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ON SYMPLECTIC FILLINGS OF SPINAL OPEN BOOK
DECOMPOSITIONS II:
HOLOMORPHIC CURVES AND CLASSIFICATION

SAMUEL LISI, JEREMY VAN HORN-MORRIS, AND CHRIS WENDL

ABSTRACT. In this second paper of a two-part series, we prove that whenever a contact
3-manifold admits a uniform spinal open book decomposition with planar pages, its (weak,
strong and/or exact) symplectic and Stein fillings can be classified up to deformation equiv-
alence in terms of diffeomorphism classes of Lefschetz fibrations. This extends previous
results of the third author [WenlOc] to a much wider class of contact manifolds, which we
illustrate here by classifying the strong and Stein fillings of all oriented circle bundles with
non-tangential S'-invariant contact structures. Further results include new vanishing crite-
ria for the ECH contact invariant and algebraic torsion in SFT, classification of fillings for
certain non-orientable circle bundles, and a general “symplectic quasiflexibility” result about
deformation classes of Stein structures in real dimension four.
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1. INTRODUCTION

This paper is the sequel to [LVW], which introduced the notion of a spinal open book
decomposition

T = (772 My - X, 7p: Mp — Sl,{mT}TcﬁM)

of a 3-manifold M, a structure that arises naturally whenever M is the boundary of the
total space of a bordered Lefschetz fibration II : £ — X over a compact oriented surface
Y with boundary. A spinal open book splits M into two (not necessarily connected) pieces
My u Mp, the spine and paper respectively. In the Lefschetz case, when M = 0F, My is the
horizontal boundary (the boundaries of all the fibers) and Mp is the vertical boundary (the
union of all fibers over the boundary of the base). This means in particular that the “corner”
OMy = Mx, n Mp = 0Mp is a disjoint union of 2-tori, and the two pieces are endowed with
smooth fibrations 7y, : My, — ¥ and wp : Mp — S, where the connected components of the
fibers 71'];1(*) c Mp are surfaces with boundary called pages, the fibers of w5 are S!, and
the connected components of its base are surfaces with boundary known as vertebrae.

Just as the Lefschetz fibration Il naturally determines a symplectic structure w on F up to
deformation, 7t determines a contact structure £ on M up to isotopy such that the relationship
“0I1 = 7" between the two decompositions makes (F,w) a symplectic filling of (M, &). One
of our main goals in the present paper is to invert this relationship and prove a far-reaching
generalization of the main result of [WenlOc|: for a particular class of spinal open books
7 on a closed contact 3-manifold (M, &), the deformation classes of (weak, strong, exact
or Stein/Weinstein) symplectic fillings of (M, ) are in one-to-one correspondence with the
diffeomorphism classes of Lefschetz fibrations filling 7r. In addition to providing a powerful
new tool for classifying symplectic fillings, this result reveals the existence of a special class
of Stein surfaces, which are quasifliexible in the sense that their Stein homotopy types are
determined by the (not necessarily exact) deformation classes of their symplectic structures.
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Main ideas and difficulties. While the proofs in this paper tend to involve a lot of moving
parts that take many pages to pin down, the underlying ideas are easy to summarize. In the
background are two fundamental geometric phenomena that are quite well known:

(1) Inthe tradition of Thurston-Winkelnkemper [Thu76L,TW75] and Gompf [GS99//Gom04),
Gom05|, spinal open books and Lefschetz fibrations uniquely determine contact and
symplectic structures respectively up to deformation;

(2) In the tradition of Gromov and McDuff [Gro85.McD90], certain types of symplectic
submanifolds give rise to foliations by J-holomorphic curves that determine the global
structure of a symplectic manifold.

In our setting, the symplectic submanifolds feeding into McDuff’s technique are the pages
of a planar spinal open book on the boundary of a symplectic filling, and the resulting J-
holomorphic foliation produces (in favorable cases) a classification of the possible fillings. This
idea has appeared before in [Wenl0c,[NW11l[Wen13], whose main results are all special cases
of the results of the present paper. However, the level of generality considered here introduces
several new difficulties requiring novel solutions, which have contributed substantially to the
length of this paper.

One difficulty is that due to the variety of topologies possible in a spinal open book, the
moduli spaces of holomorphic curves arising from their pages does not consist exclusively of
0- and 2-dimensional families of embedded curves. It generally also includes 1-dimensional
“walls” that must be crossed, as well as multiply covered curves for which transversality is of
course a thorny issue. Considerable effort is required in the compactness arguments of §4.5]
and §6.31to either rule out the appearance of such multiple covers or show that when they do
arise (which sometimes they must), the necessary transversality results hold anyway. It is a
minor miracle that the results work out as nicely as one would hope, and we interpret this as
convincing evidence for the naturality of our approach to the filling problem.

A second difficulty concerns the precise type of symplectic fillings that one is attempting to
classify: unlike all previous papers on this problem (see §I.1] below), our approach produces
a unified framework in which to classify the full spectrum of weak, strong, exact and We-
instein/Stein fillings, each up to the corresponding notion of deformation equivalence. The
inclusion of both weak and Weinstein deformation equivalence in this list is one of the most
novel details of the present work, and it requires a quite intricate construction (carried out
in §3l and §4)) of geometric data on the symplectization of a contact manifold supported by a
spinal open book.

Outline of the paper. The remainder of §I] consists of a quick review of the salient definitions
and of statements of the main theorems to be proved in later sections. In particular, the
general results on classification of fillings are stated in §JL.2HI.4 followed in L5l by results
on computations of contact invariants. The latter computations parallel the non-fillability
results already proved in [LVW]. Section then gives a sample application, explaining how
the main results imply a classification of the fillings of all partitioned contact S'-bundles
over oriented surfaces, and .7 discusses some slightly subtler examples for which our main
classification theorems do not apply but the techniques of this paper still have something to
say. Since we will need to make extensive use of J-holomorphic curves, §2] gives a review of
some of the essential technical results—its contents are mostly standard, but it also includes
(in §2.4) some useful lemmas about coherent orientations that may not have appeared in
writing before. Section [ continues the development (begun in [LVW], §3]) of a precise model
for the half-symplectization of a contact manifold supported by a spinal open book, including
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an explicit foliation by J-holomorphic curves with specific properties that are needed for the
proofs of the main results. The analytical properties of this holomorphic foliation are then
studied in §4], including existence and uniqueness results that are needed for the computations
of algebraic contact invariants carried out in §5l Finally, §0 carries out the holomorphic curve
arguments needed to complete the proof that planar spinal open books can be extended to
Lefschetz fibrations on fillings.

Acknowledgments. This project has taken several years to come to fruition, and we are grateful
to many people for valuable conversations along the way, including Denis Auroux, Inang
Baykur, Michael Hutchings, Tom Mark, Patrick Massot, Richard Siefring and Otto van Koert.
We would also like to thank the American Institute of Mathematics for bringing the three of
us together at key junctures in this project.

1.1. Some remarks on the context. Spinal open books provide a unifying perspective on
many of the known classification and obstruction results for symplectic fillings in dimension
four. The first such results were those of Gromov [Gro85] and Eliashberg [Eli90], which
classified the fillings of S® and established overtwistedness as a filling obstruction. A short time
later, McDuff [McD90] classified the fillings of the universally tight lens spaces L(p, 1) up to
diffeomorphism, a result that was later improved by Hind [Hin03] to a classification up to Stein
deformation equivalence. In [Gir94][Eli96], Giroux and Eliashberg found the first examples
of contact 3-manifolds that are weakly but not strongly fillable, which are now understood
more generally in terms of Giroux torsion [Gay06L[GHVGH,NWT1I]. Further generalizations
of this filling obstruction were introduced by the third author [Wen13|] and Latschev [LW11].
Classification results for weak fillings have mostly been limited to cases where the contact
manifold is a rational homology sphere (so that weak fillings can be deformed to strong
fillings)—the major exception is the planar case, for which [NW11] showed that weak fillings
are always deformable to strong fillings without the need for any topological assumption. The
techniques of the present paper can be used to provide new and in many cases conceptually
simpler proofs of all of the results just mentioned, and we suspect that this is the case for
most other previous filling results obtained via holomorphic curve methods, e.g. [OO05.Lis08,
Stalb]. In fact, proofs via spinal open books usually lead to strengthened versions of these
results, e.g. they always apply to (a subclass of) weak symplectic fillings with potentially
nontrivial cohomology at the boundary, in addition to strong and Stein fillings. Moreover,
where many of the previous results have achieved classification of fillings up to diffeomorphism,
ours also determine the symplectic and Stein deformation classes of fillings—in particular, the
Lefschetz fibration approach provides the first systematic technique beyond the isolated results
in [EL90LCET2/[Hin00LHin03] for classifying Stein fillings up to Stein deformation equivalence.

We are also able to recover certain results that were not previously accessible via holomor-
phic curves, including some of the vanishing results for the Ozsvath-Szabé contact invariant]
due to Honda-Kazez-Matic [HKM]| and Massot [Mas12]. We will see some examples in §L.6] of
classification problems that are easily solved using spinal open books but were not previously
accessible via any known techniques.

There are still some important results in this subject about which our techniques probably
have nothing to say. Prominent examples include Lisca’s filling obstruction in terms of posi-
tive scalar curvature [Lis98], Ghiggini’s examples of strongly but not exactly fillable contact

1Results about the Ozsvath-Szabé contact invariant follow from our results on the ECH contact invariant via
the isomorphism [CGHal[CGHDL[CGHc| between Heegaard Floer homology and embedded contact homology.



ON SYMPLECTIC FILLINGS OF SPINAL OPEN BOOK DECOMPOSITIONS II 5

manifolds [Ghi05], and the recent results of Li-Mak-Yasui [LMY17] and Sivek with the second
author [SV17] on exact and Stein fillings of unit cotangent bundles over higher genus surfaces.
These results all rely in some form on gauge theory, and they seem to represent fundamentally
different phenomena from those that are studied in this paper.

1.2. Classification of fillings. We will assume in the following that the main definitions
from [LVW, §1.1] concerning types of symplectic fillings, symplectic and Stein deformation
equivalence, spinal open books, bordered Lefschetz fibrations, and the contact and symplectic
structures supported by them are already understood. If Il : E — ¥ is a bordered Lefschetz
fibration and 7 is the induced spinal open book at JF, we will continue to indicate this
relationship via the notation

oll = .

Let us recall briefly what this means: breaking up JF into its horizontal and vertical boundary
onE U 0,E, the paper mp : Mp — S! is defined from the fibration |, g : 0, E — 0%
by identifying each connected component of 0% with S' and allowing the fibers of mp to
be disjoint unions of fibers of II, while the spine 7y : My — 3 is defined by factoring
1|5, E : OpE — X through a suitable covering map ¥ — ¥ to make the fibers of s; connected.
We repeat the following slightly technical definitions, since they will play a substantial role
in this paper.

Definition 1.1. A 3-dimensional spinal open book will be called partially planar if its
interior contains a page of genus zero. A compact contact 3-manifold (M, &), possibly with
boundary, will be called a partially planar domain if £ is supported by a partially planar
spinal open book. We then refer to any interior connected component of the paper containing
planar pages as a planar piece.

Definition 1.2. Given a spinal open book 7 with paper 7p : Mp — S! and spine 7y, : My, —
Y, we define the multiplicity of 7p at a boundary component v < 0% as the degree

m~ € N
of the map
(1.1) v =S g wp(ng'(9)).

Recall that the map (I.J]) is well defined due to the condition that boundary components
of fibers of mp are always fibers of 7y. In general, this map is a finite cover, and m, can
also be understood as the number of distinct boundary components of a page that lie in the
torus 75 (7).

Remark 1.3. In this language, an ordinary open book can be defined as any spinal open book
such that the base X of the spine is a finite disjoint union of disks and m, = 1 for every
component v < 0%.. Spinal open books that satisfy the first condition but not the second are
examples of rational open books in the sense of [BEV12].

Definition 1.4. A spinal open book 7 on a 3-manifold M will be called symmetric if
(i) oM = &;
(ii) All pages are diffeomorphic;
(iii) For each of the vertebrae ¥y, ..., %, < X, there are corresponding numbers ky, ..., k, €
N such that every page has exactly k; boundary components in g, 1(8&) for ¢ =
1,...,r.
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We shall say that  is uniform if, in addition to the above conditions, there exists a fixed
compact oriented surface Yy whose boundary components correspond bijectively with the
connected components of Mp such that for each i = 1,...,r there exists a k;-fold branched
cover

Xi— 2o

for which the restriction to each connected boundary component v < 0%; is an m.-fold cover
of the component of 0% corresponding to the component of Mp touching g, 1(7), where m.,
denotes the multiplicity of mp at vy (see Definition [L.2)).

Finally, 7 is Lefschetz-amenable if it is uniform and all branched covers satisfying the
above conditions have no branch points.

The symmetry condition played a large role in [LVW] via its presence in the definition of
planar torsion: essentially, the non-symmetric spinal open books with a planar page are those
that can be shown to obstruct symplectic filling by an argument using spine removal surgery
and holomorphic spheres.

The significance of the uniformity condition is that every spinal open book that arises as
the boundary of a bordered Lefschetz fibration Il : ¥ — X clearly satisfies it; in fact, in this
case the required branched covers Y; — g are honest covering maps, defined as mentioned
above by factoring II|s, g : 0, F — X so that the fibers of the spine become connected. It is
not true that spinal open books with this property must always be Lefschetz-amenable, but
there are many interesting cases (e.g. the oriented circle bundles in §I.6]) where amenability
is either obvious or can be checked using the Riemann-Hurwitz formula, and Theorem
below then classifies all fillings in terms of Lefschetz fibrations. In §I.7 we will also discuss
some interesting examples that are not Lefschetz-amenable, and say what we can about the
implications.

For a given closed contact 3-manifold (M, ¢), define the sets

Qstrong (M, €) = {strong fillings of (M,{)}/ ~,
Qexact (M, &) = {exact fillings of (M, f)}/ ~,
Qgtein (M, &) = {Stein fillings of (M, f)}/ ~,

where the equivalence relation is defined via strong, Liouville or Stein deformation equivalence
respectively. Since minimality is preserved under symplectic deformation, we can also define
the subset

Qmin (M’ 5) = {[(VV’W)] € Qstrong(M, 5) | (VV, W) is minimal},

strong

and observe that since every Stein filling is exact and every exact filling is minimal, there are
canonical maps
(12) QStein(Mag) — Qexact (M,S) — Quin (M7 5)

strong

Likewise, for a spinal open book 7 we define
£(m) = {bordered Lefschetz fibrations Il : E — ¥ with Il =~ Tr}/ ~,

where Il : E — ¥ and IT' : B/ — Y’ are considered equivalent if there exist orientation pre-
serving diffeomorphisms ¢ : ¥ — ¥/ and ® : E — E’, the latter restricting to diffeomorphisms
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onE — 0pE" and 0,FE — 0,F’, such that II' o ® = ¢ o II. We also define the subset
La(mw) = {[II] € £(w) | II is allowable},

where we recall that II is called allowable if all the irreducible components of its fibers have
nonempty boundary. Whenever (M, &) is supported by a uniform spinal open book 7, the
results of [LVW] §3] yield canonical maps

,8(77) - Qstrong(M7 5)7
La(m) = Qstein(M, §).

In §6, we will use holomorphic curve technology to prove that the above maps can sometimes
be inverted:

(1.3)

Theorem 1.5. Suppose (M,§) is a closed contact 3-manifold that is strongly fillable and
contains a compact domain My < M, possibly with boundary, on which & is supported by a
partially planar spinal open book 7. Then M = My and 7 is uniform. Moreover, if ™ is also
Lefschetz-amenable, then the canonical maps of (L2)) and (L3)) are all bijections.

In addition to a classification result, the above implies many non-fillability results, since
most spinal open books are not uniform:

Corollary 1.6. If (M,§) is a closed contact 3-manifold containing a partially planar domain
that is not uniform, then (M,§) is not strongly fillable. O

Remark 1.7. As shown in [LVW], partially planar domains never admit non-separating contact
embeddings into closed symplectic 4-manifolds, thus the manifolds in Corollary can never
appear at all as contact-type hypersurfaces in closed symplectic manifolds.

Even in the uniform case, it may happen that a given spinal open book cannot be the
boundary of a Lefschetz fibration because of restrictions imposed on its monodromy. This
phenomenon is familiar in the case of ordinary open books and has been exploited in [PV10,
Plal2/Wan12|[KL.16,Kal]. We will not consider the factorization problem in much detail here,
but will examine the simplest nontrivial case in §.6, namely when the pages are annuli, so
that their mapping class group has a single free generator.

Remark 1.8. Theorem does not give a classification of fillings for planar spinal open books
that are uniform but not Lefschetz-amenable. Under suitable conditions on the monodromy,
one can construct a bordered Lefschetz fibration filling a spinal open book of this type when-
ever there is a choice of surface X such that the vertebrae admit unbranched k;-fold covers
>; — g, but there may be additional fillings not obtained from this construction, corre-
sponding to additional branched covers. Our proof of Theorem will in fact produce on
any such filling a singular foliation by J-holomorphic curves which deforms smoothly under
symplectic deformations, but in general it will have singularities that cannot be understood
purely in terms of Lefschetz fibrations, including a phenomenon that we refer to as exotic
fibers. See L7 for more discussion and some examples.

1.3. Weak fillings deform to strong fillings. Under appropriate cohomological condi-
tions, Theorem can also be extended to a classification of weak fillings. We recall first the
following definition from [LVW].

Definition 1.9. Suppose (M, €) is a closed contact 3-manifold and €2 is a closed 2-form on M.
A partially planar domain My embedded in (M, ¢§) is called Q2-separating if it has a planar
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piece Méj c ]\Zfo such that €2 is exact on every spinal component touching Méj . It is called
fully separating if this is true for all closed 2-forms 2 on M.

The condition here depends only on the cohomology class [©2] € H3; (M) and is vacuous
if 2 is exact. Recall that every weak filling (W, w) for which w is exact near the boundary
can be deformed to a strong filling, cf. [Eli91] Proposition 3.1]. In the special case of disk-like
vertebrae, any closed 2-form is exact on the spine, thus the following generalizes the theorem
of Niederkriiger and the third author [NW11] that weak fillings of planar contact manifolds
can (after blowing down) always be deformed to Stein fillings.

Theorem 1.10. Suppose (M,§) is a closed contact 3-manifold, Q is a closed 2-form on M
and (M, &) contains an Q-separating partially planar domain. Then every weak filling (W, w)
of (M, &) for which [w|rn] = [Q] € H3R (M) is weakly symplectically deformation equivalent
to a strong filling of (M,§). In particular, if the domain is fully separating then this is true
for all weak fillings.

One general application of this result concerns rational open books, which were defined on
contact 3-manifolds in [BEV12]: like an open book, it gives a fibration M\B — S! in the
complement of some oriented link B < M, but unlike an ordinary open book, the closures
of the pages may be multiply covered at their boundaries. We say that a closed contact 3-
manifold (M, §) is rationally planar if it is supported by a rational open book with pages of
genus zero. The following extends one of the main results of [NWT11] from planar to rationally
planar contact manifolds.

Corollary 1.11. If (M,€) is a rationally planar contact 3-manifold, then all weak symplectic
fillings of (M,§) are symplectically deformation equivalent to strong fillings.

Proof. We note first that using methods from [V07], any rational open book can be modified—
without changing the contact structure or the page genus—to one with the property that every
boundary component of the closure of a page covers the respective binding component once
(though there still may be multiple boundary components covering the same component of
the binding). One can see this by presenting a neighborhood of any k-fold covered binding
component as D x S with contact form d¢ + p? df in coordinates pe’® e D  C and ¢ € S =
R/Z, such that the pages in this region are parametrized by the punctured disks

D\{0} > D x S': 2z — (z,arg 2 + ¢)

for different choices of constants ¢ € S'. (Note that here it is possible for different choices
of ¢ € S to produce distinct subsets of the same page.) One can then choose any function
f:D — C that is C®-close to z — zF and matches it precisely for p > 1/2 but has exactly k
simple and positive zeroes, and replace the pages above with

D\f~1(0) > D x S : 2 > (z,arg f(2) + B).

Each zero of f now gives rise to a new page boundary component that covers the corresponding
component of f~1(0) x S1 = D x S! exactly once, and these modified pages are also transverse
to the Reeb vector field for the contact form d¢ + p? df.

With this modification in place, the resulting rational open book is still planar but can
also be interpreted as a spinal open book (see Remark [[3)). The result then follows from
Theorem [[L.T0 since the spine is a union of solid tori, on which all closed 2-forms are exact. [J
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Remark 1.12. Tt is not known whether there exist rationally planar contact manifolds which
are not planar, though Corollary [L1I] may be interpreted as providing some evidence against
this.

1.4. Symplectic deformation implies Stein deformation. Another result closely related
to Theorem concerns the question of to what extent the symplectic geometry of a Stein
manifold determines its Stein geometry. The following two questions express this more pre-
cisely.

Question 1. Do there exist two Stein domains that are symplectic deformation equivalent
but not Stein deformation equivalent?

Question 2. Is there a natural class of Stein domains with the property that any two domains
in the class are Stein deformation equivalent if and only if they are symplectically deformation
equivalent?

The first question is completely open. For the second, it is known in higher dimensions that
two flexible Stein structures on a given manifold will always be Stein homotopic whenever
they can be related by a symplectic deformation; this follows from an h-principle for flexible
Weinstein structures, [CE12, Chapter 14], and it suffices in this case to know that their
underlying almost complex structures are homotopic. We will show however that in real
dimension four, there exists a larger class of Stein structures answering Question 2] than what
might be suggested by known flexibility results (e.g. for the subcritical case). In the following
statement, we say that a Stein domain (W, J) is supported by a certain Lefschetz fibration
II: E — ¥ if IT admits a supported almost Stein structure that is (after smoothing corners)
almost Stein deformation equivalent to (W, J )E

Theorem 1.13. Suppose (W, Jy) is a Stein domain of real dimension 4, supported by a
bordered Lefschetz fibration 11: E — X with fibers of genus 0. Suppose Ji is another Stein
structure on W, and denote by wy and wy the symplectic structures induced by choices of
plurisubharmonic functions for Jo and Ji respectively. Then Jy and Ji are Stein homotopic
if and only if wy and wy are homotopic through symplectic structures convex at the boundary.

Moreover, if ¥ = D?, then Jy and Ji are Stein homotopic if and only if there exist smooth
homotopies {wr}reo1] of symplectic forms on W and contact structures {§;}.c(01] on oW
such that (W,w;) is a weak filling of (OW,&;) for all T € [0,1].

This result would be a corollary of Theorems and [L.I0 if one could always assume
that the spinal open book induced on the boundary of a bordered Lefschetz fibration is
Lefschetz-amenable, but the latter is false in general (see Example[I.34] for a counterexample).
We will prove the theorem in §6.6] by combining the holomorphic curve arguments behind
Theorems and [LT0 with the criterion established in [LVW), §2.4] for the canonical Stein
structure supported by a Lefschetz fibration.

Example 1.14. By the main result of [Wenl0c], Theorem [[L.T3] applies to all Stein fillings
of planar contact 3-manifolds, which includes all subcritical fillings, but also many critical
examples such as the unit disk bundle in 7%S2. A further class of non-subcritical examples
comes from products ¥g x X1 of two Riemann surfaces with boundary such that at least one
of them has genus zero but neither is a disk; this includes e.g. the unit disk bundle in 7*T?,
which (after rounding corners) is a product of two annuli.

2For a brief review of almost Stein structures, see Definition [3.11
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Remark 1.15. Theorem [L.I3] probably also holds under the slightly more general hypothesis
that the contact boundary of (W, Jp) is supported by a planar spinal open book—the latter
need not be the boundary of a Lefschetz fibration since it might not be Lefschetz-amenable.
Proving the theorem in this generality would require a better geometric understanding of the
so-called ezotic fibers that are possible in non-amenable cases (cf. §L.7)).

Remark 1.16. If one wants to find examples of Stein surfaces that are symplectically but not
Stein deformation equivalent, then Theorem [[.T3] and Remark suggest searching among
Stein surfaces (W, J) whose contact boundaries (M, &) do not admit supporting spinal open
books with planar pages. The main results of this paper and [LVW] provide several mech-
anisms for recognizing contact 3-manifolds with the latter property, e.g. by [LVW, Corol-
lary 1.30], (M,&) cannot contain a partially planar domain if it arises as a component of
a strong symplectic filling with disconnected boundary. Popular examples include the unit
disk bundles in T*¥ for ¥ any oriented surface with genus at least two; the resulting unit
cotangent bundle is one component of an exact filling with disconnected boundary that was
famously constructed by McDuff [McD91].

1.5. Filling obstructions and contact invariants. Many special cases of the non-fillability
statement in Corollary follow already from the results on planar torsion in [LVW], but they
can also be derived from computations of contact invariants in embedded contact homology
(cf. [Hut10,[Wen13]) or symplectic field theory (cf. [EGH00,LW11]). The main invariant we
have in mind is the order of algebraic torsion, as defined in [LW11]. This is a nonnegative (or
possibly infinite) integer extracted from the full symplectic field theory algebra of a contact
manifold; it equals zero if and only if the manifold is algebraically overtwisted in the sense
of [BN10], while positive values can be interpreted as measuring the manifold’s “degree of
tightness”. The following result, which provides the main motivation behind the terminology
“planar k-torsion,” is a generalization of [LW11, Theorem 6]E

Theorem 1.17. If (M, &) has Q-separating planar k-torsion for some k = 0, then it also has
Q-twisted algebraic k-torsion.

Since our contact manifolds (M,¢) in this paper are always 3-dimensional, we can also
consider the closely related filling obstruction furnished by the ECH contact invariant, i.e. the
distinguished class in the embedded contact homology of (M,¢), defined by Hutchings (see
e.g. [Hutl0]). The next theorem is a direct generalization of the vanishing results proved in
[Wen13]:

Theorem 1.18. If (M,&) has Q-separating planar k-torsion for any k > 0, then its ECH
contact invariant with twisted coefficients in Z[Ho(M)/ker Q] vanishes.

There is also an algebraic counterpart for the theorem from [LVW] that partially planar
domains obstruct semifillings with disconnected boundary: it involves the so-called U-map
in ECH, which is defined by counting index 2 holomorphic curves through a generic point in
the symplectization. This result generalizes the ECH version of a planarity obstruction first
established by Ozsvath-Stipsicz-Szabd [OSS05] in Heegaard Floer homology and extended to
ECH in [Wenl3|:

Theorem 1.19. If (M,§) contains an Q-separating partially planar domain, then for all
k € N, the contact invariant in ECH with twisted coefficients in Z[Ha(M)/ker Q] is in the
image of U*.

3See [LVW], §1.3] for the main definitions concerning planar torsion domains.



ON SYMPLECTIC FILLINGS OF SPINAL OPEN BOOK DECOMPOSITIONS II 11

See §1.6.2 for some sample applications of these theorems, where they are used in particular
to prove new vanishing results for contact invariants on circle bundles.

1.6. Fillings of circle and torus bundles. In [LVW] §1.4], we exhibited a large class of
Sl-invariant contact structures on circle bundles which are supported by spinal open books
with annular pages. We now extend the non-fillability results from that paper to a more
comprehensive classification of fillings.

Assume throughout this section that

T M — B

is a smooth fiber bundle whose fibers are diffeomorphic to S' and whose total space is a
closed, connected and oriented 3-manifold, while the base B is a closed connected surface
that need not necessarily be orientable. Reducing the structure group of the bundle to
O(2) then defines the notion of Sl-invariant contact structures & on M, each of which
determines a multicurve I' € B by the condition that fibers over I' are tangent to £. We
say in this case that ¢ is partitioned by I', and it follows that B\I' must be orientable
and I satisfies a further technical condition (it “inverts orientations”). Conversely, for any
multicurve I' — B satisfying these two conditions, there is a unique isotopy class of S1-
invariant contact structures partitioned by I'. We shall denote contact manifolds of this type
always by
(Ma gf)

The existence and uniqueness of & is a famous result of Lutz in the case where B is orientable
[Lut77], and in the general case it was deduced in [LVW] from the existence and uniqueness
of contact structures supported by spinal open books. In particular, (M,&r) is supported by
a spinal open book whose paper is a tubular neighborhood of #=!(I"), with annular pages,
while the vertebrae correspond to the connected components of B\I'.

Remark 1.20. In the case when B is non-orientable, the total space is nevertheless oriented,
and there is still a well-defined Euler number. As it turns out, over a given base B, these
bundles are characterized by this Euler number. Indeed, this can be seen by viewing such
fiber bundles 7: M — B as Seifert fibered spaces with no exceptional fibers. For more details,
see the discussion in [Sco83|, page 434].

1.6.1. Classification of fillings. Whenever w : M — B corresponds to a spinal open book
that is Lefschetz-amenable, Theorem classifies the strong fillings of (M, &r) as bordered
Lefschetz fibrations with annulus fibers. The amenability condition is trivial to verify when
B is orientable.

Theorem 1.21. Suppose &r is an S -invariant contact structure on a circle bundle 7 : M —
B, partitioned by a nonempty multicurve T, where B is orientable. Then (M,&r) is strongly
fillable if and only if B\I' has two connected components, both of them diffeomorphic to a
single surface X, and the Euler number e(m) of the bundle satisfies

e(m) = 0.

Moreover, the Stein, Liouville and minimal strong fillings of (M,&r) are all unique up to
deformation equivalence and can be characterized via supporting allowable Lefschetz fibrations
over ¥ with fiber [—1,1] x S, which restrict to trivial fibrations on the horizontal boundary
and have e(r) singular fibers.



12 SAMUEL LISI, JEREMY VAN HORN-MORRIS, AND CHRIS WENDL

Proof. When B is orientable, I" necessarily divides B into two (each possibly disconnected)
components B, and B_, thus determining similar labels Mg—r for corresponding components
of the spine Msy,. Every page of 7p : Mp — S! thus has one boundary component touching
M; and the other touching My, , so symmetry of 7 implies that My, must have exactly two
connected components, each touching one boundary component of every page. This implies
that each boundary component of the spine has multiplicity 1 in the sense of Definition If
7 is also uniform, then the vertebrae of the two spinal components must also be diffeomorphic,
and the Lefschetz-amenability condition is trivially satisfied. It follows that B\I' has exactly
two components and they are diffeomorphic to a fixed surface ¥, and minimal fillings of
(M, &r) correspond to Lefschetz fibrations over ¥ with annulus fibers.

Observe now that any two allowable Lefschetz fibrations over ¥ with annulus fibers and
with the same number of critical points are symplectic deformation equivalent. Let II: £ — X
be such an allowable Lefschetz fibration. Fix a basepoint zg € ¥ and choose an orientation-
preserving identification of II71(z) with [~1,1] x S'. Trivialize the two components of
0F — ¥ consistently with this. After choosing a collection of paths in ¥ that connect 2z
with the points in 0¥ that correspond to 71131(1), we obtain a well-defined monodromy map
[-1,1] x S* — [~1,1] x S! for each boundary component of 0¥.. Notice that by changing the
trivialization of 0F — 3, we may change these monodromies, but their composition remains
invariant, and will be isotopic to a k-fold Dehn twist where k is the number of singular fibers.
In particular, by a suitable choice of trivialization of 0F — 3, we arrange for the monodromy
about each boundary component of 0% to be trivial, except for one, where we have a k-fold
Dehn twist. A computation verifies that dF is then a circle bundle over the doubled surface
Y Ugy (—X) with Euler class given by k.

O

Remark 1.22. Tt is possible for the partitioning multicurve I' © B of an S'-invariant contact
structure to be empty when B is orientable: this means that (M,£{r) is a prequantization
bundle with its canonical contact structure. In this case Theorem [[.21] does not apply, and
in fact, the problem of classifying strong fillings of prequantization bundles is not generally
tractable: e.g. whenever B has genus g > 2, there exists a prequantization bundle (M, &r)
over B admitting exact semifillings with disconnected boundary (see [McD91]), from which
one can construct an unmanageable multitude of topologically unrelated fillings of (M, &r) by
attaching concave fillings from [EH02] to the other boundary component.

Theorem 1.23. Suppose &t is an S*-invariant contact structure on a circle bundle 7: M —
B, partitioned by a nonempty multicurve I', where B is not orientable and I" has k = 0
connected components that are not co-orientable.

If (M, &r) is strongly fillable, then B\I' is connected and

E<2(g+1),

where g is the genus of B\I'.

Assuming additionally that B\I' is connected and k = 2(g + 1), (M,&r) is strongly fillable
if and only if its Euler number (see Remark [1.20) is non-negative. In that case, its Stein,
Liouwville and minimal strong fillings are unique up to deformation equivalence.

Proof. Assume B is non-orientable and I' consists of k components with nontrivial normal
bundle and ¢ components with trivial normal bundle. If 7 is symmetric, then the spine can
have at most two connected components, and it has exactly two only if every page has its
two boundary components touching different spinal components, which means & = 0 and the
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£ components of I" divide B into two connected components By and B_. But since I" inverts
orientations, this would imply that B is orientable and thus contradicts our assumptions. We
conclude that B\I' is connected and has the homotopy type of a compact oriented surface ¥
with some genus g > 0 and k + 2¢ boundary components. The multiplicity of mp is 2 at the
k boundary components of My corresponding to curves that are not co-orientable, and 1 at
its other 2¢ boundary components. Uniformity of 7 then means that there exists a double
branched cover of ¥ over some surface Yy of arbitrary genus h > 0 with & + ¢ boundary
components. By the Riemann-Hurwitz formula, the algebraic count of branch points is

—xX)+2x(Xg)=—2—-k—-20—-29)+2(2—k—{¢—2h) =2—k+2g9—4h >0,
hence the required branched cover is possible for any genus h > 0 satisfying
4h <2(g+1) — k.

If equality is achieved, then the resulting branched cover has no branch points. In particular,
this will always be the case if &k = 2(g + 1), so the case of k = 2(g + 1) is Lefschetz-amenable.

By Theorem [[5] it follows that, if £ = 2(g+ 1), any filling of (M, &r) is (up to deformation)
realized as a Lefschetz fibration II: E — g with annular fibers where 3 has genus zero and
k 4+ £ boundary components. Furthermore, 0l gives the spinal open book decompositions
described by B, T'.

Notice now that k = 2(g + 1) is even. We may thus decompose ¥ into a collection of pairs
of pants, of annuli and of disks with the property that each subsurface has an even number
of boundary components among the £ boundary components of ¥y that correspond to the
non-co-orientable curves in ¥ = B\I', and all Lefschetz critical values are contained in the
disks. From this, the restrictions of the fibration to the pairs of pants and annuli are smooth
symplectic fibrations with annulus fibers. Furthermore, if the base is the annulus, they will
either be a trivial fibration or the fattened mapping torus of the “flip” (map of the annulus
by (r,0) — (—r,—0)). If the base is a pair-of-pants, the fibration will be one of these two
models with a fiber deleted.

Now, choose a framing of the spinal open book decomposition 7, i.e. a trivialization of the
circle bundle 7y;: My — ¥. This then allows us to define the monodromy of each component
of the paper. Notice that the “flip” map and a Dehn twist commute (up to homotopy).
From this, we observe that a change in framing has no effect on the composition of all the
monodromies. A computation now shows this composition must have the number of Dehn
twists given by the Euler number of 7: M — B.

Extending the framing of the spinal open book to the Lefschetz fibration II, we obtain that
the net monodromy around the vertical boundary is some number of Dehn twists, given by
precisely the number of critical fibers.

O

1.6.2. Vanishing results for contact invariants. In [LVW] we gave a characterization of which
partioned S'-invariant contact circle bundles have planar 1-torsion. Combining that result
with Theorems [[LT7] and [[LI8] gives the following statement, generalizing a result for trivial
circle bundles that was proved in [LW11]:

Corollary 1.24. Suppose £r is an S -invariant contact structure on a circle bundle ©: M —
B, partitioned by a nonempty multicurve I, and that either of the following holds:

(i) B\ has at least three connected components;
(i) B\T is disconnected and B is non-orientable.
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Then (M, &r) has (untwisted) algebraic 1-torsion and vanishing (untwisted) ECH contact in-
variant. O

When the bundle is trivial, we can use some input from Seiberg-Witten theory to obtain a
stronger result for the ECH contact invariant:

Theorem 1.25. Suppose ™ : M — B is a trivial circle bundle and &r is an S'-invariant
contact structure partitioned by a multicurve T' = B. Then (M,&r) has nonzero (untwisted)
ECH contact invariant if and only if I' divides B into exactly two connected components that
are diffeomorphic to each other.

Proof. When B = ¥, ur ¥_ for a connected surface >, = »_ =~ 3 the ECH contact
invariant of (B x S',&r) is nonzero because it has a strong filling, namely the trivial annulus
fibration over ¥. Excluding the cases covered by Corollary [[24] it then remains to prove that
the ECH contact invariant vanishes whenever B\I' has two connected components ¥, and
Y. with differing genus.

This follows from [Wenl3| if either component has genus zero, but if both have positive
genus, then we must instead appeal to Seiberg-Witten theory. Denote the contact invariant by
[7]; it is an element of ECH, (B x S', &1, 0), the embedded contact homology of (B x St, &r)
generated by orbit sets with total homology class 0 € Hy(B x S!). By Theorem [[LT9, there
exists for every k € N an element v, € ECH,(B x S',¢&r,0) such that Uy, = [&]. Now
observe that if ¥, 2 ¥_, then ¢1(ér) € H?(B x S') is not torsion; indeed,

c1(ér) = (x(24) — x(Z-)) PD [{+} x S'].

By the work of Taubes [Taul0], ECH,(B x S',&r,0) is isomorphic to a certain version of
the monopole Floer homology of Kronheimer and Mrowka [KMOQ7] for the Spin‘-structure
determined by the homotopy class of {r. The first Chern class of this Spin®-structure is
precisely ¢;(&r) and is thus not torsion, so by results of Kronheimer and Mrowka [KMO07],
the monopole Floer homology is finitely generated. Observe now that if [F] # 0, then
ECH, (B x S',&r,0) cannot be finitely generated, as the generators =, s, . .. will be linearly
independent, so this is a contradiction. O

Remark 1.26. Since the proof of Theorem relies on gauge theory in addition to holo-
morphic curves, we do not know whether (B x S, ¢r) has a finite order of algebraic torsion
when I divides B into two connected components with differing positive genus, and there is
no apparent reason to believe that it should. It would interesting to resolve this question,
as it is not known thus far whether the filling obstructions furnished by SFT and the ECH
contact invariant in dimension three are independent.

1.6.3. Parabolic torus bundles. A specific subclass of the contact circle bundles covered by
the results above can also be described as torus bundles with parabolic monodromy. All such
bundles can be presented in the form

Ty(k) i= (R x T2) /(p,2) ~ (p+ 1, £442)

1 0

for some k € Z, where Ay, = (k: 1

(¢,0).
Given an integer m > 0, we define a rotational contact structure ¢, whose lift to R x T?
can be written as

). We will denote the coordinates on T? = S! x S! by

Cm = ker [f(p) dO + g(p) dp]
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for some path (f,g) : R — R?\{0} that rotates about the origin by an angle of greater than
27m but at most 27(m + 1) as p varies along a closed unit interval in R. Also, for m € N we
define

Nm = ker (|k + 1] cos(2rmg) dp + sin(2rme) df — kpsin(2rme) dg).

By results of Giroux [Gir99,/Gir00], every universally tight contact structure on T (k) is
diffeomorphic to at least one of these models.

Defining a circle bundle 7 : T (k) — T2 = (R x SY)/Z : [(p, #,0)] — [(p,¢)], all of the
contact structures (,,, and 7, are S'-invariant and partitioned by multicurves I = T?, where:

e For (,, with k£ > 0, I consists of 2(m + 1) curves of the form {p = const};
e For (,, with & < 0, T" consists of 2m curves of the form {p = const};
e For n,,, I' consists of 2m curves of the form {¢ = const}.

