holomorphic gradient flow cylinder, admitting a (not necessarily holomorphic)
parametrization u : R ˆ S1

ãÑ R ˆM` of the form

ups, tq “ papsq, ℓpsq, tq P R ˆ |M`
Σ Ă R ˆ Σ ˆ S1,

where a : R Ñ R is a strictly increasing proper function and ℓ : R Ñ Σ is a solution
of the gradient flow equation 9ℓ “ ∇Hpℓq approaching two distinct critical points of H
as s Ñ ˘8.

(3) A holomorphic page, which is a connected and properly embedded submanifold
formed as a union of subsets of the following type:

‚ tsu ˆ P Ă R ˆ |M`
P , where s P R is a constant and P Ă |M`

P is the portion of a

page of πP :MP Ñ S1 lying in |M`
P ;

‚ Annuli admitting (not necessarily holomorphic) parametrizations u : p´1, 1q ˆ
S1

ãÑ R ˆM` of the form

ups, tq “ papsq, s, φ, tq P R ˆ p´1, 1q ˆ S1 ˆ S1 Ă R ˆ |M`
I

for some bounded functions a : p´1, 1q Ñ R and constants φ P S1;
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‚ Half-cylinders admitting (not necessarily holomorphic) parametrizations u : r0,8qˆ
S1

ãÑ R ˆM` of the form

ups, tq “ papsq, ℓpsq, tq P R ˆ |M`
Σ Ă R ˆ Σ ˆ S1,

where a : r0,8q Ñ R is a strictly increasing proper function and ℓ : r0,8q Ñ Σ

is a solution of the gradient flow equation 9ℓ “ ∇Hpℓq that begins at time s “ 0
as a trajectory in N pBΣq orthogonal to BΣ and approaches a critical point of H
as s Ñ 8.

In particular, each of the holomorphic gradient flow cylinders and pages projects through
R ˆM` Ñ M` to an embedded surface in M` whose closure is a compact embedded surface

bounded by Reeb orbits in CritMpHq ˆ S1 Ă |M`
Σ .

Proof. At any point pz, θq P CritMpHq ˆ S1, Bθ is proportional to R`, hence J`Bθ is propor-
tional to Br and the trivial cylinder R ˆ γ Ă R ˆM` over the periodic orbit γ through pz, θq
therefore forms an integral submanifold of the distribution. Similarly, each integral subman-

ifold in R ˆ |M`
P is contained in a set of the form tsu ˆ P Ă R ˆ MP , with s P R a constant

and P Ă MP a page of π. To complete the proof, we mainly need to justify the following two
claims:

‚ At any point pz, θq P |M`
Σ Ă Σ ˆ S1, there exist a, b, c P R with c ‰ 0 such that

(3.26) J`Bθ “ aBθ ` bBr ` c∇H.

‚ At any point pρ, φ, θq P |M`
I , there exist b, c P R with c ‰ 0 such that

(3.27) J`Bθ “ bBr ` cBρ.

To verify (3.26), we first observe that since Bθ is transverse to Ξ` on |M`
Σ Ă Σ ˆ S1, there

exist unique functions P,Q : Σ Ñ R such that

∇H ` PBθ P Ξ` and j∇H `QBθ P Ξ`,

and the definition of J` in terms of j via the natural fiberwise isomorphism Ξ` Ñ TΣ then
implies J`p∇H ` PBθq “ j∇H `QBθ. By (3.13) and (3.25), we then have

J`p∇H ` PBθq “ ´
1

ε
eεHR` `

ˆ
Q`

1 ` εσpXHq

ε
K

˙
Bθ,

and applying ´J` to both sides yields

∇H ` PBθ “ ´
1

ε
eεHBr ´

ˆ
Q `

1 ` εσpXHq

ε
K

˙
J`Bθ.

The coefficient in front of J`Bθ cannot be zero since ∇H, Bθ and Br are not linearly dependent,
so this allows us to write J`Bθ in the form (3.26) as claimed. In fact, we obtain the following
precise formula for TF` in this region,

(3.28) TF` “ Span

"
Bθ,∇H `

1

ε
eεHBr

*
on R ˆ |M`

Σ ,

which shows that the functions apsq appearing in parametrizations of leaves in R ˆ |M`
Σ are

strictly increasing.
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The proof of (3.27) follows similarly from our definition of J` in |M`
I . Here we have

Bρ P Ξ`, with R` given by (3.15), and Lemma 3.6 implies that R` and Bθ are always linearly
independent, so they span the same subbundle as Bφ and Bθ. This implies

J`Bρ P SpanpBθ, Bφq “ SpanpBθ, R`q,

and thus J`Bρ “ aBθ ` bR` for some a, b P R with a ‰ 0. Applying J` to both sides of this
gives the desired result. �

In the following, we shall often blur the distinction between leaves of F` and the corre-

sponding unparametrized holomorphic curves, referring to both via parametrizations u : 9S Ñ
R ˆM`. We will examine the analytical properties of the curves in F` more closely in §4.

Identifying r0,8qˆM` Ă RˆM` in the usual way with pN`pBEq Ă pE, F` also determines

a foliation on pN`pBEq, which we shall extend into pE by setting

TF` :“

#
SpantBθ, J`Bθu in pN pBhEq,

V pE everywhere else.

Indeed:

Proposition 3.13. The distribution TF` on pE is J`-invariant and integrable, and matches
the vertical subbundle V E on a neighborhood of M´. Moreover, TF` is transverse to the

hypersurfaces tt “ constu in pN pBhEq.

Proof. Integrability follows from (3.24) since J` is S1-invariant in pN pBhEq, and J`-invariance
is also immediate because J` was defined to preserve the vertical subbundle outside of
pN pBhEq. The transversality claim follows from the fact that J` is ωE-tame and ωE “

dσ ` 1
K
et dt^ dθ in pN pBhEq, thus

0 ă ωEpBθ, J`Bθq “ ´
1

K
et dtpJ`Bθq.

�

Figure 7 shows a picture of the foliation on pE, plus a single holomorphic vertebra (see
Prop. 3.8) that intersects every leaf positively.

3.9. Large subdomains with weakly contact boundary. The construction in the present
subsection will be needed in the final step of the proofs of Theorems 1.5 and 1.10, in order to
show that our J-holomorphic foliation obtained by analytical methods gives rise to a bordered
Lefschetz fibration with supported symplectic structure in the sense of [LVW, §2.3]. The goal

is to exhaust pE by bounded subdomains

pER Ă pE, pE “
ď

Rą0

pER

such that each B pER is a weakly contact hypersurface (with corner) deformation equivalent to

pM´, ξ´q and a neighborhood of B pER in pER looks like the neighborhood of the boundary in
a bordered Lefschetz fibration with fibers given by leaves of F`.

Fix a pair of numbers c ą 0 and δ P p1{4, 1{2q, and define a smooth hypersurface M c Ă
pN`pBEq with nonempty boundary via the following conditions (see Figure 8):

(1) M c contains tcu ˆ |M`
P Ă r0,8q ˆM` “ pN`pBEq;

(2) M c is a union of subsets of leaves of F`;
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Figure 7. The J`-holomorphic foliation F` in pE. The picture includes two

special leaves whose intersections with the cylindrical end pN`pBEq “ r0,8q ˆ
M` are trivial cylinders over Reeb orbits corresponding to critical points of
H : Σ Ñ R, and all other leaves approach these cylinders asymptotically at
infinity. All leaves are also intersected transversely by a holomorphic vertebra

in the region pV .

(3) BM c Ă tρ “ δu Ă r0,8q ˆ |M`
I .

It will be useful to note that M c is θ-invariant in the region near its boundary where the
θ-coordinate is defined. By adjusting δ appropriately, one can also assume that βp´δq ą 0
and that M c is everywhere transverse to the Liouville vector field VK ; the latter follows from
the formula VK “ Bs ` Bt in the diagonal end, as we are free to assume by moving δ closer to
the region where βp´ρq “ 0 that the tangent spaces to M c are always C0-close to those of

the “vertical” hypersurfaces tcu ˆ xMP . The key consequence of the condition βp´δq ą 0 is
the following: by (3.18), we have

Br “ Bs `
erβp´ρq

per ´ 1qβp´ρq ` 1
Bt
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in the region 1{4 ă ρ ă 1{2, so βp´ρq ą 0 implies that the flow of Br moves positively in
the t-coordinate. In particular, given R ą 0, we can find a number r1 ą 0 such that if Φt

Br
denotes the time t flow of Br,

B
`
Φr1

Br
pM cq

˘
Ă tRu ˆ xMΣ Ă pN pBhEq.

With this understood, define pER Ă pE to be the region in pE bounded by Φr1
Br

pM cq Ă pN pBvEq

and tRu ˆ xMΣ Ă pN pBhEq. Its boundary has two smooth faces B pER “ Bv pER Y Bh pER, where

Bv pER “ Φr1
Br

pM cq Ă pN pBvEq,

and
Bh pER Ă tRu ˆ xMΣ Ă pN pBhEq.

The R-invariance of the foliation F` implies that Bv pER is a union of 1-parameter families of
compact subsets of leaves of F`.

Lemma 3.14. For each R ą 0, there exists a smooth isotopy of pER to E through domains
with the property that both smooth faces of their boundaries are weakly contact hypersurfaces
in pE,ωEq with the contact structure induced by λK , and the corner of each is contained in
pN pBvE X BhEq.

Proof. Since ωE is exact in pN pBhEq with Liouville vector field VK “ Vσ ` Bt, the contact-type

property for Bh pER is immediate. The weakly contact property for Bv pER follows mostly from

Lemma 3.4; we only need to examine the “bent” region near the boundary of Bv pER slightly

more closely. Since this region also lies in pN pBhEq, it suffices to check that Bv pER is transverse
to VK “ Bs ` Bt. We have explicitly assumed this to be true for M c, so we need to show that
it remains true after flowing M c by Br, particularly in the region t1{4 ă ρ ă 1{2u, where the
flow is given by (3.18). We can assume each tangent space to M c in the relevant region is
spanned by Bφ, Bθ and Bt ` aBs for some a P R with |a| small. The flow of Br does not change
the first two vectors in this frame, and its change to the third one stretches the t-direction
but not the s-direction. Thus as long as δ has been chosen to make |a| sufficiently small,
flowing by Br cannot make these tangent spaces tangent to Bs ` Bt; moreover, one sees from

this discussion that Bv pER is isotopic to a subset of ts0u ˆ xMP Ă pN pBvEq for some constant
s0 ą 0, through a family of weakly contact hypersurfaces that are all transverse to VK and
have fixed boundary. One can then define a suitable isotopy to E through domains bounded

by hypersurfaces of the form tconstu ˆ xMΣ Ă pN pBhEq and tconstu ˆ xMP Ă pN pBvEq. �

Figure 8 depicts the boundary faces of B pER on the backdrop of the cylindrical end and
holomorphic foliation from Figures 6 and 7 respectively. It also shows the collar neighborhoods

N pBv pERq and N pBh pERq as described in the following lemma, carrying fibrations whose fibers
are leaves of the foliation.

Lemma 3.15. For each R ą 0, the boundary faces of pER admit collar neighborhoods

Bv pER Ă N pBv pERq – p´1, 0s ˆ Bv pER Ă pER,

Bh pER Ă N pBh pERq – p´1, 0s ˆ Bh pER Ă pER,

with fibrations

ΠR
v : N pBv pERq Ñ p´1, 0s ˆ S1, ΠR

h : N pBh pERq Ñ Σ

that satisfy the following conditions:
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Figure 8. The construction of the region pER with boundary B pER “
Bv pER YBh pER and corner Bv pER XBh pER, together with the collar neighborhoods

N pBv pERq, N pBh pERq Ă pER, which carry fibrations whose fibers are leaves of
the holomorphic foliation from Figure 7.

(1) The vertical subbundle for both fibrations is defined by the integrable distribution TF`.

(2) ΠR
v is pseudoholomorphic near Bv pER with respect to J` on pE and the standard complex

structure on p´1, 0s ˆ S1.

(3) On N pBh pERq, ωE has a primitive that restricts to a contact form on Bh pER for which
the boundaries of the fibers of ΠR

h are closed Reeb orbits.

Proof. This is based essentially on four observations. First, the characteristic line field of

Bh pER as a hypersurface in p pE,ωEq is spanned by Bθ. Since J` is ωE-compatible, it follows

that J`Bθ P TF` is transverse to Bh pER, hence the leaves of F` intersect Bh pER transversely
in loops tangent to Bθ, and these are Reeb orbits for any contact form given by a primitive
of ωE.
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The second observation, which is clear already from the construction of pER, is that Bv pER

is a union of (compact subsets of) leaves of F`, in particular it is a disjoint union of S1-

parametrized families of leaves. The collar N pBv pERq with its fibration can therefore be ob-
tained by extending these S1-families to families parametrized by annuli.

Third, the foliation F` is invariant under flows in the r-direction, and in a neighborhood

of Bv pER, we have dspBrq “ 1.

Finally, J` satisfies J`Br “ R` throughout pN`pBEq, and in a neighborhood of Bv pER,

we can assume every point belongs to either r0,8q ˆ |M`
P Ă pN`pBEq or the portion of

r0,8q ˆ |M`
I Ă pN`pBEq with ρ ą 1{4, so that (3.8) and (3.15) give R` “ e

#

S1 , a horizontal

lift of the canonical unit vector on S1 under the fibration πP : MP Ñ S1. By the third

observation above, it follows that ΠR
v : N pBv pERq Ñ p´1, 0s ˆ S1 can be arranged such that

near the boundary, Br and J`Br are horitontal lifts of the two canonical basis vector fields on
p´1, 0s ˆ S1, meaning ΠR

v is pseudoholomorphic. �

4. Holomorphic curves in spinal open books

In this section we study J-holomorphic curves in the symplectization of a contact 3-manifold
carrying a spinal open book. As we saw in §3, every spinal open book on a closed 3-manifold
gives rise to a stable Hamiltonian structure and a compatible almost complex structure on
its symplectization, for which the pages lift to a foliation by embedded J-holomorphic curves
with positive ends approaching nondegenerate Reeb orbits in the spine. Our first task in this
section will be write down the easy extension of this construction to the case of manifolds
with boundary, and then to show that the stable Hamiltonian structure can be perturbed
to a contact structure supported by the spinal open book. We then examine the analytical
properties of the curves in the foliation, and show in particular that the planar curves among
them are stable and will survive the perturbation from stable Hamiltonian to contact data;
moreover, these will in fact be the only holomorphic curves with certain asymptotic behavior
that exist after the perturbation. The most important results are Propositions 4.4 (existence),
4.10 and 4.11 (stability under perturbation), and 4.20 (uniqueness). These generalize results
that were proved for open books in [Wen10d] and blown up summed open books in [Wen13],
and will serve as crucial ingredients for the computations of contact invariants in §5 and
compactness arguments in §6.

Throughout this section, pM 1, ξq is a closed contact 3-manifold, and M “ MP YMΣ Ă M 1

is a compact connected submanifold (possibly with boundary) carrying a spinal open book

π “
´
πΣ :MΣ Ñ Σ, πP :MP Ñ S1, tmT uTĂBM

¯
.

that admits a smooth overlap and supports ξ|M .

4.1. A family of stable Hamiltonian structures. This subsection and the next will con-
sist mostly of repackaged notation and results from §3. We shall use the notation from Section
3.1 for collar neighborhoods, and we also need to recall from [LVW, §2.2] the open covering

M “ |MΣ Y |MI Y |MP Y |MB

defined whenever M carries a spinal open book with smooth overlap. Here |MP denotes

the complement of the region tt ě ´1{2u Ă N pBMP q in MP , |MΣ is the complement of

ts ě ´1{2u Ă N pBMΣq in MΣ, |MI is the union of N pBMΣq with the adjacent components of
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N pBMP q, and |MB is the union of all components of N pBMP q that touch BM . The components

of |MI carry coordinates

pρ, φ, θq P p´1, 1q ˆ S1 ˆ S1 Ă |MI

which are related to the collar coordinates from §3.1 by ρ “ s and ρ “ ´t on the regions of

overlap, and components of |MB similarly carry coordinates

pρ, φ, θq P r0, 1q ˆ S1 ˆ S1 Ă |MB

with ρ “ ´t. Since N pBMP q is contained in |MI Y |MB, we can use the coordinate ρ “ ´t as
an alternative to t on N pBMP q.

Recall that in §3.1, the hypersurface M0 Ă E was endowed with a similar open covering

M0 “ |M0
Σ Y |M0

I Y |M0
P ; in the case BM “ H, these three regions have obvious canonical

identifications with |MΣ, |MI and |MP respectively, thus defining a diffeomorphism M – M0.

This gives rise to a diffeomorphism of M with the hypersurface M` Ă pE from §3.5 after
flowing from M0 to M` along the stabilizing vector field Z. The idea behind most of the
definitions in this section is to use this identification of M with M` in order to endow M

with the same stable Hamiltonian structure that was defined in §3.5, and its symplectization
likewise with the same almost complex structure as in §3.7. Only minor modifications will be
needed for the case BM ‰ H.

The following contact form on M takes on the role that was previously played by the
restriction of 1

K
λK to M`: define

α :“

$
’’’&
’’’%

eε
pH `
σ ` 1

K
dθ
˘

on |MΣ,

meF`pρq dφ` 1
K
eG`pρq dθ on |MI ,

dπP ` 1
K
λ on |MP ,

fKpρq dθ `mgpρq dφ on |MB,

where the various symbols have the following meanings. The multiplicity m P N is a number

that may vary among different connected components of |MI Y |MB (see §3.1), while σ is the
pullback via πΣ :M Ñ Σ of the Liouville form on Σ defined in §3.3, λ is the fiberwise Liouville
form onMP defined in the same subsection, and K ą 0 is the (arbitrarily) large constant that
was used for building a Liouville form out of these ingredients via the Thurston trick. The

functions pH : ΣˆS1 Ñ r0,8q and F`, G` : p´1, 1q Ñ R were defined for the perturbation of
M0 to M` in §3.5, which also depended on a constant ε ą 0 that may be assumed arbitrarily
small. The only new pieces of data in our definition of α are the functions fK and g required
for the collar near BM : to define these, we first choose smooth functions f, g : r0, 1q Ñ r0, 1s
such that:

‚ pfpρq, gpρqq “ pe´ρ, 1q for ρ ě 1{4;
‚ fg1 ´ f 1g ą 0;
‚ f 1pρq ă 0 for ρ ą 0;
‚ pfp0q, gp0qq “ p1, 0q, pf 1p0q, g1p0qq “ p0, 1q, and f2p0q ă 0.

The function fK : r0, 1q Ñ r0, 1s is then defined by

fKpρq :“

„
βp´ρq

ˆ
1 ´

1

K

˙
`

1

K


fpρq,

where β : p´1, 0s Ñ r0, 1s is the same cutoff function that was used in §3.4 to define a
stabilizing vector field. It follows that fKpρq “ 1

K
fpρq for ρ ě 1{2, fKpρq “ fpρq for ρ ď 1{4,
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and

fKpρq “

„
βp´ρq

ˆ
1 ´

1

K

˙
`

1

K


e´ρ for ρ ě 1{4,

hence f 1
Kpρq ă 0 for ρ ě 1{4, so that fKg

1 ´ f 1
Kg ą 0 everywhere.

For K ą 0 sufficiently large and ε ą 0 sufficiently small, α is a Giroux form for π, so we
can assume after adjusting ξ by an isotopy that α extends to a contact form on M 1 with

ξ “ kerα.

The Reeb vector field for α will be denoted by Rα and can be written as

(4.1) Rα “ e´ε pH pr1 ` εσpXHqsKBθ ´ εXHq on |MΣ,

where the Hamiltonian vector fieldXH on Σ is defined by dσpXH , ¨q “ ´dH. On the interface,
Rα satisfies

(4.2) Rα “
1

F 1
`pρq ´G1

`pρq

ˆ
´

1

m
e´F`pρqG1

`pρqBφ `Ke´G`pρqF 1
`pρqBθ

˙
on |MI ,

while near BM ,

(4.3) Rα “
1

fKpρqg1pρq ´ f 1
Kpρqgpρq

ˆ
g1pρqBθ ´

f 1
Kpρq

m
Bφ

˙
on |MB.

This last formula implies since f 1p0q “ 0 that BM is foliated by closed Reeb orbits in the θ-
direction, and these orbits form Morse-Bott families due to the condition f2p0q ă 0. Similarly,
the assumption that H is Morse away from BΣ implies that Reeb orbits of the form tzu ˆ S1

for z P CritMpHq are nondegenerate. Here we again denote by

CritMpHq Ă Σ

the finite set of Morse critical points of H, thus excluding the critical points in the region
near BΣ where H vanishes.

The stable Hamiltonian structure from §3.5 can be written in the present context as H “
pΩ,Λq, where

Ω :“ dα `
1

KC
η

for some large constant C ą 0 and a closed 2-form η that is assumed to vanish outside of |MP .
The stabilizing 1-form is

Λ :“

$
’’’’’’&
’’’’’’%

α on |MΣ,

meF`pρq dφ` 1
K
eG`pρqβpG`pρqq dθ on |MI ,

dπP on |MP ,

βp´ρqfpρq dθ `mgpρq dφ on |MB,

α on M 1zM.

The only feature of this discussion that did not already appear in §3 is the definition of H

in |MB, since we are now allowing BM ‰ H. To see that pΩ,Λq satisfies the conditions of
a stable Hamiltonian structure in this region, we need to check that ker Ω Ă ker dΛ: this is
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obvious whenever either Λ “ dπP or pΩ,Λq “ pdα, αq, so we only still need to inspect the
region where 0 ă βp´ρq ă 1, which means ρ P p1{4, 1{2q. Here gpρq “ 1, so

Λ “ βp´ρqfpρq dθ `mdφ,

Ω “ d pfKpρq dθ `mdφq “ f 1
Kpρq dρ ^ dθ

(4.4)

in t1{4 ď ρ ď 1{2u Ă |MB, implying that ker dΛ and ker Ω are both generated by Bφ. This
shows that on the region in question, pΩ,Λq is indeed a stable Hamiltonian structure and its
induced Reeb vector field is simply 1

m
Bφ, which is the same as Rα. For future reference it

will be useful to note that the same result holds in the region t1{4 ď ρ ď 1{2u Ă |MI , as
here F`pρq “ 0 and G`pρq “ ´ρ, so that (4.4) is valid with fpρq replaced by e´ρ and fKpρq
replaced by 1

K
e´ρ. One can also see from this formula and the conditions imposed on β that

Λ satisfies the contact condition as soon as βp´ρq ą 0, so in particular, Λ ^ dΛ ě 0 and the
induced hyperplane distribution

Ξ0 :“ ker Λ

is therefore a confoliation.
To summarize the discussion so far:

Proposition 4.1. The pair H “ pΩ,Λq is a confoliation-type stable Hamiltonian structure

on M 1. Its induced Reeb vector field RH matches Rα outside of |MP , and is colinear with Rα

if η ” 0. �

The possibly non-exact 2-form η is a harmless but necessary piece of the setup for appli-
cations to weak fillability, though in the present section we will be interested primarily in
the case η ” 0. Our stable Hamiltonian structure then has some convenient extra properties
arising from the fact that RH and Rα are in this case colinear. This implies in the first place
that in addition to the confoliation condition Λ ^ dΛ ě 0, we have

Λ ^ dα ą 0 and α ^ dΛ ě 0,

and therefore:

Proposition 4.2. For every constant τ P r0, 1s, the pair

Hτ :“ pΩτ ,Λτ q :“ pdα, p1 ´ τqΛ ` ταq

is a stable Hamiltonian structure on M 1 whose induced Reeb vector field is colinear with Rα.

Moreover, H0 “ H if η ” 0, while Λτ “ α on |MΣ for all τ , and Λτ is a contact form
everywhere for τ ą 0, with an induced contact structure isotopic to ξ. �

Remark 4.3. The reader should be cautioned that while the notation Hτ makes sense for
τ “ 0, H0 under this definition is not the same SHS that was denoted this way in §3; it
corresponds rather to what was previously denoted by H` in the case η ” 0 and BM “ H.

