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Abstract. We develop new techniques to study regularity questions for moduli spaces of pseu-
doholomorphic curves that are multiply covered. Among the main results, we show that un-
branched multiple covers of closed holomorphic curves are generically regular, and simple in-
dex 0 curves in dimensions greater than four are generically super-rigid, implying e.g. that the
Gromov-Witten invariants of Calabi-Yau 3-folds reduce to sums of local invariants for finite
sets of embedded curves. We also establish partial results on super-rigidity in dimension four
and regularity of branched covers, and briefly discuss the outlook for bifurcation analysis. The
proofs are based on a general stratification result for moduli spaces of multiple covers, framed
in terms of a representation-theoretic splitting of Cauchy-Riemann operators with symmetries.
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1. Introduction

Motivation. The issue of transversality in Gromov’s theory of pseudoholomorphic curves [Gro85]
has always been problematic, and has attracted renewed interest in recent years. While many
powerful symplectic invariants such as Gromov-Witten theory, Hamiltonian Floer homology
and symplectic field theory are based on holomorphic curves, most of them run into severe
technical complications unless multiply covered curves can be excluded, thus necessitating rather
sophisticated techniques that typically replace the standard nonlinear Cauchy-Riemann equation
by an abstract perturbation, see e.g. [LT98b, FO99, Rua99, Sie, CM07, HWZ17, Par16]. Aside
from the technical challenges that these methods pose, they are non-ideal for many applications:
for instance abstract perturbations destroy intersection theory in symplectic 4-manifolds, and
in Calabi-Yau 3-folds they obscure information that one might hope to find in the geometric
relationship between simple curves and their multiple covers, as exemplified by the Gopakumar-
Vafa formula [GV,BP01,PT14, IP18,DIW].

The motivating principle of this paper is in some sense orthogonal to that of abstract pertur-
bations: our aim will be to extend the transversality theory for the standard pseudoholomorphic
curve equation as far as it can reasonably be pushed, i.e. to prove transversality when it is pos-
sible, and in other cases to isolate the precise phenomena which make it impossible and explain
what is true instead. Let us start by singling out two situations in which this program is not
obviously hopeless.

Example 1.1. If u : pΣ, jq Ñ pM,Jq is a closed J-holomorphic curve and ϕ : prΣ, ̃q Ñ pΣ, jq is
an unbranched cover of closed connected Riemann surfaces with degree d P N, then the virtual

dimensions of the moduli spaces containing u and u ˝ ϕ : prΣ, ̃q Ñ pM,Jq, also known as the
indices of these two curves, are related by

indpu ˝ ϕq “ d ¨ indpuq.
Since indpu ˝ ϕq is then nonnegative whenever indpuq ě 0, there is no obvious reason why
u ˝ ϕ could not achieve transversality generically, but traditional methods in the theory of
J-holomorphic curves do not prove this except when u ˝ ϕ is simply covered, or in certain 4-
dimensional cases [HLS97], or more recently, when indpuq “ 0 if a sufficiently large space of
perturbed almost complex structures is allowed [GW17].

Example 1.2. Suppose u : pΣ, jq Ñ pM,Jq is a closed simply covered curve with index 0 and

ϕ : prΣ, ̃q Ñ pΣ, jq is a branched cover of closed connected Riemann surfaces with degree d P N

and Zpdϕq ě 0 as the algebraic count of branch points. Then combining the Riemann-Hurwitz
formula

(1.1) ´ χprΣq ` d ¨ χpΣq “ Zpdϕq
with the standard index formula for closed holomorphic curves gives the relation

(1.2) indpu ˝ ϕq “ d ¨ indpuq ´ pn´ 3qZpdϕq “ ´pn´ 3qZpdϕq,
where dimRM “ 2n. This shows that u ˝ ϕ lives in a space of nonpositive virtual dimension
when dimM ě 6 and thus cannot achieve transversality if ϕ has branch points, as the space
of holomorphic branched covers then has dimension 2Zpdϕq ą 0. It is interesting however to
observe that u must be immersed if J is generic, so it has a well-defined normal bundle Nu Ñ Σ,
and restricting the linearized Cauchy-Riemann operators for u and u ˝ ϕ to the normal bundle
and its pullback gives operators DN

u and DN
u˝ϕ with indices related by

indpDN
u˝ϕq “ d ¨ indpDN

u q ´ pn´ 1qZpdϕq “ ´pn´ 1qZpdϕq.
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The latter is always nonpositive, so DN
u˝ϕ can be injective, and this condition has a geometric

meaning: it implies that u˝ϕ can never be the limit of a sequence of somewhere injective curves
(see Proposition B.1). In fact, the only other curves near u ˝ϕ are other branched covers of the
form u ˝ ϕ1 for ϕ1 near ϕ, and the cokernels of the operators DN

u˝ϕ define an obstruction bundle
over the space of branched covers which can be used to compute Gromov-Witten invariants.
This phenomenon is known as super-rigidity, see Definition 2.3.

Considerable interest in super-rigidity has been motivated by the study of Gromov-Witten
invariants in Calabi-Yau 3-folds, where all moduli spaces of holomorphic curves without marked
points have virtual dimension zero. In this case it can be interpreted as a Morse-Bott condition
for families of “degenerate” (i.e. multiply covered) curves, so that the Gromov-Witten counts of
these curves are expressed by integrating Euler classes of obstruction bundles over finitely many
such families—these integrals define the so-called “multiple cover contributions,” also known as
the local Gromov-Witten invariants of the underlying embedded curves. A substantial body
of results has emerged during the past two decades on local Gromov-Witten invariants and
their consequences for Calabi-Yau 3-folds in the presence of the super-rigidity hypothesis, using
both algebro-geometric [Pan99,BKL01,BP01,BP05,BP08] and symplectic methods [LZ07,Zin11,
DWa]. In spite of these developments, a general result establishing the super-rigidity hypothesis
itself has thus far been unavailable. In the algebraic category it is known to hold in some
cases and not in others [BP06], and while it was conjectured in [BP01] to hold generically in
symplectic manifolds, proofs have been found only in very special settings (e.g. [LP07,LP12] for
certain Kähler surfaces), and a strategy was even outlined in [LZ07] to disprove the conjecture
for higher genus curves.

Results. The first of the main results stated in §1.1 below settles the super-rigidity question for
symplectic manifolds of dimension at least six: by Theorem A, super-rigidity does hold in this
setting for all simple closed J-holomorphic curves of index 0 if J is generic, and it also holds in
dimension four for curves of low genus. Complementary to this, we will see in Theorem B that
transversality holds for the unbranched multiple covers in Example 1.1, and we will also be able
to prove some transversality results for branched covers (Theorem C). The actual main result
of this paper is Theorem D, which implies the aforementioned results by stratifying the space
of all multiply covered J-holomorphic curves into smooth submanifolds, with precise formulas
for their dimensions. The dimensions are determined by a general picture of Cauchy-Riemann
type operators with symmetries described in §2.2, which has its origins in Taubes’s work on
the Gromov invariant of symplectic 4-manifolds [Tau96a]. As in Taubes’s paper, the approach
adopted here also lends itself to the study of bifurcations and wall crossing for multiple covers,
on which we will make some brief remarks in §2.4 but save the detailed examination for future
work.

The difficulty. As with any transversality result, the proof of our main theorem boils down to
establishing that a certain bounded linear operator is surjective. The type of operator that
arises has appeared before, e.g. in the context of wall-crossing arguments [Tau96a, IP18] (see
also [Eft16]), and it has previously been dealt with by various ad hoc methods that suffice for
certain specific applications, but would not be general enough for the problems studied here.
The solution to this difficulty is probably the most technically novel element in the present
paper: it is reduced to a local property of Cauchy-Riemann type operators known as Petri’s
condition, which involves a “decoupling” between the pointwise linear dependence relations for
local solutions of a linear Cauchy-Riemann type equation and of its formal adjoint equation.
Section 5 of this paper proves that Petri’s condition holds generically for Cauchy-Riemann type
operators, and this should be regarded as the main step that makes all of our other results
possible.
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Outlook. While the results in this paper focus specifically on closed holomorphic curves, there
is no obvious obstruction to applying the same techniques to study punctured curves in sym-
plectic cobordisms. As with [Tau96a] and the Gromov invariant, this can be expected to have
important applications to the foundations of Embedded Contact Homology [Hut14], e.g. for
defining cobordism maps and proving invariance without reliance on Seiberg-Witten theory. It
also raises the intriguing possibility of localizing (in the sense of Corollary 1.6 below) and/or
proving integrality results for invariants in symplectic field theory [EGH00]. A few special cases
of super-rigidity in the punctured case have previously been observed in [Wen10,Fab13]; those
examples were restricted to dimension four, but the results of the present article suggest that
super-rigidity is likely to be a considerably more general phenomenon.

Since the first version of this paper appeared, A. Doan and T. Walpuski have initiated a pro-
gram extending the equivariant transversality methods introduced here to more general classes
of elliptic problems; see [DWb]. More recently, Bai and Swaminathan [BS] have also carried
out the first step in the bifurcation analysis proposed in §2.4, and applied it toward defining an
extension of Taubes’s Gromov invariant to Calabi-Yau 3-folds.

1.1. Super-rigidity and transversality theorems. To state the main results, assume pM,ωq
is a symplectic manifold with

dimM “ 2n ě 4,

and Jfix is a smooth almost complex structure that is compatible with ω, meaning that ωp¨, Jfix¨q
defines a Riemannian metric on M . We fix also an open subset U Ă M with compact closure,
and consider the space

J pM,ω ; U , Jfixq
of smooth ω-compatible almost complex structures on M that match Jfix outside of U , with its
natural C8-topology.

Remark 1.3. The existence of a symplectic form onM is not required for any of the arguments
in this paper, but we are including it in the setup since it is important in applications—all
results could alternatively be stated and proved for the larger space of ω-tame almost complex
structures, or for arbitrary almost complex structures on a smooth (not necessarily symplectic)
manifold.

Following the usual convention among symplectic topologists, we will say that a subset of a
topological space is a Baire subset if it is comeager, i.e. it is a countable intersection of open
and dense subsets. The intersection of a countable sequence of Baire subsets is again a Baire
subset, and by the Baire category theorem, any Baire subset of a complete metric space is dense.
We will say that a given property is true generically (e.g. for generic J) whenever there exists a
Baire subset of the space of all admissible data (e.g. in J pM,ω ; U , Jfixq) such that the property
holds for all choices of data in that subset.

Given J P J pM,ω ; U , Jfixq, a closed connected Riemann surface pΣ, jq and a J-holomorphic
curve u : pΣ, jq Ñ pM,Jq, the index of u is the integer

(1.3) indpuq “ pn´ 3qχpΣq ` 2c1puq,
where we abbreviate c1puq :“ xc1pTM, Jq, rusy, rus :“ u˚rΣs P H2pMq. A closed and connected

J-holomorphic curve ũ : prΣ, ̃q Ñ pM,Jq is said to be a (d-fold) multiple cover of u if ũ “ u˝ϕ
for some holomorphic map ϕ : prΣ, ̃q Ñ pΣ, jq of degree d ě 2, and u is called simple if it is
nonconstant and is not a multiple cover of any other curve.

The notion of super-rigidity was outlined already in Example 1.2; see Definition 2.3 for a more
precise formulation. We will also use the term Fredholm regular to refer to the standard notion
of transversality for moduli spaces of unparametrized J-holomorphic curves, cf. Proposition 2.2
below. In each of the following theorems, pM,ωq is a symplectic manifold of dimension 2n with
a compatible almost complex structure Jfix, and U ĂM is an open subset with compact closure.
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Theorem A (super-rigidity). If dimM ě 6, then there exists a Baire subset J reg of the space
J pM,ω ; U , Jfixq such that for all J P J reg, every simple J-holomorphic curve of index 0 that
intersects U is super-rigid. Moreover, this result also holds when dimM “ 4 for all simple
index 0 curves of genus 0 or 1.

Super-rigidity has a number of well-known consequences, which are especially important in
the case dimM “ 6. These are based partly on the observation that the space of all covers of
super-rigid curves is an open and closed subset of the ambient moduli space of J-holomorphic
curves, see Proposition B.1 in Appendix B. Applying Gromov compactness and the standard
implicit function theorem for simple curves, plus the fact that simple J-holomorphic curves of
index 0 are generically embedded and disjoint from each other in dimensions greater than four,
this implies:

Corollary 1.4. For generic compatible J in a closed symplectic 6-manifold pM,ωq, there exist
for each integer g ě 0 and real number E ą 0 at most finitely many distinct simple J-holomorphic
curves u of genus g in homology classes rus “ A P H2pMq with c1pAq “ 0 and ωpAq ď E.
Moreover, these curves are embedded and pairwise disjoint. �

Remark 1.5. Doan and Walpuski [DWa] have recently shown that if one fixes the class A P
H2pMq in Corollary 1.4, then it is not actually necessary to fix the genus g, i.e. for generic J ,
there exist at most finitely-many simple curves of any genus homologous to A. Their proof uses
techniques from geometric measure theory.

Using results of Zinger [Zin11] (see also Lee-Parker [LP12]), Theorem A also implies that for
generic J , the space of branched covers of an embedded index 0 curve admits a well-defined
obstruction bundle which can be used to compute Gromov-Witten invariants. In particular,
if dimM ě 6 and u : pΣ, jq Ñ pM,Jq is an embedded J-holomorphic curve of genus g with
c1puq “ 0, one can apply [Zin11, Theorem 1.2] with no marked point constraints to study the
space of J-holomorphic curves with image in upΣq, so that Theorem A establishes hypothesis (b)
in Zinger’s result, implying that the cokernels of the normal operators DN

u˝ϕ for ϕ varying in the

space ĎMhpdrΣs, jq of degree d nodal holomorphic curves in pΣ, jq with arithmetic genus h form
a well-defined and oriented orbibundle

Obu Ñ ĎMhpdrΣs, jq
with rankRObu “ pn ´ 1qp2h ´ 2 ` dp2 ´ 2gqq. Note that by the Riemann-Hurwitz formula,
the term 2h ´ 2 ` dp2 ´ 2gq is simply the algebraic count of branch points Zpdϕq for any map
ϕ in the non-nodal stratum of ĎMhpdrΣs, jq.1 The obstruction bundle is interesting mainly in
the 6-dimensional case, since n “ 3 means that rankR Obu matches the real virtual dimension
of ĎMhpdrΣs, jq, and the count of solutions to an abstract perturbation of the holomorphic
curve equation can then be computed by integrating the Euler class epObuq over the virtual
fundamental cycle of ĎMhpdrΣs, jq in the sense of [LT98a,LT98b,FO99]. This produces a formula
for the local Gromov-Witten invariants of the curve u,

Nh
d puq “

ż
rĎMhpdrΣs,jqsvir

epObuq P Q,

defined for every d P N and h ě g. These numbers depend only on the germ of the almost
complex manifold pM,Jq at upΣq. Note that Ng

1 puq “ ˘1, with the sign depending on the
canonically oriented determinant line of DN

u .
Combining the obstruction bundle discussion with Corollary 1.4, let

N
g
ApM,ωq P Q

denote the 0-point Gromov-Witten invariant of pM,ωq for genus g curves in a class A P H2pMq
with c1pAq “ 0.

1One must keep in mind however that the non-nodal stratum of ĎMhpdrΣsq may be empty even if ĎMhpdrΣsq
itself is not, e.g. this is the case whenever d “ 1 and h ą g.
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Corollary 1.6 (via [Zin11, Theorem 1.2]). Suppose pM,ωq is a closed symplectic 6-manifold,
g ě 0 is an integer and A P H2pMq satisfies c1pAq “ 0. Then for generic ω-compatible almost
complex structures J ,

N
g
ApM,ωq “

Nÿ
i“1

N
g
di
puiq,

where the sum ranges over the (by Corollary 1.4) finite set of pairwise disjoint embedded J-
holomorphic curves u1, . . . , uN that have genera at most g and homology classes satisfying
diruis “ A for some d1, . . . , dN P N. �

In particular in the Calabi-Yau case, with c1pTM,ωq “ 0, this corollary localizes all of the
Gromov-Witten invariants of pM,ωq.

We next state two results on transversality for multiple covers.

Theorem B (transversality, unbranched). There exists a Baire subset J reg Ă J pM,ω ; U , Jfixq
such that for all J P J reg, for every simple J-holomorphic curve u : pΣ, jq Ñ pM,Jq intersecting
U and every unbranched holomorphic cover ϕ : prΣ, ̃q Ñ pΣ, jq of closed Riemann surfaces, the

J-holomorphic curve u ˝ ϕ : prΣ, ̃q Ñ pM,Jq is Fredholm regular.

Remark 1.7. The case indpuq “ 0 of Theorem B has been proved previously in [GW17],
though with stronger assumptions: for technical reasons, it was necessary in that paper to
assume that upΣq is contained entirely in U , and in dimension four also to allow perturbations
of J that are ω-tame but not necessarily ω-compatible. The present paper uses a completely
different approach to the transversality problem and is thus able to remove these restrictions. As
explained in [GW17], the theorem implies an integrality result for the Gromov-Witten invariants
in dimension four.

It is generally harder to achieve transversality for covers u ˝ ϕ with branch points, e.g. the
index relation (1.2) shows that indpu˝ϕq can easily become negative in dimensions greater than
six. More seriously, if u is Fredholm regular, then one can always find a smooth family of other
multiple covers near u ˝ ϕ obtained by varying both u and ϕ in their respective moduli spaces;
since the latter lives in a space of real dimension 2Zpdϕq, the condition

indpu ˝ ϕq ě indpuq ` 2Zpdϕq
is evidently necessary in order for u˝ϕ to be Fredholm regular. Observe that if ϕ has r ě 0 critical
values, then this condition is satisfied whenever indpuq ě pn´ 1qr: indeed, each critical value is
the image of at most d´ 1 branch points (counted algebraically), so we have Zpdϕq ď pd´ 1qr
and (1.2) implies

indpu ˝ ϕq “ indpuq ` pd´ 1q indpuq ´ pn´ 3qZpdϕq
ě indpuq ` pn´ 1qZpdϕq ´ pn´ 3qZpdϕq “ indpuq ` 2Zpdϕq.

The next result states that the condition indpuq ě pn´ 1qr is also, in some sense, sufficient.

Theorem C (transversality, branched). There exists a Baire subset J reg Ă J pM,ω ; U , Jfixq
such that the following holds for all J P J reg. Suppose u : pΣ, jq Ñ pM,Jq is a simple J-
holomorphic curve intersecting U and satisfying

indpuq ě pn´ 1qr
for some integer r ě 0, and ϕ : prΣ, ̃q Ñ pΣ, jq is a holomorphic branched cover of closed
connected Riemann surfaces with r distinct critical values. Then there exists a J-holomorphic
curve and a holomorphic branched cover

uǫ : pΣ, jǫq Ñ pM,Jq and ϕǫ : prΣ, ̃ǫq Ñ pΣ, jǫq
such that uǫ, ϕǫ, jǫ and ̃ǫ are arbitrarily C8-close to u, ϕ, j and ̃ respectively, and uǫ ˝ ϕǫ :
prΣ, ̃ǫq Ñ pM,Jq is Fredholm regular.
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Note that whenever indpu ˝ ϕq is also strictly greater than indpuq ` 2Zpdϕq, one can combine
this result with the implicit function theorem to deduce the existence of simple J-holomorphic
curves that are small perturbations of multiple covers of u.

The proofs of these theorems are inspired by the work of Taubes [Tau96a], whose definition of
the Gromov invariant for symplectic 4-manifolds required a special case of Theorem B along with
related bifurcation-theoretic results (cf. §2.4) for multiply covered holomorphic tori. Roughly
speaking, the idea is to study the local structure of spaces of the form

(1.4) Mpk, cq :“  
ũ “ u ˝ ϕ ˇ̌

dimkerDN
ũ “ k and dim cokerDN

ũ “ c
(
,

where k, c ě 0 are fixed integers, u varies in the moduli space of simple J-holomorphic curves
and ϕ varies in the moduli space of holomorphic branched covers. Ideally, one would like to
show that these spaces are smooth manifolds for generic J , and to compute their codimensions
in the space of pairs pu, ϕq. This turns Theorems A and B into “dimension counting” problems,
as whenever one can show that the codimension of Mpk, cq is larger than the dimension of the
ambient space for suitable values of k and c, one may conclude that either kerDN

ũ or cokerDN
ũ

must be trivial. This discussion is oversimplified in at least three respects: first, we will not
be able to find any nice structure on Mpk, cq if ϕ varies in the space of all branched covers,
but it will help to confine it to certain substrata of that space in which all branch points have
prescribed branching orders. For similar reasons, it will also help to confine u to substrata
in which its number of critical points and their orders are constrained, and this is easily done.
More seriously, the space Mpk, cq as sketched above can have different codimensions on different
components, as its codimension depends intricately on symmetry information which is ignored
in (1.4). We will therefore need to define a more elaborate version of Mpk, cq which depends on
a splitting of the operator DN

ũ into summands corresponding to irreducible representations of
the (generalized) symmetry group of the cover. This idea is borrowed directly from [Tau96a],
though the details are somewhat more involved since, in contrast to the case of unbranched
covers of tori, we cannot assume that all covers are regular or that their symmetry groups are
abelian. We will see that once the formalism is developed in sufficient generality, it “breaks the
symmetry” of DN

ũ enough to make dimension counting arguments much more effective.

Remark 1.8. A slightly different variation on the ideas in [Tau96a] has been implemented by
Eftekhary to prove a partial result toward super-rigidity in dimension six, see [Eft16].

Here is an outline of the rest of the paper.
After establishing some standard definitions and notation, §2 will further elucidate the ideas

sketched above and formulate a precise version of the statement that Mpk, cq from (1.4) is a
smooth submanifold, Theorem D. This will then be used as a black box to prove Theorems A,
B and C in §2.3, followed in §2.4 by a brief informal discussion of bifurcation theory. The
remainder of the paper is then devoted to the proof of Theorem D. In §3, we explain the
splitting construction for Cauchy-Riemann operators with symmetries and prove some lemmas
based on a mixture of elliptic regularity for punctured Cauchy-Riemann operators, topology of
covering spaces, and representation theory of finite groups. The summands in the splitting are
also Cauchy-Riemann operators, whose indices are a somewhat delicate computation, carried
out in §4. In §5 we prove a local genericity result for Cauchy-Riemann operators that takes on
the role usually played by unique continuation in applications of the Sard-Smale theorem, and
the latter will be used in §6 to complete the proof of Theorem D. Finally, §7 deals with super-
rigidity in the four-dimensional case, which is something of an anomaly and requires different
techniques based on intersection theory. The appendices provide various results that may be
considered “standard” and yet, in this author’s experience, seem to cause sufficient confusion
among experts to warrant some discussion; their proofs require a few ideas that will in any case
be useful elsewhere in the paper.

1.2. Apologies and acknowledgements. The super-rigidity problem has a slightly troubled
history, and as the author of a new paper on the subject, it would behoove me at this point
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to apologize for having caused some of that trouble: I am aware of three previous attempts to
prove some version of Theorem A which were later either withdrawn or revised to prove much
weaker statements, and I was an author of one of them (the original version of [GW17]). To
make matters worse, earlier versions of the present paper also contained a major error in §5 on
which the main results were crucially dependent, causing the paper to be withdrawn for several
months while the offending section underwent an extensive rewrite. (For more on the history of
failed super-rigidity proofs, see Appendix D.) With all this in mind, I would sympathize with
any reader’s inclination to greet this paper with a dose of skepticism, though it seems worth
pointing out that rather than being an attempt to rescue the (probably unrescuable) proof
originally attempted in [GW17], the approach taken here has almost nothing in common with
the previous one, other than the considerable debt that both of them owe to the ideas of Taubes
[Tau96b,Tau96a].

I would like to thank Dan Cristofaro-Gardiner, Chris Gerig, Michael Hutchings, Eleny Ionel,
Mihai Munteanu, Tom Parker, Cliff Taubes and Aleksey Zinger for conversations and correspon-
dence which helped to improve my understanding of the problems studied in this paper. Special
thanks are due to Aleksander Doan and Thomas Walpuski for having uncovered a few minor
errors and one major error in the original version; my discussions with them were invaluable in
the effort toward fixing those errors. Finally, many thanks to the anonymous referees for their
impressively careful reading of earlier drafts, which has induced measurable improvements in
the exposition.

2. The main idea

2.1. Some definitions. Let us now fix some notation and definitions that will be essential in
the rest of the paper.

Given integers g,m ě 0 and a class A P H2pMq, the moduli space of unparametrized
J-holomorphic curves Mg,mpA, Jq can be defined as the set of equivalence classes of tuples
pΣ, j,Θ, uq where pΣ, jq is a closed connected Riemann surface of genus g, Θ Ă Σ is an ordered
set of m distinct points (the marked points), and u : pΣ, jq Ñ pM,Jq is a J-holomorphic map
satisfying rus :“ u˚rΣs “ A, with equivalence defined by pΣ, j,Θ, uq „ pΣ1, ψ˚j, ψ´1pΘq, u ˝ ψq
for diffeomorphisms ψ : Σ1 Ñ Σ. The Gromov compactification of Mg,mpA, Jq is the spaceĎMg,mpA, Jq of (equivalence classes of) stable nodal curves pS, j,Θ,∆, uq, where now S may
be disconnected, and the original data are augmented by an unordered set of distinct points in
SzΘ, arranged into unordered pairs

∆ “ ttpz1, qz1u, . . . , tpzr, qzruu ,
such that uppziq “ upqziq for each i “ 1, . . . , r. We call the pairs tpzi, qziu nodes, and each individualpzi or qzi P S a nodal point. The curves in ĎMg,mpA, Jq are required to have arithmetic genus g,
which means that the surface obtained from S by performing connected sums at all matched pairs
of nodal points is a closed connected surface of genus g. The stability condition requires that any
component of SzpΘY∆q on which u is constant should have negative Euler characteristic. With
this condition, ĎMg,mpA, Jq can be given a natural topology as a metrizable Hausdorff space,
and it is compact whenever J is tamed by a symplectic form. A definition of the topology may
be found e.g. in [BEH`03]; for convergent sequences in Mg,mpA, Jq, it amounts to the notion of
C8-convergence for j and u after a choice of parametrization for which all domains and marked
point sets are identified. Curves rpS, j,Θ,∆, uqs P ĎMg,mpA, Jq with ∆ “ H can equivalently be
regarded as elements of Mg,mpA, Jq, and are thus called smooth curves to distinguish them
from nodal curves.

Remark 2.1. In this paper, the word “curve” always means “smooth curve” (i.e. without nodes)
unless the word “nodal” is explicitly included. Similarly, all dimensions and Fredholm indices in
this paper are real (not complex) unless otherwise specified. This usage differs somewhat from
the algebraic geometry literature.
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When there is no danger of confusion, we shall sometimes abuse notation by writing equiva-
lence classes rpΣ, j,Θ, uqs P Mg,mpA, Jq or rpS, j,Θ,∆, uqs P ĎMg,mpA, Jq via the abbreviations
u P Mg,mpA, Jq or u P ĎMg,mpA, Jq respectively, and we will refer to the restriction of a nodal
curve rpS, j,Θ,∆, uqs to any connected component of its domain S as a smooth component
of u. We shall also abbreviate

MgpA, Jq :“Mg,0pA, Jq, and ĎMgpA, Jq :“ ĎMg,0pA, Jq.
Recall that MgpA, Jq has virtual dimension equal to the index of any curve u PMgpA, Jq as
written in (1.3), while the virtual dimension of the moduli space with marked points is

vir-dimMg,mpA, Jq “ vir-dimMgpA, Jq ` 2m.

The multiply covered curves form a distinguished closed subset of ĎMgpA, Jq. Given any
u P MgpA, Jq with domain pΣ, jq, and integers h ě 0, d ě 1, define the space of stable nodal
d-fold covers of u,ĎMhpd;uq “

 rpS, ̃,∆, u ˝ ϕqs P ĎMhpdA, Jq
ˇ̌ rpS, ̃,∆, ϕqs P ĎMhpdrΣs, jq

(
,

so in particular, each smooth component ũi of ũ P ĎMhpd;uq belongs to a space Mgipdi;uq of
smooth branched covers u ˝ϕi of some degreee di ě 0, such that

ř
i di “ d. Note that ĎMhpd;uq

may in general be strictly larger than the closure of Mhpd;uq in the Gromov topology—to cite
one well-known example, the space M1prS2s, iq of smooth degree 1 holomorphic tori in pS2, iq
is empty, but ĎM1prS2s, iq contains a nodal curve with a constant component of genus 1.

Recall next that every J-holomorphic curve u : pΣ, jq Ñ pM,Jq gives rise to a linearized
Cauchy-Riemann operator

Du : Γpu˚TMq Ñ Ω0,1pΣ, u˚TMq,
i.e. the linearization at u of the nonlinear Cauchy-Riemann operator B̄Jpuq :“ Tu` J ˝ Tu ˝ j P
Ω0,1pΣ, u˚TMq, whose zero-set is the space of all J-holomorphic maps with domain pΣ, jq. The
operator Du takes vector fields along u to p0, 1q-forms valued in the complex vector bundle
pu˚TM, Jq, and can be written explicitly as

Duη “ ∇η ` Jpuq ˝∇η ˝ j ` p∇ηJq ˝ Tu ˝ j
for any choice of symmetric connection ∇ (cf. [Wena, §2.4]). Recall moreover that whenever u
is nonconstant, its critical points are isolated and one can find a smooth splitting of complex
vector bundles

(2.1) u˚TM “ Tu ‘Nu

such that Tu matches the image of du at regular points; see e.g. [Wen10, §3.3] for details. We
shall refer to Nu as the generalized normal bundle of u. In many cases of interest in this
paper, u will be a cover of an immersed J-holomorphic curve v, so Nu is then simply the pullback
of the normal bundle of v via the cover. We define the normal Cauchy-Riemann operator
at u as the restriction of Du to sections of Nu, composed with the projection πN : u˚TM Ñ Nu

along Tu, hence
DN
u “ πN ˝Du|ΓpNuq : ΓpNuq Ñ Ω0,1pΣ, Nuq.

In general, a neighborhood of any element in Mg,mpA, Jq can be identified with the zero-set
of a smooth Fredholm section of a Banach space bundle, modulo a finite group action if there
are nontrivial automorphisms. We say that u PMgpA, Jq is Fredholm regular whenever it is
a transverse intersection of this section with the zero-section. Note that whenever this condition
holds, it automatically also holds after adding any finite collection of marked points and viewing
u as an element of Mg,mpA, Jq. The implicit function theorem gives the open set of regular
curves in Mg,mpA, Jq the structure of a smooth orbifold with dimension equal to its virtual
dimension, and local isotropy groups determined by the automorphism groups of the curves—in
particular, the set of regular simple curves forms a manifold, though orbifold singularities can
appear when multiple covers are included. The following convenient repackaging of the regularity
condition comes from [Wen10, Corollary 3.13].
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Proposition 2.2. A closed and connected J-holomorphic curve u : pΣ, jq Ñ pM,Jq is Fredholm
regular if and only if its normal operator DN

u : W k,ppNuq ÑW k´1,ppHomCpTΣ, Nuqq is surjective
for some (and therefore all) k P N and p P p1,8q. �

Definition 2.3. A closed, connected, simple J-holomorphic curve u : pΣ, jq Ñ pM,Jq is called
super-rigid if it satisfies the following:

(1) indpuq “ 0;
(2) u : ΣÑM is an immersion;

(3) For all closed connected Riemann surfaces prΣ, ̃q and holomorphic maps ϕ : prΣ, ̃q Ñ
pΣ, jq of positive degree, the curve ũ :“ u ˝ ϕ : prΣ, ̃q Ñ pM,Jq admits no nontrivial
solutions to the normal linearized equation DN

ũ η “ 0.

Proposition B.1 in Appendix B proves that if u is a super-rigid curve, then the only possible
sequences that converge to a nodal branched cover of u consist of other covers of u. In the
language of the present section, this means:

Corollary 2.4 (of Proposition B.1). Suppose pM,Jq is an almost complex manifold and u P
MgpA, Jq is a super-rigid curve in M . Then for every h ě 0 and d ě 1, ĎMhpd;uq is an open
and closed subset of ĎMhpdA, Jq. �

2.2. A stratification theorem. We now explain in precise terms the stratification result that
underlies the main theorems of §1.1.

2.2.1. Splitting the linearization at a doubly covered curve. Suppose v : pΣ, jq Ñ pM,Jq is a
simple J-holomorphic curve with genus g ě 0, and ϕ : pΣ1, j1q Ñ pΣ, jq is a holomorphic branched
cover with degree d ě 1, giving rise to the multiply covered curve u “ v ˝ ϕ : pΣ1, j1q Ñ pM,Jq
of genus h ě 0. We assume as always that Σ and Σ1 are both closed and connected, and for the
sake of intuition, we begin in this subsection with the special case d “ 2. The automorphism
group

Autpuq “ Autpϕq :“
!
ψ : pΣ1, j1q –ÝÑ pΣ1, j1q

ˇ̌̌
ϕ “ ϕ ˝ ψ

)
then contains a unique nontrivial element ψ, and the space of sections ΓpNuq has a natural
splitting

ΓpNuq “ Γ`pNuq ‘ Γ´pNuq
where Γ˘pNuq :“ tη P ΓpNuq | η “ ˘η ˝ ψu. Splitting Ω0,1pΣ1, Nuq “ ΓpHomCpTΣ1, Nuqq in the
same way, one obtains a splitting of the normal Cauchy-Riemann operator

(2.2) DN
u “ DN

u,` ‘DN
u,´

into two operators DN
u,˘ : Γ˘pNuq Ñ Γ˘pHomCpTΣ1, Nuqq. It is not hard to see that DN

u,`
is in some sense equivalent to DN

v , as its domain and target both consist of sections that are
pullbacks via ϕ of sections over Σ. The operators DN

u,` and DN
u,´ have unique extensions over

the spaces of symmetric/antisymmetric sections of Sobolev class W k,p for k P N and p P p1,8q,
giving bounded linear operators

DN
u,˘ :W k,p

˘ pNuq ÑW
k,p
˘ pHomCpTΣ1, Nuqq,

and the standard transversality theory for simple curves then implies that DN
u,` can be assumed

surjective (and also injective if v is immersed with index 0) if J is chosen generically. We will
see that the problem of proving surjectivity or injectivity for DN

u becomes more tractable when
viewed as two independent problems for the operators DN

u,` and DN
u,´.

In order to generalize this discussion beyond the degree 2 case, it helps to adopt an alternative
perspective based on representation theory. Let Θ Ă Σ denote a finite subset that contains all
critical values of ϕ, and set

(2.3) Θ1 :“ ϕ´1pΘq, 9Σ :“ ΣzΘ, 9Σ1 :“ Σ1zΘ1,
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so that 9Σ1 ϕÝÑ 9Σ is a smooth covering map with G :“ Autpϕq – Z2 as its group of deck
transformations. Define

ρ : GÑ S2 : g ÞÑ ρg

as the isomorphism to the symmetric group on t1, 2u. We can then identify the covering map
9Σ1 ϕÝÑ 9Σ with ´

9Σ1 ˆ t1, 2u
¯M

GÑ 9Σ : rpz, iqs ÞÑ ϕpzq,
where G acts on 9Σ1 by deck transformations and on t1, 2u via ρ. Now if pe1, e2q denotes the
standard basis of R2, then ρ also gives rise to a real permutation representation

ρ : GÑ GLp2,Rq, ρpgqei :“ eρgpiq,

and a corresponding real vector bundle V ρ Ñ 9Σ defined as the Z2-quotient of a trivial bundle
over 9Σ1,

V ρ :“
´
9Σ1 ˆ R2

¯M
G.

The space of sections of the twisted normal bundle

Nρ
v :“ Nv bR V

ρ Ñ 9Σ

then has a natural identification with the space of sections of Nu “ ϕ˚Nv: indeed, we can
represent sections of Nρ

v as Z2-equivariant sections η “ ř2
i“1 η

i b ei of ϕ˚Nv bR R2, which

satisfy the relation ηi ˝ ψ “ ηρψpiq, thus a corresponding section pη P Γpϕ˚Nvq can be defined

under the identification of 9Σ1 with p 9Σ1 ˆ t1, 2uq{G bypηprpz, iqsq “ ηipzq.
Under this identification, DN

u becomes a Cauchy-Riemann type operator on the twisted bun-
dle Nρ

v , defined locally by DN
u pη b sq “ pDN

v ηq b s whenever s is a local section of V ρ that has

a constant lift to the trivial bundle 9Σ1 ˆ R2.
The above construction appears cumbersome at first glance, but it has the following advantage:

the decomposition ΓpNuq “ Γ`pNuq ‘ Γ´pNuq now corresponds to a splitting of the twisted
bundle Nρ

v into subbundles

Nρ
v “ Nθ`

v ‘Nθ´
v :“ pNv bR V

θ`q ‘ pNv bR V
θ´q

where V θ˘ :“ p 9Σ1 ˆW˘q{G are defined in terms of the natural splitting of R2 “W`‘W´ into
irreducible G-invariant subspaces

W˘ “ R

ˆ
1
˘1

˙
Ă R2.

This is the simplest nontrivial example of what turns out to be a general principle: splittings of
Cauchy-Riemann operators for multiply covered curves arise from decompositions of permutation
representations into irreducible summands. To turn ρ “ θ` ‘ θ´ into a splitting of Cauchy-

Riemann operators, we still have a small analytical issue to cope with since the bundles N
θ˘
v

are defined over 9Σ and do not both extend over the punctures. In place of (2.2), we therefore
obtain a splitting

9DN
u “ 9DN

u,θ` ‘ 9DN
u,θ´ ,

where the dots over the operators indicate that we are restricting them to the punctured do-
main 9Σ1. We will see in §3.2 how to define suitable weighted Sobolev spaces over 9Σ and 9Σ1 so
that the punctured operators have the same indices, kernels and cokernels as their unpunctured
counterparts.

Remark 2.5. A slightly different approach to defining twisted Cauchy-Riemann operators is
taken by Doan and Walpuski [DWb], who express it in the elegant language of local systems.
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2.2.2. The codimension of a multiply covered curve. We return now to the general case of a closed
connected J-holomorphic curve u “ v˝ϕ : pΣ1, j1q Ñ pM,Jq of genus h, where v : pΣ, jq Ñ pM,Jq
is simple with genus g and ϕ : pΣ1, j1q Ñ pΣ, jq has degree d P N. We continue using the notation
9Σ1 ϕÝÑ 9Σ for the d-fold covering map obtained by deleting some finite subsets that include the
critical values and their preimages. Recall that ϕ is called regular if |Autpϕq| “ degpϕq “ d.
This condition was secretly important in the above discussion of the d “ 2 case, as the definition
of the twisted bundle Nρ

v required identifying 9Σ with the quotient of 9Σ1 by deck transformations.
In general, Autpϕq can have order smaller than d and may even be trivial, but we can use some
notions from elementary covering space theory to get around this.

Definition 2.6. The generalized automorphism group of a d-fold branched cover ϕ : Σ1 Ñ
Σ is the quotient G :“ π1p 9Σq{H, where H is the normal core2 of ϕ˚pπ1p 9Σ1qq, and 9Σ and 9Σ1 are
defined by (2.3) with Θ as the set of critical values of ϕ.

Remark 2.7. Like fundamental groups, the generalized automorphism group G of ϕ : Σ1 Ñ Σ
depends on choices of base points in 9Σ and 9Σ1, but its isomorphism class is independent of these
choices. We will see below that G is a finite group of order at most d! that is isomorphic to
Autpϕq if and only if ϕ : Σ1 Ñ Σ is regular, and more generally, G has a natural identification
with the automorphism group of a certain regular branched cover of Σ that is determined by ϕ
and a choice of base points, and factors through ϕ.

Definition 2.8. A regular presentation of the holomorphic d-fold branched cover ϕ : pΣ1, j1q Ñ
pΣ, jq is a tuple pΘ, 9Σ2, π,G, ρ, I, f q consisting of:

‚ A finite subset Θ Ă Σ containing the critical values of ϕ and defining the punctured
surfaces 9Σ and 9Σ1 via (2.3);

‚ A connected surface 9Σ2 and regular covering map π : 9Σ2 Ñ 9Σ with finite automorphism
group G :“ Autpπq;

‚ A set I with d elements;
‚ A transitive action of G on I, defined via a homomorphism ρ : GÑ SpIq from G to the
symmetric group on I;

‚ A diffeomorphism f : 9Σ1 Ñ p 9Σ2 ˆ Iq{G, where G acts on 9Σ2 by deck transformations
and on I via ρ, such that ϕ ˝ f´1 takes the form´

9Σ2 ˆ I
¯M

GÑ 9Σ : rpz, iqs ÞÑ πpzq.
We say that pΘ, 9Σ2, π,G, ρ, I, f q is minimal if Θ Ă Σ is the set of critical values of ϕ and

ρ : GÑ SpIq is injective. Two regular presentations pΘj , 9Σ2
j , πj, Gj , ρj , Ij , fjq of ϕ : Σ1 Ñ Σ for

j “ 1, 2 are isomorphic if Θ1 “ Θ2 and there exists a diffeomorphism Ψ : 9Σ2
1 Ñ 9Σ2

2, a bijection
β : I1 Ñ I2, and a group isomorphism Φ : G1 Ñ G2 such that:

(1) π2 ˝Ψ “ π1 and for all g P G1, Ψ ˝ g “ Φpgq ˝Ψ;
(2) For all g P G1, β ˝ ρ1pgq “ ρ2pΦpgqq ˝ β;
(3) f2 ˝ f´1

1 takes the form´
9Σ2
1 ˆ I1

¯M
G1 Ñ

´
9Σ2
2 ˆ I2

¯M
G2 : rpz, iqs ÞÑ rpΨpzq, βpiqqs.

Most of the regular presentations we encounter in this paper will be minimal, though an impor-
tant example that is not (in particular where Θ may contain more than just the critical values)
will arise in Example 3.5. Standard results about Riemann surfaces (see §3.1) imply that the

regular cover π : 9Σ2 Ñ 9Σ in any regular presentation can be extended to a holomorphic branched
cover of closed connected Riemann surfaces pΣ2, j2q Ñ pΣ, jq such that 9Σ2 “ Σ2zπ´1pΘq. Ob-
serve that if i P I and Gi Ă G denotes the stabilizer of i under the G-action defined by ρ,

2Recall that the normal core of a subgroup H in a group Γ is the largest normal subgroup of Γ that is
contained in H .
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then
9Σ2{Gi Ñ

´
9Σ2 ˆ I

¯M
G : rzs ÞÑ rpz, iqs

is a diffeomorphism identifying ϕ˝f´1 with the natural projection 9Σ2{Gi Ñ 9Σ2{G “ 9Σ. Thus one
can associate to any regular presentation a (non-unique) factorization of π : 9Σ2 Ñ 9Σ by covering

maps 9Σ2 Ñ 9Σ1 ϕÝÑ 9Σ, which extends over the punctures to a factorization of π : pΣ2, j2q Ñ pΣ, jq
by holomorphic branched covers

pΣ2, j2q Ñ pΣ1, j1q ϕÝÑ pΣ, jq.
We will also show in Lemma 3.2 that ϕ : Σ1 Ñ Σ always admits a unique isomorphism class of
minimal regular presentations pΘ, 9Σ2, π,G, ρ, I, f q, for which G is isomorphic to the generalized

automorphism group of ϕ, and in this case π : 9Σ2 Ñ 9Σ is isomorphic to ϕ : 9Σ1 Ñ 9Σ whenever
the latter happens to be already regular (cf. Example 3.4).

Given a choice of regular presentation pΘ, 9Σ2, π,G, ρ, I, f q, the discussion of the degree 2
case can be generalized as follows. The transitive action ρ : G Ñ SpIq induces a permutation
representation ρ : GÑ AutRpRIq on the real vector space RI with basis labeled by the elements

of I, and a twisted bundle Nρ
v “ Nv bR V

ρ Ñ 9Σ, where
V ρ :“ p 9Σ2 ˆ RIq{G,

with a natural isomorphism

ΓpNρ
v q “ Γpϕ˚Nv| 9Σ1q “ ΓpNu| 9Σ1q

that identifies DN
u with a Cauchy-Riemann operator

9DN
u,ρ : ΓpNρ

v q Ñ Ω0,1p 9Σ, Nρ
v q,

defined on suitable exponentially weighted Sobolev spaces of sections of Nρ
v . (The appropriate

functional-analytic setting for this operator will be specified precisely in §3.2.) Any represen-
tation θ : G Ñ AutRpW q on a real finite-dimensional vector space W similarly gives rise to a

twisted bundle Nθ
v “ Nv bR V

θ Ñ 9Σ, with V θ :“ p 9Σ2 ˆW q{G, and a twisted Cauchy-Riemann
operator

9DN
u,θ : ΓpNθ

v q Ñ Ω0,1p 9Σ, Nθ
v q,

which (up to conjugacy) depends only on 9DN
v and the isomorphism classes of the regular

presentation and the representation θ. Now any representation-theoretic decomposition ρ “
θ‘m1

1 ‘ . . .‘ θ
‘mp
p induces a splitting of the punctured Cauchy-Riemann operator

(2.4) DN
u – 9DN

u,ρ “ p 9DN
u,θ1

q‘m1 ‘ . . .‘ p 9DN
u,θp

q‘mp ,
with the following useful property:

Lemma 2.9. The normal Cauchy-Riemann operator DN
u for a multiple cover is surjective or

injective if and only if the same holds for all of the summands 9DN
u,θj

in (2.4) with mj ą 0.