The Euler number of the bundle 7: T, (k) — T2 is k.

Note that for each m € N, [Gir99, Théoreme 6] proves that (T4 (k), nm) and (T4 (k), (m—1)
are contactomorphic when k£ > 0, while (7% (k),nn) and (T4 (k), () are contactomorphic
when k < 0. Thus the following corollary of Theorem [[.2T] covers all universally tight contact
structures on T’ (k) with the exception of ¢y for k < 0:

Corollary 1.27. Given k€ Z and m € N, (T (k),nm) is strongly fillable if and only if m = 1
and k = 0, and its strong fillings are all Lefschetz fibrations over the annulus with annular
fibers and monodromy maps that fix the boundary. ([l

Similarly, both families of contact structures on T (k) are S'-invariant for the non-orientable
circle bundle 7 : T_ (k) — K2 : [(p, ¢,0)] — [(p, ¢)] over the Klein bottle

K2 = R x §') [(p,0) ~ (p+1,-0).

The multicurves T' = K2 can now be described as follows:

e For (,, I' consists of 2m+1 curves of the form {p = const} with trivial normal bundle;
e For n,, I' includes the two curves {¢ = 0} and {¢ = 1/2} with nontrivial normal
bundles and m — 1 additional curves of the form {p = const} with trivial normal

bundles.

According to [Gir99, Théoreme 6], all contact structures in this list on each individual manifold
T_(k) are pairwise non-diffeomorphic. For m > 1, (T_(k), () has positive Giroux torsion
and is thus known to be not fillable. For (T_(k), (), K2\I' is homotopy equivalent to an
annulus and the condition k£ < 2(¢g + 1) in Theorem [[.23]is satisfied but with strict inequality,
so the Lefschetz-amenability condition fails and we cannot classify fillings (but see §L.7 for
more on this example). It is also not hard to check that (7_(k),nm) has positive Giroux
torsion for every m > 3. We do not know if it has Giroux torsion for m = 2. Nevertheless,
Corollary implies that (T_(k),n2) does have planar 1-torsion, and is thus non-fillable.
Finally, for 71 we can apply Theorem [[.23] to deduce uniqueness of fillings. Notice that the
Euler number of 7: T_ (k) — K2 is —k. This yields:

Corollary 1.28. Given ke Z and m e N, (T_(k),nm) is strongly fillable if and only if m =1
and k < 0, and its strong fillings are all Lefschetz fibrations over the annulus with annular
fibers and monodromy maps that interchange boundary components. ([l

Example 1.29. The unique Stein filling of (7-(0),7n;) is presentable as the smooth annu-
lus fibration over the annulus [—1,1] x S! such that the monodromy around {*} x S! is
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[-1,1] x St — [-1,1] x S : (s,t) = (—s,—t) (i.e. the “fip” map appearing in the proof of
Theorem [T.23)).

1.7. The non-amenable case and exotic fibers. The most important part of Theorem [l
does not hold for spinal open books that are not Lefschetz-amenable, but our arguments will
still provide something that we expect could be used to achieve a classification of fillings in
the general case. The following is a summary of some more technical results proved in §6t for
this discussion we permit ourselves the luxury of a slightly imprecise statement since we do
not intend to prove anything with it.

Proposition 1.30. Suppose (W,w) is a weak symplectic filling of a contact 3-manifold (M, §)
supported by a partially planar spinal open book 7 such that w is exact on the spine Mx,. Then
(W,w) admits a symplectic completion W with a compatible almost complex structure J and
a smooth surjective map

m:w — M,
where M is an oriented surface with cylindrical ends that are in bijective correspondence to
the connected components of Mp, and every fiber II~1(%) is a (possibly nodal) J-holomorphic
curve with cylindrical ends asymptotic to closed Reeb orbits in (M,£). More precisely, M
admits a partition

M = Mreg (¥ Msing U Mexot,
where Mging and Mexor are each finite sets, and

e Fibersin Hfl(./\/(reg) are embedded J-holomorphic curves asymptotic to simply covered
Reeb orbits;

e Fibers in H*I(Msing) are nodal J-holomorphic curves asymptotic to simply covered
Reeb orbits, each formed as the union of two embedded curves that intersect each other
exactly once, transversely;

e Fibers in H_l(Mexot) are embedded J-holomorphic curves with one end asymptotic to
a doubly covered Reeb orbit, and all other ends asymptotic to simply covered orbits.

For each vertebra 3;, there is also a properly embedded J-holomorphic curve S; < W such
that

g, : S; > M

is a proper branched cover with simple branch points and is m~-to-1 on the cylindrical end
corresponding to each boundary component of v < 0%;, where m~ € N is the corresponding
multiplicity (see Definition [1.3). Moreover, Il|g, is an honest covering map (i.e. without
branch points) if and only if Mexot = &. Finally, all of this data deforms smoothly under
generic deformations of J compatible with deformations of the symplectic structure.

The distinguishing feature of the Lefschetz-amenable case is that the set Megyot is guar-
anteed to be empty, in which case we will show in §6.5] that II : W — M gives rise to a
Lefschetz fibration filling 7, with singular fibers corresponding to the finite set Mgjne. When
this condition fails and II|g, : S; — M has branch points, the proposition yields a more
general type of decomposition of the filling, including the so-called exotic fibers I1~!(u) for
U € Meyot- These are singular in the sense that they have different topology from the nearby
regular fibers, but their singularities occur “at infinity” and resemble the multiple fibers of a
Seifert fibration on a 3-manifold. We will not attempt a more precise topological description
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of exotic fibers here, but we are fairly confident that such a description could be used in gen-
eral to prove classification results for fillings without the Lefschetz-amenability assumption.
We now give three examples where one can see that exotic fibers must appear.

Example 1.31. The parabolic torus bundles (T-(k), (o) discussed in §L.6.3] can be presented
as Sl-invariant contact structures on circle bundles over the Klein bottle K2, partitioned along
a single co-orientable curve I' = K2 such that K?\I' is a cylinder. It follows that (T (k), ()
is supported by a spinal open book 7 with one spine component fibering over the annulus,
and one family of annular pages whose two boundary components meet the spine at separate
boundary components, each with multiplicity 1. The uniformity condition is satisfied because
there exists a double branched cover of [—1,1] x S' over the disk whose restriction to each
boundary component has degree 1, but since every such branched cover has (algebraically)
two branch points, 7 is not Lefschetz-amenable. Proposition now endows the completion
W of any filling of (7_(k), (o) with a J-holomorphic foliation that includes exotic fibers.

Remark 1.32. Note that while fillings of (7 (k), (o) cannot be presented as Lefschetz fibrations
filling 7r, they do sometimes exist: e.g. (T-(0),(y) can be presented as a quotient of the
standard contact T® by a free contact Zs-action that extends over the filling 7*T? of T as
a symplectic Zs-action with four fixed points on the zero-section. The resulting symplectic
orbifold has four singular points with neighborhoods bounded by the standard contact RP3,
so the singularities can be resolved by replacing these neighborhoods with neighborhoods of
the zero-section in T%S2%. If we choose a Zg-invariant plurisubharmonic function on T*T?
with local minima at the four fixed points, then this desingularization results in a Stein filling
W of (T-(0), (o). Note that Hy(W') # 0, whereas the unique Stein filling of (7_(0),7;) that
we saw in Example has trivial second homology, so this furnishes a new proof of Giroux’s
theorem |Gir99] that {y and 7; are non-isomorphic contact structures on 7_(0).

Example 1.33. The standard contact structure &gq on S' x S? can be written in the form
ker [f(0) dt + g(0) dp] where t € S! = R/Z is the standard coodinate, (6, ¢) are spherical polar
coordinates on S2, and (f,g) : [0, 7] — R? traces a path that winds counterclockwise from the
positive to the negative z-axis. Choosing f and ¢ to be odd and even functions respectively,
we can define the quotient

(M) = (8" x 8%, 6ua) [ (£:6,6) ~ (~t.7— 0,6 + ),

which is a non-orientable circle bundle over RP? with orientable total space. The open book
(ST x S?)\{# = 0,7} — S : (t,0,¢) — ¢ then projects to a rational open book on M
supporting £, with one binding component and annular pages such that the monodromy is an
involution exchanging boundary components. This can also be interpreted as a spinal open
book 7, where the spine is a single solid torus and the paper is a single S'-family of annuli
touching it with multiplicity 2; in fact, this is the same construction that arises naturally if
we view (M, &) as a circle bundle. Since the only vertebra is a disk, uniformity demands a
branched double cover of D? over itself, and such a cover will always have one branch point,
so 7 is not Lefschetz-amenable. Any completed filling of (M, &) will then carry a foliation
whose generic leaves are J-holomorphic cylinders, but that also includes exotic fibers in the
form of J-holomorphic planes asymptotic to a doubly covered Reeb orbit.

Example 1.34. We now exhibit a planar spinal open book that is not Lefschetz-amenable
for which some but not all fillings can be described as Lefschetz fibrations.
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Let ¥, denote the compact connected and oriented surface with genus g, and denote by
¥4 m the compact surface with boundary obtained by punching m holes in ¥,. The surface
Y22 admits two double branched covers

o1 vo
Yoo — Y12, o2 — Xo,2,

where both are 2-to-1 maps on each boundary component, and the Riemann-Hurwitz formula
implies that ¢ is unbranched, while ¢y has four simple branch points. The resulting deck
transformations define a pair of orientation-preserving involutions

1,0 : Yo — Yoo,

which we can assume are symplectic for suitable choices of area forms on ¥ 5. Now consider a
Weinstein domain defined via the trivial annulus fibration E = Y92 X ¥ 2; using the natural
correspondence between annular spinal open books and circle bundles, we can view the contact
boundary (]\7 , E ) of E as a trivial circle bundle over the symmetric double X5 formed by gluing
together two copies of ¥ o along an orientation-reversing map of their boundaries, and E is
an Sl-invariant contact structure partitioned by 0¥29 < Xs5. The contact manifold we're
actually interested in is a Zs-quotient of this: define the Weinstein domain

E = (295 x 2072)/(2',11}) ~ (¥1(2),0(w)),

where o is the involution (s,t) — (—s,—t) on $po = [—1,1] x S'. This is obviously a
symplectic manifold (for suitable choices of area forms on 339 and X 2) since the involution
1 X o is symplectic and without fixed points, and one can see its Weinstein structure in
terms of the natural annulus fibration over 33 9/Zy = ¥; o that it inherits from the trivial
annulus fibration on E. The induced spinal open book 7 on the boundary (M, &) of E has
two paper components with monodromy exchanging the boundary components of the annulus,
and these are attached to separate boundary components of a single spine component of the
form ST x Y99. Viewing (M, §) as an S Linvariant circle bundle, it fibers over the union of Yoo
with two Mé&bius bands, i.e. Yo#2RP?, with ¢ partitioned by a multicurve I' ¢ Yo#2RP?
with two components, both not co-orientable, and (X9#2RP?)\I" is thus a genus 2 surface
with two cylindrical ends. As a consequence, the condition k < 2(g + 1) in Theorem [[.23] is
satisfied, but with strict inequality, so 7r is not Lefschetz-amenable.

In the context of Proposition [[L30] this means that there are multiple possibilities for an
unknown filling W of (M, §): it may indeed admit a Lefschetz fibration over ¥; o since there
exist unbranched double covers ¥9 5 — ¥ 2, and the filling £ described above is an example
of this. But the moduli space M in the proposition could also have the topology of g 2, with
the branch points of ¢g : 99 — g2 giving rise to exotic fibers. To see that this also must
sometimes happen, notice that we can define an alternative filling of (M, &) by starting from
the symplectic orbifold

B i= (S x Too) [ (2,0) ~ (o(2), o (w)),

as the spinal open book on OF induced by the trivial fibration also descends to 7 on OF' =
OF /Zs. The singularities of E at fixed points of ¥y x o (two for each branch point of () can
be resolved by replacing neighborhoods with copies of T#S5? (cf. Remark[[L32). Choosing a Zo-
invariant plurisubharmonic function on ¥g o x ¥ 2 with local minima at the fixed points, one
produces in this way a new Stein filling E’ of (M, &), in which the eight orbifold singularities
of E have been replaced by Lagrangian spheres.
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We now notice that the contact manifolds F and dFE’ are both circle bundles over the same
non-orientable base, with invariant contact structures, partitioned by the same multicurve.
Furthermore, by constructing a section of 0F — Y5 that is Zo-equivariant for either of the
two Zso-actions, we deduce that these two are the same bundle. By construction, E’ has eight
Lagrangian spheres, and we claim that F has none, thus proving that £ and E’ are non-
diffeomorphic Stein fillings of (M, ¢&). Indeed, the map E — E is an honest 2-to-1 covering
map, so the preimage of any Lagrangian sphere in £ would be a pair of Lagrangian spheres
in , in particular, having square —2. But all classes in H2(E) have self-intersection 0 by the
Kiinneth formula (or alternatively: none of them are represented by spheres, since 7T2(E~3) is
trivial).

2. GENERALITIES ON PUNCTURED HOLOMORPHIC CURVES

The contents of this section are mostly standard, but a quick review seems worthwhile in
order to fix terminology and notation in preparation for later holomorphic curve arguments.

2.1. Stable Hamiltonian structures and symplectization ends. Stable Hamiltonian
structures (or “SHS” for short) were first introduced in a dynamical context in [HZ94] and
reappeared in [BEH™ 03] as the natural setting for the theory of punctured holomorphic curves.
For our purposes, they provide a convenient generalization of the notion of the symplectization
of a contact manifold. The particular SHS that arise in this paper can be thought of as
degenerate limits of certain contact forms in which explicit constructions of holomorphic
curves become much easier. For a more comprehensive discussion of the topology of stable
Hamiltonian structures, see [CV].
Given an oriented (2n — 1)-dimensional manifold M, a pair

H = (Q7 A)
consisting of a smooth 2-form €2 and 1-form A is called a stable Hamiltonian structure if
(i) AAQvt>o,
(ii) dQ =0,
(iii) ker Q < ker dA.

Such a pair gives rise to two important objects: a co-oriented hyperplane distribution = :=
ker A, and a positively transverse vector field Ry determined by the conditions

Q(Ry, )=0 and A(Ry)=1.

By analogy with contact forms, we will refer to Ry as the Reeb vector field of H. It reduces
to the usual contact notion of the Reeb vector field for A whenever the latter happens also to
be a contact form; SHS with this property will be said to be of contact type. Note that this
definition does not require 2 to exact, though (dA, A) is always an example of an SHS when
A is contact. If dim M = 3, we will say that H = (2, A) is of confoliation type whenever

AAdA =0,

which is equivalent to the condition dA|z > 0 and means that = < T'M is a confoliation in
the sense of [ET9S].

Stable Hamiltonian structures arise naturally in the context of stable hypersurfaces as
defined in [HZ94]. Given a symplectic manifold (W,w), a compact hypersurface M < W is
called stable if there exists a vector field Z on a neighborhood of M in W that is everywhere
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transverse to M and determines a 1-parameter family of hypersurfaces with isomorphic char-
acteristic line fields: more precisely, this means that if ®, denotes the flow of Z, then the
real line bundle
ker ((®%)*w|rm) « TM

is independent of ¢ near ¢ = 0. In this case we call Z a stabilizing vector field for M, and
the pair (2, A) defined by

Q.= w|TM, A= LZW|TM
is an SHS on M. One can use the Moser deformation trick to show that a neighborhood of
M in (W, w) is then symplectomorphic to a collar of the form

(2.1) ((—0,8) x M,d(tA) + Q)

for sufficiently small § > 0, where ¢ denotes the coordinate on (—4,d) and the symplectomor-
phism identifies {0} x M with M < W. Conversely, d(tA) + € is symplectic on (—4,0) x M
whenever (2, A) is an SHS and § > 0 is sufficiently small. The following variant of (2.1) is
less commonly seen in the literature but will be convenient for our purposes: defining the

alternative coordinate r := log(t + 1) on the first factor and adjusting the value of § > 0
accordingly, (21) becomes
(2.2) ((—0,8) x M,d((e" —1)A) + Q).

As an important special case, Z is always stabilizing if it is a Liouville vector field transverse
to M, i.e. Lzw = w. In this case A := 17w satisfies d\ = w and restricts to M as a contact form
a := A|rar, hence the resulting stable Hamiltonian structure is (da, «) and the symplectic
structure in (2.2)) takes the form d(e"«), one of the standard formulas for the symplectization
R x M of the contact manifold (M, = = ker «v).

By analogy with the contact case, one can define the symplectization of (M, H) for any
stable Hamiltonian structure H = (2, A) by choosing suitable diffeomorphisms of (2.2)) with
R x M: equivalently, this means we consider R x M with the family of symplectic forms w,

defined by

(2.3) wpi=d((#D = 1)A) + 9,
where ¢ is chosen arbitrarily from the set

(2.4) T :={pe CP[R,(-46,9)) | ¢ >0}.

More generally, suppose (W,w) is a compact 2n-dimensional symplectic manifold with stable
boundary 0W = —M_ ][ M, equipped with a stabilizing vector field Z that points inward
at M_ and outward at M . Denote the induced SHS on My by Hy = (4, A+); note that
the orientation conventions here are chosen such that Ay A Qi_l > 0 on My. We can now
identify neighborhoods of My in (W,w) symplectically with collars of the form

([0,8) x My, d((e" — 1)A4) + Q)
((—6,0] x M_,d((e" —1)A_) + Q).
Modifying (2.4]) to
(2.5) T :={pe C*(R,(-6,0)) | ¢ > 0 and ¢(r) = r for r near 0},
we can use any ¢ € T to define a symplectic completion (171\/,%) of (W,w) by

W= ((—0,0] x M_) upr. W unr, ([0,00) x M),
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where the above collar neighborhoods are used to glue the pieces together smoothly and the
symplectic form is defined by

d((e? —1)A_) +Q_  on (—0,0] x M_,
Wy =3 w on W,
d ((ef) — DAL) 4+ Q4 on [0,00) x M.

2.2. Finite energy holomorphic curves. Given a stable Hamiltonian structure H = (€, A)
with induced hyperplane field = = ker A and Reeb vector field Ry, we denote by J(H)
the space of R-invariant almost complex structures on the symplectization R x M that are
compatible with #, meaning that for J € J(H),

(i) JOr = Ry, where 0, denotes the unit vector in the R-direction;

(ii) J(E) = = and (-, J-) defines a bundle metric on =.
In the special case (Q,A) = (do, ) with « a contact form, this reproduces the standard
definition for almost complex structures compatible with contact forms, and we shall in this
case abbreviate

J(a) :=TJ(H), where H:=(da,a).

The following trivial observation will be helpful because it permits the use of a slightly non-
standard stable Hamiltonian structure (in particular with Q non-exact) for computing holo-
morphic curve invariants that are usually defined in terms of contact forms.

Proposition 2.1. Suppose dim M = 3, a is a contact form, and ) is any closed 2-form for
which H = (Q, «) is a stable Hamiltonian structure. Then J(H) = J(«).

Proof. Since « is contact, the Reeb vector field Ry is the same as the contact Reeb vector
field for a. The only difference between the conditions defining 7 (H) and J(«) is thus that
J: E — E must be compatible with |z in the first case and compatible with da|z in the
second case. Since = is complex 1-dimensional and €|z and da|z induce the same orientation,
these conditions are identical. 0

Any given J € J(H) is tamed by all of the symplectic forms w, in ([Z3) on the sym-
plectization R x M if the constant 6 > 0 in (24]) is chosen sufficiently small; in the case
dim M = 3, which will be our primary interest, .J is also w,-compatible for all ¢ € 7. Given a
Riemann surface (5, ) and J-holomorphic curve u : (S,5) — (R x M, J), we therefore define
the energy of u by

(2.6) E(u) := supf uFw,.
peT JS

The same formula can be used to define the energy of a J-holomorphic curve u : (S,j5) —

(W, J), where W denotes the completion of a cobordism (W, w) with stable boundary —M_ [ [ M
as in §2.11 and J is chosen from the space

T(w, Hy, Ho)
consisting of almost complex structures J on W such that J lw is compatible with w and
Jy = Jp,eyxm, € T(Hy),
J_ = J|(—ooxm_ € T (H-).

Any J € J(w,H4,H_) is w,-tame on W for every ¢ € T, hence the energy (28] is always
nonnegative, and is positive unless the curve is constant.
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Remark 2.2. The notion of energy described here is slightly different from the one defined in
[BEHT 03], but is equivalent to it in the sense that uniform bounds on either imply uniform
bounds on the other.

We will always take the domain of our holomorphic curves to be punctured Riemann
surfaces S = S\I', ie. (5,7) is a closed Riemann surface and I' = S is a finite ordered set.
The surface S will also be assumed to be connected unless otherwise specified. When this
needs to be emphasized, we will call a curve u : S — W connected whenever its domain is
connected; if S is disconnected, then the connected components of u are defined to be its
restriction to the connected components of S. A punctured J-holomorphic curve w : S W
with positive finite energy is either positively or negatively asymptotic to periodic orbits
of Ry, or Ry_ respectively at each of its nonremovable punctures; in short, finite energy

punctured J-holomorphic curves are asymptotically cylindrical, cf. [BEH03].

Remark 2.3. The terms “finite energy” and “asymptotically cylindrical” are often used as
synonyms when describing J-holomorphic curves, and we shall generally consider these con-
ditions to be implied whenever we refer to “punctured” holomorphic curves. The underlying
presumption, unless stated otherwise, is always that the domain is the complement of a finite
(sometimes empty) set of points in a closed Riemann surface, and that all the punctures are
non-removable.

We consider two holomorphic curves equivalent if they are related to each other by biholo-
morphic maps of their domains that take punctures to punctures with the ordering of punc-
tures preserved. The resulting equivalence classes are called unparametrlzed J- holomorphlc
curves. We will often abuse notation and use a parametrized map u : S — W to refer to
the unparametrized curve that it represents. When speaking of moduli spaces, we will always
mean a space of unparametrized J-holomorphic curves that are asymptotically cylindrical,
with a topology such that a sequence is considered to converge if and only if one can find
parametrizations with a fixed punctured domam S = S\I" such that the complex structures
on S converge in C® while the maps S - W converge in C® on compact subsets and in
CY up to the cylindrical ends (measured via any choice of translation-invariant metric on the
ends). For a given J, the corresponding moduli will typically be denoted by

M(J).

In the R-invariant case J € J(H), an important example of a finite energy holomorphic
curve is the trivial cylinder

u:Rx S' >R x M:(s,t) — (Ts,z(Tt))

over any orbit x : R — M with z(T") = x(0) for T' > 0; this curve can be parametrized as a
punctured sphere with one positive and one negative puncture, both approaching the same
orbit. We shall sometimes abbreviate the unparametrized curve represented by the trivial
cylinder described above as
R x 7,

where v : S — M : t — x(Tt) specifies the periodic orbit in question, which may in general
be multiply covered.

If the asymptotic orbits of a finite energy J-holomorphic curve u are all nondegenerate
or Morse-Bott, then the moduli space M(J) near u can be described as the zero set of a
Fredholm section whose index corresponds to the virtual dimension of the moduli space



ON SYMPLECTIC FILLINGS OF SPINAL OPEN BOOK DECOMPOSITIONS II 23

near u. We will call this virtual dimension the index of u and denote it by ind(u) € Z.
By a punctured version of the Riemann-Roch theorem (see [Sch95]), the index of a curve
w: S — W can be written as

(2.7) ind(u) = (n = 3)x($) + 2L (W TW) + Y uds(v2) — D) udz(v2),

zel't zel'—

where dimg W= 2n, ' =T*T ][I~ are the positive and negative punctures with asymptotic
orbits {7, }.er, ® is an arbitrary choice of complex trivializations for the bundles = = ker A4
along these orbits, u&,(v.) € Z are the Conley-Zehnder indices relative to these trivializations,

and c¢f (u*TW) is the relative first Chern number of w*TW — § with respect to the asymptotic
trivialization determined up to homotopy by ®. The curve u is said to be Fredholm regular
if it represents a transverse intersection of the aforementioned Fredholm section with the zero
section: in this case a neighborhood of u in M(J) is a smooth orbifold (or manifold if u has
no automorphisms) of dimension ind(u). For further discussion of Fredholm regularity, see
for example [WenlOb).

Every asymptotically cylindrical holomorphic curve is either simple (and thus somewhere
injective) or multiply covered, where the latter means that it factors as the composition of
another J-holomorphic curve with a branched cover of closed Riemann surfaces with degree at
least two. By various standard transversality results (see for example [MS04],Dra04,Wenb]),
the relevant spaces of compatible almost complex structures admit comeager subsets for which
all simple curves are Fredholm regular. We will generally say that J is generic whenever it
belongs to the comeager subset for which the relevant transversality result of this type holds.

It is sometimes useful to observe that if dim M = 3 and J € J(H) where H = (Q,A) is a
confoliation-type SHS, then every J-holomorphic curve w : S — R x M satisfies u*dA > 0
Since the period of any closed orbit of Ry parametrized by a loop v : S' — M is given by
Ssl ~v*A, the following is an immediate consequence of Stokes’ theorem:

Proposition 2.4. Suppose dim M = 3, H = (2, A) is a confoliation-type stable Hamiltonian
structure, J € J(H) and u : S — R x M is a nonconstant finite energy J-holomorphic
curve with positive and/or negative punctures ' = Tt U T~ asymptotic to the periodic orbits
{v:}scr. Then #T'* =1, and the periods T(7y,) > 0 of the orbits vy, satisfy

Z T(’Yz) - Z T(Vz) = 0.
zel't zel'—

0

Given J € J(w, H4,H_) with the closed orbits of Ry, and Ry _ assumed nondegenerate or

Morse-Bott, moduli spaces of punctured J-holomorphic curves in (171\/, J) with uniform energy
bounds satisfy a compactness theorem described in [BEH'03]. The compactified moduli space

M(J)

consist of so-called (stable) holomorphic buildings, which generalize the “broken” holo-
morphic curves familiar from Floer homology. For our purposesi the objects in this compact-
ification can be described as follows. A nodal J-holomorphic curve in W, also sometimes

4In our description of holomorphic buildings we ignore certain technical details such as decorations, which
play no role in our arguments; these details are explained fully in [BEH'03].
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called a holomorphic building of height 1, is an equivalence class of tuples
(S7 j7 Fa U, A)

where (S, 7) is a closed but not necessarily connected Riemann surface, I' < S is a finite
ordered set defining the punctured surface S := S\T', u: (S,5) — (W, .J) is an asymptotically
cylindrical J-holomorphic curve and A is a finite unordered set of unordered pairs {z;,z_}
of distinct points in S such that u(zy) = u(z_). Each pair {z;,z_} € A is called a node,
and we sometimes also refer to the individual points z4 € S as nodal points. Two nodal
curves are equivalent if they are related by a biholomorphic identification of their domains
that preserves all the structure (including ordering of the punctures and pairing of the nodal
points). Note that the asymptotically cylindrical behavior of v automatically partitions I" into
sets of positive and negative punctures I' = 't [ [T'~. Nodal curves in the symplectizations
R x M4 can be defined in the same way, with the additional feature that R-translations act
on the space of nodal curves, so that one can also strengthen the equivalence relation and
consider R-equivalence classes of nodal curves.

A holomorphic building in (1//1\/, J) can now be regarded as a finite ordered list of nodal
curves u = (uy,...,uy) for some N € N, which are called levels of u, and have the following
properties and additional data:

e Exactly one of the levels uys for some M € {1,...,N} is a nodal curve in I//I\/; this
is called the main level of the building. It is also allowed to be empty, meaning its
domain is the empty set.

e Every level uy for £ # M is a nonempty R-equivalence class of nodal curves in one of
the symplectizations R x My; M_ for £ < M and M, for ¢ > M. These are called
lower and upper levels respectively.

e For each £ € {1,..., N —1}, u is endowed with the additional data of a bijection from
the positive punctures of uy to the negative punctures of uy 1 such that the asymptotic
orbits of punctures that correspond under this bijection are identical. We will refer
to corresponding pairs of punctures as breaking punctures and their asymptotic
orbits as breaking orbits.

The positive and negative punctures of the building u = (uq,...,uy) are defined as the
positive punctures of uy and the negative punctures of u; respectively, and the connected
components of u are the connected components of its constituent levels. One can define
from u a topological surface S obtained from the disjoint union of the domains of all the
levels by performing connected sums along all the paired-up nodal points forming nodes and
all the correspondlng breaking punctures. The building is then said to. be connected if
and only if S is connected, and its arithmetic genus is the genus of S. This punctured
surface is diffeomorphic to the domain of any sequence of smooth curves that converge to
the building in the SFT- topology, in particular, any such sequence admits a sequence of
parametrizations wug : S — W that can be transformed into a C°- convergent sequence of
continuous maps S — W by projecting cylindrical ends and upper/lower levels to My and
gluing the components of the limiting building together along nodes and breaking orbits. The
buildings that form M(J) are also always assumed to be stable, which means that none of
the upper or lower levels is a disjoint union of trivial cylinders, and any connected component
with genus zero on which the map is constant (a so-called ghost bubble) has at least three
nodal points. This condition guarantees that limits in the SFT-topology are unique. We shall
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4 R x M, =4

Rx M_

T T
\bﬂ > \bﬂ >

F1GURE 1. The picture at the left shows a holomorphic building with arith-
metic genus two, which is broken up at the right into three maximal non-nodal
subbuildings, one with arithmetic genus 1 and two with arithmetic genus 0.

generally describe a connected component of a holomorphic building as nontrivial if it is
nonconstant and is not a trivial cylinder.

For moduli spaces of curves in a symplectization (R x M, J) with J € J(#), the distinction
between lower /main/upper levels is meaningless: instead, one compactifies M(.J)/R to obtain
a space M(J) of buildings with at least one and at most finitely many levels, all of them
consisting of R-equivalence classes of (possibly disconnected and nodal) unparametrized curves
in R x M.

Within the space of holomorphic buildings, we shall sometimes make a distinction between
nontrivial buildings and smooth curves: the latter means buildings that have only one
level and no nodes, hence they are also elements of M(J), whereas by “nontrivial buildings”
we mean everything in M(J)\M(J).

Since the index of a holomorphic curve depends only on its asymptotic ends and relative
homology class, the index of a building can be defined formally by a natural generalization
of (Z1) replacing S with S and in this way the index extends to a continuous Z-valued
function on M(J).

For the purposes of the next statement, observe that given any building wu, deleting the
nodes from all levels changes u into a disjoint union of some unique collection of (not nec-
essarily stable) connected holomorphic buildings w1, ..., u,,, each endowed with the extra
structure of a finite set of points in their domains (the former nodal points). We shall in this
case call uy, ..., u, the maximal non-nodal subbuildings of u (see Figure[l]). The relation
in the followmg proposition is an immediate consequence of (270) via the observation that if
S is a surface obtained from a collection of surfaces Sl, . S by performing connected sums
at a set of NV distinct pairs of distinct points {zj 2 T} c 51 II--- ]_[Sm for j =1,..., N, then

X(S) = 3" x(Si) — 2N
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Proposition 2.5. For any holomorphic building u in W with N = 0 nodes and N; = 0 nodal

points on each of its maximal non-nodal subbuildings u; fori=1,...,m,
ind(u) = ) [ind(u;) — (n — 3)N;] = ) ind(u;) — 2(n — 3)N,
i=1 i=1
where dim W = 2n. ]

Let us specialize the above result to dimension four and consider the role played by constant
components. These have no punctures but must have nodal points; setting n = 2, (Z7]) implies
that a constant component u; with domain S of genus g has index —x(S) = 2g — 2, which
is nonnegative except in the case of ghost bubbles. Stability requires however that the Euler
characteristic of S should always become negative after removing nodal points, thus

ind(ui) + N; = —X(S) + N; > 0.
This gives rise to the following corollary of Proposition

Proposition 2.6. Assume dimg W =4anduisa holomorphic building with m nonconstant

mazimal non-nodal subbuildings u1,...,Um, each with N; = 0 nodal points. Then
m
ind(u) > Z [ind(u;) + N;],
i=1

with equality if and only if w has no constant components. In particular, if u has arithmetic
genus 0 and has at least one node, then

ind(u) > 2+ Z ind(u;)
i=1
with equality if and only if there is exactly one node and no ghost bubbles.

Proof. The second statement follows because in the case of arithmetic genus zero, every
ghost bubble has at least three nodal points and this implies the existence of at least three
nodal points on nonconstant components as well; any other scenario would lead to positive
arithmetic genus. O

2.3. Intersection theory. In this section we summarize some useful facts from the intersec-
tion theory of asymptotically cylindrical holomorphic curves, due to Siefring [Siell]. A more
elementary introduction to this theory can also be found in [Wen20]. See also the summary
given in [ES18] Section 3.3].

Assume as in §2.T] that W is the completion of a symplectic cobordism (W, w) with stable
boundary 0W = —M_]][ M, carrying stable Hamiltonian structures Hy+ = (24,A4), and
J € J(w,Hiy,H_). Siefring’s intersection theory associates to any pair of asymptotically
cylindrical (but not necessarily J-holomorphic) maps u and v into W with nondegenerate
asymptotic orbits an intersection number

u*xvE L,

which depends only on the asymptotic orbits of the two maps and their relative homology
classes. It is nonnegative whenever v and v are J-holomorphic curves with non-identical
images, and strictly positive whenever these have nonempty intersection. It also extends
in a continuous way to the compactified moduli space of holomorphic curves as defined in
[BEHT03|: one can define u * v for two holomorphic buildings, and it is additive across levels
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(with extra nonnegative breaking contributions for common breaking orbits between two
levels) and invariant under homotopies through the compactified moduli space, including “in-
finite R-translations” which shove levels up or down or insert or delete trivial cylinders. When
u and v are holomorphic curves with non-identical images, u * v counts their actual intersec-
tions (with multiplicity when they are non-transverse), in addition to a nonnegative count of
asymptotic contributions, i.e. “hidden” intersections that can emerge from infinity under
perturbations. The latter can be expressed in terms of asymptotic winding numbers: fixing
a choice of complex trivialization ® for each of the bundles =4+ = ker Ay along closed Reeb
orbits, every nondegenerate Reeb orbit « has certain extremal winding numbers

al(y) <af(y) ez
such that by the asymptotic formula of [HWZ96], the asymptotic winding of any holomorphic
curve approaching 7 at a positive end is bounded from above by a®(v), and at a negative
end it is bounded from below by a%(y). These are the winding numbers relative to ® of

the so-called (positive and negative) extremal eigenfunctions that appear in asymptotic
formulas, and they are related to the Conley-Zehnder index by the formulas

18z (7) =202 (y) + p(v) = 2a2(7) — p(y),
p(7) = af(7) — a®(v) € {0,1},

proved in [HWZ95]. The general definition of u % v expresses it in terms of the relative
intersection number

(2.8)

uegyVE L,

which is homotopy invariant but depends on the choice of trivialization ® whenever u and v
have asymptotic orbits in common: uegwv is the algebraic count of intersections between u and
a generic small perturbation of v that pushes it in the direction determined by ® at infinity.
Notice that this notion is also well defined when u = v and it extends in a natural way to the
case where u and v are holomorphic buildings, simply by adding relative intersection numbers
across levels. The following is then a direct consequence of the definition in [Siell] and will
suffice for computing u # v in our applications:

Lemma 2.7. Suppose u and v are holomorphic buildings with only positive punctures, and
that for each asymptotic orbit v of u or v, there exists a trivialization ® along the underlying
simple orbit covered by v such that in the induced trivialization along v, a®(y) = 0. Then
UV = U 05 V. ]

The usual adjunction formula for the closed case can now be generalized to somewhere
injective punctured holomorphic curves in the form

(2.9) uxu=2[0(u) + dp(u)] + en(u) + [o(u) — #T'].

Here §(u) is the (nonnegative) algebraic count of double points and critical points, and dq (1)
is an (also nonnegative) asymptotic contribution such that §(u)+ d4 (u) is homotopy invariant
and counts the double points of a generic perturbation of u. The normal Chern number
ey (u) € Z is another homotopy invariant quantity which, in the immersed case, equals the
relative first Chern number of the normal bundle of u with respect to trivializations determined
by the extremal eigenfunctions at the asymptotic orbits. We denote by I' the set of punctures
of u, and &(u) denotes the spectral covering number, which is the sum over all z € T" of the
covering multiplicities of the relevant extremal eigenfunctions. In many applications one does
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not need to compute &(u), as it is at least immediate from the definition that o(u) > #T,
hence (2.9) gives rise to an inequality

(2.10) wxu = 2[0(u) + 0o (u)] + en(u).
When more precise information is needed, the following will suffice for our purposes:

Lemma 2.8. Suppose u is a somewhere injective holomorphic curve with only positive punc-
tures which satisfy the hypothesis of Lemma [2.71  Then &(u) is the sum of the covering
multiplicities of the asymptotic orbits of u. In particular, 6(u) = #I' whenever all asymptotic
orbits are simply covered. O

The easiest way to compute cy(u) is usually via the Fredholm index, as it satisfies
(2.11) 2en(u) = ind(u) — 2 + 29 + #1o,

where g > 0 is the genus of the domain of u and #I'y = 0 denotes the number of punctures at
which the Conley-Zehnder indices of the asymptotic orbits are even. In the R-invariant case
W =R x M with J € J(H) for a fixed stable Hamiltonian structure H = (2, A), the normal
Chern number also appears in the important relation

(2.12) 0 < wind,(u) + defy(u) = en(u),

which was originally proved by Hofer-Wysocki-Zehnder [HWZ95|] and applies to any curve u
that is not a cover of a trivial cylinder. Here wind;(u) = 0 is an integer which algebraically
counts the non-immersed points of the projection of u to M, and def,,(u) > 0 is an integer
measuring the difference of the asymptotic winding at each end from the relevant extremal
value af (7). We refer to [Wenl0al, §4] for a fuller discussion of this relation using the same

notation used here (only some of which appeared in [HWZ95]).

Remark 2.9. The theory defined in [Siell] applies to any moduli spaces of asymptotically
cylindrical holomorphic curves with fixed asymptotic orbits satisfying a nondegeneracy or
Morse-Bott condition. One can also define a more general theory allowing moduli spaces
whose asymptotic orbits move freely in Morse-Bott families—the main results of this theory
are outlined in [WenlObl §4], but we will not need this here.

In many applications, a special role is played by somewhere injective curves whose intersection-
theoretic properties force them not only to be embedded but also to avoid intersggting their
neighbors in the moduli space. In particular, a J-holomorphic curve w : S — W is called
nicely embedded if it is somewhere injective and satisfies

0(u) =0p(u) =0 and w=*u<0.

This is a slight generalization of a definition that first appeared (with an extra “stability”
condition) in [WenlOb]. It simplifies slightly in the R-invariant case since every curve u can
then be perturbed via R-translation to a nearby curve, which will be different unless u is a
cover of a trivial cylinder, hence u * u = 0 always holds in such cases. The nicely embedded
condition can thus be reduced in the R-invariant case to

uxu =0 or u is a trivial cylinder,

as (2I2) implies in this case that cy(u) = 0, so 0(u) = dpn(u) = 0 then follows from the
adjunction inequality (ZI0). An additional consequence of (ZI2]) in the R-invariant case is
that nicely embedded curves other than trivial cylinders satisfy wind,(u) = defy(u) = 0, and
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the homotopy invariance of uxu = 0 implies that they never intersect their own R-translations,
hence their projections to the 3-manifold

SR x M2

are embedded. Nicely embedded curves in the symplectization also satisfy a strong compact-
ness theorem proved in [Wenl0a], which we will make use of to prove uniqueness in §4.5

The following lemma can be applied in the case u = v to characterize nicely embedded
curves:

Lemma 2.10. Assume J € J(H) for a stable Hamiltonian structure H on M. For any pair
of (possibly identical) connected finite energy J-holomorphic curves u and v in R x M which
are not covers of trivial cylinders and have nondegenerate asymptotic orbits, we have uxv =0
whenever the following conditions hold:

(1) There is no simply covered orbit v with odd Conley-Zehnder index such that covers
of v appear at negative ends of u and positive ends of v.