For each τ ě 0, we shall denote the induced hyperplane distribution and Reeb vector field

for Hτ by Ξτ and Rτ respectively. Note that if η ‰ 0, then R0 ‰ RH on |MP , though H

does induce the same hyperplane distribution Ξ0 as H0. The scaling of Rτ changes in general
with the value of τ , but its direction does not. Since Λτ is contact for τ ą 0, Proposition 2.1
implies

J pHτ q “ J pΛτ q.
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4.2. The unperturbed finite energy foliation. In this subsection we consider the unper-
turbed stable Hamiltonian structure H “ pΩ,Λq with Ω “ dα ` 1

KC
η, where η is allowed to

be nonzero in |MP . Let us now rewrite the construction of the holomorphic foliation from §3.8
in the present context. Choose J0 P J pHq to satisfy the same conditions as J` P J pH`q in

§3.7 on the region |MΣ Y |MI Y |MP , while on |MB it is determined by the same condition as

on |MI , namely
J0v1 “ hpρqv2

for some smooth function hpρq ą 0, with v1 :“ Bρ and v2 denoting the unique linear combi-
nation of Bφ and Bθ that lies in Ξ0 and satisfies Ωpv1, v2q “ 1.

We can then define a smooth J0-invariant and translation-invariant distribution TF on
R ˆM by

TFpr,xq :“

#
Ξ0 for x P |MP ,

SpanpBθ, J0Bθq for x P |MΣ Y |MI Y |MB.

Using the metric x¨, ¨y :“ dσp¨, j¨q on Σ to define the gradient ∇H of H, Proposition 3.12 now
adapts to the present setting as follows:

Proposition 4.4. The distribution TF is integrable, and thus defines an R-invariant foliation
F on R ˆ M whose leaves are the images of embedded and asymptotically cylindrical J0-
holomorphic curves. Each leaf of this foliation is one of the following:

(1) A trivial cylinder R ˆ γ, where γ Ă M is either a nondegenerate Reeb orbit of the

form γ “ tzu ˆ S1 Ă |MΣ Ă Σ ˆ S1 for some z P CritMpHq, or part of a Morse-Bott
2-torus of Reeb orbits in the θ-direction foliating BM .

(2) A holomorphic gradient flow cylinder, admitting a smooth (but not necessarily
holomorphic) parametrization u : R ˆ S1

ãÑ R ˆM of the form

ups, tq “ papsq, ℓpsq, tq P R ˆ |MΣ Ă R ˆ Σ ˆ S1,

where a : R Ñ R is a strictly increasing proper function and ℓ : R Ñ Σ is a solution
of the gradient flow equation 9ℓ “ ∇Hpℓq approaching two distinct critical points of H
as s Ñ ˘8.

(3) A holomorphic page, which is a connected and properly embedded submanifold
formed as a union of subsets of the following type:

‚ tsu ˆ P Ă R ˆ |MP , where s P R is a constant and P Ă |MP is the portion of a

page of πP :MP Ñ S1 lying in |MP ;
‚ Annuli admitting smooth (but not necessarily holomorphic) parametrizations u :

p´1, 1q ˆ S1
ãÑ R ˆM of the form

ups, tq “ papsq, s, φ, tq P R ˆ p´1, 1q ˆ S1 ˆ S1 Ă R ˆ |MI

for some bounded function a : p´1, 1q Ñ R and constant φ P S1;
‚ Half-cylinders admitting smooth (but not necessarily holomorphic) parametriza-
tions u : r0,8q ˆ S1

ãÑ R ˆM of the form

ups, tq “ papsq, ℓpsq, tq P R ˆ |MΣ Ă R ˆ Σ ˆ S1,

where a : r0,8q Ñ R is a strictly increasing proper function and ℓ : r0,8q Ñ Σ

is a solution of the gradient flow equation 9ℓ “ ∇Hpℓq that begins at time s “ 0
as a trajectory in N pBΣq orthogonal to BΣ and approaches a critical point of H
as s Ñ 8;
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‚ Half-cylinders admitting smooth (but not necessarily holomorphic) parametriza-
tions u : r0,8q ˆ S1

ãÑ R ˆM of the form

ups, tq “ papsq, bpsq, φ, tq P R ˆ r0, 1q ˆ S1 ˆ S1 Ă R ˆ |MB

where a : r0,8q Ñ R is a function with limsÑ8 apsq “ `8 and b : r0,8q Ñ p0, 1q
is a strictly decreasing function with limsÑ8 bpsq “ 0.

In particular, each of the holomorphic gradient flow cylinders and pages projects through
R ˆ M Ñ M to an embedded surface in M whose closure is a compact embedded surface
bounded by Reeb orbits in pCritMpHq ˆ S1q Y BM .

Proof. The only detail that has not been covered already by Proposition 3.12 is the behavior
of the holomorphic pages as they approach BM . The relevant calculation here is the same as

for |MI , but carried out in |MB instead, the key point being that everywhere in the interior

of |MB, SpanpBφ, Bθq “ SpanpBθ, RHq, hence J0Bθ is a linear combination of Br and Bρ. At
BM this ceases to be true because RH is proportional to Bθ, which implies that the trivial
cylinders over orbits in BM are tangent to TF and the interior leaves that approach BM
are therefore properly embedded. Orientation considerations imply that the ends of those
leaves are positive, as their projections to M are embedded surfaces with closures bounded
by positively oriented Reeb orbits on BM . �

The foliation F defines a finite energy foliation as in [HWZ03], but it is not generally
a stable finite energy foliation, because the J0-holomorphic curves forming its leaves may in
general have negative Fredholm index and will thus die under small perturbations of the data.
We will be examining issues of this type for the remainder of §4.

Each Morse critical point z P CritMpHq gives rise to an embedded periodic Reeb orbit
parametrized by

γz : S
1 Ñ M : t ÞÑ pz, tq Ă |MΣ Ă Σ ˆ S1.

This is also a periodic orbit of Rτ for τ ą 0 since Hτ “ H on |MΣ for all τ . We will denote
the k-fold cover of this orbit for any k P N by

γkz : S1 Ñ M : t ÞÑ γzpktq.

Observe that the natural S1-action on Σ ˆ S1 induces a preferred trivialization of the con-
tact bundle along γz. We shall denote the Conley-Zehnder index of γkz with respect to this
trivialization by

µCZpγkz q P Z,

and let Morsepzq P t0, 1, 2u denote the Morse index of z P CritMpHq.

Lemma 4.5. There exists a number T1 ą 0 such that for any T0 ą 0, the above construction
can be arranged by choosing K ą 0 and ε ą 0 sufficiently large and small respectively so that
the dynamics of RH have the following properties:

(1) For each Morse critical point z P CritMpHq, all orbits in a neighborhood of γz : S
1 Ñ

|MΣ are nondegenerate.
(2) Every closed orbit with period less than T1 is of the form γkz for some Morse critical

point z P CritMpHq and k P N, and all such orbits satisfy

µCZpγkz q “ Morsepzq ´ 1.

(3) The orbits γz for z P CritMpHq have period less than T0.
(4) The families of orbits that foliate BM are Morse-Bott.
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Moreover, we can also assume that the dynamics of Rτ have these same properties for all
τ ě 0 sufficiently small.

Proof. Consider first the dynamics of RH. On |MΣ we have RH “ Rα, so we see from (4.1)

that periodic orbits in |MΣzpCritMpHq ˆS1q correspond to nonconstant periodic orbits of the
Hamiltonian vector field XH on Σ, where XH is scaled by ε and the periods of its orbits are

therefore scaled by 1{ε. (We can assume the additional scaling factor of e´ε pH is arbitrarily
close to 1.) Since the periods of nonconstant orbits of XH have positive infimum, we can make

the scaled periods larger than any given T1 by choosing ε small. In |MP , we have Λ “ dπP and

thus all closed orbits of RH have period at least 1. In |MI , RH matches Rα and is thus given by
(4.2), so the condition G1

` ă 0 from Lemma 3.6 implies that RH has a nonzero Bφ component
whose size does not depend on K; one can therefore find a lower bound independent of K on

the periods in |MI and choose T1 ą 0 smaller than this bound. A similar computation works

in |MB using (4.3), since f 1
Kpρq ă 0 for ρ ą 0 implies that Rα has a positive Bφ-component in

the interior, and the dependence of the contact form on K is limited to the region tρ ě 1{4u,
where the Reeb vector field is simply 1

m
Bφ. The orbits that foliate BM have period 1 since

fKp0q “ fp0q “ g1p0q “ 1. With this understood, let us assume henceforward that T1 is
smaller than the periods of all orbits other than the γz for z P CritMpHq. The periods of the
latter can however be made arbitrarily small by increasing K.

The computation of the Conley-Zehnder index is a standard result from Floer theory, see
for example [SZ92] or [Wenb, §10.3.2]. Similarly, the Morse-Bott condition at BM follows
from the condition f2p0q ă 0.

All of the above applies immediately to R0, since this is the special case of RH with η ” 0.
Considering the perturbations Hτ for τ ą 0, the same conclusions remain valid for Rτ if τ is
sufficiently small: this is because the perturbation does not change the direction of the Reeb
vector field, so the only change to the dynamics is a very slight change in the periods of closed
orbits. �

From now on we will assume the data to be chosen so that Lemma 4.5 is satisfied for some
constants T0, T1 ą 0, for which we may assume T1{T0 is as large as needed.

Lemma 4.5 provides enough information to compute the Fredholm indices of the leaves
of F by applying the Riemann-Roch formula to the normal bundles of the curves. This
computation was carried out for the ordinary open book case in [Wen10d], and the result in
our setting is:

Proposition 4.6. Suppose u : 9S Ñ RˆM represents a holomorphic page in F that has genus

g ě 0 and k ` n punctures, where k ě 0 of them are asymptotic to orbits γz1 , . . . , γzk in |MΣ

for Morse critical points z1, . . . , zk P CritMpHq, and the rest are asymptotic to Morse-Bott
orbits in BM . Then

(4.5) indpuq “ 2 ´ 2g ´
kÿ

i“1

r2 ´ Morsepziqs .

If u : R ˆ S1 Ñ R ˆ M represents a holomorphic gradient flow cylinder with postive end at
γz`

and negative end at γz´
for z˘ P CritMpHq, then

indpuq “ Morsepz`q ´ Morsepz´q.

�
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We shall say that a leaf u P F is an interior leaf if all its asymptotic orbits are in |MΣ,
none in BM . This includes all the trivial cylinders over orbits in CritMpHq ˆ S1, all gradient
flow cylinders and all holomorphic pages that are modelled on pages with boundary contained
in MΣ.

Observe that if one starts from any point z P BΣ and traces an inward curve in N pBΣq,
orthogonal to the boundary, it soon becomes a gradient flow line that ends at a critical point of
index either 1 or 2, and the former is the case only for finitely many starting points in BΣ. This
implies that F contains at most finitely many leaves (up to R-translation) whose asymptotic
orbits include index 1 critical points. The generic leaf is therefore either a holomorphic page
with positive ends approaching orbits in BM and index 2 critical points, or a gradient flow
cylinder connecting a critical point of index 0 to one of index 2. Since every component of Σ
has nonempty boundary, H can always be chosen such that

Morsepzq P t1, 2u for all z P CritMpHq,

and we shall assume this from now on so that all generic leaves are holomorphic pages rather
than gradient flow cylinders. The index formula (4.5) shows that only the planar holomorphic
pages in F can have positive index, and in general some of these may even have indpuq ď 0 if
they have multiple ends approaching index 1 critical points. This can be avoided by a generic
perturbation of H and j away from the boundary to arrange the following conditions:

(i) ∇H is Morse-Smale,
(ii) No two gradient flow lines approaching index 1 critical points enter BΣ at points with

the same value of mφ, where φ denotes the usual collar coordinate at BΣ and m is
the relevant multiplicity determined by the adjacent component of πP : MP Ñ S1 as
in (3.1).

Definition 4.7. We will say that the pair pH, jq are in general position whenever H has
no index 0 Morse critical points and both of the above conditions are satisfied.

Plugging in the index formulas above and applying the automatic transversality criterion
from [Wen10b], we find:

Lemma 4.8. If pH, jq are in general position, then every gradient flow cylinder and every
holomorphic page with genus zero has index 1 or 2 and is Fredholm regular. Moreover, these
are the only leaves of F with positive index. �

For later arguments in §5 and §6, we will also need some control over the indices of multiple
covers of curves in F , especially the trivial cylinders and gradient flow cylinders.

Lemma 4.9. Suppose pH, jq are in general position, and u is a connected stable holomorphic
building in R ˆM 1 with no nodes, with arithmetic genus g ě 0, and whose connected compo-

nents are all covers of leaves of F contained in R ˆ |MΣ. Assume moreover that the sum of
the periods of the positive asymptotic orbits of u is less than T1. Then

indpuq “ 2g ´ 2 ` #Γ`
0 ` 2#Γ`

1 ` #Γ´
0 ,

where Γ˘
0 and Γ˘

1 denote the sets of positive/negative punctures of u at which the asymptotic
orbit has even or odd Conley-Zehnder index respectively. In particular:

(1) The index is nonnegative, with equality if and only if u is either a trivial cylinder or a
building composed entirely of branched covers of trivial cylinders over an orbit tzuˆS1

with Morsepzq “ 2, each connected component having exactly one positive puncture.
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(2) If u is a cover of a gradient flow cylinder, then indpuq ě 1, with equality if and only
if u itself is a cylinder and the cover is unbranched, in which case u is also Fredholm
regular.

Proof. By Proposition 2.4, all the negative asymptotic orbits of u also have periods less
than T1, so fixing the S1-invariant trivialization, the Conley-Zehnder indices of all asymptotic
orbits are given by Lemma 4.5, i.e. they are 1 for punctures in Γ1 and 0 for the others. The
index computation then follows easily from the standard formula (2.7) after observing that
the relative first Chern number vanishes, as the S1-invariant trivialization extends globally

over |MΣ: writing the Euler characterstic as 2 ´ 2g ´ #Γ, we thus obtain

indpuq “ ´ p2 ´ 2g ´ #Γq ` #Γ`
1 ´ #Γ´

1 ,

which reduces to the stated formula.
To understand the consequences of this formula, observe first that we always have

Γ` ‰ H and Γ´ ‰ H,

#Γ`
1 “ 0 implies #Γ´

1 “ 0.
(4.6)

Indeed, these statements follow from the fact that they manifestly hold for all of the trivial
cylinders and gradient flow cylinders that constitute the somewhere injective curves covered
by components of u (the second statement depends on the fact that ∇H is Morse-Smale).
Thus if indpuq ă 0, we necessarily have g “ 0 and #Γ`

1 “ 0, implying #Γ´
1 “ 0, but then

#Γ`
0 and #Γ´

0 must both be positive and we have a contradiction. The index must also be
strictly positive if g ě 1 since #Γ`

0 and #Γ`
1 will never both be zero. Now suppose g “ 0

and indpuq “ 0. We have the following possibilities:

(1) If #Γ`
0 “ 2, then #Γ`

1 “ #Γ´
0 “ 0, but the implication in (4.6) then gives #Γ´

1 “ 0
and thus contradicts the fact that Γ´ ‰ H.

(2) If #Γ´
0 “ 2, then #Γ`

0 “ #Γ`
1 “ 0, which is impossible since Γ` ‰ H.

(3) If #Γ`
0 “ #Γ´

0 “ 1 and #Γ`
1 “ 0, then (4.6) implies #Γ´

1 “ 0, so u is a trivial
cylinder over an even orbit, meaning a cover of some γz with Morsepzq “ 1.

(4) If #Γ`
0 “ #Γ´

0 “ 0 and #Γ`
1 “ 1, then no components of u can be covers of gradient

flow cylinders since these always have even negative punctures, thus we have a building
whose components are all covers of trivial cylinders over an odd orbit (hence γz with
Morsepzq “ 2), and the building has exactly one positive puncture. Since g “ 0, the
latter implies that each of its components also has exactly one positive puncture.

Finally, applying the index formula to the case where u : 9S Ñ Rˆ |MΣ is a cover of a gradient
flow cylinder, we have #Γ`

0 “ #Γ´
1 “ 0 and thus

indpuq “ 2g ´ 2 ` 2#Γ` ` #Γ´ “ 2g ´ 2 ` #Γ ` #Γ`

“ ´χp 9Sq ` #Γ`,

which equals at least 1 since χp 9Sq ď 0 and #Γ` ě 1. Equality then holds if and only if 9S is a
cylinder, and the Riemann-Hurwitz formula then implies that the cover is unbranched. Since
u is immersed in this case, Fredholm regularity follows from the main result of [Wen10b]. �

4.3. Perturbation of stable leaves. For the SFT and ECH computations in §5, we will
need to perturb the planar holomorphic curves in F as the confoliation Ξ0 changes to the
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contact structure Ξτ for τ ą 0. To this end, assume pH, jq are in general position, and denote

J pM 1;Hq :“
ď

H1

J pH1q,

where the union is over all confoliation-type stable Hamiltonian structures H1 on M 1 that

match H on a neighborhood of CritMpHq ˆ S1 Ă |MΣ; note that this is true in particular
for all Hτ with τ ě 0. We assign to J pM 1;Hq the natural C8-topology as a subset of the
space of all smooth translation-invariant almost complex structures on R ˆ M 1. Then for
J P J pM 1;Hq, denote by

MpJ ;Hq

the moduli space of R-equivalence classes of nonconstant, connected, unparametrized finite-
energy J-holomorphic curves whose asymptotic orbits are all contained in CritMpHq ˆ S1.5

This moduli space is naturally contained in the corresponding space of stable J-holomorphic
buildings as defined in [BEH`03],

MpJ ;Hq Ă MpJ ;Hq.

We shall consider the resulting universal moduli spaces

MpJ pM 1;Hqq :“
 

pJ, uq
ˇ̌
J P J pM 1;Hq, u P MpJ ;Hq

(
,

MpJ pM 1;Hqq :“
 

pJ, uq
ˇ̌
J P J pM 1;Hq, u P MpJ ;Hq

(
,

which inherit natural topologies. Let

MF pJ0q Ă MpJ0;Hq

denote the subset consisting of R-equivalence classes of embedded curves whose images are

leaves of the foliation F . Its closure M
F

pJ0q Ă MpJ0;Hq in the compactified moduli space
consists of stable holomorphic buildings whose levels are likewise disjoint unions of leaves

of F . We will see in Lemma 4.17 that M
F

pJ0q is an open and closed subset of MpJ0;Hq;
note that this is clear already for the components with arithmetic genus zero, due to Fredholm
regularity (Lemma 4.8). Choose an open neighborhood

M
F

pJ pM 1;Hqq Ă MpJ pM 1;Hqq

of tJ0u ˆ M
F

pJ0q, let MF pJ pM 1;Hqq Ă M
F

pJ pM 1;Hqq denote the open subset consisting
of smooth 1-level curves with no nodes, and for each J P J pM 1;Hq, denote6

MF pJq :“
 
u P MpJ ;Hq

ˇ̌
pJ, uq P MF pJ pM 1;Hqq

(
,

M
F

pJq :“
!
u P MpJ ;Hq

ˇ̌
pJ, uq P M

F
pJ pM 1;Hqq

)
.

The components of each of these spaces consisting of curves or buildings with a prescribed
index i P Z will be written as

MF
i pJq, M

F

i pJq, MF
i pJ pM 1;Hqq, M

F

i pJ pM 1;Hqq.

After shrinking the neighborhood M
F

pJ pM 1;Hqq if necessary, we shall assume without loss

of generality that the following conditions hold for all u P M
F

pJq:

5See §2.2 for some clarifying remarks on moduli spaces of unparametrized finite-energy J-holomorphic
curves and their topologies.

6To clarify: depending on the size of the neighborhood M
F

pJ pM 1;Hqq, one should expect M
F pJq and

M
F

pJq to be empty unless J is close to J0. (The latter will of course be the main case of interest.)
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‚ All components of levels in u are somewhere injective;
‚ If u has arithmetic genus zero, then all components of levels in u are Fredholm regular.

Both conditions follow from the fact that they are already known to hold for M
F

pJ0q. If
additionally J P J pM 1;Hq is generic, then it now follows that MF

i pJq is empty for all
i ď 0. With or without genericity, we can also conclude that MF

1 pJq and MF
2 pJq are smooth

manifolds of dimensions 0 and 1 respectively (recall that we divided out the R-action in

defining these spaces). By inspection of the foliation F , we see that MF
1 pJ0q “ M

F

1 pJ0q has

finitely many elements, and M
F

2 pJ0q is homeomorphic to a disjoint union of finitely many
circles and compact intervals whose endpoints are 2-level buildings, both levels being unions
of trivial cylinders with curves in MF

1 pJ0q. The implicit function theorem now implies that

this description also holds for M
F

i pJq whenever J is sufficiently close to J0:

Proposition 4.10. For all J P J pM 1;Hq sufficiently close to J0, there exist families of
homeomorphisms

ΨJ : MF
1 pJ0q Ñ MF

1 pJq, ΨJ : M
F

2 pJ0q Ñ M
F

2 pJq

that depend continuously on J P J pM 1;Hq and satisfy ΨJ0 “ Id. In particular, MF
1 pJq

contains finitely many elements, and M
F

2 pJq is homeomorphic to a disjoint union of finitely
many circles and compact intervals whose endpoints consist of 2-level holomorphic buildings
in which each level is a union of trivial cylinders with a curve in MF

1 pJq.
Moreover, if J is also generic, then MF

i pJq “ H for all i ď 0. �

We obtain a stronger result in the special case where all pages are both interior and planar.
The proof of the following will be postponed until the end of §4.4, since it requires a bit of
intersection theory.

Proposition 4.11. Assume BM “ H and every page in MP has genus zero. Then for
J P J pM 1;Hq sufficiently close to J0, the trivial cylinders over orbits in CritMpHq ˆ S1,
together with the curves in MF

1 pJq Y MF
2 pJq foliate R ˆ M , and thus form a stable finite

energy foliation of pR ˆM,Jq.

4.4. Intersection-theoretic properties. We now examine the properties of the foliation F

and perturbed moduli spaces MF pJq in terms of Siefring’s intersection theory of punctured
holomorphic curves (see §2.3). We shall assume throughout the following that the period
bounds and index formula of Lemma 4.5 hold for some constants T1 ą T0 ą 0. We first
observe the following immediate consequence of Lemma 4.5 and (2.8). Note that whenever γ
is a nondegenerate Reeb orbit with µCZpγq “ 0, the same holds for all covers of γ.

Lemma 4.12. For any z P CritMpHq with Morse index 0 or 2 and k P N such that γkz has
period less than T1, the extremal winding numbers α˘pγkz q behave as follows:

‚ If Morsepzq “ 2, then α´pγkz q “ 0 and α`pγkz q “ 1.
‚ If Morsepzq “ 0, then α´pγkz q “ ´1 and α`pγkz q “ 0.

Moreover if Morsepzq “ 1, then α´pγkz q “ α`pγkz q “ 0 for all k P N. �

Lemma 4.13. For every J P J pM 1;Hq and u P MF pJq, if u is not a trivial cylinder, then
cN puq “ 0 and u has zero asymptotic winding (in the S1-invariant trivialization) at each
puncture.
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Proof. For any leaf u P F which is not a trivial cylinder, the projection of u toM 1 is embedded
and thus windπpuq “ 0. Since each end of u is an S1-invariant cover of a gradient flow line
and thus has asymptotic winding zero, this winding is extremal by Lemma 4.12 and we have
def8puq “ 0. Then (2.12) implies cN puq “ 0. Since cN puq depends only on the asymptotic
orbits and relative homology class, it remains zero for any u P MF pJq which is not a trivial
cylinder, so (2.12) then implies def8puq “ 0 and the result on asymptotic winding follows. �

Lemma 4.14. Suppose k,m P N, J P J pM 1;Hq, u P MF pJq is not a trivial cylinder and uk

denotes any J-holomorphic k-fold cover of u. Then for any z P CritMpHq and m P N such
that γkmz has period less than T1,

uk ˚ pR ˆ γmz q “ 0.

If Morsepzq “ 1, then this also holds without any restriction on k,m P N.

