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ABSTRACT. We develop new techniques to study regularity questions for moduli spaces of pseu-
doholomorphic curves that are multiply covered. Among the main results, we show that un-
branched multiple covers of closed holomorphic curves are generically regular, and simple in-
dex 0 curves in dimensions greater than four are generically super-rigid, implying e.g. that the
Gromov-Witten invariants of Calabi-Yau 3-folds reduce to sums of local invariants for finite
sets of embedded curves. We also establish partial results on super-rigidity in dimension four
and regularity of branched covers, and briefly discuss the outlook for bifurcation analysis. The
proofs are based on a general stratification result for moduli spaces of multiple covers, framed
in terms of a representation-theoretic splitting of Cauchy-Riemann operators with symmetries.
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1. INTRODUCTION

Motivation. The issue of transversality in Gromov’s theory of pseudoholomorphic curves [Gro85]
has always been problematic, and has attracted renewed interest in recent years. While many
powerful symplectic invariants such as Gromov-Witten theory, Hamiltonian Floer homology
and symplectic field theory are based on holomorphic curves, most of them run into severe
technical complications unless multiply covered curves can be excluded, thus necessitating rather
sophisticated techniques that typically replace the standard nonlinear Cauchy-Riemann equation
by an abstract perturbation, see e.g. [LT98bl[F099, Rua99,Siel[CM0OT, HWZ17, Parl6]. Aside
from the technical challenges that these methods pose, they are non-ideal for many applications:
for instance abstract perturbations destroy intersection theory in symplectic 4-manifolds, and
in Calabi-Yau 3-folds they obscure information that one might hope to find in the geometric
relationship between simple curves and their multiple covers, as exemplified by the Gopakumar-
Vafa formula [GVIBPO1L[PT14.TP18[DIW].

The motivating principle of this paper is in some sense orthogonal to that of abstract pertur-
bations: our aim will be to extend the transversality theory for the standard pseudoholomorphic
curve equation as far as it can reasonably be pushed, i.e. to prove transversality when it is pos-
sible, and in other cases to isolate the precise phenomena which make it impossible and explain
what is true instead. Let us start by singling out two situations in which this program is not
obviously hopeless.

Example 1.1. If u : (£,j) — (M, J) is a closed J-holomorphic curve and ¢ : (£,7) — (2, ) is
an unbranched cover of closed connected Riemann surfaces with degree d € N, then the virtual
dimensions of the moduli spaces containing u and uo ¢ : (,) — (M, J), also known as the
indices of these two curves, are related by

ind(u o ¢) = d-ind(u).

Since ind(u o ¢) is then nonnegative whenever ind(u) > 0, there is no obvious reason why
u o ¢ could not achieve transversality generically, but traditional methods in the theory of
J-holomorphic curves do not prove this except when u o ¢ is simply covered, or in certain 4-
dimensional cases [HLS97], or more recently, when ind(u) = 0 if a sufficiently large space of
perturbed almost complex structures is allowed [GW17].

Example 1.2. Suppose u : (X,5) — (M, J) is a closed simply covered curve with index 0 and
v :(3,7) = (X,7) is a branched cover of closed connected Riemann surfaces with degree d € N
and Z(dp) = 0 as the algebraic count of branch points. Then combining the Riemann-Hurwitz
formula

(1.1) —x(2) +d- x(2) = Z(dyp)
with the standard index formula for closed holomorphic curves gives the relation
(1.2) ind(uop) =d-ind(u) — (n —3)Z(de) = —(n — 3)Z(dy),

where dimgp M = 2n. This shows that u o ¢ lives in a space of nonpositive virtual dimension
when dim M > 6 and thus cannot achieve transversality if ¢ has branch points, as the space
of holomorphic branched covers then has dimension 2Z(dy) > 0. It is interesting however to
observe that v must be immersed if J is generic, so it has a well-defined normal bundle N,, — 3,
and restricting the linearized Cauchy-Riemann operators for v and u o ¢ to the normal bundle

and its pullback gives operators DY and Dfxw with indices related by

ind(Dwa) = d-ind(DY) = (n —1)Z(dp) = —(n —1)Z(dy).
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The latter is always nonpositive, so D{Xw can be injective, and this condition has a geometric

meaning: it implies that wo ¢ can never be the limit of a sequence of somewhere injective curves
(see Proposition [B.I)). In fact, the only other curves near u o ¢ are other branched covers of the
form wo ¢ for ¢’ near ¢, and the cokernels of the operators DUNW define an obstruction bundle
over the space of branched covers which can be used to compute Gromov-Witten invariants.

This phenomenon is known as super-rigidity, see Definition 2.31

Considerable interest in super-rigidity has been motivated by the study of Gromov-Witten
invariants in Calabi-Yau 3-folds, where all moduli spaces of holomorphic curves without marked
points have virtual dimension zero. In this case it can be interpreted as a Morse-Bott condition
for families of “degenerate” (i.e. multiply covered) curves, so that the Gromov-Witten counts of
these curves are expressed by integrating Euler classes of obstruction bundles over finitely many
such families—these integrals define the so-called “multiple cover contributions,” also known as
the local Gromov-Witten invariants of the underlying embedded curves. A substantial body
of results has emerged during the past two decades on local Gromov-Witten invariants and
their consequences for Calabi-Yau 3-folds in the presence of the super-rigidity hypothesis, using
both algebro-geometric [Pan99,[BKLO1BPO1BP0O5BPO8| and symplectic methods [LZ07,Zin11]
DWa]. In spite of these developments, a general result establishing the super-rigidity hypothesis
itself has thus far been unavailable. In the algebraic category it is known to hold in some
cases and not in others [BP06], and while it was conjectured in [BP01] to hold generically in
symplectic manifolds, proofs have been found only in very special settings (e.g. [LPO7,LP12] for
certain Kéhler surfaces), and a strategy was even outlined in [LZ0T7] to disprove the conjecture
for higher genus curves.

Results. The first of the main results stated in §L.1] below settles the super-rigidity question for
symplectic manifolds of dimension at least six: by Theorem [Al super-rigidity does hold in this
setting for all simple closed J-holomorphic curves of index 0 if J is generic, and it also holds in
dimension four for curves of low genus. Complementary to this, we will see in Theorem [B] that
transversality holds for the unbranched multiple covers in Example [[LT], and we will also be able
to prove some transversality results for branched covers (Theorem [C]). The actual main result
of this paper is Theorem [D, which implies the aforementioned results by stratifying the space
of all multiply covered J-holomorphic curves into smooth submanifolds, with precise formulas
for their dimensions. The dimensions are determined by a general picture of Cauchy-Riemann
type operators with symmetries described in §2.2] which has its origins in Taubes’s work on
the Gromov invariant of symplectic 4-manifolds [Tau96al. As in Taubes’s paper, the approach
adopted here also lends itself to the study of bifurcations and wall crossing for multiple covers,
on which we will make some brief remarks in §2.4] but save the detailed examination for future
work.

The difficulty. As with any transversality result, the proof of our main theorem boils down to
establishing that a certain bounded linear operator is surjective. The type of operator that
arises has appeared before, e.g. in the context of wall-crossing arguments [Tau96al,IP18] (see
also [Eft16]), and it has previously been dealt with by various ad hoc methods that suffice for
certain specific applications, but would not be general enough for the problems studied here.
The solution to this difficulty is probably the most technically novel element in the present
paper: it is reduced to a local property of Cauchy-Riemann type operators known as Petri’s
condition, which involves a “decoupling” between the pointwise linear dependence relations for
local solutions of a linear Cauchy-Riemann type equation and of its formal adjoint equation.
Section [{ of this paper proves that Petri’s condition holds generically for Cauchy-Riemann type
operators, and this should be regarded as the main step that makes all of our other results
possible.
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QOutlook. While the results in this paper focus specifically on closed holomorphic curves, there
is no obvious obstruction to applying the same techniques to study punctured curves in sym-
plectic cobordisms. As with [Tau96a] and the Gromov invariant, this can be expected to have
important applications to the foundations of Embedded Contact Homology [Hutld], e.g. for
defining cobordism maps and proving invariance without reliance on Seiberg-Witten theory. It
also raises the intriguing possibility of localizing (in the sense of Corollary below) and/or
proving integrality results for invariants in symplectic field theory [EGHO00]. A few special cases
of super-rigidity in the punctured case have previously been observed in [Wenl0}FabI13|; those
examples were restricted to dimension four, but the results of the present article suggest that
super-rigidity is likely to be a considerably more general phenomenon.

Since the first version of this paper appeared, A. Doan and T. Walpuski have initiated a pro-
gram extending the equivariant transversality methods introduced here to more general classes
of elliptic problems; see [DWb]. More recently, Bai and Swaminathan [BS|] have also carried
out the first step in the bifurcation analysis proposed in §2.41 and applied it toward defining an
extension of Taubes’s Gromov invariant to Calabi-Yau 3-folds.

1.1. Super-rigidity and transversality theorems. To state the main results, assume (M, w)
is a symplectic manifold with

dim M = 2n > 4,

and Jgy is a smooth almost complex structure that is compatible with w, meaning that w(-, Jgy ")
defines a Riemannian metric on M. We fix also an open subset &/ < M with compact closure,
and consider the space

j(M7 w 7 Z/[, JﬁX)

of smooth w-compatible almost complex structures on M that match Jg; outside of U, with its
natural C*-topology.

Remark 1.3. The existence of a symplectic form on M is not required for any of the arguments
in this paper, but we are including it in the setup since it is important in applications—all
results could alternatively be stated and proved for the larger space of w-tame almost complex
structures, or for arbitrary almost complex structures on a smooth (not necessarily symplectic)
manifold.

Following the usual convention among symplectic topologists, we will say that a subset of a
topological space is a Baire subset if it is comeager, i.e. it is a countable intersection of open
and dense subsets. The intersection of a countable sequence of Baire subsets is again a Baire
subset, and by the Baire category theorem, any Baire subset of a complete metric space is dense.
We will say that a given property is true generically (e.g. for generic J) whenever there exists a
Baire subset of the space of all admissible data (e.g. in J(M,w ; U, Jay)) such that the property
holds for all choices of data in that subset.

Given J € J(M,w; U, Jgx), a closed connected Riemann surface (X, j) and a J-holomorphic
curve u : (X, 7) — (M, J), the index of u is the integer

(1.3) ind(u) = (n — 3)x(X) + 2¢1(u),
where we abbreviate ¢;(u) := {c1(T'M, J), [u]), [u] := u[X] € Ho(M). A closed and connected

J-holomorphic curve i : (£,7) — (M, J) is said to be a (d-fold) multiple cover of u if & = uop
for some holomorphic map ¢ : (i,j) — (X,7) of degree d > 2, and u is called simple if it is
nonconstant and is not a multiple cover of any other curve.

The notion of super-rigidity was outlined already in Example[[.2} see Definition 2.3]for a more
precise formulation. We will also use the term Fredholm reqular to refer to the standard notion
of transversality for moduli spaces of unparametrized J-holomorphic curves, cf. Proposition
below. In each of the following theorems, (M,w) is a symplectic manifold of dimension 2n with

a compatible almost complex structure Jgy, and & < M is an open subset with compact closure.
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Theorem A (super-rigidity). If dim M > 6, then there exists a Baire subset J"8 of the space
J(M,w; U, Jax) such that for all J € J™8, every simple J-holomorphic curve of index 0 that
intersects U is super-rigid. Moreover, this result also holds when dim M = 4 for all simple
index 0 curves of genus 0 or 1.

Super-rigidity has a number of well-known consequences, which are especially important in
the case dim M = 6. These are based partly on the observation that the space of all covers of
super-rigid curves is an open and closed subset of the ambient moduli space of J-holomorphic
curves, see Proposition [B.] in Appendix [Bl Applying Gromov compactness and the standard
implicit function theorem for simple curves, plus the fact that simple J-holomorphic curves of
index 0 are generically embedded and disjoint from each other in dimensions greater than four,
this implies:

Corollary 1.4. For generic compatible J in a closed symplectic 6-manifold (M,w), there exist
for each integer g = 0 and real number E > 0 at most finitely many distinct simple J-holomorphic
curves u of genus g in homology classes [u] = A € Hao(M) with ¢1(A) = 0 and w(A) < E.
Moreover, these curves are embedded and pairwise disjoint. O

Remark 1.5. Doan and Walpuski [DWa] have recently shown that if one fixes the class A €
Hy(M) in Corollary [[L4] then it is not actually necessary to fix the genus g, i.e. for generic J,
there exist at most finitely-many simple curves of any genus homologous to A. Their proof uses
techniques from geometric measure theory.

Using results of Zinger [Zin11] (see also Lee-Parker [LP12]), Theorem [A] also implies that for
generic J, the space of branched covers of an embedded index 0 curve admits a well-defined
obstruction bundle which can be used to compute Gromov-Witten invariants. In particular,
if dimM > 6 and u : (X,j) — (M, J) is an embedded J-holomorphic curve of genus g with
¢1(u) = 0, one can apply [Zinlll Theorem 1.2] with no marked point constraints to study the
space of J-holomorphic curves with image in u(X), so that Theorem [A]establishes hypothesis (b)
in Zinger’s result, implying that the cokernels of the normal operators DUNW for ¢ varying in the
space My, (d[%], j) of degree d nodal holomorphic curves in (¥, j) with arithmetic genus A form
a well-defined and oriented orbibundle

Ob" — My (d[X],7)

with rankg Ob* = (n — 1)(2h — 2 + d(2 — 2g)). Note that by the Riemann-Hurwitz formula,
the term 2h — 2 + d(2 — 2g) is simply the algebraic count of branch points Z(dy) for any map
¢ in the non-nodal stratum of My (d[%], )} The obstruction bundle is interesting mainly in
the 6-dimensional case, since n = 3 means that rankg Ob" matches the real virtual dimension
of My(d[%],7), and the count of solutions to an abstract perturbation of the holomorphic
curve equation can then be computed by integrating the Euler class e(Ob") over the virtual
fundamental cycle of M (d[%], ) in the sense of [[T98al[LT98D,FO99]. This produces a formula
for the local Gromov-Witten invariants of the curve u,

Niw = [ o(Oh) € Q,
[Mp (d[Z].)]7
defined for every d € N and h > g. These numbers depend only on the germ of the almost
complex manifold (M,.J) at u(X). Note that N{(u) = =£1, with the sign depending on the
canonically oriented determinant line of DY .
Combining the obstruction bundle discussion with Corollary [[.4] let
Nj(M,w)eQ

denote the 0-point Gromov-Witten invariant of (M,w) for genus g curves in a class A € Hy(M)
with ¢ (A) =0.

1One must keep in mind however that the non-nodal stratum of M (d[]) may be empty even if My (d[X])
itself is not, e.g. this is the case whenever d =1 and h > g.
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Corollary 1.6 (via [Zinlll Theorem 1.2]). Suppose (M,w) is a closed symplectic 6-manifold,
g = 0 is an integer and A € Ho(M) satisfies ¢1(A) = 0. Then for generic w-compatible almost
complex structures J,

NY(M,w) ENH u;),

where the sum ranges over the (by Corollary @) finite set of pairwise disjoint embedded J-
holomorphic curves uq,...,un that have genera at most g and homology classes satisfying

di[u;] = A for some dy,...,dy € N. O

In particular in the Calabi-Yau case, with ¢;(T'M,w) = 0, this corollary localizes all of the
Gromov-Witten invariants of (M, w).
We next state two results on transversality for multiple covers.

Theorem B (transversality, unbranched). There exists a Baire subset J"¢ < J(M,w; U, Jax)
such that for all J € T8, for every simple J-holomorphic curve u : (3,7) — (M, J) intersecting
U and every unbranched holomorphic cover ¢ : (£,7) — (,7) of closed Riemann surfaces, the
J-holomorphic curve wo ¢ : (X,7) — (M, J) is Fredholm regular.

Remark 1.7. The case ind(u) = 0 of Theorem [Bl has been proved previously in [GWIT],
though with stronger assumptions: for technical reasons, it was necessary in that paper to
assume that u(X) is contained entirely in U, and in dimension four also to allow perturbations
of J that are w-tame but not necessarily w-compatible. The present paper uses a completely
different approach to the transversality problem and is thus able to remove these restrictions. As
explained in [GW17], the theorem implies an integrality result for the Gromov-Witten invariants
in dimension four.