(2) For every negative asymptotic orbit v of u, v (R x v) = 0.

(8) For every positive asymptotic orbit v of v, u* (R x ) = 0.

Proof. By the “infinite R-translation” used in [Sielll Lemma 5.7, Theorem 5.8, we have
uxv=u" *v", where uT and v~ are 2-level holomorphic buildings defined as follows:

e u has u on the top level and the trivial cylinders over its negative asymptotic orbits
on the bottom level,

e v~ has v on the bottom level and the trivial cylinders over its positive asymptotic
orbits on the top level.

To compute u™ * v~, we sum the respective intersection numbers of corresponding levels,
together with breaking contributions, all of which are nonnegative. The top level thus con-
tributes u * (R x ) for every positive asymptotic orbit 7 of v, and the bottom level similarly
contributes v * (R x 7) for every negative asymptotic orbit y of u. The breaking contributions
come from orbits which occur as breaking orbits of both buildings, but these contributions
are zero for orbits with even Conley-Zehnder index since the the eigenvectors for the largest
negative eigenvalue and for the smallest positive eigenvalue of the corresponding asymptotic
operator have the same winding (cf. [Wen20, Appendix C.5]). O

Intersection numbers between trivial cylinders and their own covers are usually tricky to
deal with, as they need not be nonnegative in general, but they are easy at least in the
following special case:

Lemma 2.11. Suppose «v is a simply covered nondegenerate periodic orbit of Ry in M with
even Conley-Zehnder index, and u and v denote any J-holomorphic covers of the trivial
cylinder R x . Then u*v = 0.

Proof. Note that all covers 7™ of 7 also have even Conley-Zehnder index, hence (28] gives
a?(y™) — a®(y™) = 0. The result now follows directly from the definition of u * v [Sielll
Equation (2.3)]. O

2.4. Automatic transversality and coherent orientations. We continue under the as-
sumption that (W, w) is a compact symplectic cobordism with stable boundary components
OW = —M_]] M4 carrying stable Hamiltonian structures Hy = (Q4,Ay), and W de-
notes the completion obtained by attaching cylindrical ends. The following special case of
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a transversality criterion from [WenlOb] is often useful because it requires neither genericity
nor somewhere injectivity.

Proposition 2.12. Assume J € J(w, "y, H_), dimp W =4, and v : S — W is an immersed
finite-energy J-holomorphic curve asymptotic to nondegenerate Reeb orbits and satisfying

ind(u) > en(u).
Then u is Fredholm regular. O

The phenomenon underlying this transversality criterion also has useful consequences for
orientations of moduli spaces, in particular for spaces of dimension 0, where orienting the
moduli space simply means associating a sign to each element. We shall use the coherent
orientations framework described by Bourgeois and Mohnke [BM04], based on earlier work of
Floer and Hofer [FH93|. Notice that by (2.11II), a curve u with index 0 can satisfy ind(u) >
en(u) only if ey(u) = —1, in which case u must have genus 0 and all its asymptotic orbits
have odd Conley-Zehnder index. The following result will play a key role in §6 for proving
stability of J-holomorphic foliations under homotopies.

Proposition 2.13. In the 4-dimensional setting of Proposition [2.12, suppose ug and uy are
two tmmersed J-holomorphic curves with the same number of punctures and identical sets of
positive and/or negative asymptotic orbits, and also satisfying

ind(u;) = 0, en(ug) = —1, fori=0,1.

Then any choice of coherent orientations provided by [BM04] assigns to ug and uy the same
sign.

Let us state a corresponding result for the R-invariant setting (R x M, J) with J € J(H)
before discussing the proofs of both. Since we usually want to consider M(J)/R rather
than M(J), the important rigid objects in this space are represented by curves of index 1
that are not covers of trivial cylinders. The relation (2I2]) implies that such curves can
satisfy ind(u) > cy(u) only if cy(u) = 0, in which case (2.I1]) implies that the genus is zero
and exactly one asymptotic orbit has even Conley-Zehnder index. Regular index 1 curves
in (R x M,J) come in 1-dimensional moduli spaces of curves related to each other by R-
translation, and the R-action thus induces a tautological orientation on these spaces. If a
global orientation of M(J) is given, one then associates a positive sign to [u] € M(J)/R if
the given orientation matches the tautological one induced by the R-action, and a negative
sign otherwise. -

We must briefly recall some specifics about asymptotic eigenfunctions. If u : S - W
has a positive/negative puncture z € I'* asymptotic to a nondegenerate orbit -y, then the
asymptotic formula of [HWZ96] and later refinements in [Mor03,[Sie08|] describe the approach
of u to v in terms of eigenfunctions of the asymptotic operator

Ay :T(V*Ex) = T(Y'Es),
a symmetric first-order differential operator that depends only on v, and whose eigenfunctions
were mentioned already in §2.3l Parametrizing the trivial cylinder over v as u : Rx S I 5 Rx
My : (s,t) — (T's,(t)) and choosing a translation-invariant metric to define the exponential

map on R x M, one can find coordinates (s,t) € R, x S* for the cylindrical end approaching
zeI't, and a section h, of u3E+ such that

u(s,t) = expy,_ (54 hz(s,t) for s close to +oo,
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where
(2.13) ho(s,t) = e (ex(t) + r.(s,1)).

Here X € R is an eigenvalue of A, with +A <0, e, e I'(y*Z4 ) is a nontrivial section belonging
to the corresponding eigenspace, and r, € I'(u3¥=4) is a remainder term satisfying |r.(s,t)| — 0
uniformly as s — +00. Let
4 —
V'y_ < F(’Y*:i)

denote the eigenspace of A, with the largest negative eigenvalue if z € I't or the small-
est positive eigenvalue if z € I'". We then use (2ZI3]) to define the leading asymptotic
eigenfunction ev?(u) € V* of u at z by

e if e, e VI,
evP(u) =14 ~° S
0 otherwise.

The case ev¥(u) = 0 occurs if and only if the exponential decay rate in (2Z.13)) is faster than the
slowest rate allowed by the spectrum of A.,. As implied by the notation, evy can be thought
of as an asymptotic evaluation map from the moduli space to a finite-dimensional space
of eigenfunctions, and we will treat is as such in §0, cf. Lemma [6.9]

The following result can now be summarized by saying that for a pair of immersed and
automatically regular index 1 curves with the same asymptotic orbits in the symplectization
of a 3-manifold, their signs will match if and only if they each approach their unique even
orbit “from the same side”.

Proposition 2.14. Assume M is a 3-manifold with stable Hamiltonian structure H = (2, A),
Je J(H), and ug and uy are two immersed J-holomorphic curves that are not covers of trivial
cylinders, have the same number of punctures and identical sets of positive and/or negative
asymptotic orbits, and satisfy

ind(u;) = 1, en(ui) =0, fori=0,1.

Let e; € Vq/i for i = 0,1 denote the leading asymptotic eigenfunction of w; at its unique
puncture asymptotic to an orbit v with even Conley-Zehnder index. Then

e1 = keg  for some k € R\{0},

and for any choice of coherent orientations provided by [BMO04], the signs assigned to [ug]
and [u1] as elements of M(J)/R match if and only if k > 0.

Both propositions will be proved by similar arguments. To prepare for this, we need to
recall a few details from [BM04] and [WenlOb]; we shall use notation consistent with the
latter reference. ) .

To any finite-energy J-holomorphic curve u : S — W with punctures I' = I't U I'” posi-
tively /negatively asymptotic to Reeb orbits {,}.er, one can associate a Fredholm operator

D, : W' (u*TW) ® Vi — LP° (Home (TS, u*TW)),

called the linearized Cauchy-Riemann operator at u. Here p > 2, and W19 (u*T W)
denotes the Banach space of Sobolev class WP sections 7 of wTW satisfying the exponential
decay condtion e®*n e W1P([0, 00) x S1) in holomorphic cylindrical coordinates (s, t) € [0, 00) x
S! near each puncture, where § > 0 is a small constant. The space Vi < F(u*TW) is of
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dimension 2#1I" and consists of smooth sections that are constant near infinity in a suitable
choice of trivialization. Since D, is Fredholm, it has a determinant line

det(D,) = A" ker D, ® (A™* coker D,,)*.

The asymptotic form of D, near each puncture z € I't is determined by the asymptotic
operator A, . The procedure of [BM04] for defining orientations is then to orient the deter-
minant line bundles over the topological spaces of isomorphism classes of Cauchy-Riemann
type Fredholm operators of the above form with fixed asymptotic operators at the punctures.
This is done so as to make the orientations compatible with certain linear gluing operations,
so that the resulting orientations are called coherent. They give rise to orientations for spaces
of J-holomorphic curves in the following way. If u : (S7 j) — (W, J) is Fredholm regular, then
the implicit function theorem gives the moduli space M(J) of unparametrized J-holomorphic
curves the structure of a smooth orbifold of dimension ind(u) near u, with its tangent space
at u idenified with

(2.14) T, M(J) = ker DO;(j,u)/aut(S, j).
Here Dd;(j,u) denotes the linearization of the nonlinear Cauchy-Riemann operator
0:T xB—&:(j,u)— Tu+ J(u)oTuoj,

where B is a Banach manifold of W!P-smooth maps S — W whose tangent space at u
is the domain of D,, 7 is a smooth family of complex structures on S parametrizing a
neighborhood of [j] in Teichmiiller space, and £ — T x B is a smooth Banach space bundle
whose fiber over (j,u) is the target space of D,,. The space aut(S,j) is the Lie algebra of the
automorphlsm group of (S 4), which embeds into ker Dd(j, u) via the map taking vector fields
X on S to sections Tu(X) of w*TW. Since aut(S Jj) is naturally a complex vector space, any
orientation of ker Dd;(j,u) gives rise to an orientation of T, M(.J), thus it suffices to orient
the determinant line of Dd(j,u), which is equivalent to orienting its kernel since Dd(j, u) is
assumed surjective in the Fredholm regular case. This operator takes the form

Ljy = Do(j,u) : T;T @ TuB — &y : (y,1) = Dun + J(u) o Tuoy.

Any continuous family of J-holomorphic curves gives rise to a continuous family of Fredholm
operators of this form, all of which can be retracted through Fredholm operators to the
corresponding linearized Cauchy-Riemann operators via the homotopy

(2.15) L: . (y,m) :=Dun+sJ(u)oTuoy, se[0,1].

Taking s = 0, we have kerL =TT ®ker D, and coker L0 = coker D,,. Since Teichmiiller
space is also naturally complex T T has a canonical orlentatlon so that the orientation of
det(D,,) defined in [BM04] mduces an orientation of det(Lg,u) and we use the homotopy

{L3 . }sefo,1) to define from this an orientation of det(L]lvu), therefore orienting T, M(.J).
Recall now from [WenlOb] that if u : S — W is immersed and N,, — S denotes its normal
bundle, the natural complex bundle splitting u*TW = T'S® N,, decomposes D,, in block form

as

DI D)7
(2.16) Du_<0 Dy )

where D" and DY are real-linear Cauchy-Riemann type operators on T' S and N, respectively,
and the latter is called the normal Cauchy-Riemann operator of u. We can extend the
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splitting WTW = TS @® N, over the circle compactification of the end near each puncture
z € I't so that N, at the end is identified with 4*Z; and T'S is identified with the trivial
complex subbundle generated by R and the Reeb vector field. The space Vi can then be
chosen as a space of sections of TS', and DT identified with the standard Cauchy-Riemann
operator on S ,

D, : WHPTS) @ Vi — LM (Ende(T'S)),

i.e. the linearization at the identity of the nonlinear Cauchy-Riemann operator for asymp-
totically cylindrical holomorphic maps (S ,J) — (S ,7). The cokernel of this operator has a
natural identification with the tangent space to Teichmiiller space, so one can always assume
that the map

T,T @ (W'PH(TS) @ Vi) — L (Ende(T$))

(2.17) .
(4, X) = jy+ Dg y X

is surjective. Writing a section of wTW =TS @ N, as (X,n), this gives a decomposition of

Lj,=D0d;j(j,u) as

(2.18) Lyu(y, X,n) = (jy + Dig )X + DATn,DY'n) .

showing that Lj, is surjective if and only if DY is surjective. Note also that ker D(S i) is

naturally isomorphic to aut(S ,J), so injecting the latter into ker L;, as the subspace {0} ®
kerD g ) @ {0} and using (2.14]), we obtain from this expression a natural isomorphism

(2.19) T.M(J) = kerLj, / ker D g ;) — ker DY [(y, X,n)] — n.

)

Proof of Proposition [213. Assume uy and u; are as stated in the proposition. Since (2.I7])
implies that both have genus zero, their domains are diffeomorphic, and ind(ug) = ind(u1) =0
implies that the complex line bundles N,, and NN, also admit a bundle isomorphism that is
asymptotic to their canonical identification at the ends. Let us assume first for simplicity that
ug and uq have isomorphic conformal structures on their domains, so we can represent them
by the same complex structure 5 on S and fix a single slice T parametrizing the Teichmiiller
space near [j]. Then after identifying both N, and N,,, with some fixed complex line bundle
E — S, we can assume D} := Di\g and DY := Divl are Cauchy-Riemann type operators on
the same bundle over the same domain

DY : W'P9(E) — LP*(Home (TS, E)), i=0,1,

and these are related to D; := D,,; and L; := Lj,, for i = 0,1 as in (ZI6) and (ZI8) respec-
tively. Now since the space of Cauchy-Riemann type operators with fixed asymptotic orbits
is affine, we can choose a homotopy {D }Te[o,l] from Dév to Djlv , which induces homotopies
{D;} from Dg to D; and {L.} from Ly to L;. By [WenlObl Proposition 2.2], the operators
DY are always surjective, hence so are L,. Since ind(ug) = ind(u;) = 0, the kernel of L, is
therefore identical to the subspace aut(S, j) for every 7 € [0,1].

Now suppose a choice of coherent orientations as constructed in [BM04] is given. This
assigns a continuously varying orientation to the determinant of D, for each 7 € [0,1]. In
order to determine whether ug and u; have the same sign, one must consider the determinant
line bundle over a 1-parameter family of Fredholm operators from Lg to L; constructed in
three parts:
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(1) Retract Ly to 0 + Dg as in (2.15));
(2) Follow the homotopy D, from Dg to Dy;
(3) Unretract from 0 + Dy to Ly, again as in ([2.15]).

The retractions for i« = 0,1 transfer the given orientations of det(D;) to orientations of
det L; = A™® ker L;, and the.sign of u; depends on whether the latter orientations match the
canonical orientation of aut(S, j) as a complex vector space. (Note that if aut(S, j) is trivial,
then it means the L; are isomorphisms, so that det(L;) is tautologically equal to R and the
sign of u; depends on whether the induced orientation of R matches the tautological one.)
Since the orientations of det(D;) must be continuous in 7, following the three-part homotopy
from Lg to Ly therefore determines the relationship between the signs of ug and ;. We notice
however that the retraction from L, to 0+ D, can also be performed for every 7 € [0, 1], hence
the three-part homotopy can be deformed with fixed endpoints to {LT}TE[O,l]' The latter is
a homotopy through surjective operators, and for any continuous family of orientations of
ker L, either all or none of them match the orientation of aut(S', j). This proves that the
signs of ug and uy are equal as claimed.

If ug and uq have inequivalent conformal structures jy and j; on their domains, then the
above argument must be supplemented by an initial step choosing a continuous deformation
of Cauchy-Riemann type operators to accompany a deformation from jy to j; in the space of
complex structures and a simultaneous deformation of the corresponding Teichmiiller slices.
This can always be done since the space of complex structures on S compatible with its
orientation is contractible. The key point is that [WenlObl, Prop. 2.2] always guarantees sur-
jectivity for the restriction of the Cauchy-Riemann type operators to a line bundle isomorphic
to N, with the same asymptotic operators. O

Proof of Proposition [2.17 Most steps are the same as for Prop. 2.13] so let us merely clarify
the differences. The normal operators DY now have index 1 and have 1-dimensional kernels
since [Wenl0Obl Prop. 2.2] again implies that they are always surjective. The normal Chern
number ¢y (up) = en(uy) = 0 can in this case be interpreted as the relative first Chern
number of E — S with respect to the asymptotic trivializations that determine the extremal
winding for holomorphic sections, hence the nontrivial elements 7 € ker DY are guaranteed
to be nowhere zero and to have extremal winding at every end (cf. [WenlOb, §2.2]). Let
z € I't denote the unique puncture for both ug and w; at which the asymptotic orbit
has even Conley-Zehnder index. The extremal eigenspace VW/i is then 1-dimensional as a
consequence of (28)) since by [HWZ95], exactly two eigenvalues of A, counting multiplicity
have eigenfunctions with any given winding. The extremal winding condition thus implies that
any nontrivial € ker D has a nontrivial asymptotic eigenfunction in VW/i at the puncture z.
A continuous family of such sections for 7 € [0, 1] therefore determines a continuous path in
VE\{0}.

Since 0 < defy(u;) < en(u;) = 0 for ¢ = 0,1 by ([212]), the leading asymptotic eigenfunc-
tions e; € Vﬁ{i of u; at z are also nonzero. Let 7; € ker Div for ¢ = 0,1 denote the canonical
generators that are identified via (2.I9) with the infinitesimal generator of the R-translation
action on u;. The asymptotic formula (ZI3]) implies that these have asymptotic eigenfunc-
tions at z of the form k;e; € V,Yir for some constants «; > 0. Hence there exists a continuous
family {n:},e[0,1] of nontrivial generators of ker DY connecting 79 to n; if and only if ey and
e1 are positive multiples of one another.
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With this understood, the signs of [u;] € M(J)/R for i = 0,1 are determined as follows.
The retractions as in (2.I5) from L; to 0 + D; transfer the given orientation of det(D;) to
an orientation of det(L;) = A™* ker L;, hence orienting ker L;. Dividing the latter by the
canonically oriented subspace aut(S, ;) and using (ZI9) then induces an orientation of the
1-dimensional space ker Div , for which 7; is either positive or negative, so this is the sign
of [u;]. To relate these signs to each other, one follows the orientations along the “three-
part homotopy” of Fredholm operators described in the proof of Prop. 2.13, which is again
homotopic to a path L. consisting of surjective operators with kernels isomorphic to aut(S, j)®
ker DY. One therefore obtains the same sign for [ug] and [u1] if and only if there exists a
path {n,} of generators of ker DY as described in the previous paragraph, which reduces to
the question of whether ey and e; lie in the same component of V,YJ—F\{O}. O

3. A SYMPLECTIC MODEL OF A CYLINDRICAL END

Throughout this section, assume (M, &) is a closed connected contact 3-manifold on which
¢ is supported by a spinal open book

= (WziMZ —>E,7Tp:Mp—>Sl>.

The purpose of this section is to construct a symplectic and almost complex model of the half-
symplectization [0,00) x M of (M,§), designed such that given any hypothetical symplectic
filling (W,w) of (M,€), we can define a symplectic completion of (W,w) that contains an
abundance of pseudoholomorphic curves. The construction is an extension of the model collar
neighborhood described in [LVW] §4], which views (M, &) as a smoothing of the boundary
(with corners) of a noncompact 4-manifold F whose boundary has two smooth faces

OF = 0,E U O, E,

interpreted as the vertical and horizontal boundaries respectively of a (locally defined) sym-
plectic fibration. Here it is not necessary to assume (M, ¢) admits a symplectic filling, as we
can instead identify it with the contact-type boundary of a collar neighborhood (—1,0] x M
in its own symplectization. By attaching cylindrical ends to the fibers of the aforementioned
fibration and also extending it over cylindrical ends attached to the base, one obtains the
double completion E’, which contains F as a bounded subdomain. We will endow E with
a Liouville structure A and compatible almost complex structure J, having the following
properties:
(1) J; admits a suitable exhausting J;-convex function and thus defines almost Stein
structures on suitable subdomains of EA?, homotopic to the Liouville structure A;
(2) The corner in 0F can be smoothed to produce a contact hypersurface contactomorphic
to (M, £);
(3) A neighborhood of infinity in E can be identified with the half-symplectization [0, 00) x
M of a suitable stable Hamiltonian structure H on M, with J € J(H);
(4) The symplectization Rx M of the aforementioned stable Hamiltonian structure admits
a foliation by embedded J-holomorphic curves that project to Mp as the pages of 7;
(5) E also contains embedded Ji-holomorphic curves that intersect the holomorphic pages
transversely and project to My, as sections of nx: : My — X, i.e. “holomorphic verte-
brae”.

Since it is only semi-standard, we recall the following definition from [LVW] §1.1] of a
geometric structure that is intermediate between Stein and Weinstein structures.
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Definition 3.1. An almost Stein structure (J, f) on a smooth compact oriented manifold
W with boundary and corners consists of an almost complex structure J : TW — TW and
smooth function f: W — R such that A := —df o J is a Liouville form with J tamed by dA,
and A restricts to a positive contact form on every smooth face of 0W. (Note that we do not
require f|sw to be constant since W may have corners, but it is automatic that the Liouville
vector field dual to A is gradient-like for f and outwardly transverse to every face of 0W.)

It will be immediate that the construction outlined above can also be modified by replacing
the symplectic form dA with C dA + n for any closed 2-form 7 and a sufficiently large constant
C > 0; this makes the smoothing of 0F a weakly contact hypersurface, and makes it possible
to attach the model on top of weak fillings of (M, ). We will see that this trick only interferes
with the construction of the stable Hamiltonian structure and resulting J -holomorphic curves
if the symplectic structure is non-exact on the spine, so when this is not the case, we obtain
nontrivial moduli spaces in completions of weak fillings and will use them in §6] for the proofs
of Theorems [LLB], [LT0 and [LI3l After explaining the construction of the stable Hamiltonian
structure and holomorphic curves in §3] it will be the purpose of §lto extend the construction
to the case M # (&, and then to show that the data on M can be perturbed to a contact
structure isotopic to & and to explore the consequences of this. For genus zero pages, the
perturbation results in a finite energy foliation just as for planar open books (cf. [Wen10d]),

and this foliation will be used in §&l to prove Theorems [[.T7] [LT8 and [L.T9

Remark 3.2. Some higher-dimensional analogues of the double completion model (inspired
by an earlier draft of the present paper) appear in [Morl8,MoralMorb].

3.1. Collar neighborhoods and smoothed hypersurfaces. We will need to use the fol-
lowing notation originating in [LVW], §2.2].

We denote collar neighborhoods of the boundaries in X, My, and Mp by N (0%) =~ (—1,0] x
0%, N(0Msx) =~ (—1,0] x 0Myx, and N (0Mp) =~ (—1,0] x OMp respectively, where it is assumed
that 75! (N(0%)) = N (0Ms), and a trivialization of 7 : My — X has been fixed so as to
identify A (0Myx) with N'(0X) x S'. Fixing an identification of each component of 0% with
St then determines coordinates

(s,0) € (—1,0] x St < (—1,0] x 0% = N(d%) c X,
(s,0,0) € (—1,0] x ST x S' = (—=1,0] x My, = N (0Ms) < My,
which satisfy 7 (s, ¢,0) = (s,¢) € N(0X) on N(0Msx). Making suitable choices of collar
coordinates (¢,6) € (—1,0] x S! near the boundary of a fiber of 7p : Mp — S* and adjusting
the monodromy u by an isotopy so that pu(t,60) = (¢,0) in these coordinates (but allowing
a permutation of boundary components), we also identify each component of N (0Mp) with
St x (—=1,0] x S and thus define coordinates
(¢,t,0) € ST x (—1,0] x S* =« N(6Mp) ¢ Mp
in which
(3.1) 7p(p,t,0) =m¢pe St on S x(—1,0] x St < N(0Mp)
for some m € N. Here m is the multiplicity of wp at the adjacent boundary component of the
spine (see Definition [[2)), and it may have distinct values on different connected components
of N(0Mp). The coordinates defined on N'(0Msy) and N (0Mp) should be assumed consistent
with each other in the sense that the respective ¢- and #-coordinates match each other on
0Msy, = 0Mp.
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The model collar neighborhood of M < (—1,0] x M was defined in [LVW], §4.1] as
E = ((-1,0] x Mx) us ((—=1,0] x Mp),
where (—1,0] x N (0Mx) is glued to (—1,0] x N (0Mp) via the diffeomorphism
N(0Msx) N (0Mp)
(—1,0] x (Z1,0] x 005 % (=1,0] x (=1, 0] x OMp : (£, 5,2) — (s,,)

for x € My, = 0Mp. This object is depicted as the more darkly shaded region in Figure 2],
along with the vertical and horizontal boundaries

E :={0} x Mp c E, OpE = {0} x My c E,
and their respective collar neighborhoods
N(O,E) := (-1,0] x Mp c E, N(OhE) := (—1,0] x My c E,
whose intersection (a neighborhood of the corner 0,E n 0, F) we sometimes denote by
N(OwE N OLE) := N(0,E) n N(0nE) c E.
The definition of the gluing map ® gives rise to well-defined coordinates
(5,6,t,0) € (—1,0] x S* x (=1,0] x S ¢ N(8,E N O E)
on each component of N'(0,E n 0 F).
On the collars N (0, FE) and N (0,F) there are natural fibrations
N(OhE) = (=1,0] x (£ x §1) 15 S (£, (2,6)) — 7x(2,0) = 2,
N(2,E) = (—1,0] x Mp % (=1,0] x S*: (s,2) — (s, 7p(2)),
which can be written in the coordinates (s, ¢,t,0) on N (0,E n O, E) as
(3.2) (s, ¢,t,0) = (s,¢) € N(0X), I, (s, ¢,t,0) = (s,m¢) € (—1,0] x S*.

Since the fibers of these two fibrations match on the region of overlap, they give rise to a
well-defined vertical subbundle

VE :=kerTIl, or kerTIl, c TFE,

which on NV (0, E) is spanned by the vector fields d; and 0y. Figure [2is drawn so that the
fibers would be represented as vertical lines in the picture.

Observe that in light of the canonical identifications 0,F = Mp and 0, FE = My, the
boundary 0F = 0,F U 0, E has a canonical identification with M = Mp u My, though it
cannot be regarded as a smooth submanifold due to the corner at 0,E ndp E. We can however
smooth the corner to define a smooth hypersurface diffeomorphic to M. Specifically, choose
a pair of smooth functions F,G : (—1,1) — (—1,0] that satisfy the following conditions:

o (F(p),G(p)) = (p,0) for p < —1/4;
e (F(p),G(p)) = (0,—p) for p = 1/4;

. G’( ) <0 for p> —1/4;

F'(p) >0 for p < 1/4.
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Now let

M°c E
denote the smooth hypersurface obtained from 0F by replacing 0F n N (0,E n 0pE) in
(s, ®,t,6)-coordinates with

(3.3) {(F(p),6,G(p).0) | 6,0 5", 1 <p<1};
see Figure 2l We shall present M as the union of three open subsets
Mozl\\l/loz,uﬁgu]\w/g,
defined as follows (see Figure [)):
. ]\ZIO_-, is the complement of {t > —1/2} < N(0Mp) in 0,E.
e MY is the complement of {s > —1/2} in J,E.

. ]\\4/% is the smoothing region (B.3]), each of whose connected components carry a posi-
tively oriented coordinate system (p, ¢,6) identifying it with (—1,1) x S x S*.

The portion of 1\71% intersecting Mg carries coordinates (¢,t,0) that identify its connected

components with S! x (—1,—1/2) x S! and are related to the coordinates on Mg by p = —t.

Similarly, the overlap of ]T/I/g with ]\7% carries coordinates (s, ¢, 0) that identify its components
with (—1,—1/2) x S! x S! and satisfy s = p.
It will also be convenient to define a second hypersurface

M- cFE
by translating M a distance of —3/4 in both the s- and t-coordinates; see Figure Bl This

contains portions of the two hypersurfaces {—3/4} x My, < N(J,E) and {—3/4} x Mp
N (0, F) and a translated copy of ([B.3)) replacing the neighborhood of their intersection.

3.2. The double completion. The collar neighborhoods N (0%) < 3, N (0Myx) < My, and
N(0Mp) € Mp give rise to completions, constructed in each case by attaching cylindrical
ends and extending the coordinate s or t to take values in (—1,00): we shall indicate each of
these completions by placing hats over the relevant symbol, hence

S =¥ uey ([0,0) x 9%,
Ms; := Ms; Uy, ([0,00) x 0Ms)
Mp = Mp Uanr, ([0,00) x OMp),
and the collars become cylindrical ends whose components have coordinates
(s,0) € (—1,00) x ST < (~1,00) x 0% =: 1\7(52) <3,
(s,0,0) € (—1,0) x §* x §* = (=1,00) x oMy =: N (0Ms) = Ms,
(6,t,0) € S* x (—1,00) x S' < (=1,00) x dMp =: N(dMp) = Mp.
We will Cogtinue ‘Ec\) denote by ms and 7p the natural extensions ofAthe fibrations to ]\72 =
Y x S — ¥ and Mp — S! respectively. The double completion E of E is defined as
E:= ((~1,0) x Ms) Ug ((—1,00) x Mp),
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t . t

A~ . ~

N(0uE n 04 E) 5 N(onE) g N(2,E  04E)

N(0,E) N(0,E)

N(6,E)

o E

N(@nE) N(6,E r 6,E)
t
Iy
5 oY
N(0%)

FiGUurRE 2. The darkly shaded region is the model collar neighborhood E
(with boundary 0F = 0,F u 0pE and corner d,E n 0pF), together with the
smooth hypersurfaces M°, M~ < E defined in §3.11 The lightly shaded region
represents the rest of the double completion E 5 E as defined in §3.21
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MY
N(0,F)
O E

FIGURE 3. The decomposition M9 = ]\7]0_—, V) ]\7% U ]T/I/g

where @ is the obvious extension of the previous gluing map to a diffeomorphism

N(oMs) N(@Mp)

/_/% S f_/%
(—1,00) x (—1,00) x Mg 5 (—1,0) x (—1,00) x dMp,
(t,s,2) — (s,t,x).

This noncompact 4-manifold without boundary contains E as a bounded subdomain, and the
collars N (0, F) and N (0, E) are then bounded subsets of the enlarged subsets

N(0,E) = (—=1,0) x Mp,  N(E) := (—1,0) x Ms,

with the s- and ¢-coordinates now taking values in (—1,00). Their intersection is the so-called
diagonal end

N(0,E n 04E) := N(3,E) n N (OnE),

whose connected components carry coordinates (s, ¢,t,6) identifying them with (—1,00) x
St x (=1,00) x S1. The fibrations IT;, and II, have natural extensions

N(@hE) = (—1,00) x (S x §1) 25 S+ (£, (2,0)) = m5(2,0) = 2,
N(2,E) = (=1,00) x Mp 1, (=1,00) x St : (s,2) — (s, 7p(z)),

hence I (s, ¢,t,0) = (s,¢) and IL,(s, ¢,t,0) = (s,m¢) on the diagonal end. We denote the
resulting vertical subbundle by VE < TE. Figure 2l shows the complement of F in F as the
lightly shaded region.
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3.3. Symplectic structure. The data on E defined in this section constitute an enhance-
ment and extension of the Liouville structure already defined on E < E in [LVW] §4.1].
Fix a complex structure j on ¥ that takes the form

1 N
o1 5
JOs m6¢ on N (0%),

where for each component of N (0X), m € N is the multiplicity that appeared in (B.1); recall
that this number may differ on distinct connected components of N (0%). Next, fix a j-convex
function ¢ : S — R with

o(s,4) =e*  on N (o).
Such a function can always be found by starting from a Morse function on ¥ with critical
points of index 0 and 1 and then postcomposing it with a sufficiently convex function, see
e.g. [LW11l Lemma 4.1]. This gives rise to a Liouville form

0:=—dpoj

on ¥ with

oc=me*dp on N(I%).
We will also use o to denote the pullback of this Liouville form under the trivial bundle
projection IIj, : ./\A/(ahE) — 3, and since wp(¢,t,0) = m¢ on JV(@MP), o extends globally to
a 1-form on E satisfying

o=¢’drp on ./\A/(&,E),
where we are abusing notation slightly by using 7p : N (0,F) — S to denote the composition
of the fibration 7p : M\p — 81 with the obvious projection ./\A/'(ﬁvE) = (—1,0] x ]\/Zp — ]\/Zp,
hence defining drp as a real-valued 1-form on A/ (O, E).

Next, choose a 1-form A on M\p such that d\ is positive on all fibers of wp : ]\/Zp — ST and

A=¢c'dd on N(dMp).
Such a 1-form can easily be found by first defining it on a single fiber and then acting on
it with the monodromy and interpolating (see e.g. [Etn06, Theorem 3.13]). We will use the

same symbol to denote the pullback of A via the projection ./\A/(avE) = (—1,0) x Mp — Mp,
and it then extends to a global 1-form on E such that

A=¢c'dd on N(3,E).
Since d)‘|VVAV > 0 by construction, one can regard \ as a fiberwise Liouville form (cf. [LNVW] §2])
on E’, and we observe also that since )\|T(ah g) = db, its restriction to 0E = d,E U 0pE can
also be regarded as a fiberwise Giroux form.

For applications in the almost Stein category, it will be convenient to add another condition
on the construction of A\. Pick a smooth family Jg, of complex structures on the fibers of
Tp : M\p — 81 such that

Jandr = 09 on N (0Mp).
On each individual fiber, the space of smooth Jg,-convex functions that match e? in the collar
near the boundary is convex. One can therefore use a partition of unity to construct a smooth
function fgp : M p — R whose restriction to each fiber has this property, and we are free to
assume

(3.4) )“VE = —dfp © Jﬁb’vﬁ'
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We can now apply the Thurston trick as described in [LVW] §2.1]: for any constant K > 0,
we define a 1-form Ax by

A = Ko+ A\
Then there exists a constant Ky > 0 such that d\g is symplectic everywhere on E for each

K > Ky. Note that the unboundedness of E does not pose any problem here due to the
precise formulas we have for A near infinity (cf. [LVW], Remark 4.1]). In particular, we have

(3.5) Ak = Ko+ et df on N(0,E), and A = Ke® drnp + A on N'(0,E),
hence
(3.6) A = Kme®dg + e dd  on N(3,E L 0 E).

We will assume that the condition K > K holds from now on, and we will occasionally also
enlarge K in order to satisfy extra conditions (e.g. for Lemma [3.3] below). Since dAg is now

symplectic, there exists a Liouville vector field Vx on (E,dA\k) defined via the condition
d g (Vi) = Ak.

From (B.3) we find

(3.7) Vic=Vo+0 onN(E)=(~1,0) x & x S,

where V5 denotes the Liouville vector field on 3 dual to o; in particular, V, = ds on the
cylindrical end N (0X), hence

Vik =05+ 0 on N(3,E n O4E).
Lemma 3.3. If Ko > 0 is sufficiently large and K > Ky, then ds(Vi) > 0 holds on N'(3,E).

Proof. 1t suffices to show that the restriction of A\x to {s} x Mp for cach s € (—1,00) is a
positive contact form, or equivalently,

ds A g AdAg >0 on J{\/(&,E).
Since o = e dmwp on A7(8UE), we compute
ds A Mg AdAg =ds A (Ke®drp + X\) A (Ke®ds A drp + d))
1

= Ke® (ds Adrp AdX+ Toos

ds A A A d)\> ,
and see that the first term is a positive volume form since d)"V 7 > 0, while the second is
bounded with respect to any s-invariant metric and thus uniformly small if K is large. O

The lemma implies that for any pair of constants sg,tg € (—1,0), the boundary of the
region {s < so, t < to}  E is a contact hypersurface in (E,dAx) after smoothing the corner.

For applications to weak fillings, we will also need to allow certain cohomological pertur-
bations to the model (EA] ,dAk). Fix on M a closed 2-form 7 that has support in the interior
of Mp\N(0Mp), so pulling back via the projection N (9,E) = (—1,0) x Mp — Mp defines
n as a closed 2-form on E that vanishes in A (0pE) and is uniformly bounded on N (0L E)
for any choice of s-invariant metric. In the following, we say that an oriented hypersurface
endowed with a co-oriented contact structure in a symplectic 4-manifold is weakly contact
if the restriction of the symplectic form to the contact structure is positive.
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Lemma 3.4. Given K > K, there exists a constant Co > 0 such that for all C = Cy, the
2-form W'y 1= C d\g + n is symplectic on E and for each s € (—1,), the hypersurface

OF = {s} x Mp c E

with contact structure & := ker <)‘K|T(65E)) is weakly contact in (E,w).

Proof. This is mainly a matter of replacing dA with dA\ + %77 and then repeating the usual
calculations carefully enough to make sure that nothing goes wrong as s — . The nonde-
generacy of wf, on N (0,E), for instance, follows by computing

1 1 1

= Ke® |2ds Andmp A d)\—i—l + ! d)\—i—l A d)\—i-l

= P 077 Kes 077 077 9
in which the first term in the brackets is uniformly positive for sufficiently large C' > 0 and
the second is bounded with respect to any s-invariant metric. The weak contact condition

for (é’f)EA?, ¢5) follows by a similar modification of the proof of Lemma 3.3 showing

édS/\)\K/\ij:dS/\)\K/\ <d)\K+é77) >0 on./\A/’(é’vE).
]

For the remainder of §3|, we fix K > Ky, C > Cj as in the above lemma and consider the
rescaled symplectic form

1
wp = 76 ( ="

on E. The scaling by 1/KC has no deep significance but will be convenient for technical

1
Cd g + 1) :da+fd)‘+

reasons when we talk about stable Hamiltonian structures below. Since 7 vanishes in A/ (OnE),
Vi is also a Liouville vector field for wg in this region. Then the fact that Vx = 05 + 0; in
the diagonal end implies that the boundary of any region of the form {s < sg, ¢ < to} < E
can be made into a weakly contact hypersurface in (E, wg) by smoothing the corner, with the
contact structure defined by restricting Ax. Two specific examples of smooth hypersurfaces
were defined in this way at the end of §3.1k we define contact forms and contact structures
on MY and M~ respectively by

a = )\K‘TMO’ & :i=kera® c TMP,

a = )\K|TM_, & :=kera” cTM™.

This makes (M ~,¢_) and (MY, &) into weakly contact hypersurfaces in (E, wg), and the def-
inition of A implies that both are (after suitably identifying M® and M~ with M) supported
by the spinal open book 7, hence both are isotopic to &.

3.4. Stable Hamiltonian structure. We now endow the hypersurface M° E with a
stable Hamiltonian structure that is related to its contact structure &£ but will be better
suited for finding holomorphic pages in its symplectization. Fix a smooth cutoff function
B :(—1,00) — [0,1] satisfying

e B=00n (~1,-1/2);
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FIGURE 4. The stabilizing vector field Z transverse to M c E.

e 5=1on[-1/4,00);
e 5/ >0 and supp(f’) < (—1/2,—1/4).
Now consider the vector field on E defined by (see Figure [])

. {Vg +B(1)a,  on N(OwE),

0Os everywhere else.

Here again V,, denotes theALiouVille vector field dual to oon f], so we observe that Z = Vi on
the region {t > —1/4} < N (0 F). Everywhere else in N'(0,E n 0, F), we can plug in V,, = 05
and thus write Z = 05 + 8(t)d;. This vector field is obviously transverse to M?; we will now
show that it is also a stabilizing vector field in the sense of §2.1 and thus makes MY into a
stable hypersurface.

Lemma 3.5. The vector field Z is a stabilizing vector field for M° in (E,wE).