Proof. By homotopy invariance, it suffices to show that this holds for J “ J0 and any leaf
u P F which is not a trivial cylinder. The image of uk then covers a gradient flow line wherever
it intersects MΣ, so u

k has no actual intersections with R ˆ γmz , and it remains to rule out
asymptotic contributions. By the definition in [Sie11], these can exist only if u has an end
approaching γz, in which case uk has an end approaching γnz for some n ď k. Moreover, the
asymptotic contribution is then zero if and only if the asymptotic winding of the m-fold cover
of this end differs from the a priori bound set by α˘pγmn

z q. In the S1-invariant trivialization,
this asymptotic winding is manifestly zero, so in the case Morsepzq P t0, 2u, nm ď km implies
that γmn

z has period less than T1, and Lemma 4.12 then gives α˘pγmnq “ 0 for the appropriate
choice of sign. For Morsepzq “ 1, the same holds with no restrictions on multiplicities since
α˘pγkq “ 0 for all k P N. �

Proposition 4.15. For any J P J pM 1;Hq, every curve u P MF pJq is embedded, and any
two such curves u, v satisfy u ˚ v “ 0 unless both are trivial cylinders.

Proof. The proof of u ˚ v “ 0 is immediate from Lemmas 2.10 and 4.14. If u is not a trivial
cylinder, then this also implies u˚u “ 0, and since u is somewhere injective by the definition of

M
F

pJ pM 1;Hqq, it now follows from the adjunction formula (2.10) that u is nicely embedded,
hence also embedded. �

Lemma 4.16. Assume J P J pM 1;Hq, and v P MpJ ;Hq is a J-holomorphic curve whose
positive ends are all asymptotic to orbits of the form γkz with z P CritMpHq and k P N having
period less than T1. Then for any curve u P MF pJq with no negative ends, v ˚ u “ 0.

Proof. After an R-translation we can assume the image of u is contained in r0,8q ˆ M .
Likewise, we can homotop v through asymptotically cylindrical maps to a (non-holomorphic)
map v1 which looks the same near its negative ends but whose intersection with r0,8q ˆ M

consists only of the trivial cylinders over its positive asymptotic orbits. Thus by the homotopy
invariance of the intersection number,

v ˚ u “ v1 ˚ u “
ÿ

i

pR ˆ γkizi q ˚ u,

for some finite set of critical points zi P CritMpHq and natural numbers ki such that γkizi has
period less than T1. This is zero by Lemma 4.14. �

We are now in a position to prove Proposition 4.11.
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Proof of Proposition 4.11. By Prop. 4.15, every curve in MF
1 pJqYMF

2 pJq is nicely embedded
and disjoint from its own asymptotic orbits, and any two such curves are either identical (up to
R-translation) or disjoint; in fact the latter is also true for arbitrary R-translations, implying
that their projections to M are either identical or disjoint. It remains to show that these
curves fill the entirety of M . Let ∆ Ă M denote the compact set consisting of all points that
lie either in CritMpHq ˆ S1 or in the projection of any curve in MF

1 pJq. Also, let O Ă Mz∆
denote the set of points that lie in the projection of any curve in MF

2 pJq. Applying the
implicit function theorem to finitely many index 2 leaves of F , we find that for J sufficiently
close to J0, every connected component of Mz∆ contains points in O.

To finish, we claim that O is an open and closed subset of Mz∆. To see that it is closed,
suppose xk P O converges to x P Mz∆. Then the points xk are contained in the projections
of curves uk P MF

2 pJq, and these have a subsequence converging to either another curve

u P MF
2 pJq or a building u P M

F

2 pJq. In the former case we conclude x P O, and in the latter
case, u has two levels which are each unions of trivial cylinders with curves in MF

1 pJq, so
x P ∆ and we have a contradiction. That O is open follows from an implicit function theorem
for nicely embedded index 2 curves, cf. [Wen05, Theorem 4.5.44]. The main point is that
since any u P MF

2 pJq is embedded, the nearby curves in MF
2 pJq can all be identified with

sections of the normal bundle of u, and the condition cN puq “ 0 from Lemma 4.13 implies
that these sections must be nowhere zero, cf. [Wen10b, Equation (2.7)]. �

4.5. Uniqueness. For any J P J pM 1;Hq, define the spaces

MpJ ;H,T1q, MpJ ;H,T1q

to consist of all connected R-equivalence classes of unparametrized finite energy J-holomorphic
curves or buildings respectively in RˆM 1 whose positive asymptotic orbits are in CritMpHqˆ
S1 and have periods adding up to less than T1. Proposition 2.4 then implies that the same con-
dition holds at the negative ends, thus all negative asymptotic orbits of curves in MpJ ;H,T1q
or MpJ ;H,T1q are also in CritMpHq ˆ S1 due to Lemma 4.5. We denote by

M˚pJ ;H,T1q Ă MpJ ;H,T1q

the set of somewhere injective curves in MpJ ;H,T1q. The following is now an easy conse-
quence of the intersection theory from §4.4.

Lemma 4.17. Every curve in M˚pJ0;H,T1q is an interior leaf of F .

Proof. Suppose u P M˚pJ0;H,T1q is not a leaf of F . By Prop. 2.4 it must have at least
one positive puncture, which by assumption is asymptotic to an orbit of the form γkz for
z P CritMpHq and k P N, with period less than T1. All trivial cylinders over orbits in
CritMpHq ˆ S1 are leaves of F , so we may assume u is not a trivial cylinder. Then as u
approaches γkz , it has isolated intersections with infinitely many leaves of F . In particular,
we can find a generic leaf v P F with u ˚ v ą 0, i.e. v has no ends asymptotic to orbits γζ
with Morsepζq “ 1. Since there are no index 0 critical points, this implies every end of v is
positive. Then Lemma 4.16 implies u ˚ v “ 0, so we have a contradiction. �

To generalize the above lemma to the perturbation of J0, we will need to specialize to
the case where pM, ξq is a partially planar domain, i.e. we assume there exists a connected

component Mpln
P Ă MP which has genus zero pages and does not touch BM .
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Remark 4.18. If Mpln
P Ă MzBM is a connected component of MP , then we can always

shrinkM to a smaller subdomain on which ξ is still supported by a spinal open book containing

the pages ofMpln
P in the interior, but with the additional property that every spinal component

intersects Mpln
P . Indeed, if Σ1 ˆ S1 Ă MΣ is any spinal component disjoint from M

pln
P , then

since ξ is transverse to the S1-direction at BpΣ1 ˆ S1q, we can replace M with a smaller
domain whose boundary includes all components of BMP that touch Σ1 ˆ S1, and assume
after an isotopy of ξ that it is supported by a spinal open book on the shrunken domain
(cf. [LVW, Example 1.11]).

By the above remark, we lose no generality by imposing the following conditions on our
partially planar domain and the chosen geometric data:

Assumptions 4.19. Suppose the spinal open book on pM, ξq, the data H and j and constants
K, ε ą 0 (cf. Lemma 4.5) satisfy the following conditions:

(1) MP Ă M contains a connected component Mpln
P which has genus zero pages and

BMpln
P Ă MΣ;

(2) Every page in the interior of M has fewer than T1{T0 boundary components;

(3) Every component of MΣ intersects Mpln
P ;

(4) H : Σ Ñ r0,8q has exactly one index 2 critical point on every connected component
of Σ.

For the main result of this section, we consider sequences τν ą 0 and Jν P J pHτν q Ă
J pM 1;Hq such that

τν Ñ 0 and Jν Ñ J0.

Proposition 4.20. If Assumptions 4.19 hold, then for ν sufficiently large, M˚pJν ;H,T1q “
MF pJνq.

Proof. The claim that MF pJνq Ă M˚pJν ;H,T1q follows immediately from Assumptions 4.19
since every curve in MF pJνq has fewer than T1{T0 ends, all approaching simply covered
orbits in CritMpHq ˆ S1 with period less than T0. We will prove the converse by showing
that for ν sufficiently large, the presence of the embedded planar curves in MF

2 pJνq forces
all other curves in M˚pJν ;H,T1q to be nicely embedded. Then the compactness theorem in
[Wen10a] implies essentially that if ν is large enough, then every such curve in M˚pJν ;H,T1q
is a perturbation of a nicely embedded J0-holomorphic building, whose components must be
leaves of F due to Lemma 4.17. Here are the details.

Arguing by contradiction, assume there is a sequence of Jν-holomorphic curves

uν : 9Sν Ñ R ˆM 1

which define elements in M˚pJν ;H,T1qzMF pJνq as ν Ñ 8. Since the trivial cylinders over
orbits in CritMpHqˆS1 are all leaves of F , we may assume uν is never a trivial cylinder. After
taking a subsequence, we may also assume that uν has fixed numbers of positive and negative
ends, always approaching the same collection of orbits; this follows from the period bound at
the positive ends since there are finitely many combinations of orbits in CritMpHq ˆ S1 for
which the required bound is satisfied.

Step 1: Compactness. We claim that a subsequence of uν converges to a J0-holomorphic
building u8 whose connected components are all covers of interior leaves in F . The conver-
gence does not immediately follow from [BEH`03], for three reasons:
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(1) We must check that uν satisfy a suitable energy bound as the contact structures Ξτν

degenerate to the confoliation Ξ0.
(2) We have not assumed any bound on the genus of 9Sν .
(3) The dynamics of R0 are degenerate.

The first issue is the main reason we have introduced the stable Hamiltonian structures
Hτ “ pΩτ ,Λτ q. A reasonable notion of energy can be defined by

Eνpuνq :“ sup
ϕPT

ż

9Sν

u˚
ν pdpϕprqΛτν q ` Ωτν q ,

where T denotes the space of smooth strictly increasing functions ϕ : R Ñ p´δ, δq for some
constant δ ą 0 chosen sufficiently small to make sure that the integrand is nonnegative.
This notion is equivalent to the energy defined in [BEH`03], in the sense that either satisfies
uniform bounds if and only if the other does. Since Ωτν “ dα, we can write

Eνpuνq “ sup
ϕPT

ż

9Sν

u˚
νd pϕprqΛτν ` αq

and thus conclude from Stokes’ theorem and the bound on the periods at the positive ends
(cf. Prop. 2.4) that Eνpuνq is uniformly bounded.

The second issue is a larger danger. In order to bound the genus of 9Sν , we use the follow-
ing argument, originally suggested by Michael Hutchings and used already in [Wen13]. Since
Eνpuνq is bounded and we have convergence of the data Hτν Ñ H0 and Jν Ñ J0, a com-
pactness theorem of Taubes [Tau98, Prop. 3.3] (see also [Hut02, Lemma 9.9]) implies that
the sequence of currents represented by uν has a convergent subsequence. This implies in
particular that the relative homology classes of uν have a convergent subsequence, so taking
advantage of the assumption that uν is somewhere injective, we can write down the adjunction
inequality (2.10),

uν ˚ uν ě 2 rδpuνq ` δ8puνqs ` cN puνq ě cN puνq

and observe that the left hand side is bounded. Now plugging in the definition of the normal
Chern number from [Wen10a], we have

cN puνq “ c1pu˚Ξτν q ´ χp 9Sνq ` C

where the constant C P Z depends only on the extremal winding numbers at the asymptotic
orbits and is thus fixed, and c1pu˚Ξτν q is the relative first Chern number of the bundle

u˚Ξτν Ñ 9Sν with respect to the S1-invariant trivializations at the asymptotic orbits. The

latter also depends only on the relative homology class of uν , so we conclude that χp 9Sνq is

bounded from below, giving a bound on the genus of 9Sν from above. Passing again to a
subsequence, we may now assume all the surfaces 9Sν are diffeomorphic.

To conclude, we observe that the dynamics of R0 are indeed nondegenerate up to period T1.
By Prop. 2.4 and the period bound imposed on the positive asymptotic orbits of uν , every
orbit that can appear in bubbling or breaking is therefore nondegenerate, in which case the
proof of the main compactness theorem in [BEH`03] goes through and gives a subsequence
convergent in the usual sense to a J0-holomorphic building u8.

The fact that all components of u8 are covers of interior leaves in F follows now from
Lemma 4.17.

Step 2: Intersection theory. The goal of this step is to show that uν ˚ uν “ 0 for all ν
sufficiently large. Since H has no Morse critical points of Morse index 0, every curve in
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MF
2 pJνq has all its ends at critical points of Morse index 2, thus they are all positive. Then

Lemma 4.16 implies that for any v P MF
2 pJνq,

(4.7) uν ˚ v “ 0.

We claim next that no negative end of uν approaches any orbit of the form γkz with Morsepzq “
2, and any positive end that approaches such an orbit has asymptotic winding zero. Here
we use the assumption that every connected component of MΣ intersects the planar piece

M
pln
P and has a unique index 2 critical point: it follows via Proposition 4.10 that whenever

Morsepzq “ 2, for sufficiently large ν there exists a curve v P MF
2 pJνq whose asymptotic

orbits include γz. By Lemma 4.13, v approaches γz with zero asymptotic winding, so if the
asymptotic winding of uν approaching γkz is nonzero, then the projections of uν and v to M 1

intersect, implying uν ˚v ą 0 and thus contradicting (4.7). Moreover, the end approaching γkz
cannot be negative, as its asymptotic winding would then be bounded from below by α`pγkq,
which is 1 by Lemma 4.12.

Finally, we claim that for every orbit γ which occurs as an asymptotic orbit of uν ,

(4.8) uν ˚ pR ˆ γq “ 0.

The orbit γ is necessarily of the form γkz for z P CritMpHq and k P N and has period less
than T1. If Morsepzq “ 2 then we may again assume due to Proposition 4.10 that γz is
an asymptotic orbit for some v P MF

2 pJνq. Then any intersection of uν with R ˆ γz is
necessarily positive and thus causes an intersection of uν with an end of v approaching γz,
again contradicting (4.7). Asymptotic contributions to uν ˚ pR ˆ γkz q are also ruled out since,
as was just shown, any end of uν approaching a cover of γz has asymptotic winding zero, and
this matches α´pγkz q by Lemma 4.12.

For the case Morsepzq “ 1 we argue slightly differently: we pass to the limit and show that
u8 ˚ pR ˆ γkz q “ 0, which implies (4.8) for sufficiently large ν. Recall that every connected
component w of the building u8 is a cover of some leaf of F . If this leaf is a trivial cylinder,
then w ˚ pRˆγkz q “ 0 by Lemma 2.11 since µCZpγzq is even. If it is not a trivial cylinder, then
we instead obtain the same result from Lemma 4.14. There are also no breaking contributions
to u8 ˚ pR ˆ γkz q since there are no common breaking orbits with odd Conley-Zehnder index.

We have now established all the conditions to apply Lemma 2.10 and conclude

uν ˚ uν “ 0.

Step 3: Nicely embedded curves degenerate nicely. By the main result of [Wen10a], the
limit building u8 must also be nicely embedded, in the sense that all of its levels are unions
of trivial cylinders with nicely embedded curves: in particular, this means every component
of u8 is an interior leaf of F . By inspection of F , the only connected multi-level buildings
one can construct out of leaves have exactly two levels: the top consists of a disjoint union of
trivial cylinders with gradient flow cylinders, and the bottom is a single holomorphic page.
Any such building is a limit of a sequence of holomorphic pages in F , and thus belongs to

M
F

pJ0q, so we conclude that uν P MF pJνq for sufficiently large ν. �

Remark 4.21. Proposition 4.20 also holds for any sufficiently small perturbations Λ1
ν of Λτν

(fixed in a neighborhood of CritMpHq ˆ S1) and J 1
ν P J pdΛ1

ν ,Λ
1
νq of Jν . In particular

we can arrange in this way for Λ1
ν to be a sequence of nondegenerate contact forms. The

uniqueness result is proved by repeating the above argument for sequences Λµ
τν Ñ Λτν and

J
µ
ν P J pdΛµ

τν ,Λ
µ
τν q, Jµ

ν Ñ Jν as µ Ñ 8. The only reason we did not state Prop. 4.20 to allow
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this perturbation in the first place is that there is no obvious way to perturb the stable Hamil-
tonian structure Hτν together with Λτν—instead, the compactness argument in the proof as
Λµ
τν Ñ Λτν requires the usual notion of energy for almost complex structures compatible with

contact forms as in [Hof93], taking advantage of Proposition 2.1.

5. Computations in ECH and SFT

We now apply the holomorphic curve construction of the previous section to prove Theo-
rems 1.17, 1.18 and 1.19.

Adopting the notation of §4, assume M is a compact 3-manifold contained in a closed and
connected contact 3-manifold pM 1, ξq, Ω is a closed 2-form on M 1 and ξ|M is supported by
a an Ω-separating partially planar spinal open book π. Fix all data necessary for defining
the exact stable Hamiltonian structures Hτ “ pdα,Λτ q, along with J0 P J pH0q admitting the
J0-holomorphic finite energy foliation F on R ˆM and the perturbed moduli spaces defined
in §4.3 and §4.5. After possibly shrinking M to a smaller domain, we can and shall take
Assumptions 4.19 as given. The assumptions also imply that Ω is exact on MΣ.

Denote the connected components of Σ by

Σ “ Σ1 Y . . . Y Σr

and for each i “ 1, . . . , r, let zi P CritMpHq denote the unique index 2 critical point in Σi.

Suppose the pages in M
pln
P Ă MP have k ` 1 ě 1 boundary components. Without loss

of generality, we may assume that k is minimal in the sense that for any other connected
component Moth

P Ă MP with planar pages and BMoth
P Ă MΣ, the pages have at least k ` 1

boundary components. For j “ 1, . . . , r, let

mj P N

denote the number of boundary components of each page in Mpln
P that lie in Σj ˆ S1 Ă MΣ.

For Theorems 1.18 and 1.17, we add the assumption that M is a planar k-torsion domain.
In this case there is at least one other connected component Moth

P which is “different” from

M
pln
P in the sense that at least one of the following conditions holds:

(1) The pages in Moth
P are not diffeomorphic to those in Mpln

P ,

(2) For some j P t1, . . . , ru, the pages of Moth
P do not have exactly mj boundary compo-

nents contained in Σj ˆ S1.

These assumptions imply that at least one connected component of Σ has disconnected bound-
ary, so after reordering the labels, assume this is true of Σr. We may then assume Σr contains
at least one extra critical point

ζ P Σr, Morsepζq “ 1,

such that the two gradient flow lines ending at ζ enter through different components of BΣr,

one from M
pln
P and the other from Moth

P .
Choose a nondegenerate contact form Λ1

ν and almost complex structure J 1
ν P J pΛ1

νq for
which Propositions 4.10 and 4.20 both hold (see also Remark 4.21), and assume additionally
that J 1

ν is generic, so MF
i pJ 1

νq is empty for all i ď 0. For any set of integers n1, . . . , nr ě 0,
define

MpJ 1
ν ;H;n1, . . . , nrq Ă MpJ 1

ν ;H,T1q,

MpJ 1
ν ;H;n1, . . . , nrq Ă MpJ 1

ν ;H,T1q,
(5.1)



78 SAMUEL LISI, JEREMY VAN HORN-MORRIS, AND CHRIS WENDL

to consist of all connected curves or buildings respectively such that for each i P t1, . . . , ru,
the sum of the covering multiplicities of all positive asymptotic orbits in Σi ˆ S1 is less than
or equal to ni. Applying Propositions 4.10 and 4.20 under the above assumptions, we can
now completely classify the somewhere injective curves in MpJ 1

ν ;H;m1, . . . ,mrq as follows.
The generic curve in this space is an embedded index 2 punctured sphere with no negative
ends and k ` 1 positive ends, of which mj ends are asymptotic to γzj for j “ 1, . . . , r. Aside
from trivial cylinders, the only other somewhere injective curves in MpJ 1

ν ;H;m1, . . . ,mrq are
the following: for every i “ 1, . . . , r and every index 1 critical point y P Σi,

‚ Each gradient flow line ℓ entering through BΣi fromM
pln
P and ending at y corresponds

to a unique index 1 punctured sphere uℓ with no negative ends, and k ` 1 positive
ends asymptotic to the same collection of simply covered orbits as the generic curves,
except with one copy of γzi replaced by γy;

‚ There are exactly two embedded index 1 cylinders v`
y , v

´
y , each with a positive end at

γzi and negative end at γy, such that the closed cycle rv`
y s ´ rv´

y s P H2pM 1q defined
by the two relative homology classes satisfies

ż

rv`
y s´rv´

y s
Ω “ 0.

All of these curves are ECH-admissible, i.e. they satisfy indpuq “ Ipuq.

Proof of Theorem 1.18. Consider the orbit set

γ “ tpγz1 ,m1q, . . . , pγzr´1
,mr´1q, pγzr ,mr ´ 1q, pγζ , 1qu

as a generator of the ECH chain complex for pM 1,Λ1
ν , J

1
νq with coefficients in ZrH2pM 1q{ ker Ωs.

Here we are abusing notation slightly by allowing the possibility mr ´1 “ 0; if this is the case
then γzr should be removed from the orbit set altogether. By the above classification, BECHγ

counts two index 1 cylinders v`
y and v´

y for every y P CritMpHq with Morse index 1, but

these are homologous in H2pM 1q{ ker Ω, and Proposition 2.14 implies that for any choice of
coherent orientations provided by [BM04], they cancel each other out. Thus the only index 1
curve remaining to count is the punctured sphere uℓ corresponding to the unique gradient

flow line ℓ that enters BΣr from M
pln
P and ends at ζ. Since uℓ has no positive ends, we find

BECHγ “ H. �

Remark 5.1. In the above proof, we achieved cancelation for the cylinders v`
y and v´

y by
appealing to Proposition 2.14, which is a distinctly low-dimensional result, but there are also
other ways to see that the paired cylinders in this particular setting must be oppositely ori-
ented. One such approach is to cap off Σ by disks and extend the function H with a single
index 0 critical point on each cap, and then identify the normal Cauchy-Riemann operators
for the gradient flow cylinders with linearizations of the Floer equation with respect to a
C2-small time-independent Hamiltonian on the resulting closed surface. The computation of
Hamiltonian Floer homology on this surface then implies that paired cylinders must cancel
because the index 2 critical point (viewed as a constant Hamiltonian orbit) is a closed gener-
ator of the Floer chain complex. This approach can also work in higher-dimensional settings,
cf. [Mora].

To complete the analogous computation in SFT, we must be a bit more careful since SFT
in principle counts all holomorphic curves, not only those which are somewhere injective. To
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be fully correct, the computation of SFT requires an abstract perturbation of the Cauchy-
Riemann equation to achieve transversality for all solutions, e.g. this can be done following
the polyfold scheme under development by Hofer-Wysocki-Zehnder, cf. [Hof]. We will not
need to know any details about this perturbation, but only the following general principles:

‚ Any Fredholm regular holomorphic curve with index 1 gives rise uniquely to a solution
of the perturbed problem for sufficiently small perturbations.

‚ If solutions of the perturbed problem with given asymptotic behavior exist for arbitrar-
ily small perturbations, then as the perturbation is switched off we find a subsequence
convergent to a holomorphic building with the same asymptotic behavior.

This understood, counting the solutions of the perturbed problem requires a precise descrip-
tion of the corresponding space of index 1 J 1

ν -holomorphic buildings.

Proposition 5.2. Suppose u P MpJ 1
ν ;H;m1, . . . ,mrq has index 1 and only simply covered

orbits at its positive ends, including at most one such end asymptotic to γζ and the others
all asymptotic to γzi for i P t1, . . . , ru. Then u has only one level and no nodes, and is
somewhere injective: in particular, it is one of the curves uℓ or v˘

y that were counted in the
proof of Theorem 1.18.

Proof. We observe first that u must have at least one connected component that is not a cover
of a trivial cylinder: were it otherwise, then since every positive asymptotic orbit is simply
covered and at most one of these is at an index 1 critical point, every component would be
either a trivial cylinder or a branched cover of R ˆ γz for Morsepzq “ 2. Since the relevant
covers of γz all have odd Conley-Zehnder index by Lemma 4.5, this would imply that indpuq
is even and thus gives a contradiction.

Next, observe that every nonconstant component of the top level belongs to the moduli
space MpJ 1

ν ;H;m1, . . . ,mrq and is thus a curve in one of the perturbed moduli spaces aris-
ing from the foliation via Proposition 4.10. By induction, it follows that the nonconstant
components of all other levels are also covers of such curves, so by Lemma 4.9, they all have
nonnegative index. Since indpuq “ 1, Proposition 2.6 now implies that u cannot have any
nodes and therefore (by stability) also has no constant components.