It is generally harder to achieve transversality for covers u o ¢ with branch points, e.g. the
index relation (.2]) shows that ind(u o ¢) can easily become negative in dimensions greater than
six. More seriously, if u is Fredholm regular, then one can always find a smooth family of other
multiple covers near u o ¢ obtained by varying both u and ¢ in their respective moduli spaces;
since the latter lives in a space of real dimension 2Z(dy), the condition

ind(u o ¢) > ind(u) + 2Z(dyp)

is evidently necessary in order for uop to be Fredholm regular. Observe that if ¢ has r > 0 critical
values, then this condition is satisfied whenever ind(u) > (n — 1)r: indeed, each critical value is
the image of at most d — 1 branch points (counted algebraically), so we have Z(dy) < (d — 1)r

and (L.2)) implies
ind(u o ¢) = ind(u) 4+ (d — 1) ind(u) — (n — 3)Z(dyp)
> ind(u) + (n — 1)Z(dp) — (n — 3)Z(dy) = ind(u) + 2Z(dyp).
The next result states that the condition ind(u) > (n — 1)r is also, in some sense, sufficient.

Theorem C (transversality, branched). There exists a Baire subset J* < J(M,w; U, Jax)
such that the following holds for all J € J™8. Suppose u : (3,7) — (M,J) is a simple J-
holomorphic curve intersecting U and satisfying

ind(u) = (n—1)r

for some integer r = 0, and ¢ : (i,j) — (3,7) is a holomorphic branched cover of closed
connected Riemann surfaces with r distinct critical values. Then there exists a J-holomorphic
curve and a holomorphic branched cover

ue: (S040) = (M, J) and e : (£,3) = (8.40)
such that ue, e, je and je are arbitrarily C®-close to u, @, j and j respectively, and ue o . :
(3,7¢) = (M, J) is Fredholm regular.
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Note that whenever ind(u o ) is also strictly greater than ind(u) + 2Z(dy), one can combine
this result with the implicit function theorem to deduce the existence of simple J-holomorphic
curves that are small perturbations of multiple covers of .

The proofs of these theorems are inspired by the work of Taubes [Tau96a], whose definition of
the Gromov invariant for symplectic 4-manifolds required a special case of Theorem [Blalong with
related bifurcation-theoretic results (cf. §2.4)) for multiply covered holomorphic tori. Roughly
speaking, the idea is to study the local structure of spaces of the form

(1.4) M(k,c) :={i =uo¢ | dimker DI =k and dimcoker D} = c},

where k,c > 0 are fixed integers, u varies in the moduli space of simple J-holomorphic curves
and ¢ varies in the moduli space of holomorphic branched covers. Ideally, one would like to
show that these spaces are smooth manifolds for generic J, and to compute their codimensions
in the space of pairs (u, ). This turns Theorems [Al and [Blinto “dimension counting” problems,
as whenever one can show that the codimension of M(k,¢) is larger than the dimension of the
ambient space for suitable values of k and ¢, one may conclude that either ker DﬂN or coker Dflv
must be trivial. This discussion is oversimplified in at least three respects: first, we will not
be able to find any nice structure on M(k,c) if ¢ varies in the space of all branched covers,
but it will help to confine it to certain substrata of that space in which all branch points have
prescribed branching orders. For similar reasons, it will also help to confine u to substrata
in which its number of critical points and their orders are constrained, and this is easily done.
More seriously, the space M(k, ¢) as sketched above can have different codimensions on different
components, as its codimension depends intricately on symmetry information which is ignored
in (L4). We will therefore need to define a more elaborate version of M(k, ¢) which depends on
a splitting of the operator Dév into summands corresponding to irreducible representations of
the (generalized) symmetry group of the cover. This idea is borrowed directly from [Tau96al,
though the details are somewhat more involved since, in contrast to the case of unbranched
covers of tori, we cannot assume that all covers are regular or that their symmetry groups are
abelian. We will see that once the formalism is developed in sufficient generality, it “breaks the
symmetry” of Dflv enough to make dimension counting arguments much more effective.

Remark 1.8. A slightly different variation on the ideas in [Tau96al] has been implemented by
Eftekhary to prove a partial result toward super-rigidity in dimension six, see [Eft16].

Here is an outline of the rest of the paper.

After establishing some standard definitions and notation, §2 will further elucidate the ideas
sketched above and formulate a precise version of the statement that M(k,c) from (4] is a
smooth submanifold, Theorem [Dl This will then be used as a black box to prove Theorems [A]
Bl and [T in §2.3| followed in §2.41 by a brief informal discussion of bifurcation theory. The
remainder of the paper is then devoted to the proof of Theorem In §3I we explain the
splitting construction for Cauchy-Riemann operators with symmetries and prove some lemmas
based on a mixture of elliptic regularity for punctured Cauchy-Riemann operators, topology of
covering spaces, and representation theory of finite groups. The summands in the splitting are
also Cauchy-Riemann operators, whose indices are a somewhat delicate computation, carried
out in @ In §5 we prove a local genericity result for Cauchy-Riemann operators that takes on
the role usually played by unique continuation in applications of the Sard-Smale theorem, and
the latter will be used in §6l to complete the proof of Theorem [Dl Finally, §7 deals with super-
rigidity in the four-dimensional case, which is something of an anomaly and requires different
techniques based on intersection theory. The appendices provide various results that may be
considered “standard” and yet, in this author’s experience, seem to cause sufficient confusion
among experts to warrant some discussion; their proofs require a few ideas that will in any case
be useful elsewhere in the paper.

1.2. Apologies and acknowledgements. The super-rigidity problem has a slightly troubled
history, and as the author of a new paper on the subject, it would behoove me at this point
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to apologize for having caused some of that trouble: I am aware of three previous attempts to
prove some version of Theorem [Al which were later either withdrawn or revised to prove much
weaker statements, and I was an author of one of them (the original version of [GW17]). To
make matters worse, earlier versions of the present paper also contained a major error in §5] on
which the main results were crucially dependent, causing the paper to be withdrawn for several
months while the offending section underwent an extensive rewrite. (For more on the history of
failed super-rigidity proofs, see Appendix [Dl) With all this in mind, I would sympathize with
any reader’s inclination to greet this paper with a dose of skepticism, though it seems worth
pointing out that rather than being an attempt to rescue the (probably unrescuable) proof
originally attempted in [GW17], the approach taken here has almost nothing in common with
the previous one, other than the considerable debt that both of them owe to the ideas of Taubes
[Tau96blTau96a).

I would like to thank Dan Cristofaro-Gardiner, Chris Gerig, Michael Hutchings, Eleny Ionel,
Mihai Munteanu, Tom Parker, Cliff Taubes and Aleksey Zinger for conversations and correspon-
dence which helped to improve my understanding of the problems studied in this paper. Special
thanks are due to Aleksander Doan and Thomas Walpuski for having uncovered a few minor
errors and one major error in the original version; my discussions with them were invaluable in
the effort toward fixing those errors. Finally, many thanks to the anonymous referees for their
impressively careful reading of earlier drafts, which has induced measurable improvements in
the exposition.

2. THE MAIN IDEA

2.1. Some definitions. Let us now fix some notation and definitions that will be essential in
the rest of the paper.

Given integers g,m > 0 and a class A € Hs(M), the moduli space of unparametrized
J-holomorphic curves M, ,(A,J) can be defined as the set of equivalence classes of tuples
(2,7,0,u) where (X, ) is a closed connected Riemann surface of genus g, © ¢ ¥ is an ordered
set of m distinct points (the marked points), and u : (¥, ) — (M, J) is a J-holomorphic map
satisfying [u] := u4[¥] = A, with equivalence defined by (%, j,0,u) ~ (X/,9*j,9 1(O),u 0 9)
for diffeomorphisms 1 : ¥ — ¥. The Gromov compactification of M, (A, J) is the space
Mgm(A, J) of (equivalence classes of) stable nodal curves (S, j, 0, A, u), where now S may
be disconnected, and the original data are augmented by an unordered set of distinct points in
S\O, arranged into unordered pairs

A= {{21551}5 ey {27“,'\2/7'}};

such that u(z;) = u(Z;) foreach i = 1,...,r. We call the pairs {Z;, Z;} nodes, and each individual
z; or Z; € S anodal point. The curves in /Wg,m(A, J) are required to have arithmetic genus g,
which means that the surface obtained from S by performing connected sums at all matched pairs
of nodal points is a closed connected surface of genus g. The stability condition requires that any
component of S\(O U A) on which u is constant should have negative Euler characteristic. With
this condition, Mg,m(A, J) can be given a natural topology as a metrizable Hausdorff space,
and it is compact whenever J is tamed by a symplectic form. A definition of the topology may
be found e.g. in [BEHT03]; for convergent sequences in M, (A, J), it amounts to the notion of
C®-convergence for j and u after a choice of parametrization for which all domains and marked
point sets are identified. Curves [(S, 7,0, A, u)] € Mym(A,J) with A = & can equivalently be
regarded as elements of Mg ,(A,J), and are thus called smooth curves to distinguish them
from nodal curves.

Remark 2.1. In this paper, the word “curve” always means “smooth curve” (i.e. without nodes)
unless the word “nodal” is explicitly included. Similarly, all dimensions and Fredholm indices in
this paper are real (not complex) unless otherwise specified. This usage differs somewhat from
the algebraic geometry literature.
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When there is no danger of confusion, we shall sometimes abuse notation by writing equiva-

lence classes [(2,,0,u)] € My (A, J) or [(S,5,0,4,u)] € Mgym(A, J) via the abbreviations
ue Mgm(A,J) or ue Mgnm(A,J) respectively, and we will refer to the restriction of a nodal
curve [(S,7,0,A,u)] to any connected component of its domain S as a smooth component

of u. We shall also abbreviate
Mg(A,J) = Myo(A,J), and My(A,J) = Myo(A,J).

Recall that M,(A, J) has virtual dimension equal to the index of any curve u € My(A,J) as
written in (L3]), while the virtual dimension of the moduli space with marked points is

vir-dim Mgy (A, J) = vir-dim My (A4, J) + 2m.

The multiply covered curves form a distinguished closed subset of Mg(A, J). Given any
u e Mgy(A, J) with domain (3, 7), and integers h > 0, d > 1, define the space of stable nodal
d-fold covers of u,

Mp(dsu) = {[(8,]. A, uop)] € Mu(dA, J) | [(S,], A, ¢)] € Ma(d[Z], )},

so in particular, each smooth component i; of @ € My,(d;u) belongs to a space My, (d;;u) of
smooth branched covers u o ¢; of some degreee d; > 0, such that )}, d; = d. Note that M,(d; w)
may in general be strictly larger than the closure of My (d;u) in the Gromov topology—to cite
one well-known example, the space Mj([S?],4) of smooth degree 1 holomorphic tori in (S?,7)
is empty, but M;([S?],7) contains a nodal curve with a constant component of genus 1.

Recall next that every J-holomorphic curve u : (X,5) — (M, J) gives rise to a linearized

Cauchy-Riemann operator
D, : T(u*TM) — Q"(2, u*TM),

i.e. the linearization at u of the nonlinear Cauchy-Riemann operator d;(u) := Tu +.JoTuoj €
QOL(S, u*T M), whose zero-set is the space of all .JJ-holomorphic maps with domain (X, j). The
operator D,, takes vector fields along u to (0,1)-forms valued in the complex vector bundle
(u*T'M, J), and can be written explicitly as

D,n=Vn+J(u)oVnoj+ (VyJ)oTuoj

for any choice of symmetric connection V (cf. [Wenal, §2.4]). Recall moreover that whenever u
is nonconstant, its critical points are isolated and one can find a smooth splitting of complex
vector bundles

(2.1) w*TM =T, ® N,

such that T, matches the image of du at regular points; see e.g. [Wenl0l §3.3] for details. We
shall refer to N,, as the generalized normal bundle of u. In many cases of interest in this
paper, u will be a cover of an immersed J-holomorphic curve v, so N, is then simply the pullback
of the normal bundle of v via the cover. We define the normal Cauchy-Riemann operator
at u as the restriction of D, to sections of N,,, composed with the projection 7n : u*T'M — N,
along T, hence

D)} = 7y o Dylrn,) : T(NL) = QV1(S, N).

In general, a neighborhood of any element in Mg, (A, J) can be identified with the zero-set
of a smooth Fredholm section of a Banach space bundle, modulo a finite group action if there
are nontrivial automorphisms. We say that u € My(A, J) is Fredholm regular whenever it is
a transverse intersection of this section with the zero-section. Note that whenever this condition
holds, it automatically also holds after adding any finite collection of marked points and viewing
u as an element of Mg ,(A,J). The implicit function theorem gives the open set of regular
curves in Mg, (A, J) the structure of a smooth orbifold with dimension equal to its virtual
dimension, and local isotropy groups determined by the automorphism groups of the curves—in
particular, the set of regular simple curves forms a manifold, though orbifold singularities can
appear when multiple covers are included. The following convenient repackaging of the regularity
condition comes from [Wenl0, Corollary 3.13].
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Proposition 2.2. A closed and connected J-holomorphic curve u : (X, j) — (M, J) is Fredholm
regular if and only if its normal operator DY : WH*P(N,) — Wk=LP(Homc (T, N,)) is surjective
for some (and therefore all) k € N and p € (1, 0). O

Definition 2.3. A closed, connected, simple J-holomorphic curve u : (3,7) — (M, J) is called
super-rigid if it satisfies the following:
(1) ind(u) = 0;
(2) u:¥ — M is an immersion;
(3) For all closed connected Riemann surfaces (3,7) and holomorphic maps ¢ : (,7) —
(2, 4) of positive degree, the curve @ := uo ¢ : (X,7) — (M,J) admits no nontrivial
solutions to the normal linearized equation DY 7 = 0.

Proposition [B.1lin Appendix [Bl proves that if u is a super-rigid curve, then the only possible
sequences that converge to a nodal branched cover of u consist of other covers of u. In the
language of the present section, this means:

Corollary 2.4 (of Proposition B.Il). Suppose (M, J) is an almost complex manifold and u €
My(A, J) is a super-rigid curve in M. Then for every h = 0 and d = 1, My(d;u) is an open
and closed subset of My(dA,J). O

2.2. A stratification theorem. We now explain in precise terms the stratification result that
underlies the main theorems of §I.11

2.2.1. Splitting the linearization at a doubly covered curve. Suppose v : (X,7) — (M,J) is a
simple J-holomorphic curve with genus g > 0, and ¢ : (X', ') — (X, ) is a holomorphic branched
cover with degree d > 1, giving rise to the multiply covered curve u = vo ¢ : (X', 5") — (M, J)
of genus h > 0. We assume as always that ¥ and ¥ are both closed and connected, and for the
sake of intuition, we begin in this subsection with the special case d = 2. The automorphism

group
Aut(u) = Aut(p) := {v: (%,5) = (%5 | ¢ = w0 v}

then contains a unique nontrivial element v, and the space of sections I'(N,) has a natural
splitting
P(Ny) =T (Ny) @ (Nu)

where T'+(N,) := {n e T'(N,) | n = £no}. Splitting Q1(X', N,,) = I'(Homc (7Y, N,)) in the
same way, one obtains a splitting of the normal Cauchy-Riemann operator

into two operators DY, : I'+(N,) — I'x(Homg(TY', Ny)). It is not hard to see that DI,
is in some sense equivalent to DY, as its domain and target both consist of sections that are

pullbacks via ¢ of sections over . The operators Dfx 4+ and DUN7 _ have unique extensions over

the spaces of symmetric/antisymmetric sections of Sobolev class W*P for k € N and p € (1, ),
giving bounded linear operators

DY, : WEP(N,) — WEP (Home (T, N,)),

and the standard transversality theory for simple curves then implies that D{X . can be assumed
surjective (and also injective if v is immersed with index 0) if J is chosen generically. We will
see that the problem of proving surjectivity or injectivity for D becomes more tractable when
viewed as two independent problems for the operators D{X + and D{X .

In order to generalize this discussion beyond the degree 2 case, it helps to adopt an alternative
perspective based on representation theory. Let ©® < ¥ denote a finite subset that contains all

critical values of ¢, and set

(2.3) 0 :=p1(O), x:=x\0, =3\,
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so that ¥ —% ¥ is a smooth covering map with G := Aut(p) =~ Zs as its group of deck
transformations. Define
p:G— S2:9+ pg
as the isomorphism to the symmetric group on {1,2}. We can then identify the covering map
> 25 % with
(3 {1,2}) /G- S 1(0] - ¢(2),

where G acts on Y by deck transformations and on {1,2} via p. Now if (e, es) denotes the
standard basis of R?, then p also gives rise to a real permutation representation

p:G— GL(2,R),  p(g)ei := e, )

and a corresponding real vector bundle V# — 3. defined as the Zo-quotient of a trivial bundle

over X/,
ve = (3'xR?) /c.