Proof. This is immediate in the region where Z = Vi, since Vi is Liouville for wg in that
region and all Liouville vector fields have the stabilizing property. It is similarly immediate
in the region where Z = ds, as the hypersurfaces obtained by flowing ¢,F along 05 each
have constant s-coordinate and wpg thus restricts to each of them as % d\ + KLCn, defining
a characteristic line field that does not depend on s. It remains to consider the region
—1/2 <t < —1/4 in which Z = 05 + ((t)0:, and the key point here is that the characteristic
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line field is exceedingly simple: we have wg = % dAg = me’dsndp+ %et dt A df in this region,
while the hypersurfaces in question still have constant s-coordinate, hence the characteristic
line field on each is spanned by dy4, a vector field that is preserved by the flow of Z. O

The lemma implies that the pair Ho = (2o, Ag) defined by
QO = wE’TMO’ AO = LZWE‘TMO

is a stable Hamiltonian structure on MY, cf. §.11 We will denote the corresponding oriented
hyperplane field by Zg := ker Ag € TM° and the Reeb vector field by Ry, where by definition

Qo(Ro,-) =0, Ao(Ro) = 1.

One can compute the following explicit formulas for Ag, 29 and Ry in the regions M 9 M/g, 1\71% c
M defined in §3.11 (cf. Figure [)).

On MY < 0,FE = ¥ x S, Z matches the Liouville vector field Vi, which is wg-dual to
Lk, hence
KNAKS

(Q0,Ao) = <? da ,?a()) = (da, % do + a> on M.
It follows that Ry is a suitably rescaled version of the Reeb vector field for o, that is,
Ry=Kdy on M/g
On ]\7]0_—, c 0, F = Mp, Z = 0, and thus

(QO7A0) - <? d\ + K—Cna dﬂ-P) on MP7

so dAy = 0 on this region and thus =g is integrable; indeed, the integral submanifolds of =
are simply the fibers of 7p : Mp — S'. The Reeb vector field can be written as

(3.8) Ry = e?l on M?Y,

where we denote by eg1 € T'S! the canonical unit vector field on S = R/Z and use the
superscript “#” to denote its horizontal lift with respect to the connection on 7p : Mp — S!
defined as the (C d\ + n)-symplectic complement of the vertical subbundle. In each collar
St x (=1,-1/2) x St = N(0Mp) n M/]%, we can write drp = md¢ for the appropriate
multiplicity m € N and use (¢, t, 0)-coordinates to write

(3.9) Ry = %845 on M% ~ N (aMp).

Finally, using the coordinates (p, ¢,6) € (—1,1) x S* x S on connected components of ]T/I/%,
Qo and Ag are determined by the functions F' and G that were chosen in §3.1] for smoothing
the corner, as well as the cutoff function 8 in the definition of Z: we have

Qo = me" P F (p)dp A do + ieG(’))G/(p) dp A db,
K

(3.10) .

Ao = me" ) de + - B(G(p)) db,

which leads to

_ 1 _ L Feo o~ Glo)
B R gt agy (e G5 KOO0
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3.5. Nondegenerate perturbation. The stable Hamiltonian structure Ho = (0, Ag) de-
fined above on MY has the unfortunate property that the orbits of Ry in Mg are degenerate.
We will follow the standard procedure for perturbing to get nondegenerate orbits, which de-
pends on a choice of Morse function on the space parametrizing the orbits, in this case X.
Choose a smooth function
H:¥ — [0,00)
such that
(1) H is Morse outside of N (0%);
(2) On N (0%) in coordinates (s, ¢), H depends only on s, and it satisfies d;H < 0 except
on a smaller neighborhood of the boundary with closure in the region {—1/4 < s < 0},
where H vanishes.

We shall denote by

Critpy(H) € 2
the finite set of Morse critical points of H; this excludes the critical points near 0% where H
vanishes. Extend H to a smooth function

H: M° - [0,0)

that vanishes on ]T/I/Ig and satisfies fAI(z,H) = H(z) on ]T/I/g c ¥ x S' and f-\l(p, ¢,0) =

H(F(p),¢) on ]\7% Now if ®7, denotes the flow of Z for time 7, we fix a small constant € > 0

and observe that the perturbed hypersurface (see Figure [
M* = {(I)ZH(:B)(CE) ek ‘ x € MO}

is still stabilized by Z; indeed, M still matches 0, F in the region where Z is not Vi, and
everywhere else Z is Liouville and manifestly transverse to M*. The obvious diffeomorphism
of M° to M+ defined by flowing along Z induces a decomposition

Mt = ]\W/g U M/I+ UM ;;.'
corresponding to the decomposition MY = ]T/I/g V) ]T/I/% V) ]T/I/}g that we defined in §3.11 and we

will use the same coordinate systems on these subsets that were used on ]T/I/g, ]T/I/% and ]\7]0_—,.
Let

Hy o= (Q4,A4)
denote the stable Hamiltonian structure induced by Z on M™, with oriented hyperplane
field =, and Reeb vector field R;. Since Mg is a contact hypersurface and M; is ob-

tained from it by flowing along a Liouville vector field, (2;+,A;) on Z\W/g takes the form
((1/K)da™,(1/K)at), where a™ is a contact form given by

(3.12) o = Mgl = eHa0 = eEﬁI(KU + df).
b))
The resulting perturbed Reeb vector field takes the form
(3.13) Ry = e (1 + co(Xp)) Koy — eXy) on My,
where Xy denotes the Hamiltonian vector field of H on (X, do), determined by
do(Xp, ) = —dH.

Notice that for some large threshold 7' > 0 that goes to o0 as ¢ — 0, all periodic orbits up to
period T' in Myt have image {z} x S? < £x S for some z € Crity(H). We will generally fix the
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FIGURE 5. The perturbed stable hypersurface M+ < E.

value of K and assume € > 0 is sufficiently small to arrange this whenever convenient; we can
then also assume without loss of generality that dy and =, are transverse, so the projection

Try : TM;r — T'Y restricts to =, as a fiberwise orientation-preserving isomorphism

_ T

=
On ]\7;, the formulas ([B.I0) and (BI1]) can be adapted to write ., A, and R, as
1
Qy = mef*PF (p)dp A do + §6G+<P>G’+ (p)dp A db,

1
(3.15) Ay =me" P dg =BG (p)) do,

1 1
Ry = L P06 () o, + Ke GO R a),
' ﬂ<G+<p>>F'+<p)af+<p>( m° +(p) 0y + Ke (p) 0o

where the perturbed versions of the functions F' and G are defined by
Fy(p):=F(p) +eH(F(p),"),  G+(p):=G(p) +H(F(p),").

Let us file away for future use the following detail, which results from the particular conditions
we have imposed on G and H.
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Lemma 3.6. The function G4 satisfies G'_(p) < 0 for all p € (—1,1), hence by (B.I5),
dp(Ry) # 0 on M. O

The region ]\7; is identical to Mg, and here (Q4,A1) = (Q,Ag), with R also given by
EF) and (B9).

3.6. The cylindrical end. As was discussed in §2.1] one can use the Moser deformation trick
to show that M* has a collar neighborhood in (F,wg) that can be identified symplectically
with

(3.16) ((=6,6) x M*,d((e" —1)Ay) + Q)

for sufficienlty small § > 0, with r denoting the coordinate on (—49,d). This is true for
arbitrary stable Hamiltonian structures, but it will be convenient to take advantage of a few
properties of our example H, = (£4,A) that are nicer than the general case. To start
with, 2, = ker A, is everywhere either a positive contact structure or a foliation, hence it
is a confoliation; equivalently, Ay A dA; > 0. As a consequence, the collar (B.J6) remains
symplectic if we replace (—d,0) x Mt by an infinite half-cylinder:

(3.17) ([0,00) x M*,d((e" — 1)As) + Q).

Observe that this reduces in regions where 2, = dA, to the usual half-symplectization of a
contact form, ([0,00) x MT d(e"Ay)). As it turns out, a half-cylinder of the form BI7) is
already present in the model (F,wg). Denote

A~

N (OF) := {q)}(x) ek ‘ T>=0, xEM+} cE,

with ®7, again denoting the flow of Z for time 7. This is the unbounded closed subset of E
with boundary M™; see Figure [
Lemma 3.7. The region ./\A/'Jr(ﬁE) is the image of an embedding ¥ : [0,00) x M+ — E defined
on [0,00) x (1/4,1/2) x St x ST < [0,00) x M by
(3 18) \II(T’ P ¢a 9) = (T’ Qb, —p+ log[(er - 1)5(7p) + 1]? 9)

' e (—1,0) x S x (—=1,0) x §* = N(6,E n 0, E),

and everywhere else by
U(r,z) = @ (x),
Moreover, ¥*wgp = d((e" — 1)Ay) + Q.

Proof. 1t is straightforward to see that ¥ is a smooth map whose image is N +(0F); indeed,
since Z = 0s + B(t)06: on the diagonal end, the definition in (B8] matches the flow of
Z for time r on regions where S(—p) is 0 or 1, which excludes only a compact subset of
{p € (1/4,1/2)}. The main thing to verify is thus the formula for ¥*wpg. Consider first

(r,p, ¢,0) € [0,00) x M with p € [1/4,1/2]. Then F,(p) = 0 and G (p) = —p, so we have

Ay = Kmdo + %e_pﬁ(fp) df and Q, = f}(e_p dp A df. Meanwhile, since the image of ¥

on this region lies in ./\A/'(ﬁvE N OpE), we have wg = % d\g and A\g = Kme®do + et df, hence
U g = Kme" dp + e P[(e" — 1)B(—p) + 1] d6.

From these formulas, a quick computation shows U*wp = £ d(V*Ag) = d((e" — 1)A4) + Q4.
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o E

FIGURE 6. The grid represents the half-cylinder [0,00) x M* x~ -/\7+ (OF)
E. The darkly shaded region is the set V < FE defined in §3.7] where the

holomorphic vertebrae live.

For z € M/; c 0,E, we have Z = 0, and thus ¥(r,z) = (r,z) € N(6,E), so writing
wi = & d\g + 2an with Ax = Ke® drp + A gives

1 1 1 1
\I/* [ \I/* —\II* — r _ -
WE Kd( )\K)-i-KC n d(e d7TP+K)\>+KC?7
. 1 1
Id(e —1)/\d7TP+?d)\+K—CT]
This also reproduces d((e" — 1)Ay) + Q4 when we plug in Ay = Ay = drp and Q = Qo =

+dX\ + 2o

On the remaining regions, Z is the Liouville vector field Vx, and A, and Q. match the
restrictions of %)\ k and wg = % d\g respectively to TM ™, thus

1
U [ =Xk | =€e"A
(K K) € Ny,

implying ¥*wp = d(e"A;) = d((e" — 1)A+) + dA;. The desired formula follows since Q2 =
dA 4 on this region. O
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Throughout the following, we will omit ‘the embedding ¥ from the notation and simply
identify [0,00) x M with the subdomain NV, (0F) c E.

3.7. Almost complex and almost Stein structures. We shall now choose an almost
complex structure from the space J(H) of R-invariant structures compatible with H (see
§2.2). Any J, € J(H) determines an wg-compatible almost complex structure on [0, 0) x
M* = J\A/Jr(@E), and we will choose J; € J(H) to satisfy some additional conditions that
will be convenient for our main applications. It suffices to specify an orientation-preserving
complex structure on the subbundle

J+ . E+ — E+
over each of the regions ]\7; , ]T/_I'/%r and M ¥, as the translation-invariance condition and
J(0r) = Ry then determine J; € J(H ) uniquely.
Recall that in §3.3] we endowed X with a complex structure j satisfying

1
1 0. =
(3 9) ]55 ma¢

on its cylindrical ends, where the multiplicity m € N may be different on distinct ends. Over
]\\4/; c ¥ x S!, define J, : 2, — =, as the pullback of j under the fiberwise isomorphism
E. — TY defined via Ty, (see (3.I4])). This makes J invariant under the S'-action defined
by translating the #-coordinate.

On ]T/I/IJ;, which is canonically identified with an open subset of Mp c M = 0F, choosing
J+ € J(H4) is equivalent to choosing smoothly varying complex structures on the fibers of
7p : Mp — S'. We already made such a choice when \ was defined in §3.3t set

J+|E+ = Jﬁb on M;;.r,
which has the property that
(3.20) Jy0r =0 on N(0Mp) ~ M.

Now using the coordinates (p,®,0) € (—1,1) x S! x S on each component of M/f, the
formulas (B3] imply that =, is spanned by vector fields of the form

V1 = 0p, vg = a(p)0p + b(p)0s
for a unique choice of smooth functions a,b : (—1,1) — R such that Ay(v2) = 0 and
Q4 (vi,v2) = 1. In MF n Mg, we write s = Fi.(p) = p+eH(p,-), t = G1(p) =eH(p,") = 0
and (G4 (p)) = 1, so the fiberwise isomorphism =, — T% takes v; and vy to positive
multiples of 0s and 04 respectively, hence by [B.19), we have

(3.21) Jiv1 = h(p)va

on M; N ]\7; for a suitable choice of smooth positive function h. Likewise, on M; N ]\7;,
writing s = Fy(p) = 0, t = G4(p) = —p and B(G4+(p)) = 0 gives A, = md¢p and Q; =
—%ePdp A df, so vo Teduces to the form b(p)dp with b(p) < 0. It follows that v; and v are
negative multiples of d; and dp respectively, implying via (3.20) that (3.21]) is again valid for

—_—

a suitable choice of positive function h(p). We can thus use (B.2I) to extend J; : 54 — =
over the rest of ]\\ZEr by extending h arbitrarily to a smooth positive function on (—1,1).
For certain computations we will find it convenient to impose one further condition on the
function h(p) for p € (1/4,1), in particular on the “interpolation” region {1/4 < p < 1/2}.
Here we have A = md¢ + e B(—p)df and thus Ay (v2) = ma(p) + e *B(—p)b(p) =0,
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implying b(p) # 0, or in other words, v, must always have a nontrivial dg-component. We
are therefore free to choose h(p) to produce the obvious extension of (8.20) into this region;
since 0, = —0;, (B.21]) then becomes

(3.22) J10p = —0p + ﬁe_pﬁ(—p)% on{l/d<p<l1}c ]T/_I'/IJr

With the choices above in place J+ € J(H4) now determines an wp- compatlble almost

complex structure on N+(8E) c E which will next be extended to the rest of £. In order to
obtain holomorphic vertebrae, we start by making a careful choice of J, on the open subset
(see Figure [6])

Vi=(-1,-1/2) x £ x S' « N(0,E) c E.
Writing tangent spaces at points (¢, z,6) € V as T(t,z,g)EA] “T.5® Span(dy, 0g) we set
I (t,2,0)| 5 = 17(2), Ji(t,z,0)0; = 0Op.

Note that since 0, = d; and Ry = Ry = %8? = %8(15 onVn J\A/Jr(@E), this is consistent with

the existing definition of J, on J{\/Jr(&E). The following observation is immediate.

Proposition 3.8. For each connected component S S and each (t,0) e (=1,-1/2) x S,
the surface

{tyxSox {8} cVcE
s the image of a properly embedded J, -holomorphic curve whose intersection with the cylin-
drical end ./\7+(8E) is a union of positive trivial half-cylinders over simply covered closed orbits

Of R+. O

The J;-holomorphic curves in the above proposition will be referred to henceforward as
holomorphic vertebrae.
A natural extension of J, into the region

(—1,0] x M}; = N(0,E)

is defined by requiring J to be invariant under the flow of 05 on (—1,0) x M ; N (OuE).
Note that this is also compatible with previous choices on the intersection of this region
with V. R R

At this point, we have defined J, everywhere on E except in the region of N'(d, F) bounded
between {t = —1/2} and M™; this is roughly the region between the dark and light shading
in Figure[6l The purpose of the next two lemmas is to find an extension of J, to this region
that will also fit into an almost Stein structure.

Lemma 3.9. On the region where J, has been defined so far, it satisfies
—dfyoJp = Ay
for a suitable smooth function f, : E >R and 1-form Ay on E such that:

(1) dX\y is symplectic and compatible with the orientation of EA?;

(2) df+ (V') > 0 everywhere, where V' denotes the vector field dual to Ay, i.e. defined by
dA (V') = Ay

(3) Ay = £Ak on N(0nE), and the restrictions of Ay and LAk to the vertical subbundle
VE match everywhere;

(4) Ay restricts to M~ as a contact form inducing a contact structure isotopic to &_.
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Proof. We begin by finding a function f, that satisfies —dfy o J, = %)\K, or equivalently
%)\ koJ, = dft’/ on theA regions where J, has been defined so far.

On [0,00) x M < N, (0FE) this is easy because, as we saw in the proof of Lemma 3.7,
%)\K = e"A,. Since any J; € J(H) automatically satisfies

(A1) 0 Ty = d(e),
we are free to fix f := e” on this region.

On [0,00) x ]\\ZEr c J\A/Jr(@E) the same computation is valid and produces f, = e wherever
LAk = e"Ay, which is still true for p < 1/4 but ceases to be true in {1/4 < p < 1}, so here
a more careful computation is required. Since Fy(p) = 0 and G4 (p) = —p in this region, we
have Q, = —%e*p dp A df and Ay = mdo + %e*pﬂ(—p) df, hence R, = %845, and J, is
determined by (3.:22). In the mean time %)\ K = me®do+ %et df, with the s and ¢ coordinates
related to r and p via the embedding defined in Lemma [B.7] namely

s=r, t=—p+log[(e" —1)B(—p) +1].

Evaluating %)\ K © J4 on the unit vectors in (r, p, ¢, #)-coordinates then leads to the formula

1 1 _
?)\K oJy =e"dr— ?e P11 = B(—=p)] dp = df 4,
where fi :=e" — %g(p), with

p

g(p) == f e 1 - B(—=x)] de.

0
The details of g(p) are unimportant beyond the following two observations: first, it is non-
negative, and strictly positive for all p > 1/2; second, its derivative for p > 1/2 is e™”, so
using the alternative coordinates s = r and ¢ = —p on this region, we can rewrite f, as
e —¢)

fr=¢ +I1((

for some constant ¢ € R such that e — ¢ < 0 for all t e (—1,-1/2].
The above function can now be extended over V using the j-convex function ¢ : I R,
which we recall satisfies —dp o j = o and ¢(s,$) = e® on N (0%). Indeed, the function

o Lt
f+-—SD+K(€ c)

on V has the property —dfy o J, = o + %et df = %)\K- Moreover, since ¢ is subharmonic
and equals 1 on 0%, it is strictly less than 1 on the interior of ¥, implying that f, < 1 on the
portion of % disjoint from ./\7+((9E). Since Vi = V, + &, it follows that f, can be extended
over the rest of A7(8hE) satisfying df + (Vx) > 0.

We will next extend fy as a J-convex function to N (3, E)\N (3, E n &, E), which includes
the rest of ./\A/'Jr(ﬁE). For this we can use the Thurston trick for almost Stein structures, as in
[LVW,, §2.4] or the appendix of [BV15]. Recall that in §3.3] we chose a function fgp : Mp — R
that matches e’ in N (0Mp) and is fiberwise J,-convex; composing this function with the

projection ./\A/'((%E) 5 (—1,00) x Mp — Mp gives a function
fﬁb : (—1,00) X Mp — R
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such that dsfap =0, fan(s, ¢,t,0) = et for t € (—1,—1/2] and the 1-form
Afib 1= —dffib © J4+

is fiberwise Liouville (outside the region {t > —1/2}, which we are free to ignore for this
discussion). Moreover, the restriction of Agj, to the vertical subspaces matches our construc-
tion of A from §3.31 Now observe that since 0, = 0s and J,0, = R4 is a horizontal lift of
the unit vector field in S', the projection II, maps the region in question holomorphically to
(—1,00) x St with its standard complex structure i, thus

—d(e® oIl,) o Jy = II}(—d(e®) 0 4) = e*dll, = o.
Extending f by fi =e® + %fﬁb, it follows that

1
Ay 1= —dfyoJy = —A
+ If+ o Jy U+K fibs

and by the usual application of the Thurston trick as in [LVWLBV15], dA\; is symplectic if
K > 0 is sufficiently large. We are free to assume this, since none of the other data on the
region in question depends on the value of K. Note that by the same argument that was
used previously for Vi (see Lemma [3.3]), we can also assume after increasing K > 0 that the
dual Liouville vector field V' satisfies ds(V’) > 0 everywhere on N (0uF). Since Ay = %)\K

in N (0RE) by construction, we also have V' = Vi in this region, so that V' is manifestly
transverse to M ~, implying that A, |7/~ is contact. Moreover, this contact form on M~ has
been constructed in the same manner as a Giroux form for the spinal open book, implying
that the induced contact structure is isotopic to £_. O

The next result is of a much more general nature.

Lemma 3.10. Assume (W,w) is a smooth symplectic manifold with a Liouville vector field V
that is nowhere zero, and denote the dual Liouville form by A (i.e. d\ = w and w(Vy,-) = ).
Suppose f: W — R is a smooth function satisfying df (V) > 0. Then

E:=kerdf nker A c TW
s a smooth symplectic subbundle of codimension 2, and there is a natural homeomorphism
j()‘,f) - j(g,W) S > J|§,

where J (A, f) denotes the space of w-compatible almost complex structures J on W satisfying
A= —df oJ, and J(§,w) is the space of compatible complex structures on the symplectic
vector bundle (§,w). In particular, it follows that J (X, f) is nonempty and contractible.

Proof. The fact that A is Liouville and df (V)) > 0 implies that A restricts as a contact form
to each level set of f; the subbundle £ is then the union of all the resulting contact structures
in the level sets. We claim first that any J € J(\, f) preserves £ and thus has a restriction
J]e in J(§,w). Indeed, if A = —df o J then v € ker A implies Jv € kerdf and v € kerdf
implies Jv € ker A, so this proves the claim. Now let Ry denote the unique vector field on W
satisfying
df (Ry) =0, ARy =1, dA(Ry,-)|e =0,

i.e. Ry restricts to each level set of f as the Reeb vector field determined by A. Then the
relation A = —df o J and the fact that w is J-invariant (since J is w-compatible) imply that

the vector field -~ JV) satisfies the same conditions that define Ry, hence

df (V)
JV\ = df (Vy)Ry.
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This relation defines the inverse of the map J(A, f) — J(§,w) : J — J|¢. O

Using the Liouville form Ay and Lyapunov function f, on E supplied by Lemma [3.9] we
can now use Lemma to extend J, over the rest of E such that Ay = —dfy oJy and
J4 is d\y-compatible, hence fy is J,-convex. Note that Lemma [3.10] allows for considerable
freedom in the choice of this extension, and we shall only need to impose one further condition:

Jy is S'-invariant on N'(3,E) = (—=1,0) x & x S,

Here S'-invariance means invariance wiﬁh respect to the coordinate # € S'; the assumption
is already satisfied on the portions of N (0, F) where J, has been defined so far, and it is
possible on the rest because A, Y and M are all Sl-invariant objects, and so is f without
loss of generality.

For applications to almost Stein fillings, we will take n = 0 and our symplectic form
on E is thus the exterior derivative of the Liouville form %)\K- We now have a minor
headache however because the model almost Stein structure (J, f1) arising from the above
construction produces another Liouville structure A, = —dfoJ,, which is in general different
from %)\ K, in particular they differ on N (0uE). In order to define a useful notion of energy
for holomorphic curves in this setting, we will need the following interpolation.

Lemma 3.11. There exists a Liouville form © on E with the following properties:
(1) © =Xy on E;
(2) © = £Ag on [T,0) x MT < Ny (OF) for T > 0 sufficiently large;
(3) dO© tames J.

Proof. We set © = A\, on J\A/(ﬁhE) since Ay and %)\K already match on this region. On

A~

N (0,E), choose © to be of the form

O = [1- g(s)] M +g(s)As

for some smooth function g : (—1,00) — [0,1] with g(s) = 1 for s < 0 and g(s) = 0 for s
sufficiently large. We then have

(3.23) dO = [1 — g(s)] %d)\K +g(s)dAs + () ds A <>\+ - %)\K> .

Recall that J, is tamed by both %dAK and dA.; it is compatible with the former by con-
struction, and it is tamed by the latter because A\ = —df, o J, where f, is J;-convex. It
follows that the interpolation forming the first two terms in (3.23]) is also a nondegenerate
2-form taming J,; moreover, the construction of A\; and A guarantees that it tames J, in
a uniform way as s — o0. It therefore suffices to choose g changing slowly enough so that
the ¢'(s) term in ([B.23]) does not ruin nondegeneracy, and this can be done at the cost of
achieving the condition g(s) = 0 only for s > T with T sufficiently large. U

3.8. Holomorphic pages. The main advantage of choosing J, compatible with the stable
Hamiltonian structure H; = (£4,A;) instead of contact data is that the pages of 7 can
be lifted to properly embedded J,-holomorphic curves in J\A/Jr(@E). Since J, on J{\/Jr(@E) =
[0,00) x M™* belongs to J(H.), we can equally well regard J; as an R-invariant almost

complex structure on R x M, and we will now use it to construct a .J,-holomorphic foliation
on R x M.
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Denote by T F, the 2-dimensional distribution on R x M ™ defined by

= for x € MIJ;,

TF. ra) — >~ ~
TF ) {Span{é’g,J+é’g} for x € M} u M.

This distribution is smooth and J,-invariant; indeed, = is necessarily J,-invariant since
J, € J(H,), and since =, matches the vertical subbundle of 7p : Mp — S* on ]\\4/;, it also
is spanned by Jdy and J, Jy in the collar where the 6-coordinate is defined. It is also easy
to see that T'F, is R-invariant, and it is integrable: the latter is obvious in R x M ;5 , and
everywhere else it follows from the fact that J, is S'-invariant, as this implies

(3.24) [0, J+0p] = 0.

Denote by F. the set of leaves of the foliation on R x M™ tangent to T'F,. The next result
shows that each of these leaves is the image of an embedded asymptotically cylindrical J, -
holomorphic curve as defined in §2.21 hence F, is a finite energy foliation in the sense of
Hofer-Wysocki-Zehnder [HWZ03]. In the following, we use the Riemannian metric

<.’ > c= dO’(,j)
on ¥ in order to define the gradient vector field VH of H : ¥ — [0, ). Observe that on the
collar N (0Y), since ¢ = me®d¢ and jos = %6(15 for the appropriate multiplicity m € N, we
have do(-,j-) = e° (ds ®ds +m?do® d¢), while H(s,¢) depends only on the s-coordinate,

thus VH points in the s direction, orthogonal to 0. The Hamiltonian vector field Xz
determined on (X,do) by H can now be written as

(3.25) Xy = jVH.

Proposition 3.12. The leaves of the R-invariant foliation F, are the images of asymptot-
ically cylindrical Jy-holomorphic curves. In fact, each leaf of this foliation is one of the
following:
(1) A trivial cylinder R x v, where v € M™ is a closed Reeb orbit of the form v =
{z} x St < ]\7; = X x St for some z € Crity(H).
(2) A holomorphic gradient flow cylinder, admitting a (not necessarily holomorphic)
parametrization u : R x S < R x M™* of the form

u(s,t) = (a(s),l(s),t) e R x ]\\4/; cRxX xS

where a : R — R is a strictly increasing proper function and £ : R — ¥ is a solution
of the gradient flow equation (= VH (L) approaching two distinct critical points of H
as s — .
(3) A holomorphic page, which is a connected and properly embedded submanifold
formed as a union of subsets of the following type:
o {s} x PcRx ]\\4/;5, where s € R is a constant and P < ]T/I/; is the portion of a
page of p : Mp — S lying in ]T/I/;;
o Annuli admitting (not necessarily holomorphic) parametrizations u : (—1,1) x
Sl < R x M™* of the form

u(s,t) = (a(s),s,6,t) e R x (—1,1) x ST x ST = R x M/;

for some bounded functions a : (—1,1) — R and constants ¢ € S*;
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e Half-cylinders admitting (not necessarily holomorphic) parametrizations u : [0, 00) X
Sl < R x M* of the form

u(s,t) = (a(s),l(s),t) e R x M/g cRx X xSt

where a : [0,00) — R is a strictly increasing proper function and ¢ : [0,00) — %
is a solution of the gradient flow equation ¢ = VH({) that begins at time s = 0
as a trajectory in N(0X) orthogonal to 0% and approaches a critical point of H
as s — 0.

In particular, each of the holomorphic gradient flow cylinders and pages projects through
Rx M*™ — M* to an embedded surface in M+ whose closure is a compact embedded surface

bounded by Reeb orbits in Crity(H) x St < M/;

Proof. At any point (z,0) € Crity(H) x St, 0p is proportional to R, , hence Jdp is propor-
tional to 0, and the trivial cylinder R x v < R x M over the periodic orbit v through (z,6)
therefore forms an integral submanifold of the distribution. Similarly, each integral subman-
ifold in R x ]T/_I'/}‘,J;.r is contained in a set of the form {s} x P < R x Mp, with s € R a constant
and P ¢ Mp a page of w. To complete the proof, we mainly need to justify the following two
claims:

e At any point (z,0) € ]T/I/; c ¥ x S, there exist a,b, c € R with ¢ # 0 such that
(3.26) J+0p = adp + bo, + cVH.

e At any point (p, ¢,0) € ]\\4/;, there exist b, c € R with ¢ # 0 such that
(3.27) J1 0 = b0, + c0,.

To verify (3.26]), we first observe that since 0y is transverse to =, on ]\\4/; < ¥ x S, there
exist unique functions P, @ : ¥ — R such that

VH + P&g € E+ and ]VH + Q@g € E+,
and the definition of J, in terms of j via the natural fiberwise isomorphism =, — T3 then

implies J(VH + Pdy) = jVH + Qdp. By BI3) and [B:25]), we then have

1 1 X
J+(VH + P@g) = *EBEHRJF + (Q + y[() é’g,

and applying —J; to both sides yields
1 1 X
VH + Poy = —=ep, — (Q + MK) J . 0.
€ €
The coefficient in front of J, dy cannot be zero since VH, 0y and ¢, are not linearly dependent,

so this allows us to write J g in the form (B.26]) as claimed. In fact, we obtain the following
precise formula for T F in this region,

1 ~
(3.28) TF, = Span {89, VH + geaHé’r} on R x M{,

which shows that the functions a(s) appearing in parametrizations of leaves in R x ]\\4/{{ are
strictly increasing.
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The proof of (B.27) follows similarly from our definition of J4 in Mf . Here we have
0p € 24, with R, given by (3.15), and Lemma [3.6] implies that R, and 0y are always linearly
independent, so they span the same subbundle as d4 and dg. This implies

J10, € Span(0y, 0y) = Span(dg, R+ ),

and thus J; 0, = adg + bR, for some a,b € R with a # 0. Applying J, to both sides of this
gives the desired result. O]

In the following, we shall often blur the distinction between leaves of F, and the corre-
sponding unparametrized holomorphic curves, referring to both via parametrizations u : S -
R x M*. We will examine the analytical properties of the curves in F; more closely in §l

Identifying [0,00) x M T < R x M in the usual way with J{\/Jr((?E) c E, F. also determines
a foliation on ./\A/'Jr(&E), which we shall extend into E by setting

TF, = {Spfn{ae, Jydg} in J\A/'((?hE),

VE everywhere else.
Indeed:

Proposition 3.13. The distribution T Fy on E s Jy-tnvariant and integrable, and matches
the vertical subbundle VE on a neighborhood of M~. Moreover, TJF, is transverse to the

hypersurfaces {t = const} in N'(OnE).

Proof. Integrability follows from (3.24)) since J, is S'-invariant in N (OnE), and J,-invariance
is also immediate because J;, was defined to preserve the vertical subbundle outside of

N(ORE). The transversality claim follows from the fact that J. is wg-tame and wp =
do + %etdt A df in N(0,E), thus

0 < wis(éy, J1d9) —%et dt(J. ).
O

Figure [0 shows a picture of the foliation on EAJ, plus a single holomorphic vertebra (see
Prop. B.8)) that intersects every leaf positively.

3.9. Large subdomains with weakly contact boundary. The construction in the present
subsection will be needed in the final step of the proofs of Theorems and [L10] in order to
show that our J-holomorphic foliation obtained by analytical methods gives rise to a bordered
Lefschetz fibration with supported symplectic structure in the sense of [LVW] §2.3]. The goal

is to exhaust £ by bounded subdomains

ER c E, E = U ER
R>0
such that each 0E R is a weakly contact hypersurface (with corner) deformation equivalent to

(M~ ,&_) and a neighborhood of 8@3 in EAJR looks like the neighborhood of the boundary in
a bordered Lefschetz fibration with fibers given by leaves of F .
Fix a pair of numbers ¢ > 0 and § € (1/4,1/2), and define a smooth hypersurface M¢ <

./\A/'Jr(&E) with nonempty boundary via the following conditions (see Figure []):
(1) M¢€ contains {c} x M/; < [0,00) x M = N (0E);
(2) M¢€ is a union of subsets of leaves of F;
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M~  0,E

FiGure 7. The J,-holomorphic foliation F, in E. The picture includes two
special leaves whose intersections with the cylindrical end Ny (0E) = [0, 00) x
M™ are trivial cylinders over Reeb orbits corresponding to critical points of
H : ¥ — R, and all other leaves approach these cylinders asymptotically at
infinity. All leaves are also intersected transversely by a holomorphic vertebra
in the region V.

(3) OM® < {p = 6} < [0,00) x M.

It will be useful to note that M€ is f-invariant in the region near its boundary where the
f-coordinate is defined. By adjusting § appropriately, one can also assume that 3(—¢§) > 0
and that M€ is everywhere transverse to the Liouville vector field Vi ; the latter follows from
the formula Vi = 0s + 0; in the diagonal end, as we are free to assume by moving J closer to
the region where 3(—p) = 0 that the tangent spaces to M€ are always C°-close to those of
the “vertical” hypersurfaces {c} x M p. The key consequence of the condition 5(—4J) > 0 is
the following: by (B.I8]), we have
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in the region 1/4 < p < 1/2, so f(—p) > 0 implies that the flow of 0, moves positively in
the t-coordinate. In particular, given R > 0, we can find a number r; > 0 such that if @gr
denotes the time ¢ flow of 0,

2 (P51 (M)  {R} x My < N(O,E).

With this understood, define Ex © E to be the region in E bounded by L (M°) = N(0,E)
and {R} x My < N(0pE). Its boundary has two smooth faces 0Er = 0,ER U 0y ER, where
0uER = ®%(M°) < N'(0,E),

and R . R
onEr c {R} x My, € N(O,E).

The R-invariance of the foliation F, implies that @,E’R is a union of 1-parameter families of
compact subsets of leaves of F.

Lemma 3.14. For each R > 0, there exists a smooth isotopy of ER to E through domains
with the property that both smooth faces of their boundaries are weakly contact hypersurfaces
in (E,wg) with the contact structure induced by Ak, and the corner of each is contained in
N(3,E n 0, E).

Proof. Since wg is exact in N (0n E) with Liouville vector field Vi = V,; + d¢, the contact-type
property for 6hER is immediate. The weakly contact property for @,ER follows mostly from
Lemma B4t we only need to examine the “bent” region near the boundary of 0, FEg slightly
more closely. Since this region also lies in N (OnE), it suffices to check that &,E’ R is transverse
to Vi = ds + 0;. We have explicitly assumed this to be true for M€, so we need to show that
it remains true after flowing M€ by 0,, particularly in the region {1/4 < p < 1/2}, where the
flow is given by (BI8]). We can assume each tangent space to M€ in the relevant region is
spanned by 0y, dp and 0y + ad, for some a € R with |a| small. The flow of 0, does not change
the first two vectors in this frame, and its change to the third one stretches the t-direction
but not the s-direction. Thus as long as § has been chosen to make |a| sufficiently small,
flowing by 0, cannot make these tangent spaces tangent to ds + 0;; moreover, one sees from
this discussion that d,Ep is isotopic to a subset of {s0} x Mpc N (0y F) for some constant
sg > 0, through a family of weakly contact hypersurfaces that are all transverse to Vx and
have fixed boundary. One can then deﬁr/lg a suitable isotopy to E thro/llgh domains bounded
by hypersurfaces of the form {const} x My A?((?hE) and {const} x Mp c J\A/(&,E). O

Figure B depicts the boundary faces of 6@3 on the backdrop of the cylindrical end and
holomorphic foliation from Figures[6land [[respectively. It also shows the collar neighborhoods
N(0,ER) and N'(,ER) as described in the following lemma, carrying fibrations whose fibers
are leaves of the foliation.

Lemma 3.15. For each R > 0, the boundary faces of E’R admit collar neighborhoods
0vER © N(0,ER) = (=1,0] x 0,ERr < Ep,
onER © N(0nER) = (—1,0] x 0, E < Ep,
with fibrations
% N(0,ER) — (-1,0] x S*,  TIF: N(0wEg) —» %
that satisfy the following conditions:
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FIGURE 8. The construction of the region EAJR with boundary oF R =
0 ER V) 6hER and corner 6 ER N 8hER, together with the collar neighborhoods
N(3,ER), N(0,ER) © Eg, which carry fibrations whose fibers are leaves of
the holomorphic foliation from Figure [71

(1) The vertical subbundle for both ﬁbmtzons 1s defined by the mtegmble distribution T F .
(2) TIR is pseudoholomorphic near 0, ER with respect to Jy on E and the standard complex
structure on (—1,0] x St.

(3) On J\/(@hER), wg has a primitive that restricts to a contact form on 6hER for which
the boundaries of the fibers of Hf are closed Reeb orbits.

Proof. This is based essentially on four observations. First, the characteristic line field of
6hEAJR as a hypersurface in (E’,wE) is spanned by dy. Since J, is wg-compatible, it follows
that J, 09 € TF, is transverse to ﬁhER, hence the leaves of F intersect 6hEAJR transversely
in loops tangent to dg, and these are Reeb orbits for any contact form given by a primitive
of wWEg.
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The second observation, which is clear already from the construction of E R, is that &,EA?R
is a union of (compact subsets of) leaves of F,, in particular it is a disjoint union of S*-
parametrized families of leaves. The collar N/ (6UEAJR) with its fibration can therefore be ob-
tained by extending these S!'-families to families parametrized by annuli.

Third, the foliation F, is invariant under flows in the r-direction, and in a neighborhood
of &,ER, we have ds(0,) = 1.

Finally, J, satisfies J,0, = R, throughout ./C/Jr(&E), and in a neighborhood of d,Eg,
we can assume every point belongs to either [0,00) x M 1 c ./\7+(5‘E) or the portion of
[0,00) x ]\\4}F c N, (0E) with p > 1/4, so that (3.8) and BI5) give R, = eﬁl, a horizontal
lift of the canonical unit vector on S! under the fibration 7p : Mp — S'. By the third
observation above, it follows that II% : A/ (&,EA?R) — (=1,0] x S! can be arranged such that
near the boundary, ¢, and J, 0, are horitontal lifts of the two canonical basis vector fields on
(—1,0] x S*, meaning II? is pseudoholomorphic. O

4. HOLOMORPHIC CURVES IN SPINAL OPEN BOOKS

In this section we study J-holomorphic curves in the symplectization of a contact 3-manifold
carrying a spinal open book. As we saw in §3| every spinal open book on a closed 3-manifold
gives rise to a stable Hamiltonian structure and a compatible almost complex structure on
its symplectization, for which the pages lift to a foliation by embedded J-holomorphic curves
with positive ends approaching nondegenerate Reeb orbits in the spine. Our first task in this
section will be write down the easy extension of this construction to the case of manifolds
with boundary, and then to show that the stable Hamiltonian structure can be perturbed
to a contact structure supported by the spinal open book. We then examine the analytical
properties of the curves in the foliation, and show in particular that the planar curves among
them are stable and will survive the perturbation from stable Hamiltonian to contact data;
moreover, these will in fact be the only holomorphic curves with certain asymptotic behavior
that exist after the perturbation. The most important results are Propositions [£.4] (existence),
.10 and 1T (stability under perturbation), and (uniqueness). These generalize results
that were proved for open books in [Wenl(d] and blown up summed open books in [Wen13],
and will serve as crucial ingredients for the computations of contact invariants in 5] and
compactness arguments in §6l

Throughout this section, (M’,£) is a closed contact 3-manifold, and M = Mp u My < M’
is a compact connected submanifold (possibly with boundary) carrying a spinal open book

= <7Tz : My, — S,7p: Mp — S*, {mT}TcaM>-
that admits a smooth overlap and supports |-

4.1. A family of stable Hamiltonian structures. This subsection and the next will con-
sist mostly of repackaged notation and results from §31 We shall use the notation from Section
B.] for collar neighborhoods, and we also need to recall from [LVW| §2.2] the open covering

MZMEUMIUMPUM(}

defined whenever M carries a spinal open book with smooth overlap. Here M p denotes
the complement of the region {t > —1/2} < N(0Mp) in Mp, My is the complement of
{s > —1/2} ¢ N(éMy) in My, Mz is the union of N(0My) with the adjacent components of
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N(0Mp), and Mj is the union of all components of N (3M p) that touch 0M. The components

of Z\W/I carry coordinates

(p,6,0) € (—1,1) x S' x S' = My
which are related to the collar coordinates from §3.11 by p = s and p = —t on the regions of
overlap, and components of Ma similarly carry coordinates

(p,,0) €[0,1) x S* x §* = M,

with p = —t. Since N (0Mp) is contained in MI U Ma, we can use the coordinate p = —t as
an alternative to ¢t on N'(0Mp).