By assumption, the total multiplicities of the positive ends of u in each spinal component
are bounded above by those of the holomorphic pages, thus at most one component of u can
be a (perturbed) holomorphic page, and multiple covers of such curves cannot appear. If
u does have a component that is a page, that component must be uℓ, it must occupy the
bottommost level, and all other components then must have index 0, implying via Lemma 4.9
that all other nontrivial components are branched covers of trivial cylinders with one positive
end. A nontrivial cover of this type cannot appear in the top level since the positive asymptotic
orbits are simply covered; by induction, it follows that such covers cannot appear anywhere,
and we are left with u “ uℓ.

If no component of u is a perturbed page, then exactly one component is a cover of a
(perturbed) gradient flow cylinder, which by Lemma 4.9 is then the unique component with
index 1, while all others have index 0. Now the same argument again rules out any nontrivial
index 0 components since the positive asymptotic orbits are simply covered, and implies at
the same time that the index 1 component is somewhere injective, hence u “ v˘

y . �

We briefly recall from [LW11] the necessary notation for the version of the SFT chain
complex that is involved in the definition of algebraic torsion. A closed Reeb orbit for Λ1

ν

is called good if it is not a double cover of an orbit whose odd/even parity (defined in
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terms of the Conley-Zehnder index) is different from its own. Let A denote the Z2-graded
supercommutative algebra with unit over the group ring RrH2pM 1q{ ker Ωs, generated by all
formal variables of the form qγ where γ is a good orbit. Writing dimM 1 “ 2n´ 1, the degree
|qγ | P Z2 of a generator is defined in general to be n ´ 3 ` µCZpγq (mod 2), thus in the
present case, n “ 2 and the odd/even degree of qγ is opposite the parity of γ as defined by
the Conley-Zehnder index. The actual chain complex is the algebra of formal power series
Arr~ss, where ~ is a formal variable defined to have even degree. Counting index 1 solutions
to a small abstract perturbation of the J 1

ν-holomorphic curve equation in the symplectization
then gives rise to a differential operator DSFT : Arr~ss Ñ Arr~ss satisfying pDSFTq2 “ 0, and
the contact manifold pM, ker Λ1

νq is said to have Ω-twisted algebraic k-torsion for an integer
k ě 0 if and only if ~k is an exact element in the chain complex pArr~ss,DSFTq.

Proof of Theorem 1.17. We compute the operation of DSFT on the element

Q :“ qm1

γz1
. . . qmr´1

γzr´1

qmr´1
γzr

qζ P A

in the chain complex pArr~ss,DSFTq outlined above. By Proposition 5.2, all relevant in-
dex 1 solutions of the perturbed equation can be identified with the Fredholm regular J 1

ν -
holomorphic curves uℓ, v

˘
y that were counted in the proof of Theorem 1.18. Once again the

coherent orientations give v`
y and v´

y opposite signs due to Prop. 2.14 or Remark 5.1, so these
cancel, and what’s left is a single curve uℓ with genus zero, k ` 1 positive punctures (one
for each generator in Q), and no negative punctures. This is exactly the same situation that
arose in the more specialized computations of [LW11,Wen13], and for the same reasons, it
gives DSFTQ “ ~

k. �

Proof of Theorem 1.19. Since the theorem is trivial whenever the ECH contact invariant van-
ishes, the case with planar torsion is implied by Theorem 1.18. Assume therefore thatM Ă M 1

is not a planar torsion domain: in this case M “ M 1, there is no boundary, and all pages
are planar and diffeomorphic to each other. Given d P N, we can without loss of generality
arrange T0 ą 0 in Lemma 4.5 sufficiently small so that

pk ` 1qd ă T1{T0.

Now by Proposition 4.11 (see also Remark 4.21), we can pick a nondegenerate contact form
Λ1
ν and generic J 1

ν P J pΛ1
νq so that for a generic point x P MzpCritMpHqˆS1q, p0, xq P RˆM

is in the image of a unique index 2 J 1
ν -holomorphic curve

ux P MF
2 pJ 1

νq,

and by Prop. 4.20 ux is the only such curve in M˚pJ 1
ν ;H,T1q. We consider for n “ 1, . . . , d

the generator
γn “ tpγz1 , nm1q, . . . , pγzr , nmrqu

in the ECH chain complex for Λ1
ν , J

1
ν with coefficients in ZrH2pMq{ ker Ωs. Then BECHγn

counts only the pairs of cylinders v`
y and v´

y (combined with trivial cylinders) which cancel
each other out due to Prop. 2.14 or Remark 5.1, thus

BECHγn “ 0,

so γn represents a homology class in ECH. Defining the U -map by counting admissible index 2
curves through p0, xq, the action of U on γn then counts unions of trivial cylinders with the
curve ux and nothing else, hence

Uγn “ γn´1,
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implying Ud
γd “ H. Since one can choose the data to make this true for arbitrarily large d,

the result follows. �

6. Spinal open books ñ Lefschetz fibrations

In this section we complete the proofs of Theorems 1.5, 1.10 and 1.13. By the non-fillability
results proved in [LVW] via spine removal, we can restrict our attention to partially planar
spinal open books that do not have planar torsion, i.e. from now on,M “ M 1 has no boundary
and π is symmetric. The main idea in the proofs will be to attach to a given filling pW,ωq the
special cylindrical end constructed in §3, which contains a pseudoholomorphic foliation, and
then push this foliation into the filling W . The goal will be to obtain a Lefschetz fibration
whose fibres are the leaves of the foliation and whose base is the moduli space itself. By
looking at intersections of the leaves with each holomorphic vertebra, we will then show
that the moduli space defines a branched cover of each vertebra, which will necessarily be
unbranched if the spinal open book is Lefschetz-amenable (see Definition 1.4). Then, in order
to complete the proof of Theorem 1.5, it will be necessary to understand how the moduli space
deforms under a generic homotopy of almost complex structures associated to a homotopy of
the symplectic data on W .

The argument is similar to the one in [Wen10c], and should be thought of as a punctured
version of McDuff’s classification of ruled symplectic manifolds [McD90]. There are two new
ingredients in the spinal setting, however. The first and main new ingredient is that the moduli
space of index 2 curves coming from the planar pages of the open book has codimension 1
boundary in addition to codimension 2 nodal curves. As in [Wen10c], the codimension 2 nodal
curves correspond to Lefschetz critical fibers (a proof of this fact is sketched in the appendix
of [Wen18]). The codimension 1 boundary consists of index 1 buildings in the filling attached
to holomorphic gradient flow cylinders in RˆM ; this phenomenon arises due to the presence
of index 1 critical points on vertebrae, thus it can be avoided in the setting of ordinary
open books (where all vertebrae are disks) but not in the general case. The key observation
however is that these buildings come in canceling pairs, since the same can be assumed to
be true for the gradient flow cylinders. The base of the Lefschetz fibration will thus be a
quotient moduli space, obtained by “sewing together” the moduli space of index 2 curves
along canceling boundary components. (We note that the actual situation is slightly more
delicate since there may also be corner points to the moduli space, at which two boundary
strata intersect.)

The second new ingredient compared with [Wen10c] is that in the spinal open book setting,
it makes sense to consider weak fillings that are exact only on the spine. For a general weak
filling, it is not possible to attach a symplectization end with a holomorphic foliation, but non-
exactness away from the spine was already incorporated into the stable Hamiltonian model
constructed in §3; we will take advantage of this by working directly with stable Hamiltonian
data instead of contact data at infinity. In the more specialized setting of blown up summed
open books, weak fillings were handled via a different and less powerful approach in [NW11].

6.1. The completed filling and the moduli space. Our standing assumptions will be as
follows. Assume pM, ξq is a closed contact 3-manifold with a supporting symmetric spinal
open book

π :“
´
πΣ :MΣ Ñ Σ, πP :MP Ñ S1

¯
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whose pages have genus zero. As in §5, denote the connected components of Σ by

Σ1, . . . ,Σr Ă Σ,

and let
mi P N, i “ 1, . . . , r

denote the number of boundary components that pages have in the component ΣiˆS
1 Ă MΣ;

note that this definition does not depend on the choice of a page since π is symmetric. Assume
Ω is a closed 2-form on M such that Ω|ξ ą 0 and Ω|MΣ

is exact, and pW,ωq is a compact
symplectic manifold with boundary BW “ M such that ω|TM “ Ω. For the strong filling case
of Theorem 1.5, we will sometimes also require ω “ dλ near BW for some 1-form λ such that

α :“ λ|TM

is a contact form for ξ. The dual Liouville vector field in this case will be denoted by Vλ,
where by definition

ωpVλ, ¨q “ λ.

For the Liouville case, λ will be assumed to extend to a global primitive of ω on W , and for
the almost Stein case, λ will also have the form ´df ˝J for some smooth function f :W Ñ R

and ω-tame almost complex structure J .

In §3, we constructed a noncompact symplectic model p pE,ωEq containing a weakly contact
hypersurface

pM´, ξ´q Ă p pE,ωEq

that is contactomorphic to pM, ξq; let us fix such a contactomorphism and identify M “ M´

henceforward. The symplectic structure takes the form

ωE “
1

KC
pC dλK ` ηq ,

where η is a closed 2-form on MP Ă M with rηs “ rΩs P H2
dRpMq, λK is a Liouville form

whose restriction to M´ is a contact form for ξ´, and C ą 0 and K ą 0 are large constants.
Let

pN´pBEq Ă pE
denote the unbounded region in pE with B pN´pBEq “ ´M´.

In general we only care about the deformation class of the symplectic data on W , thus we
are free to make modifications in a collar neighborhood of BW and then rescale globally so as
to produce any desired contact form α at the boundary. By [MNW13, Lemma 2.10], we can
deform ω near BW and subsequently rescale so that without loss of generality,

Ω “ ωE|TM´

under the chosen contactomorphism identifying M with M´. We then define a completion
of pW,ωq by

pxW, pωq :“ pW,ωq YM“M´

´
pN´pBEq, ωE

¯
,

where a standard application of the Moser deformation trick (see for example [NW11, Lemma 2.3])

produces collars near BW and B pN´pBEq that permit a smooth symplectic gluing of the two
pieces. The gluing is simpler to describe if pW,ωq is a strong or exact filling, as we can then
use collar neighborhoods constructed by flowing along Liouville vector fields. In these cases
we can assume η ” 0 so that ωE is the exterior derivative of the Liouville form 1

K
λK , and λ

can then (after a global rescaling) be deformed near BW so that it glues together smoothly



ON SYMPLECTIC FILLINGS OF SPINAL OPEN BOOK DECOMPOSITIONS II 83

with 1
K
λK . Denote the resulting Liouville form on a neighborhood of pN´pBEq Ă xW by pλ, so

we have
pω “ dpλ

on this neighborhood if pW,ωq is a strong filling, and the same holds globally on xW if the
filling is exact.

We must do something slightly different in the almost Stein case: recall from §3.7 that

p pE,ωEq comes equipped with a compatible almost complex structure J` and a J`-convex

function f` : pE Ñ R such that the induced Liouville form λ` “ ´df` ˝ J` matches 1
K
λK

on the region pN pBhEq Ă pE but not everywhere else. We shall therefore forget temporarily

about ωE and glue the almost Stein manifolds pW,J, fq and p pN´pBEq, J`, f`q together along
M “ M´. To enable this, one can first deform the Weinstein structures pω, Vλ, fq near BW
and rescale λ and f globally so that these data glue together smoothly with λ` and f`; this
can be done without introducing any critical points of f in the collar, thus one can then apply
Lemma 3.10 to produce a deformed dλ-tame almost complex structure J with λ “ ´df ˝ J
such that J glues together smoothly with J`. The result is an almost Stein completion

pxW, pJ, pfq “ pW,J, fq YM“M´

´
pN´pBEq, J`, f`

¯

such that pλ :“ ´d pf ˝ pJ matches the modified Liouville form λ` in the cylindrical end. By
gluing λ together with the interpolated Liouville form Θ provided by Lemma 3.11, we also

obtain a Liouville form pΘ on xW with

‚ pΘ “ pλ on W ,

‚ pΘ “ 1
K
λK near infinity, and

‚ dpΘ tames pJ everywhere.

We will use pΘ below to define energy for pJ -holomorphic curves in xW .
Recall now that the end we just attached to form the completion contains a region

pN`pBEq Ă pN´pBEq

that is identified with the half-symplectization r0,8q ˆ M` of a certain stable hypersurface

M` “ ´B pN`pBEq Ă pE, carrying a stable Hamiltonian structure H` “ pΩ`,Λ`q. In §3.7 and
§3.8, we constructed the compatible almost complex structure J` such that its restriction

to pN`pBEq is in J pH`q, and p pN´pBEq, J`q contains holomorphic vertebrae and holomorphic
pages. Indeed, let us select a holomorphic vertebra from Proposition 3.8 corresponding to
each component Σi Ă Σ, and denote it by

9Σi Ă pN´pBEq Ă xW, i “ 1, . . . , r.

Meanwhile, the holomorphic pages form a foliation F` on pE whose restriction to pN`pBEq “
r0,8q ˆM` has the same form as the foliation F that we considered in §4, thus we are free
to use the analytical results of that section, including the index and intersection-theoretic
computations. We are also free to impose Assumptions 4.19—this mostly follows already
from the premise that π is a partially planar domain without planar torsion, but it includes
also the following conditions on the Hamiltonian function H : Σ Ñ r0,8q and complex
structure j on Σ that play key roles in the construction of F`:

‚ H : Σ Ñ r0,8q has no index 0 Morse critical points, and it has exactly one index 2
critical point on every connected component of Σ;

‚ pH, jq are in general position (see Definition 4.7).
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For technical reasons, it will be convenient (though not essential) to add one more assump-
tion:7

‚ The Hessian ∇2Hpzq : TzΣ Ñ TzΣ commutes with j at every z P CritMpHq with
Morsepzq “ 2.

The assumptions on H imply that each index 1 critical point of H is connected to the unique
index 2 critical point in the same connected component of Σ by exactly two gradient flow
lines. The resulting gradient flow cylinders receive opposite orientations by Prop. 2.14 or
Remark 5.1. It will be useful to note that the unbranched multiple covers of these cylinders
also satisfy the automatic transversality criterion of Prop. 2.12 and have the same properties
with regard to orientations, hence:

Lemma 6.1. Every holomorphic gradient flow cylinder u in F` is a Fredholm regular index 1
curve, and so are its unbranched k-fold covers for every k P N. Moreover, F` contains exactly
two holomorphic gradient flow cylinders asymptotic to the same pair of orbits, and for any
choice of coherent orientations from [BM04] and for each k P N, the unbranched k-fold covers
of these two gradient flow cylinders are oppositely oriented. �

We will refer to the pairs of gradient flow cylinders described in this lemma as canceling
pairs.

Assumptions 4.19 also presume that Lemma 4.5 is applicable, imposing dynamical condi-
tions on the stable Hamiltonian structureH`: in particular, this provides constants T0, T1 ą 0

such that all Reeb orbits of period less than T1 are covers of tzu ˆS1 Ă |M`
Σ , and each simply

covered orbit of this form has period less than T0, where T1{T0 may be assumed arbitrarily
large. More specifically, T1{T0 is assumed to be larger than the number of boundary com-
ponents of any page. Since H` is of confoliation type, Proposition 2.4 then implies that
all breaking orbits appearing in the holomorphic buildings discussed below will be covers of
tzu ˆS1 for various z P CritMpHq. These orbits are elliptic if Morsepzq “ 2 and hyperbolic
if Morsepzq “ 1, so we will refer to them as such.

In the almost Stein case, we have already extended J` to a dpΘ-tame almost complex

structure pJ on xW , and we shall allow a generic dpΘ-tame perturbation of pJ in the interior

of W ; note that this perturbs the Liouville form pλ “ ´d pf ˝ pJ , but such a change is harmless
since the Liouville condition is open. In the weak, strong and exact cases, we simply extend

J` arbitrarily to an pω-tame almost complex structure pJ on xW which is generic in the interior

of W . In particular, pJ satisfies

pJ ” J` in pN´pBEq,

and this gives pxW, pJq the structure of an almost complex manifold with a cylindrical end
pr0,8q ˆ M`, J`q compatible with the stable Hamiltonian structure H` “ pΩ`,Λ`q. We

define the energy of a punctured pJ-holomorphic curve u : 9S Ñ xW as

Epuq :“ sup
ϕPT

ż

9S

u˚pωϕ,

7The purpose of this extra assumption is to simplify Lemma 6.9, which implies a special case of the
unpublished folk theorem that asymptotic contributions to Siefring’s intersection numbers (see §2.3) are a
non-generic phenomenon for somewhere injective curves.
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where for some T ą 0 chosen large enough such that pΘ “ 1
K
λK in rT,8q ˆM` Ă pN`pBEq,

T :“
!
ϕ P C8prT,8q Ñ rT, T ` 1qq

ˇ̌
ˇ ϕ1 ą 0 and ϕprq “ r for r near T

)
,

and the modified symplectic form pωϕ is defined such that

pωϕ “ d
´

peϕprq ´ 1qΛ`

¯
` Ω` on rT,8q ˆM`,

while on the rest of xW , pωϕ is defined to match dpΘ in the almost Stein case or pω in weak,
strong and Liouville cases. The point of this definition is that curves with Epuq ă 8 will now
have asymptotically cylindrical behavior and obey the compactness theory in [BEH`03].

We will also need to consider smooth deformations

ωτ , λτ , Jτ , fτ 0 ď τ ď 1

of the symplectic data on W . After suitable modifications near BW and global rescaling, we
can fit this into the above picture by considering a smooth 1-parameter family of completed
fillings

pxW, pωτ q or pxW, pJτ , pfτ q, 0 ď τ ď 1

with a generic 1-parameter family of tame almost complex structures pJτ such that all the

data on pN´pBEq Ă xW is τ -independent and matches the construction above. The definition
of energy is then also τ -dependent, but this does not affect the existence of uniform energy
bounds since the data is τ -independent in the cylindrical end.

With this setting in place, our moduli spaces of curves in xW will now be defined in terms
of the J`-holomorphic foliation F` of R ˆ M`. Let MF`pJ`q denote the moduli space of
unparametrized J`-holomorphic curves in R ˆM` modulo R-translation that belong to the
foliation F`, and let

M
F`

i pJ`q Ă MF`pJ`q for i “ 1, 2

denote the components with virtual dimension i. We denote by M
F`pJ`q and M

F`

i pJ`q Ă

M
F`pJ`q respectively the closures of these in the space of stable holomorphic buildings in

pRˆM`, J`q, see §2.2. The structure of the foliation F` implies that M
F`

1 pJ`q “ M
F`

1 pJ`q
is a finite set, consisting of all holomorphic gradient flow cylinders and the exceptional holo-
morphic pages that have one end asymptotic to a hyperbolic orbit and the rest asymptotic to

elliptic orbits. Each connected component of M
F`

2 pJ`q is either a circle or a compact interval
bounded by buildings with two levels whose unique nontrivial components are each curves

in M
F`

1 pJ`q. Define an equivalence relation by saying that for two buildings u and u1, u „ u1

if and only if their positive asymptotic orbits coincide up to a permutation of the punctures
and their bottommost levels are identical; we shall write

xMF`pJ`q :“ M
F`

2 pJ`q{ „ .

This quotient moduli space has the topology of a disjoint union of circles: indeed, Lemma 6.1

implies that the equivalence relation identifies pairs of buildings in BM
F`

2 pJ`q having the
same index 1 holomorphic page in their lower levels and a canceling pair of gradient flow
cylinders in their upper levels. Note that gradient flow cylinders never appear as bottom

levels of these buildings, thus the elements of xMF`pJ`q have no negative ends.
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LetMp pJq andMp pJq denote the spaces of unparametrized finite-energy holomorphic curves

or stable buildings respectively with arithmetic genus zero in pxW, pJq, and define a similar
equivalence relation by

xMp pJq :“ Mp pJq{ „,

where u and u1 are considered equivalent if and only if their asymptotic orbits coincide up
to permutation and their bottommost nonempty levels are identical. Since the main level
is allowed to be empty in general, it may happen that the bottommost nonempty level of

u P Mp pJq is an upper level, and viewing buildings in pR ˆM`, J`q without negative ends as

buildings in pxW, pJq with empty main levels gives rise to a natural inclusion

(6.1) xMF` pJ`q Ă xMp pJq.

With this inclusion in mind, we define

xMF p pJq Ă xMp pJq

to be the smallest open and closed subset that contains xMF`pJ`q. Observe that since the

holomorphic pages in MF`pJ`q have only positive ends, they can also be regarded as pJ-
holomorphic curves in r0,8q ˆM` “ pN`pBEq Ă xW , so that each u P xMF`pJ`q gives rise to

a 1-parameter family of elements in xMF p pJq that converge in the SFT-topology to u as their
main levels are pushed to infinity. All these families of holomorphic pages therefore belong

to xMF p pJq, and we will see in Proposition 6.3 below that they form collar neighborhoods of

the boundary of xMF p pJq.
Define subsets

xMF
regp pJq, xMF

singp pJq, xMF
exotp

pJq Ă xMF p pJq,

where:

‚ u P xMF
regp pJq if its main level is a smooth embedded pJ -holomorphic curve with one

connected component and only simply covered asymptotic orbits;

‚ u P xMF
singp pJq if its main level is a nodal pJ-holomorphic curve with two embedded

connected components that intersect each other transversely at a single node and
nowhere else, and both have only simply covered asymptotic orbits;

‚ u P xMF
exotp

pJq if its main level is a smooth embedded pJ-holomorphic curve with one
connected component such that one of its asymptotic orbits is doubly covered, and
the rest are simply covered.

As the notation should suggest, elements of xMF
regp pJq and xMF

singp pJq will give rise to the regular
and singular fibers respectively of a Lefschetz fibration on W when the spinal open book is

Lefschetz-amenable. Elements of xMF
exotp pJq are a slightly different kind of object that we will

refer to as exotic fibers: we will see that they can occur only in the non-amenable case, thus
producing a topological decomposition of W that is more general than a Lefschetz fibration.

Definition 6.2. For i “ 1, 2, assume Σi are closed oriented surfaces and 9Σi Ă Σi are obtained
by deleting finitely many points. A continuous map π : 9Σ1 Ñ 9Σ2 will be called a branched
cover (with degree d P N) of surfaces with cylindrical ends if it is proper and its
unique extension to a map Σ1 Ñ Σ2 is a branched cover (with degree d). We will say that
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a branched cover π : 9Σ1 Ñ 9Σ2 is generic if its branch points are all simple (i.e. they have
branching order 2) and all have distinct images.8

Proposition 6.3. For generic choices of pJ on xW satisfying the conditions specified above,
xMF p pJq decomposes into disjoint subsets

xMF p pJq “ xMF
regp pJq Y xMF

singp pJq Y xMF
exotp

pJq Y xMF` pJ`q,

where xMF
regp pJq is an open subset, xMF

singp pJq and xMF
exotp

pJq are each finite, and xMF p pJq has
the topology of a compact, connected and oriented surface with boundary

B xMF p pJq “ xMF`pJ`q.

Moreover, every point in xW is in the image of the main level for a unique curve in the interior

of xMF p pJq, and this interior admits a smooth structure such that the resulting continuous
surjection

Π : xW Ñ xMF p pJqz xMF` pJ`q : x ÞÑ the curve through x

is smooth outside the finitely many nodes of the curves in xMF
singp pJq. For each i “ 1, . . . , r,

the holomorphic vertebra 9Σi Ă xW is disjoint from the nodes of curves in xMF
singp pJq, and the

map Π restricts to 9Σi as a generic branched cover with degree mi of surfaces with cylindrical

ends, whose branch points all have image in xMF
regp pJq. Finally, xMF

exotp pJq is empty if and only
if the branched covers Π| 9Σi

have no branch points for every i “ 1, . . . , r.

This will be enough to conclude the first part of Theorem 1.5, that a planar spinal open

book must be uniform if M is fillable, and we will explain in §6.5 how to turn Π : xW Ñ
xMF p pJqzB xMF p pJq into a bordered Lefschetz fibration on W whenever there are no exotic
fibers.