The space of sections of the twisted normal bundle
NP :=N,®@ VP - %

then has a natural identification with the space of sections of N, = ¢*N,: indeed, we can
represent sections of Nf as Zs-equivariant sections n = Z?=1 ni ® e; of p*N, Rr R2, which
satisfy the relation ni o ¢ = nPv(®), thus a corresponding section 7 € I'(¢*N,) can be defined
under the identification of 3’ with (X' x {1,2})/G by

N([(z,D]) = '(2)-

Under this identification, DY becomes a Cauchy-Riemann type operator on the twisted bun-
dle N¥, defined locally by DY (n ® s) = (D)n) ® s whenever s is a local section of V? that has
a constant lift to the trivial bundle >/ x R2.

The above construction appears cumbersome at first glance, but it has the following advantage:
the decomposition I'(N,) = T'(V,) & T _(N,) now corresponds to a splitting of the twisted
bundle N into subbundles

NP =N+ @ NI~ = (N, @ V) @ (N, ® V)

where V0+ := (X x W4 )/G are defined in terms of the natural splitting of R2 = W, @ W_ into
irreducible G-invariant subspaces
we=Rr()cr?
= +1 :

This is the simplest nontrivial example of what turns out to be a general principle: splittings of
Cauchy-Riemann operators for multiply covered curves arise from decompositions of permutation
representations into irreducible summands. To turn p = 641 @ 0_ into a splitting of Cauchy-
Riemann operators, we still have a small analytical issue to cope with since the bundles NUO *
are defined over 3 and do not both extend over the punctures. In place of (ZZ), we therefore
obtain a splitting

DN =D, 9+ S Du 6_>

where the dots over the operators indicate that we are restricting them to the punctured do-
main /. We will see in §3.2] how to define suitable weighted Sobolev spaces over Y. and > so
that the punctured operators have the same indices, kernels and cokernels as their unpunctured
counterparts.

Remark 2.5. A slightly different approach to defining twisted Cauchy-Riemann operators is
taken by Doan and Walpuski [DWh], who express it in the elegant language of local systems.
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2.2.2. The codimension of a multiply covered curve. We return now to the general case of a closed
connected J-holomorphic curve u = vop : (X', 5") — (M, J) of genus h, where v : (X, j) — (M, J)
is simple with genus g and ¢ : (X', j') — (X, j) has degree d € N. We continue using the notation
> —£5 % for the d-fold covering map obtained by deleting some finite subsets that include the
critical values and their preimages. Recall that ¢ is called regular if | Aut(y)| = deg(p) = d.
This condition was secretly important in the above discussion of the d = 2 case, as the definition
of the twisted bundle N¥ required identifying S with the quotient of 3/ by deck transformations.
In general, Aut(y) can have order smaller than d and may even be trivial, but we can use some
notions from elementary covering space theory to get around this.

Definition 2.6. The generalized automorphism group of a d-fold branched cover ¢ : ¥ —
S is the quotient G := 71 (X)/H, where H is the normal cordd of ¢, (m (X)), and & and 3/ are
defined by (2.3]) with © as the set of critical values of ¢.

Remark 2.7. Like fundamental groups, the generalized automorphism group G of ¢ : -3
depends on choices of base points in ¥ and ¥/, but its isomorphism class is independent of these
choices. We will see below that G is a finite group of order at most d! that is isomorphic to
Aut(yp) if and only if ¢ : ¥/ — ¥ is regular, and more generally, G has a natural identification
with the automorphism group of a certain regular branched cover of 3 that is determined by ¢
and a choice of base points, and factors through ¢

Definition 2.8. A regular presentation of the holomorphic d-fold branched cover ¢ : (3, j') —
(3,7) is a tuple (O, > 7, Gp, I, f) consisting of:

e A finite subset © © ¥ containing the critical values of ¢ and defining the punctured
surfaces 3 and Y via (Z3);
A connected surface " and regular covering map 7 : ¥ — 3 with finite automorphism
group G := Aut(rw);
A set I with d elements;
A transitive action of G on I, defined via a homomorphism p : G — S(I) from G to the
symmetric group on [;
A diffeomorphism f : ¥ — (X" x I)/G, where G acts on " by deck transformations
and on I via p, such that ¢ o f~! takes the form

(2 x 1) /G 3 [(2,4)] = w(2).

We say that (@,2”,7‘1’, G,p,1, f) is minimal if © ¢ X is the set of critical values of ¢ and
p: G — S(I) is injective. Two regular presentations (0, X7, 7;,Gj, pj, I}, f;) of ¢ : ¥ — ¥ for

j = 1,2 are isomorphic if ©; = Oy and there exists a diffeomorphism ¥ : ¥ — 2'2', a bijection
B : 11 — Iy, and a group isomorphism ® : G; — G2 such that:
(1) mgo W =7 and for all g€ G1, Yo g = P(g) o ¥;

(2) For all g € Gi, B o pi(g) = p2(P(9)) o B;
(3) foo fi! takes the form

(Exn) 61— (S5 x 1) /G [(zi)] = [(U(:), B))].

Most of the regular presentations we encounter in this paper will be minimal, though an impor-
tant example that is not (in particular where ©® may contain more than just the critical values)
will arise in Example Standard results about Riemann surfaces (see §3.1I) imply that the
regular cover 7 : ¥ - Yin any regular presentation can be extended to a holomorphic branched
cover of closed connected Riemann surfaces (X", ") — (3, 4) such that " = £"\7~1(0). Ob-
serve that if ¢ € I and G; < G denotes the stabilizer of ¢ under the G-action defined by p,

2Recall that the normal core of a subgroup H in a group I' is the largest normal subgroup of I' that is
contained in H.
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then
/G~ (3% 1) /G 2] [(2,9)]

is a diffeomorphism identifying o f~! with the natural projection ¥”/G; — %”/G = . Thus one
can associate to any regular presentation a (non-unique) factorization of 7 : ISy by covering
maps " — ' %5 3, which extends over the punctures to a factorization of 7 : (X", ") — (2, §)
by holomorphic branched covers

(2",5") = (%,5) = (2.5).
We will also show in Lemma that ¢ : ¥’ — 3 always admits a unique isomorphism class of
minimal regular presentations (O, > ,m, G, p, I, f ), for which G is isomorphic to the generahzed
automorphism group of ¢, and in this case 7 : Y Y s isomorphic to ¢ : Y — 3 whenever
the latter happens to be already regular (cf. Example [3.4)).
Given a choice of regular presentation (@,2” ,m,G,p, 1, f), the discussion of the degree 2
case can be generalized as follows. The transitive action p : G — S(I) induces a permutation

representation p : G — Autg(R’) on the real vector space R! with basis labeled by the elements
of I, and a twisted bundle N = N, @z VP — 3, where

Ve = (2" xR)/G,
with a natural isomorphism
L(N$) = T(¢"Nolsy) = T'(Nulsy)

that identifies DY with a Cauchy-Riemann operator

DY, : T(NF) — ™ (S, Np),
defined on suitable exponentially weighted Sobolev spaces of sections of Nf. (The appropriate
functional-analytic setting for this operator will be specified precisely in §3.21) Any represen-
tation @ : G — Autg(W) on a real finite-dimensional vector space W similarly gives rise to a
twisted bundle N¢ = N, ®g V? — %, with V? := (X x W)/G, and a twisted Cauchy-Riemann
operator

Dllp : T(V)) — Q%1 (3, NY),
which (up to conjugacy) depends only on Df,v and the isomorphism classes of the regular

presentation and the representation 6. Now any representation-theoretic decomposition p =
H?ml ®...® Hgam” induces a splitting of the punctured Cauchy-Riemann operator

(24) DuN = Dijx (Du ,01 )G_)ml D...0 (Du 0p)@mp7
with the following useful property:

Lemma 2.9. The normal Cauchy-Riemann operator DY for a multiple cover is surjective or
injective if and only if the same holds for all of the summands Divej in (Z4) with mj > 0.

Remark 2.10. We will see below that the splitting (2.4]) for a multiply covered curve u = vop
can be arranged to vary smoothly as v and ¢ move about in their respective (suitably con-
strained) moduli spaces, so the indices of the summands DY g, are constant under such vari-
ations. This immediately gives rise to “no-go” results about transversahty and super-rigidity:
the former is impossible on components of the moduli space where the DV w8, do not all have
nonnegative index, and the latter requires them instead to have nonpositive 1ndex Conversely,
whenever either of these index conditions holds for all summands given by irreducible represen-
tations, Theorem [Dl below will imply that the desired transversality or super-rigidity result holds
for all pairs (v, ) lying in some open and dense subset. This is the main idea behind Theo-
rem [C] and it similarly can be used to determine the feasibility of obstruction bundle arguments
in general situations.
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It should be emphasized that the representations of G in this discussion are real, not complex.
We will need to use the standard fact (see §3.3]) that for any finite group G, real irreducible
representations @ : G — Autr(W) come in three types, characterized via the algebra K :=
Endg(W) of G-equivariant real-linear maps W — W:

e Real type: K = R;
e Complex type: K =~ C;
¢ Quaternionic type: K = H.
The endomorphism algebra K = Endg (W) endows the domain and target of the operator DUN 0

with K-module structures, for which D{LV g 1S K-linear
The purpose of the following definition will become clear in the statement of Theorem
below; it is independent of choices due to the uniqueness of minimal regular presentations.

Definition 2.11. The codimension codim(u) > 0 of the closed, connected, d-fold covered J-
holomorphic curve u = voy is a nonnegative integer defined as follows. Choose a minimal regular
presentation (©, > ,m,G,p, 1, f) of ¢ and a complete list of pairwise non-isomorphic irreducible
real representations {8; : G — AUtR(Wi)}i:L...,p of G, whose equivariant endomorphism algebras
we denote by

K; := Endg(W;) € {R,C, H}, i=1,...,p.
Then

P
codim(u) := 2 tik;c;,
i=1

where ¢; := dimp K; € {1,2,4}, k; := dimg, keerXgi and ¢; := dimg, coker ]-D{Xgi fori=1,...,p.

Example 2.12. When d = 1, u is a simple curve and its generalized automorphism group G is
trivial, so there is only the trivial representation 8 : G — Autr(R) to consider in Definition 2.1T]
with Endg(R) = R and D{jg ~ D, So in this case, codim(u) = dim(ker DY) - dim(coker DY)
can be interpreted as a measurement of the failure of transversality at u, and the standard
transversality results imply that all simple curves have codimension 0 for generic J. One of the
consequences of Theorem [D] will be that generically, this is also true for generic curves in the
space of multiple covers, though not necessarily for all of them.

2.2.3. Isosymmetric strata. In order to discuss what happens to the splitting of Cauchy-Riemann
operators (2.4]) as v and ¢ move in their respective moduli spaces, we observe that the construc-
tion depends quite heavily on the branching structure of ¢ : ¥’ — 3, i.e. the number of punctures
©’ < ¥ and the topological behavior of ¢ in their vicinity. This necessitates decomposing the
space of all degree d branched covers into strata

U Mat@l=],) = M)
h=0 b

labeled by their so-called branching data b. Choose an integer r > 0, and associate to each of
the numbers ¢ = 1,...,r a nonempty finite ordered set of natural numbers

b; = (b},...,b%)
such that
by +...+bf =d

and at least one of the numbers b}, ... ,b1 is strictly greater than 1. We denote the totality of
this data by b = (by,...,b,) and call it branching data of degree d with r critical values.

3In cases where DY is already complex linear with respect to the natural complex structure on N, it is
important to keep in mind that this natural complex structure has nothing to do with the one induced on Dfxg
when K = C. In fact, these are two distinct complex structures that commute with each other, and D]u\ig is then
complex linear with respect to both of them.
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Given this, let Mﬁ(g) denote the moduli space of all closed and connected unparametrized
j-holomorphic curves ¢ of degree d mapping into (X, 5) with ¢; + ... + ¢ marked points

1 1 1 r
Cloeo s (P Gy GGy CE
such that
(1) there are distinct points wy,...,w, € ¥ such that ¢ 1(w;) = {¢},..., (¥} for each
1=1,...,7;

(2) foreachi=1,...,rand j =1,...,q;, ¢ is b{—to—l on a punctured neighborhood of Cl-j;
(3) ¢ has no critical points outside of the marked points.

Note that we do not require every marked point of ¢ to be a critical point, but we are assuming
{wy,...,w,} is the set of critical values, whose preimages are marked points and may include

both critical and regular points. For any ¢ € ./Wb (j), we have

2 = 3 Y - 1),

i=1j=1

thus d and b determine the genus h of ¢ via the Riemann-Hurwitz formula, and we shall denote
by

ML (G) & Mu(d[S], 5)

the image of the natural map Mﬁ (j) = Mp(d[X],7) defined by forgetting the marked points.
Note that in some cases, the Riemann-Hurwitz calculation may produce a negative genus, which
just means that M%(j) is empty. If b is empty, i.e. r = 0, it means every ¢ € ./\/lf)(j) is
unbranched.

It is a classical fact that ./\/lf)(j) is a smooth manifold of real dimension 2r, as it can be
parametrized locally by the positions of the critical values wq,...,w, € ¥ (cf. Example B.0).
Moreover, it depends smoothly on j in the sense that if P is any smooth finite-dimensional
family of complex structures on i, then

M) — P

JEP

defines a smooth fiber bundle. We will show in §3.1] that regular presentations of ¢ : ¥/ — X
can also be arranged to vary smoothly as ¢ varies with fixed branching data.

Constraints must also be imposed on the simple J-holomorphic curve v so that the normal
Cauchy-Riemann operators DY and D vary smoothly as v moves in its moduli space. Given
integers m > 0 and £1,...,0, > 1, let

Mg,m(AaJ; 617- i 7€m) c Mg,m(A7 J)

denote the subset consisting of curves that have critical points of critical order ¢; at the ith
marked point for ¢ = 1,...,m and are immersed everywhere else. As explained in Appen-
dix [Al the simple curves in this space form a smooth submanifold for generic J, with codi-
mension 2n ), ¢; in Mg .,,(A,J). Moreover, the generalized normal bundles N, of curves v €
Mgm(A,J; by, .. 0y) can be regarded as a smooth family (cf. Lemma [6:4). This is not gen-
erally true if v is allowed to move freely in Mg (A, J), as the topology of N, changes when
critical points of v appear, disappear or change order.
Given an integer d € N and branching data b of degree d with r > 0 critical values, define

MEMy (A, T 0, b)) © My (dA, T)

to be the set of all curves admitting representatives of the form u = vop : (X, j) > (M, J),
where ¢ : (X, 5') — (¥, 7) parametrizes an element in M{ (j) and v : (2, j) — (M, J) is a simple
curve that intersects U and (after labeling its critical points as marked points in a suitable order)
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parametrizes an element of My (A, J; l1,...,4y). If J is generic on U, then standard results
give M (Mym(A,J; f1,...,4y)) the structure of a smooth manifold with

dim M{ (Mg (A, T 01, ... ln)) = 27 + (n = 3)(2 — 29) + 2¢1(A) — 2> (nt; — 1).
i=1

Since every closed connected J-holomorphic curve belongs to such a space for a unique (up
to ordering) choice of branching data b and critical orders /1,...,¢,,, these spaces form a
smooth stratification of the moduli space of all J-holomorphic curves. They are sometimes called
isosymmetric strata, as they have the property that all curves in the same connected compo-
nent of Mg(./\/lg,m(A, J; l1,...,0p)) have isomorphic generalized automorphism groups. More
importantly, each isosymmetric stratum admits a smooth family of normal Cauchy-Riemann
operators DY with a smooth family of splittings as in (Z4) with respect to the irreducible
representations of their generalized automorphism groups.

2.2.4. Walls. Here is the main stratification result.

Theorem D (stratification). There exists a Baire subset
T J(M,w; U, Jax)

such that the following holds for all J € J**8. For all choices of integers g,m =0, d, l1,... by =
1, branching data b of degree d and homology classes A € Ho(M), the smooth isosymmetric
stratum ./\/ldb(./\/lg,m(A, Ji by, ... 0y)) is a union of countably many pairwise disjoint connected
smooth submanifolds, referred to in the following as walls, which have the following properties:

(1) For ue ME(Mym(A,J; lr,....0y)), the vector spaces ker DY and coker DY form the
fibers of smooth vector bundles over each wall;

(2) The codimension in M (Mg m(A,J; b1, ..., ly)) of the wall containing any given curve
u is codim(u).

Remark 2.13. The statement of Theorem is specifically geared toward the applications
treated in this paper, but for different purposes one could formulate various other versions,

e.g. one could add more marked points to My (A, J; ¢1,...,¢y,) and impose intersection con-
straints on them, or one could consider generic finite-dimensional families {Js}scp of almost
complex structures and thus replace My (A, J; 41, ..., 4y) with a parametric moduli space of

pairs (u, s) where s € P and u is Js-holomorphic. Either would require no serious modifications
to the proof, other than more cumbersome notation (cf. Remark [5.34]).