Remark 2.10. We will see below that the splitting (2.4) for a multiply covered curve u “ v ˝ϕ
can be arranged to vary smoothly as v and ϕ move about in their respective (suitably con-

strained) moduli spaces, so the indices of the summands 9DN
u,θj

are constant under such vari-

ations. This immediately gives rise to “no-go” results about transversality and super-rigidity:
the former is impossible on components of the moduli space where the 9DN

u,θj
do not all have

nonnegative index, and the latter requires them instead to have nonpositive index. Conversely,
whenever either of these index conditions holds for all summands given by irreducible represen-
tations, Theorem D below will imply that the desired transversality or super-rigidity result holds
for all pairs pv, ϕq lying in some open and dense subset. This is the main idea behind Theo-
rem C, and it similarly can be used to determine the feasibility of obstruction bundle arguments
in general situations.
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It should be emphasized that the representations of G in this discussion are real, not complex.
We will need to use the standard fact (see §3.3) that for any finite group G, real irreducible
representations θ : G Ñ AutRpW q come in three types, characterized via the algebra K :“
EndGpW q of G-equivariant real-linear maps W ÑW :

‚ Real type: K – R;
‚ Complex type: K – C;
‚ Quaternionic type: K – H.

The endomorphism algebra K “ EndGpW q endows the domain and target of the operator 9DN
u,θ

with K-module structures, for which 9DN
u,θ is K-linear.3

The purpose of the following definition will become clear in the statement of Theorem D
below; it is independent of choices due to the uniqueness of minimal regular presentations.

Definition 2.11. The codimension codimpuq ě 0 of the closed, connected, d-fold covered J-
holomorphic curve u “ v˝ϕ is a nonnegative integer defined as follows. Choose a minimal regular
presentation pΘ, 9Σ2, π,G, ρ, I, f q of ϕ and a complete list of pairwise non-isomorphic irreducible
real representations tθi : GÑ AutRpWiqui“1,...,p of G, whose equivariant endomorphism algebras
we denote by

Ki :“ EndGpWiq P tR,C,Hu, i “ 1, . . . , p.

Then

codimpuq :“
pÿ
i“1

tikici,

where ti :“ dimR Ki P t1, 2, 4u, ki :“ dimKi ker
9DN
u,θi

and ci :“ dimKi coker
9DN
u,θi

for i “ 1, . . . , p.

Example 2.12. When d “ 1, u is a simple curve and its generalized automorphism group G is
trivial, so there is only the trivial representation θ : GÑ AutRpRq to consider in Definition 2.11,

with EndGpRq “ R and 9DN
u,θ – DN

u . So in this case, codimpuq “ dimpkerDN
u q ¨ dimpcokerDN

u q
can be interpreted as a measurement of the failure of transversality at u, and the standard
transversality results imply that all simple curves have codimension 0 for generic J . One of the
consequences of Theorem D will be that generically, this is also true for generic curves in the
space of multiple covers, though not necessarily for all of them.

2.2.3. Isosymmetric strata. In order to discuss what happens to the splitting of Cauchy-Riemann
operators (2.4) as v and ϕ move in their respective moduli spaces, we observe that the construc-
tion depends quite heavily on the branching structure of ϕ : Σ1 Ñ Σ, i.e. the number of punctures
Θ1 Ă Σ1 and the topological behavior of ϕ in their vicinity. This necessitates decomposing the
space of all degree d branched covers into strataď

hě0

MhpdrΣs, jq “
ď
b

Md
bpjq

labeled by their so-called branching data b. Choose an integer r ě 0, and associate to each of
the numbers i “ 1, . . . , r a nonempty finite ordered set of natural numbers

bi “ pb1i , . . . , bqii q
such that

b1i ` . . .` b
qi
i “ d

and at least one of the numbers b1i , . . . , b
qi
i is strictly greater than 1. We denote the totality of

this data by b “ pb1, . . . ,brq and call it branching data of degree d with r critical values.

3In cases where D
N
u is already complex linear with respect to the natural complex structure on Nu, it is

important to keep in mind that this natural complex structure has nothing to do with the one induced on 9DN
u,θ

when K “ C. In fact, these are two distinct complex structures that commute with each other, and 9DN
u,θ is then

complex linear with respect to both of them.
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Given this, let ĂMd
b
pjq denote the moduli space of all closed and connected unparametrized

j-holomorphic curves ϕ of degree d mapping into pΣ, jq with q1 ` . . .` qr marked points

ζ11 , . . . , ζ
q1
1 , ζ

1
2 , . . . , ζ

q2
2 , . . . , ζ

1
r , . . . , ζ

qr
r

such that

(1) there are distinct points w1, . . . , wr P Σ such that ϕ´1pwiq “ tζ1i , . . . , ζqii u for each
i “ 1, . . . , r;

(2) for each i “ 1, . . . , r and j “ 1, . . . , qi, ϕ is bji -to-1 on a punctured neighborhood of ζji ;
(3) ϕ has no critical points outside of the marked points.

Note that we do not require every marked point of ϕ to be a critical point, but we are assuming
tw1, . . . , wru is the set of critical values, whose preimages are marked points and may include

both critical and regular points. For any ϕ P ĂMbpjq, we have

Zpdϕq “
rÿ
i“1

qiÿ
j“1

pbji ´ 1q,

thus d and b determine the genus h of ϕ via the Riemann-Hurwitz formula, and we shall denote
by

Md
bpjq ĂMhpdrΣs, jq

the image of the natural map ĂMd
b
pjq Ñ MhpdrΣs, jq defined by forgetting the marked points.

Note that in some cases, the Riemann-Hurwitz calculation may produce a negative genus, which
just means that Md

b
pjq is empty. If b is empty, i.e. r “ 0, it means every ϕ P Md

b
pjq is

unbranched.
It is a classical fact that Md

b
pjq is a smooth manifold of real dimension 2r, as it can be

parametrized locally by the positions of the critical values w1, . . . , wr P Σ (cf. Example 3.6).
Moreover, it depends smoothly on j in the sense that if P is any smooth finite-dimensional
family of complex structures on Σ, thenď

jPP
Md

bpjq Ñ P

defines a smooth fiber bundle. We will show in §3.1 that regular presentations of ϕ : Σ1 Ñ Σ
can also be arranged to vary smoothly as ϕ varies with fixed branching data.

Constraints must also be imposed on the simple J-holomorphic curve v so that the normal
Cauchy-Riemann operators DN

v and DN
u vary smoothly as v moves in its moduli space. Given

integers m ě 0 and ℓ1, . . . , ℓm ě 1, let

Mg,mpA, J ; ℓ1, . . . , ℓmq ĂMg,mpA, Jq
denote the subset consisting of curves that have critical points of critical order ℓi at the ith
marked point for i “ 1, . . . ,m and are immersed everywhere else. As explained in Appen-
dix A, the simple curves in this space form a smooth submanifold for generic J , with codi-
mension 2n

ř
i ℓi in Mg,mpA, Jq. Moreover, the generalized normal bundles Nv of curves v P

Mg,mpA, J ; ℓ1, . . . , ℓmq can be regarded as a smooth family (cf. Lemma 6.4). This is not gen-
erally true if v is allowed to move freely in Mg,mpA, Jq, as the topology of Nv changes when
critical points of v appear, disappear or change order.

Given an integer d P N and branching data b of degree d with r ě 0 critical values, define

Md
bpMg,mpA, J ; ℓ1, . . . , ℓmqq ĂMhpdA, Jq

to be the set of all curves admitting representatives of the form u “ v ˝ ϕ : pΣ1, j1q Ñ pM,Jq,
where ϕ : pΣ1, j1q Ñ pΣ, jq parametrizes an element in Md

b
pjq and v : pΣ, jq Ñ pM,Jq is a simple

curve that intersects U and (after labeling its critical points as marked points in a suitable order)
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parametrizes an element of Mg,mpA, J ; ℓ1, . . . , ℓmq. If J is generic on U , then standard results

give Md
b
pMg,mpA, J ; ℓ1, . . . , ℓmqq the structure of a smooth manifold with

dimMd
bpMg,mpA, J ; ℓ1, . . . , ℓmqq “ 2r ` pn´ 3qp2 ´ 2gq ` 2c1pAq ´ 2

mÿ
i“1

pnℓi ´ 1q.

Since every closed connected J-holomorphic curve belongs to such a space for a unique (up
to ordering) choice of branching data b and critical orders ℓ1, . . . , ℓm, these spaces form a
smooth stratification of the moduli space of all J-holomorphic curves. They are sometimes called
isosymmetric strata, as they have the property that all curves in the same connected compo-
nent of Md

b
pMg,mpA, J ; ℓ1, . . . , ℓmqq have isomorphic generalized automorphism groups. More

importantly, each isosymmetric stratum admits a smooth family of normal Cauchy-Riemann
operators DN

u with a smooth family of splittings as in (2.4) with respect to the irreducible
representations of their generalized automorphism groups.

2.2.4. Walls. Here is the main stratification result.

Theorem D (stratification). There exists a Baire subset

J reg Ă J pM,ω ; U , Jfixq
such that the following holds for all J P J reg. For all choices of integers g,m ě 0, d, ℓ1, . . . , ℓm ě
1, branching data b of degree d and homology classes A P H2pMq, the smooth isosymmetric
stratum Md

b
pMg,mpA, J ; ℓ1, . . . , ℓmqq is a union of countably many pairwise disjoint connected

smooth submanifolds, referred to in the following as walls, which have the following properties:

(1) For u P Md
b
pMg,mpA, J ; ℓ1, . . . , ℓmqq, the vector spaces kerDN

u and cokerDN
u form the

fibers of smooth vector bundles over each wall;
(2) The codimension in Md

b
pMg,mpA, J ; ℓ1, . . . , ℓmqq of the wall containing any given curve

u is codimpuq.
Remark 2.13. The statement of Theorem D is specifically geared toward the applications
treated in this paper, but for different purposes one could formulate various other versions,
e.g. one could add more marked points to Mg,mpA, J ; ℓ1, . . . , ℓmq and impose intersection con-
straints on them, or one could consider generic finite-dimensional families tJsusPP of almost
complex structures and thus replace Mg,mpA, J ; ℓ1, . . . , ℓmq with a parametric moduli space of
pairs pu, sq where s P P and u is Js-holomorphic. Either would require no serious modifications
to the proof, other than more cumbersome notation (cf. Remark 5.34).

Remark 2.14. A natural guess for the precise definition of the walls mentioned in Theorem D
would be that they are maximal connected subsets ofMd

b
pMg,mpA, J ; ℓ1, . . . , ℓmqq satisfying the

constraint that dimkerDN
u and dim cokerDN

u are constant. In fact, smooth walls can be defined
in that way using the methods of [DWb], but the actual definition used in this paper is slightly
more complicated: it requires a choice of a smooth family of minimal regular presentations, and
the constraint to impose is then that for every finite-dimensional representation θ of the result-
ing generalized automorphism group, the kernels and cokernels of the twisted Cauchy-Riemann
operators 9DN

u,θ should have constant dimension as u varies in the wall. This would give the
same result as the simpler definition if one could guarantee that every summand in the splitting
(2.4) of DN

u appears with positive multiplicity, i.e. that mi ą 0 for each of the irreducible repre-
sentations θi, but the latter is not always true. As a consequence, a maximal connected subset
on which kerDN

u and cokerDN
u have constant dimension may in general contain multiple walls

of varying codimensions, distinguished from each other by twisted Cauchy-Riemann operators
corresponding to representations that play no role in the splitting of DN

u . This phenomenon is
harmless: the important detail for our purposes is that whenever transversality or super-rigidity
fails for a particular curve u, it implies that u belongs to a wall whose codimension is positive
and satisfies certain estimates. The converse is neither true nor necessary.
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We need two further ingredients in order to turn Theorem D into a powerful enough tool for
proving the theorems of §1.1. The first is an index calculation for the twisted operators 9DN

u,θ.
The precise result is stated and proved in §4, but for the main applications we only need the
following estimate, which is a corollary:

Lemma 2.15. Given a J-holomorphic curve v : pΣ, jq Ñ pM,Jq with normal Cauchy-Riemann
operator DN

v , a d-fold branched cover ϕ : pΣ1, j1q Ñ pΣ, jq with r ě 0 critical values, a regular

presentation pΘ, 9Σ2, π,G, ρ, I, f q for ϕ and a representation θ : G Ñ AutRpW q, the resulting

twisted Cauchy-Riemann operator 9DN
u,θ for u “ v ˝ ϕ satisfies

dimW ¨ “indpDN
v q ´ pn´ 1qr‰ ď indp 9DN

u,θq ď dimW ¨ indpDN
v q.

Moreover, if the regular presentation is minimal and θ is a faithful irreducible representation
with EndGpW q – K P tR,C,Hu, then the second estimate can be improved to

indKp 9DN
u,θq ď dimKW ¨ indRpDN

v q ´ pn´ 1qr,
and this estimate is strict in the case K “ R unless all branch points of ϕ have branching order 2.

For the proof of super-rigidity, we will need the next result as a means of improving the upper
bound in Lemma 2.15 for representations that are not faithful.

Lemma 2.16 (see §3.4.3). Under the assumptions of Lemma 2.15, suppose the regular pre-

sentation is minimal, and the splitting (2.4) of DN
u includes a summand 9DN

u,θ for which the

representation θ : G Ñ AutRpW q is not faithful. Then ϕ : pΣ1, j1q Ñ pΣ, jq admits a factoriza-
tion by holomorphic branched covers

pΣ1, j1q Ñ pΣ1
0, j

1
0q ϕ0ÝÑ pΣ, jq

with degpϕ0q ă d, and 9DN
u,θ is conjugate to an operator 9DN

u0,θ0
defined with respect to a regular

presentation pΘ, 9Σ2
0, π0, G0, ρ0, I0, f0q for ϕ0, where u0 :“ v ˝ ϕ0 : pΣ1

0, j
1
0q Ñ pM,Jq, G0 :“

G{ ker θ, and
θ0 : G{ ker θ Ñ AutRpW q

is the faithful representation of G0 determined by θ. Moreover, DN
u0

also admits a splitting in

the form (2.4) which has 9DN
u0,θ0

as a summand.

2.3. Proof of the main theorems modulo stratification. Let us now take the results of
the previous section as black boxes and prove the main theorems from §1.1.

Proof of Theorem A (super-rigidity) in dimension greater than four. We argue by induction on
the degrees d P N of branched covers. For d “ 1, we only need to know that generic perturbations
of J suffice to make all simple index 0 curves through U regular and immersed; this is standard
(see Appendix A for the immersion property). Thus for d ě 2, assume we have already found a
Baire subset in J pM,ω ; U , Jfixq for which all branched covers u :“ v˝ϕ with v : pΣ, jq Ñ pM,Jq
a simple curve of index 0 and degpϕq ď d ´ 1 have DN

u injective. Suppose ϕ P Md
b
pjq has

r ě 0 critical values and degpϕq “ d and DN
u is not injective for u :“ v ˝ ϕ. Then picking

the minimal regular presentation pΘ, 9Σ2, π,G, ρ, I, f q for ϕ and decomposing ρ into irreducible

representations θ‘ℓ11 ‘ . . .‘ θ
‘ℓp
p of G splits DN

u into twisted Cauchy-Riemann operators 9DN
u,θi

for i “ 1, . . . , p with

ki :“ dimKi ker
9DN
u,θi

,

and at least one of the ki must be strictly positive by Lemma 2.9. If ki ą 0 and θi is non-faithful,
then Lemma 2.16 identifies 9DN

u,θi
with a summand of DN

u0
for some other cover u0 of v with

strictly smaller degree, implying dimkerDN
u0
ą 0 and thus violating the inductive hypothesis.

We can therefore assume ki ą 0 for some faithful representation θi. But then Theorem D and
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Lemma 2.15 imply that u lives in a submanifold of the 2r-dimensional space of branched covers
of v with branching data b, having dimension at most

2r ´ tiki

”
ki ´ indKip 9DN

u,θi
q
ı
ď 2r ´ tikirki ` pn´ 1qrs “ rr2´ tikipn´ 1qs ´ tik

2
i ă 0

since we are assuming n ě 3. This gives a contradiction and thus completes the induction. �

In dimension four, the above argument fails to exclude the possibility of dimker 9DN
u,θi

“ 1 for
some real-type repesentation θi, and this is why we do not know whether super-rigidity always
holds in dimension four. We will prove in §7 that it does hold for covers of genus zero and one
curves, using different techniques based on intersection theory.

Proof of Theorem B (transversality, unbranched). Suppose v : pΣ, jq Ñ pM,Jq is a simple curve
intersecting U and ϕ : pΣ1, j1q Ñ pΣ, jq is a d-fold unbranched cover for which u :“ v ˝ ϕ
is not Fredholm regular, hence by Prop. 2.2, DN

u is not surjective. Fixing the minimal regular
presentation of ϕ and considering the splitting (2.4), we find a twisted Cauchy-Riemann operator
9DN
u,θi

with

ci :“ dimKi coker
9DN
u,θi

ą 0

for some irreducible representation θi : G Ñ AutRpWiq of the generalized automorphism group
G of ϕ, with EndGpWiq – Ki P tR,C,Hu. Suppose v has exactly m ě 0 critical points, with
critical orders ℓ1, . . . , ℓm, so viewing these as marked points allows us to consider v as an element
in the space Mg,mpA, J ; ℓ1, . . . , ℓmq, which has dimension

dimMg,mpA, J ; ℓ1, . . . , ℓmq “ indpvq ` 2m´ 2nZpdvq ě 0.

The count of critical points Zpdvq also appears in the relation between indpvq and indDN
v :

indeed, writing v˚TM “ Tv ‘ Nv, we can view dv as a holomorphic section of HomCpTΣ, Tvq,
hence

Zpdvq “ c1
`
HomCpTΣ, Tvq˘ “ ´c1pTΣq ` c1pTvq “ ´χpΣq ` c1pTvq,

implying c1pNvq “ c1pv˚TMq ´ c1pTvq “ c1pv˚TMq ´ χpΣq ´ Zpdvq. Plugging in this into the
Riemann-Roch formula then gives

indDN
v “ pn´ 1qχpΣq ` 2c1pNvq “ pn ´ 3qχpΣq ` 2c1pv˚TMq ´ 2Zpdvq
“ indpvq ´ 2Zpdvq.

Meanwhile, ϕ lives in a discrete stratum of the space of branched covers since it has no branch
points, and Lemma 2.15 reduces to an equality

indKi
9DN
u,θi

“ dimKiWi ¨ indRpDN
v q.

Now using Theorem D, we find that if J is generic, u lives in a manifold of dimension at most

dimMg,mpA, J ; ℓ1, . . . , ℓmq ´ ticipci ` indKi
9DN
u,θi

q
“ indpvq ` 2m´ 2nZpdvq ´ ticipci ` dimKiWi ¨ indDN

v q
“ indpvq ` 2m´ 2nZpdvq ´ ticipci ` dimKiWi ¨ rindpvq ´ 2Zpdvqsq
“ p1´ tici dimKiWiq rindpvq ` 2m´ 2nZpdvqs

´ 2tici dimKiWi ¨ rpn ´ 1qZpdvq ´ms ´ tic
2
i ă 0,

where we note that pn ´ 1qZpdvq ´ m ě 0 since n ě 2 and every critical point has order at
least 1. �

Proof of Theorem C (transversality, branched). Assume v : pΣ, jq Ñ pM,Jq is simple and satis-
fies indpvq ě pn ´ 1qr, while ϕ : pΣ1, j1q Ñ pΣ, jq has degree d P N and r critical values. If J is
generic, then by Proposition A.1 the moduli space containing v has an open and dense subset
consisting of immersed curves, so we are free to assume v is immersed and thus indpvq “ indDN

v .

The key observation is then that by Lemma 2.15, the twisted operators 9DN
u,θ all have nonnegative
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index, hence Theorem D implies that all of them are surjective unless pv, ϕq lies in a countable
union of submanifolds with positive codimension. �

2.4. Some remarks on wall crossing. Part of the point of Taubes’s twisted bundle setup
in [Tau96a] was to understand bifurcations of isolated J-holomorphic tori under generic 1-
parameter deformations in J . While bifurcation theory is not the main topic of this article, it
should be clear that such a theory could be developed based on Theorem D, thus we take this
opportunity to make a few observations about it.

Remark 2.17. In the time since the present article first appeared in preprint form, some
interesting cases of the bifurcation analysis proposed below have been worked out in detail by
Bai and Swaminathan, see [BS].

If tJsusPr0,1s is a generic homotopy of compatible almost complex structures whose endpoints
are generic, then as mentioned in Remark 2.13, one can modify Theorem D to the statement
that the parametric moduli space

Md
bpMg,mpA, tJsu ; ℓ1, . . . , ℓmqq

consisting of pairs pu, sq where s P r0, 1s and u P Md
b
pMg,mpA, Js ; ℓ1, . . . , ℓmqq is stratified by

smooth submanifolds characterized by the dimensions of the kernels and cokernels of twisted
Cauchy-Riemann operators, and their codimensions are given by the same formula. In this
setting, suppose tvτu is a smooth 1-parameter family of simple Jspτq-holomorphic curves with
index 0 for some function spτq P r0, 1s, and tuτ “ vτ ˝ ϕτ u defines a corresponding 1-parameter
family of unbranched covers. The latter have index 0 and will be regular for almost every τ ,
but a bifurcation or “wall crossing” phenomenon occurs at any parameter value τ0 for which
the family tuτ u passes (necessarily transversely) through one of the codimension 1 walls given

by Theorem D. When this happens, most of the twisted operators 9DN
uτ0 ,θ

remain both injective

and surjective, but there will be exactly one irreducible representation θ for which

dimker 9DN
uτ0 ,θ

“ dim coker 9DN
uτ0 ,θ

“ 1,

and θ is necessarily of real type. Whenever θ is not faithful, one can factor ϕτ through a coverpϕτ of smaller degree and instead examine puτ :“ vτ ˝ pϕτ , so that θ becomes faithful without loss of
generality (cf. Lemma 2.16). For the trivial representation, this means replacing uτ with vτ itself,
so regularity fails for the underlying simple curve at τ “ τ0: as shown in [Tau96a], this is the case
where the family tvτu undergoes a birth-death bifurcation. The other interesting phenomenon
examined by Taubes was the degree-doubling bifurcation, in which vτ remains regular but it has
a double cover uτ “ vτ ˝ ϕτ which loses regularity at τ “ τ0, causing an additional 1-parameter
family of simple curves twτ u to collide with tuτ u at τ “ τ0. This is what happens when 9DN

uτ ,θ

remains an isomorphism for the trivial representation but acquires 1-dimensional kernel and
cokernel for the nontrivial irreducible representation of Z2.

In [Tau96a], no further bifurcations beyond these two types are possible: this can be attributed
to the fact that since Taubes only considers unbranched covers of tori, all covers are regular and
abelian. As a consequence, all the complex irreducible representations in the picture are 1-
dimensional, implying that the only faithful real-type irreducible representations one needs to
consider are the trivial representation of the trivial group and the nontrivial representation of Z2.
We should not expect this fortunate situation to hold more generally: for unbranched covers with
higher genus, one certainly encounters generalized automorphism groups that are non-abelian
and thus have faithful real-type representations of dimension greater than one. These should
presumably give rise to bifurcation phenomena involving covers of arbitrarily high degree.

In the context of super-rigidity, it is also important to consider bifurcations that involve
branched covers of index 0 curves under generic homotopies of J . Inspecting the proof of
Theorem A, one should expect to see interesting phenomena whenever the dimension that was
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estimated at the end of the proof turns out to be at least ´1, i.e.
2r ´ tiki

”
ki ´ indKip 9DN

u,θi
q
ı
ě ´1.

Assuming we’re in dimension at least six, this can only mean ti “ ki “ 1 and either r “ 0 or
n “ 3. The case r “ 0 means the cover is unbranched, so this is what we discussed in the previous
paragraphs. Bifurcations involving branched covers can evidently also occur in dimension six,
and in this case the improved index bound from Lemma 2.15 must be an equality. The scenario
is therefore that the rank of the obstruction bundle over the space of covers tvτ ˝ ϕτ u jumps at
a particular parameter value τ “ τ0 and for some isolated element ϕτ0 in the space of branched
covers with only simple (i.e. two-to-one) branch points: this can presumably cause both a change
in the Euler class of the obstruction bundle and the breaking off of a new family of simple curves
from vτ0 ˝ ϕτ0 . Once again the irreducible representation involved must be of real type but can
have arbitrary dimension, meaning we should not expect any limitation on the degree of ϕτ0 ,
contrary to the situation in [Tau96a].

3. Splitting Cauchy-Riemann operators with symmetries

In this section we give a detailed account of the twisted bundle formalism behind Theorem D
and prove several lemmas required for its proof, as well as Lemma 2.16. Instead of talking
directly about J-holomorphic curves, we shall work in the context of abstract Cauchy-Riemann
operators on vector bundles and their pullbacks.

3.1. Regular presentations of branched covers. The notion of a regular presentation was
introduced in Definition 2.8. The following standard result from the theory of Riemann surfaces
(see e.g. [Don11, Chapter 4, Theorem 2]) allows us to move freely back and forth between
talking about holomorphic branched covers of closed Riemann surfaces and honest covering
maps of punctured surfaces.

Lemma 3.1. Suppose p 9Σ, jq is the complement of a finite set of points Θ in a closed connected

Riemann surface pΣ, jq, p 9Σ1, j1q is a connected noncompact Riemann surface, and

ϕ : p 9Σ1, j1q Ñ p 9Σ, jq
is a holomorphic covering map of finite degree. Then there exists a closed connected Riemann
surface pΣ1, j1q with a finite set of points Θ1 Ă Σ1 such that p 9Σ1, j1q admits a biholomorphic
identification with pΣ1zΘ1, j1q and ϕ extends over the punctures to a holomorphic branched cover
ϕ : pΣ1, j1q Ñ pΣ, jq with ϕ´1pΘq “ Θ1. �

Assume ϕ : pΣ1, j1q Ñ pΣ, jq is a d-fold holomorphic branched cover of closed connected
Riemann surfaces with branching data b as defined in §2.2, having r ě 0 distinct critical values.
Recall from Definition 2.8 that for a regular presentation pΘ, 9Σ2, π,G, ρ, I, f q of ϕ, Θ Ă Σ is a
finite set containing the critical values of ϕ, giving rise to the punctured surfaces

9Σ :“ ΣzΘ, 9Σ1 :“ Σ1zΘ1,

where Θ1 :“ ϕ´1pΘq.
Lemma 3.2. There exists a natural bijection between the set of isomorphism classes of regular
presentations of ϕ and the set of pairs pΘ,Hq where Θ Ă Σ is a finite subset containing the

critical values of ϕ and H is a finite-index normal subgroup H Ă π1p 9Σq that is contained in

ϕ˚pπ1p 9Σ1qq. This bijection matches any minimal regular presentation to the smallest possible

choice of Θ and largest possible choice of H, i.e. the normal core of ϕ˚pπ1p 9Σ1qq. Moreover,

if ϕ is regular and pΘ, 9Σ2, π,G, ρ, I, f q is a minimal regular presentation, then there exists a

diffeomorphism g : 9Σ1 Ñ 9Σ2 such that π ˝ g “ ϕ.
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Proof. Given a finite set Θ Ă Σ containing the critical values of ϕ, pick a base point w P 9Σ
and let π̃ : U Ñ 9Σ denote the universal cover, with U defined as a space of homotopy classes
of paths beginning at w, so that π1p 9Σq :“ π1p 9Σ, wq acts naturally on U as the group of deck

transformations for π̃. Lifting loops based at w to paths in 9Σ1 then defines a homomorphism

ρ̃ : π1p 9Σq Ñ Spϕ´1pwqq : γ ÞÑ ρ̃γ

so that the covering map 9Σ1 ϕÝÑ 9Σ can be identified with

9Σ1 “ `
U ˆ ϕ´1pwq˘Mπ1p 9Σq Ñ 9Σ : rpz, ζqs ÞÑ π̃pzq,

where π1p 9Σq acts on U by deck transformations and on ϕ´1pwq via ρ̃. We claim that

ker ρ̃ Ă π1p 9Σq
is the normal core of ϕ˚pπ1p 9Σ1qq. Indeed, selecting a base point w1 P ϕ´1pwq Ă 9Σ1 to define

π1p 9Σ1q :“ π1p 9Σ1, w1q, we have

ϕ˚pπ1p 9Σ1qq “
!
γ P π1p 9Σq

ˇ̌̌
ρ̃γpw1q “ w1

)
,

which obviously contains ker ρ̃. Changing the base point w1 P ϕ´1pwq changes the subgroup

ϕ˚pπ1p 9Σ1qq by conjugation with arbitrary elements of π1p 9Σ1q, and the normal core is the in-
tersection of all these conjugates, which we can now recognize as the intersection of all the
stabilizers of the permutation action on ϕ´1pwq, and that is ker ρ̃.

Suppose H Ă π1p 9Σq is a finite-index normal subgroup contained in ϕ˚pπ1p 9Σ1qq, and therefore

also in ker ρ̃. Then ρ̃ descends to the finite group G :“ π1p 9Σq{H, giving a homomorphism

ρ : GÑ Spϕ´1pwqq,
which is injective if and only if H “ ker ρ̃. It is now possible to define a regular presentation
pΘ, 9Σ2, π,G, ρ, ϕ´1pwq, f q of ϕ with π as the natural quotient projection

9Σ2 :“ U {H πÝÑ U {π1p 9Σq “ 9Σ
and

9Σ1 “ `
U ˆ ϕ´1pwq˘Mπ1p 9Σq fÝÑ

´
9Σ2 ˆ ϕ´1pwq

¯M
G

defined via the quotient projection U Ñ U {H “ 9Σ2. Observe that if we choose H “ ker ρ̃

and ϕ is regular, then ϕ˚pπ1p 9Σ1qq Ă π1p 9Σq is normal and is therefore identical to H, so the

natural identification of 9Σ1 with U
L
ϕ˚pπ1p 9Σ1qq “ U {H “ 9Σ2 gives an isomorphism between the

covering maps ϕ and π.
Finally, suppose pΘ, 9Σ2, π,G, ρ, I, f q is a regular presentation of ϕ, and define the subgroup

H :“ π˚pπ1p 9Σ2qq, which is normal since π : 9Σ2 Ñ 9Σ is regular and has finite index since

Autpπq “ G “ π1p 9Σq{H is finite. We claim H Ă ϕ˚pπ1p 9Σ1qq: indeed, any γ P H is represented

by a loop 9Σ based at w that lifts to a loop γ2 in 9Σ2 and thus has d lifts to 9Σ1 – pΣ2 ˆ Iq{G
in the form γ ˆ tiu for i P I. We can therefore use H to define the regular presentation from

the previous paragraph, with G “ π1p 9Σ2q{H acting on ϕ´1pwq via ρ̃, and we claim that this

is isomorphic to pΘ, 9Σ2, π,G, ρ, I, f q. Indeed, choosing a base point w2 P π´1pwq Ă 9Σ2, the
identification f : 9Σ1 Ñ p 9Σ2 ˆ Iq{G provides a bijection

β : ϕ´1pwq Ñ I such that f pw1q “ rpw2, βpw1qqs for w1 P ϕ´1pwq,
and combining this with the natural identification of 9Σ2 with U {H gives an isomorphism of
regular presentations. �

Lemma 3.3. Suppose pΘ, 9Σ2, π,G, ρ, I, f q is a minimal regular presentation of ϕ : pΣ1, j1q Ñ
pΣ, jq, and let π : pΣ2, j2q Ñ pΣ, jq denote the branched cover of closed Riemann surfaces

provided by Lemma 3.1 such that 9Σ2 “ Σ2zπ´1pΘq. Then for each w P Θ and ζ P π´1pwq Ă Σ2,
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the branching order of π at ζ is the least common multiple of the branching orders of ϕ at all
z P ϕ´1pwq. In particular, π and ϕ have the same sets of critical values.

Proof. If k P N is the branching order of π at ζ, we can find punctured neighborhoods Uw Ă 9Σ
of w and Uζ Ă 9Σ2 of ζ and identify both with the half-cylinder r0,8q ˆ S1 with coordinates
ps, tq such that πps, tq “ pks, ktq. Let Gζ Ă G denote the group of automorphisms of π that

fix ζ; since π : 9Σ2 Ñ 9Σ is a regular cover, Gζ is necessarily a cyclic group of order k, with a
generator g P Gζ that acts on Uζ – r0,8q ˆ S1 as the rotation ps, tq ÞÑ ps, t` 1{kq. Appealing

again to regularity, we can then restrict the identification 9Σ1 “ p 9Σ2 ˆ Iq{G to Uζ and obtain an
identification

ϕ´1pUwq “ pUζ ˆ Iq
M
Gζ .

The connected components of ϕ´1pUwq are then in bijective correspondence to the orbits of the
Gζ-action on I defined by ρ : GÑ SpIq, with the branching order kz P N of each corresponding
point z P ϕ´1pwq given by the number of points in its respective orbit in I. By the orbit-stabilizer
theorem, all of these numbers kz must divide k “ |Gζ |. If ℓ is their least common multiple, we

conclude that gℓ P Gζ acts trivially on I, which means gℓ is the identity since ρ : G Ñ SpIq is
injective for the minimal regular presentation, hence ℓ “ k. �

Example 3.4. If ϕ is regular with Autpϕq “ G, then it admits a canonical minimal regular

presentation pΘ, 9Σ2, π,G, ρ, I, f q where 9Σ2 :“ 9Σ1, π :“ ϕ, I :“ G, and the action ρ : G Ñ SpGq
of G on itself is defined by left multiplication

ρgphq :“ gh.

Here the identification 9Σ1 fÝÑ p 9Σ2 ˆ Gq{G sends z P 9Σ1 to rpz, eqs, where e P G is the identity

element. The action of G on 9Σ1 “ p 9Σ2 ˆ Gq{G by deck transformations can now be presented
as the action via right multiplication

Gˆ 9Σ1 Ñ 9Σ1 : pg, rpz, hqsq ÞÑ rpz, hg´1qs.
Notice that any regular presentation in which ρ : G Ñ SpIq acts on I both transitively and
without fixed points is isomorphic to one of this form, since for any i P I, the map GÑ I : g ÞÑ
ρgpiq defines a bijection that transforms the action by left multiplication into ρ.

Example 3.5. The following construction underlies Lemma 2.16: any proper normal subgroup
H Ă G gives rise to a factorization of ϕ : pΣ1, j1q Ñ pΣ, jq in the following way. Let I{H denote
the set of orbits for the action ρ|H : H Ñ SpIq. Then G{H is a finite group and ρ descends to
a homomorphism

ρH : G{H Ñ SpI{Hq,
which acts transitively on I{H. The regular cover π : 9Σ2 Ñ 9Σ “ 9Σ2{G now factors through the
obvious projections

9Σ2 Ñ 9Σ2
H :“ 9Σ2{H πHÝÑ 9Σ “ 9Σ2{G,

and πH : 9Σ2
H Ñ 9Σ is a regular holomorphic cover with automorphism group G{H. We can thus

define
9Σ1
H :“

´
9Σ2
H ˆ pI{Hq

¯M
pG{Hq ϕHÝÑ 9Σ : rpz, iqs ÞÑ πHpzq,

as well as a factorization of ϕ : 9Σ1 Ñ 9Σ by covering maps

9Σ1 “
´
9Σ2 ˆ I

¯M
G ÝÑ 9Σ1

H
ϕHÝÑ 9Σ,

where the first map is also defined via the obvious quotient projections. It follows from
Lemma 3.1 that 9Σ1

H and 9Σ2
H each arise by puncturing closed connected Riemann surfaces

pΣ1
H , j

1
Hq and pΣ2

H , j
2
Hq respectively, and in particular we obtain a factorization of ϕ via holo-

morphic branched covers

pΣ1, j1q Ñ pΣ1
H , j

1
Hq ϕHÝÑ pΣ, jq
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with degpϕHq ď d equal to the number of distinct orbits of the H-action on I, hence

degpϕHq ă d

holds whenever the action of H on I is nontrivial. Note that ϕH inherits from this construction a
regular presentation pΘ, 9Σ2

H , πH , G{H, ρH , I{H, fHq, though it need not be minimal and Θ may

contain points that are not critical values of ϕH , even if pΘ, 9Σ2, π,G, ρ, I, f q is minimal. This is
the main reason why non-minimal regular presentations have been included in the discussion.

It will be important to understand how the various objects constructed out of a regular
presentation vary smoothly under changes in ϕ and j. To this end, we shall fix the following
data for the remainder of §3:

‚ ϕ : pΣ1, j1q Ñ pΣ, jq is a holomorphic branched cover of degree d P N with branching
data b;

‚ pΘ, 9Σ2, π,G, ρ, I, f q is a regular presentation of ϕ;
‚ P is a connected smooth Banach manifold;
‚ V Ă 9Σ is an open subset with compact closure;
‚ tjτ uτPP is a smooth family of complex structures on Σ that match j outside of V;
‚ tψτ uτPP is a smooth family of diffeomorphisms ψτ : ΣÑ Σ which restrict to the identity
on V and are j-holomorphic near Θ.

We shall abbreviate the family of closed Riemann surfaces determined by jτ as

Στ :“ pΣ, jτ q,
and denote by

π : pΣ2, j2q Ñ pΣ, jq, Θ2 “ π´1pΘq Ă Σ2

the holomorphic branched cover of closed surfaces provided by Lemma 3.1 such that 9Σ2 “ Σ2zΘ2.
These choices produce a family of punctured Riemann surfaces

9Στ :“ pΣzΘτ , jτ q where Θτ :“ ψτ pΘq Ă Σ,

and we define
ϕτ :“ ψτ ˝ ϕ : Σ1 Ñ Σ, j1τ :“ ϕτ̊ jτ on Σ1,

where we observe that j1τ is always well defined and matches j1 near Θ1 since ψτ is holomorphic
near Θ. This makes

ϕτ : Σ1
τ Ñ Στ

a smooth family of holomorphic branched covers, where

Σ1
τ :“ pΣ1, j1τ q,

and they restrict to holomorphic covering maps of punctured surfaces 9Σ1
τ

ϕÝÑ 9Στ , where
9Σ1
τ :“ p 9Σ1, j1τ q.

Example 3.6. Suppose Θ is the set of critical values of ϕ, r :“ |Θ|, P is the 2r-dimensional open
ball B2r, jτ :“ j for all τ , and ψτ : ΣÑ Σ is chosen to be any smooth family of diffeomorphisms
supported near Θ that are holomorphic in a smaller neighborhood of Θ and such that ψ0 “ Id
and

B2r Ñ Σˆr : τ ÞÑ pψτ pw1q, . . . , ψτ pwrqq
is an embedding onto an open subset, where Θ “ tw1, . . . , wru. Then the branched covers
ϕτ : pΣ1, j1τ q Ñ pΣ, jq parametrize a neighborhood of ϕ in Md

b
pjq.

Example 3.7. If v0 : pΣ, j0q Ñ pM,J0q represents a simple element of the moduli space
Mg,mpA, J0 ; ℓ1, . . . , ℓmq defined in Appendix A and J0 is generic, then one can enhance the
previous example as follows to parametrize a neighborhood of u0 :“ v0 ˝ ϕ in the space
Md

b
pMg,mpA, J0 ; ℓ1, . . . , ℓmqq. A neighborhood of v0 in Mg,mpA, J0 ; ℓ1, . . . , ℓmq can be iden-

tified with a smooth submanifold X of B̄´1
J0
p0q, where B̄J0 : T ˆ B Ñ E is the nonlinear

Cauchy-Riemann operator defined on the product of B :“ W k,ppΣ,Mq with a Teichmüller
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slice T through j0, cf. Appendix A. Here T is a finite-dimensional smooth family of com-
plex structures on Σ, which can all be arranged to match j0 near Θ. A neighborhood in
Md

b
pMg,mpA, J0 ; ℓ1, . . . , ℓmqq is now parametrized by

P :“ B2r ˆX,

namely via the curves v ˝ pψσ ˝ ϕq : pΣ1, ϕ˚ψσ̊jq Ñ pM,J0q for each τ :“ pσ, pj, vqq P P , and we
associate to these parameters the families jτ :“ j and ψτ :“ ψσ.

Example 3.8. Enhancing the previous example one step further, suppose Jε is an infinite-
dimensional Banach manifold consisting of smooth almost complex structures and we consider
a neighborhood of pv0, J0q in the universal moduli space

U
˚pJε ; ℓ1, . . . , ℓmq “ tpv, Jq | J P Jε, v PMg,mpA, J ; ℓ1, . . . , ℓmqu .

Such a neighborhood can be identified with a finite-codimensional submanifold X in the infinite-
dimensional Banach manifold B̄´1p0q Ă T ˆ B ˆ Jε, where B̄pj, u, Jq :“ B̄Jpj, uq. Defining
P :“ B2r ˆX and the families tjτ u and tψτ u as in Example 3.7, the parameter space P is now
infinite dimensional.

Observe that the branched covers in the family ϕτ all have essentially the same topological
properties, e.g. their branch points and automorphism groups are identical. It is therefore trivial
to extend pΘ, 9Σ2, π,G, ρ, I, f q to a smooth family of regular presentations

pΘτ , 9Σ2, πτ , G, ρ, I, f q
for ϕτ , where πτ :“ ψτ ˝ π. By the same reasoning as above, we can define on Σ2 a smooth
family of complex structures j2τ :“ πτ̊ jτ such that

πτ : Σ
2
τ Ñ Στ , Σ2

τ :“ pΣ2, j2τ q
becomes a smooth family of holomorphic branched covers, restricting to a smooth family of
holomorphic covering maps 9Σ2

τ
πτÝÑ 9Στ , defined on the family of punctured Riemann surfaces

9Σ2
τ :“ p 9Σ2, j2τ q.

3.2. Cauchy-Riemann operators on closed and punctured domains. Fix a complex
vector bundle

pE, Jq Ñ pΣ, jq
of rank m ě 1, and define the rank m bundle of complex-antilinear maps

F “ HomCpTΣ, Eq “ Λ0,1T ˚ΣbE.

Recall that a first-order real-linear partial differential operator D : ΓpEq Ñ ΓpF q “ Ω0,1pΣ, Eq
is then called a Cauchy-Riemann type operator on E if it satisfies the Leibniz rule

Dpfηq “ pB̄f qη ` fDη

for all η P ΓpEq and f P C8pΣ,Rq, where B̄f “ df ` i df ˝ j P Ω0,1pΣq. The space

CRRpEq
of all such operators is an affine space modelled on the space of smooth real-linear bundle maps
ΓpHomRpE,F qq “ Ω0,1pΣ,EndRpE, Jqq. The pullback of D P CRRpEq via ϕ : pΣ1, j1q Ñ pΣ, jq
defines a Cauchy-Riemann operator

ϕ˚D : ΓpEϕq Ñ ΓpFϕq,
where we define two bundles over Σ1 by

Eϕ :“ ϕ˚E, Fϕ :“ HomCpTΣ1, ϕ˚Eq “ Λ0,1T ˚Σ1 bEϕ

and characterize ϕ˚D via the relation

pϕ˚Dqpη ˝ ϕq “ ϕ˚ pDηq for all η P ΓpEq.
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Example 3.9. If v : pΣ, jq Ñ pM,Jq is a J-holomorphic curve with generalized normal bundle
Nv Ñ Σ, its normal Cauchy-Riemann operator DN

v belongs to CRRpNvq, and if u “ v ˝ ϕ :
pΣ1, j1q Ñ pM,Jq, then Nu “ ϕ˚Nv and DN

u “ ϕ˚DN
v P CRRpNuq.

Remark 3.10. Note that the operator B̄ : C8pΣ,Cq Ñ Ω0,1pΣq used in our definition of Cauchy-
Riemann type operators makes B̄f twice the complex-antilinear part of the differential df . This is
a common convention in J-holomorphic curve theory, but differs from the standard convention in
complex analysis. We will also often use the symbol B̄ to mean the coordinate-based differential
operator

B̄ :“ Bs ` iBt,
acting on functions valued in a complex vector space and defined on open domains in C with
complex coordinate s` it. The alternative convention would be to write B̄ “ 1

2
pBs ` iBtq.