Recall that in §3.1] the hypersurface M? — E was endowed with a similar open covering
MO = ]T/I/g U ]\7% U ]\7]0_—,; in the case M = (J, these three regions have obvious canonical
identifications with Mg, ]T/I/I and M, p respectively, thus defining a diffeomorphism M =~ MP.
This gives rise to a diffeomorphism of M with the hypersurface M+ < E from §3.3] after
flowing from MY to M+ along the stabilizing vector field Z. The idea behind most of the
definitions in this section is to use this identification of M with M™ in order to endow M
with the same stable Hamiltonian structure that was defined in §3.5] and its symplectization
likewise with the same almost complex structure as in §3.71 Only minor modifications will be
needed for the case OM # .

The following contact form on M takes on the role that was previously played by the
restriction of %)\K to M™*: define

et (0 + % d9) on ]\72,

o mef+ () dp + %6G+(p) df on ]\ZI,
' drp + %)\ on Mp,
f(p) d8 + mg(p) do on M,

where the various symbols have the following meanings. The multiplicity m € N is a number
that may vary among different connected components of ]T/I/I U ]\7@ (see §8.0)), while o is the
pullback via 7y : M — ¥ of the Liouville form on ¥ defined in §8.3] A is the fiberwise Liouville
form on Mp defined in the same subsection, and K > 0 is the (arbitrarily) large constant that
was used for building a Liouville form out of these ingredients via the Thurston trick. The
functions H : ¥ x S! — [0,00) and F,G; : (—1,1) — R were defined for the perturbation of
MO to M+ in §3.5] which also depended on a constant € > 0 that may be assumed arbitrarily
small. The only new pieces of data in our definition of « are the functions fx and g required
for the collar near dM: to define these, we first choose smooth functions f,g : [0,1) — [0, 1]
such that:

* (f(p),g(p)) = (e77,1) for p = 1/4;

* f9' = f'9>0;

e f'(p) <0 for p > 0;

* (£(0),9(0)) = (1,0), (£'(0),4'(0)) = (0,1), and f"(0) < 0.
The function fx :[0,1) — [0, 1] is then defined by

1 1
= 8=p(1- =)+ =
fx(p) [ﬂ( p) < K> + K] f(p);
where § : (—1,0] — [0,1] is the same cutoff function that was used in §3.4] to define a
stabilizing vector field. It follows that fx(p) = % f(p) for p = 1/2, fx(p) = f(p) for p < 1/4,
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and

i) = |50 (1= ) + | roroz1a

hence fj(p) <0 for p > 1/4, so that fxg — frg > 0 everywhere.
For K > 0 sufficiently large and € > 0 sufficiently small, « is a Giroux form for 7, so we
can assume after adjusting £ by an isotopy that « extends to a contact form on M’ with

& =kera.

The Reeb vector field for o will be denoted by R, and can be written as
(4.1) Ry = e 0 ([1 + co(Xp)| Kép — eXy) on Ms,

where the Hamiltonian vector field Xz on ¥ is defined by do (X, ) = —dH. On the interface,
R,, satisfies

1 1 _ _ =

(42) Ra = m (Ee F+(p)G/+(p)8¢ + Ke G+(p)Fjr(p)8g> on MI,
+ +

while near oM,

1 ) -
fr(p)d (p) — fi(p)g(p) <g (p)0%

This last formula implies since f'(0) = 0 that dM is foliated by closed Reeb orbits in the 6-
direction, and these orbits form Morse-Bott families due to the condition f”(0) < 0. Similarly,
the assumption that H is Morse away from 0% implies that Reeb orbits of the form {z} x S*
for z € Crityi(H) are nondegenerate. Here we again denote by

(4.3) R, = f%?(lp) 8¢> on Mo.

Critpm(H) € 2

the finite set of Morse critical points of H, thus excluding the critical points in the region
near 0% where H vanishes.
The stable Hamiltonian structure from §3.5] can be written in the present context as H =

(Q, A), where
Q:=d —
o+ 1% Cn
for some large constant C' > 0 and a closed 2-form 7 that is assumed to vanish outside of M, p.
The stabilizing 1-form is

fa on ]\72,

mef+ ) dg + %GGJr(p)ﬁ(GJr (p))dd  on ]\\{I’
A:=<Sdrp on Mp,

B(=p)1(p) 9 + myg(p) do on Mz,

o on M"\M.

\

The only feature of this discussion that did not already appear in §3]lis the definition of H
in My, since we are now allowing 0M # . To see that (£, A) satisfies the conditions of
a stable Hamiltonian structure in this region, we need to check that ker 2 c ker dA: this is
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obvious whenever either A = drp or (,A) = (da,a), so we only still need to inspect the
region where 0 < 5(—p) < 1, which means p € (1/4,1/2). Here g(p) =1, so

A= B(=p)f(p)db +mdg,
Q=d(fx(p)dd +mdp) = fx(p)dp A db

in {1/4 < p <1/2} c M/a, implying that ker dA and ker Q are both generated by d4. This
shows that on the region in question, (€2, A) is indeed a stable Hamiltonian structure and its
induced Reeb vector field is simply %8@ which is the same as R,. For future reference it

will be useful to note that the same result holds in the region {1/4 < p < 1/2} Mz, as
here F, (p) = 0 and G4 (p) = —p, so that ([£4) is valid with f(p) replaced by e ? and fx(p)
replaced by %e*p . One can also see from this formula and the conditions imposed on 3 that
A satisfies the contact condition as soon as B(—p) > 0, so in particular, A A dA = 0 and the
induced hyperplane distribution

(4.4)

=g := ker A

is therefore a confoliation.
To summarize the discussion so far:

Proposition 4.1. The pair H = (Q,A) is a confoliation-type stable Hamiltonian structure
on M'. Its induced Reeb vector field Ry matches R, outside of Mp, and is colinear with R,
ifn=0. g

The possibly non-exact 2-form 7 is a harmless but necessary piece of the setup for appli-
cations to weak fillability, though in the present section we will be interested primarily in
the case n = 0. Our stable Hamiltonian structure then has some convenient extra properties
arising from the fact that Ry and R, are in this case colinear. This implies in the first place
that in addition to the confoliation condition A A dA = 0, we have

Arda>0 and aaAdA=0,
and therefore:

Proposition 4.2. For every constant T € [0,1], the pair
Hr = (Qr,Ar) i= (do, (1 = T)A + 7a)

is a stable Hamiltonian structure on M’ whose induced Reeb vector field is colinear with R,,.
Moreover, Hy = H if n = 0, while A, = a on My, for all 7, and A, is a contact form
everywhere for T > 0, with an induced contact structure isotopic to §. O

Remark 4.3. The reader should be cautioned that while the notation H, makes sense for
7 = 0, Hop under this definition is not the same SHS that was denoted this way in §3t it
corresponds rather to what was previously denoted by H . in the case n =0 and oM = .

For each 7 > 0, we shall denote the induced hyperplane distribution and Reeb vector field
for H, by Z; and R, respectively. Note that if n # 0, then Ry # Ry on Mp, though H
does induce the same hyperplane distribution Zg as Hg. The scaling of R, changes in general
with the value of 7, but its direction does not. Since A, is contact for 7 > 0, Proposition 2.1]
implies

\7(%7') = j(AT)
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4.2. The unperturbed finite energy foliation. In this subsection we consider the unper-
turbed stable Hamiltonian structure H = (2, A) with Q = da + KLCn, where 7 is allowed to
be nonzero in M, p. Let us now rewrite the construction of the holomorphic foliation from §3.8|
in the present context. Choose Jy € J(H) to satisfy the same conditions as J; € J(H4) in
§3.7 on the region ]\\4/2 U ]T/I/I U M, p, while on ]T/I/a it is determined by the same condition as
on Z\W/I, namely
JOU1 = h(p)v2

for some smooth function h(p) > 0, with v := 0, and v, denoting the unique linear combi-
nation of 0, and 0y that lies in Zy and satisfies Q(vy,v2) = 1.

We can then define a smooth Jp-invariant and translation-invariant distribution 7°'F on
R x M by
T]:(TJ) = {50 for € ]\W/P7 ~ —
pan(dyg, JoOp) for x € Mx, u Mz U M,.

Using the metric (-, -) := do(-,j-) on X to define the gradient VH of H, Proposition B.12l now
adapts to the present setting as follows:

Proposition 4.4. The distribution T F is integrable, and thus defines an R-invariant foliation
F on R x M whose leaves are the images of embedded and asymptotically cylindrical Jy-
holomorphic curves. Each leaf of this foliation is one of the following:

(1) A trivial cylinder R x v, where v < M is either a nondegenerate Reeb orbit of the
form v = {z} x S' My, © ¥ x St for some z € Critym(H), or part of a Morse-Bott
2-torus of Reeb orbits in the 0-direction foliating 0 M .

(2) A holomorphic gradient flow cylinder, admitting a smooth (but not necessarily
holomorphic) parametrization u: R x S' < R x M of the form

u(s,t) = (a(s),(s),t) eR x My, c R x ¥ x S,

where a : R — R is a strictly increasing proper function and £ : R — X is a solution
of the gradient flow equation ¢ = V H ({) approaching two distinct critical points of H
as s — .
(3) A holomorphic page, which is a connected and properly embedded submanifold
formed as a union of subsets of the following type:
e {s} x PcRx Mp, where s € R is a constant and P < Mp is the portion of a
page of mp : Mp — St lying in Z\W/p;
o Annuli admitting smooth (but not necessarily holomorphic) parametrizations w :
(=1,1) x St < R x M of the form

u(s,t) = (a(s),s,¢,t) e R x (—1,1) x S! x S' = R x My

for some bounded function a : (—1,1) — R and constant ¢ € S*;
e Half-cylinders admitting smooth (but not necessarily holomorphic) parametriza-
tions u : [0,00) x S' <> R x M of the form
u(s,t) = (a(s), £(s),t) eR x Mg < R x £ x S™,
where a : [0,00) — R is a strictly increasing proper function and ¢ : [0,00) — %
is a solution of the gradient flow equation ¢ = VH({) that begins at time s = 0

as a tragectory in N(0X) orthogonal to 0% and approaches a critical point of H
as s — oo
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e Half-cylinders admitting smooth (but not necessarily holomorphic) parametriza-
tions u : [0,00) x ST < R x M of the form

u(s,t) = (a(s),b(s),¢,t) e R x [0,1) x S* x S R x M,

where a : [0,00) — R is a function with lims_,o a(s) = +00 and b : [0,00) — (0,1)
is a strictly decreasing function with limg_,, b(s) = 0.
In particular, each of the holomorphic gradient flow cylinders and pages projects through

R x M — M to an embedded surface in M whose closure is a compact embedded surface
bounded by Reeb orbits in (Crity (H) x S') u oM.

Proof. The only detail that has not been covered already by Proposition is the behavior
of the holomorphic pages as they approach dM. The relevant calculation here is the same as
for ]\\4/1, but carried out in ]\W/a instead, the key point being that everywhere in the interior
of ]\\4/@, Span(0g, 0p) = Span(dg, Ry), hence Jydg is a linear combination of ¢, and 0,. At
0M this ceases to be true because Ry is proportional to dy, which implies that the trivial
cylinders over orbits in M are tangent to T'F and the interior leaves that approach oM
are therefore properly embedded. Orientation considerations imply that the ends of those
leaves are positive, as their projections to M are embedded surfaces with closures bounded
by positively oriented Reeb orbits on dM. U

The foliation F defines a finite energy foliation as in [HWZO03|, but it is not generally
a stable finite energy foliation, because the Jy-holomorphic curves forming its leaves may in
general have negative Fredholm index and will thus die under small perturbations of the data.
We will be examining issues of this type for the remainder of §4l

Each Morse critical point z € Crity(H) gives rise to an embedded periodic Reeb orbit
parametrized by

Yo S M it (2,8) € Mg < X x S

This is also a periodic orbit of R, for 7 > 0 since H, = H on ]\72 for all 7. We will denote
the k-fold cover of this orbit for any k£ € N by

kSt Mt . (Kt).
Observe that the natural S'-action on ¥ x S' induces a preferred trivialization of the con-
tact bundle along .. We shall denote the Conley-Zehnder index of v¥ with respect to this
trivialization by
Hmcz (75) € Z,
and let Morse(z) € {0, 1,2} denote the Morse index of z € Crity(H).

Lemma 4.5. There exists a number 11 > 0 such that for any Ty > 0, the above construction
can be arranged by choosing K > 0 and € > 0 sufficiently large and small respectively so that
the dynamics of Ry have the following properties:
(1) For each Morse critical point z € Crity (H), all orbits in a neighborhood of 7y, : St —
Ms. are nondegenerate.
(2) Every closed orbit with period less than Ty is of the form ~* for some Morse critical
point z € Crity(H) and k € N, and all such orbits satisfy

ez (vF) = Morse(z) — 1.

(8) The orbits v, for z € Crity(H) have period less than Tj.
(4) The families of orbits that foliate OM are Morse-Bott.
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Moreover, we can also assume that the dynamics of R, have these same properties for all
7 = 0 sufficiently small.

Proof. Consider first the dynamics of Ry. On ]\W/g we have Ry = Ry, so we see from (1))

that periodic orbits in ]T/I/g\(CritM(H ) x S1) correspond to nonconstant periodic orbits of the
Hamiltonian vector field Xy on X, where Xy is scaled by € and the periods of its orbits are
therefore scaled by 1/e. (We can assume the additional scaling factor of e~/ is arbitrarily
close to 1.) Since the periods of nonconstant orbits of Xz have positive infimum, we can make
the scaled periods larger than any given 77 by choosing € small. In M p, we have A = drwp and
thus all closed orbits of Ry have period at least 1. In ]T/I/I, Ry, matches R, and is thus given by
(@2), so the condition G’, < 0 from Lemma .6 implies that Ry has a nonzero d4 component
whose size does not depend on K'; one can therefore find a lower bound independent of K on
the periods in ]\W/I and choose T7 > 0 smaller than this bound. A similar computation works
in ]\\4/3 using (L.3), since ff(p) <0 for p > 0 implies that R, has a positive 0y-component in
the interior, and the dependence of the contact form on K is limited to the region {p > 1/4},
where the Reeb vector field is simply %6(15. The orbits that foliate dM have period 1 since
fx(0) = f(0) = ¢'(0) = 1. With this understood, let us assume henceforward that 7} is
smaller than the periods of all orbits other than the v, for z € Crity(H). The periods of the
latter can however be made arbitrarily small by increasing K.

The computation of the Conley-Zehnder index is a standard result from Floer theory, see
for example [SZ92] or [Wenbl, §10.3.2]. Similarly, the Morse-Bott condition at 0M follows
from the condition f”(0) < 0.

All of the above applies immediately to Ry, since this is the special case of Ry with n = 0.
Considering the perturbations H, for 7 > 0, the same conclusions remain valid for R, if 7 is
sufficiently small: this is because the perturbation does not change the direction of the Reeb
vector field, so the only change to the dynamics is a very slight change in the periods of closed
orbits. 0

From now on we will assume the data to be chosen so that Lemma [£5]is satisfied for some
constants Ty, 71 > 0, for which we may assume T} /Tj is as large as needed.

Lemma provides enough information to compute the Fredholm indices of the leaves
of F by applying the Riemann-Roch formula to the normal bundles of the curves. This
computation was carried out for the ordinary open book case in [Wenl0Od|, and the result in
our setting is:

Proposition 4.6. Suppose wu : S —>RxM represents a holomorphic page in F that has genus

g =0 and k + n punctures, where k = 0 of them are asymptotic to orbits 7y.,,...,7, in My
for Morse critical points z1,...,z, € Critpm(H), and the rest are asymptotic to Morse-Bott
orbits in OM. Then
k
(4.5) ind(u) =2 —2g — Z [2 — Morse(z;)] .
i=1

Ifu:R x S' — R x M represents a holomorphic gradient flow cylinder with postive end at
Yz, and negative end at y,_ for z4 € Crity(H), then

ind(u) = Morse(z) — Morse(z_).
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We shall say that a leaf u € F is an interior leaf if all its asymptotic orbits are in Mg,
none in M. This includes all the trivial cylinders over orbits in Crity(H) x S*, all gradient
flow cylinders and all holomorphic pages that are modelled on pages with boundary contained
in ME.

Observe that if one starts from any point z € 0% and traces an inward curve in N (0Y),
orthogonal to the boundary, it soon becomes a gradient flow line that ends at a critical point of
index either 1 or 2, and the former is the case only for finitely many starting points in ¢%.. This
implies that F contains at most finitely many leaves (up to R-translation) whose asymptotic
orbits include index 1 critical points. The generic leaf is therefore either a holomorphic page
with positive ends approaching orbits in M and index 2 critical points, or a gradient flow
cylinder connecting a critical point of index 0 to one of index 2. Since every component of X
has nonempty boundary, H can always be chosen such that

Morse(z) € {1,2}  for all z € Critym(H),

and we shall assume this from now on so that all generic leaves are holomorphic pages rather
than gradient flow cylinders. The index formula (4.5]) shows that only the planar holomorphic
pages in F can have positive index, and in general some of these may even have ind(u) < 0 if
they have multiple ends approaching index 1 critical points. This can be avoided by a generic
perturbation of H and j away from the boundary to arrange the following conditions:

(i) VH is Morse-Smale,

(ii) No two gradient flow lines approaching index 1 critical points enter 03 at points with
the same value of m¢, where ¢ denotes the usual collar coordinate at 0% and m is
the relevant multiplicity determined by the adjacent component of 7p : Mp — S' as

in (B10).
Definition 4.7. We will say that the pair (H,j) are in general position whenever H has
no index 0 Morse critical points and both of the above conditions are satisfied.

Plugging in the index formulas above and applying the automatic transversality criterion
from [WenlOb], we find:

Lemma 4.8. If (H,j) are in general position, then every gradient flow cylinder and every
holomorphic page with genus zero has index 1 or 2 and is Fredholm reqular. Moreover, these
are the only leaves of F with positive index. O

For later arguments in §5land §6, we will also need some control over the indices of multiple
covers of curves in F, especially the trivial cylinders and gradient flow cylinders.

Lemma 4.9. Suppose (H,j) are in general position, and u is a connected stable holomorphic
building in R x M’ with no nodes, with arithmetic genus g > 0, and whose connected compo-
nents are all covers of leaves of F contained in R X ]\72. Assume moreover that the sum of
the periods of the positive asymptotic orbits of u is less than T1. Then

ind(u) = 29 — 2 + #Ig + 24T + #T,
where Fbi and Fli denote the sets of positive/negative punctures of u at which the asymptotic
orbit has even or odd Conley-Zehnder index respectively. In particular:

(1) The index is nonnegative, with equality if and only if u is either a trivial cylinder or a
building composed entirely of branched covers of trivial cylinders over an orbit {z} x S*
with Morse(z) = 2, each connected component having exactly one positive puncture.
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(2) If w is a cover of a gradient flow cylinder, then ind(u) = 1, with equality if and only
if u itself is a cylinder and the cover is unbranched, in which case u is also Fredholm
regular.

Proof. By Proposition 2.4] all the negative asymptotic orbits of u also have periods less
than 77, so fixing the S'-invariant trivialization, the Conley-Zehnder indices of all asymptotic
orbits are given by Lemma L5 i.e. they are 1 for punctures in I'y and 0 for the others. The
index computation then follows easily from the standard formula (2.7)) after observing that
the relative first Chern number vanishes, as the S'-invariant trivialization extends globally
over M/g: writing the Euler characterstic as 2 — 2g — #1I", we thus obtain

ind(u) = — (2 — 29 — #1) + #I7 — #I'7,

which reduces to the stated formula.
To understand the consequences of this formula, observe first that we always have

' #@and '™ # &,

(4.6) N o _
#I'T =0 implies #I'7 =0.

Indeed, these statements follow from the fact that they manifestly hold for all of the trivial
cylinders and gradient flow cylinders that constitute the somewhere injective curves covered
by components of u (the second statement depends on the fact that VH is Morse-Smale).
Thus if ind(u) < 0, we necessarily have g = 0 and #I'{ = 0, implying #I'7 = 0, but then
#I‘ar and #I'; must both be positive and we have a contradiction. The index must also be
strictly positive if g > 1 since #I‘ar and #I'] will never both be zero. Now suppose g = 0
and ind(u) = 0. We have the following possibilities:

(1) If #I'y = 2, then #I'] = #I'; = 0, but the implication in (LG) then gives #I'7 =0
and thus contradicts the fact that I'™ # .

(2) If #I'y = 2, then #I'§ = #I'{ = 0, which is impossible since I'" # .

(3) If #I'f = #I'y = 1 and #I'7 = 0, then (L6) implies #T']7 = 0, so u is a trivial
cylinder over an even orbit, meaning a cover of some 7, with Morse(z) = 1.

(4) If #T§ = #I'y = 0 and #I'{ = 1, then no components of u can be covers of gradient
flow cylinders since these always have even negative punctures, thus we have a building
whose components are all covers of trivial cylinders over an odd orbit (hence v, with
Morse(z) = 2), and the building has exactly one positive puncture. Since g = 0, the
latter implies that each of its components also has exactly one positive puncture.

Finally, applying the index formula to the case where w : S —>Rx ]\W/g is a cover of a gradient
flow cylinder, we have #Far = #I'] = 0 and thus

ind(u) =29 — 2+ 2#0T + #I'~ =29 — 2+ #T + #I'F
= —x(S) + #T7,

which equals at least 1 since X(S ) < 0and #I'" > 1. Equality then holds if and only if Sisa
cylinder, and the Riemann-Hurwitz formula then implies that the cover is unbranched. Since
u is immersed in this case, Fredholm regularity follows from the main result of [WenlOb]. O

4.3. Perturbation of stable leaves. For the SFT and ECH computations in §5 we will
need to perturb the planar holomorphic curves in F as the confoliation =y changes to the
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contact structure =; for 7 > 0. To this end, assume (H, j) are in general position, and denote

J(M';H) = JT(H),
Py

where the union is over all confoliation-type stable Hamiltonian structures H’ on M’ that
match H on a neighborhood of Crityi(H) x S! < Msy; note that this is true in particular
for all H, with 7 > 0. We assign to J(M'; H) the natural C*-topology as a subset of the
space of all smooth translation-invariant almost complex structures on R x M’. Then for
Je J(M'; H), denote by
M(J; H)
the moduli space of R-equivalence classes of nonconstant, connected, unparametrized finite-
energy J-holomorphic curves whose asymptotic orbits are all contained in Crity(H) x sth
This moduli space is naturally contained in the corresponding space of stable J-holomorphic
buildings as defined in [BEH 03],
M(J;H) c M(J; H).
We shall consider the resulting universal moduli spaces
M(I (M5 H)) = {(Jou) | J € T(M'3 H), we M(J; H)},
MIT(M' H)) ={(Ju) | Je T(M';H), ue M(J;H)},
which inherit natural topologies. Let
M]:(Jo) c M(JQ; H)
denote the subset consisting of R-equivalence classes of embedded curves whose images are

leaves of the foliation F. Its closure Mf(Jo) c M(Jo; H) in the compactified moduli space
consists of stable holomorphic buildings whose levels are likewise disjoint unions of leaves

of F. We will see in Lemma 17 that H}—(Jo) is an open and closed subset of M(Jy; H);
note that this is clear already for the components with arithmetic genus zero, due to Fredholm
regularity (Lemma [£.8)). Choose an open neighborhood

M (T (M3 H)) = (T (M's H))
of {Jo} x M]:(Jo), let M7 (J(M';H)) mf(j(M’; H)) denote the open subset consisting
of smooth 1-level curves with no nodes, and for each J € J(M'; H), denotdd
MT () == {ue M(J;H) | (Ju) e M7 (T(M';H))},
M) = {u e M(J; H) | (J,u) e ﬂf(j(M’;H))}.

The components of each of these spaces consisting of curves or buildings with a prescribed
index ¢ € Z will be written as

——F ——F
After shrinking the neighborhood Mf(j (M'; H)) if necessary, we shall assume without loss
of generality that the following conditions hold for all u € MF(J )E

5See §2.2] for some clarifying remarks on moduli spaces of unparametrized finite-energy J-holomorphic
curves and their topologies.

6To clarify: depending on the size of the neighborhood HF(J(M';H))7 one should expect M7 (J) and

HF(J) to be empty unless J is close to Jo. (The latter will of course be the main case of interest.)
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e All components of levels in u are somewhere injective;
e If u has arithmetic genus zero, then all components of levels in u are Fredholm regular.

Both conditions follow from the fact that they are already known to hold for MF(JO). If
additionally J € J(M’; H) is generic, then it now follows that M7 (J) is empty for all
i < 0. With or without genericity, we can also conclude that M{ (J) and M3 (J) are smooth
manifolds of dimensions 0 and 1 respectively (recall that we divided out the R-action in

defining these spaces). By inspection of the foliation F, we see that M7 (Jy) = ﬂf(Jo) has

finitely many elements, and MQF(JO) is homeomorphic to a disjoint union of finitely many
circles and compact intervals whose endpoints are 2-level buildings, both levels being unions
of trivial cylinders with curves in M7 (Jy). The implicit function theorem now implies that

this description also holds for ﬂf(J ) whenever J is sufficiently close to Jy:

Proposition 4.10. For all J € J(M'; H) sufficiently close to Jy, there exist families of
homeomorphisms

—F —F
Uy M (Jo) > ME(D), Wy My (o) —> My (J)
that depend continuously on J € J(M';H) and satisfy W, = Id. In particular, M7 (J)

contains finitely many elements, and MQF(J ) is homeomorphic to a disjoint union of finitely
many circles and compact intervals whose endpoints consist of 2-level holomorphic buildings
in which each level is a union of trivial cylinders with a curve in ./\/llf(J)

Moreover, if J is also generic, then M (J) = & for alli < 0. O

We obtain a stronger result in the special case where all pages are both interior and planar.
The proof of the following will be postponed until the end of §4.41 since it requires a bit of
intersection theory.

Proposition 4.11. Assume dM = & and every page in Mp has genus zero. Then for
J e J(M';H) sufficiently close to Jy, the trivial cylinders over orbits in Crity(H) x S1,
together with the curves in Mf{ (J) U M3 (J) foliate R x M, and thus form a stable finite
energy foliation of (R x M, J).

4.4. Intersection-theoretic properties. We now examine the properties of the foliation F
and perturbed moduli spaces M7 (.J) in terms of Siefring’s intersection theory of punctured
holomorphic curves (see §2.3)). We shall assume throughout the following that the period
bounds and index formula of Lemma hold for some constants 17 > Ty > 0. We first
observe the following immediate consequence of Lemma and (2.8). Note that whenever
is a nondegenerate Reeb orbit with pcz(vy) = 0, the same holds for all covers of .

Lemma 4.12. For any z € Crity(H) with Morse index 0 or 2 and k € N such that v* has
period less than Ty, the extremal winding numbers oy (v%) behave as follows:

o If Morse(z) = 2, then a_(v¥) =0 and ay (vF) = 1.

e If Morse(z) = 0, then a_(v¥) = —1 and ay (v¥) = 0.
Moreover if Morse(z) = 1, then a_(7*) = ay (v¥) = 0 for all k e N. O

Lemma 4.13. For every J € J(M'; H) and w € M*(J), if u is not a trivial cylinder, then
en(u) = 0 and u has zero asymptotic winding (in the S'-invariant trivialization) at each
puncture.
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Proof. For any leaf u € F which is not a trivial cylinder, the projection of u to M’ is embedded
and thus wind,(u) = 0. Since each end of u is an S'-invariant cover of a gradient flow line
and thus has asymptotic winding zero, this winding is extremal by Lemma and we have
defy(u) = 0. Then (2I2) implies c¢x(u) = 0. Since cy(u) depends only on the asymptotic
orbits and relative homology class, it remains zero for any u € M7 (J) which is not a trivial
cylinder, so (2.12]) then implies def, (u) = 0 and the result on asymptotic winding follows. O

Lemma 4.14. Suppose k,m e N, Je J(M'; H), ue M7 (J) is not a trivial cylinder and u*
denotes any J-holomorphic k-fold cover of u. Then for any z € Crityf(H) and m € N such
that v*™ has period less than Ty,

ub « (R x 4™) = 0.
If Morse(z) = 1, then this also holds without any restriction on k,m € N.

Proof. By homotopy invariance, it suffices to show that this holds for J = Jy and any leaf
u € F which is not a trivial cylinder. The image of u* then covers a gradient flow line wherever
it intersects My, so u* has no actual intersections with R x ~v7, and it remains to rule out
asymptotic contributions. By the definition in [Siell], these can exist only if u has an end
approaching 7., in which case u* has an end approaching 7 for some n < k. Moreover, the
asymptotic contribution is then zero if and only if the asymptotic winding of the m-fold cover
of this end differs from the a priori bound set by a(y"™"). In the S'-invariant trivialization,
this asymptotic winding is manifestly zero, so in the case Morse(z) € {0,2}, nm < km implies
that 77" has period less than T}, and Lemma[L.T2 then gives a4 (7™") = 0 for the appropriate
choice of sign. For Morse(z) = 1, the same holds with no restrictions on multiplicities since
a4+ (7¥) =0 for all ke N. O

Proposition 4.15. For any J € J(M'; H), every curve u € M7 (J) is embedded, and any
two such curves u,v satisfy u v = 0 unless both are trivial cylinders.

Proof. The proof of u v = 0 is immediate from Lemmas 210 and T4l If w is not a trivial
cylinder, then this also implies u#u = 0, and since u is somewhere injective by the definition of
Mf(j (M'; H)), it now follows from the adjunction formula (ZI0)) that w is nicely embedded,
hence also embedded. O

Lemma 4.16. Assume J € J(M';H), and v € M(J;H) is a J-holomorphic curve whose
positive ends are all asymptotic to orbits of the form v with z € Crity (H) and k € N having
period less than Ty. Then for any curve u € M* (J) with no negative ends, v * u = 0.

Proof. After an R-translation we can assume the image of w is contained in [0,00) x M.
Likewise, we can homotop v through asymptotically cylindrical maps to a (non-holomorphic)
map v’ which looks the same near its negative ends but whose intersection with [0, 0) x M
consists only of the trivial cylinders over its positive asymptotic orbits. Thus by the homotopy
invariance of the intersection number,

v*u=v'*u=2(Rx7§Z)*u,
i
for some finite set of critical points z; € Crity(H) and natural numbers k; such that 75; has

period less than T7. This is zero by Lemma 4.141 O

We are now in a position to prove Proposition E.IT1
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Proof of Proposition [[.11. By Prop.HI5] every curve in M{ (J)u M3 (J) is nicely embedded
and disjoint from its own asymptotic orbits, and any two such curves are either identical (up to
R-translation) or disjoint; in fact the latter is also true for arbitrary R-translations, implying
that their projections to M are either identical or disjoint. It remains to show that these
curves fill the entirety of M. Let A < M denote the compact set consisting of all points that
lie either in Crity(H) x S or in the projection of any curve in M7 (J). Also, let O < M\A
denote the set of points that lie in the projection of any curve in M (J). Applying the
implicit function theorem to finitely many index 2 leaves of F, we find that for J sufficiently
close to Jy, every connected component of M\A contains points in O.

To finish, we claim that O is an open and closed subset of M\A. To see that it is closed,
suppose xj, € O converges to x € M\A. Then the points xj, are contained in the projections
of curves u; € M3 (J), and these have a subsequence converging to either another curve

u e MZ (J) or a building u € MZF(J ). In the former case we conclude x € O, and in the latter
case, u has two levels which are each unions of trivial cylinders with curves in M{ (J), so
x € A and we have a contradiction. That O is open follows from an implicit function theorem
for nicely embedded index 2 curves, cf. [Wen05, Theorem 4.5.44]. The main point is that
since any u € M7 (.J) is embedded, the nearby curves in M$ (J) can all be identified with
sections of the normal bundle of u, and the condition cy(u) = 0 from Lemma T3] implies
that these sections must be nowhere zero, cf. [WenlOb, Equation (2.7)]. O

4.5. Uniqueness. For any J € J(M'; H), define the spaces

M(J;H,Tl), M(J,H,Tl)

to consist of all connected R-equivalence classes of unparametrized finite energy J-holomorphic
curves or buildings respectively in R x M’ whose positive asymptotic orbits are in Crity(H) x
S1 and have periods adding up to less than T'. Proposition 24 then implies that the same con-
dition holds at the negative ends, thus all negative asymptotic orbits of curves in M(J; H,T)
or M(J; H,T1) are also in Crity(H) x S due to Lemma We denote by

M*(J; H,Th) = M(J; H,T1)

the set of somewhere injective curves in M(J; H,T;). The following is now an easy conse-
quence of the intersection theory from §4.41

Lemma 4.17. Every curve in M*(Jy; H,T1) is an interior leaf of F.

Proof. Suppose u € M*(Jp; H,T1) is not a leaf of F. By Prop. 2] it must have at least
one positive puncture, which by assumption is asymptotic to an orbit of the form fyf for
z € Critp(H) and k € N, with period less than 77. All trivial cylinders over orbits in
Crity(H) x S are leaves of F, so we may assume u is not a trivial cylinder. Then as u
approaches 7%, it has isolated intersections with infinitely many leaves of F. In particular,
we can find a generic leaf v € F with u v > 0, i.e. v has no ends asymptotic to orbits v,
with Morse(¢) = 1. Since there are no index 0 critical points, this implies every end of v is
positive. Then Lemma implies u * v = 0, so we have a contradiction. O

To generalize the above lemma to the perturbation of Jy, we will need to specialize to
the case where (M, &) is a partially planar domain, i.e. we assume there exists a connected

component Mgn c Mp which has genus zero pages and does not touch oM.
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Remark 4.18. If M}f;ln c M\0OM is a connected component of Mp, then we can always
shrink M to a smaller subdomain on which ¢ is still supported by a spinal open book containing
the pages of M}iln in the interior, but with the additional property that every spinal component

intersects Mgn. Indeed, if £; x S! © My, is any spinal component disjoint from M pln, then
since ¢ is transverse to the S'-direction at d(¥; x S'), we can replace M with a smaller
domain whose boundary includes all components of dMp that touch ¥, x S!, and assume

after an isotopy of £ that it is supported by a spinal open book on the shrunken domain
(cf. [LVW], Example 1.11]).

By the above remark, we lose no generality by imposing the following conditions on our
partially planar domain and the chosen geometric data:

Assumptions 4.19. Suppose the spinal open book on (M, &), the data H and j and constants
K,e >0 (c¢f. Lemmal[{.0) satisfy the following conditions:

(1) Mp < M contains a connected component M}iln which has genus zero pages and
OMP™ <« Msy;

(2) Every page in the interior of M has fewer than T1 /Ty boundary components;

(3) Every component of Ms, intersects MP™;

(4) H : ¥ — [0,00) has ezactly one index 2 critical point on every connected component
of X.

For the main result of this section, we consider sequences 7, > 0 and J, € J(H,,) <
J(M'; H) such that
7 — 0 and J, — Jop.

Proposition 4.20. If Assumptions[{.19 hold, then for v sufficiently large, M*(J,; H,T1) =
M7 ().

Proof. The claim that M7 (.J,) ¢ M*(J,; H, Ty) follows immediately from Assumptions ZI9]
since every curve in M7 (J,) has fewer than 7)/Ty ends, all approaching simply covered
orbits in Crity(H) x S! with period less than Ty. We will prove the converse by showing
that for v sufficiently large, the presence of the embedded planar curves in M3 (.J,) forces
all other curves in M*(J,; H,T1) to be nicely embedded. Then the compactness theorem in
[Wenl10a] implies essentially that if v is large enough, then every such curve in M*(J,; H,T)
is a perturbation of a nicely embedded Jp-holomorphic building, whose components must be
leaves of F due to Lemma [ 171 Here are the details.
Arguing by contradiction, assume there is a sequence of J,-holomorphic curves

u,,:S,,H]RxM/

which define elements in M*(.J,; H,T1)\M” (J,)) as v — oo. Since the trivial cylinders over
orbits in Crity (H) x S are all leaves of F, we may assume u,, is never a trivial cylinder. After
taking a subsequence, we may also assume that u, has fixed numbers of positive and negative
ends, always approaching the same collection of orbits; this follows from the period bound at
the positive ends since there are finitely many combinations of orbits in Crity(H) x S! for
which the required bound is satisfied.

Step 1: Compactness. We claim that a subsequence of u, converges to a Jy-holomorphic
building u, whose connected components are all covers of interior leaves in F. The conver-
gence does not immediately follow from [BEHT03], for three reasons:
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(1) We must check that u, satisfy a suitable energy bound as the contact structures =,
degenerate to the confoliation =. .

(2) We have not assumed any bound on the genus of S,,.

(3) The dynamics of Ry are degenerate.

The first issue is the main reason we have introduced the stable Hamiltonian structures
Hr = (Qr,A;). A reasonable notion of energy can be defined by

By(uw) = sup | ul (dp(r)An) +0,).
peT JS,

where T denotes the space of smooth strictly increasing functions ¢ : R — (—6,0) for some

constant d > 0 chosen sufficiently small to make sure that the integrand is nonnegative.

This notion is equivalent to the energy defined in [BEHT03], in the sense that either satisfies

uniform bounds if and only if the other does. Since 2., = da, we can write

By (uy) — sup f utd(p(r)As, + )
weT JS,

and thus conclude from Stokes’ theorem and the bound on the periods at the positive ends
(cf. Prop. 2:4) that F,(u,) is uniformly bounded.

The second issue is a larger danger. In order to bound the genus of S'V, we use the follow-
ing argument, originally suggested by Michael Hutchings and used already in [Wen13]. Since
E,(uy) is bounded and we have convergence of the data H,, — Ho and J, — Jy, a com-
pactness theorem of Taubes [Tau98, Prop. 3.3] (see also [Hut02, Lemma 9.9]) implies that
the sequence of currents represented by w, has a convergent subsequence. This implies in
particular that the relative homology classes of u, have a convergent subsequence, so taking
advantage of the assumption that u, is somewhere injective, we can write down the adjunction
inequality (2.10),

Uy Uy = 2[0(uy) + 0o (uy)] + en(uy) = en(uy)
and observe that the left hand side is bounded. Now plugging in the definition of the normal
Chern number from [Wenl0a], we have

en(w) = a(uEr) — x(S)) + C
where the constant C € Z depends only on the extremal winding numbers at the asymptotic
orbits and is thus fixed, and ¢;(u*Z;,) is the relative first Chern number of the bundle
u*=,, — S, with respect to the S'-invariant trivializations at the asymptotic orbits. The
latter also depends only on the relative homology class of u,, so we conclude that X(Sy) is
bounded from below, giving a bound on the genus of S, from above. Passing again to a
subsequence, we may now assume all the surfaces S, are diffeomorphic.