Remark 2.14. A natural guess for the precise definition of the walls mentioned in Theorem
would be that they are maximal connected subsets of Mg(Mgm(A, J i by, .., 0y)) satisfying the
constraint that dim ker DY and dim coker DY are constant. In fact, smooth walls can be defined
in that way using the methods of [DWh], but the actual definition used in this paper is slightly
more complicated: it requires a choice of a smooth family of minimal regular presentations, and
the constraint to impose is then that for every finite-dimensional representation @ of the result-
ing generalized automorphism group, the kernels and cokernels of the twisted Cauchy-Riemann
operators D{X o should have constant dimension as u varies in the wall. This would give the
same result as the simpler definition if one could guarantee that every summand in the splitting
(24) of DY appears with positive multiplicity, i.e. that m; > 0 for each of the irreducible repre-
sentations @;, but the latter is not always true. As a consequence, a maximal connected subset
on which ker DY and coker DY have constant dimension may in general contain multiple walls
of varying codimensions, distinguished from each other by twisted Cauchy-Riemann operators
corresponding to representations that play no role in the splitting of DY. This phenomenon is
harmless: the important detail for our purposes is that whenever transversality or super-rigidity
fails for a particular curve wu, it implies that u belongs to a wall whose codimension is positive
and satisfies certain estimates. The converse is neither true nor necessary.
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We need two further ingredients in order to turn Theorem [D] into a powerful enough tool for
proving the theorems of §I.Il The first is an index calculation for the twisted operators Div 0
The precise result is stated and proved in §, but for the main applications we only need the
following estimate, which is a corollary:

Lemma 2.15. Given a J-holomorphic curve v : (X,7) — (M, J) with normal Cauchy-Riemann
operator DY, a d-fold branched cover ¢ : (¥, §') — (X,7) with v > 0 critical values, a regular

presentation (@,2”,77, G,p, 1, f) for ¢ and a representation @ : G — Autg(W), the resulting
tunsted Cauchy-Riemann operator Dive for u = v o p satisfies

dim W - [ind(DY) — (n — 1)r] < ind(DY) < dim W - ind(DY).

Moreover, if the reqular presentation is minimal and 0 is a faithful irreducible representation
with Endg(W) =~ K € {R, C,H}, then the second estimate can be improved to

indg (D)) < dimg W - indg(DY) — (n — 1)r,
and this estimate is strict in the case K = R unless all branch points of ¢ have branching order 2.

For the proof of super-rigidity, we will need the next result as a means of improving the upper
bound in Lemma 2.15] for representations that are not faithful.

Lemma 2.16 (see §3.4.3). Under the assumptions of Lemma [Z15, suppose the regular pre-
sentation is minimal, and the splitting Z4) of DY includes a summand DuNﬂ for which the
representation 0 : G — Autg (W) is not faithful. Then ¢ : (X', j") — (2,7) admits a factoriza-
tion by holomorphic branched covers

(2,5') = (Z0,46) = (2.5)
with deg(pg) < d, and Di\fe s conjugate to an operator ].)1]:2790 defined with respect to a regular

presentat’ion (972”77707G07P07107f0) fOT’ %0, where Up ‘= Voo : (26736) - (M7 J)7 GO =
G/ker 0, and
0y : G/ker 8 — Autr(W)

is the faithful representation of Goy determined by 6. Moreover, DUNO also admits a splitting in
the form (Z4) which has DY , as a summand.

up,00

2.3. Proof of the main theorems modulo stratification. Let us now take the results of
the previous section as black boxes and prove the main theorems from §I.T1

Proof of Theorem [Al (super-rigidity) in dimension greater than four. We argue by induction on
the degrees d € N of branched covers. For d = 1, we only need to know that generic perturbations
of J suffice to make all simple index 0 curves through U/ regular and immersed; this is standard
(see Appendix [Al for the immersion property). Thus for d > 2, assume we have already found a
Baire subset in J (M, w ; U, Jgx) for which all branched covers u := voy with v : (2, 5) — (M, J)
a simple curve of index 0 and deg(yp) < d — 1 have DY injective. Suppose ¢ € ./\/ldb(]) has
r > 0 critical values and deg(yp) = d and DY is not injective for v := v o ¢. Then picking
the minimal regular presentation (O, > ,m,G,p, 1, f) for ¢ and decomposing p into irreducible
representations H?h ®...® GIG,BZP of G splits DY into twisted Cauchy-Riemann operators DUN 0,
fori=1,...,p with 7
k; := dimg, ker I.)fxei,

and at least one of the k; must be strictly positive by Lemma2.9l If k; > 0 and 0; is non-faithful,
then Lemma [2.16] identifies D{X g, With a summand of DUN0 for some other cover ug of v with

strictly smaller degree, implying dim ker DUNO > 0 and thus violating the inductive hypothesis.
We can therefore assume k; > 0 for some faithful representation 8;. But then Theorem [Dl and
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Lemma 2.15] imply that u lives in a submanifold of the 2r-dimensional space of branched covers
of v with branching data b, having dimension at most

2r — t;k; [kz — indKi (Dfxﬂl)] < 2r —tik; [kl + (n — 1)7“] = 7“[2 — tiki(n — 1)] — tiklz <0
since we are assuming n = 3. This gives a contradiction and thus completes the induction. [J

In dimension four, the above argument fails to exclude the possibility of dim ker Div 9, =1 for
some real-type repesentation 6;, and this is why we do not know whether super—rigidity always
holds in dimension four. We will prove in §7 that it does hold for covers of genus zero and one
curves, using different techniques based on intersection theory.

Proof of Theorem [B (transversality, unbranched). Suppose v : (X, 7) — (M, J) is a simple curve
intersecting U and ¢ : (X',7) — (%,7) is a d-fold unbranched cover for which v := v o ¢
is not Fredholm regular, hence by Prop. 2.2, DY is not surjective. Fixing the minimal regular
presentation of ¢ and considering the splitting (2.4]), we find a twisted Cauchy-Riemann operator
Dfx g, With

¢; 1= dimg, coker ].)ixgi >0

for some irreducible representation 6; : G — Autg(W;) of the generalized automorphism group
G of ¢, with Endg(W;) = K; € {R,C,H}. Suppose v has exactly m > 0 critical points, with
critical orders ¢y, ..., 4, so viewing these as marked points allows us to consider v as an element
in the space Mg, (A, J; 41,...,4¢p), which has dimension

dim Mg, (A, J; 41, ..., 4y) = ind(v) 4+ 2m — 2nZ(dv) = 0.

The count of critical points Z(dv) also appears in the relation between ind(v) and ind D):
indeed, writing v*TM = T, ® N,, we can view dv as a holomorphic section of Hom¢ (7%, T),),
hence

Z(d?}) = Cl(Homc(Tz,Tv)) = —Cl(Tz) + Cl(Ty) = —X(E) +c1 (TU),
implying ¢1(Ny) = c1(vV*T M) — ¢1(Ty,) = c1(vV*TM) — x(X) — Z(dv). Plugging in this into the
Riemann-Roch formula then gives
indDY = (n — 1)x(2) + 2¢1(N,) = (n = 3)x(2) + 2¢1 (v*TM) — 2Z(dv)
= ind(v) — 2Z(dv).
Meanwhile, ¢ lives in a discrete stratum of the space of branched covers since it has no branch
points, and Lemma reduces to an equality

indg, DuNﬁz = dimg, W; - indR(Df)V).
Now using Theorem [D] we find that if J is generic, u lives in a manifold of dimension at most
dim Mg (A, J5 61, ) — tici(c; + indg, DY g )

= ind(v) + 2m — 2nZ(dv) — tic;(c; + dimg, W; - ind DY)

= ind(v) + 2m — 2nZ(dv) — tic;(¢; + dimg, W; - [ind(v) — 2Z(dv)])

= (1 — tjc; dimg, W;) [ind(v) + 2m — 2nZ(dv)]

— 2t;c; dimg, Wi - [(n — 1) Z(dv) — m] — t;c? <0,

where we note that (n — 1)Z(dv) —m > 0 since n > 2 and every critical point has order at

least 1. O

Proof of Theorem[Q (transversality, branched). Assume v : (X,7) — (M, J) is simple and satis-
fies ind(v) = (n — 1)r, while ¢ : (X',5") — (X, 7) has degree d € N and r critical values. If J is
generic, then by Proposition [A.1] the moduli space containing v has an open and dense subset
consisting of immersed curves, so we are free to assume v is immersed and thus ind(v) = ind DY.
The key observation is then that by Lemma 215l the twisted operators D{LV o all have nonnegative
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index, hence Theorem [D] implies that all of them are surjective unless (v, ¢) lies in a countable
union of submanifolds with positive codimension. O

2.4. Some remarks on wall crossing. Part of the point of Taubes’s twisted bundle setup
in [Tau96a] was to understand bifurcations of isolated J-holomorphic tori under generic 1-
parameter deformations in J. While bifurcation theory is not the main topic of this article, it
should be clear that such a theory could be developed based on Theorem [D] thus we take this
opportunity to make a few observations about it.

Remark 2.17. In the time since the present article first appeared in preprint form, some
interesting cases of the bifurcation analysis proposed below have been worked out in detail by
Bai and Swaminathan, see [BS].

If {Js} se0,1] 1S @ generic homotopy of compatible almost complex structures whose endpoints
are generic, then as mentioned in Remark 2.I3] one can modify Theorem [D] to the statement
that the parametric moduli space

M%(Mg,m(A7 {Js} ; 617 s 7£m))

consisting of pairs (u, s) where s € [0,1] and u € M{ (Mg (A, Js; €1,...,67)) is stratified by
smooth submanifolds characterized by the dimensions of the kernels and cokernels of twisted
Cauchy-Riemann operators, and their codimensions are given by the same formula. In this
setting, suppose {v} is a smooth 1-parameter family of simple J,(,)-holomorphic curves with
index 0 for some function s(7) € [0,1], and {u; = v, o ¢;} defines a corresponding 1-parameter
family of unbranched covers. The latter have index 0 and will be regular for almost every T,
but a bifurcation or “wall crossing” phenomenon occurs at any parameter value 7y for which
the family {u,} passes (necessarily transversely) through one of the codimension 1 walls given
by Theorem [DI When this happens, most of the twisted operators DIJLVT .0 remain both injective
and surjective, but there will be exactly one irreducible representation 8 for which

. N 9 N _
dimker D, o = dimcoker D, o =1,

and @ is necessarily of real type. Whenever 0 is not faithful, one can factor ¢, through a cover
@, of smaller degree and instead examine @, := v,0@,, so that @ becomes faithful without loss of
generality (cf. Lemmal[2.T6]). For the trivial representation, this means replacing u, with v, itself,
so regularity fails for the underlying simple curve at 7 = 79: as shown in [Tau96al, this is the case
where the family {v;} undergoes a birth-death bifurcation. The other interesting phenomenon
examined by Taubes was the degree-doubling bifurcation, in which v, remains regular but it has
a double cover u; = v; o @ which loses regularity at 7 = 79, causing an additional 1-parameter
family of simple curves {w.} to collide with {u,} at 7 = 7p. This is what happens when DiVT 0
remains an isomorphism for the trivial representation but acquires 1-dimensional kernel and
cokernel for the nontrivial irreducible representation of Zs.

In [Tau96al, no further bifurcations beyond these two types are possible: this can be attributed
to the fact that since Taubes only considers unbranched covers of tori, all covers are regular and
abelian. As a consequence, all the complex irreducible representations in the picture are 1-
dimensional, implying that the only faithful real-type irreducible representations one needs to
consider are the trivial representation of the trivial group and the nontrivial representation of Z.
We should not expect this fortunate situation to hold more generally: for unbranched covers with
higher genus, one certainly encounters generalized automorphism groups that are non-abelian
and thus have faithful real-type representations of dimension greater than one. These should
presumably give rise to bifurcation phenomena involving covers of arbitrarily high degree.

In the context of super-rigidity, it is also important to consider bifurcations that involve
branched covers of index 0 curves under generic homotopies of J. Inspecting the proof of
Theorem [Al one should expect to see interesting phenomena whenever the dimension that was
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estimated at the end of the proof turns out to be at least —1, i.e.
2r — tikil' [kﬁl - iIldKZ. (DuN,BZ)] = —1.

Assuming we’re in dimension at least six, this can only mean t; = k; = 1 and either r = 0 or
n = 3. The case r = 0 means the cover is unbranched, so this is what we discussed in the previous
paragraphs. Bifurcations involving branched covers can evidently also occur in dimension six,
and in this case the improved index bound from Lemma [ZI5] must be an equality. The scenario
is therefore that the rank of the obstruction bundle over the space of covers {v; o ¢} jumps at
a particular parameter value 7 = 7y and for some isolated element ¢, in the space of branched
covers with only simple (i.e. two-to-one) branch points: this can presumably cause both a change
in the Euler class of the obstruction bundle and the breaking off of a new family of simple curves
from v, o ¢5,. Once again the irreducible representation involved must be of real type but can
have arbitrary dimension, meaning we should not expect any limitation on the degree of ¢,
contrary to the situation in [Tau96a].

3. SPLITTING CAUCHY-RIEMANN OPERATORS WITH SYMMETRIES

In this section we give a detailed account of the twisted bundle formalism behind Theorem
and prove several lemmas required for its proof, as well as Lemma Instead of talking
directly about J-holomorphic curves, we shall work in the context of abstract Cauchy-Riemann
operators on vector bundles and their pullbacks.

3.1. Regular presentations of branched covers. The notion of a regular presentation was
introduced in Definition 2.8 The following standard result from the theory of Riemann surfaces
(see e.g. [Donlll Chapter 4, Theorem 2|) allows us to move freely back and forth between
talking about holomorphic branched covers of closed Riemann surfaces and honest covering
maps of punctured surfaces.

Lemma 3.1. Suppose (Z.],j) is the complement of a finite set of points © in a closed connected
Riemann surface (3,7), (X',7") is a connected noncompact Riemann surface, and

p: (X5 = (2,9)
is a holomorphic covering map of finite degree. Then there exists a closed connected Riemann
surface (X', j") with a finite set of points ©' < X' such that (¥',j') admits a biholomorphic

identification with (X'\©’, j") and ¢ extends over the punctures to a holomorphic branched cover

e (,5) = (,5) with ¢~1(O) = €. 0

Assume ¢ : (¥',7) — (%,7) is a d-fold holomorphic branched cover of closed connected
Riemann surfaces with branching data b as defined in §2.2 having r > 0 distinct critical values.
Recall from Definition [Z8] that for a regular presentation (0,%" 7, G,p,I,f) of p, © c X is a
finite set containing the critical values of ¢, giving rise to the punctured surfaces

Y=\, Y:=3¥\0,
where ©' := p~1(0).

Lemma 3.2. There exists a natural bijection between the set of isomorphism classes of regular
presentations of ¢ and the set of pairs (©,H) where © c X is a finite subset containing the
critical values of @ and H is a finite-index normal subgroup H 771(2) that is contained in
go*(m(i]’)). This bijection matches any minimal reqular presentation to the smallest possible
choice of © and largest possible choice of H, i.e. the normal core of go*(m(i]’)). Moreover,
if @ is regular and (@,2”,71,6’,/), I, f) is a minimal reqular presentation, then there exists a
diffeomorphism g : X' — " such that wo g = .
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Proof. Given a finite set © — X containing the critical values of ¢, pick a base point w € )y
and let 7 : % — 3 denote the universal cover, with % defined as a space of homotopy classes
of paths beginning at w, so that 71 (%) := 71(3, w) acts naturally on % as the group of deck
transformations for 7. Lifting loops based at w to paths in >/ then defines a homomorphism

prm(Y) = S (w) v - p,
so that the covering map Y £ % can be identified with
2 = (# %7 W) [m(P) - B [(0] - 7 (2),
where 71 () acts on % by deck transformations and on ¢~ (w) via p. We claim that
ker p < m ()

is the normal core of ©x(m1(X')). Indeed, selecting a base point w' € ¢ Y(w) < Y to define
m (X)) = m (X, w'), we have

pe(m(E) = {yem® | 5, = '},

which obviously contains ker p. Changing the base point w’ € ¢ !(w) changes the subgroup
©x(m1(2')) by conjugation with arbitrary elements of m(%'), and the normal core is the in-
tersection of all these conjugates, which we can now recognize as the intersection of all the
stabilizers of the permutation action on ¢~!(w), and that is ker j.