Fixing Hermitian bundle metrics x , yE and x , yΣ on E and TΣ respectively, we can integrate
real parts of bundle metrics to define real-valued L2-pairings x , yL2 on ΓpEq and ΓpF q, which
determines a formal adjoint operator D˚ : ΓpF q Ñ ΓpEq via the relation

xα,DηyL2 “ xD˚α, ηyL2

for all smooth sections α P ΓpF q and η P ΓpEq with compact support.4 Viewing D as a
Fredholm operator on Sobolev spaces W k,ppEq Ñ W k´1,ppF q for some k P N and p P p1,8q,
we can then identify cokerD with kerD˚ Ă ΓpF q, which is the L2-orthogonal complement of
imD Ă W k´1,ppF q and is a finite-dimensional space of smooth sections by elliptic regularity.
Using the Riemann-Roch formula indpDq “ mχpΣq`2c1pEq and computing the algebraic count
of branch points Zpdϕq from the Riemann-Hurwitz formula, the (real) Fredholm indices of D
and ϕ˚D are related by

indpϕ˚Dq “ d ¨ indD´mZpdϕq.
In order to exploit the topological constructions in the previous section, we will need to work

with Cauchy-Riemann type operators on punctured surfaces instead of closed surfaces. We shall
now show that this can be done without loss of generality by choosing suitable weighted Sobolev
spaces. Assume

Eτ Ñ Στ

is a smooth family of rank m complex vector bundles with complex structures Jτ , equipped with
a smooth family of Cauchy-Riemann operators Dτ P CRRpEτ q. Denote the restrictions of the
bundles Eτ and

Fτ :“ HomCpTΣτ , Eτ q
to the punctured surfaces 9Στ by

9Eτ :“ Eτ | 9Στ ,
9Fτ :“ Fτ | 9Στ “ HomCpT 9Στ , 9Eτ q.

Restricting Dτ to 9Στ then defines a family of Cauchy-Riemann type operators

9Dτ P CRRp 9Eτ q.
In order to understand the functional-analytic properties of 9Dτ , we must examine its asymptotic
behavior fairly carefully. Fix local holomorphic coordinate charts to identify a neighborhood of
each w P Θ in Σ with the closed unit disk D Ă C, with w corresponding to 0 P D, and use the
maps ψτ introduced at the end of §3.1 to produce from these a smooth family of holomorphic
charts on neighborhoods of ψτ pwq P Θτ for τ P P . In these coordinates, use the biholomorphic
map

r0,8q ˆ S1 Ñ Dzt0u : ps, tq ÞÑ e´2πps`itq

4The compact support condition is vacuous in the present context since Σ is compact, but the same definition
is also valid on punctured domains.
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to define cylindrical ends of 9Στ with holomorphic coordinates ps, tq P r0,8qˆS1. Choose also a

smooth family of trivializations of Eτ near Θτ and denote the resulting trivialization of 9Eτ over
the cylindrical ends by Φ. The relative first Chern number5 of 9Eτ is then given by

(3.1) cΦ1 p 9Eτ q “ c1pEτ q P Z.

For any tuple of real numbers
δ “ tδw P RuwPΘ,

we can use the chosen coordinates and trivializations over the cylindrical ends of 9Στ to define
the Sobolev space with exponential weights

W k,p,δp 9Eτ q :“
!
η PW k,p

loc p 9Eτ q
ˇ̌̌
eδwsη P W k,ppr0,8q ˆ S1q on the end near ψτ pwq P Θτ

)
.

We will also write
Lp,δp 9Eτ q :“ W 0,p,δp 9Eτ q.

Note that sections η PW k,p,δp 9Eτ q have exponential decay at any end where δw ą 0, but one can
also take δw ă 0, in which case η may be unbounded with exponential growth near w. In order
to emphasize when we are using negative exponential weights, we associate to δ “ tδwuwPΘ the
inverse set of weights

´δ :“ t´δwuwPΘ.
The asymptotic coordinates and trivializations also naturally give rise to asymptotic trivializa-
tions of 9Fτ “ HomCpT 9Στ , 9Eτ q, so we can similarly define the Banach space W k´1,p,δp 9Fτ q, which
is a completion of some subset of Ω0,1p 9Στ , 9Eτ q determined by the asymptotic conditions.

Choose a smooth τ -parametrized family of Hermitian bundle metrics and connections on Eτ
which match the trivial metric and connection in our chosen family of trivializations near Θτ .
Any Cauchy-Riemann type operator on Eτ can then be written as Dτ “ B̄∇ ` A for some
A P Ω0,1pΣτ ,EndRpEτ qq, where B̄∇ :“ ∇ ` Jτ ˝ ∇ ˝ jτ : ΓpEτ q Ñ Ω0,1pΣτ , Eτ q. In the chosen
coordinates and trivialization near a point w P Θτ , the p0, 1q-form A can be written as

A “ Apwqτ pzq dz̄
for some smooth function A

pwq
τ : D Ñ EndRpCmq. The restriction of A to an EndRp 9Eτ q-valued

p0, 1q-form 9Aτ P Ω0,1p 9Στ ,EndRp 9Eτ qq can then be written on the corresponding cylindrical end
as

9Aτ “ 9Apwqτ ps, tq p´ds ` i dtq
where

(3.2) 9Apwqτ ps, tq :“ 2πe´2πps´itqApwqτ

`
e´2πps`itq˘,

and given a section η P Γp 9Eτ q expressed as a function ηps, tq P Cm with respect to the trivial-

ization on the same end, 9Dτη on this end takes the form

(3.3) 9Dτη “
´
Bsη ` iBtη ` 9Apwqτ η

¯
p´ds` i dtq “:

´
B̄η ` 9Apwqτ η

¯
p´ds` i dtq.

(Here and in further local expressions below, we are using the abbreviation B̄ :“ Bs ` iBt as

mentioned in Remark 3.10.) Observe that 9Apwqτ ps, ¨q Ñ 0 with all derivatives as s Ñ 8. This

expression shows that 9Dτ extends to a bounded linear operator

9Dτ : W
k,p,δp 9Eτ q ÑW k´1,p,δp 9Fτ q

for any choices of k P N, p P p1,8q and exponential weights δ “ tδw P RuwPΘ. Operators of this
type are standard in Floer-type theories, and especially in symplectic field theory. Appealing
to the Fredholm theory on punctured surfaces developed in [Sch95], the asymptotic decay of

5Recall that for any complex line bundle E over a surface Σ with a trivialization Φ specified outside of some
open subset in Σ with compact closure, the relative first Chern number cΦ1 pEq P Z is defined by algebraically
counting the zeroes of a generic section that is constant with respect to Φ wherever the latter is defined. This
definition extends uniquely to higher rank bundles via the relation c

Φ1‘Φ2

1
pE1 ‘ E2q “ c

Φ1

1
pE1q ` c

Φ2

1
pE2q.
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9Apwqτ ps, ¨q means that 9Dτ : W k,pp 9Eτ q Ñ W k´1,pp 9Fτ q is controlled at every puncture by the so-
called trivial asymptotic operator ´iBt : H1pS1,Cmq Ñ L2pS1,Cmq, for which 0 is an eigenvalue
of maximal multiplicity. In this sense, the asymptotics are degenerate, i.e. in the SFT setting,
such an operator can arise as the linearized Cauchy-Riemann operator of a holomorphic curve
asymptotic to periodic orbits that live in Morse-Bott families foliating an open set. In particular,
9Dτ : W k,p Ñ W k´1,p is not Fredholm, but it becomes Fredholm when we introduce suitable
weights: conjugating 9Dτ :W k,p,δ Ñ W k´1,p,δ with a map of the form Ψpηq “ efη for a suitable

function f : 9Στ Ñ R (cf. [HWZ99, §6] or [Wen10, §2.1]) produces a commutative diagram

(3.4)

W k,p,δp 9Eτ q 9DτÝÝÝÝÑ W k´1,p,δp 9Fτ q§§đΨ

§§đΨ

W k,pp 9Eτ q pDτÝÝÝÝÑ W k´1,pp 9Fτ q,
where pD : W k,p Ñ W k´1,p is another Cauchy-Riemann type operator whose asymptotic opera-
tors are offset by constants depending on the weights δ, and thus is Fredholm for suitable choices.
In particular, the computation in (3.7) and (3.8) below will show that imposing the exponential
growth condition e´δsη P W k,ppr0,8q ˆ S1q on each cylindrical end for sufficiently small δ ą 0

adjusts the asymptotic operators of pDτ so that each acquires an effective Conley-Zehnder index
m relative to the trivialization Φ.

We need to be a bit cautious with the weights when discussing elliptic regularity and formal
adjoints: as a rule, the Sobolev constants k P N and p P p1,8q can be changed freely, but
the weights cannot. The following are immediate consequences of (3.4) after applying standard

regularity arguments to pDτ , plus (in the case of Lemma 3.12) the fact that Cauchy-Riemann
operators with nondegenerate asymptotics automatically impose exponential decay conditions
on their kernels (cf. [Sch95, Prop. 3.1.26]):

Lemma 3.11. Suppose k P N, 1 ă p ă 8, and δ “ tδw P RuwPΘ is any choice of exponential

weights. If η P Lp,δp 9Eτ q is a weak solution to 9Dτη “ ξ for ξ PW k´1,p,δp 9Fτ q, then η P W k,p,δp 9Eτ q.
�

Lemma 3.12. Suppose 1 ă p ă 8 and the weights δ are chosen such that 9Dτ : W k,p,δp 9Eτ q Ñ
W k´1,p,δp 9Fτ q is Fredholm. If η P Lp,δp 9Eτ q is a weak solution to 9Dτη “ 0, then η P W k,q,δp 9Eτ q
for all k P N and q P p1,8q. �

To discuss the formal adjoint on punctured domains, one should define real L2-products for
Γp 9Eτ q and Γp 9Fτ q in terms of a family of Hermitian bundle metrics on Eτ and Riemannian

metrics on 9Στ that are compatible with the conformal structure and standard on the cylindrical
ends; in particular, the right metric to use on the cylindrical ends is the Euclidean metric in
the coordinates ps, tq P r0,8q ˆ S1, so that ends have infinite area and the metric does not
extend over the punctues. The key technical point is then the following: there are well-defined
L2-pairings

(3.5) Lp,δ b Lq,´δ Ñ R : η b ξ ÞÑ xη, ξyL2

whenever 1{p` 1{q “ 1, and using the density of C8
0 , the usual relation

(3.6) xα, 9DτηyL2 “ x 9Dτ̊α, ηyL2

for smooth compactly supported sections η and α remains valid whenever η PW 1,p,´δp 9Eτ q and
α P W 1,q,δp 9Fτ q for 1{p ` 1{q “ 1. Using (3.4), one finds 9Dτ̊ “ Ψ pDτ̊Ψ

´1, from which one can

check that 9Dτ̊ : W k,p,δp 9Fτ q Ñ W k´1,p,δp 9Eτ q satisfies the Fredholm property and Lemmas 3.11

and 3.12 under the same conditions on δ as 9Dτ : W k,p,´δp 9Eτ q Ñ W k´1,p,´δp 9Fτ q. The next
result appears standard at first glance, but the reader should be cautioned that it depends on
inclusions W k,p,δ ãÑ W k,p,´δ which hold only when all the weights are nonnegative, so e.g. one
does not obtain any similar result with the roles of 9Dτ and 9Dτ̊ reversed.
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Proposition 3.13. Assume k P N, 1 ă p ă 8, and δ “ tδw ě 0uwPΘ is a set of nonnegative
exponential weights such that

9Dτ : W
k,p,´δp 9Eτ q ÑW k´1,p,´δp 9Fτ q

is Fredholm. Defining its formal adjoint as a bounded linear map

9Dτ̊ :W k,p,δp 9Fτ q ÑW k´1,p,δp 9Eτ q
and using the obvious inclusions W k,p,δp 9Fτ q ãÑW k´1,p,δp 9Fτ q ãÑW k´1,p,´δp 9Fτ q, we have

W k´1,p,´δp 9Fτ q “ im 9Dτ ‘ ker 9Dτ̊ .

In particular, coker 9Dτ is isomorphic to the space of all sections in Lq,δp 9Fτ q for 1{p ` 1{q “ 1

that are L2-orthogonal to im 9Dτ Ă Lp,´δp 9Fτ q under the pairing (3.5).

Proof. If α P im 9Dτ X ker 9Dτ̊ , then α “ 9Dτη for some η P W k,p,´δp 9Eτ q Ă W 1,p,´δp 9Eτ q, while
α also belongs to W 1,q,δp 9Fτ q for 1{p ` 1{q “ 1 by Lemma 3.12. Thus α has a well-defined
L2-pairing with itself and (3.6) gives

}α}2L2 “ xα, 9DτηyL2 “ x 9Dτ̊α, ηyL2 “ 0.

To show that im 9Dτ ` ker 9Dτ̊ is W k´1,p,´δp 9Fτ q, note first that it is a closed subspace since
9Dτ is Fredholm. Then in the case k “ 1, the contrary would mean there exists a nontrivial
λ P pLp,´δp 9Fτ qq˚ “ Lq,δp 9Fτ q for 1{p` 1{q “ 1 such that x 9Dτη, λyL2 “ 0 for all η P W 1,p,´δp 9Eτ q
and xα, λyL2 “ 0 for all α P ker 9Dτ̊ . The first condition means λ P ker 9Dτ̊ by Lemma 3.12
and thus contradicts the second unless λ “ 0. To extend this result to all k P N, note that if
λ P W k´1,p,´δp 9Fτ q Ă Lp,´δp 9Fτ q then the k “ 1 case gives η P W 1,p,´δp 9Eτ q and α P ker 9Dτ̊ such

that 9Dτη`α “ λ. Then Lemma 3.12 implies α PW k´1,p,δp 9Fτ q ĂW k´1,p,´δp 9Fτ q, implying that
9Dτη is also in W k´1,p,´δp 9Fτ q, so Lemma 3.11 implies η PW k,p,´δp 9Eτ q and we are done. �

This discussion extends easily to the pulled back operators

ϕτ̊Dτ P CRRpϕτ̊Eτ q and ϕτ̊
9Dτ P CRRpϕτ̊ 9Eτ q

on bundles over Σ1
τ and 9Σ1

τ respectively. Observe that since 9Σ1
τ

ϕτÝÑ 9Στ has no branch points,

dϕτ gives a bundle isomorphism T 9Σ1
τ Ñ ϕτ̊T

9Στ and we can thus identify

Fϕττ | 9Σ1τ “ HomCpT 9Σ1
τ , ϕτ̊

9Eτ q “ HomCpϕτ̊T 9Στ , ϕτ̊ 9Eτ q “ ϕτ̊
9Fτ ,

so that ϕτ̊
9Dτ can be viewed as a map Γpϕτ̊ 9Eτ q Ñ Γpϕτ̊ 9Fτ q. We can now define fixed holomorphic

cylindrical coordinate systems ps, tq P r0,8q ˆ S1 on punctured neighborhoods of each point
ζ P Θ1 “ ϕ´1

τ pΘτ q such that ϕτ takes the form

9Σ1
τ Ą r0,8q ˆ S1 ϕτÝÑ r0,8q ˆ S1 Ă 9Στ ,

ps, tq ÞÑ pkζs, kζ tq,
where kζ P N is the branching order of ϕ at ζ. Pulling back the trivializations Φ on Eτ near Θτ

to define corresponding trivializations of ϕτ̊Eτ near Θ1, we obtain asymptotic trivializations of

ϕτ̊
9Eτ and ϕτ̊ 9Fτ on the cylindrical ends and can thus define weighted Sobolev norms for sections

of these bundles, producing a bounded linear operator

ϕτ̊
9Dτ : W

k,p,δpϕτ̊ 9Eτ q ÑW k´1,p,δpϕτ̊ 9Fτ q
for all choices of k P N, p P p1,8q and exponential weights δ “ tδζ P RuζPΘ1 . If δ “ tδwuwPΘ is

a choice of weights for 9Dτ , there is an induced set of weights for ϕτ̊ 9Dτ defined by

ϕ˚δ :“  
kζδϕpζq

(
ζPΘ1 ,

where kζ P t1, . . . , du again denotes the branching order of ϕ at ζ.
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Proposition 3.14. Suppose k P N, p P p1,8q, and the exponential weights δ “ tδwuwPΘ are
chosen to satisfy

0 ă δw ă 2π

d
for every w P Θ. Then for any Dτ P CRRpEτ q, the operators

9Dτ : W
k,p,´δp 9Eτ q ÑW k´1,p,´δp 9Fτ q,

ϕτ̊
9Dτ : W

k,p,´ϕ˚δpϕτ̊ 9Eτ q ÑW k´1,p,´ϕ˚δpϕτ̊ 9Fτ q
are Fredholm and satisfy

indp 9Dτ q “ indpDτ q, and indpϕτ̊ 9Dτ q “ indpϕτ̊Dτ q.
Moreover, the maps ΓpEτ q Ñ Γp 9Eτ q and Γpϕτ̊Eτ q Ñ Γpϕτ̊ 9Eτ q defined by restricting smooth
sections to the corresponding punctured domains define isomorphisms

kerDτ
–ÝÑ ker 9Dτ and kerpϕτ̊Dτ q –ÝÑ kerpϕτ̊ 9Dτ q.

Proof. We will prove the correspondence between Dτ and 9Dτ , as the result for the pulled back
operators follows by the same argument simply replacing the bundles Eτ Ñ Σ and 9Eτ Ñ 9Στ
with ϕτ̊Eτ Ñ Σ1 and ϕτ 9Eτ Ñ 9Σ1

τ respectively.

The Fredholm property for 9Dτ and the index calculation follow from the usual index formula
for Cauchy-Riemann operators on Riemann surfaces with cylindrical ends, proved in [Sch95] (see
also [Wene, Lecture 5]), supplemented by the transformation (3.4) to handle the exponential
weights (cf. [HWZ99, §6]). In particular, the condition ´2π ă ´δw ă 0 for each w P Θτ

guarantees that 9Dτ is conjugate (cf. (3.7) and (3.8) below) to a Cauchy-Riemann type operator

W k,pp 9Eτ q Ñ W k´1,pp 9Fτ q with nondegenerate asymptotic operators at every puncture whose
Conley-Zehnder indices with respect to the trivialization Φ are m “ rankCEτ . In light of (3.1),
the index formula from [Sch95] thus gives

indp 9Dτ q “ mχp 9Στ q ` 2cΦ1 p 9Eτ q `m ¨ |Θτ | “ mχpΣq ` 2c1pEτ q “ indpDτ q.
Note that doing the same computation for the pulled back operators requires the stronger
condition ´2π{d ă ´δw ă 0 in order to ensure that all of the pulled back weights in the set
´ϕ˚δ lie in the interval p´2π, 0q.

To understand the kernels, observe that since any η P kerDτ is smooth, its restriction to 9Στ
belongs to W k,p,´δp 9Eτ q and is thus in ker 9Dτ .

6 Conversely, we need to show that any section

η PW k,p,´δp 9Eτ q annihilated by 9Dτ can be extended over the punctures to a section inW k,ppEτ q,
which is then automatically annihilated by Dτ . This will follow from the asymptotic elliptic
theory of the equation 9Dτη “ 0. Indeed, recall from (3.3) that on the cylindrical end near

any puncture w P Θτ , the function ηps, tq P Cm representing η P ker 9Dτ in some trivialization
satisfies

B̄η ` 9Apwqτ η ” 0,

and
η “ eδsf for some f PW k,ppr0,8q ˆ S1,Cmq,

where δ :“ δw P p0, 2πq. Then f “ e´δsη satisfies the Cauchy-Riemann type equation

(3.7) B̄f ` pδ ` 9Apwqτ qf “ Bsf ´ r´iBt ´ pδ ` 9Apwqτ qsf “ 0.

Since 9Apwqτ ps, ¨q Ñ 0 as s Ñ 8, this equation is asymptotic to the equation pBs ´Aδqf “ 0 for
the asymptotic operator

(3.8) Aδ :“ ´iBt ´ δ : H1pS1,Cmq Ñ L2pS1,Cmq,
6Note that η| 9Στ

would not belong to W k,p,´δp 9Eτ q in general if η were an arbitrary (not necessarily smooth)

section of class W k,p on Eτ , nor if any of the exponential weights were nonnegative—the latter in particular

permits sections in W k,p,´δp 9Eτ q that do not decay to zero at infinity, which is crucial since arbitrary smooth
sections η P kerDτ may indeed be nonzero at points in Θτ .
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which can be regarded as a densely defined unbounded self-adjoint operator on L2pS1,Cmq.
The function A

pwq
τ : D Ñ EndRpCmq is smooth by assumption, and (3.2) then implies that the

derivatives Bα 9Apwqτ ps, tq of 9Apwqτ for arbitrary multi-indices α satisfy exponential decay conditions

|Bα 9Apwqτ ps, tq| ďMαe
´2πs

for suitable constants Mα ą 0. Applying [Sie08, Theorem A.1], f therefore satisfies

f ps, tq “ eλs reptq ` rps, tqs ,
where e : S1 Ñ Cm is a nontrivial eigenfunction of Aδ with eigenvalue λ ă 0, and the remainder
rps, tq P Cm decays to zero with all its derivatives uniformly in t as sÑ8. The spectrum of Aδ

is t2πk´ δ | k P Zu Ă R, hence the assumption δ P p0, 2πq implies λ ď ´δ, and we conclude that

ηps, tq “ epδ`λqs reptq ` rps, tqs
is bounded on the cylindrical end; in fact, one can use this to show that the smooth function
Dzt0u Ñ Cm : z ÞÑ ηpzq defined via the transformation z “ e´2πps`itq has finite W 1,p-norm on
Dzt0u. Moreover, ηpzq has a continuous extension to z “ 0: indeed, the extension is obviously
ηp0q “ 0 if λ ă ´δ, while in the case λ “ ´δ, the eigenfunction eptq is necessarily constant,
so that ηps, ¨q converges to this constant value as s Ñ 8. All these conditions together imply
that the continuous extension of η over the punctures is of class W k,p, e.g. the case k “ 1 is a
standard exercise using the definition of weak derivatives (cf. [Wena, Exercise 2.118]), and the
general case follows from this by elliptic regularity. �

Remark 3.15. Since sections in W k,p,´δp 9Eτ q and its pulled back counterpart need not be
bounded when the weights ´δ are negative, the punctured operators in Proposition 3.14 cannot
be interpreted in any reasonable way as linearizations of nonlinear Cauchy-Riemann operators,
e.g. W k,p,´δp 9Eτ q in this case is not a subspace of a tangent space in any reasonable Banach
manifold. For our purposes, the exponential growth condition is merely a technical convenience
so that we can consider operators with the right index and the right kernel and cokernel while
dealing with honest covering maps instead of branched covers. The geometrically meaningful
operators are still Dτ and ϕτ̊Dτ , on unpunctured domains.

Remark 3.16. Suppose Eτ , Στ and Dτ are independent of τ but ϕτ moves in Md
b
pjq as τ

varies, e.g. this is the relevant situation for the proof of super-rigidity. There is then a subtle
but important difference between what Proposition 3.14 says about 9Dτ and what it says about
ϕτ̊

9Dτ . The former is a family of operators whose relationship to each other for different values of
τ is not obvious from the definitions, but the proposition implies that they are all in some sense
equivalent to a single operator D on the closed domain, so they all have isomorphic kernels. No
such thing can be assumed for the pulled back operators: while ϕτ̊ 9Dτ must have the same index
for all τ , there is nothing in this setup to stop the dimension of its kernel from varying wildly
with τ .

3.3. A digression on representation theory. In preparation for the twisted bundle con-
struction in the next section, we now collect some general facts from representation theory.

3.3.1. Real permutation representations and subrepresentations. Given a finite set I with d :“
|I| P N elements and a finite group with a homomorphism

ρ : GÑ SpIq : g ÞÑ ρg

defining a transitive group action on I, we denote by RI the real vector space spanned by basis
vectors teiuiPI , with an inner product such that this basis is orthonormal. We shall use the
boldface symbol ρ to denote the corresponding real d-dimensional representation of G,

(3.9) ρ : GÑ AutRpRIq such that ρpgqei :“ eρgpiq.
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We will be interested in the decomposition of RI into irreducible G-invariant summands. This
can be understood in terms of its complexification

ρC : GÑ AutCpCIq,
defined by viewing teiuiPI as a complex basis of CI . In general, we say that a complex represen-
tation λ : G Ñ AutCpV q is the complexification of a real representation θ : G Ñ AutRpW q
if V is isomorphic to W ‘ iW such that G acts on the latter by the complex-linear exten-
sion of its action on W . Recall from [Ser77, §13.2] that irreducible complex representations
λ : GÑ AutCpV q come in three mutually exclusive types:

‚ Real type: V admits a complex-antilinear G-invariant involution. Then λ is the com-
plexification of a real irreducible representation θ : G Ñ AutRpW q. It follows that λ is
isomorphic to its dual representation λ˚ : G Ñ AutCpV ˚q, and all G-equivariant linear
maps W Ñ W are given by scalar multiplication:

EndGpW q – R.

‚ Complex type: λ is not isomorphic to its dual representation λ˚ : G Ñ AutCpV ˚q.
Then λ‘λ˚ : GÑ AutCpV ‘ V ˚q is the complexification of a real irreducible represen-
tation θ : GÑ AutRpW q obtained from λ : GÑ AutCpV q by setting W :“ V and using
the obvious inclusion AutCpV q Ă AutRpW q. The algebra of G-equivariant real-linear
maps on W is then

EndGpW q – C.

‚ Quaternionic type: λ is not of real type but is nonetheless isomorphic to its dual
representation. Then λ ‘ λ : G Ñ AutCpV ‘ V q is the complexification of a real
irreducible representation θ : GÑ AutRpW q obtained from λ : GÑ AutCpV q by setting
W :“ V and using the obvious inclusion AutCpV q Ă AutRpW q, and the algebra of
G-equivariant real-linear maps on W is isomorphic to the quaternions:

EndGpW q – H.

We shall also refer to a real irreducible representation as “of real / complex / quaternionic
type” according to which of these three constructions it comes from. With this classification in
mind, we denote the various complex irreducible representations of G by

λj,K : GÑ AutCpVj,Kq,
where K stands for R, C or H depending on the type, and arrange a complete list of pairwise
non-isomorphic irreducible representations in the form

λ1,R, . . . ,λp,R, λ1,C,λ1̊,C, . . . ,λq,C,λq̊,C, λ1,H, . . . ,λn,H.

This gives rise to a corresponding complete list

θ1,R, . . . ,θp,R, θ1,C, . . . ,θq,C, θ1,H, . . . ,θn,H

of pairwise non-isomorphic real irreducible representations

θj,K : GÑ AutRpWj,Kq satisfying EndGpWj,Kq – K,

where for each j, the complexification of θj,K is λj,R for K “ R, λj,C ‘ λj̊,C for K “ C, and
λj,H ‘ λj,H for K “ H. Note that the G-equivariant endomorphisms endow each Wj,K with the
structure of a left K-module such that the representation θj,K is K-linear.

We recall a standard fact from representation theory:

Proposition 3.17. Every finite-dimensional representation θ : G Ñ AutpW q of a finite group
G has a unique isotypic decomposition, meaning a splitting W “W1 ‘ . . . ‘WN such that:

(1) For each i “ 1, . . . , N , Wi Ă W is a G-invariant subspace on which θ is isomorphic to
a direct sum of copies of a single irreducible representation;

(2) The irreducible representations corresponding any two distinct subspaces in the splitting
are not isomorphic.
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�

Since ρC itself is a complexification of a real representation, every subspace in the resulting
isotypic decomposition of CI is either identical or orthogonal to its complex conjugate, where
the conjugate always carries the dual representation. Thus we can uniquely decompose CI into
pairwise orthogonal G-invariant complex subspaces

(3.10) CI “ X1,R ‘ . . .‘Xp,R ‘X1,C ‘ sX1,C ‘ . . .‘Xq,C ‘ sXq,C ‘X1,H ‘ . . .‘Xn,H,

where each Xj,R and Xj,H is of the form Yj,K‘ iYj,K for some real subspace Yj,K Ă RI , and each

Xj,C has trivial intersection with RI . Next, observe that every irreducible G-invariant subspace

in CI is either identical to its complex conjugate or intersects it trivially: indeed, any other
option would produce an intersection which is a nontrivial but smaller G-invariant subspace.
We can thus further decompose Xj,R and Xj,C into irreducible G-invariant subspaces

Xj,R – V
‘kj
j,R , Xj,C – V

‘mj
j,C

for some integers kj ,mj ě 0, where each Vj,R summand in Xj,R can be assumed of the form
Wj,R‘ iWj,R for some irreducible G-invariant real subspaceWj,R Ă Yj,R. In Xj,H, the irreducible
G-invariant subspaces cannot be complexifications since the corresponding representation is not
realizable over R, thus these subspaces have trivial intersection with RI and can instead be
arranged in conjugate pairs:

Xj,H – V
‘ℓj
j,H ‘ Ę

V
‘ℓj
j,H

for some integers ℓj ě 0. From this decomposition of ρC we can immediately read off a corre-
sponding decomposition of ρ: we have

(3.11) RI “ Y1,R ‘ . . .‘ Yp,R ‘ Y1,C ‘ . . .‘ Yq,C ‘ Y1,H ‘ . . .‘ Yn,H,

where the summands are all G-invariant and pairwise orthogonal, Yj,K “ Xj,KXRI for K “ R,H,

and Yj,C “ pXj,C ‘ sXj,Cq X RI , hence,

dimR Yj,K “
#
dimCXj,K if K “ R or H,

2 dimCXj,K if K “ C.

These summands admit further (non-unique) decompositions into real irreducible G-invariant
subspaces

Yj,R –W
‘kj
j,R , Yj,C –W

‘mj
j,C , Yj,K –W

‘ℓj
j,H .

3.3.2. The regular case. We now specialize the above discussion to the case

I :“ G, ρgphq :“ gh,

in which case ρ : G Ñ AutRpRGq is the so-called regular representation of G. By a stan-
dard theorem in complex representation theory, the complexification ρC : G Ñ AutCpCGq then
contains every irreducible complex representation λj,K : GÑ AutCpVj,Kq as a subrepresentation
with multiplicity equal to dimC Vj,K. This implies a similar fact about ρ that we will make use
of in §6 for proving Theorem D:

Lemma 3.18. The real regular representation ρ : G Ñ AutRpRGq contains every irreducible
representation θj,K : G Ñ AutRpWj,Kq of G as a subrepresentation with multiplicity equal to
dimKWj,K. �

Next, recall that the action of G on itself by right multiplication

GÑ SpGq : g ÞÑ ρ1g, ρ1gh :“ hg´1

commutes with ρ and thus defines a second permutation representation

ρ1 : GÑ AutRpRGq, ρ1pgqeh “ ehg´1
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which commutes with ρ, giving rise to a representation

(3.12) GˆGÑ AutRpRGq : pg, hq ÞÑ ρpgqρ1phq.
By another standard theorem of complex representation theory, the summands in the isotypic
decomposition (3.10) of CG are then invariant under the complexification of the pGˆGq-action
(3.12), and they define irreducible complex representations of GˆG. In particular, ρ1 therefore
preserves each isotypic component for ρ but does not preserve any further decomposition of
that component into irreducible G-invariant subspaces. For future use, we note one additional
fact from complex representation theory: the action of GˆG on an isotypic component in CG

corresponding to a given irreducible representation λ : GÑ AutCpV q is isomorphic to V b V ˚,
with GˆG acting by

pGˆGq ˆ pV b V ˚q Ñ V b V ˚ : ppg, hq, v b αq ÞÑ λpgqv b λ˚phqα,
cf. [Ser77, §6.2].

3.3.3. Non-faithful representations. An important special case of the factorization construction
in Example 3.5 arises when

θ : GÑ AutRpW q
is an irreducible representation that is not faithful. Choosing H to be any nontrivial normal
subgroup of G contained in its kernel

H Ă ker θ Ă G,

G{H then inherits an irreducible representation

θH : G{H Ñ AutRpW q.
For example one can take H “ ker θ, in which case θH becomes faithful. Now if ρ : G Ñ SpIq
is a transitive action on the set I of d elements, let

ρH : G{H Ñ SpI{Hq
denote the induced action on the set I{H of H-orbits, and consider the corresponding permu-
tation representations

ρ : GÑ AutRpRIq, ρH : G{H Ñ AutRpRI{Hq.
Lemma 3.19. Under the assumptions described above, the multiplicity of θ : GÑ AutRpW q as
a subrepresentation of ρ : GÑ AutRpRIq matches the multiplicity of θH : G{H Ñ AutRpW q as
a subrepresentation of ρH : G{H Ñ AutRpRI{Hq.
Proof. Observe that in terms of the real/complex/quaternionic distinction described in §3.3.1,
θ and θH are necessarily of the same type: indeed, the spaces of linear maps on W that are G-
equivariant or pG{Hq-equivariant are the same since H acts trivially onW . The multiplicities of
both are therefore determined in the same way by the multiplicities of the corresponding complex
irreducible representations in the complexifications of ρ and ρH respectively, thus it will suffice
to prove a similar statement about complex representations. Namely, assume λ : GÑ AutCpV q
is complex irreducible, H Ă kerλ Ă G is a normal subgroup and λH : G{H Ñ AutCpV q is the
resulting irreducible representation of G{H. By orthonormality of characters, it will suffice to
prove

xχρ, χλy “ xχρH , χλH y,
where the inner product of characters χλ : GÑ C is given in general by

xχλ, χλ1y :“ 1

|G|
ÿ
gPG

Ğχλpgqχλ1pgq P C.

For each i P I, let Gi Ă G denote the stabilizer subgroup for i under the G-action on I via ρ.
Since the action is transitive, the orbit-stabilizer theorem implies |Gi| “ |G|{d. The trace of
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a permutation matrix is the number of elements that it fixes, in other words the number of
stabilizer subgroups that it belongs to, hence for each g P G,

χρpgq “
ˇ̌ 
i P I ˇ̌

g P Gi(ˇ̌ .
This implies

(3.13) xχρ, χλy “ 1

|G|
ÿ
iPI

ÿ
gPGi

χλpgq.

This can be simplified since G acts transitively on I, so the subgroups Gi for distinct i P I are
all conjugate. By the conjugation-invariance of characters, this implies that all d of the sums
over Gi in (3.13) are identical, so plugging in |Gi| “ |G|{d, we have

xχρ, χλy “ 1

|Gi|
ÿ
gPGi

χλpgq,

where i P I in this expression can be chosen arbitrarily.
To write down a similar expression for xχρH

, χλH y, define for each i P I
Hi :“ H XGi Ă G,

which is a subgroup of both H and Gi and is normal in the latter. There is then a natural
inclusion of Gi{Hi as a subgroup of G{H, and it is the stabilizer subgroup of ris P I{H for the
permutation action of G{H on I{H. The same computation thus gives

xχρH
, χλH y “ 1

|Gi{Hi|
ÿ

rgsPGi{Hi
χλH prgsq “ |Hi|

|Gi|
ÿ

rgsPGi{Hi
χλH prgsq.

Finally, observe that χλpgq “ χλH prgsq for each g P G since both are traces of the same linear
operator acting on V , so one can replace the last expression with a sum over g P Gi, giving

xχρH , χλHy “ 1

|Gi|
ÿ
gPGi

χλpgq “ xχρ, χλy.

�

3.4. Twisted bundles and splittings of operators. We can now make precise the splitting
of pulled back Cauchy-Riemann type operators that was sketched in §2.2.

3.4.1. Twisted bundles from representations. We associate to any representation θ : G Ñ
AutRpW q the family of real vector bundles W θ

τ Ñ 9Στ defined by

W θ
τ “

´
9Σ2
τ ˆW

¯M
G,

where G acts on W via θ and on 9Σ2
τ by deck transformations, so that πτ : 9Σ2

τ Ñ 9Στ identifies
9Στ with 9Σ2

τ {G. This gives rise to complex vector bundles 9Eθ
τ ,

9F θ
τ Ñ 9Στ of rank m ¨ dimRW ,

defined by
9Eθ
τ “ 9Eτ bR W

θ
τ ,

9F θ
τ “ 9Fτ bR W

θ
τ “ HomCpT 9Στ , 9Eθ

τ q.
Each of the bundles W θ

τ has a canonical flat structure, i.e. it comes with a well-defined notion
of constant local sections, thus Dτ P CRRpEτ q determines a family of Cauchy-Riemann type
operators

9Dθ
τ : Γp 9Eθ

τ q Ñ Γp 9F θ
τ q “ Ω0,1p 9Στ , 9Eθ

τ q
such that 9Dθ

τ pη b vq “ 9Dτη b v whenever v is a constant local section of W θ
τ . Since 9Dθ

τ P
CRRp 9Eθ

τ q, it is Fredholm in suitable Banach space settings, in particular as a bounded linear
operator

9Dθ
τ : W k,p,´δp 9Eθ

τ q ÑW k´1,p,´δp 9F θ
τ q

for any k P N, p P p1,8q, and negative exponential weights ´δ “ t´δwuwPΘ with all δw ą 0
sufficiently small. We will formulate a precise version of this statement and compute the index in
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§4. Observe that aside from its obvious dependence on Dτ , 9Dθ
τ depends on our choice of regular

presentation for ϕ and on the representation θ, but both of them only up to isomorphism.
If θ is irreducible with EndGpW q “ K P tC,Hu, then the resulting left K-module structure of

W induces a left K-module structure on each fiber of the twisted bundles 9Eθ
τ and 9F θ

τ , for which

the twisted operator 9Dθ
τ commutes with the action of K, thus its kernel and cokernels are also

left K-modules. Note that if K “ C, the resulting complex structure on 9Eθ
τ and 9F θ

τ is different

from the one defined by J ; the latter does not commute with 9Dθ
τ unless Dτ is a J-linear operator

to start with.
The most important special case of the above construction is 9Eρ

τ Ñ 9Στ , where ρ : G Ñ
AutRpRIq is the permutation representation associated to our regular presentation of ϕ. We

define 9Eρ
τ “ 9Eτ b pRIqρτ Ñ 9Στ as above and can identify it canonically with

9Eρ
τ “

´
πτ̊

9Eτ b RI
¯M

G,

so that sections of 9Eρ
τ are written as G-equivariant sections of πτ̊ 9Eτ b RI , hence

η “ÿ
iPI
ηi b ei

for ηi P Γpπτ̊ 9Eτ q. Here G-equivariance means that for all z P 9Σ2
τ and g P G,

ηpgzq “ p1b ρpgqqηpzq “ÿ
iPI
ηipzq b eρgpiq,

hence

(3.14) ηipzq “ ηρgpiqpgzq for all z P 9Σ2
τ , g P G and i P I.

Writing 9Σ1
τ “ p 9Σ2

τ ˆ Iq{G, this relation gives rise to a bijective correspondence

Γp 9Eρ
τ q Ñ Γpϕτ̊ 9Eτ q : η ÞÑ pηpηprpz, iqsq “ ηipzq(3.15)

and thus natural isomorphisms

(3.16) W k,p,´δp 9Eρ
τ q ÑW k,p,´ϕ˚δpϕτ̊ 9Eτ q

for every k ě 0 and p P p1,8q, where we recall from §3.2 that the pulled back exponential
weights are defined by

ϕ˚δ :“  
kζδϕpζq

(
ζPΘ1 ,

with kζ P t1, . . . , du denoting the branching order of ϕ : Σ1 Ñ Σ at ζ P Θ1. The reason for
using these particular weights in the isomorphism (3.16) is as follows. We observe first that
if ϕ : r0,8q ˆ S1 Ñ r0,8q ˆ S1 is a holomorphic covering map of the form ps, tq ÞÑ pms,mtq
and Zm is defined to act on r0,8q ˆ S1 via the transformation ps, tq ÞÑ ps, t ` 1{mq and its
iterates, then the map f ÞÑ f ˝ ϕ defines for each integer k ě 0 and p P p1,8q an isomorphism
from W k,ppr0,8q ˆ S1q to the closed subspace of W k,ppr0,8q ˆ S1q consisting of Zm-invariant
functions. It follows that for any exponential weight δ, a function f on r0,8q ˆ S1 is of class
W k,p,δ if and only if f ˝ ϕ is of class W k,p,mδ. The global consequence of these observations is
that for η P Γp 9Eρ

τ q and the corresponding section pη P Γpϕτ̊ 9Eτ q, the W k,p,´ϕ˚δ-norm of pη can be
bounded in terms of the W k,p,´δ-norm of η, and vice versa.

Observe that pRIqρτ Ñ 9Στ also has a well-defined real bundle metric since ρ acts on RI by
orthogonal transformations, so endowing Eτ with a Hermitian bundle metric induces a Hermitian
bundle metric on 9Eρ

τ “ 9Eτ b pRIqρτ such that the correspondence (3.15) also preserves L2-

products. After writing down a similar correspondence for the bundles 9Fρ
τ and ϕτ̊ 9Fτ , we obtain
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an identification between the Cauchy-Riemann operators ϕτ 9Dτ and 9Dρ
τ :

(3.17)

W k,p,´δp 9Eρ
τ q

9
D

ρ
τÝÝÝÝÑ W k´1,p,´δp 9Fρ

τ q§§đ– §§đ–
W k,p,´ϕ˚δpϕτ̊ 9Eτ q ϕτ̊

9DτÝÝÝÝÑ W k´1,p,´ϕ˚δpϕτ̊ 9Fτ q,
3.4.2. Splitting the twisted Cauchy-Riemann operator. If W Ă RI is any G-invariant subspace
and θ : G Ñ AutRpW q denotes the resulting subrepresentation, then we obtain corresponding
subbundles

9Eθ
τ Ă 9Eρ

τ ,
9F θ
τ Ă 9Fρ

τ

such that 9Dρ
τ takes sections of 9Eθ

τ to sections of 9F θ
τ , acting as the operator 9Dθ

τ . Under the

correspondence (3.15), one can understand this as identifying Γp 9Eθ
τ q and Γp 9F θ

τ q with closed
subspaces

Γθpϕτ̊ 9Eτ q Ă Γpϕτ̊ 9Eτ q, Γθpϕτ̊ 9Fτ q Ă Γpϕτ̊ 9Fτ q,
with a similar definition for closed subspaces of the relevant weighted Sobolev spaces, such that
ϕτ̊

9Dτ restricts to a bounded linear operator

W
k,p,´ϕ˚δ
θ pϕτ̊ 9Eτ q ϕτ̊

9DτÝÑ W
k´1,p,´ϕ˚δ
θ pϕτ̊ 9Fτ q,

which is conjugate to 9Dθ
τ : W k,p,´δp 9Eθ

τ q Ñ W k´1,p,´δp 9F θ
τ q and will thus be Fredholm with any

negative exponential weights that are close enough to 0. Now if

RI “W1 ‘ . . .‘WN

is a decomposition of ρ into subrepresentations θj : GÑ AutRpWjq for j “ 1, . . . , N , we obtain
a direct sum decomposition

9Dρ
τ “ 9Dθ1

τ ‘ . . .‘ 9DθN
τ ,

which is equivalent via (3.17) to a decomposition of ϕτ̊
9Dτ over a splitting of Banach spaces

W k,p,´ϕ˚δpϕτ̊Eτ q “
Nà
j“1

W
k,p,´ϕ˚δ
θj

pϕτ̊Eτ q

and the corresponding decomposition of W k´1,p,´ϕ˚δpϕτ̊Fτ q. Observe that if the subspaces

W1, . . . ,WN Ă RI are pairwise orthogonal, then the corresponding spaces of sections of ϕτ̊
9Eτ

and ϕτ̊
9Fτ are L2-orthogonal as a consequence. It is useful to note that whenever two of the

representations θi : G Ñ AutRpWiq and θj : G Ñ AutRpWjq are isomorphic, the G-equivariant

isomorphism Wi Ñ Wj induces bundle isomorphisms 9Eθi
τ Ñ 9Eθj

τ and 9F θi
τ Ñ 9F θj

τ that identify
9Dθi
τ with 9Dθj

τ , so these two operators have isomorphic kernels and cokernels. This implies:

Lemma 3.20. Suppose θj : G Ñ AutRpWjq for j “ 1, . . . , N is a collection of representations
of G, and θ : GÑ AutRpW q is another representation such that

θ –
Nà
j“1

θ
‘kj
j

for some integers k1, . . . , kN ě 0. Then there exist isomorphisms

ker 9Dθ
τ –

Nà
j“1

´
ker 9Dθj

τ

¯‘kj
and coker 9Dθ

τ –
Nà
j“1

´
coker 9Dθj

τ

¯‘kj
.