To conclude, we observe that the dynamics of Ry are indeed nondegenerate up to period T7.
By Prop. 2.4 and the period bound imposed on the positive asymptotic orbits of u,, every
orbit that can appear in bubbling or breaking is therefore nondegenerate, in which case the
proof of the main compactness theorem in [BEH'03] goes through and gives a subsequence
convergent in the usual sense to a Jp-holomorphic building ;.

The fact that all components of uy, are covers of interior leaves in F follows now from
Lemma [AT17]

Step 2: Intersection theory. The goal of this step is to show that u, = u, = 0 for all v
sufficiently large. Since H has no Morse critical points of Morse index 0, every curve in
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M (J,) has all its ends at critical points of Morse index 2, thus they are all positive. Then
Lemma 16 implies that for any v e M3 (J,),

(4.7) u, *v = 0.

We claim next that no negative end of u,, approaches any orbit of the form +* with Morse(z) =
2, and any positive end that approaches such an orbit has asymptotic winding zero. Here
we use the assumption that every connected component of My intersects the planar piece
M}f;m and has a unique index 2 critical point: it follows via Proposition that whenever
Morse(z) = 2, for sufficiently large v there exists a curve v € M3 (J,) whose asymptotic
orbits include ~y,. By Lemma 13| v approaches v, with zero asymptotic winding, so if the
asymptotic winding of u, approaching v¥ is nonzero, then the projections of u, and v to M’
intersect, implying u,, *v > 0 and thus contradicting (@7). Moreover, the end approaching +*
cannot be negative, as its asymptotic winding would then be bounded from below by a (v*),
which is 1 by Lemma
Finally, we claim that for every orbit v which occurs as an asymptotic orbit of w,,

(4.8) uy * (R x ) =0.

The orbit v is necessarily of the form +* for z € Crity(H) and k € N and has period less
than 7. If Morse(z) = 2 then we may again assume due to Proposition [£I0 that , is
an asymptotic orbit for some v € M (J,). Then any intersection of u, with R x v, is
necessarily positive and thus causes an intersection of u, with an end of v approaching ~,,
again contradicting (@7). Asymptotic contributions to u, * (R x 7¥) are also ruled out since,
as was just shown, any end of u, approaching a cover of v, has asymptotic winding zero, and
this matches a_(7*) by Lemma

For the case Morse(z) = 1 we argue slightly differently: we pass to the limit and show that
Ug * (R x v¥) = 0, which implies (&S] for sufficiently large v. Recall that every connected
component w of the building uq, is a cover of some leaf of F. If this leaf is a trivial cylinder,
then w * (R x v¥) = 0 by Lemma I since pcz(7.) is even. If it is not a trivial cylinder, then
we instead obtain the same result from Lemmal[£14l There are also no breaking contributions
to Uy * (R x v¥) since there are no common breaking orbits with odd Conley-Zehnder index.

We have now established all the conditions to apply Lemma 210 and conclude

uy *u, = 0.

Step 3: Nicely embedded curves degenerate nicely. By the main result of [Wenl0Oa], the
limit building uy, must also be nicely embedded, in the sense that all of its levels are unions
of trivial cylinders with nicely embedded curves: in particular, this means every component
of uy is an interior leaf of F. By inspection of F, the only connected multi-level buildings
one can construct out of leaves have exactly two levels: the top consists of a disjoint union of
trivial cylinders with gradient flow cylinders, and the bottom is a single holomorphic page.
Any such building is a limit of a sequence of holomorphic pages in F, and thus belongs to

HF(JO), so we conclude that u, € M7 (J,) for sufficiently large v. O

Remark 4.21. Proposition also holds for any sufficiently small perturbations A!, of A,
(fixed in a neighborhood of Crity(H) x S') and J, € J(dA!,A!) of J,. In particular
we can arrange in this way for A/, to be a sequence of nondegenerate contact forms. The
uniqueness result is proved by repeating the above argument for sequences A%, — A, and
Jh e J(dAL, AL), JY — J, as p — 0. The only reason we did not state Prop. to allow
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this perturbation in the first place is that there is no obvious way to perturb the stable Hamil-
tonian structure H,, together with A, —instead, the compactness argument in the proof as
Af, — A, requires the usual notion of energy for almost complex structures compatible with
contact forms as in [Hof93|, taking advantage of Proposition 2.1

5. COMPUTATIONS IN ECH aND SFT

We now apply the holomorphic curve construction of the previous section to prove Theo-
rems [[LT7], [LI8] and [LT9

Adopting the notation of §4], assume M is a compact 3-manifold contained in a closed and
connected contact 3-manifold (M’,€), Q is a closed 2-form on M’ and |,/ is supported by
a an {2-separating partially planar spinal open book 7r. Fix all data necessary for defining
the exact stable Hamiltonian structures H, = (da, A;), along with Jy € J(Ho) admitting the
Jo-holomorphic finite energy foliation F on R x M and the perturbed moduli spaces defined
in §4.3] and §4.51 After possibly shrinking M to a smaller domain, we can and shall take
Assumptions 4119 as given. The assumptions also imply that €2 is exact on Msy.

Denote the connected components of ¥ by

Y=X1uU...uX,

and for each i = 1,...,r, let 2z; € Crityi(H) denote the unique index 2 critical point in ;.

Suppose the pages in M}f;m c Mp have k£ + 1 > 1 boundary components. Without loss
of generality, we may assume that k is minimal in the sense that for any other connected
component MI%th c Mp with planar pages and 6M1%th c My, the pages have at least k + 1
boundary components. For j =1,...,r, let

ijN

denote the number of boundary components of each page in M}iln that lie in 3; x S L= My,
For Theorems [[L.I8 and [[LI7, we add the assumption that M is a planar k-torsion domain.
In this case there is at least one other connected component M]‘_?,th which is “different” from

Mlli-’.ln in the sense that at least one of the following conditions holds:

(1) The pages in Mg are not diffeomorphic to those in M]I_f,ln,
(2) For some j € {1,...,r}, the pages of Mf;th do not have exactly m; boundary compo-
nents contained in ¥; x S L
These assumptions imply that at least one connected component of ¥ has disconnected bound-
ary, so after reordering the labels, assume this is true of ¥,.. We may then assume X, contains
at least one extra critical point

CeX, Morse(¢) = 1,

such that the two gradient flow lines ending at ¢ enter through different components of 0%,
one from M}f;ln and the other from Mgth.

Choose a nondegenerate contact form A/, and almost complex structure J, € J(Al) for
which Propositions {10 and both hold (see also Remark .21]), and assume additionally
that J), is generic, so MZ]:(JI’,) is empty for all ¢ < 0. For any set of integers ny,...,n, = 0,
define

M(J;Hynq,...,n.) c M(J,; H Ty),

(5.1) i MO
M(JV;H;nla"'anr)CM(JV;H,Tl),
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to consist of all connected curves or buildings respectively such that for each i € {1,...,r},
the sum of the covering multiplicities of all positive asymptotic orbits in ¥; x S1 is less than
or equal to n;. Applying Propositions [.10] and under the above assumptions, we can
now completely classify the somewhere injective curves in M(J); H;mq,...,m,) as follows.
The generic curve in this space is an embedded index 2 punctured sphere with no negative
ends and k + 1 positive ends, of which m; ends are asymptotic to ., for j =1,... 7. Aside
from trivial cylinders, the only other somewhere injective curves in M(J!; H;mq,...,m,) are
the following: for every ¢ = 1,...,r and every index 1 critical point y € ¥,

e Each gradient flow line ¢ entering through 0%; from Mgn and ending at y corresponds
to a unique index 1 punctured sphere uy, with no negative ends, and k + 1 positive
ends asymptotic to the same collection of simply covered orbits as the generic curves,
except with one copy of +,, replaced by v,;

e There are exactly two embedded index 1 cylinders v; , Uy , each with a positive end at
7.; and negative end at ,, such that the closed cycle [v, ] — [v, ] € H2(M’) defined
by the two relative homology classes satisfies

| . e-o
[y 1=[vy ]

All of these curves are ECH-admissible, i.e. they satisfy ind(u) = I(u).
Proof of Theorem [L.18. Consider the orbit set

Y= {(Wzlaml)’ SRR (rVZr—lamT*I)’ (WZr’mT - 1)’ ('YC, 1)}

as a generator of the ECH chain complex for (M’, A, J}) with coefficients in Z[ Ha(M')/ ker §].
Here we are abusing notation slightly by allowing the possibility m, —1 = 0; if this is the case
then 7., should be removed from the orbit set altogether. By the above classification, dgcu~y
counts two index 1 cylinders v; and v, for every y € Crityp(H) with Morse index 1, but
these are homologous in Ho(M')/ker 2, and Proposition 2.T14] implies that for any choice of
coherent orientations provided by [BM04], they cancel each other out. Thus the only index 1
curve remaining to count is the punctured sphere u, corresponding to the unique gradient
flow line ¢ that enters 0%, from M}iln and ends at (. Since uy has no positive ends, we find

OrcuyY = J. 0

Remark 5.1. In the above proof, we achieved cancelation for the cylinders v; and v, by
appealing to Proposition 2.14] which is a distinctly low-dimensional result, but there are also
other ways to see that the paired cylinders in this particular setting must be oppositely ori-
ented. One such approach is to cap off ¥ by disks and extend the function H with a single
index 0 critical point on each cap, and then identify the normal Cauchy-Riemann operators
for the gradient flow cylinders with linearizations of the Floer equation with respect to a
C?-small time-independent Hamiltonian on the resulting closed surface. The computation of
Hamiltonian Floer homology on this surface then implies that paired cylinders must cancel
because the index 2 critical point (viewed as a constant Hamiltonian orbit) is a closed gener-

ator of the Floer chain complex. This approach can also work in higher-dimensional settings,
cf. [Mora).

To complete the analogous computation in SE'T, we must be a bit more careful since SFT
in principle counts all holomorphic curves, not only those which are somewhere injective. To
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be fully correct, the computation of SE'T requires an abstract perturbation of the Cauchy-
Riemann equation to achieve transversality for all solutions, e.g. this can be done following
the polyfold scheme under development by Hofer-Wysocki-Zehnder, cf. [Hof]. We will not
need to know any details about this perturbation, but only the following general principles:

e Any Fredholm regular holomorphic curve with index 1 gives rise uniquely to a solution
of the perturbed problem for sufficiently small perturbations.

e If solutions of the perturbed problem with given asymptotic behavior exist for arbitrar-
ily small perturbations, then as the perturbation is switched off we find a subsequence
convergent to a holomorphic building with the same asymptotic behavior.

This understood, counting the solutions of the perturbed problem requires a precise descrip-
tion of the corresponding space of index 1 J)-holomorphic buildings.

Proposition 5.2. Suppose u € M(J,; Hymyq,...,m;) has index 1 and only simply covered
orbits at its positive ends, including at most one such end asymptotic to v and the others
all asymptotic to v, for i € {1,...,r}. Then u has only one level and no nodes, and is
somewhere injective: in particular, it is one of the curves up or in that were counted in the
proof of Theorem [L.18.

Proof. We observe first that « must have at least one connected component that is not a cover
of a trivial cylinder: were it otherwise, then since every positive asymptotic orbit is simply
covered and at most one of these is at an index 1 critical point, every component would be
either a trivial cylinder or a branched cover of R x v, for Morse(z) = 2. Since the relevant
covers of v, all have odd Conley-Zehnder index by Lemma [£.5] this would imply that ind(u)
is even and thus gives a contradiction.

Next, observe that every nonconstant component of the top level belongs to the moduli
space M(J/; H;my,...,m,) and is thus a curve in one of the perturbed moduli spaces aris-
ing from the foliation via Proposition 10l By induction, it follows that the nonconstant
components of all other levels are also covers of such curves, so by Lemma [£.9] they all have
nonnegative index. Since ind(u) = 1, Proposition now implies that v cannot have any
nodes and therefore (by stability) also has no constant components.

By assumption, the total multiplicities of the positive ends of u in each spinal component
are bounded above by those of the holomorphic pages, thus at most one component of u can
be a (perturbed) holomorphic page, and multiple covers of such curves cannot appear. If
u does have a component that is a page, that component must be uy, it must occupy the
bottommost level, and all other components then must have index 0, implying via Lemma [£.9]
that all other nontrivial components are branched covers of trivial cylinders with one positive
end. A nontrivial cover of this type cannot appear in the top level since the positive asymptotic
orbits are simply covered; by induction, it follows that such covers cannot appear anywhere,
and we are left with u = wuy.

If no component of u is a perturbed page, then exactly one component is a cover of a
(perturbed) gradient flow cylinder, which by Lemma [£.9is then the unique component with
index 1, while all others have index 0. Now the same argument again rules out any nontrivial
index 0 components since the positive asymptotic orbits are simply covered, and implies at

the same time that the index 1 component is somewhere injective, hence u = in_ g

We briefly recall from [LWI11] the necessary notation for the version of the SFT chain
complex that is involved in the definition of algebraic torsion. A closed Reeb orbit for A,
is called good if it is not a double cover of an orbit whose odd/even parity (defined in
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terms of the Conley-Zehnder index) is different from its own. Let A denote the Zs-graded
supercommutative algebra with unit over the group ring R[Ha(M')/ker 2], generated by all
formal variables of the form ¢, where 7 is a good orbit. Writing dim M’ = 2n — 1, the degree
l¢y| € Zo of a generator is defined in general to be n — 3 + pucz(vy) (mod 2), thus in the
present case, n = 2 and the odd/even degree of ¢, is opposite the parity of v as defined by
the Conley-Zehnder index. The actual chain complex is the algebra of formal power series
A[[R]], where h is a formal variable defined to have even degree. Counting index 1 solutions
to a small abstract perturbation of the J!-holomorphic curve equation in the symplectization
then gives rise to a differential operator Dspr : A[[h]] — A[[R]] satisfying (Dspr)? = 0, and
the contact manifold (M, ker A}) is said to have Q-twisted algebraic k-torsion for an integer
k > 0 if and only if /¥ is an exact element in the chain complex (A[[%]], Dspr).

Proof of Theorem [1.17. We compute the operation of Dgpr on the element

Q=g ...y e A

in the chain complex (A[[R]], Dspr) outlined above. By Proposition 5.2 all relevant in-
dex 1 solutions of the perturbed equation can be identified with the Fredholm regular J/-
holomorphic curves wuy, in that were counted in the proof of Theorem [LI8 Once again the
coherent orientations give v; and v, opposite signs due to Prop. 214 or Remark 5.1l so these
cancel, and what’s left is a single curve uy with genus zero, k + 1 positive punctures (one
for each generator in @), and no negative punctures. This is exactly the same situation that
arose in the more specialized computations of [LW11.[Wen13], and for the same reasons, it
gives Dgpr@Q = h*. O

Proof of Theorem [L.19. Since the theorem is trivial whenever the ECH contact invariant van-
ishes, the case with planar torsion is implied by Theorem [[LI8l Assume therefore that M < M’
is not a planar torsion domain: in this case M = M’, there is no boundary, and all pages
are planar and diffeomorphic to each other. Given d € N, we can without loss of generality
arrange 71y > 0 in Lemma sufficiently small so that

(k + 1)d < Tl/To.
Now by Proposition E.IT] (see also Remark [£.2T]), we can pick a nondegenerate contact form
A/, and generic J/, € J(A!)) so that for a generic point z € M\(Crity (H) x S1), (0,z) e Rx M
is in the image of a unique index 2 J/-holomorphic curve
Uy € M§<JL)7
and by Prop. ug is the only such curve in M*(J/; H,T}). We consider for n = 1,...,d
the generator
Tn = {(’Yzlvnml)v SER) (’sz,nmr)}
in the ECH chain complex for A}, J, with coefficients in Z[Ha(M)/ker Q]. Then drcuy,

counts only the pairs of cylinders v; and v, (combined with trivial cylinders) which cancel

each other out due to Prop. 214 or Remark [5.1] thus

OECHY, = 0,

S0 7, represents a homology class in ECH. Defining the U-map by counting admissible index 2
curves through (0, z), the action of U on -,, then counts unions of trivial cylinders with the
curve u, and nothing else, hence

U’Yn = 771—17
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implying Uy, = (J. Since one can choose the data to make this true for arbitrarily large d,
the result follows. 0

6. SPINAL OPEN BOOKS => LEFSCHETZ FIBRATIONS

In this section we complete the proofs of Theorems[[L5], [LT0land [L.T3l By the non-fillability
results proved in [LVW] via spine removal, we can restrict our attention to partially planar
spinal open books that do not have planar torsion, i.e. from now on, M = M’ has no boundary
and 7r is symmetric. The main idea in the proofs will be to attach to a given filling (W, w) the
special cylindrical end constructed in §3l which contains a pseudoholomorphic foliation, and
then push this foliation into the filling W. The goal will be to obtain a Lefschetz fibration
whose fibres are the leaves of the foliation and whose base is the moduli space itself. By
looking at intersections of the leaves with each holomorphic vertebra, we will then show
that the moduli space defines a branched cover of each vertebra, which will necessarily be
unbranched if the spinal open book is Lefschetz-amenable (see Definition [[.4)). Then, in order
to complete the proof of Theorem [LH] it will be necessary to understand how the moduli space
deforms under a generic homotopy of almost complex structures associated to a homotopy of
the symplectic data on W.

The argument is similar to the one in [Wenl0c], and should be thought of as a punctured
version of McDuff’s classification of ruled symplectic manifolds [McD90]. There are two new
ingredients in the spinal setting, however. The first and main new ingredient is that the moduli
space of index 2 curves coming from the planar pages of the open book has codimension 1
boundary in addition to codimension 2 nodal curves. As in [Wenl0c], the codimension 2 nodal
curves correspond to Lefschetz critical fibers (a proof of this fact is sketched in the appendix
of [Wen18]). The codimension 1 boundary consists of index 1 buildings in the filling attached
to holomorphic gradient flow cylinders in R x M; this phenomenon arises due to the presence
of index 1 critical points on vertebrae, thus it can be avoided in the setting of ordinary
open books (where all vertebrae are disks) but not in the general case. The key observation
however is that these buildings come in canceling pairs, since the same can be assumed to
be true for the gradient flow cylinders. The base of the Lefschetz fibration will thus be a
quotient moduli space, obtained by “sewing together” the moduli space of index 2 curves
along canceling boundary components. (We note that the actual situation is slightly more
delicate since there may also be corner points to the moduli space, at which two boundary
strata intersect.)

The second new ingredient compared with [Wen1Qc| is that in the spinal open book setting,
it makes sense to consider weak fillings that are exact only on the spine. For a general weak
filling, it is not possible to attach a symplectization end with a holomorphic foliation, but non-
exactness away from the spine was already incorporated into the stable Hamiltonian model
constructed in §3t we will take advantage of this by working directly with stable Hamiltonian
data instead of contact data at infinity. In the more specialized setting of blown up summed
open books, weak fillings were handled via a different and less powerful approach in [NWT1].

6.1. The completed filling and the moduli space. Our standing assumptions will be as
follows. Assume (M, &) is a closed contact 3-manifold with a supporting symmetric spinal
open book

= <7T21M2—>2,7TPIMP*>SI)
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whose pages have genus zero. As in 8] denote the connected components of ¥ by
1,0, 8, C X,

and let

m; € Nj t=1,...,7
denote the number of boundary components that pages have in the component ¥; x S < Msy;
note that this definition does not depend on the choice of a page since 7 is symmetric. Assume
Q) is a closed 2-form on M such that Q| > 0 and Q| is exact, and (W,w) is a compact
symplectic manifold with boundary W = M such that w|rys = Q. For the strong filling case
of Theorem [LAl we will sometimes also require w = dA near 0W for some 1-form A such that

o = )\‘TM

is a contact form for £&. The dual Liouville vector field in this case will be denoted by Vj,
where by definition
w(V)\, ) =\

For the Liouville case, A will be assumed to extend to a global primitive of w on W, and for
the almost Stein case, A will also have the form —df o J for some smooth function f: W — R
and w-tame almost complex structure .J.

In §3] we constructed a noncompact symplectic model (E, wg) containing a weakly contact
hypersurface ~

(M_,ff) < (anE)

that is contactomorphic to (M, ¢); let us fix such a contactomorphism and identify M = M~
henceforward. The symplectic structure takes the form

~ %o
where 7 is a closed 2-form on Mp < M with [n] = [Q] € H3z(M), Ak is a Liouville form
whose restriction to M~ is a contact form for £_, and C' > 0 and K > 0 are large constants.
Let R R

N_(0E)c E

denote the unbounded region in E with ON_(0E) = —M~.

In general we only care about the deformation class of the symplectic data on W, thus we
are free to make modifications in a collar neighborhood of 0W and then rescale globally so as
to produce any desired contact form « at the boundary. By [MNW13| Lemma 2.10], we can
deform w near 0W and subsequently rescale so that without loss of generality,

Q = we|ram-
under the chosen contactomorphism identifying M with M ~. We then define a completion
of (W,w) by
(W,8) i= (W,w) Unrn- (N-(0B),wp)

where a standard application of the Moser deformation trick (see for example [NW11l Lemma 2.3])
produces collars near dW and ON_(JF) that permit a smooth symplectic gluing of the two
pieces. The gluing is simpler to describe if (W, w) is a strong or exact filling, as we can then
use collar neighborhoods constructed by flowing along Liouville vector fields. In these cases

we can assume 1) = 0 so that wg is the exterior derivative of the Liouville form %)\ K, and A
can then (after a global rescaling) be deformed near 0W so that it glues together smoothly
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with %)\ k- Denote the resulting Liouville form on a neighborhood of N _(0F) c W by 3\, SO
we have

w=d\
on this neighborhood if (W,w) is a strong filling, and the same holds globally on W if the
filling is exact.
_We must do something slightly different in the almost Stein case: recall from §3.7] that
(E WEg) comes equ1pped with a compatible almost complex structure J; and a J,-convex
function f, : E — R such that the induced Liouville form Ay = —df; o J; matches K)\K

on the region N (OnE) E but not everywhere else. We shall therefore forget temporarily
about wg and glue the almost Stein manifolds (W, J, f) and (J\A/;(aE), J+, f+) together along
M = M~. To enable this, one can first deform the Weinstein structures (w, Vy, f) near dW
and rescale A and f globally so that these data glue together smoothly with Ay and f,; this
can be done without introducing any critical points of f in the collar, thus one can then apply
Lemma B.10] to produce a deformed d\-tame almost complex structure J with A = —df o J
such that J glues together smoothly with J.. The result is an almost Stein completion

(Wajaf) = (W7 J,f) YM=M~— <'&7—(6E)7J+7f+>

such that \ := —d f J matches the modified Liouville form A4+ in the cylindrical end. By
gluing A\ together with the interpolated Liouville form © provided by Lemma BTl we also
obtain a Liouville form © on W with

e ©O=\on W,

o @)Az %)\ K near infinity, and

e dO tames J everywhere.

We will use © below to define energy for j—holomorphic curves in W.
Recall now that the end we just attached to form the completion contains a region

N, (0E) c N_(0E)
that is identified with the half-symplectization [0,00) x M ™ of a certain stable hypersurface
Mt = —0N,(0F) c E, carrying a stable Hamiltonian structure H, = (Q4,A). In §8Tand
§3.8] we constructed the compatible almost complex structure J, such that its restriction
to N4 (0F) is in J (H4), and (N_(OE), J4) contains holomorphic vertebrae and holomorphic

pages. Indeed, let us select a holomorphic vertebra from Proposition B.8 corresponding to
each component ¥; ¥, and denote it by

Z']Z-C./\A/L(&E)CI//T\/, i=1,...,7

Meanwhile, the holomorphic pages form a foliation F; on E whose restriction to ./\7+(8E) =
[0,00) x M has the same form as the foliation F that we considered in §4] thus we are free
to use the analytical results of that section, including the index and intersection-theoretic
computations. We are also free to impose Assumptions [ T9—this mostly follows already
from the premise that 7 is a partially planar domain without planar torsion, but it includes
also the following conditions on the Hamiltonian function H : ¥ — [0,0) and complex
structure j on Y that play key roles in the construction of F,:
e H:Y — [0,00) has no index 0 Morse critical points, and it has exactly one index 2
critical point on every connected component of ¥;
e (H,j) are in general position (see Definition E.7]).
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For J%echnical reasons, it will be convenient (though not essential) to add one more assump-
tion

e The Hessian V2H(z) : T, — T.% commutes with j at every z € Crity(H) with
Morse(z) = 2.

The assumptions on H imply that each index 1 critical point of H is connected to the unique
index 2 critical point in the same connected component of ¥ by exactly two gradient flow
lines. The resulting gradient flow cylinders receive opposite orientations by Prop. 2.14] or
Remark Bl It will be useful to note that the unbranched multiple covers of these cylinders
also satisfy the automatic transversality criterion of Prop. and have the same properties
with regard to orientations, hence:

Lemma 6.1. Every holomorphic gradient flow cylinder w in F is a Fredholm regular index 1
curve, and so are its unbranched k-fold covers for every k € N. Moreover, Fy contains exactly
two holomorphic gradient flow cylinders asymptotic to the same pair of orbits, and for any
choice of coherent orientations from [BM04] and for each k € N, the unbranched k-fold covers
of these two gradient flow cylinders are oppositely oriented. O

We will refer to the pairs of gradient flow cylinders described in this lemma as canceling
pairs.

Assumptions A.19] also presume that Lemma is applicable, imposing dynamical condi-
tions on the stable Hamiltonian structure H: in particular, this provides constants Ty, 71 > 0
such that all Reeb orbits of period less than T are covers of {z} x St ]T/I/; , and each simply
covered orbit of this form has period less than Ty, where T} /Ty may be assumed arbitrarily
large. More specifically, T7/Tp is assumed to be larger than the number of boundary com-
ponents of any page. Since H is of confoliation type, Proposition [2Z4] then implies that
all breaking orbits appearing in the holomorphic buildings discussed below will be covers of
{2} x S! for various z € Crity;(H). These orbits are elliptic if Morse(z) = 2 and hyperbolic
if Morse(z) = 1, so we will refer to them as such.

In the almost Stein case, we have already extended J, to a dO-tame almost complex
structure J on W and we shall allow a generic ¢ do- tame perturbatlon of J in the interior
of W; note that this perturbs the Liouville form \=—d f J but such a change is harmless
since the Liouville condition is open. In the weak, strong ar/lg exact cases, we simply extend
Jy arbitrarily to an &-tame almost complex structure J on W which is generic in the interior
of W. In particular, J satisfies

J=J, inN_(0E),

and this gives (T//[\/ J ) the structure of an almost complex manifold with a cylindrical end
([0,00) x M*,J;) compatible with the stable Hamiltonian structure H, = (Qy,Ay). We

define the energy of a punctured J- holomorphic curve u : § — W as

E(u) := supj u* Wy,
weT JS

"The purpose of this extra assumption is to simplify Lemma [69] which implies a special case of the
unpublished folk theorem that asymptotic contributions to Siefring’s intersection numbers (see §2.3) are a
non-generic phenomenon for somewhere injective curves.
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where for some T > 0 chosen large enough such that © = Ak in [T,00) x M+ < ./\A/'Jr(@E),
T = {gp e C*([T,©) - [T, T + 1)) ‘ ¢’ > 0 and ¢(r) = r for r near T},

and the modified symplectic form &, is defined such that
B, =d ((ev’(” - 1)A+) + Q. on[T,0) x M*,

while on the rest of 171\/, W, is defined to match d® in the almost Stein case or & in weak,

strong and Liouville cases. The point of this definition is that curves with E(u) < oo will now

have asymptotically cylindrical behavior and obey the compactness theory in [BEH™T03].
We will also need to consider smooth deformations

Wry, Ay Jr fr 0<7<1

of the symplectic data on W. After suitable modifications near dW and global rescaling, we
can fit this into the above picture by considering a smooth 1-parameter family of completed
fillings

(W,0:)or (W, Jr fr), O0<7<1

with a generic 1-parameter family of tame almost complex structures jT such that all the
data on ./v_(é‘E) c W is T-independent and matches the construction above. The definition
of energy is then also 7-dependent, but this does not affect the existence of uniform energy
bounds since the data is 7-independent in the cylindrical end.

With this setting in place, our moduli spaces of curves in W will now be defined in terms
of the J;-holomorphic foliation F; of R x M*. Let M”+(J,) denote the moduli space of
unparametrized J-holomorphic curves in R x M ' modulo R-translation that belong to the
foliation F,, and let

M) e MP+(y)  fori=1,2

denote the components with virtual dimension <. We denote by M (J+) and sz'l (J4) <
M]:+(J+) respectively the closures of these in the space of stable holomorphic buildings in
(Rx M™*,J,), see §221 The structure of the foliation F implies that ./\/ller (Jy) = ﬂlﬂ (J+)
is a finite set, consisting of all holomorphic gradient flow cylinders and the exceptional holo-
morphic pages that have one end asymptotic to a hyperbolic orbit and the rest asymptotic to
elliptic orbits. Each connected component of M? (J4) is either a circle or a compact interval
bounded by buildings with two levels whose unique nontrivial components are each curves
in .Mf* (J4). Define an equivalence relation by saying that for two buildings v and v/, u ~ v’
if and only if their positive asymptotic orbits coincide up to a permutation of the punctures
and their bottommost levels are identical; we shall write

MP(J4) i= My (J4)) ~ .

This quotient moduli space has the topology of a disjoint union of circles: indeed, Lemma [6.7]
implies that the equivalence relation identifies pairs of buildings in 8m;+(<]+) having the
same index 1 holomorphic page in their lower levels and a canceling pair of gradient flow
cylinders in their upper levels. Note that gradient flow cylinders never appear as bottom
levels of these buildings, thus the elements of MF+ (J+) have no negative ends.
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Let M(J ) J) and M(J ) J) denote the spaces of unparametrized finite- c-energy holomorphic curves

or stable buildings respectively with arithmetic genus zero in (W, J ), and define a similar
equivalence relation by

M(JT) == M(J)/ ~,

where u and v/ are considered equivalent if and only if their asymptotic orbits coincide up
to permutation and their bottommost nonempty levels are identical. Since the main level
is allowed to be empty in general, it may happen that the bottommost nonempty level of
u€ M(f) is an upper level, and viewing buildings in (R x M™%, J,) without negative ends as
buildings in (17[\/, J ) with empty main levels gives rise to a natural inclusion

—~ A

(6.1) M) € M(J).
With this inclusion in mind, we define
M7 (J) = M(J)
to be the smallest open and closed subset that contains MF +(J4+). Observe that since the
holomorphic pages in M7+ (.J,) have only posmve ends, they can also be regarded as J-

holomorphic curves in [0,00) x Mt = N+(8E) < W, so that each u € M]'—*(JJr) gives rise to
a 1-parameter family of elements in MF (T ( ) that converge in the SFT-topology to u as their
main levels are pushed to infinity. All these families of holomorphic pages therefore belong
to M”F (j), and we will see in Proposition below that they form collar neighborhoods of
the boundary of M7 (.J).

Define subsets

~ ~ ~

M\f;g(‘])’ Msmg( ) Mexot( ) M\}—( )7
where:

o uE ./\/lf;g( A) if its main level is a smooth embedded J-holomorphic curve with one
connected component and only simply covered asymptotic orbits;

o u € M\S]fng( A) if its main level is a nodal J- holomorphic curve with two embedded
connected components that intersect each other transversely at a single node and
nowhere else, and both have only simply covered asymptotic orbits;

o ucE M\g(ot(f) if its main level is a smooth embedded J-holomorphic curve with one
connected component such that one of its asymptotic orbits is doubly covered, and

the rest are simply covered.

As the notation should suggest, elements of ./\/(reg( J) and ./\/lsfmg( J) will give rise to the regular
and singular fibers respectively of a Lefschetz fibration on W when the spinal open book is
Lefschetz-amenable. Elements of .Mexot( ) are a slightly different kind of object that we will
refer to as exotic fibers: we will see that they can occur only in the non-amenable case, thus

producing a topological decomposition of W that is more general than a Lefschetz fibration.

Definition 6.2. For i = 1,2, assume X; are closed oriented surfaces and Y, © 3, are obtained
by deleting finitely many points. A continuous map 7 : ¥ — 3y will be called a branched
cover (with degree d € N) of surfaces with cylindrical ends if it is proper and its
unique extension to a map X1 — X is a branched cover (with degree d). We will say that
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a branched cover 7 : ¥ — X, is generic if its branch points are all simple (i.e. they have
branching order 2) and all have distinct imagesJ

Proposition 6.3. For generic choices of Jon W satisfying the conditions specified above,
M (J) decomposes into disjoint subsets

M7 (J) = Moy (1) © My () U M (7) 0 M7+ (1),

reg
where ./\/lreg(A) is an open subset, Msmg( J) and Mexot(A) are each finite, and M\f( ) has
the topology of a compact, connected and oriented surface with boundary

OM” (J) = M7+ ().

Moreover, every point in W is in the image of the main level for a unique curve in the interior
of M7 (J), and this interior admits a smooth structure such that the resulting continuous
surjection

I: W — M (I)\MT+(Jy) : @ — the curve through x
j) For each i =1,...,r,
J), and the

map II restricts to Y, as a generic branched cover with degree m; of surfaces with cylindrical
ends, whose branch points all have image in Mreg( J). Finally, Mexot( J) is empty if and only
if the branched covers H|Zi have no branch points for everyi =1,...,r.

18 smooth outside the finitely many nodes of the curves in ./\/lsmg(

the holomorphic vertebra 3 W is disjoint from the nodes of curves in ./\/lsmg(

This will be enough to conclude the first part of Theorem [[L5] that a planar spinal open
book must be uniform if M is fillable, and we will explain in §6.5] how to turn IT : W —

MF (j\)\a./(/l\f (j) into a bordered Lefschetz fibration on W whenever there are no exotic
fibers.

We now state a corresponding result for 1-parameter deformations of the data. Consider a
1-parameter family of almost complex structures {J’T}’TE[O,l] on W such that

. J|N (oF) = J, for all 7;

o J is wT -tame (or in the almost Stein case o, -tame) for all 7;
¢ o= J; A
e J; and the homotopy {J;} are both generic on the interior of W.

Let ./\/l({f }, M {J }) and .M({J }) denote the spaces ¢ of pairs (u,7) with 7 € [0,1] and

u € ./\/l(J ), u€e M(J;) or ue ./\/l( T) respectively. Since J; is independent of 7 near infinity,
the inclusion (6.I]) generalizes to this parametrized setting as

MP(J2) % [0,1] « M({-)),
and we define A
MZ({J}) = M({T:)
as the smallest open and closed subset containing M*+ (J+) x [0,1], along with subsets

Miee (T2, ME ({T)), Mo (107} « MT({J;})

8Note that the generic conditions imposed on branch points do not apply to all branch points of the extended
map X1 — X2, which can include puntures.
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defined by the same criteria as before. For 7 € [0, 1], let
MZ(T) = {ue ML) | (w,7) e ME(T D]

~

with Correspondlng subsets ./\/lreg( ) M7 (J;) and M

sing

MF ( ) and ./\/lf( ) with the corresponding subsets of ./\/(]E {J }.

~

exot( +). We will sometimes identify

Proposition 6.4. For generic families {J’T}’TE[O,l] satisfying the conditions specified above,
there exists a homeomorphism

U MP () x [0,1] = MZ({J.})

satisfying
W (M () % [0,1]) = M7, ({T:).
U (M) % [0,1]) = Mg ({77,
(Mo () % [0.1]) = MEai({7:)),
\II(MF(f) x {1}) = M\F(j ) for every T € [0,1],

and U restricts to the identity map on the subsets ./\/lf+(J+) x [0,1] and MF(J (J) x {0} in
MF( {J }) Moreover, outside of M7+ (Jy) x[0,1], one can define a natural smooth structure
on ./\/lf({J }) for which W is smooth outside of possibly finitely many points in ./\/lsmg( J)x(0,1)

~

and Mexot( J) x (0,1), and the conclusions of Proposition [6.3 hold for M]:( ) for every
€ [0,1], giving a continuous surjection

s W x [0,1] = M7 (L) (M7 () % [0,1])
(x,7) — (u,7) where x € im(u)

which is smooth outside of the finite collection of continuous and piecewise smooth paths in
W x [0 1] traced out by the nodes of curves in M51ng({j7})' The restriction of II to ¥; x [0,1]
for i = 1,...,r defines a smooth deformation of generic branched covers of surfaces with
cylindrical ends.

Remark 6.5. The caveat about the smoothness of ¥ in Proposition has to do with iso-
lated breakmg configurations in ./\/lsmg({J D and MZ, ({J;}) that will be dealt with in
Lemma [6 Here there are always two ways to glue such configurations and thus move the
parameter 7 forward or backward, producing a l-parameter family that is manifestly con-
tinuous, but we have chosen not to worry about whether it is smooth. This is in any case
immaterial in our main applications, for which the moduli space does not need to have a
canonical smooth structure as long as the foliation it produces on W is smooth. (In places
where the latter is in doubt, i.e. at nodal points, the foliation can always be smoothed by
hand with a small perturbation.)

6.2. Generic conditions. Before stating the main compactness results, let us clarify the role
that our genericity conditions on J and {jT} are going to play. As usual such assumptions
guarantee that moduli spaces of somewhere injective curves are smooth and have dimension
equal to the index, with the consequence that this index is bounded from below. In addition
to this, we will need to use genericity on occasion to limit non-transverse intersections and
asymptotic intersection contributions in the sense of Siefring. The results of this subsection
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should be understood to be true after choosing J and {jT} from comeager subsets of the sets
of all almost complex structures or smooth homotopies thereof with the properties specified

in §6.11
Lemma 6.6. For every 7 € [0,1], all somewhere injective j;-holomorphic curves v in W that
intersect the interior of W satisfy ind(v) = —1, and there exists at most one such curve (up

to parametrization) with ind(v) = —1. Moreover, for almost every T € [0, 1], and in particular
for =0 and 7 = 1, all such curves satisfy ind(v) = 0.

Proof. The almost complex stuctures jT are fixed on A7_(8E) < W but generic perturbations
are allowed in the interior of W < W, thus the inequalities ind(v) > —1 and ind(v) > 0 follow
from standard transversality arguments as in [MS04]. The fact that no individual J; admits
more than one simple curve of index —1 follows by showing that for generic families {jT}, the
map
ME({T}) x M*({T7}) = [0,1] % [0,1] : ((u, ), (/7)) = (7, 7)

is transverse to the diagonal in [0,1] x [0,1] outside of the diagonal in its domain. Here
M*({J:}) denotes the space of all pairs (u, ) such that 7 € [0,1] and u is an unparametrized
somewhere injective finite-energy jT—holomorphic curve that intersects the interior of W. This
transversality result is probably also standard, but since we do not know a good reference for
the proof, here is a sketch. One starts by defining a universal moduli space % * consisting of
tuples (u, 7,1, 7, {JAT}), where {j;} belongs to a suitable Banach manifold J[g 1) of homotopies
of almost complex structures (e.g. of Floer C, class or in C* for some large k € N), and (u, 7)

and (u/,7') are two distinct elements of M*({J,}). The fact that they are distinct implies in
particular that whenever 7 = 7/, each of u and v’ has an injective point where it does not
intersect the other curve. Standard arguments via elliptic regularity and the implicit function
theorem then show that % * is a differentiable Banach manifold and, moreover, that the map

w* —[0,1] x [0,1] : <u,7’,u',7",{j\7}) — (1, 7)

is a submersion. It follows that the preimage of the diagonal under this map is a submanifold
Ux < ¥, so applying the Sard-Smale theorem to the natural projection %5 — Jo1
provides a comeager subset of Jjg 1] for which the desired transversality result is satisfied. In
the final step, one can use the “Taubes trick” (cf. [MS04], §3.2] or [Wenal §4.4.2]) to replace

Jjo,1] With a suitable Fréchet manifold of smooth homotopies {.J;}. O

Genericity also implies that the existence of non-transverse intersections of somewhere
injective j—holomorphic curves with fixed holomorphic hypersurfaces is a “codimension two
phenomenon”. We will be interested especially in controlling intersections with the union of
the holomorphic vertebrae

Y=Y U...u,.
The next statement follows directly from the results of [CMO7, §6].
Lemma 6.7. Fori € Z, { € N, k := (k1,...,k;) € N and 7 € [0,1], let M*(J;;%,K)

denote the following moduli space of constrained J.-holomorphic curves with £ marked points:
elements of M7 (J;;X,k) are represented by tuples

(Saj7ra (Cla"' ,Cg),U)
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such that u : (S := S\I',j) — (T//I\/, J;) is a somewhere injective finite-energy J,-holomorphic
curve of index i intersecting the interior of W, (1,...,(p € S are distinct points, two tuples are
equivalent if they are related by a biholomorphic map of their domains preserving the ordered
sets of punctures I' and marked points (C1,...,(), and u also satisfies the constraints

u((;) e D

such that for each 7 = 1,...,£, the local intersection index of u with Y at G is at least kj.