Suppose H () is a finite-index normal subgroup contained in ¢y (71 (>')), and therefore
also in ker p. Then p descends to the finite group G := 7'('1(2) /H, giving a homomorphism

p:G— S (w),

which is injective if and only if H = ker p. It is now possible to define a regular presentation
©,%",7,G, p,o H(w), f) of ¢ with 7 as the natural quotient projection

=U/H " U[m(2) =%

and
= (@ x ¢ W) [mE) L (¥ x0T () /G

defined via the quotient projection U — U/H = 3", Observe that if we choose H = ker p
and ¢ is regular, then o, (m (X)) wl(i]) is normal and is therefore identical to H, so the
natural identification of %/ with % / ox(m (X)) =%/H = 52" gives an isomorphism between the
covering maps ¢ and 7.

Finally, suppose (O, E” m,G,p, 1, f) is a regular presentation of ¢, and define the subgroup
H = m.(m(2")), ‘which is normal since . 3" — ¥ is regular and has finite index since
Aut(r) = G = 71 (X)/H is finite. We clalm H c cp*(m(E )): indeed, any v € H is represented
by a loop & based at w that lifts to a loop v/ in %" and thus has d lifts to ¥/ =~ (3" x I)/G
in the form v x {i} for i € I. We can therefore use H to define the regular presentation from
the previous paragraph, with G = m1(X")/H acting on ¢ 1(w) via p, and we claim that this
is isomorphic to (O, > 7, G, p, 1, f). Indeed, choosing a base point w” € 7~ (w) c X”, the
identification f : 3 — (" x I)/G provides a bijection

B:o Yw) > T suchthat f(u')=[(w",Bw))] for w' e p (w),

and combining this with the natural identification of > with % /H gives an isomorphism of
regular presentations. ]

Lemma 3.3. Suppose (0,%",7,G,p,I,f) is a minimal reqular presentation of ¢ : (¥',j') —
(3,7), and let 7 = (£",5") — (%,j) denote the branched cover of closed Riemann surfaces
provided by Lemmal31 such that ¥" = X"\r~1(0). Then for each w e © and ( € 7~ (w) = ¥,
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the branching order of m at C is the least common multiple of the branching orders of ¢ at all
z € o Y(w). In particular, ™ and ¢ have the same sets of critical values.

Proof. If k € N is the branching order of 7 at ¢, we can find punctured neighborhoods U,, )y
of w and U < > of ¢ and identify both with the half-cylinder [0,00) x S' with coordinates
(s,t) such that 7(s,t) = (ks,kt). Let G¢ © G denote the group of automorphisms of 7 that
fix (; since 7 : Y 5 Yis a regular cover, G¢ is necessarily a cyclic group of order k, with a
generator g € G¢ that acts on U =~ [0,00) x ST as the rotation (s,t) — (s,t + 1/k). Appealing
again to regularity, we can then restrict the identification >/ = (X x I)/G to U and obtain an
identification

o U) = WU x 1) /G

The connected components of ¢ ~!({4,) are then in bijective correspondence to the orbits of the
G¢-action on I defined by p : G — S(I), with the branching order k, € N of each corresponding
point z € ¢! (w) given by the number of points in its respective orbit in I. By the orbit-stabilizer
theorem, all of these numbers k. must divide k& = |G¢|. If £ is their least common multiple, we
conclude that ¢¢ e G¢ acts trivially on I, which means g" is the identity since p : G — S(I) is
injective for the minimal regular presentation, hence ¢ = k. g

Example 3.4. If ¢ is regular with Aut(¢) = G, then it admits a canonical minimal regular
presentation (©,%" 7w, G, p,I, f) where X" := %' 7 := ¢, I := G, and the action p: G — S(G)
of G on itself is defined by left multiplication

pg(h) :== gh.

Here the identification 3/ —L» (X" x G)/G sends z € X' to [(z,e)], where e € G is the identity
element. The action of G on ¥/ = (X" x G)/G by deck transformations can now be presented
as the action via right multiplication

G x5 (g, [(h)]) = [(2,hg ]

Notice that any regular presentation in which p : G — S(I) acts on I both transitively and
without fixed points is isomorphic to one of this form, since for any i € I, the map G - [ : g —
pg(i) defines a bijection that transforms the action by left multiplication into p.

Example 3.5. The following construction underlies Lemma .16 any proper normal subgroup
H < G gives rise to a factorization of ¢ : (X', ') — (X, 7) in the following way. Let I/H denote
the set of orbits for the action p|g : H — S(I). Then G/H is a finite group and p descends to
a homomorphism
o+ G/H — S(I/H),
which acts transitively on I/H. The regular cover 7 : %" — % = %/G now factors through the
obvious projections
¥ =" H ™y = ¥G,

and 7p : X7, — ¥ is a regular holomorphic cover with automorphism group G/H. We can thus

define
S i= (S < (I/H)) [(GIH) £5 S [(,0)] > 7 (2),

as well as a factorization of ¢ : Iy by covering maps

> = (2”xI)/G—>2}{ﬁ>2,

where the first map is also defined via the obvious quotient projections. It follows from
Lemma [B.1] that ¥, and X%, each arise by puncturing closed connected Riemann surfaces
(XY, 7%) and (2%, j7;) respectively, and in particular we obtain a factorization of ¢ via holo-
morphic branched covers

(=, 5") = (S ) =5 (2, 5)
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with deg(pp) < d equal to the number of distinct orbits of the H-action on I, hence
deg(em) < d

holds whenever the action of H on I is nontrivial. Note that ¢ inherits from this construction a
regular presentation (O, E}’{, i, G/H, pr,I[/H, frr), though it need not be minimal and © may
contain points that are not critical values of g, even if (©,%", 7, G, p, I, f) is minimal. This is
the main reason why non-minimal regular presentations have been included in the discussion.

It will be important to understand how the various objects constructed out of a regular
presentation vary smoothly under changes in ¢ and j. To this end, we shall fix the following
data for the remainder of §3t

e p: (X 5) — (X,7) is a holomorphic branched cover of degree d € N with branching
data b;
(0,%" . 7,G,p, 1, f) is a regular presentation of ¢;
P is a connected smooth Banach manifold;
V c ¥ is an open subset with compact closure;
{jr}rep is a smooth family of complex structures on ¥ that match j outside of V;
{¢)r}rep is a smooth family of diffeomorphisms v, : ¥ — ¥ which restrict to the identity
on V and are j-holomorphic near ©.

We shall abbreviate the family of closed Riemann surfaces determined by j, as

ET = (E7j7')7
and denote by
m: (X)) = (5,5), ©'=x'(©)cy
the holomorphic branched cover of closed surfaces provided by LemmaBIlsuch that £” = "\0".
These choices produce a family of punctured Riemann surfaces

3, := (2\O;,jr) where O, :=¢.(0)cC X,
and we define
pri=tYrop: EI_)Ea j;— = @ij’r on 217

where we observe that j_ is always well defined and matches j' near ©’ since 1), is holomorphic
near ©. This makes

Or E'T — 2,
a smooth family of holomorphic branched covers, where

E:— = (E’,jfr),
and they restrict to holomorphic covering maps of punctured surfaces E'T 2, %, where

= (24,
Example 3.6. Suppose © is the set of critical values of , r := |0|, P is the 2r-dimensional open
ball B?", j, := j for all 7, and 1, : ¥ — ¥ is chosen to be any smooth family of diffeomorphisms
supported near © that are holomorphic in a smaller neighborhood of ® and such that ¥y = Id
and

B2T =X T (¢T(w1)a R a¢T(wr))

is an embedding onto an open subset, where ©® = {wq,...,w,}. Then the branched covers
or 1 (X',4L) > (%, 7) parametrize a neighborhood of ¢ in Mg (5).

Example 3.7. If vy : (X,70) — (M, Jy) represents a simple element of the moduli space
Mgm(A, Jo; b1, .., by) defined in Appendix [Al and Jy is generic, then one can enhance the
previous example as follows to parametrize a neighborhood of ug := wvg o ¢ in the space
./\/lf)(./\/lg,m(A, Jo; l1,...,4m)). A neighborhood of vy in My (A, Jo; 41,...,¢n) can be iden-
tified with a smooth submanifold X of 5;01 (0), where 05, : T x B — & is the nonlinear
Cauchy-Riemann operator defined on the product of B := WHP(X, M) with a Teichmiiller
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slice T through jo, cf. Appendix [Al Here T is a finite-dimensional smooth family of com-
plex structures on Y, which can all be arranged to match jy near ©. A neighborhood in
ME(Mym(A, Jo; b1, ..., Ly)) is now parametrized by

P:=B% x X,
namely via the curves v o (1, 0 ) : (X, p*%j) — (M, Jp) for each 7 := (o, (j,v)) € P, and we

associate to these parameters the families j, := j and ¥, := 1,.

Example 3.8. Enhancing the previous example one step further, suppose J. is an infinite-
dimensional Banach manifold consisting of smooth almost complex structures and we consider
a neighborhood of (vg, Jy) in the universal moduli space

U Tes 1y ) = {(0,0) | TE€Ter € Mgm(A, T 01, ... b))}

Such a neighborhood can be identified with a finite-codimensional submanifold X in the infinite-
dimensional Banach manifold 0-(0) = T x B x J., where 0(j,u,J) := 0;(j,u). Defining
P := B x X and the families {j,} and {1;} as in Example B.7] the parameter space P is now
infinite dimensional.

Observe that the branched covers in the family . all have essentially the same topological
properties, e.g. their branch points and automorphism groups are identical. It is therefore trivial
to extend (0,%", 7, G, p, I, f) to a smooth family of regular presentations

(67_7 2”7 7T7—7 G7 p? ‘[7 f)

for ¢, where 7, := 1, om. By the same reasoning as above, we can define on X" a smooth
family of complex structures j” := 7¥j, such that

(D WSS Y = (X", 5

becomes a smooth family of holomorphic branched covers, restricting to a smooth family of
holomorphic covering maps X” —> X, defined on the family of punctured Riemann surfaces

S = (5, 7).
3.2. Cauchy-Riemann operators on closed and punctured domains. Fix a complex
vector bundle

(E,J) = (%,7)
of rank m > 1, and define the rank m bundle of complex-antilinear maps

F =Hom¢ (TS, E) = A"'T*Y ® E.

Recall that a first-order real-linear partial differential operator D : I'(E) — T'(F) = Q%'(X, E)
is then called a Cauchy-Riemann type operator on F if it satisfies the Leibniz rule

D(fn) = (0f)n + fDy
for all n € T'(E) and f € C®(X,R), where 0f = df +idf o j € Q%(X). The space
CRr(E)

of all such operators is an affine space modelled on the space of smooth real-linear bundle maps
I'(Homg(E, F)) = Q%(, Endg(E, J)). The pullback of D € CRr(E) via ¢ : (¥',5') — (%, )

defines a Cauchy-Riemann operator
©*D : [(E¥) — I'(F7),
where we define two bundles over X/ by
E? := o*FE, F% := Homc(TY, ¢*E) = A¥'T*Y @ E¥
and characterize ¢*D via the relation

(p*D)(nop) =¢*(Dn) foral nel(E).
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Example 3.9. If v: (2,5) — (M, J) is a J-holomorphic curve with generalized normal bundle
N, — ¥, its normal Cauchy-Riemann operator DY belongs to CRr(N,), and if u = v o ¢ :
(%,5') — (M, J), then N, = ¢*N, and DY = 0*DY € CRg(N,).

Remark 3.10. Note that the operator 0 : C® (X, C) — Q%(X) used in our definition of Cauchy-
Riemann type operators makes 0 f twice the complex-antilinear part of the differential df. This is
a common convention in J-holomorphic curve theory, but differs from the standard convention in
complex analysis. We will also often use the symbol ¢ to mean the coordinate-based differential
operator

0= 0s + i&t,

acting on functions valued in a complex vector space and defined on open domains in C with
complex coordinate s + it. The alternative convention would be to write 0 = %(65 +1i0).

Fixing Hermitian bundle metrics { , Yp and {, ), on E and T'Y respectively, we can integrate
real parts of bundle metrics to define real-valued L2-pairings ( , Y2 on I'(E) and I'(F'), which
determines a formal adjoint operator D* : T'(F') — I'(E) via the relation

(o, Dnyr2 = (D, )2

for all smooth sections a € I'(F) and n € I'(E) with compact supportl Viewing D as a
Fredholm operator on Sobolev spaces W*P(E) — W*1P(F) for some k € N and p € (1, 0),
we can then identify coker D with ker D* < I'(F), which is the L?-orthogonal complement of
imD < Wk-LP(F) and is a finite-dimensional space of smooth sections by elliptic regularity.
Using the Riemann-Roch formula ind(D) = mx(2) + 2¢1(F) and computing the algebraic count
of branch points Z(dy) from the Riemann-Hurwitz formula, the (real) Fredholm indices of D
and ¢*D are related by

ind(¢*D) = d-indD — mZ(dy).

In order to exploit the topological constructions in the previous section, we will need to work
with Cauchy-Riemann type operators on punctured surfaces instead of closed surfaces. We shall
now show that this can be done without loss of generality by choosing suitable weighted Sobolev
spaces. Assume

Er — 3

is a smooth family of rank m complex vector bundles with complex structures J;, equipped with
a smooth family of Cauchy-Riemann operators D, € CRr(E;). Denote the restrictions of the
bundles E, and

F; := Hom¢(TY,, E;)

to the punctured surfaces >, by

B, :=E,s , F, = Flg = Home (TS, E;).
Restricting D, to 3, then defines a family of Cauchy-Riemann type operators
D, € CRe(E;).

In order to understand the functional-analytic properties of DT, we must examine its asymptotic
behavior fairly carefully. Fix local holomorphic coordinate charts to identify a neighborhood of
each w € © in X with the closed unit disk D < C, with w corresponding to 0 € D, and use the
maps 1, introduced at the end of §3.1] to produce from these a smooth family of holomorphic
charts on neighborhoods of ¥, (w) € ©, for 7 € P. In these coordinates, use the biholomorphic
map

[0,00) x ST — D\{0} : (s,) > =27

AThe compact support condition is vacuous in the present context since ¥ is compact, but the same definition
is also valid on punctured domains.



26 CHRIS WENDL

to define cylindrical ends of 3 with holomorphic coordinates (s, ) € [0,0) x S1. Choose also a
smooth family of trivializations of E; near ©, and denote the resulting trivialization of E. over
the cylindrical ends by ®. The relative first Chern numbef] of E- is then given by

(3.1) (B, = a1(E,) e Z.
For any tuple of real numbers
6= {511} € I&}11}667
we can use the chosen coordinates and trivializations over the cylindrical ends of 3, to define
the Sobolev space with exponential weights

WhPS(E) .= {77 € VV{Zf(ET) ePwsny e WEP([0,00) x S') on the end near ¢, (w) € @T}.

We will also write
LPO(Ey) i= WOPO(E,),
Note that sections n € WF»» 5( ) have exponential decay at any end where &,, > 0, but one can
also take d,, < 0, in which case n may be unbounded with exponential growth near w. In order
to emphasize when we are using negative exponential weights, we associate to § = {J}weo the
inverse set of weights
-0 := {_5 }we@

The asymptotic coordinates and trivializations also naturally give rise to asymptotic trivializa-
tions of F, = HomC(TET, E +), SO we can similarly define the Banach space Wh= 1’p"s(F ), which
is a completion of some subset of QO 1(27, ET) determined by the asymptotic conditions.