In particular, if θ is the permutation representation ρ : GÑ AutRpRIq, this gives isomorphisms

kerpϕτ̊ 9Dτ q –
Nà
j“1

´
ker 9Dθj

τ

¯‘kj
and cokerpϕτ̊ 9Dτ q –

Nà
j“1

´
coker 9Dθj

τ

¯‘kj
.
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�

3.4.3. Non-faithful representations revisited. Here is a proof of Lemma 2.16. For the present
discussion we drop the parameter τ from the notation since it does not play any important role.

Suppose θ : G Ñ AutRpW q is a representation and H Ă ker θ Ă G is a nontrivial normal
subgroup of G, giving rise to a representation

θH : G{H Ñ AutRpW q,
and (following Example 3.5) a factorization of ϕ : Σ1 Ñ Σ as

Σ1 Ñ Σ1
H

ϕHÝÑ Σ.

By assumption we are using a minimal regular presentation and thus ρ : GÑ SpIq is injective,
so H acts nontrivially on I, implying degpϕHq ă d. Writing 9Σ2

H “ 9Σ2LH, the obvious projection
map ´

9Σ2 ˆW
¯M

GÑ
´
9Σ2
H ˆW

¯M
pG{Hq

is then an isomorphism of real vector bundles over 9Σ and thus gives rise to a canonical iden-
tification between the twisted bundles 9Eθ and 9EθH with their Cauchy-Riemann operators 9Dθ

and 9DθH . To prove the lemma, we now just need to observe that Lemma 3.19 implies θ is a
subrepresentation of ρ if and only if θH is a subrepresentation of ρH , hence the corresponding

twisted operators appear simultaneously as summands in the decompositions of ϕ˚ 9D and ϕH̊
9D

from Lemma 3.20.

Remark 3.21. In the situation above, one should interpret ker 9Dθ as the set of all sections in
kerpϕ˚ 9Dq that are pullbacks of sections in ker 9DθH (interpreted as a subspace of kerpϕH̊ 9Dq) via
the branched cover Σ1 Ñ Σ1

H .

3.4.4. The regular case revisited. Now consider the special case where ρ is the regular represen-
tation GÑ AutRpRGq, defined via

ρ : GÑ SpGq, ρgphq “ gh.

We saw in Example 3.4 that this means ϕτ : 9Σ1
τ Ñ 9Στ are all regular covers isomorphic to

π : 9Σ2
τ Ñ 9Στ , and the action of G on 9Σ1

τ “ p 9Σ2
τ ˆGq{G by deck transformations takes the form

grpz, hqs :“ rpz, ρ1gphqqs
where ρ1 : G Ñ SpGq is the action of G on itself by right multiplication, ρ1gphq “ hg´1. The

induced G-action on spaces of sections η of ϕτ̊ 9Eτ is defined by

pgηqprpz, hqsq :“ ηpg´1rpz, hqsq “ ηprpz, hgqsq.
Recall now from §3.3.2 that the permutation representation ρ1 : G Ñ AutRpRGq arising from
ρ1 commutes with ρ and preserves the isotypic components of ρ. It therefore defines an action
on 9Eρ

τ by fiber-preserving bundle isomorphisms, and these isomorphisms preserve each of the
subbundles in the splitting

(3.18) 9Eρ
τ “

pà
j“1

p 9Eρ
τ qj,R ‘

qà
j“1

p 9Eρ
τ qj,C ‘

nà
j“1

p 9Eρ
τ qj,H

corresponding to the isotypic decomposition (3.11) of ρ. In particular, this G-action by bundle

isomorphisms gives a linear G-action on each of the subspaces Γpp 9Eρ
τ qj,Kq Ă Γp 9Eρ

τ q, and there is

a similar action on sections of 9Fρ
τ such that the restriction of 9Dρ

τ to each of these subspaces is
G-equivariant. Its kernel and cokernel thus inherit natural G-actions. Under the correspondence
(3.15), this action on sections of 9Eρ

τ matches the action by deck transformations on Γpϕτ̊ 9Eτ q.



38 CHRIS WENDL

Lemma 3.22. Suppose ρ : GÑ SpGq is defined by left multiplication, θ0 : GÑ AutRpW q is an
irreducible representation of G, and θ : G Ñ AutRpY q denotes the corresponding summand in
the isotypic decomposition (3.11) of the regular representation ρ : G Ñ AutRpRGq. Then every

irreducible subrepresentation for the natural G-action on ker 9Dθ
τ or coker 9Dθ

τ is isomorphic to θ0.

Proof. Suppose first that θ0 is of either real or quaternionic type, in which case the complexifi-
cation X :“ Y ‘ iY Ă CG of Y Ă RG is also an isotypic component for the complexified regular
representation ρC : GÑ AutCpCGq. We shall denote the restriction of ρC to X by

λ : GÑ AutCpXq,
and let λ0 : GÑ AutCpV q denote the underlying complex irreducible representation. Regarding
these complex representations as real representations on X and V respectively gives rise to
corresponding twisted bundles and Cauchy-Riemann operators on them, along with a natural
linear inclusion of vector bundles

9Eθ
τ ãÑ 9Eλ

τ such that ker 9Dθ
τ “ ker 9Dλ

τ X Γp 9Eθ
τ q.

It will be useful to think of 9Eλ
τ as a complexification of 9Eθ

τ , in the following sense. While 9Eθ
τ is

already a complex vector bundle, 9Eλ
τ “ 9Eτ bR X

λ
τ naturally carries two complex structures Jτ

and i, which commute with each other: the former acts on ηb v P 9Eτ bRX
λ
τ by Jτηb v and the

latter by ηb iv, using the fact that λ is a complex representation and Xλ
τ is therefore naturally

a complex vector bundle. From this perspective, 9Dλ
τ is the natural i-complex-linear extension

of 9Dθ
τ to its complexified domain, and the representations defined by the G-action on ker 9Dλ

τ

and coker 9Dλ
τ will be the complexifications of the real representations it defines on ker 9Dθ

τ and

coker 9Dθ
τ respectively. In the following we shall use the symbol “bi” to denote complex tensor

products of vector spaces and bundles with i (instead of Jτ ) as the complex structure.
Recall now that as an isotypic component of the complex regular representation, X admits a

complex-linear isomorphism to V bi V ˚ such that for all g P G, ρpgq acts on V bi V ˚ as λ0b1,
while ρ1pgq acts as 1b λ0̊ . The isomorphism X Ñ V bi V ˚ thus gives rise to i-complex bundle
isomorphisms

9Eλ
τ Ñ 9Eλ0

τ bi V ˚, 9Fλ
τ Ñ 9Fλ0

τ bi V ˚,
where we are abusing notation to let V ˚ denote the trivial bundle over 9Στ with fiber V ˚, and
this identifies 9Dλ

τ with 9Dλ0

τ b 1. We therefore have

ker 9Dλ
τ – ker 9Dλ0

τ bi V ˚, coker 9Dλ
τ – coker 9Dλ0

τ bi V ˚,
with G acting on both by 1 b λ0̊ , hence all irreducible subrepresentations in these spaces are
isomorphic to λ0̊ , which is isomorphic to λ0 since the latter is not of complex type. Viewing

these as complexifications of real representations on ker 9Dθ
τ and coker 9Dθ

τ as explained above, it
follows via the correspondence between real and complex irreducible representations outlined in
§3.3.1 that all the irreducible real subrepresentations are isomorphic to θ0.

The main difference if θ0 is of complex type is that Y ‘ iY Ă CG is no longer an isotypic
component for ρC, but is instead the direct sum of two isotypic components related to each
other by complex conjugation

Y ‘ iY “ X ‘ sX Ă CG,

corresponding to some complex irreducible representation λ0 : G Ñ AutCpV q and its non-
isomorphic dual λ0̊ : G Ñ AutCpV ˚q. Writing λ : G Ñ AutCpXq and λ̄ : G Ñ AutCp sXq
for the restriction of ρC to these subspaces, we can then think of 9Dλ‘λ̄

τ “ 9Dλ
τ ‘ 9Dλ̄

τ as the

complexification of 9Dθ
τ . A repeat of the argument above using the isomorphisms X – V bi V ˚

and sX – V ˚ bi V then gives an i-complex-linear isomorphism

ker 9Dλ‘λ̄
τ – pker 9Dλ0

τ bi V ˚q ‘ pker 9Dλ
0̊

τ bi V q,
with G acting via 1 b λ0̊ on the first summand and 1 b λ0 on the second, and a similar

isomorphism for cokernels. It follows that every irreducible subrepresentation in either ker 9Dλ‘λ̄
τ
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or coker 9Dλ‘λ̄
τ is isomorphic to one of λ0 or λ0̊ , and the desired result for real subrepresentations

again follows via the correspondence between real and complex representations in §3.3.1. �

Continuing in the setting of Lemma 3.22, let K “ EndGpW q P tR,C,Hu and write k “
dimK ker 9Dθ0

τ , c “ dimK coker 9Dθ0

τ . By Lemma 3.18, θ – θ‘m0 withm :“ dimKW , so Lemma 3.20

gives dimK ker 9Dθ
τ “ km and dimK coker 9Dθ

τ “ cm. Lemma 3.22 meanwhile decomposes the

representation defined by the G-action on ker 9Dθ
τ as θ‘ℓ0 for some ℓ ě 0, so ker 9Dθ

τ – W‘ℓ.
Comparing dimensions, we deduce ℓ “ k, and applying the same argument to the cokernel
then likewise identifies the representation defined by the G-action on coker 9Dθ

τ with θ‘c0 . The
following consequence is the origin of the codimension formula in Theorem D (cf. 3.23).

Corollary 3.23. In the setting of Lemma 3.22, let K “ EndGpW q. Then the space of G-

equivariant real-linear maps ker 9Dθ
τ Ñ coker 9Dθ

τ satisfies

dimRHomG

`
ker 9Dθ

τ , coker
9Dθ
τ

˘ “ dimR K ¨ dimK ker 9Dθ0

τ ¨ dimK coker 9Dθ0

τ .

�

3.5. Setting up the implicit function theorem. We assume throughout this section that
pΘ, 9Σ2, π,G, ρ, I, f q is the minimal regular presentation of ϕ : Σ1 Ñ Σ. Suppose

θi : GÑ AutRpWiq, i “ 1, . . . , N

is a complete list of pairwise non-isomorphic real irreducible representations for G, with

Ki :“ EndGpWiq, and ti :“ dimRKi P t1, 2, 4u.
Recall that all of the data we have been considering depends smoothly on a parameter τ ,
which lives in a connected Banach manifold P as described at the end of §3.1. Any N -tuples
of nonnegative integers k “ pk1, . . . , kN q and c “ pc1, . . . , cN q now determine subsets of this
parameter space

P pk, cq :“
!
τ P P

ˇ̌̌
dimKi ker

9Dθi
τ “ ki and dimKi coker

9Dθi
τ “ ci for all i “ 1, . . . , N

)
.

Note that P pk, cq is automatically empty unless ki ´ ci “ indKi
9Dθi
τ for all i “ 1, . . . , N , and

these indices do not depend on the parameter τ . Assuming this condition holds, we would now
like to present P pk, cq locally as the zero-set of a smooth map to a finite-dimensional vector
space, and to compute its derivative in a special case.

We start by translating the conditions defining P pk, cq into conditions on the pulled back

operators pϕτ̊ 9Dτ for a suitable family of regular covers pϕτ : pΣτ Ñ 9Στ with Autppϕτ q “ G. This
can be defined by replacing the homomorphism ρ : G Ñ SpIq with the action of G on itself by
left multiplication, i.e. let pρ : GÑ SpGq : g ÞÑ pρg, pρgphq :“ gh,

so that pΘτ , 9Σ2, πτ , G, pρ,G, Idq becomes a minimal regular presentation for

pΣτ :“ ´
9Σ2
τ ˆG

¯M
G

pϕτÝÑ 9Στ : rpz, gqs ÞÑ πτ pzq,
or rather for the extension of this map to a branched cover of closed surfaces as provided by

Lemma 3.1. In keeping with our usual notational convention, pΣτ is a fixed smooth surface pΣ
with a fixed G-action by deck transformations but a τ -dependent family of conformal structurespτ “ pϕτ̊ jτ , which are fixed on the cylindrical ends.

Denote the isotypic decomposition of the regular representation pρ : GÑ AutRpRGq by

pρ “ Nà
i“1

pθi,
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where pθi – θ‘ℓii for integers ℓi which are strictly positive by Lemma 3.18. Then by Lemma 3.20,

kerppϕτ̊ 9Dτ q –
Nà
i“1

ker 9Dpθi
τ –

Nà
i“1

´
ker 9Dθi

τ

¯‘ℓi
,

cokerppϕτ̊ 9Dτ q –
Nà
i“1

coker 9Dpθi
τ –

Nà
i“1

´
coker 9Dθi

τ

¯‘ℓi
,

so τ P P pk, cq implies

(3.19) dimkerppϕτ̊ 9Dτ q “
Nÿ
i“1

tiℓiki.

Lemma 3.24. Every σ P P pk, cq has a neighborhood Uσ Ă P such that Uσ X P pk, cq is the set
of all τ P Uσ for which (3.19) holds.

Proof. Since all the operators 9Dθi
τ are Fredholm and they depend continuously on τ , we can

assume dimker 9Dθi
τ ď dimker 9Dθi

σ for all i “ 1, . . . , N if τ is sufficiently close to σ. Thus (3.19)
can only be satisfied if none of these inequalities are strict, which means τ P P pk, cq since every
ℓi is positive. �

Recall from §3.2 that the weighted Sobolev spaces W k,p,´pϕ˚δppϕτ̊ 9Eτ q and W k´1,p,´pϕ˚δppϕτ̊ 9Fτ q
are defined in terms of fixed families of trivializations of Eτ near Θτ and holomorphic cylindrical
coordinates which allow us to compute Sobolev norms on the cylindrical ends. Given σ P P pk, cq,
choose a neighborhood Uσ Ă P that is diffeomorphic to a ball and small enough to satisfy
Lemma 3.24. By assumption the bundles Eτ depend smoothly on τ , which means there is a

well-defined smooth bundle pE Ñ P ˆΣ with pEpτ,zq “ pEτ qz. Choosing a suitable connection on
the latter, we can use parallel transport along paths of the form pτptq, ψτptqpzqq P Uσ ˆ Σ with
τptq radiating outward from σ to define a smooth family of complex bundle isomorphisms

Ψτ : ψσ̊Eσ Ñ ψτ̊Eτ

which respect these fixed trivializations near Θτ and satisfy Ψσ “ Id. These give rise to isomor-
phisms 9Eσ Ñ 9Eτ covering the diffeomorphisms ψτ ˝ ψ´1

σ : 9Σσ Ñ 9Στ . Notice that there are also
natural real bundle isomorphisms

dψτ : TΣÑ ψτ̊ TΣ,

so that dψτ ˝dψ´1
σ gives a family of isomorphisms T 9Σσ Ñ T 9Στ covering 9Σσ

ψτ˝ψ´1
σÝÑ 9Στ , and they

respect the chosen holomorphic cylindrical coordinates on the ends. These then induce smooth

families of isomorphisms of complex bundles over pΣ,pϕσ̊ 9Eσ Ñ pϕτ̊ 9Eτ , pϕσ̊ 9Fσ Ñ pϕτ̊ 9Fτ
which again are the identity for τ “ σ and are also equivariant with respect to the natural

G-action by bundle isomorphisms covering deck transformations of pΣ. Acting with these on
sections produces τ -parametrized families of G-equivariant Banach space isomorphisms which
we shall also denote by Ψτ :

W k,p,´pϕ˚δppϕσ̊ 9Eσq ΨτÝÑW k,p,´pϕ˚δppϕτ̊ 9Eτ q,
W k´1,p,´pϕ˚δppϕσ̊ 9Fσq ΨτÝÑW k´1,p,´pϕ˚δppϕτ̊ 9Fτ q.

(3.20)

Here Ψσ “ Id.
We can now use these isomorphisms to define for τ P Uσ a smooth family of G-equivariant

Fredholm operators with fixed domain and target space,

(3.21) pDτ :“ Ψ´1
τ ˝ pϕτ̊ 9Dτ ˝Ψτ : W

k,p,´pϕ˚δppϕσ̊ 9Eσq ÑW k´1,p,´pϕ˚δppϕσ̊ 9Fσq,
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such that

Uσ X P pk, cq “
#
τ P Uσ

ˇ̌̌̌
ˇ dimker pDτ “

Nÿ
i“1

tiℓiki

+
.

In order to present the latter as the zero-set of a smooth map, let us abbreviate

Xσ :“W k,p,´pϕ˚δppϕσ̊ 9Eσq, Yσ :“W k´1,p,´pϕ˚δppϕσ̊ 9Fσq,
so (3.21) defines a smooth map

Uσ Ñ LGpXσ ,Yσq : τ ÞÑ pDτ ,

where LGpXσ,Yσq denotes the Banach space of bounded real-linear maps Xσ Ñ Yσ that are

G-equivariant. Since pDσ “ pϕσ̊ 9Dσ is Fredholm, we can choose a splitting

Xσ “ Vσ ‘ kerppϕσ̊ 9Dσq,
such that Vσ Ă Xσ is a closed subspace and pDσ maps Vσ isomorphically to its image. By
Proposition 3.13, we can similarly split

Yσ “ imppϕσ̊ 9Dσq ‘ kerppϕσ̊ 9Dσ̊q,
where kerppϕσ̊ 9Dσ̊q is equivalently the space of all sections in W k´1,p,pϕ˚δppϕσ̊ 9Fσq that are L2-

orthogonal to imppϕσ̊ 9Dσq. In terms of these splittings, pDτ can be written in block form

pDτ “
ˆ
D11
τ D12

τ

D21
τ D22

τ

˙
,

where after shrinking Uσ if necessary, we can assume without loss of generality that D11
τ : Vσ Ñ

imppϕσ̊ 9Dσq is invertible for all τ P Uσ. We can therefore define a map

Fσ : Uσ Ñ HomG

`
kerppϕσ̊ 9Dσq, kerppϕσ̊ 9Dσ̊q

˘
τ ÞÑ D22

τ ´D21
τ pD11

τ q´1D12
τ .

(3.22)

Lemma 3.25. A parameter τ P Uσ belongs to P pk, cq if and only if Fσpτq “ 0.

Proof. Define for each τ P Uσ the Banach space isomorphism

T “
ˆ
1 ´pD11

τ q´1D12
τ

0 1

˙
P L pVσ ‘ kerppϕσ̊ 9Dσqq “ L pXσq.

Then pDτT “
ˆ
D11
τ 0

D21
τ Fσpτq

˙
, and since D11

τ is invertible,

ker pDτ – kerppDτTq “ t0u ‘ kerFσpτq – kerFσpτq.
The latter can only have the same dimension as kerppϕσ̊ 9Dσq if Fσpτq vanishes. �

Observe that by Lemma 3.22, Corollary 3.23 and Schur’s lemma,

(3.23) dimHomG

`
kerppϕσ̊ 9Dσq, kerppϕσ̊ 9Dσ̊q

˘ “ Nÿ
i“1

tikici.

The lemma implies via the implicit function theorem that a neighborhood of σ in P pk, cq is a
smooth submanifold with the same codimension that appears in Theorem D whenever we can
show that the linearization

dFσpσq : TσP Ñ HomG

`
kerppϕσ̊ 9Dσq, kerppϕσ̊ 9Dσ̊q

˘
is surjective.

We will need a precise formula for this linearization in the following special case. Suppose we
have a smooth path

γ : p´ǫ, ǫq Ñ P with γp0q “ σ and 9γp0q “ Y P TσP
such that for all τ “ γptq:
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(1) Eτ “ Eσ (i.e. there is a canonical complex bundle isomorphism);
(2) ψτ “ Id;
(3) jτ “ jσ.

We are then free to choose the bundle isomorphisms Ψτ and consequently the Banach space

isomorphisms (3.20) to be the identity for all τ “ γptq, so pDγptq “ pϕσ̊ 9Dγptq, where Dγptq is a
smooth family of Cauchy-Riemann operators on the fixed bundle Eσ Ñ Σσ. Differentiating this
family gives a real-linear bundle map

AY :“ BtDγptq
ˇ̌
t“0

P ΓpHomRpEσ, Fσqq,
and we then find that

LpY q :“ dFσpσqY P HomG

`
kerppϕσ̊ 9Dσq, kerppϕσ̊ 9Dσ̊q

˘
takes the form

LpY qη “ π
`ppϕσ̊AY qη˘,(3.24)

where π is the projection

Yσ “ imppϕσ̊ 9Dσq ‘ kerppϕσ̊ 9Dσ̊q πÝÑ kerppϕσ̊ 9Dσ̊q.
The local genericity result developed in §5 below is geared toward proving that operators such
as L are surjective.

4. Index computation

The goal of this section is to compute the Fredholm index of the twisted Cauchy-Riemann type
operators introduced in §3.4. We will use the notation of §3 but dispense with the parameter τ
since it is not important for the index computation, hence ϕ : pΣ1, j1q Ñ pΣ, jq is a fixed branched

cover, and pΘ, 9Σ2, π,G, ρ, I, f q is a fixed regular presentation. The complex vector bundles E

and F with their restrictions 9E and 9F to the punctured domain 9Σ are assumed to have rank

m :“ rankCE P N,

and we assume

θ : GÑ AutRpW q
is a (not necessarily irreducible or faithful) representation of G with

n :“ dimW P N.

The resulting twisted bundles over 9Σ can be written as

9Eθ “ 9E bR W
θ, 9F θ “ 9F bR W

θ,

in terms of the flat real vector bundle W θ :“ p 9Σ2ˆW q{GÑ 9Σ, and any Cauchy-Riemann type
operator D P CRRpEq then gives rise to the twisted operator

9Dθ : Γp 9Eθq Ñ Γp 9F θq.
We need a bit more notation in order to state a formula for indp 9Dθq. Recall that while the deck
transformations G “ Autpπq act on 9Σ2 without fixed points, their extensions to biholomorphic
self-maps of Σ2 may fix some of the punctures, so for each w P Θ and ζ P π´1pwq Ă Θ2 :“
π´1pΘq, we can consider the stabilizer subgroup

Gζ :“ tg P G | gζ “ ζu ,
which is necessarily cyclic. Restricting θ to Gζ then defines a representation Gζ Ñ AutRpW q,
which splits W into Gζ-invariant subspaces W “ Wζ ‘W 1

ζ such that Gζ acts on Wζ trivially

and on W 1
ζ as a direct sum of nontrivial representations. We define the number

nw :“ dimW 1
ζ P t0, . . . , nu.
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As implied by the notation, this depends on w P Θ but not on the choice of preimage ζ P π´1pwq:
indeed, since G acts transitively on π´1pwq, any two choices of ζ give rise to conjugate subgroups
Gζ , and using orthonormality of characters, one can compute

nw “ n´ dimWζ “ n´ 1

|Gζ |
ÿ
gPGζ

χθpgq,

an expression which depends only on the congugacy class of Gζ .

Theorem 4.1. Under the assumptions detailed above, the operator

9Dθ : W k,p,´δp 9Eθq ÑW k´1,p,´δp 9F θq
is Fredholm for any k P N, p P p1,8q and negative exponential weights ´δ “ t´δwuwPΘ satisfying
0 ă δw ă 2π{|G| for all w P Θ. Its index is

indp 9Dθq “ n ¨ indpDq ´m
ÿ
wPΘ

nw.

The dimensions and indices in the above statement are all real, but note that if θ is irreducible
with K :“ EndGpW q P tC,Hu, then the integers n and nw are automatically divisible by

t :“ dimR K P t2, 4u, hence so is indp 9Dθq. Let us state the corollary for the faithful case in
terms of the K-linear index since it is most useful in this form.

Corollary 4.2 (cf. Lemma 2.15). Assume pΘ, 9Σ2, π,G, ρ, I, f q is the mimimal regular presen-
tation, and that θ is faithful and irreducible with EndGpW q – K P tR,C,Hu. Then

indKp 9Dθq ď pdimKW q ¨ indRpDq ´m|Θ|,
and if K “ R, then the inequality is strict unless all branch points of ϕ have branching order 2.

Proof. By Lemma 3.3, the stabilizer subgroups Gζ are nontrivial for all ζ P Θ2, and the conclu-
sion about branch points of order 2 will hold if and only if all of them are isomorphic to Z2. Now
if θ is faithful, it follows that all nontrivial elements g P Gζ for ζ P Θ2 also act nontrivially onW ,
hence the decomposition of W into Gζ-invariant subspaces contains at least a 1-dimensional K-
linear subspace on which Gζ acts nontrivially, giving nw ě dimRK for all w P Θ. This implies
the upper bound, and in the case K “ R, it is an equality if and only if nw “ 1 for all w P Θ,
meaning each Gζ acts onW as the pn´1q-fold direct sum of the trivial representation plus a real
1-dimensional nontrivial representation, which is required to be faithful. But the only nontrivial
faithful real 1-dimensional representation of any finite group is the nontrivial representation
of Z2, hence Gζ – Z2. �

Remark 4.3. Doan and Walpuski have recently shown that an index formula equivalent to that
of Theorem 4.1 can also be derived from Kawasaki’s orbifold Riemann-Roch theorem [Kaw79].
From this perspective, branch points are regarded as orbifold singularities instead of punctures;
see [DWb, Appendix 2.B].

The remainder of this section is devoted to the proof of Theorem 4.1, which we shall break
down into five steps.

Step 1: Some notation.
It will be convenient first to complexify the representation. We define V :“ W ‘ iW and the
complex representation

λ : GÑ AutCpV q
such that λpgq|W “ θpgq for all g P G. Note that for w P Θ and ζ P π´1pwq Ă Θ2, the trivial
representation of Gζ on V is the complexification of the trivial real representation on W , so the
splitting W “Wζ ‘W 1

ζ explained above complexifies to a splitting V “ Vζ ‘ V 1
ζ , where Vζ Ă V

is the largest complex subspace on which Gζ acts trivially, allowing us to write

nw “ dimC V
1
ζ “ n´ dimC Vζ .
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The complexified representation now gives rise to a complex flat bundle V λ :“ p 9Σ2 ˆ V q{G,
corresponding twisted bundles

(4.1) 9Eλ :“ 9E bR V
λ, 9Fλ :“ 9F bR V

λ,

and a twisted Cauchy-Riemann operator

9Dλ :W k,p,´δp 9Eλq ÑW k´1,p,´δp 9Fλq.
The following point is important to understand: the tensor products in (4.1) are real, thus 9Eλ

and 9Fλ each inherit two complex structures J and i, where J comes from the complex structure
of E and i from that of V : they commute with each other and are defined by

Jpη b vq :“ Jη b v, ipη b vq :“ η b iv.

In this sense, 9Dλ can be regarded as the i-complex-linear extension of 9Dθ to complexifications
of the latter’s domain and target space—this notion of “complexification” ignores the fact that
these spaces already have native complex structures J and treats them as real vector spaces,
which is appropriate since 9Dθ need not be J-complex linear. We therefore obtain the relation

indp 9Dθq “ 1

2
indp 9Dλq,

and we shall compute indp 9Dλq by regarding 9Dλ as a real-linear Cauchy-Riemann type operator

on the complex vector bundle p 9Eλ, Jq. Since rankC 9Eλ “ rankCE¨dimR V “ 2mn, the punctured
Riemann-Roch formula from [Sch95, §3.3] (or equivalently [Wene, Lecture 5]) gives

(4.2) indp 9Dλq “ 2mn ¨ χp 9Σq ` 2cΦ1 p 9Eλ, Jq ` ÿ
wPΘ

µΦCZpAλ
w ´ δwq,

where Φ is an arbitrary choice of asymptotic trivialization, and µΦCZpAλ
w ´ δwq P Z are Conley-

Zehnder indices that depend on certain asymptotic operators Aλ
w to be discussed below and the

exponential weight ´δw P p´2π{|G|, 0q associated to each puncture w P Θ. The main difficulty

of the calculation is in choosing a suitable asymptotic trivialization in which both cΦ1 p 9Eλ, Jq and
µΦCZpAλ

w ´ δwq can be computed.
Denote

d1 :“ degpπq “ |G|,
and for each w P Θ and ζ P π´1pwq Ă Θ2, let

kζ P t1, . . . , d1u
denote the branching order of π at ζ, meaning π is a kζ-to-1 map on a small punctured neigh-

borhood of ζ. We can then choose punctured neighborhoods Uw Ă 9Σ and Uζ Ă 9Σ2 of w and ζ
respectively, with holomorphic cylindrical coordinates ps, tq P r0,8q ˆ S1 on each such that

πps, tq “ pkζs, kζtq
in coordinates on Uζ . In these coordinates, any g P Gζ necessarily preserves the end Uζ and
takes the form gps, tq “ ps, t` j{kζq for some j P t0, . . . , kζ ´ 1u. This means that Gζ is a cyclic
group of order kζ , and it has a canonical generator gζ P Gζ such that

gζps, tq “ ps, t` 1{kζq on Uζ .

In addition to the cylindrical coordinates, let us choose complex trivializations of E on each
of the corresponding neighborhoods of Θ, thus giving an identification

(4.3) 9E|Uw “
`r0,8q ˆ S1

˘ˆEw

for each w P Θ. For any choice ζ P π´1pwq Ă Θ2, this also gives us an identification of 9Eλ|Uw
with

(4.4)
``r0,8q ˆ S1

˘ˆ pEw bR V q˘MGζ ,
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where the action of Gζ “ Zkζ on
`r0,8q ˆ S1

˘ˆ pEw bR V q is determined by

gζ ¨
`ps, tq, η b v

˘ “ `ps, t` 1{kζq, η b λpgζqv
˘
.

This picture can now easily be extended to the “circle compactification” of the punctured surface:
let sΣ and sΣ2 denote the compact surfaces with boundary obtained by replacing each cylindrical
end r0,8qˆ S1 in 9Σ and 9Σ2 respectively by the compact topological manifold r0,8s ˆ S1. The
connected components of BsΣ and BsΣ2 are then in bijective correspondence with the punctures
w P Θ or ζ P Θ2 respectively, and the choice of cylindrical coordinates identifies each of these
components with S1. We shall denote the boundary components accordingly by S1

w, S
1
ζ for w P Θ

or ζ P Θ2, hence
BsΣ “ ğ

wPΘ
S1
w, BsΣ2 “ ğ

ζPΘ2
S1
ζ .

The covering map π : 9Σ2 Ñ 9Σ now extends to a continuous covering map

π̄ : sΣ2 Ñ sΣ
which restricts on the boundary components to

πζ :“ π̄|S1

ζ
: S1

ζ Ñ S1
πpζq : t ÞÑ kζt,

and each g P G also extends naturally to a continuous deck transformation ḡ : sΣ2 Ñ sΣ2 of π̄,
such that if gpζq “ ζ 1, then ḡ maps S1

ζ Ñ S1
ζ1 via the canonical diffeomorphism composed with

a translation. The identifications (4.3) and (4.4) then yield obvious extensions of 9E and 9Eλ as
topological vector bundles sE Ñ sΣ, sEλ Ñ sΣ,
and we have sEλ “ `

π̄˚ sE bR V
˘M

G.

Step 2: Asymptotic operators on the twisted bundle.
With the essential notation in place, we can now discuss asymptotic operators. Recall that
after choosing a suitable Hermitian inner product on 9E over the cylindrical ends, any Cauchy-
Riemann type operator 9D on 9E Ñ 9Σ with reasonable asymptotic behavior determines real-linear
operators

Aw : Γp sE|S1
w
q Ñ Γp sE|S1

w
q,

for each w P Θ, see e.g. [Wen10, §2.1]. These can be regarded as unbounded self-adjoint operators
on L2p sE|S1

w
q with dense domain H1p sE|S1

w
q, and we say Aw is nondegenerate whenever its

kernel is trivial, in which case it determines a Conley-Zehnder index

µΦCZpAwq P Z

relative to any choice of complex trivialization Φ of sE|S1
w
. In the case where 9D is the restriction

to 9Σ of some operator D P CRRpEq on Σ, the operators Aw are very simple and were already
computed in §3.2: they are each the so-called trivial asymptotic operator

Aw “ ´JBt,
where Bt is a well-defined differential operator on sE|S1

w
since the fibers are all canonically identi-

fied with Ew. This operator is degenerate, but the introduction of negative exponential weights
´δw ă 0 identifies 9D with another Cauchy-Riemann type operator whose corresponding asymp-
totic operators are Aw ´ δw, which are nondegenerate for any δw ą 0 sufficiently small.

Denote by

Aλ
w : Γp sEλ|S1

w
q Ñ Γp sEλ|S1

w
q

the asymptotic operators associated to 9Dλ for each w P Θ. These are easiest to understand by
considering the pulled back Cauchy-Riemann operator

π˚ 9Dλ :W 1,p,´π˚δpπ˚ 9Eλq Ñ Lp,´π˚δpπ˚ 9Fλq,
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whose asymptotic operators we will denote by

π˚Aλ
ζ : Γ

`pπ̄˚ sEλq|S1

ζ

˘Ñ Γ
`pπ̄˚ sEλq|S1

ζ

˘
for ζ P Θ2. The relation

´
π˚ 9Dλ

¯
pη ˝ πq “ π˚

´
9Dλη

¯
for sections η P Γp 9Eλq gives rise to the

following relation between asymptotic operators:

(4.5)
´
π˚Aλ

ζ

¯
pf ˝ πζq “ kζ ¨

´
Aλ
wf

¯
˝ πζ for f P Γ

` sEλ|S1
w

˘
and ζ P π´1pwq.

This can be proved via a local computation as in §3.2: writing πps, tq “ pks, ktq in suitable

holomorphic cylindrical coordinates and 9Dλη “ pB̄η ` Bηqp´ds ` i dtq for some matrix-valued

function Bps, tq after a choice of trivialization for 9Eλ over the end near w, Aλ
w is represented in

this trivialization by the operator ´iBt ´ Bp8, tq by definition. The corresponding trivialized

formula for π˚ 9Dλ then comes from

π˚ 9Dλ pη ˝ πq ps, tq “ π˚
´

9Dλη
¯ˇ̌̌
ps,tq

“ `B̄ηpks, ktq `Bpks, ktqηpks, ktq˘ p´dpksq ` i dpktqq
“ `B̄ ` k Bpks, ktq˘ pη ˝ πqps, tq ¨ p´ds` i dtq,

hence π˚ 9Dλ appears in trivialized form as the sum of B̄ with the zeroth-order term kBpks, ktq.
The trivialized formula for π˚Aλ

ζ is thus ´iBt ´ k Bp8, ktq, which explains the factor of kζ
appearing in (4.5).

For the following discussion, fix w P Θ and ζ P π´1pwq. The definition of 9Dλ implies that

π˚ 9Dλ acts on sections ηb v P Γpπ˚ 9EbR V q such that pπ˚ 9Dλqpηb vq “ “`
π˚ 9D

˘
η
‰b v whenever

v : 9Σ2 Ñ V is constant. From this, one deduces that for any section f b v P Γ
`
π̄˚ sE bR V |S1

ζ

˘
where f is an arbitrary smooth map S1

ζ Ñ Ew and v : S1
ζ Ñ V is constant, we have

(4.6) π˚Aλ
ζ pf b vq “ ´pJ Btf q b v.

Now to write down a formula for Aλ
w, we can use the natural identification of Γ

` sEλ|S1
w

˘
with

the space of Gζ-equivariant loops in Ew bR V ,

Γ
` sEλ|S1

w

˘ “ !
F P C8pS1

ζ , Ew bR V q
ˇ̌̌
F pt` 1{kζq “ gζ ¨ F ptq for all t P S1

ζ

)
.

Acting on Gζ-equivariant loops F , (4.5) and (4.6) imply

(4.7) Aλ
wF “ ´ 1

kζ
J BtF,

where it is understood that JBt acts on the tensor product by taking F “ f b v to pJ Btf q b v

whenever v is locally constant.
Step 3: Trivializations and Conley-Zehnder indices.

This is the step in which it is helpful to be working with the complexification 9Dλ rather than
directly with 9Dθ. In order to choose a suitable trivialization Φ and compute µΦCZpAλ

w ´ δwq,
we shall first split Aλ

w into a direct sum of operators on J-complex line bundles. Observe thatsE|S1
w
“ S1

w ˆ Ew is already canonically trivial, so any complex basis of Ew gives a splitting of

Aλ
w over an m-fold direct sum of isomorphic J-complex bundles of rank 2n,

sEλ|S1
w
“
´
Lλ

¯‘m
,

where

Lλ “ S1 ˆ pCbR V q
M
Gζ

and the generator of Gζ “ Zkζ acts by gζ ¨ pt, f b vq “ pt ` 1{kζ , f b λpgζqvq. Note that Lλ

carries two commuting complex structures, J and i, which act on the first and second factor of
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the tensor product respectively. Further: V admits a complex basis pv1, . . . , vnq consisting of
eigenvectors of λpgζq, and we can then define integers pj P t0, . . . , kζ ´ 1u for j “ 1, . . . , n by

λpgζqvj “ e2πipj{kζvj .
Here we can identify V 1

ζ Ă V as the subspace spanned by all vj such that pj ą 0. Identifying V
with Cn via this eigenbasis yields a splitting

Lλ “ Lλ
1 ‘ . . . ‘ Lλ

n ,

where for j “ 1, . . . , n,

Lλ
j :“ S1 ˆ pCbR Cq

M
Zkζ ,

with the generator 1 P Zkζ acting by 1 ¨ pt, f b vq “ pt` 1{kζ , f b e2πipj{kζvq. This bundle again
carries the two commuting complex structures J and i acting on the first and second factors
of the tensor product respectively; it has complex rank 2 with respect to either one. Finally,
since J acts i-complex-linearly on C bR C, we can find eigenvectors f˘ P C bR C such that
Jf˘ “ ˘if˘, so the splitting CbR C “ Cf` ‘ Cf´ gives a splitting of J- and i-complex vector
bundles

Lλ
j “ Lλ

j,` ‘ Lλ
j,´,

with

(4.8) Lλ
j,˘ “ pS1 ˆ Cq

M
Zkζ ,

where the generator 1 P Zkζ acts by 1 ¨ pt, f q “ pt ` 1{kζ , e2πipj{kζf q. Both Lλ
j,` and Lλ

j,´ are

complex line bundles over S1, carrying two complex structures J and i, which satisfy J “ i on
Lλ
j,` but J “ ´i on Lλ

j,´. This splitting of bundles gives a splitting of Aλ
w in the form

(4.9) Aλ
w “

˜
nà
j“1

´
Aλ
j,` ‘Aλ

j,´
¯¸‘m

,

where for j “ 1, . . . , n, Aλ
j,˘ acts on

ΓpLλ
j,˘q “

!
f P C8pS1,Cq

ˇ̌̌
f pt` 1{kζq “ e2πipj{kζf ptq for all t P S1

)
by

Aλ
j,˘f “ ¯ 1

kζ
i Btf.

Since Lλ
j,˘ are complex line bundles, µΦCZpAλ

j,˘ ´ δwq can be computed in terms of winding

numbers of eigenfunctions of Aλ
j,˘, using the relation proved in [HWZ95, Theorem 3.10]. In

particular, if (as will turn out to be true in our case) all eigenspaces ofAλ
j,˘ have real dimension 2,

then

(4.10) µΦCZpAλ
j,˘ ´ δwq “ 2windΦpfj,˘q ` 1,

where fj,˘ P ΓpLλ
j,˘q is any nontrivial eigenfunction of Aλ

j,˘ ´ δw with the largest possible

negative eigenvalue. A Zkζ -equivariant function f : S1 Ñ C satisfies Aλ
j,˘f “ λf if and only if

it is a complex multiple of

(4.11) fλptq :“ e˘ikζλt, λ¯ 2πpj
kζ

P 2πZ.

Observe that since 0 ă δw ă 2π{d1 ď 2π{kζ , every eigenvalue λ thus satisfies λ ´ δw ‰ 0; this

proves that the perturbed asymptotic operators Aλ
j,˘ are all nondegenerate and thus establishes

the Fredholm property for 9Dλ. Now to apply (4.10), we need to find the unique eigenvalue
λ “ 2πpℓ˘ pj{kζq for ℓ P Z such that

2π

ˆ
ℓ˘ pj

kζ

˙
´ δw ă 0 ă 2π

„
pℓ` 1q ˘ pj

kζ


´ δw.
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Since 0 ă δw ă 2π{d1, this condition is equivalent to

ℓ ď ¯pj
kζ

ă ℓ` 1,

so choosing the appropriate ℓ P Z and plugging in (4.11) leads to the formulas

fj,`ptq :“
#
1 if pj “ 0,

e´2πipkζ´pjqt if pj ą 0,

fj,´ptq :“ e2πipjt.

(4.12)

Let Φj̆ for j “ 1, . . . , n denote a choice of J-complex trivializations of Lλ
j,˘ such that

windΦ
`
j pfj,`q “ windΦ

´
j pfj,´q “ 0, j “ 1, . . . , n,

and denote by Φw the resulting J-complex trivialization of

(4.13) sEλ
ˇ̌̌
S1
w

“
˜

nà
j“1

´
Lλ
j,` ‘ Lλ

j,´
¯¸‘m

.

By (4.10), we now have

µ
Φ`j
CZ pAλ

j,` ´ δwq “ µ
Φ´j
CZ pAλ

j,´ ´ δwq “ 1,

and thus by (4.9), µΦwCZ pAλ
w´δwq “ 2mn. Note that, a priori, this construction of Φw depends on

an arbitrary choice ζ P π´1pwq, but the fact that µΦwCZ pAλ
w ´ δwq turns out to be independent of

this choice tells us that Φw is uniquely determined up to homotopy. Performing this construction
for all punctures w P Θ, we will denote the resulting asymptotic trivialization of 9Eλ simply by Φ.
We’ve proved:

Lemma 4.4. For the asymptotic trivialization Φ described above and each puncture w P Θ,
µΦCZpAλ

w ´ δwq “ 2mn. �

Step 4: The relative first Chern number.
It remains to compute cΦ1 p 9Eλ, Jq. Consider the pullback π˚ 9Eλ “ π˚ 9E bR V . The first factor
in this tensor product has a canonical homotopy class of asymptotic trivializations, which we
shall denote by π˚Ψ0, as it is the pullback of an asymptotic trivialization Ψ0 for 9E, satisfying
cΨ0

1 p 9Eq “ c1pEq. Moreover, the second factor is globally trivial, thus π˚ 9Eλ carries a canonical
asymptotic trivialization, denoted by Ψ, such that

cΨ1 pπ˚ 9Eλq “ dimR V ¨ cπ˚Ψ0

1 pπ˚ 9Eq “ 2n ¨ degpπq ¨ cΨ0

1 p 9Eq “ 2nd1 ¨ c1pEq.
If π˚Φ denotes the pullback of Φ to an asymptotic trivialization of π˚ 9Eλ, we then have

cΦ1 p 9Eλq “ 1

d1 c
π˚Φ
1 pπ˚ 9Eλq “ 1

d1
”
cΨ1 pπ˚ 9Eλq ` degΨpπ˚Φq

ı
“ 2n ¨ c1pEq ` 1

d1 deg
Ψpπ˚Φq,

(4.14)

where degΨpπ˚Φq P Z denotes the sum over all punctures ζ P Θ2 of the degrees of the transition
maps S1 Ñ GLp2mn,Cq that change Ψ to π˚Φ. We can compute the latter for each w P Θ and
ζ P π´1pwq Ă Θ2 as a sum of winding numbers over a line bundle decomposition analogous to
(4.13), namely

π̄˚ sEλ
ˇ̌
S1

ζ

“ πζ̊

´ sEλ
ˇ̌
S1
w

¯
“

˜
nà
j“1

´
πζ̊L

λ
j,` ‘ πζ̊L

λ
j,´

¯¸‘m
,

where pulling back (4.8) via the projection πζ : S
1 Ñ S1{Zkζ gives the trivial line bundle

πζ̊L
λ
j,˘ “ S1 ˆ C,
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with the pulled back trivialization πζ̊Φ
˘
j such that the special eigenfunctions fj,˘ in (4.12) have

zero winding as t traverses S1. The restriction Ψζ of Ψ to π̄˚ sEλ
ˇ̌
S1

ζ

is now the direct sum of the

standard trivializations on each of the factors πζ̊L
λ
j,˘, thus

(4.15) degΨζ pπζ̊Φwq “ m

nÿ
j“1

rwindS1pfj,`q ` windS1pfj,´qs .

There is an important sublety here: recall that J “ ˘i on Lλ
j,˘, hence the orientation induced

by J on Lλ
j,´ is the opposite of the obvious one, and the sign of windS1pfj,´q must be reversed

accordingly, giving

windS1pfj,`q “
#
0 if pj “ 0,

pj ´ kζ if pj ą 0,

windS1pfj,´q “ ´pj.
Plugging this into (4.15), we have

degΨζ pπζ̊Φwq “ m
ÿ

jPt1,...,nu, pj‰0

p´kζq “ ´mkζ dimC V
1
ζ .