Then for almost every T, and in particular for T € {0,1}, .M;"(j;; Z,k) is a smooth manifold
with

l
dim M} (T3, k) =i —2 ) (k; — 1).
j=1
Moreover, the space M;"({fT}, >, k) of pairs (u,7) such that T € [0,1] and u € Mf(jT; 3, k)
is a smooth manifold of dimension ¢ + 1 — QZj(k‘j — 1), so in particular, this space is empty
whenever i +1 —23%,(k; — 1) <0. O

Note that any curve in the ordinary moduli space without marked points gives rise to an
element of the space in the above lemma whenever it intersects > one can simply add marked
points wherever these intersections occur. Adding a marked point ¢ with the constraint
u(Q) € > but without any constraint on the local intersection index does not change the
dimension of the moduli space. Combining this observation with the usual results about
generic transversality of the evaluation map from [MS04], we obtain:

Lemma 6.8. Suppose T € [0, 1] and uy and uy are somewhere injective j;-holomorphic curves
that both intersect the interior of W such that for each j = 0,1, we have ind(u;) € {—1,0},
uj; intersects ) transversely, and all its asymptotic Reeb orbits are disjoint from those of 5.
Then the sets imug N Y and imu; 'Y are disjoint. O

A similar phenomenon in Siefring’s intersection theory guarantees that generically, asymp-
totic contributions to the intersection counts u*v and §(u)+ dy (u) are zero whenever u and v
are somewhere injective curves of sufficiently low index. Since no proof of this fact is available
in the current literature, we shall only address the following simpler special case which suffices
for our purposes. Fix a simply covered elliptic orbit v : ST — ¥ x S! ]\\4/; Dt (2,1),
where Morse(z) = 2. Using the formula (813]) for the Reeb vector field and the natural trivi-
alization v*=; = S x 7,3, the associated asymptotic operator A, : I'(v*=;) - ['(v*E)
(see e.g. [WenlOb, §3.2]) is identified with

CP(SY,T,5) — CP(SY, T.3) : v —ji + %VUVH.

In light of the added assumption in §6.1that V2H : T.% — T, is j-linear when Morse(z) = 2,
A, is therefore complex linear and thus has real 2-dimensional eigenspaces. Let V <
['(v*Z4) denote the eigenspace with the largest negative eigenvalue, and suppose ./\/l*({jT})
denotes any moduli space consisting of pairs (u,7) such that 7 € [0,1] and u is an un-
parametrized and possibly disconnected somewhere injective finite-energy jT—holomorphic
curve that intersects the interior of W with each of its connected components and has at least
two punctures z1, zo asymptotic to 7. Then, as was discussed in §2.4] the asymptotic formulas
of [HWZ96LMor03l/Sie08] give rise to an asymptotic evaluation map

ev® = (evf,evy) s M*({J:}) > V7 x V7,
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where for i = 1,2, ev®(u, 7) associates to u the leading asymptotic eigenfunction of u at z;.
As with ordinary evaluation maps as in [MS04], one can show that this asymptotic evaluation
map is a submersion when extended to the universal moduli space, hence generic choices of
{jT} can make it transverse to any given submanifold of V.~ x V.7, in particular the diagonal.
This leads to the following result, which is essentially Proposition 3.9 in [HT09].

Lemma 6.9. For every 7 € [0,1] and every pair of somewhere injective jT—holomorphz'c
curves u and v in W of index —1 or 0 that intersect the interior of W and each have a
puncture asymptotic to the same simply covered elliptic orbit in Crity(H) x St < Z\W/g, the
values of the asymptotic evaluation maps at these two punctures are distinct. Moreover, the
same holds for two punctures of a single curve with these same properties. O

The main results of [Sic08] imply that whenever two punctures of the same sign are as-
ymptotic to the same orbit, the asymptotic eigenvalue controlling the relative exponential
decay rate of the ends to each other is extremal if and only if the asymptotic evaluation map
for both punctures has distinct values. Since the relevant eigenspace in the case at hand is
2-dimensional, a non-extremal decay rate is equivalent to non-extremal asymptotic winding,
so by the definitions of d,(u) and u * v in [Siell], Lemma [6.9] implies:

Lemma 6.10. Suppose 7 € [0, 1], u and v are somewhere injective finite-energy fT—holomorphz’c
curves of index —1 or O that intersect the interior of W and have non-identical images, and
every Reeb orbit that occurs as an asymptotic orbit for both u and v is a simply covered elliptic
orbit in Crity(H) x ST < ]\\4/; Then u = v is the algebraic count of actual intersections of u
and v, i.e. it includes no asymptotic contributions. Moreover, if every orbit occurring as an
asymptotic orbit for two distinct ends of u is also a simple elliptic orbit in Crity(H) x St,
then doo(u) = 0. O

6.3. Compactness for nicely embedded curves. In this section we will state and prove
two compactness results for certain classes of nicely embedded holomorphic curves in W, which
will be used in §6.4] to describe the global structure of the quotient moduli spaces MT (j)
and M7 ({fT}) Recall from §2.3] that a somewhere injective finite-energy j—holomorphic
curve u in W is nicely embedded if its intersection numbers as defined by Siefring [Siell]
satisfy
0(u) =0p(u) =0 and w=*u<0;

moreover, if u is in the R-invariant setting (R x M ™, J;) and is not a trivial cylinder, then
the condition reduces to u * u = 0. We saw in Proposition that the latter is satisfied
by every holomorphic page in M7+ (.J,), so they are nicely embedded, and we will see that

the same is therefore true for all the smooth somewhere injective curves in M7 (j) Thus in

order to understand the strata of M” (J) that arise from nontrivial holomorphic buildings, it
suffices to understand the closure of the space of nicely embedded curves.

6.3.1. Moduli spaces of nicely embedded curves. Adapting some notation from §5 we shall
abbreviate m := (myq,...,m,) and define

M(J: H;m) < M(J), M(J; H;m) < M(J)
as the spaces of curves/buildings u in (1//1\/, J ) that satisfy the following conditions:

(1) All asymptotic orbits of u are in Crit(H) x S! < M/g and the sum of all their periods
is less than the bound T; from Lemma .5}
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(2) For each i € {1,...,r}, the sum of the covering multiplicities of all asymptotic orbits
of u in the component ¥; x St < Z\W/; is at most m;;
(3) w has (arithmetic) genus 0.
Define subsets

M (J; H;m) = M(J; H;m), Mnice(j; H;m) c M(J; H;m),
where the first consists of all u € ./\/l(f ; H;m) that are nicely embedded, and the second is
the closure of the first with respect to the SFT-topology. Given the 1-parameter family {J.},
we analogously define spaces of pairs (u,7) for 7 € [0, 1], which form subsets

MUC({T ) Hym) « M({J;}; Hym) < M({J;}),
MU (T} Him) © M({J); Hym) < M({]}),

where we should clarify that Mnice({i}; H;m) is defined as the closure of MM ({.J.}: H;m)
in M({JT}); note that this may in general be larger than the space of pairs (u,7) with

u € M (Jr; H;m), since it includes all limits of SFT-convergent sequences (u,,7,) €
Mrice({J 4 H:m), where the 7, € [0,1] can vary. For each i € Z, we denote by

M (J; Hym) € MY(J; Hym),

Mi({J7}; H;m) « M({J:}; H;m)
and so forth the subsets defined by the condition ind(u) = i. Our genericity assumptions, in
particular Lemma [6.6], imply that a somewhere injective curve in M(J;; H;m) for 7 € [0, 1]
will never have index less than —1 if it intersects the interior of W. Outside of this region,
i.e. in N_(OF) ¢ W, J; was defined to match the specially constructed model J; from §3.71

and is thus neither generic nor 7-dependent, so we must still say something about indices of
curves with images contained entirely in N_(0F).

Lemma 6.11. For every 7 € [0,1], every curve u € M(J-; H;m) with image contained

mn ./\A/_(aE) is an embedded leaf of F1 and is isotopic to one of the holomorphic pages in
M7+ (Jy). In particular, it has index 1 or 2.

Proof. Recall that the subset J{\/Jr((?E) c ./\77(8E) is identified canonically with the half-
symplectization [0,00) x M™, and it is also a retraction of ./\A/_(éE), thus we can choose a
diffeomorphism N_(0E) = [0,00) x M* that matches the canonical one near infinity. Under
this identification, we observe that a curve u € M(J,; H;m) contained in N_(0F) must
intersect [0,00) x M ;5, as otherwise it would be confined to the neighborhood of a spinal
component in which the homological sum of all its asymptotic orbits is nonzero, producing
a contradiction. Now if u is not a leaf of F, observe that it also cannot be a multiple
cover of any leaf since the total multiplicities of the orbits in each component of the spine
would then be greater than what is allowed for curves in M(jT;H ;m). It follows that u
has at least one isolated intersection with some leaf v € F, that stays away from M~ and
is thus an asymptotically cylindrical j—holomorphic curve; indeed, the entirety of the region
(—1,00) x M p C E is foliated by leaves of this type, which are tangent to =,. Positivity
of intersections therefore implies u * v > 0. However, a small alteration to the proof of
Lemma shows that u # v = 0 for every holomorphic page v € F,. Indeed, this is
immediate if v has no punctures, as one can then translate v upward in [0,00) x M™* to
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make it disjoint from wu. If u does have punctures, then one can modify it as in the proof of
Lemma [4.16] by a homotopy through asymptotically cylindrical maps so that its intersection
with NV (0F) is a union of trivial cylinders, and then compute the intersection number again

via Lemma [£.T4l This contradiction proves the lemma. O

Further constraints on indices hold for nicely embedded curves. The following lemma
implies that M, (J;; H;m) is always empty for i > 2, and moreover, all buildings u in
——hice , ——hice ,

M (Jr; H;m) or My (Jr; H;m) have only simply covered asymptotic orbits, all elliptic
in the latter case, with exactly one hyperbolic orbit in the former case, and u * v = 0. For u
in ﬂ?fe(j;; H;m) or M{)““(i; H;m), u=u can be either —1 or 0 depending on an easily
denumerable list of combinations of elliptic/hyperbolic orbits with at most one doubly covered
orbit.

——nice

Lemma 6.12. For any (u,7) € M" ({J.}; H;m), all asymptotic orbits of u are at most
doubly covered, —1 < ind(u) < 2, u*u € {—1,0} and

2 (u*u+ 1) = ind(u) + #D + 2#T2 € {0, 2},

where I'g denotes the set of punctures of u at which the asymptotic orbit has even Conley-
Zehnder index, and T'? is the set of punctures at which the orbit is doubly covered.

Proof. Denote the set of punctures of u by I and for each m € N, let I'"* < I" denote the subset
at which the orbit has covering multiplicity m. By assumption, u is either nicely embedded
or is the limit in the SFT-topology of a sequence u” of nicely embedded curves as v — o0,
thus it suffices to prove the lemma under the assumption that u itself is nicely embedded.
Given this, we have d(u) = dp(u) = 0 and u * u < 0, and we already know ind(u) > —1
due to Lemmas and [6.111 To compute u * u, we first plug the stated conditions into the
adjunction formula (29), obtaining cy(u) = u* u — [6(u) — #I'], thus by (211,

ind(u) =24+ #Io =2 (uxu— [o(u) — #I'])
—2[o(u) — #I'].
Since the index formula implies that ind(u) and #I'g always have the same parity, and
ind(u) = —1, the left hand side of this inequality is at least —2, implying 7 (u) — #I"' < 1. But
Lemma T2 implies that all the asymptotic orbits « of u satisfy a_(y) = 0 in the S'-invariant
trivialization, so Lemma [2.8] then implies

G(u) —#0 = DI m#I™ —#I = > (m— DH#I™ < 1,

meN m=2
thus #I"™ = 0 for all m > 3 and &(u) — #I' = #I'2 € {0,1}. The stated identity now follows
from (6.2]). O

6.3.2. Statements of the main compactness results. To simplify the wording in the following
statements, we will describe only the nontrivial components in each level of a holomorphic
building, so that each level should be understood to consist of the disjoint union of the
specified curves with some trivial cylinders. In cases where multiple nontrivial curves appear
in upper levels (e.g. case in Prop.[6 I3 below), the actual number of upper levels may vary
depending on whether these curves occupy the same level or not. Schematic representations
of the index 2 buildings described in the following two results are shown in Figures [ and [T,
where the correct labelling of the elliptic and hyperbolic orbits in these pictures can be deduced
from Lemma above. In each case, minor simplifications of the same pictures produce

(6.2)

N
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representations of the relevant buildings with lower index as well, e.g. the index 1 buildings
in Proposition [6.13] look like Figures or with one gradient flow cylinder removed and
possibly everything shifted up one level.

Proposition 6.13. Assume J is generic so that the results of §6.2 hold. Then ./\/lgice(j\; H;m)
is a finite set and thus matches ﬂg“e(f; H:;m). Buildings in My (J; H; m)\./\/(rfice(j; H;m)
all fit either of the following descriptions:
(1a) The main level is empty and the upperAlevel s a holomorphic page in M{+(J+),'
(1b) The main level is a curve ug € M{°(J; H;m) with ug * ug = 0, and the upper level
contains a single gradient flow cylinder in ./\/ll}—+(J+).

——nhice , %

Finally, every building in My (J; H; m)\Mgice(f; H;m) fits one of the following descrip-
tions:

(2a) The main level is empty and there are either one or two upper levels representing an
element 0fﬂ§+(J+) (the variant with only one upper level is shown in Figure )E

(2b) There are mo upper levels, and the main level is a nodal curve in I//T\/, having two
connected components u4 € Mgice(j; H;m) withuysuy = u_su_ = —1 and uy*u_ =
1, and intersecting transversely at a single node (Figure [9B));

(2¢) The main level consists of a curve ug € ./\/lrfice(j; H;m), and there is one upper level
containing a single gradient flow cylinder in ./\/llﬂ(JJr) (Figure [9Q);

(2d) Case with a second gradient flow cylinder in ./\/llf+(J+) added in an upper level
(Figure [9D));

(2e) The main level consists of a curve ug € ./\/lgice(j;H : m) which has ug * ug = 0 and
elliptic asymptotic orbits including one that is doubly covered, and there is one upper
level containing an index 2 branched double cover of the trivial cylinder over this orbit,
with two positive punctures and one negative (Figure [9F]).

Proposition 6.14. Assume the homotopy {fT} is generic so that the results of §6.2 hold.
Then there exists a finite set of parameter values

I°ing < (0,1)
such that ./\/lrj“l’e({fT}, H;m) contains exactly one pair (u,T) for each T € IS8 and no other
elements, hence My ({J;}; H;m) = M™({J }: H:m). Pairs (u,7) € M;  ({J-}; H;m)
fori=0,1,2 and 7 € [0, 1]\I*® are described by the list in Proposition[6.13, while if T € I5™8,
the list must be supplemented as follows. For i =0, u can either be a smooth curve or one of
the following:
(Oa) The main level is a curve ugy € ./\/lee(j\T, H;m) with ug *ugp = —1 or 0, and there is
one upper level containing a gradient flow cylinder in ./\/lf+(J+);
(0b) The main level is a curve ug € M™(J,; H;ym) with ug * ug = 0 whose asymptotic
orbits include one that is hyperbolic and doubly covered, while the upper level consists
. . . . F
of an index 1 unbranched double cover of a gradient flow cylinder in M7 " (J1).
The cases with index 1 not described in Proposition [6.13 can include the following:

INote that the same diagram, but with a nonempty curve in W instead of R x M, would represent an
element of M3'°°(J; H; m).
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(A) Case

h e e e
(C) Case|(2¢c)| (D) Case|(2d)
fexxe
Rx M

(E) Casel[(2e)]

FIGURE 9. The possible index 2 buildings that can arise in the compactifi-
cation of the moduli space for generic J. The asymptotic orbits are labelled
with e or h to indicate elliptic/hyperbolic simple orbits in the spine. The
notation of e denotes a double cover of an elliptic orbit. The components of
each building are labelled with their Fredholm index.

There are no upper levels, and the main level is a nodal curve in 171\/, having two
connected components ug € M{)‘ice(jT; H;m) andu_; € Mrjife(j;; H;m) with ug*uy =
u_1*u_1 = —1 and ug *u—_1 = 1, and intersecting transversely at a single node;
Case with ug * ug = 0 and a second gradient flow cylinder in .Mf* (J+) added in
an upper level; R

The main level is a curve ug € MT{G(JT;H;m) with ug * ug = 0 whose asymptotic
orbits include one that is elliptic and doubly covered, and there is one upper level
containing an index 2 branched double cover of the trivial cylinder over this elliptic
orbit;

The main level is a curve ug € Mrjife(fT;H; m) with ug * ug = 0 whose asymptotic
orbits include one that is hyperbolic and doubly covered, and there are two upper
levels: the first contains an index 1 branched double cover of the trivial cylinder over
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the hyperbolic orbit with two positive punctures and one negative, and a gradient flow
cylinder in Mf+ (J+) is stacked on top of this in a second upper level;

Finally, the following additional possibilities for buildings of index 2 can occur:

2 ase |(1d) with a third gradient flow cylinder in +) added in an upper leve
f) C. d)| with a third gradient fl lind MTF (], added level
(Figure [10F);
(2g9) Case with a gradient flow cylinder in Mf+(J+) added in an upper level (Fig-
ure [10G);
ase|(1c) with a gradient flow cylinder in added 1n an upper level, connecte
(2h) C h a gradient flow cylinder in M7 *(J,) added level d
to the index —1 curve along its unique hyperbolic orbit (Figure [I0H);

(2i) Case with an extra gradient flow cylinder in Mf* (J+) added on top (Figure[101);

(2j) Case with an index 2 branched double cover of the trivial cylinder over an elliptic
orbit stacked on top of the unbranched cover (Figure[10J);

(2k) The main level is a curve uy € Mrjife(fT;H; m) with ug * ug = 0 whose asymptotic
orbits include one that is hyperbolic and doubly covered, and there is one upper level
containing an index 3 branched double cover of a gradient flow cylinder in Mf*(JJr)

(Figure T0K) [

Remark 6.15. In the scenarios in Propositions and involving multiple components in
one level without nodes, it may happen that some of these components are identical, but this
is only possible if at least one of the multiplicities mq, ..., m, is greater than 1. The latter is
also a necessary condition for any of the scenarios that involve doubly covered curves.

6.3.3. The upper levels. The proofs of Propositions and will follow by considering
inequalities that relate the Fredholm index and self-intersection numbers. Notice that the
statement of Proposition is precisely what remains of Proposition if one adds the
assumption that somewhere injective curves of index —1 in W do not exist. With this un-
derstood and Lemmas and in hand, we will use the same argument to prove both

compactness results.
For the rest of §6.3] we shall fix 7, € [0, 1] and a holomorphic building

~

u® e M(Jr,; H;m)

Too )

and work on deriving constraints on the structure of u®. We will later add the assumption
that (u®, 7.0) € M"°({J,}; H; m), but it will be useful to wait a bit before imposing such a
restriction.

Lemma 6.16. All components in upper levels of u™ € M(jTOO;H; m) are covers of leaves
of Fi. Moreover, the main level of u® is empty if and only if u® contains a component
whose 1mage is a holomorphic page; in that case, the bottommost nonempty level of u™ consists
of a single embedded holomorphic page, all other components are either trivial cylinders or

embedded gradient flow cylinders, and there are no nodes.

Proof. The period constraint on the asymptotic orbits implies the same constraint on all
breaking orbits via Proposition 2.4 so the first claim then follows from Lemma £T7l Given
this, the rest follows from the assumptions about total multiplicities of orbits in the com-
ponents ; x S': in particular, these constraints imply that u® can contain no more than

10Notice that cases [(21)] and [(2])] can arise as the boundary of the space of configurations from case [(2K)|
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e e e reco>e e
Rx M J<
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e? e h
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(F) Case (2]
Rx M
B e
R x M Rx M
e
%4 w
(I) Case[(2i)]
Rx M
[e e
Rx M
r h e e
w
(J) Case[(2])] (K) Case [2K)}

FIGURE 10. The buildings that can arise for exceptional homotopy values,
but that are not in Figure[@ Notice that translation invariance of J in R x M
precludes —1 curves in upper levels, so the exceptional buildings must feature
a —1 curve in W.

one holomorphic page, which cannot be multiply covered, and if it is present then there can
be nothing in any level below it. Moreover, the fact that these pages have simply covered
asymptotic orbits implies since the arithmetic genus is zero that all curves in levels above the
page are simply covered cylinders, and nodes cannot appear. Conversely, if the main level is
empty, then some component must be a holomorphic page since all other kinds of leaves have
negative punctures. O
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6.3.4. Index relations. Let us now fix some notation. We shall write the set of (necessarily
positive) punctures of u® as I'(u™), and for each z € T'(u™), let v, denote the corresponding
asymptotic orbit, and m, € N its covering multiplicityl] For each m € N, define the subset

I (u®) = {z e T(u®) | m. =m},
hence I'(u®) = TH(u®) [[T?(u®)]].... We shall also write
T(u®) = To(u”) [ [T1(u™),

where T'g(u®) and I't (u®) denote the sets of punctures z at which pcz(7.) is even or odd
respectively. By Lemma 5] this means pcz(7.) = ¢ with respect to the Sl-invariant trivial-
ization for z € Ty(u™), £ =0, 1.

In light of Lemma[6.10] we shall assume from now on that the main level of u® is nonempty,
all upper levels consist of covers of trivial cylinders or gradient flow cylinders, and all breaking
orbits are covers of orbits in Crity (H) x St < ]T/I/g with period less than 77. Denote the
nonconstant connected components of the main level by wuq,...,ur, and write each of these
as

U; = U © @4,
where v; is a somewhere injective curve and ; is a holomorphic branched cover of punctured
Riemann surfaces whose unique extension over the punctures gives a map of closed Riemann
surfaces with degree
k; := deg(y;) € N.
We shall use the same notation I'(u;), I'(v;) with subsets I (u;), I'o(u;) ete. for the (again
positive) punctures of u; and v; and their asymptotic orbits and covering multiplicities.

Lemmas 6.6 and [6.1T]imply ind(v;) > —1, and ind(v;) = 0 if jTOO is generic. If ind(v;) = —1,
then we notice from the index formula (2.7)) that I'g(v;) cannot be empty, thus in general, our
genericity assumptions always imply

——nice

We will later make use of the fact that if (u®,7,) € M ({fT},H, m), then Lemma
implies a corresponding upper bound for ind(u™®)+#I'o(u*) plus associated counts of multiply
covered punctures, and our strategy will be to combine these relations with ([6.3)) for deriving
constraints on u®. The workhorse result for this purpose will be Lemma below.

As preparation, we must first relate the indices of the curves v; and their multiple covers u;.
Given z € I'(u;), let k, € N denote the branching order of ¢; at z, meaning that ¢; is a k;-to-1
covering map on the cylindrical end near this puncture. These numbers are related to the
total degree of ; by

(6.4) k; = E k. for any ¢ € I'(v;).
—1
ZEp; ©

We shall use the same notation for branching orders at critical points z € Crit(y;), so that
the algebraic count of critical points of ; is

Z(dp;) = Y (ke—1)=0;
zeCrit(p;)

Hhe reader should beware that the notation v. was used with a slightly different meaning in earlier
sections.
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we emphasize that ¢; is being viewed here as a branched cover between punctured Riemann
surfaces, so the sum over z € Crit(ip;) does not include points in I'(u;). The asymptotic orbits
of u; and v; are now related by

Yy = Wécz for z € I'(u;) and ¢ = p;(2) € I'(v;),

where we are abusing notation by identifying ¢; with its holomorphic extension over the
punctures. Since u® has arithmetic genus 0, all the components u; and v; also have genus
zero and the Riemann-Hurwitz formula therefore implies

(6.5) Z(dei) + Y (ke —1) = 2(k; — 1).

zel(u;)

Since the breaking orbits are all in Crity(H) x S! with periods less than T, the orbits
v, for z € Ty(u;) or z € Ty(v;) with £ = 0,1 also satisfy pcz(y.) = ¢ with respect to the
Sloinvariant trivialization. Moreover, the extension of ¢; over the punctures maps I'y(u;) to
T'y(v;) for each £ = 0, 1. Plugging this information into the index formula ([27)) gives

ind(ui) = -2+ #F(ul) + #Fl(ui) + 2¢q (ul),
ind(vi) = -2+ #F(Ui) + #Fl(vi) + 2¢y (UZ'),

where ¢1(v;) and ¢1(u;) = kic1(v;) € Z are abbreviations for the relative first Chern numbers
of the pulled back tangent bundles with respect to the S'-invariant trivialization at the ends.
A quick computation combining this with (6.4]) and (6.3) yields:

Lemma 6.17. For eacht=1,...,L,
ind(u;) = kiind(v;) + Z(dgpi) — > (k. —1)

z€l' (uy)
= ki [ind(v;) + #To(v))] + Z(dgi) = > (k:=1)— > k..
z€l1 (u;) zelo(uy)
g
Lemma 6.18. Ifu® € M(Jm, H;m) has no nodes, then it satisfies
ind(u”) + #To(u™) +2 > (m — 1#I™ (u™)
m=2

L
Z ( [ind(v;) + #To(vi)] + Z(dg;)

+ ) Z [k (2me — 1) —1]>.

Cel'(v )zecp ©)

Proof. If u™ has no upper levels, then we can replace it with an unstable building having one
upper level that consists only of trivial cylinders. Let us therefore denote by u™ the (possibly
disconnected) holomorphic building in (R x M ™, J,) consisting of all upper levels of u®, and
assume without loss of generality that u* is a disjoint union of L, > 1 connected buildings.
We can compute L from the fact that u® has arithmetic genus zero: indeed, u® gives rise
to a contractible graph whose vertices correspond to the connected components uq,...,ur,
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and the L, connected buildings forming u™, and with edges corresponding to the punctures
of uy,...,ur, so its Euler characteristicis 1 = L + L, — ZiL=1 #T'(u;), implying

Ly =—(L=1)+ ) #I'(w).

=1

Meanwhile, the positive punctures of u™ are in one-to-one correspondence with those of

u®, and its negative punctures correspond to the punctures of ug,...,ur, thus Lemma (4.9

combines with the above relation and gives

ind(ut) = —2L, + #Lo(u™) + 24T (u®) + Z #T0(u;)
(6.6) .
Z #FO uz + Q#Fl (uz)] + #Fo(uoo) + Q#Fl(uoo)
i=1

Note that since each component of ™ has image in R x ]\7; and the latter fibers over S,
there is a well-defined degree of the projection to S'. In particular, the total degree of the
positive ends agrees with the total degree of the negative ends, implying

DI YD YR b YDy

zel(u®) i=1 zel'(u;) i=1¢el'(vi) zep; (¢)

The expression on the left hand side of this equation can also be rewritten as ) . m#L"™ (u™),
thus

HTo(®) +2 37 (m = D#T™(u®) = #To(®) +2 > m. — 24T (u”)

m=2 2€l (u®)

= —#To(u™) — 24T (u +2Z D> keme

i=1¢eT'(v;) zep; L)



ON SYMPLECTIC FILLINGS OF SPINAL OPEN BOOK DECOMPOSITIONS II 101

Now writing ind(u®) = ind(u*) + 3% | ind(u;) and applylng Lemma [6.17] along with (6.6])
and (6.7), we find that ind(u®) 4+ #Lo(u™) +23,,59(m — L)#FI™(u™) equals

Z #FQ ul + Q#Fl(uz)] + #Fo(uoo) + 2#F1(uoo)

+Z< [ind(v;) + #To(v:)] + Z(dei) = >, (ke =1)— > /<;>

z€l' (u;) zelo(uy)

*#Fo(u )*2#111 +22 Z Z k:mC

=1 Cel'(vs) zep; 1 (¢)
L
=2(L—1) Z < [ind(v;) + #L0(vi)] + Z(dwi)

i=1
+ D) Z (2k.me —k, — 1)

¢elo(vi) z€p; L)

+ D) Z (2k,m; — k1)2)>.

¢el'1(vi) 2€p; L)
U

The next step is to combine the above lemma with the lower bounds on indices arising
from Lemmas and [6.17T] and some information from intersection theory.

Lemma 6.19. Assume (u™,74) € A ({J;}: H;m) and that u® has nodes. Then there is
exactly one node, there are no ghost bubbles, and the main level has exactly two connected

components ui; and ug, each somewhere injective with all asymptotic orbits simply covered
and satisfying ind(u;) + #Lo(u;) =0 for i =1,2.

Proof. If u™ has nodes, then Lemma applies to each of its nonconstant maximal non-
nodal subbuildings (see §2.2)), and the right hand side of this relation is nonnegative due to
(63). The sum of the left hand sides over all these subbuildings is meanwhile at most 2
due to Lemma Proposition thus implies that there are no ghost bubbles, there is
exactly one node connecting two maximal non-nodal subbuildings, and for both of these the
expression on the right hand side in Lemma [6.18] vanishes. This implies that each has exactly
one component u; = v; © ¢; in the main level, where the underlying simple curve v; satisfies
ind(v;) + #T0(vs) = 0 and has m¢ = 1 for all ( € I'(v;). Moreover, Z(dy;) = 0 and k, = 1 for
all z € I'(u;), hence the Riemann-Hurwitz formula (€.5]) implies k; = 1, i.e. u; is somewhere
injective and u; = v;. O

Here is a more complete inventory of the consequences of Lemma [6.18]

Lemma 6.20. If (u®,74) € Mmce({jT}; H;m), then the following constraints hold:

The number of connected components in the main level is at most 2;

The asymptotic orbits of all the curves v; are either simply or doubly covered;
ind(v;) + #Lo(v;) = 0 or 2 for each i;

All punctures z € T'(u;) have k, < 2, and furthermore kamy, ) < 2.
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Moreover:
(1) If any v; has ind(v;) + #L0(v;) = 2, then L = 1 and uy is somewhere injective
(i.e. up = vy).
(2) If all the v; have ind(v;) + #o(v;) = 0, then:
(a) If any of the v; has a doubly covered orbit, then it is the only doubly covered orbit,
L =1, and uy is somewhere injective (i.e. up = vy ).
(b) If on the other hand m¢ = 1 for all ¢ € T'(v;), we consider two cases:
(i) If L = 1, let £ = 0 denote the number of punctures z € I'(u1) at which
k, = 2: then £ < 2 and all other punctures have k, = 1. Moreover, uj is
somewhere injective if £ = 0, and otherwise ¢ + Z(dyp1) = 2 and ky = 2.
(ii) If L = 2, then both components in the main level are somewhere injective,
all their asymptotic orbits are simply covered and ind(u;) + #To(u;) = 0
fori=12.

In particular, the components u; in the main level are somewhere injective except possibly in
case[2(b)1

Proof. If u® has any nodes then Lemma applies and produces a result consistent with
case Let us therefore assume there are no nodes, so that the relation in Lemma
applies to u® directly, and its left hand side is at most 2 by Lemma The first three
bullet points are then immediate from the lemma since ind(v;) + #T¢(v;) = 0 for all i. For
the fourth bullet point, we also see an immediate contradiction if k, > 4 for some z € I'(u;),
so suppose k, = 3, with ¢ = ¢;(2) € I'(v;). Then m¢ must be 1 and &, must also be 1 for all
other z € I'(u;), and Z(dp;) = 0, but then (G.3]) gives

Z(dpi) + Y (ke —1) =2 =2(k; — 1),
z€l'(u;)
hence k; = 2 and there cannot be a branch point of order 3. We therefore have both k, < 2
and m¢ < 2 for all punctures; if ever k., = m¢ = 2, then Lemma provides another
immediate contradiction, so this completes the proof of the fourth bullet point.

Cases [1l 2al and follow from Lemma via similar arguments: in each case, some-
where injectivity follows from the Riemann-Hurwitz formula (6.5]) after observing that Z(dy;)
and all the k, — 1 must vanish.

We now consider case By hypothesis, we have L = 1, ind(v1) + #T0(v1) = 0 and
m¢ = 1 for each ¢ € I'(v1), and taking account of Lemma 6.12] the identity in Lemma
now simplifies to

2> ind(u”) + #To(u”) + 241 (u®) = Z(dp1) + > (ks — 1),

zel'(u1)
which equals 2(k; — 1) by (6.35]). The stated conclusions follow immediately. O
6.3.5. Intersection numbers. In the present setting, Lemma 2.7 provides an easy method for
computing Siefring intersection numbers since, according to Lemma [T2] all the orbits ~
appearing as positive asymptotic orbits satisfy o () = 0 in the S'-invariant trivialization.
This implies that if v and u’ each denote any of u®, u; or v;, we have
(6.8) uxu =uegp,

with ®q denoting the S'-invariant trivialization and eg, denoting the relative intersection
pairing described in §2.3]
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L
Lemma 6.21. Z wj o up = u™ xu®.
Jik=1
Proof. By Lemmal6.16] all the components in upper levels of u® are covers of trivial cylinders
and gradient flow cylinders. Any two curves u and u’ of this type satisfy u eg, u' = 0, as

one can define the trivialization ®y globally over M; and then make u’ disjoint from u by
a global perturbation of u' in the direction of ®j. The formula thus follows by computing
u”® og, u™ as a double sum over all components in all levels and applying (6.8]). O

Let us assume from now on that
(u®, 7)) € MUC({J}; H; m).

We can now give a complete description of u® in the case u®*u® = —1, which by Lemma[6.12]
means ind(us) € {—1,0}, #o(u™) € {0, 1} and all asymptotic orbits of u® are simply covered.

Lemma 6.22. If u® = u® = —1, then u™ is either a smooth nicely embedded curve or a
butlding with two nontrivial levels, where the main level u; is a connected nicely embedded
curve with ind(u1) = uy * uy = —1 and simply covered asymptotic orbits, and the upper level

s a disjoint union of trivial cylinders with a single gradient flow cylinder from ./\/llf*(JJr).

Proof. Since Lemma implies ind(u®) + #Lo(u®) = #I™(u®) = 0 for all m > 2,
Lemma then implies L = 1, ind(v1) + #I'o(v1) = Z(de1) = 0 and k, = m¢ = 1 for
all punctures ¢ and z. Thus by the Riemann-Hurwitz formula (6.5]), u; = v; and the main
level is described by Case of Lemma with £ = 0. Lemma B2T] implies uq *u; = —1,
and ind(uy) 4+ #Lo(u1) = 0 implies via (Z11]) that cy(u1) = —1, so by the adjunction inequal-
ity (ZI0), 6(u1) = don(u1) = 0, hence u; is nicely embedded. The fact that all asymptotic
orbits of both u; and u® are simply covered and u® has arithmetic genus 0 implies moreover
that all components in upper levels are also somewhere injective. Adding up the indices across
levels, this eliminates all possibilities other than what was stated. ]

Since u®#u® is always either —1 or 0 by Lemmal[6.12] we shall consider the case u®*u® = 0
from now on.

Lemma 6.23. If u® xu® = 0, then the main level consists of either a single nicely embedded
curve uy or two distinct nicely embedded curves uy and ug that intersect each other transversely
at a node and nowhere else. Moreover, if the main level is a single curve uy, then all its
asymptotic orbits are simply covered if ind(uy) + #Lo(u1) = 2, and exactly one of them is
doubly covered if ind(uy) + #L'o(u1) = 0.

Proof. Let us first rule out the possibility of a single doubly covered component u; = vy 0
from case of Lemma If this scenario occurs, then we know ind(vy) + #g(v1) =0
and all the asymptotic orbits of v; are simply covered. Equation (ZIT]) thus gives ey (v1) = —1,
and Lemma 2.8 gives 7(v) — #I'(v) = 0, so by the adjunction formula (Z9]),

V1 kU = 2 [(5(’0) + 500(1})] — 1.
In particular, this is an odd integer. But using (6.8]) and Lemma [6:2T] we also have
0=u®*u® =uy xu; =uy og, ug = 4 (v1 e, v1) =4 (v1 * v1)

since uq is a double cover of w1, so this implies that 0 is an odd number and thus rules out
multiply covered components in the main level.
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Exactly the same contradiction occurs if we consider Case [2(b)ii| of Lemma [6.20] assuming
u1 and ug are the same curve up to parametrization. Indeed, u; * u; is then an odd integer
for ¢ = 1,2 due to the adjunction formula

(6.9) ui x up = 2[0(u;) + 6o (ui)] — 1,
and Lemma [6.21] gives
(6.10) 0=u"*u® =uy*up +ug *ug + 2 (ug *ug),

which reduces to 0 = 4(u; * u1) and again implies that 0 is an odd number.

Next consider case when u; # ug. Combining (6.9) and (€.I0) in this case implies
2
0=2> [6(u;) + dop(ui)] + 2 (ug # ug — 1).
i=1

Since ind(u1) and ind(ug) are both either —1 or 0, genericity allows us via Lemma to
assume Oy (u;) = 0 for ¢ = 1,2 and moreover that uy * ug is the (algebraic) count of actual
intersections between u; and uy, with no additional asymptotic contributions. Let us therefore
rewrite the above relation as

1=0(u1) + 6(u2) + uy ® ug,

with u1 @ us = 0 denoting the count of actual intersections. If uq and wo are connected at
a node, then they necessarily intersect, implying u; e us = 1 and d(u1) = d(u2) = 0, hence
both are embedded and they have only one intersection, which is transverse and occurs at
the node. Equation (6.9) then implies that both satisfy w; * u; = —1, so they are nicely
embedded. If on the other hand there is no node, then the above relation between d§(uq),
0(ug) and wu; e ug cannot hold, as all three terms must be 0. To see this, recall that the

assumption (u®,7y) € ﬂnice({j;}; H;m) means that there exist sequences

T, =T and u’ — u® as v — o

where 7, € [0,1] and u” € ./\/lnice(jTV; H;m), so in particular all the v” are embedded. But if
any of the three terms above were positive, then there would be at least one isolated double
point or critical point of uq or ue, or an isolated intersection between them, and any of these
scenarios would give rise to an isolated singularity of the curves u” for sufficiently large v due
to local positivity of intersections. This is a contradiction.