Choose a smooth T-parametrized family of Hermitian bundle metrics and connections on F.
which match the trivial metric and connection in our chosen family of trivializations near ©,.
Any Cauchy-Riemann type operator on E, can then be written as D, = dy + A for some
A e Q¥Y(X,, Endg(E,)), where 0y := V + J, o Vo j, : ['(E;) - Q%(Z;, E;). In the chosen

coordinates and trivialization near a point w € ©,, the (0,1)-form A can be written as
A =AW (z)dz

for some smooth function A : D — Endgr(C™). The restriction of A to an Endg (E;)-valued
(0,1)-form A, € Q%Y(X,,Endr(E,)) can then be written on the corresponding cylindrical end
as

A = AW (s,t) (—ds + i dt)
where
(3.2) Agw)(s,t) — 27Te—2w(s—it)A§rw) (6—27r(s+it)),
and given a section 1 € I'(E,) expressed as a function 7(s,t) € C™ with respect to the trivial-
ization on the same end, D,n on this end takes the form

(3.3) D,y = (asn + 0 + Ag%) (—ds + i dt) = (én + Ag%) (—ds + i dt).
(Here and in further local expressions below, we are using the abbreviation ¢ := 0, + i0; as

mentioned in Remark B10l) Observe that A(Tw)(s, ) — 0 with all derivatives as s — co. This
expression shows that D, extends to a bounded linear operator

D, : WEPS(E,) — Wk 1rd (i)

for any choices of k € N, p € (1,00) and exponential weights & = {J,, € R}, eo. Operators of this
type are standard in Floer-type theories, and especially in symplectic field theory. Appealing
to the Fredholm theory on punctured surfaces developed in [Sch95], the asymptotic decay of

SRecall that for any complex line bundle E over a surface ¥ with a trivialization ® specified outside of some
open subset in ¥ with compact closure, the relative first Chern number ¢f (E) € Z is defined by algebraically
counting the zeroes of a generic section that is constant with respect to ® wherever the latter is deﬁned. This
definition extends uniquely to higher rank bundles via the relation ¢f*®*2(E; @ Eo) = ¢ (E1) + 2 (E2).
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Agw)(s, ) means that D, : W*P(E,) — W LP(E.) is controlled at every puncture by the so-
called trivial asymptotic operator —id; : H'(S',C™) — L?(S',C™), for which 0 is an eigenvalue
of maximal multiplicity. In this sense, the asymptotics are degenerate, i.e. in the SFT setting,
such an operator can arise as the linearized Cauchy-Riemann operator of a holomorphic curve
asymptotic to periodic orbits that live in Morse-Bott families foliating an open set. In particular,
D, : WkP — Wk=LP is not Fredholm, but it becomes Fredholm when we introduce suitable
weights: conjugating D, : W*#9 — W18 with a map of the form U(n) = efn for a suitable
function f : ¥y — R (cf. [AWZ99, §6] or [Wenl0), §2.1]) produces a commutative diagram

Wk,p,é(E'T) L, kal,p,é(FT)
(3.4) qu lw

) b,

Wh(E, Wh=LP(F),

where D : Wk? — Wk=1P is another Cauchy-Riemann type operator whose asymptotic opera-
tors are offset by constants depending on the weights §, and thus is Fredholm for suitable choices.
In particular, the computation in (8.7) and (B.8]) below will show that imposing the exponential
growth condition e %51 € W¥P([0,0) x S') on each cylindrical end for sufficiently small § > 0
adjusts the asymptotic operators of f)T so that each acquires an effective Conley-Zehnder index
m relative to the trivialization ®.

We need to be a bit cautious with the weights when discussing elliptic regularity and formal
adjoints: as a rule, the Sobolev constants k£ € N and p € (1,00) can be changed freely, but
the weights cannot. The following are immediate consequences of (B.4]) after applying standard
regularity arguments to ﬁT, plus (in the case of Lemma [B.I2]) the fact that Cauchy-Riemann
operators with nondegenerate asymptotics automatically impose exponential decay conditions
on their kernels (cf. [Sch95, Prop. 3.1.26)):

Lemma 3.11. Suppose keN, 1 <p<oo, and § = {6y € R}yeo is any choice of exponentzal

weights. Ifn € LPS(E.) is a weak solution to D1 = & for € € WE-129(E) thenn e WhPS(E,).
]

Lemma 3.12. Suppose 1 < p < o0 and the weights § are chosen such that D W’W‘s( L) —
Wk=Lp8(F ) is Fredholm. If n e LP(E,) is a weak solution to D.n = 0, then n € Wka9(E.)
for all k € N and q € (1, 0). O

To discuss the formal adjoint on punctured domains, one should define real L?-products for
[(E;) and T(E,) in terms of a family of Hermitian bundle metrics on E, and Riemannian
metrics on 3, that are compatible with the conformal structure and standard on the cylindrical
ends; in particular, the right metric to use on the cylindrical ends is the Euclidean metric in
the coordinates (s,t) € [0,00) x S', so that ends have infinite area and the metric does not
extend over the punctues. The key technical point is then the following: there are well-defined
L?-pairings

(3.5) PPQLY? S Rin®E& - (1,6
whenever 1/p 4+ 1/q = 1, and using the density of C°, the usual relation
(3.6) (a,Dynypz = (Dia,nyp

for smooth compactly supported sections 1 and « remains valid whenever 7 € Wl’p’*‘;(ET) and
o€ Whed(E,) for 1/p +1/q = 1. Using (3.4)), one finds D* = UD*¥ !, from which one can
check that D* : WhPO(E) — Wk=120(F.) satisfies the Fredholm property and Lemmas [3.11]
and BI2 under the same conditions on & as D, : W*P=8(E ) — Wk-1Lr=8(F ). The next
result appears standard at first glance, but the reader should be cautioned that it depends on
inclusions W#P9 —s WkP.=9 which hold only when all the weights are nonnegative, so e.g. one
does not obtain any similar result with the roles of D, and D;‘f reversed.
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Proposition 3.13. Assume k€ N, 1 < p < o0, and § = {0y = O}lyeo is a set of nonnegative
exponential weights such that

D, : WhP=(E,) - Wh 1P =3(F,)
1s Fredholm. Defining its formal adjoint as a bounded linear map
D WEPI(F) — WELPI(f,)
and using the obvious inclusions WHPO(E,) < Wh=L2:8(F ) s WE-1P=8(E) we have
WHELP=9(F ) — im D, @ ker D¥.
In particular, coker D, is isomorphic to the space of all sections in L% 5( 7)) for1/p+1/qg =1
that are L?-orthogonal to imD, c LP~ S T) under the pairing (B3.9)).

Proof. If o € imD; A ker D*, then o« = D7 for some n € WP —9(E.) ¢ Whr—3(E.), while
o also belongs to Whe9(E.) for 1/p + 1/q 1 by Lemma Thus « has a well-defined
L?-pairing with itself and (3.6) gives

|72 = (@, Drpy2 = (Dia, 1)z = 0.

To show that imD, + ker D* is Wk_l’p’_‘s(FT), note first that it is a closed subspace since
D, is Fredholm Then in the case k = 1, the contrary would mean there exists a nontrivial
X e (LP—9(E))* = L99(E,) for 1/p+1/q = 1 such that (D1, Ayp2 = 0 for all n e WiP—9(E,)
and (@, \)z2 = 0 for all @ € kerD*. The first condition means A € ker D* by Lemma
and thus contradicts the second unless A = 0. To extend this result to all k e N, note that if
e Wk=Lp=8(F ) « [»=9(F.) then the k = 1 case gives n € WhP=%(E.) and « € ker D* such
that D7 +a = A. Then LemmaBI2 implies v € WE1PS(E ) « Wk=1p=8(E.) implying that
D, is also in W 12=9(F), so Lemma B.I1 implies n € W*P—3(E_) and we are done. O

This discussion extends easily to the pulled back operators
0D, € CRr(¢*E,) and @D, € CRg(p*E;)

on bundles over X! and E respectively. Observe that since E’ 7, 3, has no branch points,
dyr gives a bundle 1som0rphlsm TE' — *T3, and we can thus identify

F¢" |y, = Home(TY), @i Er) = Home(piTSr, 05 Ey) = 9} F,

so that ©*D; can be viewed as a map I'(¢*E,) — I'(¢*E,). We can now define fixed holomorphic
cylindrical coordinate systems (s,t) € [0,00) x S! on punctured neighborhoods of each point
¢ €© = p-1(0,) such that ¢, takes the form
> 5[0,00) x ST £ [0,00) x St < %,
(8,t) = (k¢s, ket),
where k¢ € N is the branching order of ¢ at (. Pulling back the trivializations ® on E, near ©,
to define correspondlng trivializations of p*E; near ©’, we obtain asymptotic trivializations of

E and @7 *E_ on the cylindrical ends and can thus define weighted Sobolev norms for sections
of these bundles, producing a bounded linear operator

D, WEPS (g ) > WP (2 )

for all choices of k € N, p € (1,00) and exponential weights § = {0 € R}¢eer. If 6 = {0 }uweo is
a choice of weights for D, there is an induced set of weights for ¢*D. defined by

"8 = {kcdy(c) }ge@' ’

where k¢ € {1,...,d} again denotes the branching order of ¢ at (.
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Proposition 3.14. Suppose k € N, p € (1,0), and the exponential weights & = {0y }weo are

chosen to satisfy
27

for every w e ©. Then for any D, € CRg(F. ) the gpemtors
D, : WhPO(E,) > WH PO (F),
PrD,  WhP =9 (o ) — WP @™ (o2 )
are Fredholm and satisfy
ind(D,) = ind(D;), and ind(¢*D;) = ind(¢*D;).

Moreover, the maps D(E;) — D(E.) and T'(p*E;) — T(p*E;) defined by restricting smooth
sections to the corresponding punctured domains define isomorphisms

kerD; — kerD; and  ker(p*D,) —> ker(¢*D5).

0<dy <

Proof. We will prove the correspondence between D, and f)T, as the result for the pulled back
operators follows by the same argument simply replacing the bundles £, — ¥ and ET - X')T
with ¢* B, — %' and ¢, E; — 3! respectively.

The Fredholm property for D, and the index calculation follow from the usual index formula
for Cauchy-Riemann operators on Riemann surfaces with cylindrical ends, proved in [Sch95] (see
also [Wene, Lecture 5]), supplemented by the transformation (3.4) to handle the exponential
weights (cf. [HWZ99, §6]). In particular, the condition —27 < =4, < 0 for each w € O,
guarantees that D, is conjugate (cf. (377) and (38) below) to a Cauchy-Riemann type operator
WhP(E,;) — Wk- 171”(FT) with nondegenerate asymptotic operators at every puncture whose
Conley-Zehnder indices with respect to the trivialization ® are m = rankc E;. In light of (3.]),
the index formula from [Sch95] thus gives

ind(D;) = mx(3,) + 2¢2(E,) +m - |05 = mx(2) + 2¢1(E;) = ind(D;).
Note that doing the same computation for the pulled back operators requires the stronger
condition —27/d < —d,, < 0 in order to ensure that all of the pulled back weights in the set
—p*d lie in the interval (—2,0).

To understand the kernels, observe that since any 7 € ker D is smooth, its restriction to >,
belongs to Wk»—9 (ET) and is thus in ker D, A Conversely, we need to show that any section
ne W’“’p’*‘;(E ) annihilated by D. can be extended over the punctures to a section in W*?(E (Er),
which is then automatically annihilated by D.. This will follow from the asymptotic elliptic
theory of the equation D,;n = 0. Indeed, recall from (33) that on the cylindrical end near
any puncture w € O, the function 7(s,t) € C™ representing n € ker D, in some trivialization
satisfies

on + Al"In =0,
and
n=e*f forsome feWFP([0,00) x S},C™),
where § := §,, € (0,27). Then f = e~ satisfies the Cauchy-Riemann type equation

(3.7) Of + (0 + AN f = ouf — [—idr — (6 + AL f = 0.

Since A(Tw)(s, ) = 0 as s — o0, this equation is asymptotic to the equation (0s — As)f = 0 for
the asymptotic operator

(3.8) Ajs = —io, — 6 : H(S',C™) — L*(S',Cc™),

6Note that 77|§T would not belong to W2 (ET) in general if 7 were an arbitrary (not necessarily smooth)
section of class W*? on E., nor if any of the exponential weights were nonnegative—the latter in particular
permits sections in WP 9 (ET) that do not decay to zero at infinity, which is crucial since arbitrary smooth
sections 7 € ker D, may indeed be nonzero at points in O-.
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which can be regarded as a densely defined unbounded self-adjoint operator on L2(S',C™).
The function A" : D — Endg(C™) is smooth by assumption, and (3.2)) then implies that the

derivatives 0“/1&“0 (s,t) of Asw) for arbitrary multi-indices « satisfy exponential decay conditions
10 Al (s,1)| < Mae™2"
for suitable constants M, > 0. Applying [Sie08, Theorem A.1], f therefore satisfies
F(s,t) = ¥ [e(t) +r(s,1)],

where e : S — C™ is a nontrivial eigenfunction of As with eigenvalue A < 0, and the remainder
r(s,t) € C™ decays to zero with all its derivatives uniformly in ¢ as s — 0. The spectrum of Ay
is {2k — 9 | k € Z} < R, hence the assumption § € (0,27) implies A < —d, and we conclude that

n(s,t) = eOFNs [e(t) + (s, t)]

is bounded on the cylindrical end; in fact, one can use this to show that the smooth function
D\{0} — C™ : z ~> 7(2) defined via the transformation z = e~27(s*) has finite W'P-norm on
D\{0}. Moreover, n(z) has a continuous extension to z = 0: indeed, the extension is obviously
n(0) = 0 if A < —J, while in the case A\ = —4, the eigenfunction e(t) is necessarily constant,
so that 7(s,-) converges to this constant value as s — oo. All these conditions together imply
that the continuous extension of 7 over the punctures is of class WP, e.g. the case k = 1 is a
standard exercise using the definition of weak derivatives (cf. [Wenal Exercise 2.118]), and the
general case follows from this by elliptic regularity. O

Remark 3.15. Since sections in W’“’p’*‘;(E.T) and its pulled back counterpart need not be
bounded when the weights —& are negative, the punctured operators in Proposition B.14] cannot
be interpreted in any reasonable way as linearizations of nonlinear Cauchy-Riemann operators,
e.g. Wk’p’*‘;(E'T) in this case is not a subspace of a tangent space in any reasonable Banach
manifold. For our purposes, the exponential growth condition is merely a technical convenience
so that we can consider operators with the right index and the right kernel and cokernel while
dealing with honest covering maps instead of branched covers. The geometrically meaningful
operators are still D, and ¢*D,, on unpunctured domains.

Remark 3.16. Suppose E., ¥, and D, are independent of 7 but ¢, moves in M%(j) as T
varies, e.g. this is the relevant situation for the proof of super-rigidity. There is then a subtle
but important difference between what Proposition [3.14] says about D, and what it says about
©ED,. The former is a family of operators whose relationship to each other for different values of
T is not obvious from the definitions, but the proposition implies that they are all in some sense
equivalent to a single operator D on the closed domain, so they all have isomorphic kernels. No
such thing can be assumed for the pulled back operators: while XD, must have the same index
for all 7, there is nothing in this setup to stop the dimension of its kernel from varying wildly
with 7.

3.3. A digression on representation theory. In preparation for the twisted bundle con-
struction in the next section, we now collect some general facts from representation theory.

3.3.1. Real permutation representations and subrepresentations. Given a finite set I with d :=
|7| € N elements and a finite group with a homomorphism
p:G—S():gm pg

defining a transitive group action on I, we denote by R’ the real vector space spanned by basis
vectors {e;}ier, with an inner product such that this basis is orthonormal. We shall use the
boldface symbol p to denote the corresponding real d-dimensional representation of G,

(3.9) p:G — Autg(RY) such that p(g)e; := €py(i)-
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We will be interested in the decomposition of R into irreducible G-invariant summands. This
can be understood in terms of its complexification

pe : G — Aute(Ch),

defined by viewing {e;};er as a complex basis of C!. In general, we say that a complex represen-
tation A : G — Autc(V) is the complexification of a real representation 8 : G — Autg (W)
if V' is isomorphic to W @ W such that G acts on the latter by the complex-linear exten-
sion of its action on W. Recall from [Ser77, §13.2] that irreducible complex representations
A: G - Autc(V) come in three mutually exclusive types:

e Real type: V admits a complex-antilinear G-invariant involution. Then A is the com-
plexification of a real irreducible representation 8 : G — Autr(W). It follows that A is
isomorphic to its dual representation A* : G — Autc(V™*), and all G-equivariant linear
maps W — W are given by scalar multiplication:

Endg(W) ~ R.

e Complex type: A is not isomorphic to its dual representation A* : G — Autc(V*).
Then A®A* : G — Aute(V @ V*) is the complexification of a real irreducible represen-
tation 8 : G — Autgr (W) obtained from A : G — Autc(V) by setting W := V and using
the obvious inclusion Autc(V) < Autg(W). The algebra of G-equivariant real-linear
maps on W is then

Endg(W) ~ C.

¢ Quaternionic type: A is not of real type but is nonetheless isomorphic to its dual
representation. Then A@® X : G — Autc(V @ V) is the complexification of a real
irreducible representation 6 : G — Autg(W) obtained from A : G — Autc (V') by setting
W := V and using the obvious inclusion Autc(V) < Autg(W), and the algebra of
G-equivariant real-linear maps on W is isomorphic to the quaternions:

Endg (W) = H.