Summing over all ζ P Θ2 and plugging into (4.14) then gives

cΦ1 p 9Eλq “ 2n ¨ c1pEq ´ m

d1
ÿ
ζPΘ2

kζ dimC V
1
ζ .

Since dimC V
1
ζ “ nw is independent of ζ P π´1pwq for each w P Θ, and

ř
ζPπ´1pwq kζ “ d1, this

implies:

Lemma 4.5. cΦ1 p 9Eλq “ 2n ¨ c1pEq ´m
ř
wPΘ nw. �

Step 5: Conclusion of the proof.
Finally, we combine Lemmas 4.4 and 4.5 and plug into (4.2) to obtain

indp 9Dλq “ 2mn ¨ χp 9Σq ` 4n ¨ c1pEq ´ 2m
ÿ
wPΘ

nw ` 2mn|Θ|

“ 2

«
mn ¨ χpΣq ` 2n ¨ c1pEq ´m

ÿ
wPΘ

nw

ff
,

and thus

indp 9Dθq “ n rmχpΣq ` 2c1pEqs ´m
ÿ
wPΘ

nw.

The expression in brackets is indpDq, so this completes the proof of Theorem 4.1.

5. Petri’s condition

5.1. The main local result. Standard proofs of transversality results via the Sard-Smale the-
orem (cf. [FHS95,MS12]) typically require some kind of unique continuation lemma, which for
J-holomorphic curves usually means the similarity principle. In this section we will establish
a local result about Cauchy-Riemann type operators that plays this role in the proof of Theo-
rem D. It combines the usual unique continuation property with an additional “quadratic” local
condition that can be achieved under generic zeroth-order perturbations.

For any pair of smooth real vector bundles E and F over the same manifoldM , one can define
the Petri map

Π : ΓpEq b ΓpF q Ñ ΓpE b F q, Πpη b ξqppq :“ ηppq b ξppq.
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Since we plan to discuss purely local conditions, let us amend this by fixing a point p PM and
considering the space of germs of smooth sections at p,

ΓppEq :“ ΓpEqL„,
where η, η1 P ΓpEq represent the same element of ΓppEq if and only if they match on some
neighborhood of p. The Petri map then descends to a local Petri map at p,

Π : ΓppEq b ΓppF q Ñ ΓppE b F q.
It is easy to see that Π is never injective, e.g. its kernel contains fη b ξ ´ η b fξ for any two
sections η P ΓpEq, ξ P ΓpF q with a smooth function f : M Ñ R. It will sometimes become
injective, however, if the domain is restricted to certain spaces of solutions to linear PDEs. To
express this properly, let us assume D : ΓpEq Ñ ΓpF q is a linear partial differential operator
with smooth coefficients, and D˚ : ΓpF q Ñ ΓpEq is its formal adjoint with respect to a choice of
bundle metrics on E,F and volume form on M . For any point p P M , both operators descend
to linear maps on the spaces of germs of smooth sections at p, which we will denote by

Dp : ΓppEq Ñ ΓppF q, Dp̊ : ΓppF q Ñ ΓppEq.
We will also assume D and D˚ uniquely determine (via extension or restriction) linear maps

D : XpEq Ñ YpF q, D˚ : X˚pF q Ñ Y˚pEq,
where XpEq, Y˚pEq, YpF q and X˚pF q are vector spaces of sections (or equivalence classes of
sections defined almost everywhere) of the respective bundles; in typical examples, these will be
Sobolev spaces, sometimes with exponential weight conditions if M is a noncompact manifold
with cylindrical ends. Let us add two conditions of a local nature, both of which are satisfied
for a wide class of elliptic operators, including those of Cauchy-Riemann type:

‚ (regularity) Every section in kerD Ă XpEq or kerD˚ Ă X˚pF q is smooth.
‚ (unique continuation at p) The maps kerD Ñ kerDp and kerD˚ Ñ kerDp̊ that
send each section to its germ at p are injective.

The terminology in the following definition is adapted from the work of Doan and Walpuski
[DWb], who borrowed it in turn from algebraic geometry (see e.g. [ACGH85]).

Definition 5.1. Suppose D : XpEq Ñ YpF q is a differential operator with formal adjoint
D˚ : X˚pF q Ñ Y˚pEq satisfying the conditions specified above, and p P U Ă M . We say that
D satisfies

(1) Petri’s condition, if the restricted Petri map kerDbkerD˚ ΠÝÑ ΓpEbF q is injective;
(2) Petri’s condition over U if there is no nontrivial element t P kerDb kerD˚ such that

Πptq P ΓpE b F q vanishes identically on U ;

(3) the local Petri condition at p if the map kerDp b kerDp̊
ΠÝÑ ΓppE b F q is injective;

(4) Petri’s condition to infinite order at p if there is no nontrivial element t P kerDpb
kerDp̊ such that Πptq has vanishing derivatives of all orders at p.

Every condition on the list in Definition 5.1 implies the previous one; note that the implication
p3q ñ p2q in particular follows from our regularity and unique continuation assumptions. The
first two conditions are global in nature, as kerD and kerD˚ depend on the global properties
of D, including the choice of domains XpEq and X˚pF q. These kernels will always be finite
dimensional in the cases we consider, so that it seems unsurprising (if non-obvious) that Petri’s
condition might hold. In contrast, the third and fourth conditions are much stronger and more
surprising because kerDp and kerDp̊ are in general infinite dimensional, but the local conditions
are also more powerful, e.g. it will be extremely useful to observe that they are preserved under
pullbacks via branched covers of the base.

Remark 5.2. As defined above, the global versions of Petri’s condition may in general depend
not only on the operator D but also on the auxiliary geometric data (bundle metrics and volume
form) used to define D˚, but the local conditions are independent of these choices. Indeed,
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whenever D1̊ and D2̊ are two operators arising as formal adjoints of D via different choices
of the geometric data, there is a smooth bundle automorphism Φ : F Ñ F that maps local
solutions of D1̊ξ “ 0 to local solutions of D2̊ξ “ 0, so that 1 b Φ : E b F Ñ E b F identifies
the two different versions of ker Π Ă kerDp b kerDp̊ .

Remark 5.3. It is clear from the definition that the set of points p PM at which the local Petri
condition is not satisfied is open. We will see in §5.4 that Petri’s condition to infinite order can
sometimes be shown to hold at all points in a dense subset of some region U ĂM , so it follows
in this situation that the local Petri condition also holds at all points in U .

It should be emphasized that whenever we refer to the above definition, we will be regarding
all vector spaces as real vector spaces so that “b” means the real tensor product, even in cases
where D happens to be complex linear. The only exception is Example 5.5 below, which is a
digression from the main topic at hand.

Example 5.4. Elliptic operators over 1-dimensional domains satisfy something much stronger
than the Petri condition to infinite order, because by local uniqueness of solutions to ODEs, any
linearly-independent set of local sections in kerD or kerD˚ is also pointwise linearly independent.
For similar reasons, any Cauchy-Riemann type operator D : ΓpEq Ñ ΓpF q that splits over a
direct sum of complex line bundles with nonpositive first Chern numbers over a closed surface Σ
must satisfy the global Petri condition over arbitrary subsets U Ă Σ. The reason for this is that
on a line bundle E Ñ Σ with c1pEq ď 0, the similarity principle guarantees that global solutions
to Dη “ 0 are either trivial or nowhere vanishing, so that globally linearly-independent sets of
solutions are also linearly independent at every point. This property might not hold for the
formal adjoint D˚, but since solutions to D˚ξ “ 0 satisfy unique continuation, any expression of
the form

ř
ij c

ijηi b ξj with a nontrivial set of coefficients cij P R and linearly-independent sets

tηi P kerDu and tξj P kerD˚u is still guaranteed to be nonzero at every point outside a discrete
subset. Example 5.6 below shows however that the local Petri condition in this situation is not
always satisfied.

Example 5.5. Complex-linear Cauchy-Riemann operators over a Riemann surface satisfy the
complex version of Petri’s condition to infinite order at every point, i.e. the definition above is
satisfied if real tensor products are replaced by complex tensor products. One can prove this by
choosing holomorphic trivializations and writing elements of kerD and kerD˚ locally as Taylor
series in z or z̄ respectively: it then turns out that for any nontrivial t P kerD bC kerD˚, the
Taylor series in z and z̄ for the resulting section of EbC F at a given point is always nontrivial.
We omit the details since we will not need this fact.

Example 5.6. If we regard the standard Cauchy-Riemann operator D “ B̄ on a trivial line
bundle and its formal adjoint D˚ “ ´B as real-linear operators, then they do not satisfy the
local Petri condition at any point. A local counterexample is given by

1b iz̄ ´ ib z̄ ´ z b i` iz b 1 P ker B̄ bR ker B.

It follows that the local Petri condition is also not satisfied by any Cauchy-Riemann type operator
that splits off a complex-linear summand.

Example 5.7. Here is an example of a Cauchy-Riemann type operator that does not split off
any complex-linear summand but still fails to satisfy the local Petri condition: take E and F
to be the trivial complex line bundle over C, with standard bundle metrics and the standard
area form, and consider D :“ B̄ ` κ, D˚ “ ´B ` κ, where κ : C Ñ C is complex conjugation.
Using coordinates s ` it P C, one can associate to every λ P p´1, 1q solutions ηλ P kerD and
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ξλ P kerD˚ defined by7

ηλps` itq :“ eλs`
?
1´λ2t ´?1´ λ` i

?
1` λ

¯
,

ξλps` itq :“ e´λs´
?
1´λ2t ´?1´ λ´ i

?
1` λ

¯
.

Identifying the fibers C with R2 so that the fibers of E bR F become the space of real 2-by-2
matrices, the products Πpηλ b ξλq are now constant sections of E bR F :

Πpηλ b ξλqps` itq “
ˆ

1´ λ ´?1´ λ2?
1´ λ2 ´1´ λ

˙
.

Such products span the 3-dimensional space of real matrices of the form

ˆ
a b

´b c

˙
, thus any four

such products must be linearly dependent, and the dependence relation gives rise to nontrivial
elements in kerΠ by choosing four distinct values of λ P p´1, 1q.
Remark 5.8. An earlier version of this paper (see Appendix D.2) claimed that every Cauchy-
Riemann type operator whose complex-antilinear part is invertible at a point p satisfies Petri’s
condition to infinite order at p, but Example 5.7 contradicts that.

The operators in Examples 5.6 and 5.7 are rather special, and our main objective in this
section is to prove that such counterexamples cannot arise for generic Cauchy-Riemann type
operators. To set up the result, assume now that Σ is a Riemann surface with a Hermitian bundle
metric x , yΣ on TΣ. We will not require Σ to be compact since the discussion will be purely
local, but fix a point p P Σ and an open neighborhood U Ă Σ of p with compact closure. Fix also
a complex vector bundle E Ñ Σ with a Hermitian bundle metric, let F “ HomCpTΣ, Eq, and
denote by CRRpEq the space of real-linear Cauchy-Riemann type operators D : ΓpEq Ñ ΓpF q.
We shall fix a specific Dfix P CRRpEq and define the space of all Cauchy-Riemann type operators
D that match Dfix outside of U :

CRRpE ; U ,Dfixq :“
 
D P CRRpEq

ˇ̌
D´Dfix “ 0 on ΣzU( .

This is an affine space over the Fréchet space of smooth sections of HomRpE,F q that vanish
outside U , so in particular it is a complete metric space. For every D P CRRpEq, D˚ will denote
the formal adjoint of D determined by the bundle metrics on E and Σ.

For any η P ΓppEq, we define the vanishing order of η at p by

ordpη; pq :“ sup
 
k P t0u Y N

ˇ̌
all derivatives of η at p up to order k vanish

(
.

For t P ΓppEq b ΓppF q, we will then say that t vanishes to order k if t can be written as a
finite sum t “ ř

j ηj b ξj such that

ordpηj ; pq ` ordpξj; pq ě k for every j.

The usual unique continuation results imply that for every D P CRRpEq, nontrivial local solu-
tions to the equations Dη “ 0 or D˚η “ 0 satisfy ordpη; pq ă 8 at every point. One can easily
prove from this that nontrivial elements t P kerDp b kerDp̊ also cannot vanish to infinite order
(see Proposition 5.12).

The machinery developed in the next two subsections will prove:

Theorem 5.9. For every ℓ P N, there exists an integer k ě ℓ and a Baire subset

CR
ℓ,reg
R pE ; U ,Dfixq Ă CRRpE ; U ,Dfixq

7The inspiration for this example comes from the asymptotic formulas in [HWZ96,Sie08]: in particular on the
cylinder RˆS1 with coordinates ps, tq, a translation-invariant Cauchy-Riemann type equation pB̄ `Bptqqηps, tq “
0 always has solutions of the form ηps, tq “ esλfptq, where f is an eigenfunction of the asymptotic operator
´iBt ´Bptq with eigenvalue λ P R. In the asymptotic setting one requires solutions to be periodic in t, in which
case the eigenvalue λ can only take a discrete set of values, but periodicity is not necessary in Example 5.7, and
λ can therefore be chosen much more freely.
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with the following significance: for every D P CR
ℓ,reg
R pE ; U ,Dfixq, if η1, . . . , ηℓ P kerDp and

ξ1, . . . , ξℓ P kerDp̊ are ℓ-tuples of local solutions such that t :“ řℓ
j“1 ηj b ξj P ΓppEq b ΓppF q

does not vanish to order ℓ, then Πptq P ΓppE b F q does not vanish to order k.

In light of unique continuation, we now set

CR
reg
R pE ; U ,Dfixq :“

č
ℓPN

CR
ℓ,reg
R pE ; U ,Dfixq Ă CRRpE ; U ,Dfixq

and obtain:

Corollary 5.10. There exists a Baire subset

CR
reg
R pE ; U ,Dfixq Ă CRRpE ; U ,Dfixq

such that every D P CR
reg
R pE ; U ,Dfixq satisfies Petri’s condition to infinite order at the point

p P U .

This result can be extended in various ways. For instance, the regular set CRreg
R pE ; U ,Dfixq

defined above depends a priori on the choice of a point p P U , but one can also find a Baire
set of operators such that Petri’s condition to infinite order is satisfied simultaneously at every
point in U . More generally, one can consider smooth families of operators parametrized by a
finite-dimensional manifold and prove that for generic families, every operator in the family
satisfies these conditions. In §5.4, we will prove that the normal Cauchy-Riemann operators
of J-holomorphic curves can all be assumed to satisfy Petri’s condition to infinite order in
regions where J can be perturbed generically. One of the advantages of focusing on purely
local conditions is that once we establish this result for somewhere injective curves, it carries
over immediately to their multiple covers, which will be a crucial ingredient in the proof of
Theorem D.

The aforementioned extensions of Corollary 5.10 are all based on the Sard-Smale theorem,
but Theorem 5.9 itself requires (aside from unique continuation) only finite-dimensional analysis

and linear algebra. Indeed, the conditions defining each of the spaces CRℓ,reg
R pE ; U ,Dfixq in the

statement of the theorem depend only on the k-jet of D P CRRpE ; U ,Dfixq at p for some finite
k P N, and this data varies in a finite-dimensional smooth manifold. The idea behind the proof
is roughly to show that the set of jets of operators not satisfying the desired conditions lives in
“walls” whose codimensions can be assumed arbitrarily large by making k larger. These walls
are not submanifolds in general, but are what we call “C8-subvarieties,” whose local structure
is nice enough to apply Sard’s theorem as if they were manifolds. (The necessary background
on C8-subvarieties is reviewed in Appendix C.) The main technical work behind the proof is
then to estimate the ranks of certain large matrices that determine the codimensions of these
subvarieties.

The rest of this section will proceed as follows. In §5.2, we introduce a general formalism for
studying differential operators via jet spaces at a point, and explain how results such as Theo-
rem 5.9 can be reduced to a specific technical lemma on estimating the ranks of certain finite-
dimensional linear transformations. We will then address this problem for Cauchy-Riemann
operators in §5.3, leading to the proof of Theorem 5.9. The extension to a result about nor-
mal Cauchy-Riemann operators of holomorphic curves for generic J will be stated and proved
in §5.4, and §5.5 will then give an important application of Petri’s condition to global transver-
sality problems as arising in Theorem D.

5.2. Jet space formalism. The contents of this subsection are not specific to Cauchy-Riemann
operators, but may be relevant in principle to any linear partial differential operator with smooth
coefficients.

5.2.1. Germs, jets, and the vanishing order filtration. Fix a smooth n-dimensional manifold M
with a smooth vector bundle E ÑM of real rank m P N. For a chosen point p PM , we continue
to denote by

ΓppEq :“ ΓpEqL„
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the vector space of germs of smooth sections of E defined near p. This space has a natural
filtration

(5.1) ΓppEq “ ΓppEq0 Ą ΓppEq1 Ą ΓppEq2 Ą . . . ,

where for each k P Z we define ΓppEqk Ă ΓppEq as the space of germs of sections whose derivatives

up to order k ´ 1 at p all vanish. For k ď 0 this is a vacuous condition, hence ΓppEqk “ ΓppEq.
For each k P Z we define the space of k-jets of sections at p by

JkpE :“ ΓppEq
L
ΓppEqk`1.

We will typically abuse notation by using a single symbol such as η to represent a section in
ΓpEq, its germ in ΓppEq and its k-jet in JkpE; when there is need for more clarity in the notation,
we will sometimes write the natural quotient projections as

ΓpEq or ΓppEq JkpÝÑ JkpE,

so that the k-jet of a section η P ΓpEq at p can be denoted by Jkp η P JkpE. The jet space inherits
from (5.1) a finite filtration

(5.2) JkpE “ pJkpEq0 Ą pJkpEq1 Ą . . . Ą pJkpEqk Ą pJkpEqk`1 “ t0u,
where for each ℓ ď k, pJkpEqℓ`1 is the kernel of the quotient projection Jℓp : J

k
pE Ñ JℓpE.

There is an obvious isomorphism of J0
pE with the fiber Ep, and the spaces JkpE for k ă 0 are

all trivial. If we choose local coordinates px1, . . . , xnq for M identifying p with 0 P Rn, together
with a trivialization of E near p, then JkpE for each k P Z becomes naturally identified with the
vector space of Rm-valued Taylor polynomials of degree at most k,

(5.3)
ÿ
|α|ďk

xαcα, cα P Rm.

The notation for the filtration above has been chosen so that under this identification, pJkpEqℓ
becomes the space of Taylor polynomials of degree at most k that are also Op|x|ℓq.

Given two vector spaces V “ V 0 Ą V 1 Ą V 2 Ą . . . and W “ W 0 Ą W 1 Ą W 2 Ą . . . with
filtrations, we will say in general that a linear map T : V Ñ W preserves the filtrations if
T pV nq ĂW n for every n ě 0.

5.2.2. Differential operators and formal adjoints. Since we are mainly interested in Cauchy-
Riemann type operators, for simplicity we shall only consider differential operators of order 1 in
the following discussion, though the jet space formalism could easily be extended beyond this.

Given a second smooth vector bundle F Ñ M of real rank ℓ P N and a first-order linear
partial differential operator D : ΓpEq Ñ ΓpF q with smooth coefficients, D descends to a map
ΓppEq Ñ ΓppF q that sends ker Jkp Ă ΓppEq into ker Jk´1

p Ă ΓppF q for each k P Z, thus it also
descends to a linear map

D : JkpE Ñ Jk´1
p F.

Let us denote by
DppE,F q Ă Hom

`
ΓppEq,ΓppF q

˘
the vector space consisting of all germs at p of linear differential operators ΓpEq Ñ ΓpF q of
order at most 1 with smooth coefficients. The vector space of linear maps JkpE Ñ Jk´1

p F that
are induced by operators in DppE,F q will then be denoted by

D
k
p pE,F q Ă Hom

`
JkpE, J

k´1
p F

˘
,

and we will again abuse notation by using a single symbol such asD to denote a global differential
operator ΓpEq Ñ ΓpF q, its germ in DppE,F q, and the map in Dk

p pE,F q that it determines.

Observe that Dk
p pE,F q is a finite-dimensional vector space isomorphic to the pn`1q-fold product

of Jk´1
p HompE,F q: indeed, if we fix local coordinates px1, . . . , xnq identifying a neighborhood

of p with the n-disk Dnǫ of some radius ǫ ą 0, along with local trivializations of E and F over
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the same neighborhood, then each D P DppE,F q is represented by an operator C8pDnǫ ,Rmq Ñ
C8pDnǫ ,Rℓq of the form

(5.4) D “
nÿ
j“1

ajBj ` b

for some smooth functions a1, . . . , an, b : D
n
ǫ Ñ HompRm,Rℓq. For a given η P ΓpEq, the pk´ 1q-

jet of Dη at p is thus determined by the pk ´ 1q-jets of the functions a1, . . . , an, b at that point,
and these are equivalent to bundle maps E Ñ F defined near p.

We will also consider a subset pDppE,F q Ă DppE,F q,
which is assumed to have the property that for any given D P pDppE,F q, another operator
D1 P DppE,F q satisfies

D1 P pDppE,F q ô D1 “ D`A for some A P ΓppHompE,F qq,
i.e. pDppE,F q is an affine space over ΓppHompE,F qq. The space of maps JkpE Ñ Jk´1

p F induced

by operators D P pDppE,F q then defines a subsetpDk
p pE,F q Ă D

k
p pE,F q,

which is naturally an affine space over the finite-dimensional vector space Jk´1
p HompE,F q.

In order to bring formal adjoints into this picture, we need to make choices of bundle metrics
for E and F and a volume form on M near p; these choices will often be referred to collectively
as the geometric data. It will be useful to fix geometric data once and for all at the point p
itself, while allowing it to vary at other points near p. Concretely, fix a pair of inner products

gp “ x , yEp on Ep, hp “ x , yFp on Fp,

along with a nontrivial alternating multilinear n-form

µp P ΛnTp̊M.

Let us denote by S2E˚ Ă E˚bE˚ ÑM the vector bundle of symmetric bilinear forms E‘E Ñ
R. The space of k-jets of bundle metrics on E which match gp at p is then

Jkp
`
mpEq˘ :“ !

g P Jkp
`
S2E˚˘ ˇ̌̌

J0
pg “ gp

)
,

and it is naturally an affine space over the finite-dimensional vector space ker J0
p Ă Jkp

`
S2E˚˘.

We similarly define the affine spaces

Jkp
`
mpF q˘ :“ !

h P Jkp
`
S2E˚˘ ˇ̌̌

J0
ph “ hp

)
and

Jkp
`
vpMq˘ :“ !

µ P Jkp
`
ΛnT ˚M

˘ ˇ̌̌
J0
pµ “ µp

)
,

which consist respectively of k-jets of bundle metrics on F matching hp at p and k-jets of volume
forms on M matching µp at p. We will again abuse notation by using a single symbol such as
g or x , yE to denote a global bundle metric on E that matches gp at p, or the germ of such a
metric near p, or its k-jet in Jkp

`
mpEq˘; similar remarks apply to Jkp

`
mpF q˘ and Jkp

`
vpMq˘.

Any choice of smooth bundle metrics g “ x , yE on E and h “ x , yF on F and a volume
form µ P ΩnpMq assigns to each differential operator D : ΓpEq Ñ ΓpF q a formal adjoint
D˚ : ΓpF q Ñ ΓpEq satisfying the relationż

M

xξ,DηyF µ “
ż
M

xD˚ξ, ηyE µ for all η P C8
0 pEq, ξ P C8

0 pF q.
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Fix local coordinates and trivializations near p to write D again in the form (5.4). The chosen
bundle metrics and volume form can be written in terms of the standard Euclidean inner product
x , y and volume form dx1 ^ . . .^ dxn as

x , yE “ x¨, G¨y, x , yF “ x¨,H¨y, µ “ F dx1 ^ . . . ^ dxn

for some smooth functions F : Dnǫ Ñ R, G : Dnǫ Ñ EndpRmq and H : Dnǫ Ñ EndpRℓq, where
F is everywhere nonzero and G and H take values in the spaces of symmetric positive-definite
matrices. Note that the condition defining D˚ does not change if the sign of µ is reversed,
so without loss of generality let us assume F ą 0. One can then compute a local formula for
D˚ : C8pDnǫ ,Rℓq Ñ C8pDnǫ ,Rmq as

(5.5) D˚ “ ´ÿ
j

pG´1aTj HqBj `G´1

˜
bTH ´ÿ

j

“
aTj HBjplnF q ` BjpaTj Hq

‰¸
.

We observe from this formula that the germ D˚ P DppF,Eq at p is determined by the corre-
sponding germs of the geometric data g, h, µ and D P DppE,F q. Moreover, if the first-order
terms aj in D are fixed, then for any ξ P ΓpF q, the pk´ 1q-jet of D˚ξ at p is determined by the
pk ´ 1q-jet of g, the k-jets of µ and h, and the pk ´ 1q-jet of the zeroth-order term b in D. It

follows that the correspondence assigning to each D P pDppE,F q with germs of geometric data
g, h, µ the germ of a formal adjoint D˚ P DppF,Eq descends to a well-defined map

(5.6) pDk
p pE,F q ˆ Jk´1

p

`
mpEq˘ˆ Jkp

`
mpF q˘ˆ Jkp

`
vpMq˘ Ý̊Ñ D

k
p pF,Eq.

All the spaces involved in this map are finite-dimensional manifolds, and the map is smooth.

5.2.3. Unique continuation in tensor products. If V “ V 0 Ą V 1 Ą V 2 Ą . . . and W “ W 0 Ą
W 1 ĄW 2 Ą . . . are two vector spaces with filtrations, then V bW inherits a natural filtration

V bW “ pV bW q0 Ą pV bW q1 Ą pV bW q2 Ą . . . ,

where for each n ě 0,

pV bW qn :“ pV 0 bW nq ` pV 1 bW n´1q ` . . .` pV n bW 0q.
Lemma 5.11. Given two filtered vector spaces V and W , if t P pV bW qn is nontrivial, then
for some r P N, t can be written as

t “
rÿ
j“1

vj b wj

for two linearly-independent sets v1, . . . , vr P V and w1, . . . , wr PW such that for all j “ 1, . . . , r,
we have

vj P V kj and wj PW ℓj where kj ` ℓj “ n.

Proof. Suppose t “ řr
j“1 vj b wj satisfies all of these conditions except that the set v1, . . . , vr

is linearly dependent, so there exist constants c1, . . . , cr with
ř
j cjvj “ 0 and not all of the cj

are zero. After reordering the set, we can assume without loss of generality that c1 ‰ 0 and, for
every j “ 2, . . . , r with cj ‰ 0, kj ě k1. Writing v1 “ řr

j“2
cj
c1
vj then gives

t “
rÿ
j“2

vj b pwj where pwj :“ wj ` cj

c1
w1.

For each j “ 2, . . . , r, we now have ℓj “ n ´ kj ď n ´ k1 “ ℓ1, thus w1 P W ℓ1 Ă W ℓj and

therefore pwj P W ℓj , hence the shortened sum also satisfies the desired conditions. One can
apply a similar procedure to shorten the sum if instead w1, . . . , wr is linearly dependent, and
repeating this enough times produces two sets that are both linearly independent. �

Let us say that a differential operator D P DppE,F q has the strong unique continuation

property if there exists no nontrivial solution η P kerD such that η P ΓppEqk for every k P N.
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Proposition 5.12. If D P DppE,F q and D˚ P DppF,Eq both have the strong unique con-
tinuation property, then there exists no nontrivial element t P kerD b kerD˚ such that t P`
ΓppEq b ΓppF q

˘k
for every k P N.

Proof. Given t P kerDbkerD˚ nonzero, there are uniquely defined finite-dimensional subspaces
V Ă kerD andW Ă kerD˚ such that for any pair of linearly-independent sets η1, . . . , ηr P kerD
and ξ1, . . . , ξr P kerD˚ with t “ ř

j ηj b ξj,

V “ Spantη1, . . . , ηru and W “ Spantξ1, . . . , ξru.
We claim there exists k P N such that no nontrivial η P V is in ΓppEqk and no nontrivial ξ PW
is in ΓppF qk. Indeed, if there does not exist such a number for V , then there exist sequences

ηj P V and kj P N with kj Ñ 8 and ηj P ΓppEqkj for every j. Since V is finite dimensional,
we can normalize the ηj and then find a convergent subsequence ηj Ñ η8 P V whose limit is

nontrivial, but must also belong to
Ş
kPN ΓppEqk, giving a contradiction. The same argument

works for W .
Now, fixing k P N as in the previous paragraph, suppose t P pΓppEq b ΓppF qq2k and t ‰ 0.

Lemma 5.11 then writes t in the form
ř
j ηj b ξj where the ηj and ξj are necessarily bases of V

and W respectively, but they also satisfy ηj P ΓppEqℓj and ξj P ΓppF qmj with ℓj `mj ě 2k for
each j. This implies either ℓj ě k or mj ě k in each case, and is thus a contradiction. �

5.2.4. Local rescaling. Every differential operator is locally equivalent (up to choices of coordi-
nates and trivializations) to an arbitrarily small perturbation of an operator with constant coef-
ficients and no lower-order terms. To make use of this observation, we shall from now on impose

the following additional condition on the affine space of local operators pDppE,F q Ă DppE,F q:
Assumption 5.13. There exists a choice of coordinates identifying a neighborhood U ĂM of p
with Dnǫ Ă Rn and p with 0 P Rn, along with local trivializations over U , in which the first-order

coefficients aj : D
n
ǫ Ñ HompRm,Rℓq in D “ ř

j ajBj ` b for each D P pDppE,F q are constant.

Let us fix once and for all a neighborhood U Ă M of p with coordinates and trivializations
for which the condition in Assumption 5.13 holds. For every ε P r0, 1s, we then associate
to each D P DppE,F q an operator Dε P DppE,F q such that if D takes the form Dηpxq “ř
j ajpxqBjηpxq ` bpxqηpxq in the chosen coordinates and trivializations, then Dε is given by

Dεηpxq “
ÿ
j

ajpεxqBjηpxq ` εbpεxqηpxq, ε P r0, 1s.

We can similarly associate to each η P ΓppEq and ξ P ΓppF q germs of sections ηε P ΓppEq and
ξε P ΓppF q, which in coordinates take the form

ηεpxq :“ ηpεxq, ξεpxq :“ ξpεxq.
We then have

Dεηε “ εpDηqε
for every D P DppE,F q and η P ΓppEq. Letting these operators descend to jet spaces, we obtain

for every D P Dk
p pE,F q a smooth 1-parameter family of operators

 
Dε P Dk

p pE,F q
(
εPr0,1s and

linear maps

JkpE Ñ JkpE : η ÞÑ ηε,

which for ε ą 0 are isomorphisms sending kerD Ă JkpE onto kerDε Ă JkpE.
Next, fix geometric data consisting of bundle metrics g “ x , yE on E and h “ x , yF on F ,

and a volume form µ, such that all three match the fixed choices of data gp, hp and µp at p.
Using the same coordinates and trivializations over U , we can write g “ x¨, G¨y, h “ x¨,H¨y and
µ “ F dx1^ . . .^ dxn, and then define a smooth 1-parameter family of geometric data gε, hε, µε
for ε P r0, 1s by replacing the functions G, H and F with

Gεpxq :“ Gpεxq, Hεpxq :“ Hpεxq, Fεpxq :“ F pεxq.
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Note that since p corresponds to 0 P Dnǫ in coordinates, the modified geometric data still matches
the fixed choices gp, hp, µp at p, and we can then descend to jet spaces to obtain smooth 1-
parameter families

gε P Jk´1
p

`
mpEq˘, hε P Jkp

`
mpF q˘, µε P Jkp

`
vpMq˘

for ε P r0, 1s. Now if D˚ P DppF,Eq denotes the formal adjoint of D P pDppE,F q with respect
to the geometric data g, h, µ and Dε̊ P DppF,Eq is defined from D˚ via the same rescaling
prescription as Dε described above, then we see from (5.5) that Dε̊ is in fact the formal adjoint
of Dε with respect to the data gε, hε, µε. Moreover, Assumption 5.13 implies that the map

Dk
p pE,F q Ñ Dk

p pE,F q induced by DppE,F q Ñ DppE,F q : D ÞÑ Dε preserves pDk
p pE,F q, so we

can now fit the smooth map (5.6) into the rows of a commutative diagram

pDk
p pE,F q ˆ Jk´1

p

`
mpEq˘ˆ Jkp

`
mpF q˘ˆ Jkp

`
vpMq˘ Dk

p pF,Eq

pDk
p pE,F q ˆ Jk´1

p

`
mpEq˘ˆ Jkp

`
mpF q˘ˆ Jkp

`
vpMq˘ Dk

p pF,Eq,

˚

ε ε

˚

where the vertical maps abbreviated by “ε” are defined via the corresondences D ÞÑ Dε, g ÞÑ gε,

h ÞÑ hε, µ ÞÑ µε and D˚ ÞÑ Dε̊ . The case ε “ 0 is special: since all D P pDppE,F q have matching
first-order terms and the geometric data g, h, µ all match at p, D0 and D0̊ are uniquely-defined

operators that depend on the space pDppE,F q and the chosen inner products gp and hp, but not

otherwise on the specific choices of operator D P pDppE,F q or volume form or bundle metrics.
Similarly, the volume form µ0 and bundle metrics g0 and h0 are fully determined by the fixed
data µp, gp and hp.

5.2.5. Right-inverses. Henceforward we impose the following additional assumption.

Assumption 5.14. The operators D0 : JkpE Ñ Jk´1
p F and D0̊ : JkpF Ñ Jk´1

p E obtained by
the rescaling procedure in §5.2.4 are surjective.

Remark 5.15. It is not difficult to show that Assumption 5.14 is satisfied whenever the op-

erators in pDppE,F q are elliptic. For Cauchy-Riemann operators in particular, this is virtually
obvious, and we will write down explicit choices of right-inverses for that case in §5.3.2.

Lemma 5.16. Under Assumption 5.14, every D P pDk
p pE,F q is surjective, and so is D˚ P

Dk
p pF,Eq for every choice of geometric data g P Jk´1

p

`
mpEq˘, h P Jkp `mpF q˘ and µ P Jkp

`
vpMq˘.

Proof. Since Dε converges in HompJkpE, Jk´1
p F q to D0 as ε Ñ 0, surjectivity of D0 implies

for any given D P Dk
p pE,F q that Dε is also surjective for all ε ą 0 sufficiently small. The

isomorphism kerD Ñ kerDε induced by the correspondence η ÞÑ ηε for all ε ą 0 then implies
that D is also surjective. The same argument works for the formal adjoints since Dε̊ Ñ D0̊ as
εÑ 0. �

Since we are working in finite-dimensional spaces, surjectivity allows us to choose right-inverses

T0 : J
k´1
p F Ñ JkpE, T0̊ : Jk´1

p E Ñ JkpF

for D0 and D0̊ respectively. We would now like to derive from these similar right-inverses for
other operators that are close to D0 and D0̊ , along with explicit isomorphisms between the
kernels of nearby operators. To this end, consider an open neighborhood

pg0, h0, µ0,D0q P U Ă Jk´1
p

`
mpEq˘ˆ Jkp

`
mpF q˘ˆ Jkp

`
vpMq˘ˆ pDk

p pE,F q,
which we reserve the right to make smaller as necessary. Given pg, h, µ,Dq P U , we will as
usual denote by D˚ the formal adjoint of D with respect to the geometric data pg, h, µq. Since
D0T0 “ 1 and D0̊T0̊ “ 1, we can assume after shrinking U that for every pg, h, µ,Dq P U , the
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operators DT0 : Jk´1
p F Ñ Jk´1

p F and D˚T0̊ : Jk´1
p E Ñ Jk´1

p E are both close enough to the
identity to be invertible. This gives rise to right-inverses for D and D˚, defined respectively by

T :“ T0pDT0q´1 : Jk´1
p F Ñ JkpE, T˚ :“ T0̊pD˚T0̊q´1 : Jk´1

p E Ñ JkpF.

Notice that T and T˚ depend smoothly on pg, h, µ,Dq P U .

For a fixed pg, h, µ,Dq P U , arbitrary operators close to D in pDk
p pE,F q have the form pD :“

D`A for A P Jk´1
p HompE,F q small, and the formal adjoint pD˚ with respect to the geometric

data pg, h, µq is then D˚ ` A˚, where A˚ P Jk´1
p HompF,Eq is the pk ´ 1q-jet of the fiberwise

transpose (with respect to g and h) of a smooth bundle map E Ñ F representing A. If A is

small enough,8 then we can use the same trick again to write down right-inverses of pD and pD˚
in the form

pT :“ TppDTq´1 “ T p1`ATq´1 “ T
8ÿ
j“0

p´1qjpATqj ,

pT˚ :“ T˚ppD˚T˚q´1 “ T˚ p1`A˚T˚q´1 “ T˚
8ÿ
j“0

p´1qjpA˚T˚qj .

Shrinking the size of A further if necessary, we can then define isomorphisms

ΨpD,Aq :“ 1´ pTA “
8ÿ
j“0

p´1qjpTAqj : JkpE Ñ JkpE,

Ψp̊D,Aq :“ 1´ pT˚A˚ “
8ÿ
j“0

p´1qjpT˚A˚qj : JkpF Ñ JkpF,

which satisfy pDΨpD,Aq “ pD´A “ D and pD˚Ψp̊D,Aq “ pD˚ ´A˚ “ D˚,

so they restrict to isomorphisms kerD
ΨpD,AqÝÑ ker pD and kerD˚ Ψ˚pD,AqÝÑ ker pD˚ respectively. The

operators ΨpD,Aq and Ψp̊D,Aq depend smoothly on both pg, h, µ,Dq P U and A P Jk´1
p HompE,F q.

5.2.6. The universal Petri moduli space. We now consider the subset

Vk Ă Jk´1
p

`
mpEq˘ˆ Jkp

`
mpF q˘ˆ Jkp

`
vpMq˘ˆ pDk

p pE,F q ˆ
´
JkpE b JkpF

¯
consisting of all tuples pg, h, µ,D, tq such that

t P kerDb kerD˚ Ă JkpE b JkpF,

where it should be understood that D˚ is the formal adjoint of D with respect to the geometric
data g, h, µ. In light of Assumption 5.14 and Lemma 5.16, the obvious projection endows Vk

with a natural vector bundle structure

Vk Ñ Jk´1
p

`
mpEq˘ˆ Jkp

`
mpF q˘ˆ Jkp

`
vpMq˘ˆ pDk

p pE,F q,
whose fiber over pg, h, µ,Dq is kerDb kerD˚. We will prefer to think of Vk rather as a family

of vector bundles over the space of operators pDk
p pE,F q, parametrized by the space of geometric

data pg, h, µq P Jk´1
p

`
mpEq˘ˆ Jkp

`
mpF q˘ˆ Jkp

`
vpMq˘. Thus for each pg, h, µq, denote

Vkpg, h, µq :“
!
pD, tq

ˇ̌̌
pg, h, µ,D, tq P Vk

)
.

8We will not need this detail, but it is often possible to choose T0 and T0̊ so that they have degree `1 with
respect to the vanishing-order filtration, in which case the operators AT, TA, A˚

T
˚ and T

˚A˚ also have this
property and are therefore nilpotent. It follows in this case that all infinite series appearing in this discussion are
actually finite sums, so A does not really need to be small.
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It will be useful to amend these definitions in two ways. Given a pair of real vector spaces V
and W , let us say that an element t P V bW has rank r if t “ řr

j“1 vj b wj for two linearly-
independent sets v1, . . . , vr P V and w1, . . . , wr P W . Note that if V is finite dimensional, then
the rank of t P V bW under the canonical isomorphism V bW – HompV ˚,W q is just the rank
of the corresponding linear map V ˚ Ñ W . As a consequence, whenever V and W are both
finite dimensional, the set of elements of rank r P N in V bW is a smooth submanifold whose
codimension is the dimension of Hompker T, coker T q for a linear map T : V ˚ Ñ W of rank r,
giving

dim
 
t P V bW

ˇ̌
rank t “ r

( “ dimV ¨ dimW ´ pdimV ´ rq ¨ pdimW ´ rq
“ rpdimV ` dimW q ´ r2.

(5.7)

With this understood, we can define for each r P N a smooth submanifold

Vkr :“
!
pg, h, µ,D, tq P Vk

ˇ̌̌
rank t “ r

)
,

which is foliated by the smooth family of smooth submanifolds

Vkr pg, h, µq :“
!
pD, tq P Vkpg, h, µq

ˇ̌̌
rank t “ r

)
parametrized by the space of geometric data pg, h, µq P Jk´1

p

`
mpEq˘ ˆ Jkp

`
mpF q˘ ˆ Jkp

`
vpMq˘.

Finally, recalling the filtration by vanishing orders in §5.2.1, we define for each ℓ P t1, . . . , ku the
open subset

Vkr,ℓ :“
!
pg, h, µ,D, tq P Vkr

ˇ̌
t R `JkpE b JkpF

˘ℓ)
,

which is likewise foliated by a smooth family of submanifolds

Vkr,ℓpg, h, µq :“
!
pD, tq P Vkr pg, h, µq

ˇ̌
t R `JkpE b JkpF

˘ℓ)
.

parametrized by the geometric data pg, h, µq.
The Petri map Π : ΓppEq b ΓppF q Ñ ΓppE b F q descends for each k P Z to a linear map

Πk : JkpE b JkpF Ñ Jkp pE b F q
that preserves the filtration by vanishing orders. Since the projection map Vkr,ℓpg, h, µq Ñ JkpEb
JkpF sending pg, h, µ,D, tq to t is smooth and also depends smoothly on the geometric data

pg, h, µq, Πk gives rise to a smooth family of smooth maps

(5.8) Πkr,ℓ : V
k
r,ℓpg, h, µq Ñ Jkp pE b F q : pD, tq ÞÑ Πkptq,

whose zero-set we shall denote by

P
k
r,ℓpg, h, µq :“ pΠkr,ℓq´1p0q “

!
pD, tq P Vkr,ℓpg, h, µq

ˇ̌̌
Πkptq “ 0

)
.

This is the so-called universal Petri moduli space. Our main goal is to prove under suitable
assumptions that it is a C8-subvariety in Vkr,ℓpg, h, µq and to establish an effective lower bound

R P N on its codimension. Once this is done, Sard’s theorem (see Appendix C) will imply that

for almost every D P pDk
p pE,F q, the space

P
k
r,ℓpg, h, µ,Dq :“

!
t
ˇ̌̌
pD, tq P P

k
r,ℓpg, h, µq

)
is a C8-subvariety of codimension at least R in the manifold

Vkr,ℓpg, h, µ,Dq :“
!
t P kerDb kerD˚

ˇ̌̌
rank t “ r, t R pJkpE b JkpF qℓ

)
.

If the codimension R is large enough, this will imply that Pk
r,ℓpg, h, µ,Dq is empty.

Denote the linearization of the map (5.8) at the point pD, tq P Pk
r,ℓpg, h, µq by

d2Π
k
r,ℓpg, h, µ,D, tq : TpD,tqVkr,ℓpg, h, µq Ñ Jkp pE b F q,
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where the subscript in “d2” is meant to emphasize that this is a partial derivatve—we differen-
tiate with respect to pD, tq while holding pg, h, µq constant. Estimating the rank of d2Π

k
r,ℓ re-

quires being able to write down a sufficiently large space of tangent vectors in TpD,tqVkr,ℓpg, h, µq.
Suppose that pg, h, µ,Dq belongs to the neighborhood U of pg0, h0, µ0,D0q chosen in §5.2.5,
so we have right-inverses T,T˚ and isomorphisms ΨpD,Aq,Ψp̊D,Aq that depend smoothly on

pg, h, µ,Dq P U and a small zeroth-order perturbation A P Jk´1
p HompE,F q. We can use this to

associate to every A P Jk´1
p HompE,F q and t P kerDb kerD˚ a smooth path

p´δ, δq Ñ Vkpg, h, µq : s ÞÑ pD` sA, pΨpD,sAq bΨp̊D,sAqqtq
which passes through pD, tq at s “ 0. Observe that if t “ řr

j“1 ηj b ξj for two linearly-

independent sets η1, . . . , ηr P JkpE and ξ1, . . . , ξr P JkpF , then ΨpD,sAq and Ψp̊D,sAq map these

to linearly-independent sets when s is close enough to 0, since both operators are then close to
the identity. It follows that if pD, tq P Pk

r,ℓpg, h, µq, then the path above is in Vkr,ℓpg, h, µq for
δ ą 0 sufficiently small. Differentiating it at s “ 0, then feeding the resulting tangent vector
into d2Π

k
r,ℓpg, h, µ,D, tq and multiplying the result by ´1 for cosmetic purposes, we obtain the

linear map

Lpg, h, µ,D, tq : Jk´1
p HompE,F q Ñ Jkp pE b F q,

A ÞÑ Πk ˝ pTAb 1` 1bT˚A˚qptq.
This depends smoothly on the data pg, h, µ,D, tq and is well defined whenever pg, h, µ,Dq is
sufficiently close to pg0, h0, µ0,D0q. The rank of this operator is clearly less than or equal to
that of d2Π

k
r,ℓpg, h, µ,D, tq. We shall abbreviate the special case

(5.9) Lt :“ Lpg0, h0, µ0,D0, tq : Jk´1
p HompE,F q Ñ Jkp pE b F q

for t P kerD0 b kerD0̊ , as this will turn out to be the only case that matters in practice. In
fact, we can now use the rescaling trick from §5.2.4 to reduce the local analysis of the space
Pk
r,ℓpg, h, µq to the problem of estimating the rank of Lt.