Finally, we show that in all remaining cases of Lemma [6.20] the single somewhere injective
curve u1 in the main level is nicely embedded. Lemma implies w1 * u; = 0, so we just
need to show d(u1) = don(u1) = 0. Since u; cannot have any nodal points in this case, local
positivity of intersections implies §(uq) = 0, as a singularity in u; would again be seen by the
embedded curves u” for v sufficiently large. Thus we only still need to prove do(u1) = 0. This
follows from genericity (Lemma [6.10]) if ind(u;) < 0, which takes care of cases [2al and in
Lemma These are the cases with ind(u;) + #I'(u1) = 0, hence ey (u;) = —1 by 211)),
and the adjunction formula then gives

0=—1+[6(u1) — #(w1)],

so by Lemma 2.8 u; has exactly one doubly covered asymptotic orbit and the rest are simply
covered. We are now left only with case [ with ind(uy) + #'o(u1) = 2. Now (ZI1) implies
en(u1) = 0, so the adjunction formula ([2.9]) becomes

0 =205 (u1) + [6(ur) — #I(uq)]
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and thus implies both d(u1) = 0 and 6(uy) — #I'(u1) = 0. By Lemma [2.8] the latter implies
that all asymptotic orbits of uy are simply covered. O

6.3.6. Conclusion of the compactness proof. The preceding lemmas establish a complete pic-
ture of all the possible main levels of the building ©®. To finish the proof of Propositions
and [6.174] we only need to describe the possible multiple covers of leaves of F, that can occur
in the upper levels. These components are highly constrained for the following reasons:

(1) Most asymptotic orbits of the main level are simply covered, with at most one ex-
ception which is doubly covered and occurs only if the main level is a single curve uy
with uy % u; = ind(uy) + #o(u1) = 0;

(2) The building has arithmetic genus zero: since the possibly nodal curve forming the
main level is always connected, this implies that no curve in any upper level can have
more than one negative puncture;

(3) All curves in upper levels are covers of cylinders.

Let us first consider the case where u® has nodes: then Lemmas and imply that
there is only one node, which occurs in the main level, where it connects two nicely embedded
curves whose asymptotic orbits are all simply covered. As observed above, the genus condition
implies that no curve in any upper level can have more than one negative puncture, and since
they are all covers of cylinders, the fact that orbits are simply covered means that no curves
in upper levels can be multiple covers. It follows that the upper levels consist entirely of
trivial cylinders or gradient flow cylinders, where each of the latter contributes 1 to the total
index of u®. The two curves in the main level each have index either —1 or 0, but since they
are distinct, they cannot both have index —1 due to genericity (Lemmas and [6.1T]). This
completes the description of all possible nodal buildings.

In the absence of nodes, the main level is a single nicely embedded curve u1, and the above
description of the upper levels still applies whenever the asymptotic orbits of uy are all simple:
outside of the case u® *u® = —1, which was dealt with in Lemma [6.22] this is true if and only
if ind(u1) + #o(u1) = 2. If ind(uy) + #Lg(u1) = 0, then exactly one asymptotic orbit of u;
is doubly covered, which allows for a limited range of multiple covers to appear in the upper
levels: indeed, there can be doubly covered unbranched cylinders (which are either trivial or
cover gradient flow cylinders and thus have index 1), and exactly one branched double cover
with two positive punctures and one negative puncture. Suppose u is such a branched double
cover, and the underlying simple curve is v. From Lemma [£9] the possible indices of u are
as follows:

e If v = R x v with ~ elliptic, then ind(u) = 2;

e If v = R x  with v hyperbolic, then ind(u) = 1;

e If v is a gradient flow cylinder, then ind(u) = 3.
The buildings enumerated in Propositions and are thus found by putting together
all possible combinations of these ingredients that add up to the correct index.

As a particular consequence, the above arguments show that the only holomorphic buildings
appearing in Mgice(f; H;m) and ./\/lee({JAT},H, m) are smooth curves (i.e. with no nodes
and only one level), hence these spaces are compact. Note that by Lemma [6.1T] none of the
curves in those spaces are confined to the non-generic domain A7_(8E), hence our genericity
assumptions ensure that M{)‘ice(f : H;m) and M™({J.}; H;m) are also both 0-dimensional
manifolds and therefore finite sets. Lemma implies moreover that for any two distinct
elements (u,7) and (v/,7') € M™({J.}; H;m), we have 7 # 7/, and we define I*"¢ as the
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finite set of values 7 € [0, 1] for which such curves exist; this set cannot include 0 or 1 since
both jo and jl are assumed generic. For any 7 ¢ I®"& the non-existence of index —1 curves
rules out all of the scenarios listed in Proposition[6.14], leaving only the list in Proposition
The proof of both propositions is now complete.

6.4. Holomorphic foliations on the completed filling. In this section we prove Proposi-
tions and For both results, the main step will be to show that the holomorphic pages
living in ﬂ\/_(aE) extend to the rest of W as a foliation with finitely many singularities at the
nodal points, and that this foliation varies smoothly with the parameter 7. We wil/l\ then use
the foliation to define suitable smooth structures on the interiors of MZ (J) and M7 ({J;}).
It’s worth recalling briefly the type of argument that was used for this step in [WenlQc|: in
that simpler setting, all main level curves in the moduli space either have index 2 or are nodal
curves with components of index 0, all of them satisfying the automatic transversality crite-
rion of [Wenl0b]. The foliation then arises easily from a combination of the implicit function
theorem and compactness, showing that the index 2 curves fill an open and closed subset of
W in the complement of the images of finitely many nodal curves—the latter being a subset of
codimension 2—and automatic transversality guarantees that these families of curves always
persist under changes in 7. The crucial difference in the present setting is that in the com-
pactness statements of Propositions and [6.14] not all degenerations have codimension at
least 2; in particular one can imagine the above argument failing as the index 2 curves run
into a “wall” of codimension 1 formed by index 1 curves. Such walls exist in M* (j) and
MF ({JAT}), but it would be more accurate to call them seams: since they always include a
gradient flow cylinder in an upper level, they come in canceling pairs, with the consequence
that every such degeneration can be glued back together using a different gradient cylinder
in order to “cross the wall”.
For i € {1,2}, define
MI () = MT(T7)

to be the subset of all equivalence classes of buildings w/\hose main levels are connected smooth
curves in ./\/l?ice(jT; H;m). Forie {—1,0}, we define le(jT) similarly but allow it addition-
ally to contain equivalence classes of buildings whose main levels are nodal curves with two
connected components, one belonging to Mgice(jT; H;m) and the other to M?ice(j;; H;m).
The subsets ./(/(\f({fT}) c MZ({J;}) and M\Zf(j) < M7 (J) are defined similarly.

Lemma 6.24. Suppose ([uo], 70) € MT ({J-}). Then there exist neighborhoods U = MT ({J,})
of ([uo],70) and V < [0,1] of 70 such that U = M3 ({J.}) and for every T €V,

Uy i=U M ()

s a contractible open subset of M\f(fT) in which the main levels define a smooth 2-parameter
family of embedded curves with disjoint images that foliate an open subset of W.

Proof. This is essentially a standard application of the implicit function theorem for nicely
embedded index 2 curves, see [Wen05, Theorem 4.5.42] or [Wen20, Theorem 3.26]. It de-

~

rives mainly from two crucial facts: (1) curves in MY (J,; H;m) satisfy the automatic
transversality criterion of [WenlOb], hence genericity is not required and the moduli space
perturbs smoothly with 7, and (2) tangent spaces TuMgice(fT; H;m) are equivalent to spaces
of holomorphic sections of the normal bundle along u, and these sections are always nowhere
Z€ro. O
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Lemma 6.25. Suppose ([uo], 70) € MT ({J+}). Then there exist neighborhoods U = MF ({J,})
of ([up], 70) and ¥V < [0,1] of 79 and a homeomorphism

T: (1,12 xV-U
such that for all (z,y,7) € (=1,1)2 x V,
U(0,y,7) € M(Jr)  and  W(a,y,7) € ME(Jr) if o # 0.

Moreover, for each T € V, the embedded curves that constitute the main levels of VU (z,y,T)
for (z,y) € (—1,1)2 are disjoint from each other and form the leaves of a smooth foliation on

—~

an open subset of W.

Proof. The 2-parameter family (y,7) — ¥(0,y,7) € M\lf (J;) arises for reasons similar to the
proof of Lemmal6.24t curves in ./\/lrfice(fT; H;m) satisfy the automatic transversality criterion
of [WenlOb] and are thus regular for every 7. Indeed, the criterion is satisfied because by
Lemma[6.12] any u € ./\/lrfice(jT; H:;m) has only simply covered asymptotic orbits and exactly
one of them is hyperbolic. Moreover, u * u = 0, implying that for any fixed 7 € V, the main
levels of the 1-parameter family y — W(0,y,7) are all disjoint and thus foliate a smoothly
embedded hypersurface in w.

We claim that gluing can be used to extend this foliation to a neighborhood of the hy-
persurface. The crucial detail here is that each of the equivalence classes [u] := ¥(0,y,7) is
represented by exactly two buildings v, and u_ whose upper levels have non-identical images:
indeed, since all asymptotic orbits for the buildings representing elements of MF +(Jy) are
simply covered and elliptic, the same is true for all elements of MT ({jT}), so that the upper
levels of ¥(0,y,7) must always be unions of trivial cylinders with a gradient flow cylinder
connecting the hyperbolic orbit to an elliptic orbit. There are always exactly two choices of
this gradient flow cylinder—they form a canceling pair in the sense of Lemma By the
same argument as in Lemma [6.21], both of the buildings u+ satisfy

(6.11) Uy ¥ Uy = U *U_ = Uy *U_ = 0,

and observe that the gradient flow cylinders in their upper levels are also automatically
regular. We can therefore glue both buildings to obtain a pair of 1-parameter families of
smooth and nicely embedded index 2 curves, which we define to be ¥ (z,y, ) for > 0 and
x < 0 respectively. Each of these two families satisfies the same implicit function theorem
that was used in Lemma [6.24] hence they each foliate open subsets of w. Moreover, the
homotopy invariance of the intersection pairing implies via (6.I1]) that if v and «’ denote the
main levels of W(x,y,7) and ¥(2',y’,7) with 2 and 2’ both nonzero, then u = u’ = 0, hence
the two open subsets foliated by the two families are disjoint, and for similar reasons, both
are disjoint from the main levels of the curves ¥(0,y,7) but contain them in their closures.
This shows that the main levels of the 2-parameter family (x,y) — ¥(x,y, 7) foliate an open

subset of W for each T sufficiently close to 0. U

The preceding pair of lemmas shows that /\75({1}) v M\{:({i}) is an open subset of
M7 ({J;}) and has the topology of a 3-dimensional manifold, and for each 7 € [0, 1], M3 (J,)u
M (J.) € M7 (J;) is similarly open and is a 2-dimensional manifold. Denote the closure of

ME({J-}) in M7 (TN MT+ (J5) < [0,1]) by
Miree(1T}) = MEQTPN (M7 (1) x [0,1])
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and define . . .
Mol r) i= {ue MP(T) | (u,7) € MEe({ 51}
for each 7 € [0, 1].

Lemma 6.26. The closure M\ﬁce({i}) is the union of the sets ./(/l\zf({j;}) for all i €

{—=1,0,1,2}. Moreover, the ./(/l\f({j;}) are smooth manifolds of dimension ¢ + 1, and for
i € {—1,0} they decompose into the following subsets characterized by the main level ug of an

equivalence class of buildings [u] € M\Zf({jT})
o [u] e ML, .({];}) = ./(/(\f({jT}) N ./(/(\feg({fT}) if and only if ug is a smooth nicely

embedded ifwve with ind(ug) = i and all asymptotic orbits simply covered, with 2 — i
of them hyperbolic;

o [u] € ./(/l\sfmgz({j;}) = MT({J;}) n ./(/l\sfng({i}) if and only if ug is a nodal curve
with two nicely embedded connected components v and v', where ind(v) = 0 with all
asymptotic orbits simply covered and elliptic, while ind(v') = i with all asymptotic
orbits simply covered and —i of them hyperbolic;

o [u] € M\gj(om({i}) = MT({J;}) n ME ({J}) if and only if ug is a smooth nicely
embedded curve with ind(ug) = i and one asymptotic orbit doubly covered, the rest

simply covered, and —i of them hyperbolic.

Proof. This is essentially a repackaging of the main compactness results from §6.3], i.e. Propo-
sitions [G.13] and [B.14l The statement about the dimension of M7 ({J;}) for i € {—1,0} follows

directly from the implicit function theorem since {j;} is generic in the interior of W and all
of these curves must intersect that interior due to Lemma, [6.11] ]

Lemma 6.27. We have
Mol t5}) = MEQTDN (M7 (1) < [0,1]))

and for each T € [0,1], any two buildings u,u’ representing equivalence classes in ./(/l\f(j;)
satisfy u = u' = 0.

Proof. By construction, ./(/l\ice({j;}) is closed in M7 ({J,})\(MT+(J5) x [0,1]); we claim
that it is also open. We've already seen that ./(/l\Qf({fT}) v /(/l\{:({j;}) is open due to Lem-
mas and [6.25] so it suffices to show that any ([u],7) € M\f({jT}) for i € {—1,0} has a
neighborhood in /(/l\]:({j;}) contained in M7, ({J+}). Let u denote a holomorphic building

nice
representing such an element. A neighborhood of ([u],7) will consist of all nearby elements
of the (i + 1)-dimensional moduli space described in Lemma [6.26], plus any other equivalence
classes represented by buildings with fewer levels (e.g. smooth curves) that are close to con-
verging to u or one of its equivalent buildings in the SFT-topology. Lemma[6.26] describes the
possible main levels of u, and the upper levels are allowed to consist of anything that produces
arithmetic genus zero and the right collection of asymptotic orbits (all of them simply covered)
at the positive ends. This allows for exactly the same range of possibilities as seen in Propo-
sitions and all components in the upper levels are covers of either trivial cylinders
or gradient flow cylinders, each with covering multiplicity at most 2. Aside from the ordering
of the punctures, the only ambiguity involved in the upper levels is therefore the option to
replace each gradient flow cylinder with its partner in a canceling pair. But by the argument
in Lemma [6.21], this alteration does not change the value of u*u or u*v for any other building
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v with ([v],7) € MF ({J+}). In particular, since u is equivalent to some building arising as
a limit of a sequence of nicely embedded index 2 curves, u * u = 0, implying that any other
smooth curve obtained by gluing u will also be nicely embedded and therefore an element of

mce({J }). This proves that the set is open as claimed, hence it is a union of connected
components of M7 ({J;})\(M7+(J;) x [0,1]). Since ./\/liCe {J+}) also contains the holomor-
phic pages in N (0E) that form a neighborhood of ./\/lf+(J+) x [0,1] in .Mf({J }), it now
follows from the definition of M* ({.J;}) that Mice({J ) = MZ({T P\ MT+ (1) x [0,1]).
The claim about intersection numbers then follows from Proposition [A.15] via the homotopy
invariance of the pairing u * u’. O

Lemma 6.28. For each 7 € [0, 1], every point in W is in the image of the main level of a
Jr).

unique element of Mmce(

Proof. Let A = W x [0,1] denote the set of all points (:c T) such that z is in the image of the

main level for some equivalence class of buildings in MF ( r) U ./\/ljT ( +). By Lemma [6.26]
A is the smooth image of a manifold with components of dlmenmon at most 3, i.e. it is a

“subset of codimension at least 27 in W x [0,1]. If follows that (17[\/ x [0, 1])\A is connected.

Now define © < (W x [0,1])\A as the set of all (x, ) ¢ A such that « is in the image of
the main level for some equivalence class of buﬂdlngs in ./\/l ( ) U M]: ( +). Lemmas [6.24]
and [6.25] imply that © is an open subset of (W x [0,1])\A, and Lemma 0l implies that it is
also closed. We conclude that W = © U A, meaning every (z,7) € W x [0 1] has the property

that = is in the image of the main level for some element of Mmce(J ). Uniqueness then
follows from the fact that any two such elements u and v’ satisfy u * v’ = 0, as Lemma [6.2]]
implies that any isolated intersection of the main levels would make u * u’ positive. U

We've now shown that for every 7 € [0,1], the main levels of the buildings representing
elements of ./\/lmce(JT) define a smoothly 7-dependent foliation JF, of W, which is singular on
the set

Wcrit - ‘//I}
consisting of images of nodes for main levels of elements in MZ
continuous map

sulg(j\T)- We thus obtain a

I : I//I\/ M\ice( )

sending each point = € W to the unique [u] € M7

mce(jT) whose main level contains x, and
the resulting map

W% [0,1] = Miee({ ) : (2,7) = (1 (), 7)
is also continuous. The remaining steps toward the proof of Propositions and are to
define a suitable smooth structure on ./(/l\ice({j;}) and to understand the topological relation-
ship between the sets M” (J) and MF ({J;}) and their various subsets of regular, singular
and exotic curves. To obtain a smooth structure and orientation on ./(/l\ﬁce({j;}), we can

conveniently make use of the foliations F, and thus avoid talking about smoothness of gluing
maps or coherent orientations.

Lemma 6.29. The spaces ./(/l\mce({JAT}) and M7,

micel T) for each T € [0,1] admit unique

smooth structures such that the maps I, and 11 are smooth, except possibly at T//I\/Tcrit and
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Urepo1 Wt x {1} respectively. Moreover, ./(/l\ice({j;}) is orientable, and there exists a dif-
feomorphism

W s Mol )  [0,1] = Miiee ((-))
which satisfies \If(./\/lice( A) x{t}) = mce( T) for every T € [0,1] and is the identity map on
M (A) x {0} and the neighborhood of ./\/lﬂ(JJr) x [0,1] defined by the holomorphic pages

nlce

in N'y (0F).

Proof. Given ([u],7) € Mﬁce({j;}), pick a point p € W that is in the image of a non-nodal
point of the main level of [u]. Choose also a small embedded open 2-disk D, W that has
p in its interior and is positively transverse to the foliation /. Then after shrinking D, if
necessary, we can assume that the main level curve for every element in some neighborhood
Uuc Mﬁce( AT) of [u] passes through a unique point of Dj, thus defining a homeomorphism
U — Dy. (A crucial detail behind this assertion is that all of the main levels of elements in
Mﬁce({j;}) are embedded—in particular none of them are multiply covered, otherwise the
map U — D, would be multi-valued.) We shall identify D, smoothly with the open unit
disk in C and regard &/ — D, as a chart. Since the foliation is smooth and has a canonical
co-orientation determined by the almost complex structure, all transition maps relating two
charts of this type are smooth and orientation preserving. In the same manner, the smooth
dependence of F; on 7 allows us to define local charts on Mmce({jT}) since D, can still be

assumed positively transverse to F,, for all 7" sufficiently close to 7. This makes ./(/l\ﬁce({j;})
a smooth oriented manifold in which the function

Mz (T2} = [0,1] : ([u],7) > 7

is a smooth function with no critical points. The existence of the diffeomorphism ¥ follows
since the foliations F, match F, and are thus 7-independent in the region of N (0F) foliated
by holomorphic pages. O

Lemma 6.30. Using the diffeomorphism U from Lemma [6.29, the sets M. ({J;}) and

sing

Mexot({jT}) are each disjoint unions of finite collections of subsets of the form
{U(f(),7) e M T} | T (0,11}

for continuous maps f : [0,1] — — M7 ( ) that are smooth except at finitely many points

nice
n (0,1).
Proof. Recall from Proposition the finite subset
I8 < (0,1),

which in the present context we can regard as the set of all parameter values 7 such that the
foliation F: contains a leaf of index —1 (and only one such leaf ) When 7 ¢ I°"¢ Lemma [6.20]

identifies ./(/l\ing(AT) and ./\/lexot(AT) with ang(](:') and MexotO( J;) respectively, which
are each compact and are made up of equivalence classes whose main levels contain nicely
embedded index 0 curves with simple elliptic asymptotic orbits. These curves satisfy the
automatic transversality criterion of Proposition [2.12] hence there are finitely many of them
for each 7 and they can be deformed smoothly under small perturbations in 7. In particular,

transversality implies that the projection

(612) smgO {J }) Y Mexot 0({‘] }) [ ] ([u]7T) =T
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is a submersion.
We claim next that if 7y € I8 and

{([ur),7) € MELUTD) | 7 & (ro— e70)}

is a smooth 1-parameter family, then this family admits a unique continuous extension to
T € (10 — €,70 + €) if € > 0 is sufficiently small, and the extended family is also smooth for
T € (710,70 + €). The compactness results of §6.3] imply that as 7 — 79 from below, [u,]

converges to an element [ur,] of either M\gng,o(j;o) or M\g;ng,ﬂ(j;o)- In the first case we
can again use automatic transversality and apply the implicit function theorem to continue
the family. In the second case, we can assume that the smooth curves u, representing [u]
converge to a holomorphic building u,, as in case of Prop.[6.14] whose main level is a nodal
curve with one index 0 and one index —1 component, and the upper levels consist of a gradient
flow cylinder connecting the unique hyperbolic orbit of the index —1 curve to an elliptic orbit.
All components in this building are parametrically Fredholm regular, i.e. they are points at
which the relevant parametric moduli space {(v,7) | 7 € [0,1], v is J;-holomorphic} is cut
out transversely by the nonlinear Cauchy-Riemann operator. It follows that u,, can be glued
in a unique way, proving that all pairs (u,7) close to (ur,,70) in the SFT-topology belong to
the given family {(u,,7) | 7 € (19 — €,79)}. However, one can also replace the gradient flow
cylinder in the upper level of u,, with its canceling partner from Lemma [6.I] giving a new

building v/, which can be glued to obtain a new smooth 1-parameter family of elements in

M\sfng,o({jT}) with an end degenerating to u/ . Since the index 0 curves forming the new
family have the same asymptotic orbits as the components of u, and each have normal Chern
number —1, Proposition 2.13] implies that these two components of ./(/(\angp({i}) receive the
same orientation, for which the submersion (6.12]) either preserves or reverses orientation.
But these coherent orientations also assign opposite signs to the two canceling gradient flow
cylinders, and hence to the buildings u,, and u/ that form the boundaries of our two families

in ./(/l\sfngp({i}). It follows that the family we obtained by gluing consists of pairs ([u],T)
with 7 > 79, not 7 < 79, thus continuing the family as claimed. The uniqueness of the

continuation follows from the observation that the two buildings u,, and w}  are the only

possible representatives of [u,,] € M\Sfing(JTo) up to ordering of the punctures.

The proof of the same claim for M7, ({J;}) is entirely analogous, the main difference

b/e\ing that there are now two /Eossible types of degenerations from 1-parameter families in
Mg;omo({j;}) to buildings in M;Ot7_1({jT}), as the unique hyperbolic orbit for the index —1
curve may or may not be the same one that is doubly covered, i.e. this is the distinction
between cases and in Prop. If it is not the same orbit, then the upper levels
contain a gradient flow cylinder, and the family is continued exactly as above by gluing its can-
celing partner. If the hyperbolic orbit is doubly covered, then we instead have an unbranched
double cover of a gradient flow cylinder in an upper level, but as observed in Lemma [6.1],
this unbranched cover also satisfies automatic transversality and is oriented opposite to the
unbranched double cover of its canceling partner. Thus the same trick works to continue the
family, this time by replacing the unbranched cover with its own canceling partner and then
gluing the building. Note that for this picture of /(/l\g(ot({i}) to be complete, one must also

picture an index 2 branched double cover of a trivial cylinder over an elliptic orbit in the top
level of every building, as appears in case |(2¢)| of Proposition [6.13] and cases |(2g)| and |(2j)| of

~
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Proposition But this branched cover can be treated as a constant object that plays no
role in the deformation or gluing arguments.

As a final remark, note that there are other types of buildings listed in Proposition [6.14] that
can represent elements of Mexot 71(JTO) and may arise as degenerations of index 2 curves,
namely cases and [(2k) However since they do not include any branched cover of a
trivial cylinder in the top level these cannot arise as degenerations of curves in ./\/leXOt 0({j 138
Wthh are always represented by case m of Proposmon 613l Moreover, they are equlvalent
in Mexot ,1({!] }) to buildings from case and can thus be replaced by such buildings
in order to obtain two glued familiedd in the way described above, so that they always
uniquely fit into the same 1-parameter families in Mexot({JT}) moving 7 both forward and

backward. O

The lemmas proved so far establish the main topological properties of the spaces MF (jT)
and M7 ({J;}) as described in . Propositions [6.3] and [6.4 64l It remains only to examine the

restrictions of the maps II- LW —> M
it =1,...,r. The resulting maps

+) to the holomorphic vertebrae ¥ W for

nlce(
. H‘r —~ ~
Y — M.rﬁce(‘]T)
are local diffeomorphisms wherever the foliation . is transverse to X := ¥ u ... U X,. By
Lemmal6.7] non-transverse intersections of main level curves with X occur only for elements in
a 1-dimensional submanifold of M3 ({J;}) and a discrete subset of M7 ({.J;}), and moreover,

each individual curve in these spaces has only one non-transverse intersection, with local
intersection index 2. With this understood, the following local result serves to characterize

the maps » s M ) as generic branched covers.

nlce(
Lemma 6.31. Suppose J is a smooth almost complex structure on C2,
¢ (D,i) > (C*J) for (eD

is a smooth 2-parameter family of J-holomorphic curves such that ug(0) = 0 and the map
D xD — C?: (2,() — uc(z) is an embedding, and ¥ = C? is an embedded J-holomorphic
curve that has an isolated intersection of index k € N with ug at the origin. Then the map

YoD:we ((w) such that w € M U ()
has the local structure of a branched cover, with the origin as a branch point of order k.

Proof. The statement follows immediately from transversality if £ = 1, so let us assume k > 2
After a change of coordinates, we can assume without loss of generality that

ug(z) = (2,¢)  and  J(2,0) = ( j[((zg)))

for Endg (C)-valued functions a, j that satisfy j2 = —1 and ia+aj = 0. In these coordinates,
we can write ¥ near the origin as the image of an embedded J-holomorphic disk v = (¢, f) :
(D,4) — (C2,.J) that satisfies ©(0) = f(0) = 0 by assumption, and the condition k > 2 implies
a tangential intersection with ug, thus df(0) = 0, so that ¢ : D — C can be assumed an
embedding. Since the family of curves u¢ is parametrized by the second complex coordinate,
our goal is now to show that the function f : D — C has the structure of a k-to-1 branch

121¢ is worth clarifying that no obstruction bundle gluing (in the sense of [HT09]) is required here, as the
branched covers in our picture serve merely as a bit of extra data that is not involved in the gluing construction.
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point at 0. This follows easily from the similarity principle: writing vo(z) := (¢(2),0), the
equation dsv + J(v)dw = 0 implies

(27) 6 3621) (37) = o —scona
_ (Ll Dod(p,tf) - f dt) o =: —Af,

where the linear dependence of the integral in the second line on f is used to define a smooth
function 4 : D — Hompg(C, C?). Projecting all of this to the second factor in C x C then
produces a linear Cauchy-Riemann type equation dsf + j(p,0)0:f + Af = 0, and since the
intersection of v with wug is isolated, the similarity principle now implies that f has a nontrivial
Taylor series whose first nonzero term is holomorphic. That term must be a multiple of 2%,
in light of the intersection index, thus f is given by

f(z) = azk + |z|kR(z)

for some nonzero coefficient a € C and a continuous remainder function satisfying R(0) = 0.
On a small enough neighborhood of 0 so that |R(z)| < |a|, this can also be written as

0sv + J(vg)0rv

1/k
f(w) = w* in a new C'-smooth complex coordinate defined by w := 2 (a + L ‘kR(z)) .0

For the next statement, let ¥; denote the compact topological surface obtained by adding
circles at infinity to each of the cylindrical ends of ;.

~

Lemma 6.32. For eachi=1,...,r and every 7 € [0,1], the map %; LLA Mmce( J) extends
to a continuous map

(S5, 050) = (M7 (), M7+ (1))
of degree m; whose restriction to the boundary is a covering map. Moreover, it is a generic
bmnched cover of surfaces with cylindrical ends in the sense of Definition [6.2, the images

in M7, J;) of the branch points all lie in MZ(J; Jr), and the nodes of curves in ./\/lsmg(j)
never intersect ;.

nice ( reg

Proof. The continuous extension and its degree are already Clear from the fact that the holo-

mce( +)) each have exactly m; inter-

morphic pages (which form the cylindrical ends of M
sections with El, all of them transverse. That IL- |E is a branched cover with only simple
branch points follows from Lemma [6.31] together with the preceding remarks on genericity
and intersections. The branch points are the tangential intersections of 3., with leaves of the
foliation, and Lemma [6.7] implies that such a point ¢ is necessarily the only point of tangency
on a given leaf, hence all images of branch points are distinct. Finally, Lemma 6.7 implies that
the index 0 and —1 main level components in Msmg( AT) and Mexot( AT) always intersect ¥;
transversely, hence these are never critical values of the branched cover. Lemma implies

in turn that the two components of each nodal curve in ./\/l jT) never intersect EZ in the

smg(
same places, hence their intersections with Ei are disjoint from the node. ]

Our final lemma in this section concerns the Lefschetz-amenable case.

Lemma 6.33. The branched cover in Lemma [6.32 has mo branch points if and only if

~

Mexot( +) = for all T € [0,1].
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Proof. We show first that the absence of branch points rules out exotic fibers. By Lemmal[6.30,

it suffices to prove that Mexot( A) is empty whenever 3 Mo, M~ j) is an honest covering

(
nice
map. Recall from Proposition B.8 that the holomorphic vertebrae 3, are not isolated: each
can be shifted in the direction of the #-coordinate, producing a smooth S'-family of embedded
J-holomorphic curves Ef < W that foliate a smooth hypersurface
S Ustew
feSt

We cannot assume that the genericity conditions imposed in §6.2] hold for intersections of
leaves with every curve in the family 2?, thus a leaf may have intersections of index greater
than 2 with some of these curves, but the intersections are still isolated and positive, thus

Lemma [6.3T] still applies and gives each of the maps 29 -9 ./(/l\ﬁce( J) the structure of a (not
necessarily generlc) branched cover. The rest of the arguments in Lemma [6.32] also apply for
every 6, showing that the branch points of these covers are confined to a compact subset, and
they can be counted algebraically using the Riemann-Hurwitz formula. It follows that the
condition of having no branch points is independent of 8, hence this assumption implies that
every leaf of the foliation is transverse to the entire hypersurface Y :=Y; u... U Y.

/\

Recall that a neighborhood of infinity in M7 (J J) coincides with the foliation F con-
structed in §3.8 and each leaf of the latter intersects the region of E above Y in a disjoint
union of cylindrical ends whose boundary circles are in bijective correspondence with the
boundary components of the pages (see Figure [7), each of them having degree 1 under the
projection $x 8t St In light of the transverse intersections with Y, it follows that the
same is true for every leaf of Fy, implying that none can have an end asymptotic to a doubly
covered orbit (see Figure OFEl), which must occur if .Mexot( J) were nonempty.

Conversely, if ./\/lexot( ) &, then all main level curves in Mﬁce(J ) have the same number
of ends with the same asymptotic orbits and multiplicities. We claim that for any 6 € S!
and t > 0 sufficiently large, all of them are transverse to the properly embedded surface
$®0) = {1} x Sx {0} < ./\A/'(ﬁhE). Indeed, this is obvious for the holomorphic pages constructed
in §3.8 which form a neighborhood of infinity in the moduli space, and for everything else
the claim follows for ¢ » 0 due to the asymptotic convergence of curves to Reeb orbits, which
are never tangent to »(t0) The restriction of II to X9 is therefore a proper covering map
and thus satisfies the Riemann-Hurwitz formula, with 0 for the count of branch points. Since
20 and 3 = 21 U...u ET are homeomorphic, it now also follows from the Riemann-Hurwitz
formula that II|y. cannot have branch points. 0

The proof of Propositions and is now complete.

6.5. The Lefschetz fibration on the filling. We can now finish the proof of Theorems
and [[L.I0 by showing that if the spinal open book 7 is Lefschetz-amenable, then the stable
foliation from Propositions and gives rise to a bordered Lefschetz fibration supporting
the symplectic structure of W.

Assume 7 is Lefschetz-amenable, so according to Proposition[6.3] the set .Mexot (J ) is empty
and W is foliated (with finitely many singular points) by a mixture of smoothly embedded

j—holomorphic curves and finitely many nodal curves that look like Lefschetz singular fibers.
Recall from §3.9 the bounded subdomains Fr < F for R > 0, and let

WRCW
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denote the compact subdomain in W with 0Wr = 0Eg; its boundary (see Figure [§) is
piecewise smooth and splits naturally into horizontal and vertical faces

Wr = 0,Wr U 0, Wr.

These subdomains with their symplectic and/or almost Stein data are deformation equivalent
to W by Lemma B.14l Now by taking R > 0 suﬂi(:iently large we can assume near 8WR that
the foliation formed by the J- holomorphic curves in MF(T ( ) is arbitrarily C'*-close to the R-
invariant foliation F; this follows from the fact that sequences of curves in MT (j ) escaping
to infinity necessarily converge to curves in MF +(J4). In fact, these two foliations match
precisely near 8v171\/R, since the curves in this region are contained fully in the cylindrical end.
Near th//I\/R, we can now make a C'®-small modification “by hand” of the almost complex
structure and the holomorphic curves so that the latter become precisely tangent to F;.
After this modification, consider the restriction

IT: Wr — %o

of the map in Proposition [6.3] where we define Xy < MT (j) as the image of this restricted
map. What we lose by forgetting W\WR is a collection of 1-parameter families of curves
contained in ./\7+(8E); these form collar neighborhoods of the boundary in MF (j), hence ¥
is a compact surface with the same topological type as MF (j ). Since the nodal singularities
can all be assumed to lie in the interior of I//I\/R for R sufficiently large, II : ﬁ\/R — X is now
a bordered Lefschetz fibration, and it is allowable if (WR,&)) is minimal—which is true if
and only if (W,w) is minimal—since the only closed components allowed by the compactness
results in §6.3] are embedded spheres with self-intersection number —1. Lemma implies
moreover that IT : WR - EO supports the symplectic and/or Liouville structure of WR, and
in the almost Stein case, (WR, J f) is almost Stein deformation equivalent to the canonical
structure for this Lefschetz fibration by [LVW. Theorem C]. With this, we’ve proved that the
maps in Theorem sending equivalence classes of Lefschetz fibrations to equivalence classes
of fillings are surjectve.

To show that these maps are also injective, suppose we have two bordered Lefschetz fibra-
tions bounded by 7 that give rise to deformation equivalent fillings. These Lefschetz fibrations
then admit “double completions” formed by gluing them into the model E from §3 so that
their vertical subbundles match V E near their boundaries, and we can choose tame almost
complex structures on both that match J, on the end and make all fibers holomorphic. We
can therefore view them both as holomorphic foliations on the same noncompact manifold
W corresponding to two distinct choices of almost complex structures Jo and J1 tamed by
deformation-equivalent choices of symplectic data, all identical on J\L(dE). Choosing a de-
formation of the symplectic data and a corresponding deformation of tame almost complex
structures, Proposition then connects the two foliations by a smooth 1-parameter family,
producing an isotopy of bordered Lefschetz fibrations which can be adjusted near 81//1\/3 as in
the previous paragraph so that they support the family of symplectic structures. The proof
of Theorems and [[L10 is now complete.

6.6. Quasiflexible Stein structures. We now prove Theorem [LT3l
Assume II : W — ¥ is an allowable bordered Lefschetz fibration with fibers of genus zero,
and (Jp, fo) is an almost Stein structure on W supported by II. Assume further that (Ji, f1) is
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a second almost Stein structure on W such that the symplectic structures wg := —dfgo Jy and
w1 := —dfi0J; are homotopic through a smooth family of symplectic structures {w }¢[0,1] that
are convex at the boundary—recall that since 0W has corners, the convexity condition means
that the associated Liouville vector fields are outwardly transverse to both d,W and 2, W.
The aim is to show that the Weinstein structures induced by (Jo, fo) and (J1, f1) are Weinstein
homotopic.

The spinal open book 7 := 0II on M := dW has spine My, = ¢,W and paper Mp = 0,W,
with the fibration 7y, : My — X obtained by factoring JpF A, Yo through a suitable

covering map ¥ — Yy to make its fibers connected, and 7p : Mp — S! defined from 0, F A,
0% by identifying each component of 0¥y with S'. We assume in the following that this
particular spinal open book is used for the construction of the model F in §38l Recall now from
[LVW], Theorem 1.24] that the space of almost Stein structures supported by IT : W — ¥ is
contractible, thus we are free after a deformation to assume that (Jy, fo) matches an almost
Stein structure constructed via the Thurston trick as in the proof of that theorem. Since the
same application of the Thurston trick underlies the almost Stein model constructed in §3]
one obtains the following result:

Lemma 6.34. After a deformation of (Jy, fo) through supported almost Stein structures
on W, the model E in 43 can be constructed so that the bounded region E < E with its
almost Stein data (J, f1) admits a diffeomorphism with a neighborhood of W in (W, Jy, fo),
identifying OonW = OpE, 0,W = 0, F, and the fibers of 11 in this neighborhood with the fibers
of N(OnE) I, 53 and N(@,E) 2 (=1,0] x St O

Attaching (W Jo, fo) to (E Jy, f+) via the lemma produces a completed almost Stein
domain (W Jo, fo) that is foliated by Jo holomorphlc curves matchlng the fibers of Il : W —
Yo in W and the leaves of the foliation F, on W\W Note that .Jo in this construction
cannot be assumed generic. Nonetheless, the almost Stein condition is open, so after a small
perturbation of II away from 0W and a corresponding perturbation of (Jy, fo) to ensure
that the perturbed fibers are still Jy-holomorphic, we can assume without loss of generality
that no curve in our jo—holomorphic foliation of T has more than one end asymptotic to
a hyperbolic orbit, and the finitely many curves that make up singular fibers have no ends
asymptotic to hyperbolic orbits. Since these curves all have genus zero, it now follows that
they all satisfy the criterion for automatic transversality from [Wenl0b], so they will survive
a further perturbation of jo in the interior of W, which we now perform in order to assume
the genericity conditions of §6.21 Denote the resulting jo—holomorphic foliation of W by Fo.

As in the proof of Theorem [LHl our original almost Stein domain is Stein deformation
equivalent to the enlarged compact domain (I//T\/R, jo, fo) in W for R » 0. The symplectic
deformation {wr},e[0,1] can now also be fit into this picture and gives rise to a smooth family
of symplectic structures @, on W that are independent of 7 on a neighborhood of infinity
and match —df, o J, for T € {0,1}, where (jl, fl) is a similar extension of the almost Stein
structure (Jy, f1) from W to I//I\/, matching (J, f1) near infinity. By the constractibility of the
space of tame almost complex structures, we can choose a generic family {jT}Te[O,l] of W, -tame
almost complex structures that form a homotopy from fo to jl and match J; near infinity.

Using Proposition [6.4] the foliation Fy now extends to a smooth family of jT-holomorphic
foliations F,, which includes smooth deformations of finitely many nodal curves (i.e. the
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original singular fibers of II) from 7 = 0 to 7 = 1, but does not include any exotic fibers since
none were present in the foliation Fy. Making the same modifications near infinity as in the
proof /gf Theorem [L5] the result is a smooth family of allowable bordered Lefschetz fibrations
Il : Wr — X supporting the symplectic structures &, for R SufﬁcieAntly large. Theorem C
in [LVW] now implies that the Weinstein structure induced by (jl, f1) lies in the canonical
Weinstein homotopy class supported by II;, implying that it is also Weinstein homotopic to
the Weinstein structure induced by (jo, fg) This completes the proof of the first statement
in Theorem [[.13]

If ¥y = D?, then we can weaken the convexity hypothesis on the family of symplectic
structures {wr }-¢[0,1] and assume instead that after smoothing the corners of JW, each (W, w.)
is a weak filling of (M := dW,¢;) for some smooth family of contact structures &, on M
matching ker(—df; o J;|rar) for 7 € {0,1}. The key observation here is that every component
of the spine My is a solid torus D? x S', on which all closed 2-forms are exact, so the possible
non-exactness of w, at dW can be absorbed into the above construction by including in the
symplectic data near infinity a family of closed 2-forms 7, as in §8.3] which are assumed to
vanish on N'(3,E) and vanish identically for 7 € {0,1}. Since 7, changes the Reeb vector
field on the cylindrical end over the paper, it causes a change to fT in this region, but
the holomorphic pages here are tangent to the fixed integrable distribution =, and thus
remain holomorphic. With this understood, the argument of the previous paragraph now
goes through with no further changes, and the proof of Theorem [[LI3]is thus complete.
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