We now state a corresponding result for 1-parameter deformations of the data. Consider a

1-parameter family of almost complex structures t pJτ uτPr0,1s on xW such that

‚ pJτ |xN´pBEq
“ J` for all τ ;

‚ pJτ is pωτ -tame (or in the almost Stein case dpΘτ -tame) for all τ ;

‚ pJ0 “ pJ ;
‚ pJ1 and the homotopy t pJτ u are both generic on the interior of W .

Let Mpt pJτ uq, Mpt pJτ uq and xMpt pJτ uq denote the spaces of pairs pu, τq with τ P r0, 1s and

u P Mp pJτ q, u P Mp pJτ q or u P xMp pJτ q respectively. Since pJτ is independent of τ near infinity,
the inclusion (6.1) generalizes to this parametrized setting as

xMF` pJ`q ˆ r0, 1s Ă xMpt pJτ uq,

and we define
xMF pt pJτ uq Ă xMpt pJτ uq

as the smallest open and closed subset containing xMF`pJ`q ˆ r0, 1s, along with subsets

xMF
regpt pJτ uq, xMF

singpt pJτ uq, xMF
exotpt pJτ uq Ă xMF pt pJτ uq

8Note that the generic conditions imposed on branch points do not apply to all branch points of the extended
map Σ1 Ñ Σ2, which can include puntures.
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defined by the same criteria as before. For τ P r0, 1s, let

xMF p pJτ q :“
!
u P xMp pJτ q

ˇ̌
ˇ pu, τq P xMF pt pJτ uq

)
,

with corresponding subsets xMF
regp pJτ q, xMF

singp pJτ q and xMF
exotp

pJτ q. We will sometimes identify

xMF p pJq and xMF p pJτ q with the corresponding subsets of xMF pt pJτ uq.

Proposition 6.4. For generic families t pJτ uτPr0,1s satisfying the conditions specified above,
there exists a homeomorphism

Ψ : xMF p pJq ˆ r0, 1s Ñ xMF pt pJτ uq

satisfying

Ψ
` xMF

regp pJq ˆ r0, 1s
˘

“ xMF
regpt pJτ uq,

Ψ
` xMF

singp pJq ˆ r0, 1s
˘

“ xMF
singpt pJτ uq,

Ψ
` xMF

exotp pJq ˆ r0, 1s
˘

“ xMF
exotpt pJτ uq,

Ψ
` xMF p pJq ˆ tτu

˘
“ xMF p pJτ q for every τ P r0, 1s,

and Ψ restricts to the identity map on the subsets xMF`pJ`q ˆ r0, 1s and xMF p pJq ˆ t0u in
xMF pt pJτ uq. Moreover, outside of xMF` pJ`qˆr0, 1s, one can define a natural smooth structure

on xMF pt pJτ uq for which Ψ is smooth outside of possibly finitely many points in xMF
singp pJqˆp0, 1q

and xMF
exotp pJq ˆ p0, 1q, and the conclusions of Proposition 6.3 hold for xMF p pJτ q for every

τ P r0, 1s, giving a continuous surjection

Π : xW ˆ r0, 1s Ñ xMF pt pJτ uqz
´
xMF`pJ`q ˆ r0, 1s

¯

px, τq ÞÑ pu, τq where x P impuq

which is smooth outside of the finite collection of continuous and piecewise smooth paths in
xW ˆr0, 1s traced out by the nodes of curves in xMF

singpt pJτ uq. The restriction of Π to 9Σi ˆr0, 1s
for i “ 1, . . . , r defines a smooth deformation of generic branched covers of surfaces with
cylindrical ends.

Remark 6.5. The caveat about the smoothness of Ψ in Proposition 6.4 has to do with iso-

lated breaking configurations in xMF
singpt pJτ uq and xMF

exotpt pJτ uq that will be dealt with in
Lemma 6.30. Here there are always two ways to glue such configurations and thus move the
parameter τ forward or backward, producing a 1-parameter family that is manifestly con-
tinuous, but we have chosen not to worry about whether it is smooth. This is in any case
immaterial in our main applications, for which the moduli space does not need to have a

canonical smooth structure as long as the foliation it produces on xW is smooth. (In places
where the latter is in doubt, i.e. at nodal points, the foliation can always be smoothed by
hand with a small perturbation.)

6.2. Generic conditions. Before stating the main compactness results, let us clarify the role

that our genericity conditions on pJ and t pJτ u are going to play. As usual such assumptions
guarantee that moduli spaces of somewhere injective curves are smooth and have dimension
equal to the index, with the consequence that this index is bounded from below. In addition
to this, we will need to use genericity on occasion to limit non-transverse intersections and
asymptotic intersection contributions in the sense of Siefring. The results of this subsection
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should be understood to be true after choosing pJ and t pJτ u from comeager subsets of the sets
of all almost complex structures or smooth homotopies thereof with the properties specified
in §6.1.

Lemma 6.6. For every τ P r0, 1s, all somewhere injective pJτ -holomorphic curves v in xW that
intersect the interior of W satisfy indpvq ě ´1, and there exists at most one such curve (up
to parametrization) with indpvq “ ´1. Moreover, for almost every τ P r0, 1s, and in particular
for τ “ 0 and τ “ 1, all such curves satisfy indpvq ě 0.

Proof. The almost complex stuctures pJτ are fixed on pN´pBEq Ă xW but generic perturbations

are allowed in the interior of W Ă xW , thus the inequalities indpvq ě ´1 and indpvq ě 0 follow

from standard transversality arguments as in [MS04]. The fact that no individual pJτ admits

more than one simple curve of index ´1 follows by showing that for generic families t pJτ u, the
map

M˚pt pJτ uq ˆ M˚pt pJτ uq Ñ r0, 1s ˆ r0, 1s :
`
pu, τq, pu1, τ 1q

˘
ÞÑ pτ, τ 1q

is transverse to the diagonal in r0, 1s ˆ r0, 1s outside of the diagonal in its domain. Here

M˚pt pJτ uq denotes the space of all pairs pu, τq such that τ P r0, 1s and u is an unparametrized

somewhere injective finite-energy pJτ -holomorphic curve that intersects the interior ofW . This
transversality result is probably also standard, but since we do not know a good reference for
the proof, here is a sketch. One starts by defining a universal moduli space U ˚ consisting of

tuples pu, τ, u1, τ 1, t pJτ uq, where t pJτ u belongs to a suitable Banach manifold Jr0,1s of homotopies

of almost complex structures (e.g. of Floer Cǫ class or in C
k for some large k P N), and pu, τq

and pu1, τ 1q are two distinct elements of M˚pt pJτ uq. The fact that they are distinct implies in
particular that whenever τ “ τ 1, each of u and u1 has an injective point where it does not
intersect the other curve. Standard arguments via elliptic regularity and the implicit function
theorem then show that U ˚ is a differentiable Banach manifold and, moreover, that the map

U
˚ Ñ r0, 1s ˆ r0, 1s :

´
u, τ, u1, τ 1, t pJτ u

¯
ÞÑ pτ, τ 1q

is a submersion. It follows that the preimage of the diagonal under this map is a submanifold
U ˚

∆ Ă U ˚, so applying the Sard-Smale theorem to the natural projection U ˚
∆ Ñ Jr0,1s

provides a comeager subset of Jr0,1s for which the desired transversality result is satisfied. In
the final step, one can use the “Taubes trick” (cf. [MS04, §3.2] or [Wena, §4.4.2]) to replace

Jr0,1s with a suitable Fréchet manifold of smooth homotopies t pJτ u. �

Genericity also implies that the existence of non-transverse intersections of somewhere

injective pJ-holomorphic curves with fixed holomorphic hypersurfaces is a “codimension two
phenomenon”. We will be interested especially in controlling intersections with the union of
the holomorphic vertebrae

9Σ :“ 9Σ1 Y . . . Y 9Σr.

The next statement follows directly from the results of [CM07, §6].

Lemma 6.7. For i P Z, ℓ P N, k :“ pk1, . . . , kℓq P N
ℓ and τ P r0, 1s, let M˚

i p pJτ ; 9Σ,kq

denote the following moduli space of constrained pJτ -holomorphic curves with ℓ marked points:

elements of M˚
i p pJτ ; 9Σ,kq are represented by tuples

pS, j,Γ, pζ1, . . . , ζℓq, uq
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such that u : p 9S :“ SzΓ, jq Ñ pxW, pJτ q is a somewhere injective finite-energy pJτ -holomorphic

curve of index i intersecting the interior of W , ζ1, . . . , ζℓ P 9S are distinct points, two tuples are
equivalent if they are related by a biholomorphic map of their domains preserving the ordered
sets of punctures Γ and marked points pζ1, . . . , ζℓq, and u also satisfies the constraints

upζjq P 9Σ

such that for each j “ 1, . . . , ℓ, the local intersection index of u with 9Σ at ζj is at least kj .

Then for almost every τ , and in particular for τ P t0, 1u, M˚
i p pJτ ; 9Σ,kq is a smooth manifold

with

dimM˚
i p pJτ ; 9Σ,kq “ i ´ 2

ℓÿ

j“1

pkj ´ 1q.

Moreover, the space M˚
i pt pJτ u; 9Σ,kq of pairs pu, τq such that τ P r0, 1s and u P M˚

i p pJτ ; 9Σ,kq
is a smooth manifold of dimension i ` 1 ´ 2

ř
jpkj ´ 1q, so in particular, this space is empty

whenever i ` 1 ´ 2
ř

jpkj ´ 1q ă 0. �

Note that any curve in the ordinary moduli space without marked points gives rise to an
element of the space in the above lemma whenever it intersects 9Σ: one can simply add marked
points wherever these intersections occur. Adding a marked point ζ with the constraint
upζq P 9Σ but without any constraint on the local intersection index does not change the
dimension of the moduli space. Combining this observation with the usual results about
generic transversality of the evaluation map from [MS04], we obtain:

Lemma 6.8. Suppose τ P r0, 1s and u0 and u1 are somewhere injective pJτ -holomorphic curves
that both intersect the interior of W such that for each j “ 0, 1, we have indpujq P t´1, 0u,

uj intersects 9Σ transversely, and all its asymptotic Reeb orbits are disjoint from those of 9Σ.

Then the sets imu0 X 9Σ and im u1 X 9Σ are disjoint. �

A similar phenomenon in Siefring’s intersection theory guarantees that generically, asymp-
totic contributions to the intersection counts u˚v and δpuq`δ8puq are zero whenever u and v
are somewhere injective curves of sufficiently low index. Since no proof of this fact is available
in the current literature, we shall only address the following simpler special case which suffices

for our purposes. Fix a simply covered elliptic orbit γ : S1 Ñ Σ ˆ S1 Ă |M`
Σ : t ÞÑ pz, tq,

where Morsepzq “ 2. Using the formula (3.13) for the Reeb vector field and the natural trivi-
alization γ˚Ξ` “ S1 ˆTzΣ, the associated asymptotic operator Aγ : Γpγ˚Ξ`q Ñ Γpγ˚Ξ`q
(see e.g. [Wen10b, §3.2]) is identified with

C8pS1, TzΣq Ñ C8pS1, TzΣq : v ÞÑ ´j 9v `
ε

K
∇v∇H.

In light of the added assumption in §6.1 that∇2H : TzΣ Ñ TzΣ is j-linear when Morsepzq “ 2,
Aγ is therefore complex linear and thus has real 2-dimensional eigenspaces. Let V ´

γ Ă

Γpγ˚Ξ`q denote the eigenspace with the largest negative eigenvalue, and suppose M˚pt pJτ uq
denotes any moduli space consisting of pairs pu, τq such that τ P r0, 1s and u is an un-

parametrized and possibly disconnected somewhere injective finite-energy pJτ -holomorphic
curve that intersects the interior of W with each of its connected components and has at least
two punctures z1, z2 asymptotic to γ. Then, as was discussed in §2.4, the asymptotic formulas
of [HWZ96,Mor03,Sie08] give rise to an asymptotic evaluation map

ev8 “ pev8
1 , ev

8
2 q : M˚pt pJτ uq Ñ V ´

γ ˆ V ´
γ ,
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where for i “ 1, 2, ev8
i pu, τq associates to u the leading asymptotic eigenfunction of u at zi.

As with ordinary evaluation maps as in [MS04], one can show that this asymptotic evaluation
map is a submersion when extended to the universal moduli space, hence generic choices of

t pJτ u can make it transverse to any given submanifold of V ´
γ ˆV ´

γ , in particular the diagonal.
This leads to the following result, which is essentially Proposition 3.9 in [HT09].

Lemma 6.9. For every τ P r0, 1s and every pair of somewhere injective pJτ -holomorphic

curves u and v in xW of index ´1 or 0 that intersect the interior of W and each have a

puncture asymptotic to the same simply covered elliptic orbit in CritMpHq ˆ S1 Ă |M`
Σ , the

values of the asymptotic evaluation maps at these two punctures are distinct. Moreover, the
same holds for two punctures of a single curve with these same properties. �

The main results of [Sie08] imply that whenever two punctures of the same sign are as-
ymptotic to the same orbit, the asymptotic eigenvalue controlling the relative exponential
decay rate of the ends to each other is extremal if and only if the asymptotic evaluation map
for both punctures has distinct values. Since the relevant eigenspace in the case at hand is
2-dimensional, a non-extremal decay rate is equivalent to non-extremal asymptotic winding,
so by the definitions of δ8puq and u ˚ v in [Sie11], Lemma 6.9 implies:

Lemma 6.10. Suppose τ P r0, 1s, u and v are somewhere injective finite-energy pJτ -holomorphic
curves of index ´1 or 0 that intersect the interior of W and have non-identical images, and
every Reeb orbit that occurs as an asymptotic orbit for both u and v is a simply covered elliptic

orbit in CritMpHq ˆ S1 Ă |M`
Σ . Then u ˚ v is the algebraic count of actual intersections of u

and v, i.e. it includes no asymptotic contributions. Moreover, if every orbit occurring as an
asymptotic orbit for two distinct ends of u is also a simple elliptic orbit in CritMpHq ˆ S1,
then δ8puq “ 0. �

6.3. Compactness for nicely embedded curves. In this section we will state and prove

two compactness results for certain classes of nicely embedded holomorphic curves in xW , which

will be used in §6.4 to describe the global structure of the quotient moduli spaces xMF p pJq

and xMF pt pJτ uq. Recall from §2.3 that a somewhere injective finite-energy pJ -holomorphic

curve u in xW is nicely embedded if its intersection numbers as defined by Siefring [Sie11]
satisfy

δpuq “ δ8puq “ 0 and u ˚ u ď 0;

moreover, if u is in the R-invariant setting pR ˆ M`, J`q and is not a trivial cylinder, then
the condition reduces to u ˚ u “ 0. We saw in Proposition 4.15 that the latter is satisfied
by every holomorphic page in MF` pJ`q, so they are nicely embedded, and we will see that

the same is therefore true for all the smooth somewhere injective curves in xMF p pJq. Thus in

order to understand the strata of xMF p pJq that arise from nontrivial holomorphic buildings, it
suffices to understand the closure of the space of nicely embedded curves.

6.3.1. Moduli spaces of nicely embedded curves. Adapting some notation from §5, we shall
abbreviate m :“ pm1, . . . ,mrq and define

Mp pJ ;H;mq Ă Mp pJq, Mp pJ ;H;mq Ă Mp pJq

as the spaces of curves/buildings u in pxW, pJq that satisfy the following conditions:

(1) All asymptotic orbits of u are in CritpHq ˆS1 Ă |M`
Σ and the sum of all their periods

is less than the bound T1 from Lemma 4.5;
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(2) For each i P t1, . . . , ru, the sum of the covering multiplicities of all asymptotic orbits

of u in the component Σi ˆ S1 Ă |M`
Σ is at most mi;

(3) u has (arithmetic) genus 0.

Define subsets

Mnicep pJ ;H;mq Ă Mp pJ ;H;mq, M
nice

p pJ ;H;mq Ă Mp pJ ;H;mq,

where the first consists of all u P Mp pJ ;H;mq that are nicely embedded, and the second is

the closure of the first with respect to the SFT-topology. Given the 1-parameter family t pJτ u,
we analogously define spaces of pairs pu, τq for τ P r0, 1s, which form subsets

Mnicept pJτ u;H;mq Ă Mpt pJτ u;H;mq Ă Mpt pJτ uq,

M
nice

pt pJτ u;H;mq Ă Mpt pJτ u;H;mq Ă Mpt pJτ uq,

where we should clarify that M
nice

pt pJτ u;H;mq is defined as the closure of Mnicept pJτ u;H;mq

in Mpt pJτ uq; note that this may in general be larger than the space of pairs pu, τq with

u P M
nice

p pJτ ;H;mq, since it includes all limits of SFT-convergent sequences puν , τνq P

Mnicept pJτ u;H;mq, where the τν P r0, 1s can vary. For each i P Z, we denote by

Mnice
i p pJ ;H;mq Ă Mnicep pJ ;H;mq,

Mipt pJτ u;H;mq Ă Mpt pJτ u;H;mq

and so forth the subsets defined by the condition indpuq “ i. Our genericity assumptions, in

particular Lemma 6.6, imply that a somewhere injective curve in Mp pJτ ;H;mq for τ P r0, 1s
will never have index less than ´1 if it intersects the interior of W . Outside of this region,

i.e. in pN´pBEq Ă xW , pJτ was defined to match the specially constructed model J` from §3.7
and is thus neither generic nor τ -dependent, so we must still say something about indices of

curves with images contained entirely in pN´pBEq.

Lemma 6.11. For every τ P r0, 1s, every curve u P Mp pJτ ;H;mq with image contained

in pN´pBEq is an embedded leaf of F` and is isotopic to one of the holomorphic pages in
MF`pJ`q. In particular, it has index 1 or 2.

Proof. Recall that the subset pN`pBEq Ă pN´pBEq is identified canonically with the half-

symplectization r0,8q ˆ M`, and it is also a retraction of pN´pBEq, thus we can choose a

diffeomorphism pN´pBEq – r0,8q ˆM` that matches the canonical one near infinity. Under

this identification, we observe that a curve u P Mp pJτ ;H;mq contained in pN´pBEq must

intersect r0,8q ˆ |M`
P , as otherwise it would be confined to the neighborhood of a spinal

component in which the homological sum of all its asymptotic orbits is nonzero, producing
a contradiction. Now if u is not a leaf of F`, observe that it also cannot be a multiple
cover of any leaf since the total multiplicities of the orbits in each component of the spine

would then be greater than what is allowed for curves in Mp pJτ ;H;mq. It follows that u
has at least one isolated intersection with some leaf v P F` that stays away from M´ and

is thus an asymptotically cylindrical pJ-holomorphic curve; indeed, the entirety of the region

p´1,8q ˆ |MP Ă pE is foliated by leaves of this type, which are tangent to Ξ`. Positivity
of intersections therefore implies u ˚ v ą 0. However, a small alteration to the proof of
Lemma 4.16 shows that u ˚ v “ 0 for every holomorphic page v P F`. Indeed, this is
immediate if u has no punctures, as one can then translate v upward in r0,8q ˆ M` to
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make it disjoint from u. If u does have punctures, then one can modify it as in the proof of
Lemma 4.16 by a homotopy through asymptotically cylindrical maps so that its intersection

with pN`pBEq is a union of trivial cylinders, and then compute the intersection number again
via Lemma 4.14. This contradiction proves the lemma. �

Further constraints on indices hold for nicely embedded curves. The following lemma

implies that M
nice
i p pJτ ;H;mq is always empty for i ą 2, and moreover, all buildings u in

M
nice

1 p pJτ ;H;mq or M
nice

2 p pJτ ;H;mq have only simply covered asymptotic orbits, all elliptic
in the latter case, with exactly one hyperbolic orbit in the former case, and u ˚ u “ 0. For u

in M
nice
´1 p pJτ ;H;mq or M

nice
0 p pJτ ;H;mq, u ˚ u can be either ´1 or 0 depending on an easily

denumerable list of combinations of elliptic/hyperbolic orbits with at most one doubly covered
orbit.

Lemma 6.12. For any pu, τq P M
nice

pt pJτ u;H;mq, all asymptotic orbits of u are at most
doubly covered, ´1 ď indpuq ď 2, u ˚ u P t´1, 0u and

2 pu ˚ u` 1q “ indpuq ` #Γ0 ` 2#Γ2 P t0, 2u,

where Γ0 denotes the set of punctures of u at which the asymptotic orbit has even Conley-
Zehnder index, and Γ2 is the set of punctures at which the orbit is doubly covered.

Proof. Denote the set of punctures of u by Γ and for each m P N, let Γm Ă Γ denote the subset
at which the orbit has covering multiplicity m. By assumption, u is either nicely embedded
or is the limit in the SFT-topology of a sequence uν of nicely embedded curves as ν Ñ 8,
thus it suffices to prove the lemma under the assumption that u itself is nicely embedded.
Given this, we have δpuq “ δ8puq “ 0 and u ˚ u ď 0, and we already know indpuq ě ´1
due to Lemmas 6.6 and 6.11. To compute u ˚ u, we first plug the stated conditions into the
adjunction formula (2.9), obtaining cN puq “ u ˚ u ´ rσ̄puq ´ #Γs, thus by (2.11),

indpuq ´ 2 ` #Γ0 “ 2 pu ˚ u´ rσ̄puq ´ #Γsq

ď ´2 rσ̄puq ´ #Γs .
(6.2)

Since the index formula implies that indpuq and #Γ0 always have the same parity, and
indpuq ě ´1, the left hand side of this inequality is at least ´2, implying σ̄puq ´#Γ ď 1. But
Lemma 4.12 implies that all the asymptotic orbits γ of u satisfy α´pγq “ 0 in the S1-invariant
trivialization, so Lemma 2.8 then implies

σ̄puq ´ #Γ “
ÿ

mPN

m#Γm ´ #Γ “
ÿ

mě2

pm ´ 1q#Γm ď 1,

thus #Γm “ 0 for all m ě 3 and σ̄puq ´ #Γ “ #Γ2 P t0, 1u. The stated identity now follows
from (6.2). �

6.3.2. Statements of the main compactness results. To simplify the wording in the following
statements, we will describe only the nontrivial components in each level of a holomorphic
building, so that each level should be understood to consist of the disjoint union of the
specified curves with some trivial cylinders. In cases where multiple nontrivial curves appear
in upper levels (e.g. case (2d) in Prop. 6.13 below), the actual number of upper levels may vary
depending on whether these curves occupy the same level or not. Schematic representations
of the index 2 buildings described in the following two results are shown in Figures 9 and 10,
where the correct labelling of the elliptic and hyperbolic orbits in these pictures can be deduced
from Lemma 6.12 above. In each case, minor simplifications of the same pictures produce
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representations of the relevant buildings with lower index as well, e.g. the index 1 buildings
in Proposition 6.13 look like Figures 9C or 9D with one gradient flow cylinder removed and
possibly everything shifted up one level.

Proposition 6.13. Assume pJ is generic so that the results of §6.2 hold. Then Mnice
0 p pJ ;H;mq

is a finite set and thus matches M
nice

0 p pJ ;H;mq. Buildings in M
nice

1 p pJ ;H;mqzMnice
1 p pJ ;H;mq

all fit either of the following descriptions:

(1a) The main level is empty and the upper level is a holomorphic page in M
F`

1 pJ`q;

(1b) The main level is a curve u0 P Mnice
0 p pJ ;H;mq with u0 ˚ u0 “ 0, and the upper level

contains a single gradient flow cylinder in M
F`

1 pJ`q.

Finally, every building in M
nice
2 p pJ ;H;mqzMnice

2 p pJ ;H;mq fits one of the following descrip-
tions:

(2a) The main level is empty and there are either one or two upper levels representing an

element of M
F`

2 pJ`q (the variant with only one upper level is shown in Figure 9A);9

(2b) There are no upper levels, and the main level is a nodal curve in xW , having two

connected components u˘ P Mnice
0 p pJ ;H;mq with u`˚u` “ u´˚u´ “ ´1 and u`˚u´ “

1, and intersecting transversely at a single node (Figure 9B);

(2c) The main level consists of a curve u0 P Mnice
1 p pJ ;H;mq, and there is one upper level

containing a single gradient flow cylinder in M
F`

1 pJ`q (Figure 9C);

(2d) Case (1b) with a second gradient flow cylinder in M
F`

1 pJ`q added in an upper level
(Figure 9D);

(2e) The main level consists of a curve u0 P Mnice
0 p pJ ;H : mq which has u0 ˚ u0 “ 0 and

elliptic asymptotic orbits including one that is doubly covered, and there is one upper
level containing an index 2 branched double cover of the trivial cylinder over this orbit,
with two positive punctures and one negative (Figure 9E).