For every ε P p0, 1s and q P Z and every choice of the geometric data pg, h, µq, one can define
a diffeomorphism

(5.10) Φε : V
k
r,ℓpg, h, µq –ÝÑ Vkr,ℓpgε, hε, µεq : pD, tq ÞÑ pDε, tεq ,

where the map kerDb kerD˚ Ñ kerDε b kerDε̊ : t ÞÑ tε is defined via

(5.11) η b ξ ÞÑ 1

εq
ηε b ξε.

The scaling factor εq here is not strictly necessary, but has been added for use in the proof
of Lemma 5.19 below. We see that Φε maps Pk

r,ℓpg, h, µq bijectively onto Pk
r,ℓpgε, hε, µεq for

each ε P p0, 1s. This map is not defined for ε “ 0, but the data gε, hε, µε, Dε and Dε̊ do
have well-defined limits as ε Ñ 0; in particular, D0 and D0̊ are both operators with constant
coefficients and no zeroth-order term in our chosen local coordinates and trivializations. The
following definition is highly dependent on this choice of coordinates, but so is the map Φε; there
will be no problem as long as the same choices are used for both.

Definition 5.17. We will say that an element of JkpE or JkpF is homogeneous of degree d if,
under the natural identifications of these spaces with spaces of Taylor polynomials determined
by the chosen coordinates and trivializations from Assumption 5.13, it is represented by a
homogeneous polynomial of degree d. Similarly, we will call an element t “ ř

j ηj b ξj P
JkpE b JkpF homogeneous of degree d if for every j, the elements ηj P JkpE and ξj P JkpF are
homogeneous with degrees adding up to d.

Remark 5.18. The homogeneous elements t P JkpEbJkpF of degree q are precisely those which
are fixed under the map (5.11) for every ε ą 0.
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Lemma 5.19. Suppose that for every homogeneous element t P ker Πk Ă JkpE b JkpF of degree

less than ℓ that also belongs to kerD0bkerD0̊ , the linear map Lt : J
k´1
p HompE,F q Ñ Jkp pEbF q

has rank at least R P N. Then for every r P N, Pk
r,ℓpg, h, µq is a C8-subvariety of codimension

at least R in Vkr,ℓpg, h, µq.
Proof. Suppose pD, tq P Pk

r,ℓpg, h, µq and let q P t0, . . . , ℓ ´ 1u denote the largest integer such

that t P pJkpEbJkpF qq. Use this value of q to define the scaling factor in (5.11) for the definition
of the diffeomorphisms Φε in (5.10). Identifying k-jets with Taylor polynomials as in (5.3), we
can write t as a finite sum

ř
j ηj b ξj, where for each individual value of j, ηj P kerD is a

polynomial of degree at most k with lowest-order term of degree uj ě 0, ξj P kerD˚ is likewise
a polynomial of degree at most k with lowest-order term of degree vj ě 0, and uj ` vj ě q, with

equality uj ` vj “ q in at least one case. It follows that tε P JkpE b JkpF converges as ε Ñ 0

to a nontrivial homogenous element t0 P kerD0 b kerD0̊ Ă JkpE b JkpF of degree q ă ℓ, and

Πkpt0q “ 0 since Πkptεq “ Πkptq “ 0 for every ε ą 0. As a consequence, pgε, hε, µε,Dε, tεq P Vk

converges as ε Ñ 0 to pg0, h0, µ0,D0, t0q P Vk. Since Lt0 has rank at least R by the hypothesis
of the lemma, it follows for all ε ą 0 sufficiently small that

rankd2Π
k
r,ℓpgε, hε, µε,Dε, tεq ě rankLpgε, hε, µε,Dε, tεq ě R.

Fix ε ą 0 in this range. Then an arbitrary element pD1, t1q P Vkr,ℓpg, h, µq in some small neigh-

borhood of pD, tq belongs to Pk
r,ℓpg, h, µq if and only if Πk ˝ ΦεpD1, t1q “ 0. Since Φε is a

diffeomorphism, the linearization of Πk ˝ Φε : Vkr,ℓpg, h, µq Ñ Jkp pE b F q at pD, tq has the same

image as the operator d2Π
k
r,ℓpgε, hε, µε,Dε, tεq, and thus has rank at least R. �

5.3. Application to Cauchy-Riemann operators. We shall now apply Lemma 5.19 for the
specific case of Cauchy-Riemann type operators. For the rest of this section, assume M is a
Riemann surface pΣ, jq, E is a complex vector bundle of complex rankm P N, F “ HomCpTΣ, Eq,
and pDppE,F q is the space of germs of real-linear Cauchy-Riemann type operators on E near p P
Σ. This space of operators satisfies Assumption 5.13 since one can always choose trivializations

and coordinates in which every D P pDppE,F q is a zeroth-order perturbation of B̄ :“ Bs` iBt. To
define formal adjoints, we assume g “ x , yE is the real part of a Hermitian bundle metric on E,
µ is the area form on Σ determined by a Hermitian bundle metric x , yΣ on TΣ, and h “ x , yF
is the real part of the Hermitian bundle metric determined on F via the natural isomorphism
F – TΣbC E.

Remark 5.20. It is important to keep in mind that the operators D P pDppE,F q are in general
real- and not complex-linear, thus throughout this section, the symbols HompV,W q and V bW
will always refer to real-linear maps and real tensor products unless otherwise noted, even in
cases where V and W are both complex. We will use the notation HomCpV,W q and V bCW to
specify the complex analogues of these operations.

5.3.1. A digression on real and complex tensor products. Suppose V and W are complex vector
spaces, and let ĎW denote the complex conjugate of W , i.e. it is the same real vector space,
but with a sign inserted in the definition of its complex structure. There is then a canonical
complex-antilinear isomorphism W Ñ ĎW defined by the identity map, and we shall denote it by

W Ñ ĎW : w ÞÑ w̄.

The spaces V bCW and V bC
ĎW are both quotients of the real tensor product V bW , e.g. we

obtain V bC W from V bW by introducing the equivalence relation iv b w „ v b iw, and for
V bC

ĎW the relation is instead iv b w „ ´v b iw. If the resulting quotient projections are
denoted by π` : V bW Ñ V bCW and π´ : V bW Ñ V bC

ĎW , then we obtain an isomorphism

pπ`, π´q : V bW
–ÝÑ pV bC W q ‘ pV bC

ĎW q.
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This discussion carries over verbatim to a pair of complex vector bundles E and F over Σ, giving
a bundle isomorphism

pπ`, π´q : E b F Ñ pE bC F q ‘ pE bC
sF q.

The Petri map then fits into a commutative diagram

(5.12)

ΓpEq b ΓpF q ΓpE b F q

pΓpEq bC ΓpF qq ‘ `
ΓpEq bC Γp sF q˘ Γ

`pE bC F q ‘ pE bC
sF q˘,

Π

– –
ΠC‘ΠC

where ΠC : ΓpEq bC ΓpF q Ñ ΓpE bC F q denotes the obvious complex-linear Petri map that
is defined for any two complex vector bundles. Suppose in particular that E and F are line
bundles and we have chosen complex trivializations for both over some region U . The bundle sF
inherits from this a trivialization over U such that the canonical map F Ñ sF looks like complex
conjugation, and E bC F and E bC

sF likewise inherit natural trivializations. The diagram now
allows us to identify the real Petri map with

C8pU ,Cq b C8pU ,Cq Ñ C8pU ,Cq ‘ C8pU ,Cq,
f b g ÞÑ pfg, f ḡq.(5.13)

5.3.2. The main rank estimate. Fix a holomorphic coordinate chart near p P Σ and a corre-
sponding complex local trivialization of E such that the Hermitian bundle metrics on TΣ and E
both match the standard Hermitian inner product at p. The bundle F naturally inherits from
these choices a local trivialization in which its Hermitian bundle metric also appears standard
at p. These choices identify elements of JkpE with polynomials in z and z̄,ÿ

j`ℓďk
zj z̄ℓcj,ℓ, cj,ℓ P Cm,

hence

(5.14) dimC J
k
pE “ dimC J

k
pF “ m p1` 2` . . .` pk ` 1qq “ mpk ` 1qpk ` 2q

2
.

Every D P pDppE,F q is now identified with an operator of the form

D “ B̄ `A : C8pDǫ,Cmq Ñ C8pDǫ,Cmq,
where B̄ “ Bs` iBt and A : Dǫ Ñ EndRpCmq. The operator D0 obtained by rescaling as in §5.2.4
is then simply

D0 “ B̄ :“ Bs ` iBt “ 2
B
Bz̄ ,

and since the rescaled bundle metrics g0, h0 and area form µ0 are all standard in these coordi-
nates, the formal adjoint of D0 with respect to this geometric data is

D0̊ “ ´B “ ´pBs ´ iBtq “ ´2 BBz .
We can therefore choose right-inverses T0 : Jk´1

p F Ñ JkpE and T0̊ : Jk´1
p E Ñ JkpF that are

uniquely determined in coordinates by the conditions

(5.15) T0

´
zj z̄ℓc

¯
:“ 1

2pℓ` 1qz
j z̄ℓ`1c, 0 ď j ` ℓ ď k ´ 1, c P Cm,

and

(5.16) T0̊

´
zj z̄ℓc

¯
:“ ´ 1

2pj ` 1qz
j`1z̄ℓc, 0 ď j ` ℓ ď k ´ 1, c P Cm.

These choices determine the maps Lt : J
k´1
p HompE,F q Ñ Jkp pE b F q in (5.9). Observe now

that the domain of this operator has a natural splitting

Jk´1
p HompE,F q “ Jk´1

p HomCpE,F q ‘ Jk´1
p HomCpE,F q.
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If we were to restrict to complex-linear zeroth-order terms A P ΓpHomCpE,F qq, then the per-
turbed operators D “ D0`A would always be equivalent to D0 under changes of trivialization,
killing any hope that Pk

r,ℓpg0, h0, µ0,Dq might be a smaller space than Pk
r,ℓpg0, h0, µ0,D0q. For

this reason, we shall restrict Lt to the complementary subspace consisting of pk ´ 1q-jets of
antilinear perturbations. Having done this, the following additional detail becomes relevant: for
A P Jk´1

p HomCpE,F q and t “ ř
j ηj b ξj P kerD0 b kerD0̊ , the commutative diagram (5.12)

implies

π´ ˝ LtpAq “ ΠkC ˝ π´
˜ÿ

j

pT0Aηj b ξj ` ηj bT0̊A
˚ξjq

¸
“ ΠkC

ÿ
j

`
T0Aηj bC ξ̄j ` ηj bC T0̊A

˚ξj
˘
,

where ΠkC denotes the map induced on k-jets by the complex Petri map ΠC. Since T0 and T0̊ are
complex linear while A and ξj ÞÑ ξ̄j are antilinear, the expression on the right hand side is the
result of applying some real-linear map to π`ptq “ ř

j ηj bC ξj ; the point here is that real-linear
operators of the form φb ψ are well defined on the complex tensor product whenever φ and ψ
are either both complex linear or both complex antilinear. But as mentioned in Example 5.5, D0

satisfies the complex Petri condition, so the fact that Πkptq “ 0 implies that ΠkC ˝π`ptq “ 0 and
thus π`ptq “ 0, so that the expression vanishes automatically. We conclude from this discussion
that all interesting information in Lt is carried by the map

(5.17) pLt :“ π` ˝ Lt|Jk´1
p HomCpE,F q : J

k´1
p HomCpE,F q Ñ Jkp pE bC F q.

Clearly the rank of pLt gives a lower bound for the rank of Lt. The workhorse result behind
Theorem 5.9 is now the following:

Proposition 5.21. For every ℓ P N, there exists a constant Cℓ ą 0 that depends on ℓ but not
on k, such that for all t P ker Πk Ă kerD0 b kerD0̊ that are homogeneous elements of degree

less than ℓ in JkpE b JkpF , the operator pLt : Jk´1
p HomCpE,F q Ñ Jkp pE bC F q satisfies

rank pLt ě Cℓk
2.

Lemma 5.22. If Proposition 5.21 holds in the case rankCE “ 1, then it holds in general.

Proof. For rankCE “ m P N, the chosen trivializations furnish local splittings E “ E1‘. . .‘Em
and F “ F1 ‘ . . . ‘ Fm that are respected by D0 and D0̊ , i.e. both are m-fold direct sums
of identical operators given by B̄ or ´B respectively. Their chosen right-inverses T0 and T0̊

also respect these splittings. Let us denote the resulting splittings of the kernels by kerD0 “
K1 ‘ . . . ‘Km and kerD0̊ “ L1 ‘ . . . ‘ Lm, so that kerD0 b kerD0̊ splits into m2 identical
factors of the form Ki b Lj . Similarly, Jkp pE b F q splits into m2 identical factors of the form

Jkp pEibFjq, and the Petri map Πk : JkpEbJkpF Ñ Jkp pEbF q sends JkpEibJkpFj to Jkp pEibFjq
for every i and j. A homogeneous element t P ker Πk Ă kerD0 b kerD0̊ of degree q ă ℓ is now
defined by its m2 components tij P ker ΠkXpKibLjq, at least one of which must be a nontrivial

homogeneous element of degree q; call this component tuv. Now consider the restriction of pLt
to the subspace

Jk´1
p HomCpEu, Fvq Ă Jk´1

p HomCpE,F q,
defined as the pk ´ 1q-jets of bundle maps A : E Ñ F that annihilate Ei for all i ‰ u and have
image in Fv. Since the bundle metrics g0 and h0 are standard in our chosen trivializations, A˚
then belongs to the corresponding subspace Jk´1

p HomCpFv , Euq Ă Jk´1
p HomCpF,Eq. Composing

our restriction of pLt with the natural projection Jkp pE b F q Ñ Jkp pEu b Fvq then produces an

operator Jk´1
p HomCpEu, Fvq Ñ Jkp pEu bC Fvq that matches the rank 1 case of pLt, and its rank

gives a lower bound for the rank of pLt. �



TRANSVERSALITY AND SUPER-RIGIDITY FOR HOLOMORPHIC CURVES 65

The remainder of this subsection is devoted to proving the rankCE “ 1 case of Proposi-
tion 5.21.

We shall write everything in the chosen coordinates and trivializations so that elements of
JkpE, JkpF and Jkp pEbCF q are now identified with complex-valued polynomials of degree at most
k in the variables z and z̄. The holomorphic polynomials form kerD0, while the antiholomorphic
polynomials form kerD0̊ . Using (5.13) to compute the kernel of the Petri map, it turns out that
arbitrary elements of ker Πk Ă JkpE b JkpF now take the form9

t “
kÿ

j,n“0

“
ajn

`
zj b z̄n ` izj b iz̄n

˘` bjn
`
izj b z̄n ´ zj b iz̄n

˘‰`R,

where ajn, bjn P R are real coefficients subject to the condition
ř
j`n“q ajn “

ř
j`n“q bjn “ 0 for

every q “ 0, . . . , k, and R is an arbitrary sum of homogeneous elements that have degrees greater
than k and therefore vanish automatically under Πk. For Proposition 5.21 we are interested only
in homogeneous elements of some degree less than ℓ, so let us fix an integer q ď ℓ and write

t “
q´1ÿ
j“0

“
aj

`
zj b z̄q´1´j ` izj b iz̄q´1´j˘` bj

`
izj b z̄q´1´j ´ zj b iz̄q´1´j˘‰ ,

where aj, bj P R are now subject to the conditions
řq´1
j“0 aj “

řq´1
j“0 bj “ 0 and we explicitly

assume that at least one of these coefficients is nonzero. The action of an antilinear bundle map
A P ΓpHomCpE,F qq on a section η P ΓpEq can be written in trivializations as

pAηqpzq :“ αpzqĚηpzq
for some complex-valued function α, thus the map A : JkpE Ñ Jk´1

p F can be written as

Aη “ ÿ
u`vďk´1

αuvz
uz̄vη̄

for some coefficients αuv P C. The transpose A˚ : JkpF Ñ Jk´1
p E is given by exactly the

same formula—here we are taking transposes of the 1-by-1 matrices αuv and thus leaving them
unchanged, as the antilinearity of A makes the transpose the appropriate transformation here
instead of the Hermitian adjoint. With this data in place and the explicit formulas given in

(5.15) and (5.16) for T0 and T0̊ , we now obtain an explicit formula for pLtpAq P Jkp pE bC F q as

pLtpAq “ q´1ÿ
j“0

ÿ
u`vďk´q

ˆ
c̄jαuv

v ` j ` 1
zuz̄v`q ´ cjαuv

u` q ´ j
zu`q z̄v

˙
,

where we have defined

cj :“ aj ` ibj P C for j “ 0, . . . , q ´ 1.

Two immediate remarks are in order: first, the second summation in this formula stops at k´ q
instead of k´1 because all terms in A with degree larger than k´q produce terms in pLtpAq that
have degree greater than k and thus vanish in Jkp pEbCF q. Along the same lines, we notice that

whenever A is given by a homogeneous polynomial of degree n, pLtpAq is likewise homogeneous

with degree n`q, indicating a natural splitting of the map pLt : Jk´1
p HomCpE,F q Ñ Jkp pEbCF q

into factors pLt “ pLp0qt ‘ . . .‘ pLpk´qqt ,

where for each n “ 0, . . . , k´q, pLpnqt is defined on the space of homogeneous degree n polynomials
in Jk´1

p HomCpE,F q. (Strictly speaking, there are additional factors defined on homogeneous
polynomials of higher degree, but we will ignore them because they are trivial.)

9This seems a good moment to remind the reader that all tensor products in this section are real tensor
products unless the symbol “bC” is used.
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For each individual n P t0, . . . , k ´ qu, the map pLpnqt takes the form

pLpnqt pAq “ ÿ
u`v“n

αuv ¨
«˜

q´1ÿ
j“0

c̄j

v ` j ` 1

¸
zuz̄v`q ´

˜
q´1ÿ
j“0

cj

u` q ´ j

¸
zu`q z̄v

ff
.

To simplify this expression, we can write c “ pc0, . . . , cq´1q P Cq as a column vector and define
for integers u, v ě 0 the complex numbers

θv :“
´

1
v`1

¨ ¨ ¨ 1
v`q

¯
c̄ and κu :“

´
1

u`q ¨ ¨ ¨ 1
u`1

¯
c,

so that now pLpnqt pAq “ ÿ
u`v“n

αuv ¨
`
θvz

uz̄v`q ´ κuz
u`q z̄v

˘
.

If we now identify the homogeneous degree n part of A with the vector in Cn`1 given by
pαn,0, αn´1,1, . . . , α0,nq, and use the monomials

zn`q, zn`q´1z̄, zn`q´2z̄2, . . . , zz̄n`q´1, z̄n`q

as a complex basis for the homogeneous degree n`q part of Jkp pEbCF q, then pLpnqt is represented
by the pn` q ` 1q-by-pn ` 1q complex matrix

(5.18) pLpnqt “

¨̊
˚̊̊̊
˚̋̊̊
´κn
... ´κn´1

θ0
...

. . .

θ1 ´κ0
. . .

...
θn

‹̨‹‹‹‹‹‹‹‚
.

In this matrix, all entries not written explicitly are understood to be 0.

Lemma 5.23. For any set of distinct positive integers i1, . . . , iq, the matrix¨̊
˚̊̊̊
˝

1

i1 ` q
¨ ¨ ¨ 1

i1 ` 1
...

. . .
...

1

iq ` q
¨ ¨ ¨ 1

iq ` 1

‹̨‹‹‹‹‚
is invertible.

Proof. This follows from the well-known formula for so-called Cauchy determinants,

det

¨̊
˚̊̊̊
˝

1

z1 `w1

¨ ¨ ¨ 1

z1 ` wq
...

. . .
...

1

zq ` w1

¨ ¨ ¨ 1

zq ` wq

‹̨‹‹‹‹‚“
qź
i“1

i´1ź
j“i
pzi ´ zjqpwi ´ wjq
qź

i,j“1

pzi ` wjq
,

see e.g. [PS98, pp. 92 and 279]. �

Since at least one of the coefficients aj or bj is nonzero, the vector c P Cq cannot be annihilated
by q linearly independent vectors, so we conclude:

Corollary 5.24. In the matrix (5.18), at most q ´ 1 of the entries κ0, . . . , κn can be zero. �
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This result implies that at most q ´ 1 columns of the matrix (5.18) need to be eliminated in
order to produce a matrix whose columns are all linearly independent, hence if n ě q ´ 1, we
have

rankC pLpnqt ě n´ pq ´ 1q.
If k ě 2q, then summing this estimate for n “ q, . . . , k ´ q gives

rankC pLt ě 1` 2` . . .` k ´ 2q ` 1 “ 1

2
pk ´ 2q ` 1qpk ´ 2q ` 2q,

and thus
rank pLt ě pk ´ 2q ` 1qpk ´ 2q ` 2q ě pk ´ 2ℓ` 1qpk ´ 2ℓ` 2q

whenever k ě 2ℓ. This estimate might not be satisfied for k underneath this threshold, but
since that is only finitely many cases, we can now just choose a constant Cℓ ą 0 small enough

to achieve Cℓk
2 ď rank pLt for those cases and Cℓk

2 ď pk ´ 2ℓ ` 1qpk ´ 2ℓ ` 2q for all k ě 2ℓ.
With this, the proof of Proposition 5.21 is complete.

5.3.3. Proof of Theorem 5.9. Consider the C8-subvarieties Pk
r,ℓpg, h, µq Ă Vkr,ℓpg, h, µq from

§5.2.6 in the specific setting of local Cauchy-Riemann type operators D P pDppE,F q with

rankCE “ m. For any given operator D P pDk
p pE,F q, we know from Lemma 5.16 that

D : JkpE Ñ Jk´1
p F and D˚ : JkpF Ñ Jk´1

p E are both surjective, thus (5.14) gives

dimkerD “ dimkerD˚ “ dim JkpE ´ dim Jk´1
p F

“ mpk ` 1qpk ` 2q ´mkpk ` 1q “ 2mpk ` 1q,
and plugging this into (5.7),

(5.19) dimVkr,ℓpg, h, µ,Dq “ 4rmpk ` 1q ´ r2.

Next, combining Proposition 5.21 with Lemma 5.19 gives:

Proposition 5.25. For every ℓ P N, there exists a constant Cℓ ą 0 such that for all integers
k ě ℓ and all r P N, Pk

r,ℓpg, h, µq Ă Vkr,ℓpg, h, µq is a C8-subvariety of codimension at least

Cℓk
2. �

Sard’s theorem (see Propsition C.3) now provides a Baire subsetpDk,reg
p pE,F ; r, ℓq Ă pDk

p pE,F q
such that for all D P pDk,reg

p pE,F ; r, ℓq, Pk
r,ℓpg, h, µ,Dq is a C8-subvariety in Vkr,ℓpg, h, µ,Dq

of codimension at least Cℓk
2. Since this codimension grows quadratically with k while the

dimension of Vkr,ℓpg, h, µ,Dq grows only linearly, we conclude that for any fixed r, ℓ P N, the

space Pk
r,ℓpg, h, µ,Dq is empty for all k sufficiently large.

To conclude the proof of Theorem 5.9, we choose for each ℓ P N some k ě ℓ large enough so

that Pk
ℓ,ℓpg, h, µ,Dq “ H for every D P pDk,reg

p pE,F ; ℓ, ℓq, and then define CR
ℓ,reg
R pE ; U ,Dfixq

to be the set of all operators in CRRpE ; U ,Dfixq whose k-jets at p belong to pDk,reg
p pE,F ; ℓ, ℓq.

5.4. Petri’s condition is satisfied for generic J. We now return to the setting of §2 and
consider the moduli space MgpA, Jq of unparametrized closed J-holomorphic curves u : pΣ, jq Ñ
pM,Jq of genus g ě 0 homologous to A P H2pMq in a symplectic manifold pM,ωq of dimension
2n ě 4 with J P J pM,ω ; U , Jfixq. Here U ĂM is an open subset with compact closure, Jfix is a
fixed compatible almost complex structure, and all J P J pM,ω ; U , Jfixq are assumed to match
Jfix outside of U .

Theorem 5.26. There exists a Baire subset J reg Ă J pM,ω ; U , Jfixq such that for all J P J reg

and every u PMgpA, Jq with parametrization u : pΣ, jq Ñ pM,Jq, the normal Cauchy-Riemann

operator DN
u P CRRpNuq satisfies Petri’s condition to infinite order on an open and dense set of

points in u´1pUq. In particular, DN
u satisfies the local Petri condition at every point in u´1pUq

(cf. Remark 5.3).
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We will deduce Theorem 5.26 from the results of the previous subsection after showing essen-
tially that the natural map from the universal moduli space of simple holomorphic curves with
one marked point to the space of k-jets of normal Cauchy-Riemann operators at the marked
point is always a submersion. Up to some technical details still to be addressed, the next lemma
implies this. Recall that a point z P Σ in the domain of a smooth map v : Σ Ñ M is called
an injective point if dvpzq : TzΣ Ñ TvpzqM is injective and tzu “ v´1pvpzqq. For a simple
J-holomorphic curve, the complement of the set of injective points is a discrete set.

Lemma 5.27. Assume J P J pM,ω ; U , Jfixq, and v : pΣ, jq Ñ pM,Jq is a simple J-holomorphic
curve with generalized normal bundle Nv Ă v˚TM defined as the ω-symplectic complement of
the generalized tangent bundle Tv Ă v˚TM . Given any A P Ω0,1pΣ,EndRpNvqq with support
contained in the set of injective points in v´1pUq, there exists a smooth family of almost complex
structures

tJτ P J pM,ω ; U , JfixquτPp´ǫ,ǫq
such that J0 “ J , Jτ pvpzqq “ Jpvpzqq for all τ and z, and the resulting family of normal
Cauchy-Riemann operators DN

v,τ P CRRpNvq for v defined with respect to Jτ satisfies

BτDN
v,τη

ˇ̌
τ“0

“ πN ˝∇ηY ˝ Tv ˝ j “ Aη

for η P ΓpNvq, where Y :“ BτJτ |τ“0 P ΓpEndCpTM, Jqq, ∇ is any connection on M , and
πN : v˚TM Ñ Nv denotes the projection along Tv.

Proof. If tJτ u is any smooth path in J pM,ω ; U , Jfixq with J0 “ J , Jτ pvq ” Jpvq for all τ and
Y :“ BτJ |τ“0, then Y pvq ” 0, hence ∇Y is well defined along v independently of any connection.
For η P ΓpNvq, let us write ∇ηY in block form as

(5.20) ∇ηY “
ˆ

∇T
η Y ∇TN

η Y

∇NT
η Y ∇N

η Y

˙
P ΓpEndCpv˚TM, Jqq

with respect to the tangent-normal decomposition v˚TM “ Tv‘Nv. SinceNv is the ω-symplectic
orthogonal complement of Tv, the fact that Jτ is always ω-compatible then translates into
conditions that constrain ∇T

η Y and ∇N
η Y separately and another condition that determines

∇TN
η Y in terms of ∇NT

η Y , namely

ωpp∇NT
η Y qv,wq ` ωpv, p∇TN

η Y qwq “ 0

for all pv,wq P Tv‘Nv. This means that ω-compatibility does not prevent us from freely choosing
∇NT
η Y so long as we (1) do not mind ∇TN

η Y being determined by this choice, and (2) do this
only in regions where v has no double points, so that the splitting of TM into Tv ‘ Nv is
unambiguous. Now using the definition of the normal Cauchy-Riemann operator, one computes
that for any η P ΓpNvq,

BτDN
v,τη

ˇ̌
τ“0

“ ∇NT
η Y ˝ Tv ˝ j.

On a region where v has neither critical points nor double points and its image lies in the
perturbation domain U , we can therefore choose the normal derivatives of Y along v to make
the above expression match A. �

To prove Theorem 5.26, we will use the Floer Cε-topology (cf. [Flo88, §5]) to define spaces of
perturbed data. Given any Jref P J pM,ω ; U , Jfixq, we define

TJrefJ pJ, ω ; U , Jfixq Ă ΓpEndCpTM, Jrefqq
as the space of smooth Jref -antilinear bundle maps Y that vanish outside U and satisfy ωp¨, Y ¨q`
ωpY ¨, ¨q ” 0; intuitively, this is the tangent space at Jref to the smooth Fréchet manifold
J pJ, ω ; U , Jfixq. There is a natural embedding

(5.21) Y ÞÑ JY :“
ˆ
1` 1

2
JrefY

˙
Jref

ˆ
1` 1

2
JrefY

˙´1
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which takes a C0-small neighborhood of 0 in TJrefJ pJ, ω ; U , Jfixq homeomorphically to a neigh-
borhood of Jref in J pM,ω ; U , Jfixq. Now choose a Riemannian metric on M in order to define
the Cν-norms on ΓpEndCpTM, Jrefqq for each integer ν ě 0, fix a sequence of positive numbers
εν Ñ 0, and define the Cε-norm

(5.22) }Y }Cε :“
8ÿ
ν“0

εν}Y }Cν

for Y P ΓpEndCpTM, Jrefqq. Fixing any δ ą 0 sufficiently small, this gives rise to a smooth,
separable and metrizable Banach manifold

Jε :“
 
JY

ˇ̌
Y P TJrefJ pJ, ω ; U , Jfixq, }Y }Cε ă 8 and }Y }C0 ă δ

(
which embeds continuously into J pJ, ω ; U , Jfixq and contains arbitrarily C8-small perturbations
of Jref . Note that since U Ă M has compact closure, the equivalence classes of the individual
Cν-norms are each independent of auxiliary choices such as connections or local trivializations,
but the equivalence class of the Cε-norm may in fact depend on these choices. This is immaterial,
as the choice of the sequence tǫνu8ν“0 carries no geometric meaning in itself; what is important
is rather that the space of sections of class Cε can always be enlarged by making εν converge to
0 faster. To say this more precisely, let us endow the set

E :“
!
sequences ε “ tενu8ν“0

ˇ̌̌
εν ą 0 for all ν, and lim

νÑ8 εν “ 0
)

with a pre-order ă defined by

ε ă ε1 ðñ lim sup
νÑ8

εν

ε1ν
ă 8.

Definition 5.28. Given a statement Spεq dependent on a choice of ε P E , we will say that Spεq
holds for all ε P E with sufficiently rapid decay if there exists ε0 P E such that Spεq holds
for all ε ă ε0.

Lemma 5.29. The Cε-norms on sections Y P TJrefJ pJ, ω ; U , Jfixq have the following properties:

(1) If ε ă ε1 in E, then there exists a constant c ą 0 such that }Y }Cε ď c}Y }Cε1 for all Y .
(2) For any given Y , }Y }Cε ă 8 for all ε P E with sufficiently rapid decay.
(3) Every countable subset of E has a lower bound in E with respect to the pre-order ă.

Proof. Property (1) follows easily from the observation that ε ă ε1 if and only if there exist
constants C ą 0 and ν0 P N such that εν ď Cε1ν for all ν ą ν0. To prove (2), observe that
any nontrivial smooth section Y vanishing outside of U is of class Cε for εν :“ 1{ p2ν ¨ }Y }Cν q,
then apply (1). Finally, ε P E is a lower bound for the countable subset tεp1q, εp2q, εp3q, . . .u Ă E

whenever εν ď min
!
ε
p1q
ν , . . . , ε

pνq
ν

)
for every ν. �

Let us discuss the geometric data to be used in formulating the local Petri condition for a
holomorphic curve. Given J P J pM,ω ; U , Jfixq, the complex vector bundle pTM, Jq carries
a natural Hermitian metric whose real part is gJ :“ ωp¨, J ¨q. If u : pΣ, jq Ñ pM,Jq is J-
holomorphic and is immersed at the point ζ P Σ, then gJ can be pulled back to define a
Riemannian metric on Σ near ζ in the conformal class of j, thus giving rise to an area form
µu on Σ and compatible bundle metrics gu on Nu and hu on HomCpTΣ, Nuq near ζ, where for
concreteness we are also free to assume Nu Ă u˚TM is the gJ -orthogonal complement of Tu.
In order to avoid ambiguity, we shall assume in the following that DN

u and pDN
u q˚ are defined

via these specific choices of geometric data near any given immersed point ζ P Σ; note that this
would not be a valid global definition for pDN

u q˚ since the pulled back metric on Σ becomes
singular at critical points, but this will not matter since we only intend to study finite jets of
pDN

u q˚ at a specific immersed point. Recall from Remark 5.2 that Petri’s condition does not
depend on choices of geometric data. Moreover, while the global topological type of Nu may
change (because the number of critical points may change) as u moves about in its moduli space,
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the germs of DN
u and pDN

u q˚ at an immersed point can still be assumed to depend smoothly
on u.

Let us denote by
Mg̊,1pA, Jq ĂMg,1pA, Jq

the open subset consisting of simple curves with one marked point such that the marked point
is an injective point with image in U . We will abuse notation and write elements of Mg̊,1pA, Jq
as pu, ζq, where u : pΣ, jq Ñ pM,Jq is a specific parametrization and ζ P Σ is the marked point.
Using the notation of §5.2.6, we then define for each k, r, ℓ P N with ℓ ď k the spacexMk,r,ℓ

g,1 pA, Jq :“
!
pu, ζ, tq

ˇ̌̌
pu, ζq PMg̊,1pA, Jq, t P Vkr,ℓpgu, hu, µu,DN

u q
)

where gu, hu, µu are the specific choices of geometric data determined by u and gJ as described
in the previous paragraph. The extra term t is an element in the tensor product of the k-jet
versions of kerDN

u and kerpDN
u q˚ at ζ, having rank r and not vanishing to order ℓ. We will be

interested especially in the subset

M
k,r,ℓ
g,1 pA, Jq :“

!
pu, ζ, tq P xMk,r,ℓ

g,1 pA, Jq
ˇ̌̌
Πkptq “ 0

)
.

To understand the structure of these spaces, we define corresponding universal moduli spaces:

Ug̊,1pA,Jεq :“
!
pu, ζ, Jq

ˇ̌̌
J P Jε, pu, ζq PMg̊,1pA, Jq

)
,

xU k,r,ℓ
g,1 pA,Jεq :“

!
pu, ζ, t, Jq

ˇ̌̌
J P Jε, pu, ζ, tq P xMk,r,ℓ

g,1 pA, Jq
)
,

U
k,r,ℓ
g,1 pA,Jεq :“

!
pu, ζ, t, Jq

ˇ̌̌
J P Jε, pu, ζ, tq PM

k,r,ℓ
g,1 pA, Jq

)
.

We shall always choose ε P E to have sufficiently rapid decay so that, by standard arguments
as in [MS12], Ug̊,1pA,Jεq is a smooth, metrizable and separable Banach manifold such that

the projection Ug̊,1pA,Jεq Ñ Jε : pu, ζ, Jq ÞÑ J is a smooth Fredholm map whose index is

the virtual dimension of Mg̊,1pA, Jq. It follows that the same is true for xU k,r,ℓ
g,1 pA,Jεq, as the

additional k-jet data t varies in a smooth finite-dimensional manifold that depends smoothly on
the k-jet of the operator DN

u at the immersed point ζ, and this in turn depends smoothly on
pu, ζ, Jq P Ug̊,1pA,Jεq.

It will be convenient to impose an extra condition defining an open subset of U
k,r,ℓ
g,1 pA,Jεq.

For each ℓ P N, let Cℓ ą 0 denote the constant furnished by Proposition 5.25 in §5.3, with the
roles of the bundles E,F and point p in that subsection played by Nu, HomCpTΣ, Nuq and ζ P Σ
respectively.

Definition 5.30. Given J P J pM,ω ; U , Jfixq and ε P E , we will say that an element pu, ζ, tq P
M

k,r,ℓ
g,1 pA, Jq is ε-regular if J P Jε and pu, ζ, t, Jq has a neighborhood O Ă xU k,r,ℓ

g,1 pA,Jεq such
that O XU

k,r,ℓ
g,1 pA,Jεq is a C8-subvariety of xU k,r,ℓ

g,1 pA,Jεq with codimension at least Cℓk
2.

Note that ε-regularity is an open condition by construction, i.e. the set of tuples pu, ζ, t, Jq P
U

k,r,ℓ
g,1 pA,Jεq such that pu, ζ, tq is ε-regular is open. The important consequence of Lemma 5.27

will be that it is generally also nonempty.

Lemma 5.31. Any given pu, ζ, tq P M
k,r,ℓ
g,1 pA, Jrefq is ε-regular for all ε P E with sufficiently

rapid decay.

Proof. Observe first that Jref P Jε for every ε P E . Now given pu, ζ, tq P M
k,r,ℓ
g,1 pA, Jref q, define

the Fréchet space

Y0 :“
!
Y P TJrefJ pM,ω ; U , Jfixq

ˇ̌̌
Y |upΣq ” 0

)
and for each ε P E the Banach space

Yε :“
!
Y P TJrefJ pM,ω ; U , Jfixq

ˇ̌̌
Y |upΣq ” 0 and }Y }Cε ă 8

)
,
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where the latter is regarded as a closed subspace of TJrefJε with the Cε-topology. Abbreviating

E :“ Nu and F :“ HomCpTΣ, Nuq, Lemma 5.27 provides a surjective linear map

Ψ0 : Y0 Ñ Jk´1
ζ pHomRpE,F qq : Y ÞÑ Jk´1

ζ pAY q,
where AY denotes (the germ near ζ of) the zeroth-order term determined by Y according to the
formula AY η “ πN ˝∇ηY ˝Tu˝j. Since the target space of Ψ0 is finite dimensional, Lemma 5.29
implies that it remains surjective when restricted to the subspace Yε for ε P E with sufficiently
rapid decay. Each Y P Yε now gives rise to a 1-parameter family of almost complex structures
Jτ :“ JτY P Jε defined via (5.21), which match Jref along u and satisfy J0 “ Jref . This defines
a smooth family pu, ζ, Jτ q P Ug̊,1pA,Jεq that deforms the normal Cauchy-Riemann operator of
u in the direction of AY but leaves the geometric data along u unchanged. It follows that the
linearization at pu, ζ, t, Jrefq of the natural projection map10

(5.23) xU k,r,ℓ
g,1 pA,Jεq Ñ Vkr,ℓ : pu, ζ, t, Jq ÞÑ pgu, hu, µu,DN

u , tq
is surjective onto TpDu

N
,tqVkr,ℓpgu, hu, µuq, and the result then follows from Proposition 5.25. �

Applying the Sard-Smale theorem to the projection xU k,r,ℓ
g,1 pA,Jεq Ñ Jε : pu, ζ, t, Jq ÞÑ J as

in Proposition C.3, we can associate to each ε P E and each set of positive integers k, r, ℓ with
k ě ℓ a Baire subset

J reg
ε pk, r, ℓq Ă Jε

such that for all J P J
reg
ε pk, r, ℓq, xMk,r,ℓ

g,1 pA, Jq is a smooth finite-dimensional manifold and the
open set of ε-regular elements in

M
k,r,ℓ
g,1 pA, Jq Ă xMk,r,ℓ

g,1 pA, Jq
is a C8-subvariety of codimension at least Cℓk

2. The dimension of xMk,r,ℓ
g,1 pA, Jq is the Fredholm

index of the projection xU k,r,ℓ
g,1 pA,Jεq Ñ Jε, which is larger than that of Ug̊,1pA,Jεq Ñ Jε by

dimVkr,ℓpgu, hu, µu,DN
u q. Plugging in (5.19), this gives

dim xMk,r,ℓ
g,1 pA, Jq “ vir-dimMg,1pA, Jq ` 4rpn´ 1qpk ` 1q ´ r2.

This number grows linearly with k, while the codimension Cℓk
2 grows quadratically, thus for

any fixed r, ℓ, g,A, the integer

(5.24) vir-dimM
k,r,ℓ
g,1 pA, Jq :“ vir-dimMg,1pA, Jq ` 4rpn´ 1qpk ` 1q ´ r2 ´ Cℓk

2

becomes negative for all k P N sufficiently large. Taking the countable intersection of the Baire
sets J reg

ε pk, r, ℓq for all k, r, ℓ, g,A, we obtain:

Corollary 5.32. For every ε P E, there exists a Baire subset J reg
ε Ă Jε such that for all J P J

reg
ε

and any given g ě 0, A P H2pMq and r, ℓ P N, the set of ε-regular elements in M
k,r,ℓ
g,1 pA, Jq is

empty whenever k is large enough for the integer in (5.24) to be negative. �

For the proof of Theorem 5.26, we will use a variation on a popular trick due to Taubes,
presenting the desired set J reg Ă J pM,ω ; U , Jfixq as the intersection of an explicit countable
collection of open and dense subsets. This depends on the ability to decompose the relevant
moduli space into a countable union of compact subsets, and as preparation, the following lemma
gives a way of doing this for the moduli space of complex structures. Given a smooth oriented
surface Σ, we let J pΣq denote the space of smooth complex structures on Σ compatible with
the orientation, with its natural C8-topology. For integers g,m ě 0, Mg,m will denote the

10Strictly speaking, the definition of Vkr,ℓ in this context depends on the germs near ζ P Σ of the vector bundles

Nu and HomCpTΣ, Nuq, which vary as pu, ζ, t, Jq moves in xU k,r,ℓ
g,1 pA,Jεq, so for the purposes of (5.23), Vkr,ℓ should

be replaced with a suitable fiber bundle over xU k,r,ℓ
g,1 pA,Jεq, of which the map in (5.23) is a section. This detail

makes little difference for the present argument, however, since the family pu, ζ, Jτ q P Ug̊,1pA,Jεq involves a fixed

curve with a fixed marked point and Jτ |impuq also fixed.
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(uncompactified) moduli space of Riemann surfaces with genus g and m marked points; recall
that elements of the latter are equivalence classes of tuples pΣ, j,Θq where pΣ, jq is a Riemann
surface of genus g and Θ Ă Σ is an ordered set of m points.

Lemma 5.33. Given integers g,m ě 0, fix a closed surface Σ of genus g and an ordered set of
m points Θ “ tζ1, . . . , ζmu P Σg. Then there exists a nested sequence of compact subsets

J 1pΣ,Θq Ă J 2pΣ,Θq Ă J 3pΣ,Θq Ă . . . Ă J pΣq
such that every element of Mg,m has a representative pΣ, j,Θq for some j P JKpΣ,Θq, K P N.

Proof. Let π : J pΣq Ñ Mg,m : j ÞÑ rpΣ, j,Θqs denote the natural projection. Choose for each
j P J pΣq a smooth slice Tj Ă J pΣq through j for the natural action of Diff0pΣ,Θq on J pΣq,
i.e. Tj locally parametrizes the Teichmüller space of pΣ,Θq near j. Since Teichmüller space is
finite dimensional, Tj contains a compact neighborhood Vj Ă Tj of j, and the image of Vj under
π is then a neighborhood of rpΣ, j,Θqs in Mg,m. Since the latter is second countable, we can
then find a sequence j1, j2, j3, . . . P J pΣq such that

Ť
iPN πpVjiq “ Mg,m. Set JKpΣ,Θq :“

Vj1 Y . . .Y VjK . �

Proof of Theorem 5.26. For the following definition, we fix a model surface Σg of genus g and
a point ζ P Σg, along with Riemannian metrics on Σg and M , denoting the various induced
distance functions by distp¨, ¨q. The Levi-Cività connection then induces connections on the
bundles E “ Nu and F “ HomCpTΣg, Nuq appearing below, which can be used in defining

metrics on the jet spaces JkζE and Jkζ F . For each K, ℓ P N, fix an integer k :“ kpK, ℓq ě ℓ large
enough so that

(5.25) vir-dimM
k,r,ℓ
g,1 pA, Jq ă 0 for all r P t1, . . . ,Ku.

With this choice in place, we define

NKpJq Ă
Kď
r“1

M
k,r,ℓ
g,1 pA, Jq

as a set of elements pu, ζ, tq satisfying quantitative versions of the various conditions defining

the spaces Mk,r,ℓ
g,1 pA, Jq. Concretely, we require every element of NKpJq to be representable as

a curve u : pΣg, jq Ñ pM,Jq with marked point ζ P Σg and t P Vkr,ℓpgu, hu, µu,DN
u q with |t| “ 1

such that:

(1) Domains do not degenerate: j belongs to the compact set JKpΣg, tζuq from Lemma 5.33.
(2) Bubbles do not form: supzPΣg |dupzq| ď K.