We shall also refer to a real irreducible representation as “of real / complex / quaternionic
type” according to which of these three constructions it comes from. With this classification in
mind, we denote the various complex irreducible representations of G by

Aj,K G — Aut((:(Vj,K)a

where K stands for R, C or H depending on the type, and arrange a complete list of pairwise
non-isomorphic irreducible representations in the form

ES ES
A1,]R7 oo 7Ap,R7 A1,((:7 A17([:7 v 7Aq,C7 Aq,([:a A1,[[']17 v 7An H-

)

This gives rise to a corresponding complete list
OI,R, s ,ep,Ra 91,@5 s aeq,(Ca OI,H, s 79n,H
of pairwise non-isomorphic real irreducible representations
0,k : G — Autp(W;x) satisfying Endg(W;k) =K,

where for each j, the complexification of 8k is Ajr for K = R, Ajc® )‘;,C for K = C, and
Ajm @ Ajm for K = H. Note that the G-equivariant endomorphisms endow each W;k with the
structure of a left K-module such that the representation 8; is K-linear.

We recall a standard fact from representation theory:

Proposition 3.17. Every finite-dimensional representation 0 : G — Aut(W) of a finite group
G has a unique isotypic decomposition, meaning a splitting W = W1 ® ... ® Wy such that:

(1) For eachi =1,...,N, W; ¢ W is a G-invariant subspace on which 6 is isomorphic to
a direct sum of copies of a single irreducible representation;

(2) The irreducible representations corresponding any two distinct subspaces in the splitting
are not isomorphic.
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O

Since pc itself is a complexification of a real representation, every subspace in the resulting
isotypic decomposition of C! is either identical or orthogonal to its complex conjugate, where
the conjugate always carries the dual representation. Thus we can uniquely decompose C! into
pairwise orthogonal G-invariant complex subspaces

(310) C'=Xig®..0Xr®@X1c®X1c®.. X c® X cDX1u® ... ® X,

where each X;r and Xy is of the form Y x @Yk for some real subspace Y;x < R!, and each
X c has trivial intersection with R!. Next, observe that every irreducible G-invariant subspace
in C! is either identical to its complex conjugate or intersects it trivially: indeed, any other
option would produce an intersection which is a nontrivial but smaller G-invariant subspace.
We can thus further decompose X;r and X ¢ into irreducible G-invariant subspaces

@k ®&m;
X]R—V]R s _](C—V

for some integers k;,m; > 0, where each Vg summand in X;r can be assumed of the form
W;r@iW;r for some irreducible G-invariant real subspace W;r < Y;g. In X; i, the irreducible
G-invariant subspaces cannot be complexifications since the corresponding representation is not
realizable over R, thus these subspaces have trivial intersection with R! and can instead be
arranged in conjugate pairs:
XH:K%CN@Z

for some integers ¢; > 0. From this decomposition of p- we can immediately read off a corre-
sponding decomposition of p: we have

(3.11) RI=Vir®..0,zg®Yic®.. ®Y,cOYV1g®... OV, q,

where the summands are all G-invariant and pairwise orthogonal, Y;x = Xk AR’ for K = R, H,
and Yjc = (X;c® Xjc) N R’, hence,
dime X; ifK=RorH
dimg ¥y = | Smc Xix  #K=RorH,
’ 2dimc X,;x  if K=C.

These summands admit further (non-unique) decompositions into real irreducible G-invariant
subspaces

k; 0.
Vie 2 W50,  YiexWHY,  Yie=Wiy.
3.3.2. The regular case. We now specialize the above discussion to the case
I:=G, pg(h) := gh,

in which case p : G — Autg(R%) is the so-called regular representation of G. By a stan-
dard theorem in complex representation theory, the complexification p¢ : G — Autc(CY) then
contains every irreducible complex representation Ajx : G — Autc(V k) as a subrepresentation
with multiplicity equal to dimc¢ Vj k. This implies a similar fact about p that we will make use
of in §6] for proving Theorem

Lemma 3.18. The real reqular representation p : G — Autg(RY) contains every irreducible
representation 0k : G — Autg(W;x) of G as a subrepresentation with multiplicity equal to
dimK Wj,]K- O

Next, recall that the action of G on itself by right multiplication
G- S(G):gm—pl,  pyhi=hg™!
commutes with p and thus defines a second permutation representation

p G — Autg(R%), p'(9)en = epg—1
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which commutes with p, giving rise to a representation
(3.12) G x G — Autg(R%) : (¢9,h) — p(g)p'(h).

By another standard theorem of complex representation theory, the summands in the isotypic
decomposition FI0) of C are then invariant under the complexification of the (G x G)-action
[B12), and they define irreducible complex representations of G x G. In particular, p’ therefore
preserves each isotypic component for p but does not preserve any further decomposition of
that component into irreducible G-invariant subspaces. For future use, we note one additional
fact from complex representation theory: the action of G x G on an isotypic component in C¢
corresponding to a given irreducible representation A : G — Autc (V) is isomorphic to V ® V*,
with G x G acting by

(GxG)x (VRV*) > VV*:((g,h),v®a) — A(g)v ® X*(h)a,
cf. [Ser77, §6.2].

3.3.3. Non-faithful representations. An important special case of the factorization construction
in Example arises when
0 : G — Autg(W)

is an irreducible representation that is not faithful. Choosing H to be any nontrivial normal
subgroup of G contained in its kernel

H c kerf c G,
G/H then inherits an irreducible representation
0 : G/H — Autg(W).

For example one can take H = ker 6, in which case 8 becomes faithful. Now if p : G — S(I)
is a transitive action on the set I of d elements, let

pr - G/H — S(I/H)

denote the induced action on the set I/H of H-orbits, and consider the corresponding permu-
tation representations

p: G — Autg(R?), py : G/H — Autg(R!/H),

Lemma 3.19. Under the assumptions described above, the multiplicity of @ : G — Autgr(W) as
a subrepresentation of p : G — Autg(R?) matches the multiplicity of g : G/H — Autg(W) as
a subrepresentation of py : G/H — Autg(RY/H).

Proof. Observe that in terms of the real/complex/quaternionic distinction described in §3.3T]
0 and O are necessarily of the same type: indeed, the spaces of linear maps on W that are G-
equivariant or (G/H )-equivariant are the same since H acts trivially on W. The multiplicities of
both are therefore determined in the same way by the multiplicities of the corresponding complex
irreducible representations in the complexifications of p and py respectively, thus it will suffice
to prove a similar statement about complex representations. Namely, assume A : G — Autc (V)
is complex irreducible, H < ker A © G is a normal subgroup and Ay : G/H — Autc(V) is the
resulting irreducible representation of G/H. By orthonormality of characters, it will suffice to
prove
X XA = X Xau )

where the inner product of characters x» : G — C is given in general by

O Xy 1= ﬁ D xalg)xn(g) e C.

geG

For each ¢ € I, let G; < G denote the stabilizer subgroup for ¢ under the G-action on I via p.
Since the action is transitive, the orbit-stabilizer theorem implies |G;| = |G|/d. The trace of
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a permutation matrix is the number of elements that it fixes, in other words the number of
stabilizer subgroups that it belongs to, hence for each g € G,

Xplg) ={iel|geGi}|.
This implies

1
(3.13) Xps XA) = ?2 D1 xalg).

| | 1€l geG;
This can be simplified since G acts transitively on I, so the subgroups G; for distinct ¢ € I are
all conjugate. By the conjugation-invariance of characters, this implies that all d of the sums
over G; in ([B.I3) are identical, so plugging in |G;| = |G|/d, we have

1
Qo) = 157 D xal9),
tgeq;
where i € I in this expression can be chosen arbitrarily.
To write down a similar expression for (x,,,, XA, ), define for each i € I

Hi =Hn Gz c G,
which is a subgroup of both H and G; and is normal in the latter. There is then a natural
inclusion of G;/H; as a subgroup of G/H, and it is the stabilizer subgroup of [i] € I/H for the
permutation action of G/H on I/H. The same computation thus gives

S = g 5 ol =g 3 ol
" [g]eGi/H;

|G/ Hil [9]€G:/H;

Finally, observe that xa(g9) = xa,([g]) for each g € G since both are traces of the same linear
operator acting on V', so one can replace the last expression with a sum over g € G;, giving

1
Qow Xan) = 11 D7 xa(9) = Oeonxa)-
tgea;

O

3.4. Twisted bundles and splittings of operators. We can now make precise the splitting
of pulled back Cauchy-Riemann type operators that was sketched in §2.21

3.4.1. Twisted bundles from representations. We associate to any representation 6 : G —
Autgr (W) the family of real vector bundles W¢ — ¥, defined by

wo = (EZXW)/G,

where G acts on W via 6 and on EZ by deck transformations, so that m, : EZ — ¥, identifies
3, with EZ/G This gives rise to complex vector bundles Ef, Ff — 3 of rank m - dimg W,
defined by
E —FE.@rW?  F®=F, @ WP =Homc(TS,, EY).

Each of the bundles W? has a canonical flat structure, i.e. it comes with a well-defined notion
of constant local sections, thus D, € CRg(E;) determines a family of Cauchy-Riemann type
operators

D? : T(E2) — T(F9) = (5, £9)
such that D;o(n ®v) = ]an ® v whenever v is a constant local section of W2. Since D;o €
CRR(EQ ), it is Fredholm in suitable Banach space settings, in particular as a bounded linear
operator

DF ; WhP=3([9) — Wh=1r=d (1)
for any k£ € N, p € (1,0), and negative exponential weights —d = {—d,}weo with all §,, > 0
sufficiently small. We will formulate a precise version of this statement and compute the index in
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g4l Observe that aside from its obvious dependence on D, DQ depends on our choice of regular
presentation for ¢ and on the representation 8, but both of them only up to isomorphism.

If 6 is irreducible with Endg (W) = K € {C, H}, then the resulting left K-module structure of
W induces a left K-module structure on each fiber of the twisted bundles Ef and Ff , for which
the twisted operator DQ commutes with the action of K, thus its kernel and cokernels are also
left K-modules. Note that if K = C, the resulting complex structure on Ef and FTB is different
from the one defined by J; the latter does not commute with Df unless D is a J-linear operator
to start with.

The most important special case of the above construction is Ef > ZT, where p : G —
AutR(RI ) is the permutation representation associated to our regular presentation of ¢. We
define B = B, ® (RHE — 3, as above and can identify it canonically with

EP = (WjET ®RI) /G,
so that sections of Ef are written as G-equivariant sections of W:ET QR , hence

HZZni(@ei

el

for ' € D(7*E;). Here G-equivariance means that for all z € %" and g € G,

77(92) (]1®P 277 ®6pg(z
1€l
hence
(3.14) n'(z) = 7 (gz) forall zeX' geGandiel.

Writing /. = (2" x I)/G, this relation gives rise to a bijective correspondence
[(EP) - D(prEr) =1

(319) A 0)]) = (=)

and thus natural isomorphisms
(3.16) WhP=8(Ep) — Who—¢* (ot )

for every k > 0 and p € (1,00), where we recall from §3.2 that the pulled back exponential
weights are defined by

p*o = {kC5¢(C)}(e@/’

with kc € {1,...,d} denoting the branching order of ¢ : ¥’ — ¥ at ( € ©'. The reason for
using these particular weights in the isomorphism (B.I0) is as follows. We observe first that
if  : [0,00) x S — [0,00) x S! is a holomorphic covering map of the form (s,t) — (ms,mt)
and Z,, is defined to act on [0,00) x S! via the transformation (s,t) = (s,t + 1/m) and its
iterates, then the map f + f o ¢ defines for each integer k > 0 and p € (1,00) an isomorphism
from W*P([0,00) x S') to the closed subspace of W*P([0,00) x S') consisting of Z,,-invariant
functions. It follows that for any exponential weight §, a function f on [0,00) x S! is of class
W9 if and only if f o is of class Wkpmd  The global consequence of these observations is
that for n € D(E?) and the correspondlng section 7j € T'(p*E,), the WkP=%*9_norm of 7j can be
bounded in terms of the W¥*#~9_norm of 7, and vice versa.

Observe that (R1)? — 3, also has a well-defined real bundle metric since p acts on R by
orthogonal transformations, so endowing F; with a Hermitian bundle metric induces a Hermitian
bundle metric on E? = E, ® (R')? such that the correspondence (3I5) also preserves L2-
products. After writing down a similar correspondence for the bundles FP and gpiFT, we obtain
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an identification between the Cauchy-Riemann operators @TDT and D?:

Wk =0(EP) i Wh=Lp=8(FP)

(3.17) l; l;
W=t ) L5 WhoLroe (ot ),

3.4.2. Splitting the twisted Cauchy-Riemann operator. If W < R! is any G-invariant subspace
and 0 : G — Autg (W) denotes the resulting subrepresentation, then we obtain corresponding
subbundles
E? c EP, E9 c Fr

such that D? takes sections of ETB to sections of Ff , acting as the operator Df Under the
correspondence (IR, one can understand this as identifying I'(E®) and I'(F?) with closed
subspaces

Lo(prEr) c D(p7Er),  To(erFr) c T(p7Fr),
with a similar definition for closed subspaces of the relevant weighted Sobolev spaces, such that
goiI-)T restricts to a bounded linear operator

ke~ wpn\ PEDr ko 1p 08, xp
W P Er) T W Pl ),
which is conjugate to D : WkP—=8(E€) — Wk=1.r.=8(F0) and will thus be Fredholm with any
negative exponential weights that are close enough to 0. Now if
Rl =W ®...0 Wy

is a decomposition of p into subrepresentations 8; : G — Autg(W;) for j = 1,..., N, we obtain
a direct sum decomposition
D =D% @...@D%,

which is equivalent via ([B.I7) to a decomposition of goﬁI.)T over a splitting of Banach spaces
N
k,p,—p*s k,p,—p*8
WHPmE (1 Er) = D We ™ (07 Er)
j=1

and the corresponding decomposition of Wk_l’p’_s"*‘s(gpiFT). Observe that if the subspaces
Wi,..., Wy < R are pairwise orthogonal, then the corresponding spaces of sections of OrE;

and goﬁFT are L?-orthogonal as a consequence. It is useful to note that whenever two of the

representations 8; : G — Autr(W;) and 6; : G — Autr(W;) are isomorphic, the G-equivariant
isomorphism W; — W; induces bundle isomorphisms Efl - Efj and FTB i — Ff 7 that identify
Df’ with DEJ , so these two operators have isomorphic kernels and cokernels. This implies:

Lemma 3.20. Suppose 0; : G — Autg(W;) for j = 1,...,N is a collection of representations
of G, and 0 : G — Autg (W) is another representation such that

N .
0=PoT
j=1

for some integers ky, ..., kn = 0. Then there exist isomorphisms
N N
. . p.\ DPk; . .o\ DPk;
ker D? ~ (ker fo ) " and  coker DY ~ (coker fo ) "
j=1 j=1
In particular, if @ is the permutation representation p : G — Autg(RY), this gives isomorphisms
N N
. . p.\ DPk; . . p.\ DPk;
ker(¢iD;) = P (ker Df’) " and  coker(¢*D;) = P (Coker D;oj) ’
j=1 j=1
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O

3.4.3. Non-faithful representations revisited. Here is a proof of Lemma For the present
discussion we drop the parameter 7 from the notation since it does not play any important role.

Suppose 6 : G — Autr(W) is a representation and H < ker @ c G is a nontrivial normal
subgroup of G, giving rise to a representation

0 : G/H — Autg(W),
and (following Example [B5]) a factorization of ¢ : ¥/ — ¥ as
I LN )

By assumption we are using a minimal regular presentation and thus p : G — S(I) is injective,
so H acts nontrivially on I, implying deg(¢p) < d. Writing ¥, = %" /H, the obvious projection

map
(2" x W) /G—> ( "o W) /(G/H)

is then an isomorphism of real vector bundles over Y and thus gives rise to a canonical iden-
tification between the twisted bundles E¢ and EF with their Cauchy-Riemann operators D?
and D% . To prove the lemma, we now just need to observe that Lemma B.19] implies @ is a
subrepresentation of p if and only if 8 is a subrepresentation of py, hence the corresponding

twisted operators appear simultaneously as summands in the decompositions of ¢*D and ¢}, D
from Lemma [3.20)]

Remark 3.21. In the situation above, one should interpret ker D? as the set of all sections in
ker(p*D) that are pullbacks of sections in ker D®# (interpreted as a subspace of ker(¢% D)) via
the branched cover X' — X/,.

3.4.4. The regular case revisited. Now consider the special case where p is the regular represen-
tation G — Autg(R?), defined via

p:G—S(G),  pg(h)=gh

We saw in Example B4] that this means @, : E'T — 3, are all regular covers isomorphic to
m: 3" — ¥, and the action of G on X! = (X7 x G)/G by deck transformations takes the form

gl(z, )] == [(z, pg (h))]
where p' : G — S(G) is the action of G on itself by right multiplication, py(h) = hg~!'. The

induced G-action on spaces of sections 7 of gpj‘fET is defined by

(gm([(z,W]) == n(g~"[(z, W)]) = n([(z, hg))).