Proposition 6.14. Assume the homotopy t pJτ u is generic so that the results of §6.2 hold.
Then there exists a finite set of parameter values

Ising Ă p0, 1q

such that Mnice
´1 pt pJτ u;H;mq contains exactly one pair pu, τq for each τ P Ising and no other

elements, hence M
nice

´1 pt pJτ u;H;mq “ Mnice
´1 pt pJτ u;H;mq. Pairs pu, τq P M

nice

i pt pJτ u;H;mq

for i “ 0, 1, 2 and τ P r0, 1szIsing are described by the list in Proposition 6.13, while if τ P Ising,
the list must be supplemented as follows. For i “ 0, u can either be a smooth curve or one of
the following:

(0a) The main level is a curve u0 P Mnice
´1 p pJτ ;H;mq with u0 ˚ u0 “ ´1 or 0, and there is

one upper level containing a gradient flow cylinder in M
F`

1 pJ`q;

(0b) The main level is a curve u0 P Mnice
´1 p pJτ ;H;mq with u0 ˚ u0 “ 0 whose asymptotic

orbits include one that is hyperbolic and doubly covered, while the upper level consists

of an index 1 unbranched double cover of a gradient flow cylinder in M
F`

1 pJ`q.

The cases with index 1 not described in Proposition 6.13 can include the following:

9Note that the same diagram, but with a nonempty curve in W instead of R ˆ M , would represent an

element of Mnice

2 p pJ ;H ;mq.
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Figure 9. The possible index 2 buildings that can arise in the compactifi-
cation of the moduli space for generic J . The asymptotic orbits are labelled
with e or h to indicate elliptic/hyperbolic simple orbits in the spine. The
notation of e2 denotes a double cover of an elliptic orbit. The components of
each building are labelled with their Fredholm index.

(1c) There are no upper levels, and the main level is a nodal curve in xW , having two

connected components u0 P Mnice
0 p pJτ ;H;mq and u´1 P Mnice

´1 p pJτ ;H;mq with u0˚u0 “
u´1 ˚ u´1 “ ´1 and u0 ˚ u´1 “ 1, and intersecting transversely at a single node;

(1d) Case (0a) with u0 ˚ u0 “ 0 and a second gradient flow cylinder in M
F`

1 pJ`q added in
an upper level;

(1e) The main level is a curve u0 P Mnice
´1 p pJτ ;H;mq with u0 ˚ u0 “ 0 whose asymptotic

orbits include one that is elliptic and doubly covered, and there is one upper level
containing an index 2 branched double cover of the trivial cylinder over this elliptic
orbit;

(1f) The main level is a curve u0 P Mnice
´1 p pJτ ;H;mq with u0 ˚ u0 “ 0 whose asymptotic

orbits include one that is hyperbolic and doubly covered, and there are two upper
levels: the first contains an index 1 branched double cover of the trivial cylinder over
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the hyperbolic orbit with two positive punctures and one negative, and a gradient flow

cylinder in M
F`

1 pJ`q is stacked on top of this in a second upper level;

Finally, the following additional possibilities for buildings of index 2 can occur:

(2f) Case (1d) with a third gradient flow cylinder in M
F`

1 pJ`q added in an upper level
(Figure 10F);

(2g) Case (1e) with a gradient flow cylinder in M
F`

1 pJ`q added in an upper level (Fig-
ure 10G);

(2h) Case (1c) with a gradient flow cylinder in M
F`

1 pJ`q added in an upper level, connected
to the index ´1 curve along its unique hyperbolic orbit (Figure 10H);

(2i) Case (1f) with an extra gradient flow cylinder in M
F`

1 pJ`q added on top (Figure 10I);

(2j) Case (0b) with an index 2 branched double cover of the trivial cylinder over an elliptic
orbit stacked on top of the unbranched cover (Figure 10J);

(2k) The main level is a curve u0 P Mnice
´1 p pJτ ;H;mq with u0 ˚ u0 “ 0 whose asymptotic

orbits include one that is hyperbolic and doubly covered, and there is one upper level

containing an index 3 branched double cover of a gradient flow cylinder in M
F`

1 pJ`q
(Figure 10K).10

Remark 6.15. In the scenarios in Propositions 6.13 and 6.14 involving multiple components in
one level without nodes, it may happen that some of these components are identical, but this
is only possible if at least one of the multiplicities m1, . . . ,mr is greater than 1. The latter is
also a necessary condition for any of the scenarios that involve doubly covered curves.

6.3.3. The upper levels. The proofs of Propositions 6.13 and 6.14 will follow by considering
inequalities that relate the Fredholm index and self-intersection numbers. Notice that the
statement of Proposition 6.13 is precisely what remains of Proposition 6.14 if one adds the

assumption that somewhere injective curves of index ´1 in xW do not exist. With this un-
derstood and Lemmas 6.6 and 6.11 in hand, we will use the same argument to prove both
compactness results.

For the rest of §6.3, we shall fix τ8 P r0, 1s and a holomorphic building

u8 P Mp pJτ8
;H;mq

and work on deriving constraints on the structure of u8. We will later add the assumption

that pu8, τ8q P M
nice

pt pJτ u;H;mq, but it will be useful to wait a bit before imposing such a
restriction.

Lemma 6.16. All components in upper levels of u8 P Mp pJτ8
;H;mq are covers of leaves

of F`. Moreover, the main level of u8 is empty if and only if u8 contains a component
whose image is a holomorphic page; in that case, the bottommost nonempty level of u8 consists
of a single embedded holomorphic page, all other components are either trivial cylinders or
embedded gradient flow cylinders, and there are no nodes.

Proof. The period constraint on the asymptotic orbits implies the same constraint on all
breaking orbits via Proposition 2.4, so the first claim then follows from Lemma 4.17. Given
this, the rest follows from the assumptions about total multiplicities of orbits in the com-
ponents Σi ˆ S1: in particular, these constraints imply that u8 can contain no more than

10Notice that cases (2i) and (2j) can arise as the boundary of the space of configurations from case (2k).
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Figure 10. The buildings that can arise for exceptional homotopy values,
but that are not in Figure 9. Notice that translation invariance of J in RˆM

precludes ´1 curves in upper levels, so the exceptional buildings must feature
a ´1 curve in W .

one holomorphic page, which cannot be multiply covered, and if it is present then there can
be nothing in any level below it. Moreover, the fact that these pages have simply covered
asymptotic orbits implies since the arithmetic genus is zero that all curves in levels above the
page are simply covered cylinders, and nodes cannot appear. Conversely, if the main level is
empty, then some component must be a holomorphic page since all other kinds of leaves have
negative punctures. �
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6.3.4. Index relations. Let us now fix some notation. We shall write the set of (necessarily
positive) punctures of u8 as Γpu8q, and for each z P Γpu8q, let γz denote the corresponding
asymptotic orbit, and mz P N its covering multiplicity.11 For each m P N, define the subset

Γmpu8q :“
 
z P Γpu8q

ˇ̌
mz “ m

(
,

hence Γpu8q “ Γ1pu8q
š

Γ2pu8q
š
. . .. We shall also write

Γpu8q “ Γ0pu8q
ž

Γ1pu8q,

where Γ0pu8q and Γ1pu8q denote the sets of punctures z at which µCZpγzq is even or odd
respectively. By Lemma 4.5, this means µCZpγzq “ ℓ with respect to the S1-invariant trivial-
ization for z P Γℓpu

8q, ℓ “ 0, 1.
In light of Lemma 6.16, we shall assume from now on that the main level of u8 is nonempty,

all upper levels consist of covers of trivial cylinders or gradient flow cylinders, and all breaking

orbits are covers of orbits in CritMpHq ˆ S1 Ă |M`
Σ with period less than T1. Denote the

nonconstant connected components of the main level by u1, . . . , uL, and write each of these
as

ui “ vi ˝ ϕi,

where vi is a somewhere injective curve and ϕi is a holomorphic branched cover of punctured
Riemann surfaces whose unique extension over the punctures gives a map of closed Riemann
surfaces with degree

ki :“ degpϕiq P N.

We shall use the same notation Γpuiq, Γpviq with subsets Γmpuiq, Γ0puiq etc. for the (again
positive) punctures of ui and vi and their asymptotic orbits and covering multiplicities.

Lemmas 6.6 and 6.11 imply indpviq ě ´1, and indpviq ě 0 if pJτ8
is generic. If indpviq “ ´1,

then we notice from the index formula (2.7) that Γ0pviq cannot be empty, thus in general, our
genericity assumptions always imply

(6.3) indpviq ` #Γ0pviq ě 0.

We will later make use of the fact that if pu8, τ8q P M
nice

pt pJτ u;H;mq, then Lemma 6.12
implies a corresponding upper bound for indpu8q`#Γ0pu8q plus associated counts of multiply
covered punctures, and our strategy will be to combine these relations with (6.3) for deriving
constraints on u8. The workhorse result for this purpose will be Lemma 6.18 below.

As preparation, we must first relate the indices of the curves vi and their multiple covers ui.
Given z P Γpuiq, let kz P N denote the branching order of ϕi at z, meaning that ϕi is a ki-to-1
covering map on the cylindrical end near this puncture. These numbers are related to the
total degree of ϕi by

(6.4) ki “
ÿ

zPϕ´1

i pζq

kz for any ζ P Γpviq.

We shall use the same notation for branching orders at critical points z P Critpϕiq, so that
the algebraic count of critical points of ϕi is

Zpdϕiq :“
ÿ

zPCritpϕiq

pkz ´ 1q ě 0;

11The reader should beware that the notation γz was used with a slightly different meaning in earlier
sections.
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we emphasize that ϕi is being viewed here as a branched cover between punctured Riemann
surfaces, so the sum over z P Critpϕiq does not include points in Γpuiq. The asymptotic orbits
of ui and vi are now related by

γz “ γkzζ for z P Γpuiq and ζ “ ϕipzq P Γpviq,

where we are abusing notation by identifying ϕi with its holomorphic extension over the
punctures. Since u8 has arithmetic genus 0, all the components ui and vi also have genus
zero and the Riemann-Hurwitz formula therefore implies

(6.5) Zpdϕiq `
ÿ

zPΓpuiq

pkz ´ 1q “ 2pki ´ 1q.

Since the breaking orbits are all in CritMpHq ˆ S1 with periods less than T1, the orbits
γz for z P Γℓpuiq or z P Γℓpviq with ℓ “ 0, 1 also satisfy µCZpγzq “ ℓ with respect to the
S1-invariant trivialization. Moreover, the extension of ϕi over the punctures maps Γℓpuiq to
Γℓpviq for each ℓ “ 0, 1. Plugging this information into the index formula (2.7) gives

indpuiq “ ´2 ` #Γpuiq ` #Γ1puiq ` 2c1puiq,

indpviq “ ´2 ` #Γpviq ` #Γ1pviq ` 2c1pviq,

where c1pviq and c1puiq “ kic1pviq P Z are abbreviations for the relative first Chern numbers
of the pulled back tangent bundles with respect to the S1-invariant trivialization at the ends.
A quick computation combining this with (6.4) and (6.5) yields:

Lemma 6.17. For each i “ 1, . . . , L,

indpuiq “ ki indpviq ` Zpdϕiq ´
ÿ

zPΓ1puiq

pkz ´ 1q

“ ki rindpviq ` #Γ0pviqs ` Zpdϕiq ´
ÿ

zPΓ1puiq

pkz ´ 1q ´
ÿ

zPΓ0puiq

kz .

�

Lemma 6.18. If u8 P Mp pJτ8
;H;mq has no nodes, then it satisfies

indpu8q ` #Γ0pu8q ` 2
ÿ

mě2

pm´ 1q#Γmpu8q

“ 2pL ´ 1q `
Lÿ

i“1

˜
ki rindpviq ` #Γ0pviqs ` Zpdϕiq

`
ÿ

ζPΓpviq

ÿ

zPϕ´1

i pζq

rkzp2mζ ´ 1q ´ 1s

¸
.

Proof. If u8 has no upper levels, then we can replace it with an unstable building having one
upper level that consists only of trivial cylinders. Let us therefore denote by u` the (possibly
disconnected) holomorphic building in pRˆM`, J`q consisting of all upper levels of u8, and
assume without loss of generality that u` is a disjoint union of L` ě 1 connected buildings.
We can compute L` from the fact that u8 has arithmetic genus zero: indeed, u8 gives rise
to a contractible graph whose vertices correspond to the connected components u1, . . . , uL
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and the L` connected buildings forming u`, and with edges corresponding to the punctures

of u1, . . . , uL, so its Euler characteristic is 1 “ L` L` ´
řL

i“1#Γpuiq, implying

L` “ ´pL´ 1q `
Lÿ

i“1

#Γpuiq.

Meanwhile, the positive punctures of u` are in one-to-one correspondence with those of
u8, and its negative punctures correspond to the punctures of u1, . . . , uL, thus Lemma 4.9
combines with the above relation and gives

indpu`q “ ´2L` ` #Γ0pu8q ` 2#Γ1pu8q `
Lÿ

i“1

#Γ0puiq

“ 2pL ´ 1q ´
Lÿ

i“1

r#Γ0puiq ` 2#Γ1puiqs ` #Γ0pu8q ` 2#Γ1pu8q.

(6.6)

Note that since each component of u` has image in R ˆ |M`
Σ and the latter fibers over S1,

there is a well-defined degree of the projection to S1. In particular, the total degree of the
positive ends agrees with the total degree of the negative ends, implying

ÿ

zPΓpu8q

mz “
Lÿ

i“1

ÿ

zPΓpuiq

mz “
Lÿ

i“1

ÿ

ζPΓpviq

ÿ

zPϕ´1

i pζq

kzmζ .

The expression on the left hand side of this equation can also be rewritten as
ř

mPNm#Γmpu8q,
thus

#Γ0pu8q ` 2
ÿ

mě2

pm´ 1q#Γmpu8q “ #Γ0pu8q ` 2
ÿ

zPΓpu8q

mz ´ 2#Γpu8q

“ ´#Γ0pu8q ´ 2#Γ1pu8q ` 2
Lÿ

i“1

ÿ

ζPΓpviq

ÿ

zPϕ´1

i
pζq

kzmζ .

(6.7)
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Now writing indpu8q “ indpu`q `
řL

i“1 indpuiq and applying Lemma 6.17 along with (6.6)
and (6.7), we find that indpu8q ` #Γ0pu8q ` 2

ř
mě2pm´ 1q#Γmpu8q equals

2pL ´ 1q ´
Lÿ

i“1

r#Γ0puiq ` 2#Γ1puiqs ` #Γ0pu8q ` 2#Γ1pu8q

`
Lÿ

i“1

˜
ki rindpviq ` #Γ0pviqs ` Zpdϕiq ´

ÿ

zPΓ1puiq

pkz ´ 1q ´
ÿ

zPΓ0puiq

kz

¸

´ #Γ0pu8q ´ 2#Γ1pu8q ` 2
Lÿ

i“1

ÿ

ζPΓpviq

ÿ

zPϕ´1

i pζq

kzmζ

“ 2pL ´ 1q `
Lÿ

i“1

˜
ki rindpviq ` #Γ0pviqs ` Zpdϕiq

`
ÿ

ζPΓ0pviq

ÿ

zPϕ´1

i pζq

p2kzmζ ´ kz ´ 1q

`
ÿ

ζPΓ1pviq

ÿ

zPϕ´1

i pζq

p2kzmζ ´ pkz ´ 1q ´ 2q

¸
.

�

The next step is to combine the above lemma with the lower bounds on indices arising
from Lemmas 6.6 and 6.11 and some information from intersection theory.

Lemma 6.19. Assume pu8, τ8q P M
nice

pt pJτ u;H;mq and that u8 has nodes. Then there is
exactly one node, there are no ghost bubbles, and the main level has exactly two connected
components u1 and u2, each somewhere injective with all asymptotic orbits simply covered
and satisfying indpuiq ` #Γ0puiq “ 0 for i “ 1, 2.

Proof. If u8 has nodes, then Lemma 6.18 applies to each of its nonconstant maximal non-
nodal subbuildings (see §2.2), and the right hand side of this relation is nonnegative due to
(6.3). The sum of the left hand sides over all these subbuildings is meanwhile at most 2
due to Lemma 6.12. Proposition 2.6 thus implies that there are no ghost bubbles, there is
exactly one node connecting two maximal non-nodal subbuildings, and for both of these the
expression on the right hand side in Lemma 6.18 vanishes. This implies that each has exactly
one component ui “ vi ˝ ϕi in the main level, where the underlying simple curve vi satisfies
indpviq ` #Γ0pviq “ 0 and has mζ “ 1 for all ζ P Γpviq. Moreover, Zpdϕiq “ 0 and kz “ 1 for
all z P Γpuiq, hence the Riemann-Hurwitz formula (6.5) implies ki “ 1, i.e. ui is somewhere
injective and ui “ vi. �

Here is a more complete inventory of the consequences of Lemma 6.18.

Lemma 6.20. If pu8, τ8q P M
nice

pt pJτ u;H;mq, then the following constraints hold:

‚ The number of connected components in the main level is at most 2;
‚ The asymptotic orbits of all the curves vi are either simply or doubly covered;
‚ indpviq ` #Γ0pviq “ 0 or 2 for each i;
‚ All punctures z P Γpuiq have kz ď 2, and furthermore kzmϕipzq ď 2.
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Moreover:

(1) If any vi has indpviq ` #Γ0pviq “ 2, then L “ 1 and u1 is somewhere injective
(i.e. u1 “ v1).

(2) If all the vi have indpviq ` #Γ0pviq “ 0, then:
(a) If any of the vi has a doubly covered orbit, then it is the only doubly covered orbit,

L “ 1, and u1 is somewhere injective (i.e. u1 “ v1).
(b) If on the other hand mζ “ 1 for all ζ P Γpviq, we consider two cases:

(i) If L “ 1, let ℓ ě 0 denote the number of punctures z P Γpu1q at which
kz “ 2: then ℓ ď 2 and all other punctures have kz “ 1. Moreover, u1 is
somewhere injective if ℓ “ 0, and otherwise ℓ` Zpdϕ1q “ 2 and k1 “ 2.

(ii) If L “ 2, then both components in the main level are somewhere injective,
all their asymptotic orbits are simply covered and indpuiq ` #Γ0puiq “ 0
for i “ 1, 2.

In particular, the components ui in the main level are somewhere injective except possibly in
case 2(b)i.

Proof. If u8 has any nodes then Lemma 6.19 applies and produces a result consistent with
case 2(b)ii. Let us therefore assume there are no nodes, so that the relation in Lemma 6.18
applies to u8 directly, and its left hand side is at most 2 by Lemma 6.12. The first three
bullet points are then immediate from the lemma since indpviq ` #Γ0pviq ě 0 for all i. For
the fourth bullet point, we also see an immediate contradiction if kz ě 4 for some z P Γpuiq,
so suppose kz “ 3, with ζ “ ϕipzq P Γpviq. Then mζ must be 1 and kz must also be 1 for all
other z P Γpuiq, and Zpdϕiq “ 0, but then (6.5) gives

Zpdϕiq `
ÿ

zPΓpuiq

pkz ´ 1q “ 2 “ 2pki ´ 1q,

hence ki “ 2 and there cannot be a branch point of order 3. We therefore have both kz ď 2
and mζ ď 2 for all punctures; if ever kz “ mζ “ 2, then Lemma 6.18 provides another
immediate contradiction, so this completes the proof of the fourth bullet point.

Cases 1, 2a and 2(b)ii follow from Lemma 6.18 via similar arguments: in each case, some-
where injectivity follows from the Riemann-Hurwitz formula (6.5) after observing that Zpdϕiq
and all the kz ´ 1 must vanish.

We now consider case 2(b)i. By hypothesis, we have L “ 1, indpv1q ` #Γ0pv1q “ 0 and
mζ “ 1 for each ζ P Γpv1q, and taking account of Lemma 6.12, the identity in Lemma 6.18
now simplifies to

2 ě indpu8q ` #Γ0pu8q ` 2#Γ2pu8q “ Zpdϕ1q `
ÿ

zPΓpu1q

pkz ´ 1q,

which equals 2pk1 ´ 1q by (6.5). The stated conclusions follow immediately. �

6.3.5. Intersection numbers. In the present setting, Lemma 2.7 provides an easy method for
computing Siefring intersection numbers since, according to Lemma 4.12, all the orbits γ
appearing as positive asymptotic orbits satisfy α´pγq “ 0 in the S1-invariant trivialization.
This implies that if u and u1 each denote any of u8, ui or vi, we have

(6.8) u ˚ u1 “ u ‚Φ0
u1,

with Φ0 denoting the S1-invariant trivialization and ‚Φ0
denoting the relative intersection

pairing described in §2.3.
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Lemma 6.21.
Lÿ

j,k“1

uj ˚ uk “ u8 ˚ u8.

Proof. By Lemma 6.16, all the components in upper levels of u8 are covers of trivial cylinders
and gradient flow cylinders. Any two curves u and u1 of this type satisfy u ‚Φ0

u1 “ 0, as

one can define the trivialization Φ0 globally over |M`
Σ and then make u1 disjoint from u by

a global perturbation of u1 in the direction of Φ0. The formula thus follows by computing
u8 ‚Φ0

u8 as a double sum over all components in all levels and applying (6.8). �

Let us assume from now on that

pu8, τ8q P M
nice

pt pJτ u;H;mq.

We can now give a complete description of u8 in the case u8 ˚u8 “ ´1, which by Lemma 6.12
means indpu8q P t´1, 0u, #Γ0pu8q P t0, 1u and all asymptotic orbits of u8 are simply covered.

Lemma 6.22. If u8 ˚ u8 “ ´1, then u8 is either a smooth nicely embedded curve or a
building with two nontrivial levels, where the main level u1 is a connected nicely embedded
curve with indpu1q “ u1 ˚ u1 “ ´1 and simply covered asymptotic orbits, and the upper level

is a disjoint union of trivial cylinders with a single gradient flow cylinder from M
F`

1 pJ`q.

Proof. Since Lemma 6.12 implies indpu8q ` #Γ0pu8q “ #Γmpu8q “ 0 for all m ě 2,
Lemma 6.18 then implies L “ 1, indpv1q ` #Γ0pv1q “ Zpdϕ1q “ 0 and kz “ mζ “ 1 for
all punctures ζ and z. Thus by the Riemann-Hurwitz formula (6.5), u1 “ v1 and the main
level is described by Case 2(b)i of Lemma 6.20 with ℓ “ 0. Lemma 6.21 implies u1 ˚u1 “ ´1,
and indpu1q`#Γ0pu1q “ 0 implies via (2.11) that cN pu1q “ ´1, so by the adjunction inequal-
ity (2.10), δpu1q “ δ8pu1q “ 0, hence u1 is nicely embedded. The fact that all asymptotic
orbits of both u1 and u8 are simply covered and u8 has arithmetic genus 0 implies moreover
that all components in upper levels are also somewhere injective. Adding up the indices across
levels, this eliminates all possibilities other than what was stated. �

Since u8˚u8 is always either ´1 or 0 by Lemma 6.12, we shall consider the case u8˚u8 “ 0
from now on.

Lemma 6.23. If u8 ˚u8 “ 0, then the main level consists of either a single nicely embedded
curve u1 or two distinct nicely embedded curves u1 and u2 that intersect each other transversely
at a node and nowhere else. Moreover, if the main level is a single curve u1, then all its
asymptotic orbits are simply covered if indpu1q ` #Γ0pu1q “ 2, and exactly one of them is
doubly covered if indpu1q ` #Γ0pu1q “ 0.

Proof. Let us first rule out the possibility of a single doubly covered component u1 “ v1 ˝ ϕ1

from case 2(b)i of Lemma 6.20. If this scenario occurs, then we know indpv1q ` #Γ0pv1q “ 0
and all the asymptotic orbits of v1 are simply covered. Equation (2.11) thus gives cN pv1q “ ´1,
and Lemma 2.8 gives σ̄pvq ´ #Γpvq “ 0, so by the adjunction formula (2.9),

v1 ˚ v1 “ 2 rδpvq ` δ8pvqs ´ 1.