(3) The marked point does not escape: distpupζq,MzUq ě 1{K.
(4) The marked point remains an injective point:

|dupζq| ě 1

K
and inf

zPΣgztζu
distpupζq, upzqq

distpζ, zq ě 1

K
.

(5) The rank of t does not blow up: rank t ď K.
(6) The vanishing order of t does not increase: Writing E “ Nu and F “ HomCpTΣg, Eq,

the distance of t P Jkζ E b Jkζ F from the subspace pJkζ E b Jkζ F qℓ is at least 1{K.

Now let
J reg,K :“

!
J P J pM,ω ; U , Jfixq

ˇ̌̌
NKpJq “ H

)
.

To see that J reg,K is open, suppose the contrary: then there exist sequences Jν P J pM,ω ; U , Jfixq
and puν , ζ, tνq P NKpJνq with Jν Ñ J P J reg,K as ν Ñ 8. Assuming the parametrizations
uν : pΣg, jνq Ñ pM,Jνq satisfy all of the conditions listed above, elliptic regularity combined
with the compactness of JKpΣg, tζuq and the condition |tν | “ 1 then gives a subsequence con-

verging to an element of NKpJq, which is a contradiction.
We claim that J reg,K is also dense. To see this, recall that the reference structure Jref in the

definition of Jε was arbitrary, so it will suffice to prove that for some ε P E , Jε contains arbitrarily
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Cε-small perturbations of Jref that are in J reg,K . The argument of the previous paragraph
shows that NKpJrefq is compact, so since ε-regularity is an open condition, Lemma 5.31 implies
after taking a lower bound for finitely many choices of ε P E that every element of NKpJrefq
is ε-regular, and so therefore is everything in some open neighborhood of NKpJrefq ˆ tJrefu
in U

k,r,ℓ
g,1 pA,Jεq. Since J

reg
ε Ă Jε is a Baire subset, we can choose a sequence Jν P J

reg
ε

with Jν Ñ Jref , and we claim that Jν P J reg,K for all ν sufficiently large. If not, then after
restricting to a subsequence, there exists a sequence puν , ζν , tνq P NKpJνq which converges by
the compactness argument in the previous paragraph to an element of NKpJrefq, implying that

puν , ζν , tνq is ε-regular for ν large. In light of the assumption vir-dimM
k,r,ℓ
g,1 pA, Jq ă 0, this

contradicts Corollary 5.32.
The space

J reg :“ č
KPN

J reg,K Ă J pM,ω ; U , Jfixq
is now a Baire subset. If J P J reg and there exists a simple J-holomorphic curve u : pΣ, jq Ñ
pM,Jq of genus g with an injective point ζ P u´1pUq Ă Σ at which Petri’s condition is not
satisfied to infinite order, then we can define u as an element of Mg̊,1pA, Jq by calling ζ the

marked point. Since nontrivial elements t P kerDN
u b kerpDN

u q˚ have finite rank and cannot
vanish to infinite order at any point, we can then normalize t and thus find an element pu, ζ, tq P
NKpJq for K sufficiently large, which is a contradiction. This proves that for J P J reg, all
simple curves v : pΣ, jq Ñ pM,Jq satisfy Petri’s condition to infinite order at every injective
point in v´1pUq, which is an open and dense subset of v´1pUq. It follows that the condition is
also satisfied for all multiple covers u “ v ˝ ϕ at points in u´1pUq “ ϕ´1pv´1pUqq that are not
branch points and are preimages of injective points; that is likewise an open and dense subset
of u´1pUq. �

Remark 5.34. The proof above would work equally well to find generic families of almost
complex structures depending on finitely many parameters such that Petri’s condition is always

satisfied. The key point is that for the parametric moduli spaces analogous to M
k,r,ℓ
g,1 pA, Jq andxMk,r,ℓ

g,1 pA, Jq, the codimension of the former in the latter grows quadratically with k, while the

dimension of the larger space grows only linearly, so that the space analogous to M
k,r,ℓ
g,1 pA, Jq

will always turn out to be empty for generic choices if k is made sufficiently large, no matter
how many extra dimensions are added to the original moduli space by introducing parameters.
The extension to families is important for the bifurcation theory discussed in §2.4.

5.5. A global application. We now give an application of Petri’s condition which will be
crucial for the proof of Theorem D. The setting is as follows: assume E and F are smooth real
vector bundles over a smooth (not necessarily compact) manifoldM , with chosen bundle metrics
x , yE, x , yF and a chosen volume from µ on M which are used to define L2-pairings

xη, η1yL2 :“
ż
M

xη, η1yE µ, xξ, ξ1yL2 :“
ż
M

xξ, ξ1yF µ
for η, η1 P ΓpEq and ξ, ξ1 P ΓpF q. The product xη, η1yL2 is well defined for two (not necessarily
smooth or compactly supported) sections η, η1 of E whenever the function xη, η1yE belongs to
L1pM,µq, and in this case we will say they are L2-orthogonal if xη, η1yL2 “ 0; an analogous
definition applies for sections of F . Consider a linear partial differential operator D : ΓpEq Ñ
ΓpF q and its formal adjoint D˚ : ΓpF q Ñ ΓpEq defined via xξ,DηyL2 “ xD˚ξ, ηyL2 for all smooth
sections η, ξ with compact support. We will consider the extensions of both of these operators
to certain Banach space completions,

D : XpEq Ñ YpF q, D˚ : X˚pF q Ñ Y˚pEq,
where XpEq and Y˚pEq are Banach spaces of sections of E in some regularity class defined
almost everywhere, while YpF q and X˚pF q are likewise Banach spaces of sections of F . In this
functional-analytic setting, we impose the following assumptions:
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(1) D and D˚ are Fredholm operators whose kernels consist only of smooth sections;
(2) kerD˚ Ă YpF q, and the L2-product xξ, ξ1yL2 is well defined whenever ξ P YpF q and

ξ1 P kerD˚, so in particular it is well defined whenever both are in kerD˚;
(3) YpF q “ imD‘ kerD˚, where the two factors in this splitting are closed L2-orthogonal

subspaces.

We shall denote the natural projection resulting from the third assumption by

π : YpF q Ñ kerD˚.
Remark 5.35. In the setting of §3.2, the assumptions above are satisfied for a Cauchy-Riemann
type operator 9D : Γp 9Eq Ñ Γp 9F q over a punctured Riemann surface 9Σ, using the weighted Sobolev

spaces Xp 9Eq :“ W k,p,´δp 9Eq and Yp 9F q :“ W k´1,p,´δp 9F q for k P N, p P p1,8q and exponential

weights δ “ tδw ą 0uwPΘ; recall that 9D is Fredholm if all δw are chosen to be sufficiently small.

For the formal adjoint 9D˚, we then define X˚p 9F q :“ W k,p,δp 9F q and Y˚p 9Eq :“ W k´1,p,δp 9Eq, so
that Proposition 3.13 provides the necessary splitting of Yp 9F q.
Lemma 5.36. Given the assumptions above, suppose U Ă M is an open subset such that D
satisfies Petri’s condition over U . Assume moreover that V Ă ΓpHompE,F qq is a linear subspace
satisfying the following conditions:

(1) Φη P YpF q for all Φ P V and η P kerD.
(2) There exists a dense subset ∆ Ă U with the following property: for every z P ∆ and

Φ0 P HompEz, Fzq, there exists a Φ P ΓpHompE,F qq satisfying Φpzq “ Φ0 such that for
every neighborhood U 1 Ă U of z, βΦ P V for some smooth function β : M Ñ r0, 1s with
compact support in U 1 satisfying βpzq “ 1.

Then the linear map L : V Ñ HompkerD, kerD˚q defined by LpΦqη “ πpΦηq is surjective.

Proof. Fix bases η1, . . . , ηm P kerD and ξ1, . . . , ξn P kerD˚. Since imD “ ker π is L2-orthogonal
to kerD˚, we then have

xLpΦqηi, ξjyL2 “ xΦηi, ξjyL2 for all i “ 1, . . . ,m, j “ 1, . . . , n,

and these matrix elements determine LpΦq : kerD Ñ kerD˚. Now if L is not surjective, there
exists a nontrivial linear map Ψ : kerD Ñ kerD˚ which is “orthogonal” to every LpΦq in the
sense that its matrix elements Ψij :“ xΨηi, ξjyL2 P R satisfyÿ

i,j

ΨijxΦηi, ξjyL2 “ 0

for every Φ P V . We can rewrite this as

0 “ÿ
i,j

Ψij

ż
U

xΦηi, ξjyF µ “
ż
U

x , yF ˝ pΦb 1q ˝
ˆÿ

i,j

Ψij ηi b ξj

˙
µ,

where
ř
i,j Ψ

ijηibξj is regarded as a section of EbF . Since the Ψij are not all zero, this section

is the image of a nontrivial element of kerD b kerD˚ under the Petri map, so by assumption,
it does not vanish identically on U . Now choose a point z P ∆ at which this section is nonzero.
Lemma 5.37 below provides a linear map Φ0 : Ez Ñ Fz such that the integrand is positive near z
for any Φ P V satisfying Φpzq “ Φ0, and we can then make the entire integral positive after
multiplying Φ by smooth bump functions with sufficiently small support. �

We used:

Lemma 5.37. Suppose V and W are real finite-dimensional vector spaces, x , y : WbW Ñ R is
an inner product on W , and T P V bW is nonzero. Then there exists a linear map Φ : V ÑW

such that x , y ˝ pΦb 1qpT q ą 0.

Proof. Choosing a basis v1, . . . , vn of V , we have T “ řn
j“1 vjbwj for unique vectors w1, . . . , wn P

W , which do not all vanish since T ‰ 0. Choosing Φ : V Ñ W such that Φpvjq “ wj for all j
then gives x , y ˝ pΦ b 1qpT q “ ř

jxwj , wjy ą 0. �



TRANSVERSALITY AND SUPER-RIGIDITY FOR HOLOMORPHIC CURVES 75

6. Proof of the stratification theorem

We are now in a position to prove Theorem D. The main idea behind the proof is standard,
though some details are less so: we will write down a universal moduli space with a projection
to a suitable Banach manifold of perturbed data whose regular values have the property stated
in the theorem. The hard part is of course to prove that the universal moduli space is a
smooth Banach manifold—this follows from the implicit function theorem after proving that
some version of the operator defined in (3.24) is surjective, and that is where the results of the
previous section on Petri’s condition are needed.

Fix Jref P J pM,ω ; U , Jfixq and consider again the space Jε of Floer Cε-small perturbations
of Jref as constructed in §5.4 via a choice of decaying positive sequence ε “ tενu8ν“0 P E . For
each of the choices of data in the statement of Theorem D, we define a universal moduli space

U
dpJε ; ℓ1, . . . , ℓmq

consisting of pairs pu, Jq with J P Jε and u belonging to the isosymmetric stratum

MdpJ ; ℓ1, . . . , ℓmq :“Md
b
pMg,mpA, J ; ℓ1, . . . , ℓmqq.

We shall denote elements of MdpJ ; ℓ1, . . . , ℓmq by u “ v ˝ϕ, where we have chosen parametriza-
tions of the underlying simple curve v : pΣ, jq Ñ pM,Jq and the d-fold branched cover ϕ :
pΣ1, j1q Ñ pΣ, jq. Recall from §3 that for every such element u “ v ˝ ϕ, there is a unique
isomorphism class of minimal regular presentations for ϕ, giving rise to a regular coverpϕ : ppΣ,pq Ñ p 9Σ, jq
with automorphism group G :“ Autppϕq, where 9Σ is the punctured surface obtained from Σ
by removing the critical values of ϕ. We can then consider the J-holomorphic curve pu :“
v ˝ pϕ : ppΣ,pq Ñ pM,Jq and its normal Cauchy-Riemann operator 9DNpu , defined as in §3.2 on a

Sobolev space of sections of E :“ Npu over the punctured domain pΣ with negative exponential
weights close to zero. Recall that its formal adjoint p 9DNpu q˚ is defined on a similar Sobolev

space of sections of F :“ HomCpT pΣ, Npuq, but with corresponding positive exponential weights.
The notation associating to each pu “ v ˝ ϕ, Jq P U dpJε ; ℓ1, . . . , ℓmq a regular covering mappϕ of potentially larger degree and corresponding J-holomorphic curve pu “ v ˝ pϕ will be used
consistently in the following.

Definition 6.1. Given integers k, c ě 0 and an almost complex structure J , we define the subset

MdpJ ; ℓ1, . . . , ℓm ; k, cq :“
!
u PMdpJ ; ℓ1, . . . , ℓmq

ˇ̌̌
dimker 9DNpu “ k and dim coker 9DNpu “ c

)
.

This gives rise to a universal moduli space

U
dpJε ; ℓ1, . . . , ℓm ; k, cq Ă U

dpJε ; ℓ1, . . . , ℓmq
consisting of all pairs pu, Jq such that J P Jε and u PMdpJ ; ℓ1, . . . , ℓm ; k, cq.

By the results of §3.5, in particular Lemma 3.24, the connected components of the sub-
sets MdpJ ; ℓ1, . . . , ℓm ; k, cq for individual values of k and c are precisely the walls described
in Theorem D (see also Remark 2.14). We would thus be able to apply the standard Sard-
Smale argument toward a proof of Theorem D if we could show that U dpJε ; ℓ1, . . . , ℓm ; k, cq Ă
U dpJε ; ℓ1, . . . , ℓmq is a smooth Banach submanifold of the correct finite codimension on each
component. What we will actually show is that this is true for a certain open subset of
U dpJε ; ℓ1, . . . , ℓm ; k, cq, which suffices due to the genericity of Petri’s condition.

Definition 6.2. An element u “ v ˝ ϕ P MdpJ ; ℓ1, . . . , ℓm ; k, cq will be called Petri regular
if for the regular covering map pϕ and corresponding J-holomorphic curve pu “ v ˝ pϕ described
above, the operator 9DNpu satisfies Petri’s condition over pu´1pUq. We will denote the set of Petri
regular curves by

Md
ΠpJ ; ℓ1, . . . , ℓm ; k, cq ĂMdpJ ; ℓ1, . . . , ℓm ; k, cq,
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and define the corresponding universal moduli space

U
d
Π pJε ; ℓ1, . . . , ℓm ; k, cq Ă U

dpJε ; ℓ1, . . . , ℓm ; k, cq
to be the set of pairs pu, Jq P U dpJε ; ℓ1, . . . , ℓm ; k, cq such that u belongs to the moduli space
Md

ΠpJ ; ℓ1, . . . , ℓm ; k, cq.
Remark 6.3. The condition defining Md

ΠpJ ; ℓ1, . . . , ℓm ; k, cq is clearly satisfied by any curve
u “ v˝ϕ for which DN

v satisfies the local Petri condition on v´1pUq, thus by Theorem 5.26, there
is a Baire subset in J pM,ω ; U , Jfixq for whichMd

ΠpJ ; ℓ1, . . . , ℓm ; k, cq “MdpJ ; ℓ1, . . . , ℓm ; k, cq.
The next several results are aimed at proving that for suitable choices of the sequence ε,

U d
Π pJε ; ℓ1, . . . , ℓm ; k, cq is a finite-codimensional Banach submanifold of U dpJε ; ℓ1, . . . , ℓmq.

Lemma 6.4. For ε P E with sufficiently rapid decay, U dpJε ; ℓ1, . . . , ℓmq carries a smooth
Banach manifold structure such that every pu0 “ v0 ˝ ϕ0, J0q P U dpJε ; ℓ1, . . . , ℓmq admits a
neighborhood V Ă U dpJε ; ℓ1, . . . , ℓmq with a smooth family of vector bundle isomorphisms

v0̊TM
–ÝÑ v˚TM, for pu “ v ˝ ϕ, Jq P V

mapping Nv0 isomorphically to Nv.

Proof. For each pu0 “ v0 ˝ ϕ0, J0q P U dpJε ; ℓ1, . . . , ℓmq, the underlying simple curve v0 :
pΣ, j0q Ñ pM,Jq lives in the universal moduli space U ˚pJεq defined in Appendix A, more
specifically in the subset

U
˚pJε ; ℓ1, . . . , ℓmq Ă U

˚pJεq
of this space defined by the condition that the ith marked point should have critical order ℓi and
curves are immersed everywhere else. If ε has sufficiently rapid decay, then U ˚pJεq is a smooth

Banach manifold, and U ˚pJε ; ℓ1, . . . , ℓmq is an open subset of the space xU ˚pJε ; ℓ1, . . . , ℓmq Ă
U ˚pJεq, which is shown in Lemma A.3 to be a smooth finite-codimensional submanifold of U ˚pJεq.
In particular, we can identify an open neighborhood of the element pv0, J0q in U ˚pJε ; ℓ1, . . . , ℓmq
with a smooth finite-codimensional submanifold

Xε Ă B̄´1p0q Ă T ˆ B ˆ Jε

of the zero-set of the nonlinear Cauchy-Riemann operator B̄, where T denotes a Teichmüller
slice through j0 in the space of complex structures on Σ, and B is a suitable Banach manifold
of maps v : ΣÑM .

We claim that there exists a neighborhood V0 Ă Xε of pj0, v0, J0q that parametrizes a smooth
family of bundle isomorphisms v0̊TM Ñ v˚TM sending Nv0 to Nv. Note that this would be
clearly false if we did not impose the critical point constraints on v, as e.g. v0 might then have
critical points while v is immersed, in which case Nv0 and Nv would have different topological
types. AssumingNv Ă v˚TM is always defined as the symplectic orthogonal complement of Tv Ă
v˚TM with Tv :“ im dv away from critical points, let us recall from [Wen10] how the latter is
defined at critical points. We have a smooth family of bundles v˚TM carrying linearized Cauchy-
Riemann operators Dv, whose complex-linear parts DC

v define a smooth family of holomorphic
structures on v˚TM . The crucial observation is then that dv P ΓpHomCpTΣ, v˚TMqq is always
a holomorphic section with respect to the holomorphic bundle structures on v˚TM and TΣ, so
choosing a smooth family of holomorphic trivializations and holomorphic coordinates near the
ith marked point, each dv is represented by some holomorphic function of the form

f piqv : DÑ Cm, f piqpzq “ zℓigpiqv pzq,
where g

piq
v : D Ñ Cm is another family of holomorphic functions which depend smoothly on

pj, v, Jq P Xε but also are nonzero at 0. The main point here is that the critical orders ℓi do

not vary with v. The span of g
piq
v p0q thus defines the fibers of Tv near each critical point, so we

deduce smooth dependence of Tv on pj, v, Jq P Xε, and therefore also of Nv.
We can parametrize a neighborhood of ϕ0 in Md

b
pj0q as explained in Examples 3.6 and 3.8,

meaning that if Θ “ tw1, . . . , wru Ă Σ is the set of critical values of ϕ0, we choose a smooth
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family of diffeomorphisms ψτ : Σ Ñ Σ parametrized by τ P B2r which are holomorphic near Θ
and supported on a slightly larger neighborhood of Θ such that ψ0 “ Id and

B2r Ñ Σˆr : τ ÞÑ pψτ pw1q, . . . , ψτ pwrqq
is a diffeomorphism onto an open set. The neighborhood of pu0, J0q in the space U dpJε ; ℓ1, . . . , ℓmq
can now be identified with B2r ˆXε by associating to each pτ, pj, v, Jqq P B2r ˆXε the curve
v ˝ pψτ ˝ ϕ0q, making U dpJε ; ℓ1, . . . , ℓmq a smooth fiber bundle over U ˚pJε ; ℓ1, . . . , ℓmq. �

Lemma 6.5. The subset U d
Π pJε ; ℓ1, . . . , ℓm ; k, cq Ă U dpJε ; ℓ1, . . . , ℓm ; k, cq is open.

Proof. Lemma 6.4 implies that the operators 9DNpu and p 9DNpu q˚ can both be understood as varying

continuously with pu, Jq P U dpJε ; ℓ1, . . . , ℓmq, and the dimensions of their kernels are locally
constant as long as pu, Jq moves only in the subset U dpJε ; ℓ1, . . . , ℓm ; k, cq. It follows that
the family of Petri maps defined on kerDNpu b kerpDNpu q˚ and then restricted to pu´1pUq depends
continuously on pu, Jq P U dpJε ; ℓ1, . . . , ℓm ; k, cq, and since their domains are finite dimensional,
the injectivity of these maps is an open condition. �

Following Example 3.8, the smooth family of operatorsDN
v parametrized by U dpJε ; ℓ1, . . . , ℓmq

can now be fit into the general picture from §3 of a parametrized family of bundles with Cauchy-
Riemann operators. In particular, we choose the parameter space P to be the local model of
U dpJε ; ℓ1, . . . , ℓmq near pu0, J0q described in the proof of Lemma 6.4 above,

P :“ B2r ˆXε Ă B2r ˆ B̄´1p0q Ă B2r ˆ pT ˆ B ˆ Jεq,
and in the notation of §3, associate to each τ “ pσ, pj, v, Jqq P P the data

ψτ :“ ψσ, jτ :“ j, pEτ , Jτ q :“ pNv, Jq, Dτ :“ DN
v .

If pu0, J0q P U dpJε ; ℓ1, . . . , ℓm ; k, cq, then using the setup in §3.5, we now find a smooth map

(6.1) Fε : B
2r ˆXε Ñ HomG

`
ker 9DNpu0 , kerp 9DNpu0q˚˘

whose zero-set is a neighborhood of pu0, J0q in U dpJε ; ℓ1, . . . , ℓm ; k, cq.
Definition 6.6. We will say that pu0, J0q P U dpJε ; ℓ1, . . . , ℓm ; k, cq is ε-regular if ε P E has
sufficiently rapid decay to satisfy the conclusions of Lemma 6.4 and, additionally, the lineariza-
tion of the map (6.1) at p0, pj0, v0, J0qq is surjective. Given J P J pM,ω ; U , Jfixq and ε P E, an
element u in the space MdpJ ; ℓ1, . . . , ℓm ; k, cq will similarly be called ε-regular if J P Jε and
pu, Jq is ε-regular.

In analogy with Definition 5.30, ε-regularity for an element pu0, J0q P U dpJε ; ℓ1, . . . , ℓm ; k, cq
just means that a neighborhood of pu0, J0q in this space is a smooth Banach submanifold with the
“correct” finite codimension in U dpJε ; ℓ1, . . . , ℓmq. It could be phrased alternatively as the con-

dition that pu0, J0q is a transverse intersection of the map pu, Jq ÞÑ 9DNpu from U dpJε ; ℓ1, . . . , ℓmq
to the relevant space of G-equivariant Fredholm operators with the finite-codimensional sub-
manifold tT | dimkerT “ dimker 9DNpu0u; expressed in this way, ε-regularity is clearly an open

condition and is independent of the choices involved (except of course for the choice of ε P E).
Let us define the analogous condition for moduli spaces with fixed J . Note that if the sim-

ple curve v0 is regular for the constrained moduli space Mg,mpA, J0 ; ℓ1, . . . , ℓmq as defined in
Appendix A, then the set

XpJ0q :“
 pj, v, J0q P Xε

ˇ̌
j P T , v P B

( Ă B̄´1
J0
p0q

is independent of ε P E and is a smooth finite-dimensional submanifold parametrizing a neigh-
borhood of v0 in Mg,mpA, J0 ; ℓ1, . . . , ℓmq. A neighborhood of u0 in MdpJ ; ℓ1, . . . , ℓmq is
then parametrized by the submanifold B2r ˆ XpJ0q Ă B2r ˆ Xε. We will say that u0 P
Mg,mpA, J0 ; ℓ1, . . . , ℓm ; k, cq is regular in its stratum if regularity of v0 in the sense above
holds and, additionally, the restricted linearization

Tp0,pj0,v0,ϕ0qqpB2r ˆXpJ0qq HomG

`
ker 9DNpu0 , kerp 9DNpu0q˚˘dFεp0,pj0,v0,ϕ0qq
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is surjective. This can also be rephrased as a transverse intersection condition in the space of
Fredholm operators, and is thus open and independent of choices (including ε). Our goal is to
show that all curves satisfy this condition for generic J .

Lemma 6.7. If u “ v ˝ ϕ P MdpJref , ; ℓ1, . . . , ℓm ; k, cq is Petri regular, then it is ε-regular for
all ε P E with sufficiently rapid decay.

Proof. Clearly pu, Jrefq P U d
ΠpJε ; ℓ1, . . . , ℓm ; k, cq for every ε P E , and we shall assume ε

has sufficiently rapid decay so that U dpJε ; ℓ1, . . . , ℓmq is a smooth Banach manifold. By
Lemma 5.27, there is a large space of smooth perturbations Y P TJrefJ pM,ω ; U , Jfixq that
give rise via (5.21) to smooth 1-parameter families Jτ :“ JτY P J pM,ω ; U , Jfixq for which v

remains Jτ -holomorphic, and the normal Cauchy-Riemann operator DN
v is perturbed in the

direction of an arbitrary smooth zeroth-order term AY with support in v´1pUq away from the
discrete set of critical and double points of v. Such a perturbation defines a tangent vec-
tor p0, Y q P Tpu,JrefqU dpJε ; ℓ1, . . . , ℓmq whenever ε has sufficiently rapid decay for Y to be of

class Cε. Assuming this for the moment, the resulting perturbation to 9DNpu is

9DNpu  9DNpu ` pϕ˚AY ,
hence differentiating Fε in the direction p0, Y q produces a G-equivariant linear map LpY q :

ker 9DNpu Ñ kerp 9DNpu q˚ given by (3.24), namely

LpY qη “ π
`ppϕ˚AY qη˘,

in terms of the projection

π : W k´1,p,´pϕ˚δpNpuq “ imp 9DNpu q ‘ kerp 9DNpu q˚ Ñ kerp 9DNpu q˚.
We claim that Y can be chosen to make LpY q equal to any given element

Ψ P HomG

`
ker 9DNpu , kerp 9DNpu q˚˘.

Indeed, let us abbreviate E “ Nv and F “ HomCpTΣ, Nvq, and let ∆ Ă v´1pUq Ă Σ denote the
set of injective points of v that are not critical values of pϕ and have image in U ; these form an
open and dense subset of v´1pUq. Since 9DNpu satisfies Petri’s condition over pu´1pUq, Lemma 5.36

then provides for any given Ψ a section pA P ΓpHomRppϕ˚ 9E, pϕ˚ 9F qq with compact support in the
open and dense subset pϕ´1p∆q Ă pu´1pUq such that

xξ, pAηyL2 “ xξ,ΨηyL2

for all ξ P kerp 9DNpu q˚ and η P ker 9DNpu . Note that we are free to assume the L2-product is invariant
under the action of G via deck transformations. Then since Ψ is G-equivariant, we also have for
every g P G,

xξ, pg pAqηyL2 “ xg´1ξ, pApg´1ηqyL2 “ xg´1ξ,Ψpg´1ηqyL2 “ xg´1ξ, g´1pΨηqyL2 “ xξ,ΨηyL2 ,

implying that the symmetrization pAG :“ 1
|G|

ř
gPG g pA also satisfies

xξ, pAGηyL2 “ xξ,ΨηyL2

for all ξ, η. But the G-invariance of pAG implies pAG “ pϕ˚A for some A P ΓpHomRp 9E, 9F qq
with compact support in ∆, hence A “ AY for some Y P TJrefJ pM,ω ; U , Jfixq, and this
proves the claim. We can now choose any finite collection of perturbations Y1, . . . , YN P
TJrefJ pM,ω ; U , Jfixq such that the LpYiq span HomG

`
ker 9DNpu , kerp 9DNpu q˚˘, and choose ε P E

so that all of them are of class Cε. �

By the implicit function theorem, the open set of ε-regular elements in

U
dpJε ; ℓ1, . . . , ℓm ; k, cq Ă U

dpJε ; ℓ1, . . . , ℓmq
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is a smooth Banach submanifold whose codimension near any given element pu, Jq is given by
the formula in (3.23), and thus matches codimpuq as specified by Definition 2.11. We can then
apply the Sard-Smale theorem to the projection

U
dpJε ; ℓ1, . . . , ℓm ; k, cq Ñ Jε : pu, Jq ÞÑ J

and thus find a Baire subset J
reg
ε Ă Jε such that for all J P J

reg
ε , all ε-regular elements of

MdpJ ; ℓ1, . . . , ℓm ; k, cq are regular in their stratum.
To turn this into a Baire subset of J pM,ω ; U , Jfixq and drop the ε-regularity condition, we

now apply another variation on the Taubes trick that was used in the proof of Theorem 5.26,
i.e. we exhaust the moduli space of Petri regular curves by a countable collection of compact
subsets

NKpJq ĂMd
ΠpJ ; ℓ1, . . . , ℓm ; k, cq, K P N,

in order to define open and dense subsets of J pM,ω ; U , Jfixq whose intersection has the desired
properties. As in §2.2, let h ě 0 denote the genus of d-fold branched covers of a genus g surface
as determined by the branching data b and the Riemann-Hurwitz formula. We shall again write
b “ pb1, . . . ,brq for some r ě 0, where each individual bi is a tuple pb1i , . . . , bqii q of natural

numbers satisfying
řqi
j“1 b

j
i “ d. Now fix a closed model surface Σg of genus g along with an

ordered set of distinct points Θ “ px1, . . . , xmq in Σg and a continuous function Fg : Σg Ñ r0,8q
that is positive on ΣzΘ and, using local complex coordinates z to identify a neighborhood of
each xj with D Ă C so that xj becomes 0 P D, satisfies

Fgpzq “ |z|ℓj near xj, j “ 1, . . . ,m.

Similarly, fix a closed model surface Σh of genus h, an ordered set of distinct points

Θ1 “ pζ11 , . . . , ζq11 , . . . , ζ1r , . . . , ζqrr q
in Σh, and a continuous function Fh : Σh Ñ r0,8q that is positive on ΣhzΘ1 and takes the form

Fhpzq “ |z|bji´1 near ζji , j “ 1, . . . , qi, i “ 1, . . . , r

in suitable local coordinates. We also make arbitrary choices of Riemannian metrics on Σg,
Σh and M so as to define the various distance functions distp , q and norms referred to below.
We then define NKpJq to consist of every element in MdpJ ; ℓ1, . . . , ℓm ; k, cq that admits a
representative of the form u “ v ˝ ϕ : pΣh, j1q Ñ pM,Jq, with v : pΣg, jq Ñ pM,Jq simple and
ϕ : pΣh, j1q Ñ pΣ, jq a d-fold holomorphic branched cover, such that v is critical of order ℓi at

xi for i “ 1, . . . ,m and ϕ has branching order bji at ζ
j
i for j “ 1, . . . , qi and i “ 1, . . . , r, and the

following quantitative conditions are also satisfied:

(1) Domains do not degenerate: Using the compact sets of complex structures provided by
Lemma 5.33, j P JKpΣg,Θq and j1 P JKpΣh,Θ1q.

(2) Bubbles do not form: supzPΣg |dvpzq| ď K and supzPΣh |dϕpzq| ď K.

(3) Injective points do not disappear: There exists a point ζ P Σg such that

|dvpζq| ě 1

K
, inf

zPΣgztζu
distpvpζq, vpzqq

distpζ, zq ě 1

K
, and distpvpζq,MzUq ě 1

K
.

(4) Critical orders do not increase:

inf
zPΣgzΘ

|dvpzq|
Fgpzq ě 1

K
and inf

zPΣhzΘ1
|dϕpzq|
Fhpzq ě 1

K
.

(5) Images of branch points do not collide: There exist distinct points wi “ ϕpζ1i q “ . . . “
ϕpζqii q P Σg for i “ 1, . . . , r such that

distpwi, wjq ě 1

K
for all i, j “ 1, . . . , r with i ‰ j.
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(6) Kernels do not get larger: Writing 9E :“ Npu and 9F :“ HomCpT pΣ, Npuq for the canonically
defined regular cover pu : pΣ Ñ M of v, the operator 9DNpu : W k,p,´δp 9Eq Ñ W k´1,p,´δp 9F q
satisfies››› 9DNpu η

›››
W k´1,p,´δ

ě 1

K
inf

ξPker 9DNpu
}η ´ ξ}W k,p,´δ for all η P W k,p,´δpNpuq.

(7) Curves remain Petri regular: For the regular cover pu, the Petri map Π : ker 9DNpu b
kerp 9DNpu q˚ Ñ Γp 9E b 9F q satisfies the estimate

}Πptq}
C0ppΣKq ě 1

K
}t},

where pΣK :“
!
z P pΣ ˇ̌

distppupzq,MzUq ě 1{K
)

and the norm on the tensor product

ker 9DNpu b kerp 9DNpu q˚ is defined via any norms on ker 9DNpu and kerp 9DNpu q˚ that vary contin-

uously with u PMdpJ ; ℓ1, . . . , ℓm ; k, cq.
Clearly every element of Md

ΠpJ ; ℓ1, . . . , ℓm ; k, cq belongs to some NKpJq for K P N sufficiently
large. Now define

J reg,K Ă J pM,ω ; U , Jfixq
via the property that J P J reg,K if and only if every element of NKpJq is regular in its stratum.

We claim that J reg,K is open in J pM,ω ; U , Jfixq. Indeed, suppose Jν P J pM,ω ; U , Jfixq
is a sequence converging to J P J reg,K as ν Ñ 8 such that for every ν, there exists a curve
uν P NKpJνq that is not regular in its stratum. Given parametrizations uν “ vν ˝ ϕν with
vν : pΣg, jνq Ñ pM,Jνq and ϕν : pΣh, j1νq Ñ pΣg, jνq satisfying the conditions above, conditions 1
and 2 imply via standard elliptic regularity arguments that there are C8-convergent subse-
quences vν Ñ v, jν Ñ j, ϕν Ñ ϕ and j1ν Ñ j1, so that uν itself converges to the composition
of a J-holomorphic curve v : pΣg, jq Ñ pM,Jq and another d-fold holomorphic branched cover

ϕ : pΣh, j1q Ñ pΣ, jq. Since all conditions in the definition of NKpJq are closed, they are also sat-
isfied for the limit u. Condition 3 then guarantees that v has an injective point mapped into U ,
conditions 4 and 5 ensure that both v and ϕ satisfy the given constraints on critical orders and
branching data, and condition 6 implies via Lemma 6.8 below that dimker 9DNpu “ dimker 9DNpuν .
It follows that u P MdpJ ; ℓ1, . . . , ℓm ; k, cq, thus u also belongs to NKpJq and must therefore
be regular in its stratum. Regularity must then also hold for uν with ν sufficiently large, since
it is an open condition, and this is a contradiction.

The use of condition 6 in the above argument depends on interpreting it in terms of the
injective map induced by 9DNpu on the quotient of its domain by its kernel, and then feeding this
into the following functional-analytic lemma:

Lemma 6.8. Suppose X and Y are Banach spaces, Tn : X Ñ Y is a sequence of Fredholm
operators converging to a Fredholm operator T : X Ñ Y , and there exists a constant c ą 0 such
that

}Tnx}Y ě c}πnx}X{ kerTn ,
where πn : X Ñ X{ kerTn is the quotient projection. Then dimkerTn “ dimkerT for all n
sufficiently large.

Proof. One can use the same trick as in the proof of Lemma 3.25 to find a sequence of Banach
space isomorphisms Φn : X Ñ X converging to 1 such that kerTn Ă ΦnpkerTq for every n

sufficiently large. Then if dimkerTn ă dimkerT for all n, we can find a bounded sequence xn P
ΦnpkerTq such that the norm of πnpxnq in X{ kerTn is bounded away from zero. Equivalently,
xn “ Φnpvnq for a bounded sequence vn P kerT, which then has a subsequence convergent to
some v8 P kerT since dimkerT ă 8, implying a corresponding subsequence xn Ñ x8 and thus
Tnxn Ñ 0. The latter contradicts the estimate in the hypothesis. �
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We claim that J reg,K is also dense in J pM,ω ; U , Jfixq. Since the reference structure Jref P
J pM,ω ; U , Jfixq can be chosen arbitrarily, it suffices to find some ε P E and a sequence Jν P
J reg,K such that Jν Ñ Jref in the Cε-topology. The argument used above for openness shows
that NKpJrefq is compact, and condition 7 implies that every curve in NKpJrefq is Petri regular,
so by Lemma 6.7, one can choose a lower bound for a finite set of choices ε P E and thus assume
that every curve in NKpJrefq is ε-regular. Now pick a sequence Jν P J

reg
ε with Jν Ñ Jref , and

arguing by contradiction, suppose Jν R J reg,K , meaning there exists a sequence uν P NKpJνq
such that each uν is not regular in its stratum. After passing to a subsequence, the previous
compactness argument shows that uν converges to some u P NKpJrefq, implying that uν is ε-
regular for all ν sufficiently large. That contradicts the definition of J reg

ε and thus proves the
claim.

To conclude,
Ş
KPN J reg,K is now a Baire subset of J pM,ω ; U , Jfixq containing almost complex

structures J such that every Petri regular curve in MdpJ ; ℓ1, . . . , ℓm ; k, cq is regular in its
stratum. By Theorem 5.26, we can intersect this with another Baire subset in order to assume
that every curve in MdpJ ; ℓ1, . . . , ℓm ; k, cq is Petri regular. The resulting Baire subset depends
on the choices of data d, b, G, g, m, A, ℓ1, . . . , ℓm, k, but since there are only countably many
such choices, a further countable intersection of Baire subsets now produces a Baire subset of
almost complex structures for which the result of Theorem D holds. The proof of Theorem D is
thus complete.

7. Super-rigidity in dimension four

We now prove the 4-dimensional case of Theorem A, using intersection-theoretic arguments
that are essentially unrelated to the rest of the paper. Throughout this section, assume pM,Jq
is an almost complex manifold with

dimM “ 4.

The genus zero case is an “automatic” phenomenon, i.e. it does not require any genericity
condition except for ensuring that the index 0 simple curve is immersed:

Proposition 7.1. Every simple immersed J-holomorphic sphere v : pS2, iq Ñ pM,Jq of index 0
in an almost complex 4-manifold is super-rigid.

Proof. Assume ϕ : pΣ1, j1q Ñ pS2, iq is a d-fold branched cover and u “ v˝ϕ. Since v is immersed,
the Riemann-Roch formula implies

0 “ indpvq “ indDN
v “ χpS2q ` 2c1pNvq,

hence c1pNvq “ ´1. Then c1pNuq “ c1pϕ˚Nvq “ ´d, so if η P kerDN
u is nontrivial, its algebraic

count of zeroes is negative, violating the similarity principle. �

For the genus one case, we use a variant of the “magic trick” proposed by Hutchings [Hut] in
the context of Embedded Contact Homology.

Proposition 7.2. A simple immersed J-holomorphic torus v : pT2, jq Ñ pM,Jq of index 0 in
an almost complex 4-manifold is super-rigid if and only if all its unbranched covers are Fredholm
regular.

Proof. We will assume for most of the proof that v : pΣ, jq Ñ pM,Jq has unspecified genus g ě 1.
Since v is immersed with index 0, it is regular if and only if its normal Cauchy-Riemann operator
DN
v is injective, so given this and the assumption that the same holds for all unbranched covers

u “ v ˝ ϕ, we need to show that DN
u is also injective for u “ v ˝ ϕ where ϕ : pΣ1, j1q Ñ pΣ, jq

is any holomorphic branched cover. We will prove this by induction on the degree d :“ degpϕq,
thus assume it is true for all covers up to degree d´ 1. Note that since indpvq “ 0, we have

(7.1) indDN
v “ χpΣq ` 2c1pNvq “ 0,

and if ϕ has branch points, then Σ1 has genus g1 ą 1 by the Riemann-Hurwitz formula.
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By the construction in the proof of Proposition B.1, one can endow the total space of the
normal bundle π : Nv Ñ Σ with an almost complex structure JN such that JN -holomorphic
curves uη : pS, iq Ñ pNv , JN q correspond to sections η P kerDN

v˝ψ along holomorphic branched

covers ψ “ π ˝ uη : pS, iq Ñ pΣ, jq. If kerDN
u contains a nontrivial element η, the inductive

hypothesis implies that the corresponding JN -holomorphic curve uη is somewhere injective. We
can view v itself as a JN -holomorphic embedding into Nv, and uη is homologous to its d-fold
cover, so applying the adjunction formula to both uη and v as JN -holomorphic curves in Nv,

uη ‚ uη “ 2δpuηq ` c1puη̊TNvq ´ χpΣ1q “ 2δpuηq ` d ¨ c1pv˚TNvq ´ χpΣ1q
“ d2pv ‚ vq “ d2 ¨ c1pNvq “ d2 ¨ c1pv˚TNvq ´ d2 ¨ χpΣq,

where δpuηq ě 0 denotes the algebraic count of double points and critical points of uη. Solving
for δpuηq and plugging in (7.1) to compute c1pv˚TNvq “ χpΣq ` c1pNvq “ 1

2
χpΣq “ 1 ´ g, we

have

2δpuηq “ dpd´ 1q ¨ c1pv˚TNvq ´ d2 ¨ χpΣq ` χpΣ1q
“ dpd´ 1qp1 ´ gq ´ 2d2p1´ gq ` 2´ 2g1 “ dpd` 1qpg ´ 1q ´ 2pg1 ´ 1q

Plugging in g “ 1 and the fact that g1 ą 1, this gives a contradiction since δpuηq cannot be
negative. �

Remark 7.3. In the spirit of §2.4, the two results above show that the story of super-rigidity
and bifurcations is simpler in dimension four. In the genus zero case bifurcations can be avoided
altogether: since having a critical point is a codimension 2 condition (see Appendix A), index 0
simple curves for generic 1-parameter families of almost complex structures can be assumed
immersed, and therefore super-rigid by Prop. 7.1. This is no longer true in the genus one case
since regularity of some unbranched cover might fail under a generic homotopy, producing the
birth-death or degree-doubling bifurcations in [Tau96a], but Prop. 7.2 implies that this is the
only danger—the only bifurcations that can happen involve unbranched covers with g1 “ 1 and
d P t1, 2u, and they are already described in [Tau96a].

Appendix A. Moduli spaces with prescribed orders of critical points

The proposition below is well known to experts, but a proof of it is difficult to find in the
literature, so we will sketch one here.

Fix a symplectic manifold pM,ωq of dimension 2n, n P N, and suppose J P J pM,ωq. Recall
that if pΣ, jq is a connected Riemann surface and u : pΣ, jq Ñ pM,Jq is a nonconstant J-
holomorphic curve with a critical point dupzq “ 0, then the critical point is isolated and has a
well-defined positive order,

ordpdu; zq P N,

characterized by the property that ordpdu; zq “ ℓ if z is a zero of order ℓ for the section du P
ΓpHomCpTΣ, u˚TMqq, where the latter is viewed as a holomorphic section with respect to a
natural holomorphic bundle structure on u˚TM determined by the linearized Cauchy-Riemann
operator, see e.g. [Wen10, §3.3]. When pΣ, jq is closed, we denote the resulting algebraic count
of critical points by

Zpduq :“ ÿ
tzPΣ | dupzq“0u

ordpdu; zq ě 0,

and note that it vanishes if and only if u is immersed. Given integers g,m ě 0, a homology class
A P H2pMq and a tuple of positive integers pℓ1, . . . , ℓmq, let

Mg,mpA, J ; ℓ1, . . . , ℓmq ĂMg,mpA, Jq
denote the following subset of the moduli space of unparametrized J-holomorphic curves homol-
ogous to A with genus g and m marked points: a map u : pΣ, jq Ñ pM,Jq with marked points
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ζ1, . . . , ζm P Σ representing an element of Mg,mpA, Jq belongs to Mg,mpA, J ; ℓ1, . . . , ℓmq if and
only if it is critical at all marked points,

ordpdu; ζjq “ ℓj for j “ 1, . . . ,m,

and it is immersed everywhere else.

Proposition A.1. Fix an open subset U Ă M with compact closure and a compatible almost
complex structure Jfix P J pM,ωq. There exists a Baire subset

J reg Ă J pM,ω ; U , Jfixq
such that for all J P J reg and all g,m ě 0, A P H2pMq and pℓ1, . . . , ℓmq P Nm, the open subset of
Mg,mpA, J ; ℓ1, . . . , ℓmq consisting of somewhere injective curves that pass through U is a smooth
manifold with dimension equal to its virtual dimension, where

vir-dimMg,mpA, J ; ℓ1, . . . , ℓmq “ vir-dimMgpA, Jq ´
mÿ
i“1

p2nℓi ´ 2q.

Corollary A.2. For generic compatible J in any closed symplectic 2n-manifold, all closed,
connected and somewhere injective J-holomorphic curves u with m ě 0 critical points satisfy
indpuq ě 2nZpduq ´ 2m.