In particular, this is an odd integer. But using (6.8) and Lemma 6.21, we also have

0 “ u8 ˚ u8 “ u1 ˚ u1 “ u1 ‚Φ0
u1 “ 4 pv1 ‚Φ0

v1q “ 4 pv1 ˚ v1q

since u1 is a double cover of v1, so this implies that 0 is an odd number and thus rules out
multiply covered components in the main level.
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Exactly the same contradiction occurs if we consider Case 2(b)ii of Lemma 6.20 assuming
u1 and u2 are the same curve up to parametrization. Indeed, ui ˚ ui is then an odd integer
for i “ 1, 2 due to the adjunction formula

(6.9) ui ˚ ui “ 2 rδpuiq ` δ8puiqs ´ 1,

and Lemma 6.21 gives

(6.10) 0 “ u8 ˚ u8 “ u1 ˚ u1 ` u2 ˚ u2 ` 2 pu1 ˚ u2q ,

which reduces to 0 “ 4pu1 ˚ u1q and again implies that 0 is an odd number.
Next consider case 2(b)ii when u1 ‰ u2. Combining (6.9) and (6.10) in this case implies

0 “ 2
2ÿ

i“1

rδpuiq ` δ8puiqs ` 2 pu1 ˚ u2 ´ 1q .

Since indpu1q and indpu2q are both either ´1 or 0, genericity allows us via Lemma 6.10 to
assume δ8puiq “ 0 for i “ 1, 2 and moreover that u1 ˚ u2 is the (algebraic) count of actual
intersections between u1 and u2, with no additional asymptotic contributions. Let us therefore
rewrite the above relation as

1 “ δpu1q ` δpu2q ` u1 ‚ u2,

with u1 ‚ u2 ě 0 denoting the count of actual intersections. If u1 and u2 are connected at
a node, then they necessarily intersect, implying u1 ‚ u2 “ 1 and δpu1q “ δpu2q “ 0, hence
both are embedded and they have only one intersection, which is transverse and occurs at
the node. Equation (6.9) then implies that both satisfy ui ˚ ui “ ´1, so they are nicely
embedded. If on the other hand there is no node, then the above relation between δpu1q,
δpu2q and u1 ‚ u2 cannot hold, as all three terms must be 0. To see this, recall that the

assumption pu8, τ8q P M
nice

pt pJτ u;H;mq means that there exist sequences

τν Ñ τ8 and uν Ñ u8 as ν Ñ 8

where τν P r0, 1s and uν P Mnicep pJτν ;H;mq, so in particular all the uν are embedded. But if
any of the three terms above were positive, then there would be at least one isolated double
point or critical point of u1 or u2, or an isolated intersection between them, and any of these
scenarios would give rise to an isolated singularity of the curves uν for sufficiently large ν due
to local positivity of intersections. This is a contradiction.

Finally, we show that in all remaining cases of Lemma 6.20, the single somewhere injective
curve u1 in the main level is nicely embedded. Lemma 6.21 implies u1 ˚ u1 “ 0, so we just
need to show δpu1q “ δ8pu1q “ 0. Since u1 cannot have any nodal points in this case, local
positivity of intersections implies δpu1q “ 0, as a singularity in u1 would again be seen by the
embedded curves uν for ν sufficiently large. Thus we only still need to prove δ8pu1q “ 0. This
follows from genericity (Lemma 6.10) if indpu1q ď 0, which takes care of cases 2a and 2(b)i in
Lemma 6.20. These are the cases with indpu1q ` #Γpu1q “ 0, hence cN pu1q “ ´1 by (2.11),
and the adjunction formula then gives

0 “ ´1 ` rσ̄pu1q ´ #Γpu1qs ,

so by Lemma 2.8, u1 has exactly one doubly covered asymptotic orbit and the rest are simply
covered. We are now left only with case 1, with indpu1q ` #Γ0pu1q “ 2. Now (2.11) implies
cN pu1q “ 0, so the adjunction formula (2.9) becomes

0 “ 2δ8pu1q ` rσ̄pu1q ´ #Γpu1qs
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and thus implies both δ8pu1q “ 0 and σ̄pu1q ´#Γpu1q “ 0. By Lemma 2.8, the latter implies
that all asymptotic orbits of u1 are simply covered. �

6.3.6. Conclusion of the compactness proof. The preceding lemmas establish a complete pic-
ture of all the possible main levels of the building u8. To finish the proof of Propositions 6.13
and 6.14, we only need to describe the possible multiple covers of leaves of F` that can occur
in the upper levels. These components are highly constrained for the following reasons:

(1) Most asymptotic orbits of the main level are simply covered, with at most one ex-
ception which is doubly covered and occurs only if the main level is a single curve u1
with u1 ˚ u1 “ indpu1q ` #Γ0pu1q “ 0;

(2) The building has arithmetic genus zero: since the possibly nodal curve forming the
main level is always connected, this implies that no curve in any upper level can have
more than one negative puncture;

(3) All curves in upper levels are covers of cylinders.

Let us first consider the case where u8 has nodes: then Lemmas 6.20 and 6.23 imply that
there is only one node, which occurs in the main level, where it connects two nicely embedded
curves whose asymptotic orbits are all simply covered. As observed above, the genus condition
implies that no curve in any upper level can have more than one negative puncture, and since
they are all covers of cylinders, the fact that orbits are simply covered means that no curves
in upper levels can be multiple covers. It follows that the upper levels consist entirely of
trivial cylinders or gradient flow cylinders, where each of the latter contributes 1 to the total
index of u8. The two curves in the main level each have index either ´1 or 0, but since they
are distinct, they cannot both have index ´1 due to genericity (Lemmas 6.6 and 6.11). This
completes the description of all possible nodal buildings.

In the absence of nodes, the main level is a single nicely embedded curve u1, and the above
description of the upper levels still applies whenever the asymptotic orbits of u1 are all simple:
outside of the case u8 ˚u8 “ ´1, which was dealt with in Lemma 6.22, this is true if and only
if indpu1q ` #Γ0pu1q “ 2. If indpu1q ` #Γ0pu1q “ 0, then exactly one asymptotic orbit of u1
is doubly covered, which allows for a limited range of multiple covers to appear in the upper
levels: indeed, there can be doubly covered unbranched cylinders (which are either trivial or
cover gradient flow cylinders and thus have index 1), and exactly one branched double cover
with two positive punctures and one negative puncture. Suppose u is such a branched double
cover, and the underlying simple curve is v. From Lemma 4.9, the possible indices of u are
as follows:

‚ If v “ R ˆ γ with γ elliptic, then indpuq “ 2;
‚ If v “ R ˆ γ with γ hyperbolic, then indpuq “ 1;
‚ If v is a gradient flow cylinder, then indpuq “ 3.

The buildings enumerated in Propositions 6.13 and 6.14 are thus found by putting together
all possible combinations of these ingredients that add up to the correct index.

As a particular consequence, the above arguments show that the only holomorphic buildings

appearing in Mnice
0 p pJ ;H;mq and Mnice

´1 pt pJτ u;H;mq are smooth curves (i.e. with no nodes
and only one level), hence these spaces are compact. Note that by Lemma 6.11, none of the

curves in those spaces are confined to the non-generic domain pN´pBEq, hence our genericity

assumptions ensure that Mnice
0 p pJ ;H;mq and Mnice

´1 pt pJτ u;H;mq are also both 0-dimensional
manifolds and therefore finite sets. Lemma 6.6 implies moreover that for any two distinct

elements pu, τq and pu1, τ 1q P Mnice
´1 pt pJτ u;H;mq, we have τ ‰ τ 1, and we define Ising as the
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finite set of values τ P r0, 1s for which such curves exist; this set cannot include 0 or 1 since

both pJ0 and pJ1 are assumed generic. For any τ R Ising, the non-existence of index ´1 curves
rules out all of the scenarios listed in Proposition 6.14, leaving only the list in Proposition 6.13.
The proof of both propositions is now complete.

6.4. Holomorphic foliations on the completed filling. In this section we prove Proposi-
tions 6.3 and 6.4. For both results, the main step will be to show that the holomorphic pages

living in pN´pBEq extend to the rest of xW as a foliation with finitely many singularities at the
nodal points, and that this foliation varies smoothly with the parameter τ . We will then use

the foliation to define suitable smooth structures on the interiors of xMF p pJq and xMF pt pJτ uq.
It’s worth recalling briefly the type of argument that was used for this step in [Wen10c]: in
that simpler setting, all main level curves in the moduli space either have index 2 or are nodal
curves with components of index 0, all of them satisfying the automatic transversality crite-
rion of [Wen10b]. The foliation then arises easily from a combination of the implicit function
theorem and compactness, showing that the index 2 curves fill an open and closed subset of
xW in the complement of the images of finitely many nodal curves—the latter being a subset of
codimension 2—and automatic transversality guarantees that these families of curves always
persist under changes in τ . The crucial difference in the present setting is that in the com-
pactness statements of Propositions 6.13 and 6.14, not all degenerations have codimension at
least 2; in particular one can imagine the above argument failing as the index 2 curves run

into a “wall” of codimension 1 formed by index 1 curves. Such walls exist in xMF p pJq and
xMF pt pJτ uq, but it would be more accurate to call them seams: since they always include a
gradient flow cylinder in an upper level, they come in canceling pairs, with the consequence
that every such degeneration can be glued back together using a different gradient cylinder
in order to “cross the wall”.

For i P t1, 2u, define
xMF

i p pJτ q Ă xMF p pJτ q

to be the subset of all equivalence classes of buildings whose main levels are connected smooth

curves in Mnice
i p pJτ ;H;mq. For i P t´1, 0u, we define xMF

i p pJτ q similarly but allow it addition-
ally to contain equivalence classes of buildings whose main levels are nodal curves with two

connected components, one belonging to Mnice
0 p pJτ ;H;mq and the other to Mnice

i p pJτ ;H;mq.

The subsets xMF
i pt pJτ uq Ă xMF pt pJτ uq and xMF

i p pJq Ă xMF p pJq are defined similarly.

Lemma 6.24. Suppose pru0s, τ0q P xMF
2 pt pJτ uq. Then there exist neighborhoods U Ă xMF pt pJτ uq

of pru0s, τ0q and V Ă r0, 1s of τ0 such that U Ă xMF
2 pt pJτ uq and for every τ P V,

Uτ :“ U X xMF p pJτ q

is a contractible open subset of xMF p pJτ q in which the main levels define a smooth 2-parameter

family of embedded curves with disjoint images that foliate an open subset of xW .

Proof. This is essentially a standard application of the implicit function theorem for nicely
embedded index 2 curves, see [Wen05, Theorem 4.5.42] or [Wen20, Theorem 3.26]. It de-

rives mainly from two crucial facts: (1) curves in Mnice
2 p pJτ ;H;mq satisfy the automatic

transversality criterion of [Wen10b], hence genericity is not required and the moduli space

perturbs smoothly with τ , and (2) tangent spaces TuM
nice
2 p pJτ ;H;mq are equivalent to spaces

of holomorphic sections of the normal bundle along u, and these sections are always nowhere
zero. �
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Lemma 6.25. Suppose pru0s, τ0q P xMF
1 pt pJτ uq. Then there exist neighborhoods U Ă xMF pt pJτ uq

of pru0s, τ0q and V Ă r0, 1s of τ0 and a homeomorphism

Ψ : p´1, 1q2 ˆ V Ñ U

such that for all px, y, τq P p´1, 1q2 ˆ V,

Ψp0, y, τq P xMF
1 p pJτ q and Ψpx, y, τq P xMF

2 p pJτ q if x ‰ 0.

Moreover, for each τ P V, the embedded curves that constitute the main levels of Ψpx, y, τq
for px, yq P p´1, 1q2 are disjoint from each other and form the leaves of a smooth foliation on

an open subset of xW .

Proof. The 2-parameter family py, τq ÞÑ Ψp0, y, τq P xMF
1 p pJτ q arises for reasons similar to the

proof of Lemma 6.24: curves in Mnice
1 p pJτ ;H;mq satisfy the automatic transversality criterion

of [Wen10b] and are thus regular for every τ . Indeed, the criterion is satisfied because by

Lemma 6.12, any u P Mnice
1 p pJτ ;H;mq has only simply covered asymptotic orbits and exactly

one of them is hyperbolic. Moreover, u ˚ u “ 0, implying that for any fixed τ P V, the main
levels of the 1-parameter family y ÞÑ Ψp0, y, τq are all disjoint and thus foliate a smoothly

embedded hypersurface in xW .
We claim that gluing can be used to extend this foliation to a neighborhood of the hy-

persurface. The crucial detail here is that each of the equivalence classes rus :“ Ψp0, y, τq is
represented by exactly two buildings u` and u´ whose upper levels have non-identical images:

indeed, since all asymptotic orbits for the buildings representing elements of xMF` pJ`q are

simply covered and elliptic, the same is true for all elements of xMF pt pJτ uq, so that the upper
levels of Ψp0, y, τq must always be unions of trivial cylinders with a gradient flow cylinder
connecting the hyperbolic orbit to an elliptic orbit. There are always exactly two choices of
this gradient flow cylinder—they form a canceling pair in the sense of Lemma 6.1. By the
same argument as in Lemma 6.21, both of the buildings u˘ satisfy

(6.11) u` ˚ u` “ u´ ˚ u´ “ u` ˚ u´ “ 0,

and observe that the gradient flow cylinders in their upper levels are also automatically
regular. We can therefore glue both buildings to obtain a pair of 1-parameter families of
smooth and nicely embedded index 2 curves, which we define to be Ψpx, y, τq for x ą 0 and
x ă 0 respectively. Each of these two families satisfies the same implicit function theorem

that was used in Lemma 6.24, hence they each foliate open subsets of xW . Moreover, the
homotopy invariance of the intersection pairing implies via (6.11) that if u and u1 denote the
main levels of Ψpx, y, τq and Ψpx1, y1, τq with x and x1 both nonzero, then u ˚ u1 “ 0, hence
the two open subsets foliated by the two families are disjoint, and for similar reasons, both
are disjoint from the main levels of the curves Ψp0, y, τq but contain them in their closures.
This shows that the main levels of the 2-parameter family px, yq ÞÑ Ψpx, y, τq foliate an open

subset of xW for each τ sufficiently close to 0. �

The preceding pair of lemmas shows that xMF
2 pt pJτ uq Y xMF

1 pt pJτ uq is an open subset of
xMF pt pJτ uq and has the topology of a 3-dimensional manifold, and for each τ P r0, 1s, xMF

2 p pJτ qY
xMF

1 p pJτ q Ă xMF p pJτ q is similarly open and is a 2-dimensional manifold. Denote the closure of
xMF

2 pt pJτ uq in xMF pt pJτ uqzp xMF` pJ`q ˆ r0, 1sq by

xMF
nicept pJτ uq Ă xMF pt pJτ uqz

´
xMF`pJ`q ˆ r0, 1s

¯
,
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and define
xMF

nicep pJτ q :“
!
u P xMF p pJτ q

ˇ̌
pu, τq P xMF

nicept pJτ uq
)

for each τ P r0, 1s.

Lemma 6.26. The closure xMF
nicept pJτ uq is the union of the sets xMF

i pt pJτ uq for all i P

t´1, 0, 1, 2u. Moreover, the xMF
i pt pJτ uq are smooth manifolds of dimension i ` 1, and for

i P t´1, 0u they decompose into the following subsets characterized by the main level u0 of an

equivalence class of buildings rus P xMF
i pt pJτ uq:

‚ rus P xMF
reg,ipt pJτ uq :“ xMF

i pt pJτ uq X xMF
regpt pJτ uq if and only if u0 is a smooth nicely

embedded curve with indpu0q “ i and all asymptotic orbits simply covered, with 2 ´ i

of them hyperbolic;

‚ rus P xMF
sing,ipt pJτ uq :“ xMF

i pt pJτ uq X xMF
singpt pJτ uq if and only if u0 is a nodal curve

with two nicely embedded connected components v and v1, where indpvq “ 0 with all
asymptotic orbits simply covered and elliptic, while indpv1q “ i with all asymptotic
orbits simply covered and ´i of them hyperbolic;

‚ rus P xMF
exot,ipt pJτ uq :“ xMF

i pt pJτ uq X xMF
exotpt pJτ uq if and only if u0 is a smooth nicely

embedded curve with indpu0q “ i and one asymptotic orbit doubly covered, the rest
simply covered, and ´i of them hyperbolic.

Proof. This is essentially a repackaging of the main compactness results from §6.3, i.e. Propo-

sitions 6.13 and 6.14. The statement about the dimension of xMF
i pt pJτ uq for i P t´1, 0u follows

directly from the implicit function theorem since t pJτ u is generic in the interior of W and all
of these curves must intersect that interior due to Lemma 6.11. �

Lemma 6.27. We have

xMF
nicept pJτ uq “ xMF pt pJτ uqz

´
xMF`pJ`q ˆ r0, 1s

¯
,

and for each τ P r0, 1s, any two buildings u, u1 representing equivalence classes in xMF p pJτ q
satisfy u ˚ u1 “ 0.

Proof. By construction, xMF
nicept pJτ uq is closed in xMF pt pJτ uqzp xMF` pJ`q ˆ r0, 1sq; we claim

that it is also open. We’ve already seen that xMF
2 pt pJτ uq Y xMF

1 pt pJτ uq is open due to Lem-

mas 6.24 and 6.25, so it suffices to show that any prus, τq P xMF
i pt pJτ uq for i P t´1, 0u has a

neighborhood in xMF pt pJτ uq contained in xMF
nicept pJτ uq. Let u denote a holomorphic building

representing such an element. A neighborhood of prus, τq will consist of all nearby elements
of the pi` 1q-dimensional moduli space described in Lemma 6.26, plus any other equivalence
classes represented by buildings with fewer levels (e.g. smooth curves) that are close to con-
verging to u or one of its equivalent buildings in the SFT-topology. Lemma 6.26 describes the
possible main levels of u, and the upper levels are allowed to consist of anything that produces
arithmetic genus zero and the right collection of asymptotic orbits (all of them simply covered)
at the positive ends. This allows for exactly the same range of possibilities as seen in Propo-
sitions 6.13 and 6.14: all components in the upper levels are covers of either trivial cylinders
or gradient flow cylinders, each with covering multiplicity at most 2. Aside from the ordering
of the punctures, the only ambiguity involved in the upper levels is therefore the option to
replace each gradient flow cylinder with its partner in a canceling pair. But by the argument
in Lemma 6.21, this alteration does not change the value of u˚u or u˚v for any other building
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v with prvs, τq P xMF pt pJτ uq. In particular, since u is equivalent to some building arising as
a limit of a sequence of nicely embedded index 2 curves, u ˚ u “ 0, implying that any other
smooth curve obtained by gluing u will also be nicely embedded and therefore an element of
xMF

nicept pJτ uq. This proves that the set is open as claimed, hence it is a union of connected

components of xMF pt pJτ uqzp xMF` pJ`q ˆ r0, 1sq. Since xMF
nicept pJτ uq also contains the holomor-

phic pages in pN`pBEq that form a neighborhood of xMF`pJ`q ˆ r0, 1s in xMF pt pJτ uq, it now

follows from the definition of xMF pt pJτ uq that xMF
nicept pJτ uq “ xMF pt pJτ uqzp xMF` pJ`q ˆ r0, 1sq.

The claim about intersection numbers then follows from Proposition 4.15 via the homotopy
invariance of the pairing u ˚ u1. �

Lemma 6.28. For each τ P r0, 1s, every point in xW is in the image of the main level of a

unique element of xMF
nicep

pJτ q.

Proof. Let ∆ Ă xW ˆ r0, 1s denote the set of all points px, τq such that x is in the image of the

main level for some equivalence class of buildings in xMF
´1p pJτ q Y xMF

0 p pJτ q. By Lemma 6.26,
∆ is the smooth image of a manifold with components of dimension at most 3, i.e. it is a

“subset of codimension at least 2” in xW ˆ r0, 1s. If follows that pxW ˆ r0, 1sqz∆ is connected.

Now define Θ Ă pxW ˆ r0, 1sqz∆ as the set of all px, τq R ∆ such that x is in the image of

the main level for some equivalence class of buildings in xMF
1 p pJτ q Y xMF

2 p pJτ q. Lemmas 6.24

and 6.25 imply that Θ is an open subset of pxW ˆ r0, 1sqz∆, and Lemma 6.26 implies that it is

also closed. We conclude that xW “ ΘY∆, meaning every px, τq P xW ˆr0, 1s has the property

that x is in the image of the main level for some element of xMF
nicep

pJτ q. Uniqueness then
follows from the fact that any two such elements u and u1 satisfy u ˚ u1 “ 0, as Lemma 6.21
implies that any isolated intersection of the main levels would make u ˚ u1 positive. �

We’ve now shown that for every τ P r0, 1s, the main levels of the buildings representing

elements of xMF
nicep

pJτ q define a smoothly τ -dependent foliation Fτ of xW , which is singular on
the set

xW crit
τ Ă xW

consisting of images of nodes for main levels of elements in xMF
singp pJτ q. We thus obtain a

continuous map

Πτ : xW Ñ xMF
nicep pJτ q

sending each point x P xW to the unique rus P xMF
nicep

pJτ q whose main level contains x, and
the resulting map

Π : xW ˆ r0, 1s Ñ xMF
nicept pJτ uq : px, τq ÞÑ pΠτ pxq, τq

is also continuous. The remaining steps toward the proof of Propositions 6.3 and 6.4 are to

define a suitable smooth structure on xMF
nicept pJτ uq and to understand the topological relation-

ship between the sets xMF p pJq and xMF pt pJτ uq and their various subsets of regular, singular

and exotic curves. To obtain a smooth structure and orientation on xMF
nicept pJτ uq, we can

conveniently make use of the foliations Fτ and thus avoid talking about smoothness of gluing
maps or coherent orientations.

Lemma 6.29. The spaces xMF
nicept pJτ uq and xMF

nicep
pJτ q for each τ P r0, 1s admit unique

smooth structures such that the maps Πτ and Π are smooth, except possibly at xW crit
τ and
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Ť
τPr0,1s W

crit
τ ˆ tτu respectively. Moreover, xMF

nicept pJτ uq is orientable, and there exists a dif-

feomorphism

Ψ : xMF
nicep pJq ˆ r0, 1s Ñ xMF

nicept pJτ uq

which satisfies Ψp xMF
nicep

pJq ˆ tτuq “ xMF
nicep

pJτ q for every τ P r0, 1s and is the identity map on
xMF

nicep
pJq ˆ t0u and the neighborhood of xMF`pJ`q ˆ r0, 1s defined by the holomorphic pages

in pN`pBEq.

Proof. Given prus, τq P xMF
nicept pJτ uq, pick a point p P xW that is in the image of a non-nodal

point of the main level of rus. Choose also a small embedded open 2-disk Dp Ă xW that has
p in its interior and is positively transverse to the foliation Fτ . Then after shrinking Dp if
necessary, we can assume that the main level curve for every element in some neighborhood

U Ă xMF
nicep

pJτ q of rus passes through a unique point of Dp, thus defining a homeomorphism
U Ñ Dp. (A crucial detail behind this assertion is that all of the main levels of elements in
xMF

nicept pJτ uq are embedded—in particular none of them are multiply covered, otherwise the
map U Ñ Dp would be multi-valued.) We shall identify Dp smoothly with the open unit
disk in C and regard U Ñ Dp as a chart. Since the foliation is smooth and has a canonical
co-orientation determined by the almost complex structure, all transition maps relating two
charts of this type are smooth and orientation preserving. In the same manner, the smooth

dependence of Fτ on τ allows us to define local charts on xMF
nicept pJτ uq since Dp can still be

assumed positively transverse to Fτ 1 for all τ 1 sufficiently close to τ . This makes xMF
nicept pJτ uq

a smooth oriented manifold in which the function

xMF
nicept pJτ uq Ñ r0, 1s : prus, τq ÞÑ τ

is a smooth function with no critical points. The existence of the diffeomorphism Ψ follows

since the foliations Fτ match F` and are thus τ -independent in the region of pN`pBEq foliated
by holomorphic pages. �

Lemma 6.30. Using the diffeomorphism Ψ from Lemma 6.29, the sets xMF
singpt pJτ uq and

xMF
exotpt pJτ uq are each disjoint unions of finite collections of subsets of the form

!
Ψpfpτq, τq P xMF

nicept pJτ uq
ˇ̌
τ P r0, 1s

)
,

for continuous maps f : r0, 1s Ñ xMF
nicep

pJq that are smooth except at finitely many points
in p0, 1q.

Proof. Recall from Proposition 6.14 the finite subset

Ising Ă p0, 1q,

which in the present context we can regard as the set of all parameter values τ such that the
foliation Fτ contains a leaf of index ´1 (and only one such leaf). When τ R Ising, Lemma 6.26

identifies xMF
singp pJτ q and xMF

exotp
pJτ q with xMF

sing,0p pJτ q and xMF
exot,0p pJτ q respectively, which

are each compact and are made up of equivalence classes whose main levels contain nicely
embedded index 0 curves with simple elliptic asymptotic orbits. These curves satisfy the
automatic transversality criterion of Proposition 2.12, hence there are finitely many of them
for each τ and they can be deformed smoothly under small perturbations in τ . In particular,
transversality implies that the projection

(6.12) xMF
sing,0pt pJτ uq Y xMF

exot,0pt pJτ uq Ñ r0, 1s : prus, τq ÞÑ τ
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is a submersion.
We claim next that if τ0 P Ising and

!
pruτ s, τq P xMF

singpt pJτ uq | τ P pτ0 ´ ǫ, τ0q
)

is a smooth 1-parameter family, then this family admits a unique continuous extension to
τ P pτ0 ´ ǫ, τ0 ` ǫq if ǫ ą 0 is sufficiently small, and the extended family is also smooth for
τ P pτ0, τ0 ` ǫq. The compactness results of §6.3 imply that as τ Ñ τ0 from below, ruτ s

converges to an element ruτ0s of either xMF
sing,0p pJτ0q or xMF

sing,´1p pJτ0q. In the first case we
can again use automatic transversality and apply the implicit function theorem to continue
the family. In the second case, we can assume that the smooth curves uτ representing ruτ s
converge to a holomorphic building uτ0 as in case (2h) of Prop. 6.14, whose main level is a nodal
curve with one index 0 and one index ´1 component, and the upper levels consist of a gradient
flow cylinder connecting the unique hyperbolic orbit of the index ´1 curve to an elliptic orbit.
All components in this building are parametrically Fredholm regular, i.e. they are points at
which the relevant parametric moduli space tpv, τq | τ P r0, 1s, v is Jτ -holomorphicu is cut
out transversely by the nonlinear Cauchy-Riemann operator. It follows that uτ0 can be glued
in a unique way, proving that all pairs pu, τq close to puτ0 , τ0q in the SFT-topology belong to
the given family tpuτ , τq | τ P pτ0 ´ ǫ, τ0qu. However, one can also replace the gradient flow
cylinder in the upper level of uτ0 with its canceling partner from Lemma 6.1, giving a new
building u1

τ0
, which can be glued to obtain a new smooth 1-parameter family of elements in

xMF
sing,0pt pJτ uq with an end degenerating to u1

τ0
. Since the index 0 curves forming the new

family have the same asymptotic orbits as the components of uτ and each have normal Chern

number ´1, Proposition 2.13 implies that these two components of xMF
sing,0pt pJτ uq receive the

same orientation, for which the submersion (6.12) either preserves or reverses orientation.
But these coherent orientations also assign opposite signs to the two canceling gradient flow
cylinders, and hence to the buildings uτ0 and u1

τ0
that form the boundaries of our two families

in xMF
sing,0pt pJτ uq. It follows that the family we obtained by gluing consists of pairs prus, τq

with τ ą τ0, not τ ď τ0, thus continuing the family as claimed. The uniqueness of the
continuation follows from the observation that the two buildings uτ0 and u1

τ0
are the only

possible representatives of ruτ0s P xMF
singp pJτ0q up to ordering of the punctures.

The proof of the same claim for xMF
exotpt pJτ uq is entirely analogous, the main difference

being that there are now two possible types of degenerations from 1-parameter families in
xMF

exot,0pt pJτ uq to buildings in xMF
exot,´1pt pJτ uq, as the unique hyperbolic orbit for the index ´1

curve may or may not be the same one that is doubly covered, i.e. this is the distinction
between cases (2g) and (2j) in Prop. 6.14. If it is not the same orbit, then the upper levels
contain a gradient flow cylinder, and the family is continued exactly as above by gluing its can-
celing partner. If the hyperbolic orbit is doubly covered, then we instead have an unbranched
double cover of a gradient flow cylinder in an upper level, but as observed in Lemma 6.1,
this unbranched cover also satisfies automatic transversality and is oriented opposite to the
unbranched double cover of its canceling partner. Thus the same trick works to continue the
family, this time by replacing the unbranched cover with its own canceling partner and then

gluing the building. Note that for this picture of xMF
exotpt pJτ uq to be complete, one must also

picture an index 2 branched double cover of a trivial cylinder over an elliptic orbit in the top
level of every building, as appears in case (2e) of Proposition 6.13 and cases (2g) and (2j) of
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Proposition 6.14. But this branched cover can be treated as a constant object that plays no
role in the deformation or gluing arguments.

As a final remark, note that there are other types of buildings listed in Proposition 6.14 that

can represent elements of xMF
exot,´1p pJτ0q and may arise as degenerations of index 2 curves,

namely cases (2i) and (2k). However, since they do not include any branched cover of a

trivial cylinder in the top level, these cannot arise as degenerations of curves in xMF
exot,0pt pJτ uq,

which are always represented by case (2e) of Proposition 6.13. Moreover, they are equivalent

in xMF
exot,´1pt pJτ uq to buildings from case (2j), and can thus be replaced by such buildings

in order to obtain two glued families12 in the way described above, so that they always

uniquely fit into the same 1-parameter families in xMF
exotpt pJτ uq moving τ both forward and

backward. �

The lemmas proved so far establish the main topological properties of the spaces xMF p pJτ q

and xMF pt pJτ uq as described in Propositions 6.3 and 6.4. It remains only to examine the

restrictions of the maps Πτ : xW Ñ xMF
nicep

pJτ q to the holomorphic vertebrae 9Σi Ă xW for
i “ 1, . . . , r. The resulting maps

9Σi
ΠτÝÑ xMF

nicep pJτ q

are local diffeomorphisms wherever the foliation Fτ is transverse to 9Σ :“ 9Σ1 Y . . . Y 9Σr. By
Lemma 6.7, non-transverse intersections of main level curves with 9Σ occur only for elements in

a 1-dimensional submanifold of xMF
2 pt pJτ uq and a discrete subset of xMF

1 pt pJτ uq, and moreover,
each individual curve in these spaces has only one non-transverse intersection, with local
intersection index 2. With this understood, the following local result serves to characterize

the maps 9Σ
ΠτÝÑ xMF

nicep
pJτ q as generic branched covers.

Lemma 6.31. Suppose J is a smooth almost complex structure on C
2,

uζ : pD, iq Ñ pC2, Jq for ζ P D

is a smooth 2-parameter family of J-holomorphic curves such that u0p0q “ 0 and the map
D ˆ D Ñ C

2 : pz, ζq ÞÑ uζpzq is an embedding, and Σ Ă C
2 is an embedded J-holomorphic

curve that has an isolated intersection of index k P N with u0 at the origin. Then the map

Σ Ñ D : w ÞÑ ζpwq such that w P im uζpwq

has the local structure of a branched cover, with the origin as a branch point of order k.

Proof. The statement follows immediately from transversality if k “ 1, so let us assume k ě 2.
After a change of coordinates, we can assume without loss of generality that

uζpzq “ pz, ζq and Jpz, ζq “

ˆ
i αpz, ζq
0 jpz, ζq

˙

for EndRpCq-valued functions α, j that satisfy j2 “ ´1 and iα`αj “ 0. In these coordinates,
we can write Σ near the origin as the image of an embedded J-holomorphic disk v “ pϕ, fq :
pD, iq Ñ pC2, Jq that satisfies ϕp0q “ fp0q “ 0 by assumption, and the condition k ě 2 implies
a tangential intersection with u0, thus dfp0q “ 0, so that ϕ : D Ñ C can be assumed an
embedding. Since the family of curves uζ is parametrized by the second complex coordinate,
our goal is now to show that the function f : D Ñ C has the structure of a k-to-1 branch

12It is worth clarifying that no obstruction bundle gluing (in the sense of [HT09]) is required here, as the
branched covers in our picture serve merely as a bit of extra data that is not involved in the gluing construction.



ON SYMPLECTIC FILLINGS OF SPINAL OPEN BOOK DECOMPOSITIONS II 113

point at 0. This follows easily from the similarity principle: writing v0pzq :“ pϕpzq, 0q, the
equation Bsv ` JpvqBtv “ 0 implies

Bsv ` Jpv0qBtv “

ˆ
Bsϕ
Bsf

˙
`

ˆ
i αpϕ, 0q
0 jpϕ, 0q

˙ˆ
Btϕ
Btf

˙
“ ´ rJpvq ´ Jpv0qs Btv

“ ´

ˆż 1

0

D2Jpϕ, tfq ¨ f dt

˙
Btv “: ´ rAf,

where the linear dependence of the integral in the second line on f is used to define a smooth

function rA : D Ñ HomRpC,C2q. Projecting all of this to the second factor in C ˆ C then
produces a linear Cauchy-Riemann type equation Bsf ` jpϕ, 0qBtf ` Af “ 0, and since the
intersection of v with u0 is isolated, the similarity principle now implies that f has a nontrivial
Taylor series whose first nonzero term is holomorphic. That term must be a multiple of zk,
in light of the intersection index, thus f is given by

fpzq “ azk ` |z|kRpzq

for some nonzero coefficient a P C and a continuous remainder function satisfying Rp0q “ 0.
On a small enough neighborhood of 0 so that |Rpzq| ă |a|, this can also be written as

fpwq “ wk in a new C1-smooth complex coordinate defined by w :“ z
´
a ` |z|k

zk
Rpzq

¯1{k
. �

For the next statement, let Σi denote the compact topological surface obtained by adding
circles at infinity to each of the cylindrical ends of 9Σi.

Lemma 6.32. For each i “ 1, . . . , r and every τ P r0, 1s, the map 9Σi
ΠτÝÑ xMF

nicep
pJτ q extends

to a continuous map `
Σi, BΣi

˘
Ñ

´
xMF p pJτ q, xMF` pJ`q

¯

of degree mi whose restriction to the boundary is a covering map. Moreover, it is a generic
branched cover of surfaces with cylindrical ends in the sense of Definition 6.2, the images

in xMF
nicep

pJτ q of the branch points all lie in xMF
regp pJτ q, and the nodes of curves in xMF

singp pJτ q

never intersect 9Σi.

Proof. The continuous extension and its degree are already clear from the fact that the holo-

morphic pages (which form the cylindrical ends of xMF
nicep

pJτ q) each have exactly mi inter-

sections with 9Σi, all of them transverse. That Πτ | 9Σi
is a branched cover with only simple

branch points follows from Lemma 6.31, together with the preceding remarks on genericity
and intersections. The branch points are the tangential intersections of 9Σi with leaves of the
foliation, and Lemma 6.7 implies that such a point ζ is necessarily the only point of tangency
on a given leaf, hence all images of branch points are distinct. Finally, Lemma 6.7 implies that

the index 0 and ´1 main level components in xMF
singp pJτ q and xMF

exotp
pJτ q always intersect 9Σi

transversely, hence these are never critical values of the branched cover. Lemma 6.8 implies

in turn that the two components of each nodal curve in xMF
singp pJτ q never intersect 9Σi in the

same places, hence their intersections with 9Σi are disjoint from the node. �

Our final lemma in this section concerns the Lefschetz-amenable case.

Lemma 6.33. The branched cover in Lemma 6.32 has no branch points if and only if
xMF

exotp
pJτ q “ H for all τ P r0, 1s.
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Proof. We show first that the absence of branch points rules out exotic fibers. By Lemma 6.30,

it suffices to prove that xMF
exotp

pJq is empty whenever 9Σ
Π0ÝÑ xMF

nicep
pJq is an honest covering

map. Recall from Proposition 3.8 that the holomorphic vertebrae 9Σi are not isolated: each
can be shifted in the direction of the θ-coordinate, producing a smooth S1-family of embedded

J-holomorphic curves 9Σθ
i Ă xW that foliate a smooth hypersurface

Yi :“
ď

θPS1

9Σθ
i Ă xW.

We cannot assume that the genericity conditions imposed in §6.2 hold for intersections of
leaves with every curve in the family 9Σθ

i , thus a leaf may have intersections of index greater
than 2 with some of these curves, but the intersections are still isolated and positive, thus

Lemma 6.31 still applies and gives each of the maps 9Σθ
i

Π0ÝÑ xMF
nicep

pJq the structure of a (not
necessarily generic) branched cover. The rest of the arguments in Lemma 6.32 also apply for
every θ, showing that the branch points of these covers are confined to a compact subset, and
they can be counted algebraically using the Riemann-Hurwitz formula. It follows that the
condition of having no branch points is independent of θ, hence this assumption implies that
every leaf of the foliation is transverse to the entire hypersurface Y :“ Y1 Y . . . Y Yr.

Recall that a neighborhood of infinity in xMF
nicep

pJq coincides with the foliation F` con-

structed in §3.8, and each leaf of the latter intersects the region of pE above Y in a disjoint
union of cylindrical ends whose boundary circles are in bijective correspondence with the
boundary components of the pages (see Figure 7), each of them having degree 1 under the

projection pΣ ˆ S1 Ñ S1. In light of the transverse intersections with Y , it follows that the
same is true for every leaf of F0, implying that none can have an end asymptotic to a doubly

covered orbit (see Figure 9E), which must occur if xMF
exotp pJq were nonempty.

Conversely, if xMF
exotp pJq “ H, then all main level curves in xMF

nicep
pJq have the same number

of ends with the same asymptotic orbits and multiplicities. We claim that for any θ P S1

and t ą 0 sufficiently large, all of them are transverse to the properly embedded surface
9Σpt,θq :“ ttuˆpΣˆtθu Ă pN pBhEq. Indeed, this is obvious for the holomorphic pages constructed
in §3.8, which form a neighborhood of infinity in the moduli space, and for everything else
the claim follows for t " 0 due to the asymptotic convergence of curves to Reeb orbits, which
are never tangent to 9Σpt,θq. The restriction of Π to 9Σpt,θq is therefore a proper covering map
and thus satisfies the Riemann-Hurwitz formula, with 0 for the count of branch points. Since
9Σpt,θq and 9Σ “ 9Σ1Y . . .Y 9Σr are homeomorphic, it now also follows from the Riemann-Hurwitz
formula that Π| 9Σ

cannot have branch points. �

The proof of Propositions 6.3 and 6.4 is now complete.

6.5. The Lefschetz fibration on the filling. We can now finish the proof of Theorems 1.5
and 1.10 by showing that if the spinal open book π is Lefschetz-amenable, then the stable
foliation from Propositions 6.3 and 6.4 gives rise to a bordered Lefschetz fibration supporting
the symplectic structure of W .

Assume π is Lefschetz-amenable, so according to Proposition 6.3, the set xMF
exotp pJq is empty

and xW is foliated (with finitely many singular points) by a mixture of smoothly embedded
pJ-holomorphic curves and finitely many nodal curves that look like Lefschetz singular fibers.

Recall from §3.9 the bounded subdomains pER Ă pE for R ą 0, and let

xWR Ă xW
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denote the compact subdomain in xW with BxWR “ B pER; its boundary (see Figure 8) is
piecewise smooth and splits naturally into horizontal and vertical faces

BxWR “ BvxWR Y BhxWR.

These subdomains with their symplectic and/or almost Stein data are deformation equivalent

to W by Lemma 3.14. Now by taking R ą 0 sufficiently large, we can assume near BxWR that

the foliation formed by the pJ -holomorphic curves in xMF p pJq is arbitrarily C8-close to the R-

invariant foliation F`; this follows from the fact that sequences of curves in xMF p pJq escaping

to infinity necessarily converge to curves in xMF` pJ`q. In fact, these two foliations match

precisely near BvxWR, since the curves in this region are contained fully in the cylindrical end.

Near BhxWR, we can now make a C8-small modification “by hand” of the almost complex
structure and the holomorphic curves so that the latter become precisely tangent to F`.
After this modification, consider the restriction

Π : xWR Ñ Σ0

of the map in Proposition 6.3, where we define Σ0 Ă xMF p pJq as the image of this restricted

map. What we lose by forgetting xW zxWR is a collection of 1-parameter families of curves

contained in pN`pBEq; these form collar neighborhoods of the boundary in xMF p pJq, hence Σ0

is a compact surface with the same topological type as xMF p pJq. Since the nodal singularities

can all be assumed to lie in the interior of xWR for R sufficiently large, Π : xWR Ñ Σ0 is now

a bordered Lefschetz fibration, and it is allowable if pxWR, pωq is minimal—which is true if
and only if pW,ωq is minimal—since the only closed components allowed by the compactness
results in §6.3 are embedded spheres with self-intersection number ´1. Lemma 3.15 implies

moreover that Π : xWR Ñ Σ0 supports the symplectic and/or Liouville structure of xWR, and

in the almost Stein case, pxWR, pJ, pfq is almost Stein deformation equivalent to the canonical
structure for this Lefschetz fibration by [LVW, Theorem C]. With this, we’ve proved that the
maps in Theorem 1.5 sending equivalence classes of Lefschetz fibrations to equivalence classes
of fillings are surjectve.

To show that these maps are also injective, suppose we have two bordered Lefschetz fibra-
tions bounded by π that give rise to deformation equivalent fillings. These Lefschetz fibrations

then admit “double completions” formed by gluing them into the model pE from §3 so that
their vertical subbundles match V E near their boundaries, and we can choose tame almost
complex structures on both that match J` on the end and make all fibers holomorphic. We
can therefore view them both as holomorphic foliations on the same noncompact manifold
xW , corresponding to two distinct choices of almost complex structures pJ0 and pJ1 tamed by

deformation-equivalent choices of symplectic data, all identical on pN´pBEq. Choosing a de-
formation of the symplectic data and a corresponding deformation of tame almost complex
structures, Proposition 6.4 then connects the two foliations by a smooth 1-parameter family,

producing an isotopy of bordered Lefschetz fibrations which can be adjusted near BxWR as in
the previous paragraph so that they support the family of symplectic structures. The proof
of Theorems 1.5 and 1.10 is now complete.

6.6. Quasiflexible Stein structures. We now prove Theorem 1.13.
Assume Π : W Ñ Σ0 is an allowable bordered Lefschetz fibration with fibers of genus zero,

and pJ0, f0q is an almost Stein structure onW supported by Π. Assume further that pJ1, f1q is
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a second almost Stein structure onW such that the symplectic structures ω0 :“ ´df0 ˝J0 and
ω1 :“ ´df1˝J1 are homotopic through a smooth family of symplectic structures tωτuτPr0,1s that
are convex at the boundary—recall that since BW has corners, the convexity condition means
that the associated Liouville vector fields are outwardly transverse to both BhW and BvW .
The aim is to show that the Weinstein structures induced by pJ0, f0q and pJ1, f1q are Weinstein
homotopic.

The spinal open book π :“ BΠ on M :“ BW has spine MΣ “ BhW and paper MP “ BvW ,

with the fibration πΣ : MΣ Ñ Σ obtained by factoring BhE
Π

ÝÑ Σ0 through a suitable

covering map Σ Ñ Σ0 to make its fibers connected, and πP :MP Ñ S1 defined from BvE
Π

ÝÑ
BΣ0 by identifying each component of BΣ0 with S1. We assume in the following that this

particular spinal open book is used for the construction of the model pE in §3. Recall now from
[LVW, Theorem 1.24] that the space of almost Stein structures supported by Π : W Ñ Σ0 is
contractible, thus we are free after a deformation to assume that pJ0, f0q matches an almost
Stein structure constructed via the Thurston trick as in the proof of that theorem. Since the
same application of the Thurston trick underlies the almost Stein model constructed in §3,
one obtains the following result:

Lemma 6.34. After a deformation of pJ0, f0q through supported almost Stein structures

on W , the model pE in §3 can be constructed so that the bounded region E Ă pE with its
almost Stein data pJ`, f`q admits a diffeomorphism with a neighborhood of BW in pW,J0, f0q,
identifying BhW “ BhE, BvW “ BvE, and the fibers of Π in this neighborhood with the fibers

of N pBhEq
ΠhÝÑ Σ and N pBvEq

ΠvÝÑ p´1, 0s ˆ S1. �

Attaching pW,J0, f0q to p pE, J`, f`q via the lemma produces a completed almost Stein

domain pxW, pJ0, pf0q that is foliated by pJ0-holomorphic curves matching the fibers of Π :W Ñ

Σ0 in W and the leaves of the foliation F` on xW zW . Note that pJ0 in this construction
cannot be assumed generic. Nonetheless, the almost Stein condition is open, so after a small
perturbation of Π away from BW and a corresponding perturbation of pJ0, f0q to ensure
that the perturbed fibers are still J0-holomorphic, we can assume without loss of generality

that no curve in our pJ0-holomorphic foliation of xW has more than one end asymptotic to
a hyperbolic orbit, and the finitely many curves that make up singular fibers have no ends
asymptotic to hyperbolic orbits. Since these curves all have genus zero, it now follows that
they all satisfy the criterion for automatic transversality from [Wen10b], so they will survive

a further perturbation of pJ0 in the interior of W , which we now perform in order to assume

the genericity conditions of §6.2. Denote the resulting pJ0-holomorphic foliation of xW by F0.
As in the proof of Theorem 1.5, our original almost Stein domain is Stein deformation

equivalent to the enlarged compact domain pxWR, pJ0, pf0q in xW for R " 0. The symplectic
deformation tωτuτPr0,1s can now also be fit into this picture and gives rise to a smooth family

of symplectic structures pωτ on xW that are independent of τ on a neighborhood of infinity

and match ´d pfτ ˝ pJτ for τ P t0, 1u, where p pJ1, pf1q is a similar extension of the almost Stein

structure pJ1, f1q fromW to xW , matching pJ`, f`q near infinity. By the constractibility of the

space of tame almost complex structures, we can choose a generic family t pJτ uτPr0,1s of pωτ -tame

almost complex structures that form a homotopy from pJ0 to pJ1 and match J` near infinity.

Using Proposition 6.4, the foliation F0 now extends to a smooth family of pJτ -holomorphic
foliations Fτ , which includes smooth deformations of finitely many nodal curves (i.e. the
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original singular fibers of Π) from τ “ 0 to τ “ 1, but does not include any exotic fibers since
none were present in the foliation F0. Making the same modifications near infinity as in the
proof of Theorem 1.5, the result is a smooth family of allowable bordered Lefschetz fibrations

Πτ : xWR Ñ Σ0 supporting the symplectic structures pωτ for R sufficiently large. Theorem C

in [LVW] now implies that the Weinstein structure induced by p pJ1, pf1q lies in the canonical
Weinstein homotopy class supported by Π1, implying that it is also Weinstein homotopic to

the Weinstein structure induced by p pJ0, pf0q. This completes the proof of the first statement
in Theorem 1.13.

If Σ0 “ D
2, then we can weaken the convexity hypothesis on the family of symplectic

structures tωτuτPr0,1s and assume instead that after smoothing the corners of BW , each pW,ωτ q
is a weak filling of pM :“ BW, ξτ q for some smooth family of contact structures ξτ on M

matching kerp´dfτ ˝ Jτ |TM q for τ P t0, 1u. The key observation here is that every component
of the spineMΣ is a solid torus D2 ˆS1, on which all closed 2-forms are exact, so the possible
non-exactness of ωτ at BW can be absorbed into the above construction by including in the
symplectic data near infinity a family of closed 2-forms ητ as in §3.3, which are assumed to

vanish on pN pBhEq and vanish identically for τ P t0, 1u. Since ητ changes the Reeb vector

field on the cylindrical end over the paper, it causes a change to pJτ in this region, but
the holomorphic pages here are tangent to the fixed integrable distribution Ξ` and thus
remain holomorphic. With this understood, the argument of the previous paragraph now
goes through with no further changes, and the proof of Theorem 1.13 is thus complete.
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