One well-known consequence of this result is that for generic J , somewhere injective index 0
curves in almost complex manifolds of dimension at least four are always immersed. Another
proof of this is given in [OZ09], though it is analytically somewhat more complicated than the
one given below.

It will suffice to prove that the same statement as in Prop. A.1 holds for the slightly larger
moduli space xMg,mpA, J ; ℓ1, . . . , ℓmq
characterized by the condition ordpdu; ζjq ě ℓj for all j “ 1, . . . ,m without requiring u to be

immersed outside the marked points. Indeed, Mg,mpA, J ; ℓ1, . . . , ℓmq Ă xMg,mpA, J ; ℓ1, . . . , ℓmq
is an open subset. We shall borrow from Zehmisch [Zeh15] the notion of holomorphic jets: given
a point p in an almost complex manifold pM,Jq and an integer r ą 0, a holomorphic r-jet at
p is an equivalence class of J-holomorphic curves

u : pDǫ, iq Ñ pM,Jq
with up0q “ p, where pDǫ, iq denotes the ǫ-disk in C, and two curves are considered equivalent
if their partial derivatives at 0 match up to order r. The nonlinear Cauchy-Riemann equation
implies that the holomorphic r-jet represented by u is determined by the holomorphic part of
its Taylor polynomial of degree r (see [Wena, Prop. 2.99]), and moreover, every holomorphic
Taylor polynomial of degree r is realizable as the r-jet of a local J-holomorphic curve ([Wena,
Theorem 2.100]). Thus the space of all holomorphic r-jets at p is a real 2rn-dimensional vector
space, and the union of these spaces for all p PM forms a smooth manifold

JetrJpMq
of real dimension 2npr ` 1q.

We shall analyze the local structure of xMg,mpA, J ; ℓ1, . . . , ℓmq following a minor modification
of the scheme outlined in [Wena, Chapter 4]. For simplicity, we shall assume in this exposition
that 2g `m ě 3, so that we only need to deal with stable marked Riemann surfaces. (For the
finitely many non-stable cases, see Remark A.5.) Given pΣ, j0,Θ, u0q representing an element

of xMg,mpA, J ; ℓ1, . . . , ℓmq, with marked points Θ :“ pζ1, . . . , ζmq, choose a Teichmüller slice
through j0: this means a smooth p6g ´ 6` 2mq-dimensional family T of complex structures on
Σ that includes j0 and parametrizes a neighborhood of rj0s in the Teichmüller space of complex
structures modulo diffeomorphisms that are homotopic to the identity and fix Θ. The tangent
space Tj0T is also required to define a closed complement of the image of the canonical Cauchy-
Riemann operator on TΣ restricted to the space of vector fields vanishing at Θ, cf. [Wena,
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Definition 4.29]. Moreover, we can arrange for T to have the following two properties (cf. [Wen10,
Lemmas 3.3 and 3.4]):

‚ T is invariant under the action of the group AutpΣ, j0,Θq of biholomorphic maps on
pΣ, j0q fixing Θ;

‚ There exists a neighborhood of Θ on which every j P T matches j0.

Now let r :“ maxtℓ1, . . . , ℓmu, and choose any k P N and p P p1,8q such that

(A.1) pk ´ rqp ą 2,

so the Sobolev embedding theorem implies that functions of class W k,p on Σ are also in Cr. We
define the Banach manifold

B :“ W k,ppΣ,Mq
and smooth Banach space bundle E Ñ T ˆ B with fibers

Epj,uq :“W k´1,p
`
HomCppTΣ, jq, pu˚TM, Jqq˘,

so that
B̄J : T ˆ B Ñ E : pj, uq ÞÑ Tu` J ˝ Tu ˝ j

defines a smooth section. We say that pΣ, j0,Θ, u0q is Fredholm regular if the linearization

DB̄Jpj0, u0q : Tj0T ‘W k,ppu0̊TMq ÑW k´1,p
`
HomCppTΣ, j0q, pu0̊TM, Jqq˘

of this section at pj0, u0q is surjective, in which case a neighborhood of pj0, u0q in B̄´1
J p0q is a

smooth finite-dimensional manifold, and its quotient by the natural action of AutpΣ, j0,Θq can
be identified naturally with a neighborhood of rpΣ, j0,Θ, u0qs in Mg,mpA, Jq. To incorporate the
critical point condition, fix holomorphic coordinates identifying a neighborhood of each marked
point ζj with the standard unit disk pD, iq; note that this can be done for all j P T at once since
they are assumed to match j0 near Θ. Then since B has a continuous inclusion into CrpΣ,Mq,
there is a well-defined and smooth11 jet evaluation map

ev : B̄´1
J p0q Ñ Jetℓ1J pMq ˆ . . .ˆ JetℓmJ pMq,

whose ith factor for i “ 1, . . . ,m is the holomorphic ℓi-jet represented by u in its parametrization
by pD, iq at ζi. We will say that pΣ, j0,Θ, u0q is regular for the constrained moduli spacexMg,mpA, J ; ℓ1, . . . , ℓmq if it is Fredholm regular and the jet evaluation map is transverse to the
submanifold

Z Ă Jetℓ1J pMq ˆ . . .ˆ JetℓmJ pMq
consisting of m-tuples of jets of constant maps. Note that this condition does not depend on the
chosen holomorphic coordinates near the marked points, as it is equivalent to the condition that
u should have vanishing derivatives up to order ℓi at ζi for each i “ 1, . . . ,m. Whenever the
regularity condition is satisfied, ev´1pZq Ă B̄´1

J p0q inherits the structure of a smooth submanifold

with real codimension 2n
ř
i ℓi, so

xMg,mpA, J ; ℓ1, . . . , ℓmq in general becomes an orbifold near
rpΣ, j0,Θ, u0qs, with

dim xMg,mpA, J ; ℓ1, . . . , ℓmq “ dimMg,mpA, Jq ´ 2n
ÿ
i

ℓi

“ dimMgpA, Jq ` 2m´ 2n
ÿ
i

ℓi

“ dimMgpA, Jq ´
mÿ
i“1

p2nℓi ´ 2q.

11The smoothness of ev is clear because it is the restriction to B̄´1

J p0q of a map B Ñ Jetℓ1J pMqˆ . . .ˆJetℓmJ pMq
which in the natural Banach manifold charts provided by [El̆ı67] looks like a linear map evaluating derivatives of
functions at the fixed points Θ Ă Σ. This works because we are choosing to represent elements of Mg,mpA,Jq
by maps with marked points at fixed positions; of course there is no actual constraint on the movement of the
marked points, but this freedom is seen in our setup by varying j in T instead of varying the points ζ1, . . . , ζm.
This is a notable difference from the setup in [OZ09].
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To prove that the constrained regularity condition can be achieved generically, fix Jref P
J pM,ω ; U , Jfixq and a suitable sequence of positive numbers εν Ñ 0, and consider a Banach
manifold Jε of almost complex structures in J pM,ω ; U , Jfixq that are Cε-close to Jref (cf. §5.4).
This gives rise to two universal moduli spaces,

U
˚pJεq :“

 pu, Jq ˇ̌ J P Jε and u PMg̊,mpA, Jq
(

and xU ˚pJε ; ℓ1, . . . , ℓmq :“
!
pu, Jq ˇ̌ J P Jε and u P xMg̊,mpA, J ; ℓ1, . . . , ℓmq

)
,

where we abbreviate by

Mg̊,mpA, Jq ĂMg,mpA, Jq,xMg̊,mpA, J ; ℓ1, . . . , ℓmq Ă xMg,mpA, J ; ℓ1, . . . , ℓmq
the subspaces defined via the condition that u be somewhere injective and pass through U . As
is well known, U ˚pJεq is a separable and metrizable smooth Banach manifold if εν converges to
0 fast enough, and for rpΣ, j0,Θ, u0qs PMg̊,mpA, J0q, a neighborhood of pu0, J0q in U ˚pJεq can
be identified with the zero-set of a smooth section

B̄ : T ˆ B ˆ Jε Ñ E : pj, u, Jq ÞÑ B̄Jpuq,
where E now denotes the Banach space bundle with fibers

Epj,u,Jq “W k´1,p
`
HomCppTΣ, jq, pu˚TM, Jqq˘.

The tangent space Tpu0,J0qU ˚pJεq is the kernel of the surjective operator

L :“ DB̄pj0, u0, J0q : Tj0T ‘W k,ppu0̊TMq ‘ TJ0Jε Ñ W k´1,ppHomCpTΣ, u0̊TMqq
py, η, Y q ÞÑ J0 ˝ Tu0 ˝ y `Du0η ` Y ˝ Tu0 ˝ j0,

where Du0 is the linearized Cauchy-Riemann operator associated to u0 : pΣ, j0q Ñ pM,J0q. We
can again define the smooth jet evaluation map

(A.2) ev : B̄´1p0q Ñ Jetℓ1J pMq ˆ . . .ˆ JetℓmJ pMq
and identify a neighborhood of pu0, J0q in xU ˚pJε ; ℓ1, . . . , ℓmq with ev´1pZq. The main technical
ingredient behind Proposition A.1 is now the following.

Lemma A.3. If εν Ñ 0 fast enough, then the jet evaluation map (A.2) is a submersion.

Proof. We need to show that for any X P Tevpu0qpJetℓ1J pMq ˆ . . . ˆ JetℓmJ pMqq, there exists an
element py, η, Y q P kerL with

d evpu0qη “ X.

Let us first observe that this problem can be solved locally near the marked points: in fact,
there exists a smooth section η P Γpu0̊TMq with

Du0η “ 0 near Θ and d evpu0qη “ X.

This follows from the local existence theorem for J-holomorphic curves with prescribed holo-
morphic derivatives at a point, cf. [Wena, Theorem 2.100]. More precisely, choose a smooth path

γ “ pγ1, . . . , γmq : p´δ, δq Ñ Jetℓ1J pMqˆ . . .ˆJetℓmJ pMq with γp0q “ evpu0q and 9γp0q “ X. Then
the local existence theorem provides for each i “ 1, . . . ,m a smooth family of J-holomorphic

curves u
piq
τ : Dǫ ÑM defined on sufficiently small disks Dǫ Ă C such that the holomorphic ℓi-jet

represented by u
piq
τ is γipτq for each τ . The desired section η P Γpu0̊TMq can now be constructed

by writing it in our chosen holomorphic coordinates near each marked point ζi as Bτupiqτ |τ“0 and
then extending it arbitrarily outside these neighborhoods.

Given η as above, we aim now to find a pair pξ, Y q PW k,ppu0̊TMq ‘ TJ0Jε such that

Lp0, η ` ξ, Y q “ Lp0, ξ, Y q `Du0η “ 0 and d evpu0qξ “ 0,
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in which case p0, η ` ξ, Y q P Tpu0,J0qU ˚pJεq and d evpu0, J0qp0, η ` ξ, Y q “ X. We will use

the weighted Sobolev spaces described in §3.2. Let 9Σ :“ ΣzΘ, and assume without loss of
generality that u´1

0 pUq Ă Σ is disjoint from Θ; this can be achieved at the cost of shrinking U

and therefore the space of perturbations Jε. As a consequence, Y ˝ Tu0 ˝ j0 now has compact
support in 9Σ for any Y P TJ0Jε. Using the fixed holomorphic coordinates on neighborhoods of
marked points ζi P Θ, we can identify them biholomorphically with half-cylinders r0,8q ˆ S1

and fix trivializations of u0̊TW on these neighborhoods to define weighted Sobolev norms and
a bounded linear map

9Du0 : W k,p,δpu0̊TM | 9Σq ÑW k´1,p,δ
`
HomCpT 9Σ, u0̊TMq| 9Σ

˘
,

where sections η of class W k,p,δ are required to satisfy eδsη PW k,ppr0,8q ˆ S1q when expressed
in the chosen trivialization and holomorphic coordinates ps, tq P r0,8q ˆ S1 on each cylindrical

end near Θ. As explained in §3.2, 9Du0 is asymptotic to the trivial asymptotic operator at each
puncture and is thus Fredholm for any δ P Rz2πZ. We claim that whenever this condition is
satisfied, the linear map

Lδ :W
k,p,δpu0̊TM | 9Σq ‘ TJ0Jε ÑW k´1,p,δ

`
HomCpT 9Σ, u0̊TMq| 9Σ

˘
pξ, Y q ÞÑ 9Du0ξ ` Y ˝ Tu0 ˝ j0

is surjective. The proof is more or less standard: we start with the case k “ 1 and note that
since 9Du0 is Fredholm, Lδ has closed range, so it is not surjective if and only if there exists a
nontrivial section λ P pLp,δq˚ “ Lq,´δ for 1{p` 1{q “ 1 which is L2-orthogonal to the images of

both η ÞÑ 9Du0η and Y ÞÑ Y ˝Tu0 ˝ j0. Since u0 has an injective point z0 P 9Σ with upz0q P U , the
latter implies that λ vanishes near z0; this depends on εν converging to 0 fast enough for TJ0Jε
to contain an abundance of bump functions with arbitrarily small support. The former implies
in turn that λ is a weak solution to the formal adjoint equation 9Dů0

λ “ 0 and is therefore
smooth with isolated zeroes, giving a contradiction. The case of general k P N follows from this
via elliptic regularity, namely Lemma 3.11.

With this claim in place, we observe that ´Du0η vanishes near Θ and thus restricts to 9Σ as
a section of class W k´1,p,δ for any δ ą 0, thus we can find ξ P W k,p,δpu0̊TM | 9Σq and Y P TJ0Jε
such that

Lp0, ξ, Y q “ ´Du0η on 9Σ.
Since Y has compact support in 9Σ and Du0η “ 0 near Θ, this equation implies Du0ξ “ 0 near Θ.
The continuous inclusion W k,p,δ ãÑ C0 implies that ξ also has a continuous extension over Σ
that vanishes on Θ; moreover, since (A.1) implies a continuous inclusion W k,p ãÑ C1, ξ has
a bounded first derivative on the cylindrical ends, implying via a short computation that for
1 ă q ă 2, the Lq-norm of its derivative on punctured disk-like neighborhoods of Θ is finite. It
follows that the extension of ξ over the punctures is in W 1,q on Σ, and elliptic regularity then
implies that it is smooth everywhere. Finally, the exponential weight condition implies that in
each holomorphic coordinate system identifying the neighborhood of a marked point ζi P Θ with
D such that ζi is at the origin, we have

|ξpzq| ď c|z|δ{2π
for some constant c ą 0. But the choice of δ ą 0 in this discussion was arbitrary, so choosing it
large enough, we can arrange for ξ to have vanishing derivatives of arbitrarily large finite order
at Θ, proving d evpu0qξ “ 0. �

The lemma implies that xU ˚pJε ; ℓ1, . . . , ℓmq is a separable and metrizable smooth Banach
manifold, so we can now apply the Sard-Smale theorem to the projectionxU ˚pJε ; ℓ1, . . . , ℓmq Ñ Jε : pu, Jq ÞÑ J,

giving a Baire subset of Jε for which xMg̊,mpA, J ; ℓ1, . . . , ℓmq is a manifold of the correct dimen-
sion, and the countable intersection of these subsets for all g, m, A and pℓ1, . . . , ℓmq is again
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comeager in Jε, proving that there is a C8-dense subset of J pM,ω ; U , Jfixq for which the state-
ment of the theorem holds. To turn this into a Baire subset of J pM,ω ; U , Jfixq, one can use the

standard Taubes trick (see e.g. [Wena, §4.4.2]): present xMg̊,mpA, J ; ℓ1, . . . , ℓmq as a countable
union of compact subsets, and associate to each one a set of regular almost complex struc-
tures, which is open by construction and dense due to the argument above, so its intersection is
comeager.

Remark A.4. Lemma A.3 implies that for generic J , the jet evaluation map can be made
transverse to any given submanifold, hence this method can be used to understand any moduli
space of holomorphic curves with marked points satisfying conditions on their derivatives, e.g. the
incidence/tangency conditions studied by Cieliebak-Mohnke [CM07, CM18] or McDuff-Siegel
[MS].

Remark A.5. The assumption 2g ` m ě 3 misses only four special cases, and for these the
discussion above is modified as follows:

(1) The automorphism group AutpΣ, j0,Θq is not finite, but is instead a nontrivial Lie group;
(2) The usual formula dim T “ 6g´6`2m for the dimension of Teichmüller space is wrong.

In fact, these two differences cancel each other out in the sense that

dim T ´ dimAutpΣ, j0,Θq “ 6g ´ 6` 2m,

which is why the stated formulas for the virtual dimensions of the moduli spaces Mg,mpA, Jq
and Mg,mpA, J ; ℓ1, . . . , ℓmq remain correct in these non-stable cases. In the cases with genus
zero, Teichmüller space is trivial and there is thus no need to include a Teichmüller slice in the
argument; the only difference is then the fact that dividing B̄´1

J p0q by AutpΣ, j0,Θq changes its
dimension. There is no need to discuss the non-stable genus one case here since that case also
has m “ 0, and thus does not involve critical point constraints.

Appendix B. Super-rigid curves are isolated

In this appendix we prove the following precise version of the statement that the multiple
covers of a super-rigid curve form an open and closed subset of the ambient moduli space.

Proposition B.1. Suppose pM,Jkq is a sequence of almost complex manifolds with Jk Ñ J8
in C8 on some compact subset containing a super-rigid J8-holomorphic curve u8 : pΣ, j8q Ñ
pM,J8q. Then for sufficiently large k, there exists a sequence of Jk-holomorphic curves uk :
pΣ, jkq Ñ pM,Jkq with jk Ñ j8 and uk Ñ u8 in C8, and if vk is any sequence of smooth
closed Jk-holomorphic curves Gromov-convergent to a stable nodal J8-holomorphic curve with
image contained in u8pΣq, then for all k sufficiently large, every vk is either a biholomorphic
reparametrization or a multiple cover of uk.

Note that this statement belongs to the almost complex category and makes no reference to
any symplectic structure. Other than that detail, a nearly identical statement has been proved
before by Zinger, see [Zin11, Prop. 3.2]. The proof given below is essentially the same and is
included mainly for the sake of completeness; it just requires the extra step of introducing an
auxiliary symplectic structure in order to use Gromov’s compactness theorem. Recall from §2.1
that if u PMgpA, Jq and d ě 1 and h ě 0 are integers, we denote byĎMhpd;uq Ă ĎMhpdA, Jq
the moduli space of all stable nodal d-fold covers of u with arithmetic genus h.

Suppose Jk Ñ J8 is a C8-convergent sequence of almost complex structures on a manifold
M , and rpΣ, j8, u8qs P MgpA, J8q is a super-rigid curve. Then u8 is Fredholm regular with
index 0, so the implicit function theorem implies the existence of curves uk : pΣ, jkq Ñ pM,Jkq
for sufficiently large k such that jk Ñ j8 and uk Ñ u8 in C8; these curves are unique up
to biholomorphic reparametrization, and are also simple and immersed for sufficiently large k.
Assume vk P MhpdA, Jkq is a sequence of Jk-holomorphic curves converging to a nodal cover
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ũ P ĎMhpd;u8q for some d ą 0. We will show that if the curves vk are not covers of uk for all
sufficiently large k, then rescaling the normal fibers near uk as k Ñ 8 gives rise to a nontrivial
section in the kernel of the normal Cauchy-Riemann operator on some cover of u8, contradicting
super-rigidity.

Choose a convergent sequence of Jk-invariant Riemannian metrics and corresponding Levi-
Civita connections ∇k. Since the maps uk are immersed, we can define Jk-invariant normal
bundles Nuk Ñ Σ as the orthogonal complements of im duk. These are all isomorphic as real
vector bundles, so we can identify them all with the real bundle N :“ Nu8 Ă u8̊TM carrying
a sequence of complex structures

pN,Jkq πÑ pΣ, jkq,
and then use the sequence of exponential maps determined by ∇k to define a C8-convergent
sequence of immersions

Ψk : N pΣq ÑM

of some fixed neighborhood N pΣq Ă N of the zero section Σ Ă N onto some neighborhood of

ukpΣq, such that Ψk|Σ “ uk. Let pJk “ Ψk̊Jk for k “ 1, 2, 3, . . . ,8, so that for k sufficiently

large, the curves vk can be identified with pJk-holomorphic curves in the total space of N , and
each uk is identified with the zero section.

Let πN : u8̊TM Ñ N denote the normal projection, so that p∇ :“ πN ˝ ∇8 induces a
connection on N Ñ Σ (as a real vector bundle), and thus defines a splitting into horizontal and
vertical subbundles

TN “ HN ‘ V N.

This splitting is invariant under the diffeomorphisms on N defined by real scalar multiplication.
For z P Σ and η P Nz, the fibers in the splitting admit canonical identifications

Hpz,ηqN “ TzΣ, Vpz,ηqN “ Nz,

and we can write pJk with respect to the splitting as

pJkpz, ηq “ ˆ
αkpz, ηq βkpz, ηq
γkpz, ηq δkpz, ηq

˙
,

for some smoothly varying linear maps αkpz, ηq : TzΣÑ TzΣ, βkpz, ηq : Nz Ñ TzΣ and so forth.
Since uk : pΣ, jkq Ñ pM,Jkq is Jk-holomorphic and the fibers of Nuk are Jk-invariant along uk,
we have

αkpz, 0q “ jkpzq, δkpz, 0q “ Jkpukpzqq, βkpz, 0q “ 0, γkpz, 0q “ 0.

Now for any constant r ą 0, the diffeomorphism

Φr : N Ñ N : pz, ηq ÞÑ pz, rηq
transforms pJk to pJrkpz, ηq :“ Φr̊ pJk|pz,ηq “ ˆ

αkpz, rηq rβkpz, rηq
1
r
γkpz, rηq δkpz, rηq

˙
,

so given any positive sequence rk Ñ 0, the sequence pJrkk converges in C8 on compact subsets of
N to

(B.1) pJ08pz, ηq :“
ˆ

j8pzq 0
dγ8pz, 0qη J8pu8pzqq

˙
.

Lemma B.2. A neighborhood of Σ in N admits a symplectic form ω that tames pJ08.

Proof. We use a variation on Thurston’s method for constructing symplectic forms on fibrations
(cf. [MS17, Theorem 6.1.4]). For any open subset U Ă Σ, let ΛpUq denote the space of smooth
1-forms λ on π´1pUq satisfying the following conditions:

(i) At any point pz, 0q P U Ă N |U in the zero section,

λ|pz,0q “ 0 and dλ|TzΣˆNz “ 0;
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(ii) The restriction of dλ to fibers in π´1pUq defines a symplectic vector bundle structure on
N |U taming J8.

We observe that ΛpUq is nonempty whenever there exists a complex trivialization of pN,J8q
over U , and moreover, it is C8-convex in the sense that if λ0, λ1 P ΛpUq, then

pψ ˝ πqλ1 ` p1´ ψ ˝ πqλ0 P ΛpUq
for every smooth function ψ : U Ñ r0, 1s. It follows that an element of ΛpΣq can be constructed
by patching together local constructions via a partition of unity.

Now given λ P ΛpΣq, choose an area form σ on Σ taming j8. Then for a sufficiently large
constant K ą 0,

ω :“ Kπ˚σ ` dλ

is a closed 2-form that tames pJ08 at Σ and hence also in a neighborhood of Σ. �

Remark B.3. The above proof did not use any special properties of pJ08 except that the zero
section is pseudoholomorphic and the normal fibers along the zero section are also complex. The
same argument shows that for any embedded closed J-holomorphic curve in any almost complex
manifold pM,Jq, a neighborhood of the curve admits a symplectic form that tames J .

Lemma B.4. Suppose ψ : rΣ Ñ Σ is a smooth map, ̃ is a complex structure on rΣ, and

ξ P Γpψ˚Nq is a smooth section along ψ. Then the map z ÞÑ ξpzq from rΣ into the total space

of N is a pseudoholomorphic map prΣ, ̃q Ñ pN, pJ08q if and only if ψ : prΣ, ̃q Ñ pΣ, j8q is
holomorphic and ξ P kerDN

u8˝ψ.

Proof. Denote by v : rΣ Ñ N the smooth map into the total space of N defined by vpzq :“
ξpzq P Nψpzq Ă N . Then using (B.1), the equation Tv ` pJ08 ˝ Tv ˝ ̃ “ 0 translates into the two
equations

dψpzq ` j8pψpzqq ˝ dψpzq ˝ ̃pzq “ 0,

and p∇ηpzq ` J8pu8pψpzqqq ˝ p∇ηpzq ˝ ̃` rdγ8pψpzq, 0qηpzqs dψpzq ˝ ̃ “ 0

for z P rΣ. The first equation says that ψ : prΣ, ̃q Ñ pΣ, j8q is holomorphic, and under this
assumption, the second matches DN

u8˝ψη “ 0 after observing

rdγ8pψ, 0qηs ˝ dψ ˝ ̃ “ πN ˝ p∇ηJ8q ˝ T pu8 ˝ ψq ˝ ̃.
�

We now prove Proposition B.1 as follows. Arguing by contradiction, assume after taking a

subsequence that the curves vk : prΣ, ̃kq Ñ pM,Jkq are not covers of uk for any k as k Ñ 8.
Choose a symplectic form ω near the zero section in N “ Nu8 as given by Lemma B.2, and

choose δ ą 0 such that ω tames pJ08 on tη P N | |η| ă 2δu. Writing vkpzq “ ξkpψkpzqq for

sequences ψk : rΣÑ Σ and ξk P Γpψk̊Nq, we have

rk :“ 1

δ
max
zPrΣ |ξkpzq| ą 0

and rk Ñ 0 by assumption. Then

wk :“ Φ´1
rk
˝ vk : prΣ, ̃kq Ñ pN, pJrkk q

is a sequence of smooth pseudoholomorphic curves in a compact subset of the neighborhood
tη P N | |η| ă 2δu, which can be written as wkpzq “ ηkpψkpzqq where ηk “ 1

rk
ξk satisfies

(B.2) max
zPrΣ |ηkpzq| “ δ.

Note that since vk converges to a nodal curve in ĎMhpd;u8q, we can also assume the maps

ψk : rΣÑ Σ have fixed degree d. Then since pJrkk Ñ pJ08 and the latter is tamed by ω in the region
under consideration, Gromov compactness applies to wk and yields a subsequence convergent
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to a stable nodal curve w8 P ĎMhpdrΣs, pJ08q. By Lemma B.4, each smooth component w of w8
has the form wpzq “ ηpψpzqq where ψ : prΣ, ̃q Ñ pΣ, j8q is holomorphic and DN

u8˝ψη “ 0. We

claim there must be at least one such component for which degpψq ą 0 and η ‰ 0. Indeed, (B.2)
implies that there is at least one component with η ‰ 0. If every such component also satisfies
degpψq “ 0, then η is a nonzero constant on this component, as the normal operator DN

u8˝ψ
is simply the standard Cauchy-Riemann operator on a trivial bundle when ψ is constant. But
since degpψkq “ d ą 0, any component with degpψq “ 0 is necessarily connected by a chain of
nodes to another component with degpψq ą 0, and on this component, η is nonzero at the nodal
point. This implies the existence of a nontrivial element η P kerDN

u8˝ψ for some positive degree
holomorphic cover ψ, and thus violates super-rigidity. The proof of Proposition B.1 is complete.

Appendix C. The Sard-Smale theorem for C8-subvarieties
The proof of Petri’s condition in §5 requires a version of the Sard-Smale theorem for objects

that are not Banach manifolds but are almost as nice in some analytically quantifiable sense.
The results in this appendix are easy consequences of standard results in the analysis of smooth
Banach manifolds, but expresed in a slightly more general framework.

Suppose X is a smooth Banach manifold and Y Ă X is a subset. Given k P N, we will say
that Y is a C8-subvariety of codimension at least k if for every x P Y , there exists a
neighborhood U Ă X of x, a finite-dimensional vector space V and a smooth map f : U Ñ V

such that:

(1) Y X U “ f´1p0q;
(2) rankdf pxq ě k.

Proposition C.1. If Y Ă X is a C8-subvariety of codimension at least k, then for every x P Y ,

there exists a smooth Banach submanifold rY Ă X of codimension k such that a neighborhood of

x in Y is contained in rY .

Proof. Given x P Y , we have Y X U “ f´1p0q for some open neighborhood x P U Ă X and
smooth map f : U Ñ V , with V a finite-dimensional vector space and dim im df pxq ě k. Then
we can choose a linear map Λ : V Ñ Rk whose restriction to im df pxq Ă V is surjective onto Rk,

hence Λ˝df pxq : TxX Ñ Rk is surjective. Define rY Ă X to be a neighborhood of x in pΛ˝f q´1p0q.
The implicit function theorem implies that this is a Banach submanifold of codimension k if the
neighborhood is taken sufficiently small. �

The discussion so far makes sense under a very unrestrictive definition of the term “Banach
manifold,” e.g. in [Lan99], such objects need not even be Hausdorff. In practice, of course,
the Banach manifolds one encounters in applications are typically at least metrizable (hence
Hausdorff and paracompact) and separable. The latter is the condition required for the Sard-
Smale theorem [Sma65]. We will need the following standard bit of general topology:

Lemma C.2. If X is a paracompact and separable topological space, then every open cover of
X has a countable subcover. �

The following is the main result of this appendix. The proof of Theorem 5.9 uses the special
case in which all manifolds are finite dimensional, so the Fredholm assumption is automatic and
only the finite-dimensional version of Sard’s theorem is needed. The infinite-dimensional version
with the Sard-Smale theorem is required for the proof of Theorem 5.26.

Proposition C.3. Assume U and Z are separable and metrizable smooth Banach manifolds,
π : U Ñ Z is a smooth Fredholm map, and X Ă U is a C8-subvariety of codimension at
least k P N. For each z P Z, denote

Mpzq :“ π´1pzq Ă U , Xpzq :“ X XMpzq ĂMpzq,
and let Zreg

π Ă Z denote the Baire subset consisting of regular values of π. Then there exists
a further Baire subset Zreg

X Ă Z such that for all z P Zreg
π X Z

reg
X , Xpzq is a C8-subvariety of

codimension at least k in Mpzq.
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Proof. Suppose x P X, so by assumption, there exists a neighborhood

x P Ux Ă U ,

a finite-dimensional vector space Vx and a smooth map fx : Ux Ñ Vx such that f´1
x p0q “ XXUx

and rank dfxpxq ě k. After possibly shrinking Ux to a smaller neighborhood of x, we can use the
argument in the proof of Proposition C.1 to find a linear map Λx : Vx Ñ Rk such that 0 P Rk is
a regular value of Λx ˝ fx : Ux Ñ Rk andĂUx :“ pΛx ˝ fxq´1p0q Ă U

is a smooth Banach submanifold of codimension k containing X XUx.
Since U is metrizable and separable, X also has both of these properties, thus Lemma C.2

implies that we can find a sequence txnu8n“1 of points in X such that every x P X lies in at least
one of the neighborhoods Uxn . Let Z

reg
n Ă Z denote the set of regular values of the projectionĂUxn

πÝÑ Z,

The latter is a smooth Fredholm map since ĂUxn is a smooth finite-codimensional submanifold
of U . The Sard-Smale theorem thus implies that Zreg

n Ă Z is a Baire subset, and consequently,

Z
reg
X :“

8č
n“1

Zreg
n Ă Z

is also a Baire subset.
Now for any z P Zreg

X X Z
reg
π and x P Xpzq, pick n P N such that x P Uxn , and consider the

restricted map
gn : Mpzq XUxn Ñ Vxn : x ÞÑ fxnpxq,

whose zero-set is a neighborhood of x in Xpzq. Regularity and the implicit function theorem

imply that ĂUxn Ă U and Mpzq Ă U are transverse submanifolds, so that 0 is also a regular
value of Λxn ˝ gn : Mpzq XUxn Ñ Rk. It follows that Λxn ˝ dgnpxq : TxMpzq Ñ Rk is surjective,
and thus rankdgnpxq ě k. �

The results of this discussion combine to yield the following useful consequence:

Corollary C.4. In the setting of Proposition C.3, if the smooth Fredholm map π : U Ñ Z

satisfies ind dπpxq ă k for all x P U , then Xpzq is empty for generic z P Z. �

Appendix D. History of errors

This appendix has been added (at the suggestion of an anonymous referee) in the interest of
transparency: its purpose is to clarify more precisely what went wrong with previous attempts
to prove Theorem A, and how those attempts are related to the proof in this paper. There were
at least two claims of proofs of super-rigidity that were publicized and then withdrawn before
I ever started thinking about the problem, but since it is not my place to comment on those, I
will only discuss the attempts that I have been involved in.

D.1. Analytic perturbation theory. The original version of [GW17] was a preprint under a
different title [GW], which claimed a proof of Theorem A (also in dimension four) for embedded
index 0 curves that are fully contained in the perturbation domain U Ă M . The ideas behind
that argument were almost totally disjoint from those of the present paper, excepting the super-
ficial feature that both derive originally from (separate) ideas developed in Taubes’s work on the
Gromov invariant. The literature on the Gromov invariant contains two quite different methods
to prove transversality for the doubly covered tori that must be counted: one (from [Tau96a])
is based on a splitting of Cauchy-Riemann type operators with respect to irreducible represen-
tations, and gives rise to dimension-counting arguments that provided the original inspiration
for this paper. The other, from [Tau96b, Proof of Prop. 7.1, Step 7], is in some respects more
novel: it is based on a Weitzenböck formula for Cauchy-Riemann type operators and analytic
perturbation theory. In the setting of [Tau96b], where one needs to prove that a Z2-equivariant
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index 0 Cauchy-Riemann type operator D : ΓpEq Ñ ΓpF q on a trivial line bundle E Ñ T2 can
always be perturbed equivariantly to one that is invertible, these two ingredients combine in the
following way:

(1) The Weitzenböck formula implies that for any complex-antilinear bundle isomorphism
A : E Ñ F , the deformed operator Dτ :“ D` τA is invertible for all τ " 0.

(2) Since the deformed operators Dτ depend analytically on the parameter τ P R, analytic
perturbation theory as in [Kat95] implies that the set tτ P R | Dτ is not invertibleu is ei-
ther R or is discrete. The first possibility has already been ruled out via the Weitzenböck
formula, so it follows that Dτ is invertible for all τ ‰ 0 in some neighborhood of 0.

This technique has the appealing feature that it does not care how symmetric the perturbation
term A P ΓpHomCpE,F qq is, thus it can work equally well for simple holomorphic curves and
multiple covers. The preprint [GW] was motivated by the insight that both parts of the argument
can be made to work somewhat more generally: the operator D can have negative index if we
talk about injectivity of Dτ instead of invertibility, and E can also be a higher-rank bundle if A
is required to satisfy an extra condition which, for topological reasons, can be assumed without
loss of generality. Applying the argument to normal Cauchy-Riemann operators of branched
covers then produces the following result:

Lemma D.1 ([GW17]). Suppose dimM ě 4, J P J pM,ω ; U , Jfixq, v : pΣ, jq Ñ pM,Jq is an
embedded closed J-holomorphic curve of index 0 with image contained in U , and u “ v ˝ϕ where

ϕ : prΣ,rq Ñ pΣ, jq is a holomorphic branched cover of degree d P N between closed connected
Riemann surfaces. Then there exists a smooth 1-parameter family tJτ P J pM,ω ; U , JfixquτPp´ǫ,ǫq
such that J0 “ J , v and u are Jτ -holomorphic for every τ , and the resulting normal Cauchy-
Riemann operators DN

u,τ for u with respect to Jτ are injective for all τ ‰ 0. �

A proof of generic super-rigidity would follow via relatively straightforward topological argu-
ments if one instead had the following stronger statement:12

Lemma(?) D.2. In the setting of Lemma D.1, the family of almost complex structures tJτ P
J pM,ω ; U , JfixquτPp´ǫ,ǫq can be chosen so that for some neighborhood Opϕq of ϕ in the moduli

space of d-fold holomorphic branched covers, the normal Cauchy-Riemann operators DN
v˝ϕ1,τ are

injective for all τ ‰ 0 and ϕ1 P Opϕq.
Unfortunately, Lemma D.1 does not imply Lemma D.2, as analytic perturbation theory gives

no obvious way to control the size of the range of parameter values τ P p´ǫ, ǫqzt0u for which
injectivity is guaranteed as ϕ varies in the moduli space of branched covers. This detail was
overlooked in [GW]; the crucial gap in our argument was pointed out by Ionel and Parker.
What can still be salvaged from Lemma D.1, and eventually appeared as the main result of the
published paper [GW17], is a result similar to Theorem B about transversality for unbranched
covers: in the unbranched case there is no distinction between Lemmas D.1 and D.2 because
the moduli space that ϕ lives in is discrete.

I currently believe the proof of Theorem A originally attempted in [GW] to be unsalvageable.
There are also strong philosophical arguments for preferring the approach of the present paper
over analytic perturbation theory: notably, the use of the Weitzenböck formula requires a more
global class of perturbations (u must be contained in the perturbation domain U Ă M rather
than merely intersecting it), and the whole strategy seems completely unsuitable for studying
the wall-crossing phenomena mentioned in §2.4. On the other hand, the Weitzenböck argument
(minus analytic perturbation theory) has been usefully exploited by other authors in certain
special settings where geometric information removes the need to assume τ " 0; see [LP07,IP18].

12The question mark in the statement indicates that I do not know whether Lemma D.2 is true, and I do not
have a strong enough opinion about it to call it a conjecture.
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D.2. Earlier versions of the present paper. The main ideas behind the proofs of Theo-
rems A–D have changed very little since the first version of this paper appeared on the arXiv,
but one important technical detail has changed a lot: the proof that generic Cauchy-Riemann
type operators satisfy Petri’s condition.13 The intuition from the beginning had been that Petri’s
condition was the main analytical lemma needed for the proof of Theorem D (on which Theo-
rems A–C all depend), and that it should hold due to unique continuation except for some special
class of non-generic Cauchy-Riemann type operators. Up to version 3 on the arXiv [Wenc], a
much more naive approach to this lemma was taken, in which the word “generic” was given a
precise characterization:

(False) Lemma D.3 ([Wenc, Corollary 5.2 and Lemma 3.11]). Suppose E,F Ñ Σ are complex
vector bundles and D : ΓpEq Ñ ΓpF q is a Cauchy-Riemann type operator such that the bundle
map D0,1 P ΓpHomCpE,F qq given by the complex-antilinear part of D defines an invertible map
Ez Ñ Fz at some point z P Σ. Then D satisfies Petri’s condition to infinite order at z.

It is relatively easy to show (see [Wenc, Lemma 6.2]) that the hypothesis on invertibility of
complex-antilinear parts is generic, i.e. all normal Cauchy-Riemann operators of J-holomorphic
curves satisfy it for generic (and necessarily non-integrable) J . The benefit of this condition is
that it forces kerD Ă ΓpEq and kerD˚ Ă ΓpF q to be totally real subspaces, meaning that any
real-linearly independent set of vectors in one of these spaces is also complex-linearly indepen-
dent. The original reason to believe in Lemma D.3 was the elementary observation mentioned
in Example 5.5 that for complex-linear Cauchy-Riemann type operators, which can always be
expressed locally as the standard one, the complex version of Petri’s condition (involving com-
plex tensor products) does hold to infinite order at every point; a proof of this may be found
on page 48 of [Wenc]. Lemma D.3 was thus an attempt to fit real-linear Cauchy-Riemann type
operators into a complex-linear context with the aid of the totally real hypothesis. The proof
was destroyed by a careless mistake in linear algebra: Equations (5.3) and (5.4) in [Wenc] define
certain functions ηνα and ξµβ that are meant to be in kerD and kerD˚ respectively because they
are linear combinations of functions in those spaces, but in fact, the coefficients in those linear
combinations are complex rather than real, while D and D˚ are only real-linear. Similarly,
the claim in the final paragraph of that proof that certain linear combinations

ř
i c
ijξi andř

j c
ijηj satisfy linear Cauchy-Riemann or anti-Cauchy-Riemann equations does not hold, again

because the coefficients cij are complex instead of real. These errors were noticed by Doan and
Walpuski while working on their own alternative exposition of the super-rigidity proof [DWb].
Example 5.7 was found later, showing that Lemma D.3 is in fact false.

After Lemma D.3 fell apart, the intuition remained that the failure of the local Petri condition
for a Cauchy-Riemann type operator should be overdetermined in some sense, and the jet space
approach in the current §5 was then developed to make this intuition precise. Lemma D.3
has now been replaced by Corollary 5.10, whose proof is completely different from what was
attempted in [Wenc], and has an additional advantage over the earlier approach in that the jet
space formalism can potentially be applied to more general classes of operators beyond Cauchy-
Riemann (§5.2 has been written with this in mind). A more detailed informal discussion of the
fix may be found in the blog post [Wend].

For completeness, I should mention a somewhat serious but non-fatal error that was also
pointed out by Doan and Walpuski but corrected between arXiv versions 2 and 3 of this paper.
The definition of the walls appearing in Theorem D was slightly wrong in earlier versions,
because it was overlooked that in the splitting of the normal Cauchy-Riemann operator DN

u

into summands 9DN
u,θi

corresponding to irreducible representations θi, the kernels and cokernels

of these summands are always modules over the equivariant endomorphism algebra (R, C or

13The term “Petri’s condition” did not appear in the first three versions of this paper on the arXiv, but the
same notion was there under the label of “unique continuation for tensor products” and has sometimes also been
advertised as “quadratic unique continuation”. The current terminology was introduced by Doan and Walpuski
[DWb] after the first version of this paper appeared.
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H) of θi, and this structure must be respected in talking about their dimensions. The result
was a mistake in [Wenb, Theorem D] that was hard to spot, because the statement looked the
same as in the current version, but its meaning was different. The source of the problem was an
erroneous representation-theoretic dimension calculuation in [Wenb, Corollary 3.23], which was
stated without proof. A corrected version of that result appears in this version as Corollary 3.23,
with a proof given in the preceding paragraph.
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Poincaré Anal. Non Linéaire 13 (1996), no. 3, 337–379.

[HWZ99] , Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, Topics in
nonlinear analysis, 1999, pp. 381–475.

[HWZ17] , Applications of polyfold theory I: The polyfolds of Gromov-Witten theory, Mem. Amer. Math.
Soc. 248 (2017), no. 1179, v+218.

[Hut14] M. Hutchings, Lecture Notes on Embedded Contact Homology, Contact and Symplectic Topology,
Bolyai Society Mathematical Studies, vol. 26, Springer, 2014, pp. 389–484.

[Hut] , A magic trick for defining obstruction bundles. Blog post, available at
http://floerhomology.wordpress.com/2013/09/04/.

[IP18] E.-N. Ionel and T. H. Parker, The Gopakumar-Vafa formula for symplectic manifolds, Ann. of Math.
(2) 187 (2018), no. 1, 1–64.

[Kat95] T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin,
1995. Reprint of the 1980 edition.

[Kaw79] T. Kawasaki, The Riemann-Roch theorem for complex V -manifolds, Osaka Math. J. 16 (1979), no. 1,
151–159.

[Lan99] S. Lang, Fundamentals of differential geometry, Springer-Verlag, New York, 1999.
[LP07] J. Lee and T. H. Parker, A structure theorem for the Gromov-Witten invariants of Kähler surfaces, J.

Differential Geom. 77 (2007), no. 3, 483–513.
[LP12] , An obstruction bundle relating Gromov-Witten invariants of curves and Kähler surfaces,

Amer. J. Math. 134 (2012), no. 2, 453–506.
[LZ07] J. Li and A. Zinger, Gromov-Witten invariants of a quintic threefold and a rigidity conjecture, Pacific

J. Math. 233 (2007), no. 2, 417–480.
[LT98a] J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer.

Math. Soc. 11 (1998), no. 1, 119–174.
[LT98b] , Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, Topics

in symplectic 4-manifolds (Irvine, CA, 1996), First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA,
1998, pp. 47–83.

[MS12] D. McDuff and D. Salamon, J-holomorphic curves and symplectic topology, 2nd ed., American Math-
ematical Society Colloquium Publications, vol. 52, American Mathematical Society, Providence, RI,
2012.

[MS17] , Introduction to symplectic topology, 3rd ed., Oxford University Press, 2017.
[MS] D. McDuff and K. Siegel, Counting curves with local tangency constraints. Preprint arXiv:1906.02394,

to appear in J. Topol.
[OZ09] Y.-G. Oh and K. Zhu, Embedding property of J-holomorphic curves in Calabi-Yau manifolds for generic

J , Asian J. Math. 13 (2009), no. 3, 323–340.
[Pan99] R. Pandharipande, Hodge integrals and degenerate contributions, Comm. Math. Phys. 208 (1999),

no. 2, 489–506.
[PT14] R. Pandharipande and R. P. Thomas, 13/2 ways of counting curves, Moduli spaces, London Math.

Soc. Lecture Note Ser., vol. 411, Cambridge Univ. Press, Cambridge, 2014.
[Par16] J. Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic

curves, Geom. Topol. 20 (2016), no. 2, 779–1034.
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