Recall now from §3.3.2] that the permutation representation p’ : G — Autg(R%) arising from
s commutes with p and preserves the isotypic components of p. It therefore defines an action
on Ef by fiber-preserving bundle isomorphisms, and these isomorphisms preserve each of the
subbundles in the splitting

(3.18) f=é JRG_)(—B J(C@@

corresponding to the isotypic decomposition (311l of p. In particular, this G-action by bundle
isomorphisms gives a linear G-action on each of the subspaces F((Ep )jiK) C ['(EP), and there is
a similar action on sections of F? such that the restriction of D? to each of these subspaces is
G-equivariant. Its kernel and cokernel thus inherit natural G-actions. Under the correspondence
(BI7), this action on sections of E£ matches the action by deck transformations on I'(¢*E, ).
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Lemma 3.22. Suppose p: G — S(G) is defined by left multiplication, 8y : G — Autg(W) is an
irreducible representation of G, and 0 : G — Autr(Y) denotes the corresponding summand in
the isotypic decomposition BII) of the regular representation p : G — Autg(RY). Then every
irreducible subrepresentation for the natural G-action on ker Dg or coker Dg is isomorphic to Og.

Proof. Suppose first that 6 is of either real or quaternionic type, in which case the complexifi-
cation X := Y @iY < C% of Y < R is also an isotypic component for the complexified regular
representation p¢ : G — Autc(CY). We shall denote the restriction of pe to X by

A G - Aute(X),

and let Ag : G — Autc (V) denote the underlying complex irreducible representation. Regarding
these complex representations as real representations on X and V respectively gives rise to
corresponding twisted bundles and Cauchy-Riemann operators on them, along with a natural
linear inclusion of vector bundles

ES — E> such that ker DY = ker D} n T(E?).

It will be useful to think of Ef.‘ as a complezification of Ef_) , in the following sense. While Ef_) is
already a complex vector bundle, Ef‘ = F. Qg X2 naturally carries two complex structures .J;
and ¢, which commute with each other: the former acts on n®wv € ET Rr Xf.‘ by Jrn®wv and the
latter by 1 ®iv, using the fact that X is a complex representation and X2 is therefore naturally
a complex vector bundle. From this perspective, Df_‘ is the natural i-complex-linear extension
of Df to its complexified domain, and the representations defined by the G-action on ker Df.‘
and coker Df_‘ will be the complexifications of the real representations it defines on ker D?_ and
coker Df respectively. In the following we shall use the symbol “®;” to denote complex tensor
products of vector spaces and bundles with i (instead of J;) as the complex structure.

Recall now that as an isotypic component of the complex regular representation, X admits a
complex-linear isomorphism to V' ®; V* such that for all g € G, p(g) acts on V®; V* as Ay ®1,
while p/(g) acts as 1 ® A§. The isomorphism X — V ®; V* thus gives rise to i-complex bundle
isomorphisms

E} > BV, B} PNV
where we are abusing notation to let V* denote the trivial bundle over S, with fiber V*, and
this identifies Df_‘ with Df_‘o ® 1. We therefore have
ker D} = ker DX ®; V*, coker D = coker D2 ®; V*,

with G acting on both by 1 ® Ag, hence all irreducible subrepresentations in these spaces are
isomorphic to A, which is isomorphic to Ag since the latter is not of complex type. Viewing
these as complexifications of real representations on ker Df and coker Df as explained above, it
follows via the correspondence between real and complex irreducible representations outlined in
§3.3.1] that all the irreducible real subrepresentations are isomorphic to 6.

The main difference if 8 is of complex type is that Y @Y < C% is no longer an isotypic
component for pc, but is instead the direct sum of two isotypic components related to each
other by complex conjugation

Y ®iY = X@®X cCC,
corresponding to some complex irreducible representation Ao : G — Autc(V) and its non-
isomorphic dual A} : G — Autc(V*). Writing XA : G — Autc(X) and X : G — Autc(X)
for the restriction of p- to these subspaces, we can then think of ]-)f_‘@A = Df_‘ ® Df_‘ as the
complexification of Df A repeat of the argument above using the isomorphisms X =~ V ®; V*
and X ~ V* ®; V then gives an i-complex-linear isomorphism

ker ]-)f_‘@j‘ ~ (ker D2 ®; V*) @ (ker Dq)-\g ®; V),

with G acting via 1 ® Ag on the first summand and 1 ® A¢ on the second, and a similar
isomorphism for cokernels. It follows that every irreducible subrepresentation in either ker DA®



TRANSVERSALITY AND SUPER-RIGIDITY FOR HOLOMORPHIC CURVES 39

or coker Df_‘@a;‘ is isomorphic to one of Ag or Aj, and the desired result for real subrepresentations
again follows via the correspondence between real and complex representations in §3.3.11 O

Continuing in the setting of Lemma B.22] let K = Endg(W) € {R,C,H} and write k =
dimg ker Dfo, ¢ = dimg coker DQO. By LemmalB.I8] 6 ~ Bg)m with m := dimg W, so Lemma[B3.20
gives dimg ker D;o = km and dimg coker D;o = cm. Lemma meanwhile decomposes the
representation defined by the G-action on ker Df as BSM for some ¢ > 0, so ker Df > WO
Comparing dimensions, we deduce ¢ = k, and applying the same argument to the cokernel
then likewise identifies the representation defined by the G-action on coker D? with 0%°. The
following consequence is the origin of the codimension formula in Theorem [D] (cf. 3:23)).

Corollary 3.23. In the setting of Lemma [3.22, let K = Endg(W). Then the space of G-
equivariant real-linear maps ker D¢ — coker D? satisfies

dimg Homg ( ker Df, coker Dg) = dimg K - dimg ker Dfo - dimg coker DQO.
O

3.5. Setting up the implicit function theorem. We assume throughout this section that
(0,%" . 7,G,p, 1, f) is the minimal regular presentation of ¢ : ¥’ — ¥. Suppose

0; : G - Autg(W;), i=1,...,N
is a complete list of pairwise non-isomorphic real irreducible representations for G, with
K; := Endg(W;), and ¢t;:=dimrK; € {1,2,4}.

Recall that all of the data we have been considering depends smoothly on a parameter T,
which lives in a connected Banach manifold P as described at the end of §3.11 Any N-tuples
of nonnegative integers k = (ky,...,ky) and ¢ = (c1,...,cny) now determine subsets of this
parameter space

P(k,c) := {T epP ‘ dimg, ker DfZ = k; and dimg, coker Dfl =c foralli=1,... ,N}.

Note that P(k,c) is automatically empty unless k; — ¢; = indg, Dfl forallz=1,...,N, and
these indices do not depend on the parameter 7. Assuming this condition holds, we would now
like to present P(k,c) locally as the zero-set of a smooth map to a finite-dimensional vector
space, and to compute its derivative in a special case.

We start by translating the conditions defining P(k,c) into conditions on the pulled back
operators $*D; for a suitable family of regular covers @y : 5. — 3. with Aut(p;) = G. This
can be defined by replacing the homomorphism p : G — S(I) with the action of G on itself by
left multiplication, i.e. let

iG> S(@) g by Bylh) = gh,

so that (O, > e, G, p,G,1d) becomes a minimal regular presentation for

S, = (z x G) /G O S [(2,9)] > e (2),

or rather for the extension of this map to a branched cover of closed surfaces as provided by
Lemma 31l In keeping with our usual notational convention, S, is a fixed smooth surface 3.
with a fixed G-action by deck transformations but a 7-dependent family of conformal structures
Jr = @%jr, which are fixed on the cylindrical ends.

Denote the isotypic decomposition of the regular representation p : G — Autg(R%) by
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where él ~ 9?& for integers ¢; which are strictly positive by LemmaB.I8 Then by Lemma B.20]
N

~ . ®Y;
ker(p (—Bker f ~ (ker Dfi) ,
i=1
. N 5 N o\ Dl
coker(@*D,) = @ coker DY ~ (Coker Dfl) ,
i=1 i=1
so 7 € P(k,c) implies
. N
(3.19) dimker($:D;) = ) tilik;.
i=1

Lemma 3.24. Every o € P(k,c) has a neighborhood U, < P such that U, n P(k,c) is the set
of all T € U, for which (319) holds.

Proof. Since all the operators DBZ are Fredholm and they depend continuously on 7, we can
assume dim ker DB < dim ker De forall i = 1,..., N if 7 is sufficiently close to o. Thus (3.19)
can only be satlsﬁed 1f none of these 1nequahtles are strict, which means 7 € P(k, c) since every
£; is positive. O

Recall from §3.2 that the weighted Sobolev spaces WHP—=2*8(5*E_) and Wk=1p.—@"8 (G*E.)
are defined in terms of fixed families of trivializations of E near ©, and holomorphic cylindrical
coordinates which allow us to compute Sobolev norms on the cylindrical ends. Given o € P(k, c),
choose a neighborhood U, < P that is diffeomorphic to a ball and small enough to satisfy
Lemma By assumption the bundles E; depend smoothly on 7, which means there is a
well-defined smooth bundle £ — P x ¥ with E(T 2) = (E7).. Choosing a suitable connection on
the latter, we can use parallel transport along paths of the form (7(t), v, (2)) € Uy x X with
7(t) radiating outward from o to define a smooth family of complex bundle isomorphisms

U, W;Ea - ¢:Er

which respect t_hese fixed trivializations near ©, and satisfy‘ v, =‘Id. These give rise to isomor-
phisms E, — E, covering the diffeomorphisms 1, 0 ¢! : 3, — ¥,. Notice that there are also
natural real bundle isomorphisms

i, : TY > ITY,
. . . o=l
so that di, odip, ! gives a family of isomorphisms T, — T'Y, covering ¥, ¥rove -, and they
respect the chosen holomorphic cylindrical coordinates on the ends. These then induce smooth
families of isomorphisms of complex bundles over X,

@:Ea - @:Eﬁ @:Fa - @:Ffr
which again are the identity for 7 = ¢ and are also equivariant with respect to the natural
G-action by bundle isomorphisms covering deck transformations of ¥. Acting with these on

sections produces T-parametrized families of G-equivariant Banach space isomorphisms which
we shall also denote by W :

Wk,p,f@*ﬁ(@*E'a) AN Wk,p,feﬁ*zi(@:ET)’

kal,p,f@*s@*po) AN kal,p,feﬁ*ti(@:ﬂ)_

g

(3.20)

Here ¥, =Id.
We can now use these isomorphisms to define for 7 € U, a smooth family of G-equivariant
Fredholm operators with fixed domain and target space,

(321) ﬁT = \Ilq— 1 o SDTD o \I] Wk7p7 (@;Eo) N kal,p,*@*t;(@:Fo),
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such that
U, n P(k,c) = {7’ €Uy,

N
dimker D, = )’ ti&-ki} :
i=1
In order to present the latter as the zero-set of a smooth map, let us abbreviate
X, = kapv—sﬁ*é(@;Eo), Y, := Wk—17p7—¢*6(¢;pa)’
o (B2I) defines a smooth map
Us > L6 X5, Yy) i T > ﬁT,

where %;(X,,Y,) denotes the Banach space of bounded real-linear maps X, — Y, that are
G-equivariant. Since D D(, is Fredholm, we can choose a splitting

X, =V, (—Dker(%Dg),

such that V, < X, is a closed subspace and ]50 maps V, isomorphically to its image. By
Proposition B.I3], we can similarly split

Y, = im($:D,) @ ker($:D?),

where ker(Z*D¥) is equivalently the space of all sections in Wh=Lp:8*0(3* ) that are L2-
orthogonal to im(p¥ *D o). In terms of these splittings, D can be written in block form

~ Dll D12)
D — T T ,
T <D72_1 D72_2

where after shrinking U, if necessary, we can assume without loss of generality that D' : V, —
im(¢*D,) is invertible for all T € U,. We can therefore define a map
F, : U, > Homg (ker(Ph D,), ker(<p*D*))
(322) T D22 _ D21 (Dll) 1D12.
Lemma 3.25. A parameter T € U, belongs to P(k,c) if and only if F,(7) = 0.

Proof. Define for each 7 € U, the Banach space isomorphism

_mlly—1112 .
T= (]é (DTﬁ DT)ef(VU@ker<@:Da>> = Z(X,).

DIl
D2l F, (1)

kerD, =~ ker(f)TT) = {0} Dker F,(7) = ker F, (7).

Then D, T = < ), and since D! is invertible,

The latter can only have the same dimension as ker($*D,) if F,(7) vanishes. O

Observe that by Lemma [3.22] Corollary B.23] and Schur’s lemma,
(3.23) dim Homg (ker (3% D,), ker gp*D* 2 tikic;.

The lemma implies via the implicit function theorem that a nelghborhood of o in P(k,c) is a
smooth submanifold with the same codimension that appears in Theorem [D] whenever we can
show that the linearization

dF,(c) : T,P — Homg (ker (@} D,), ker(<p*D*))

is surjective.
We will need a precise formula for this linearization in the following special case. Suppose we
have a smooth path

v:(—€€) > P with v(0) = o and 4(0) =Y € T,,P
such that for all 7 = ~(¢):
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(1) E, =FE, (i.e. there is a canonical complex bundle isomorphism);
(3) Jr = Jo-

We are then free to choose the bundle isomorphisms ¥, and consequently the Banach space
isomorphisms (3.20) to be the identity for all 7 = v(t), so D) = @5D, (), where D,y is a
smooth family of Cauchy-Riemann operators on the fixed bundle E, — ¥,. Differentiating this
family gives a real-linear bundle map

Ay := 3D e I'(Homg (E,, Iy)),

o
and we then find that
L(Y) := dF,(0)Y € Hom¢ (ker(3% D,), ker(gp*D*))
takes the form
(3.24) L(Y)n = 7 (($5Av)n),
where 7 is the projection
Y, = im($ED,) @ ker($ED*) 7 ker (D).

The local genericity result developed in §0 below is geared toward proving that operators such
as L are surjective.

4. INDEX COMPUTATION

The goal of this section is to compute the Fredholm index of the twisted Cauchy-Riemann type
operators introduced in §341 We will use the notation of §3] but dispense with the parameter 7
since it is not important for the index computation, hence ¢ : (X', ") — (¥, 7) is a fixed branched
cover, and (O, E” .G, p, I, f ) is a fixed regular presentation. The complex vector bundles
and F with their restrictions E and F to the punctured domain 3 are assumed to have rank

m :=rankc F € N,
and we assume

0 : G — Autg(W)
is a (not necessarily irreducible or faithful) representation of G with

n:=dimW e N.
The resulting twisted bundles over 3 can be written as

E —FE@eW?  F%=F@Wh,
in terms of the flat real vector bundle W€ := (3" x W)/G — %, and any Cauchy-Riemann type
operator D € CRg(F) then gives rise to the twisted operator
DY : 1(E?) - I'(F?).

We need a bit more notation in order to state a formula for ind(Dg). Recall that while the deck
transformations G = Aut(m) act on " without fixed points, their extensions to biholomorphic
self-maps of X" may fix some of the punctures, so for each w € © and ¢ € 771 (w) ¢ ©" :=
771(0), we can consider the stabilizer subgroup

={g9e G |g¢=C(},

which is necessarily cyclic. Restricting @ to G¢ then defines a representation G¢ — Autgr(W),
which splits W into G¢-invariant subspaces W = W, @ WCI such that G acts on W, trivially
and on Wé as a direct sum of nontrivial representations. We define the number

w = dim W € {0,...,n}.
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As implied by the notation, this depends on w € © but not on the choice of preimage ¢ € 7= (w):
indeed, since G acts transitively on 7~ (w), any two choices of ¢ give rise to conjugate subgroups
G¢, and using orthonormality of characters, one can compute

1
nw =n—dimWe =n— —— 2 xo(9),
Gel 2
¢

an expression which depends only on the congugacy class of G¢.

Theorem 4.1. Under the assumptions detailed above, the operator
DO . Wk,p,—&(EB) N Wk—l,p,—&(FO)

is Fredholm for any k € N, p € (1,00) and negative exponential weights —8 = {—0dy }weo satisfying
0 < by < 27/|G| for all w e ©. Its index is

ind(D?) = n - ind(D) —m 2 Nop-

The dimensions and indices in the above statement are all real, but note that if @ is irreducible
with K := Endg(W) € {C,H}, then the integers n and n, are automatically divisible by
t := dimg K € {2,4}, hence so is ind(D?). Let us state the corollary for the faithful case in
terms of the K-linear index since it is most useful in this form.

Corollary 4.2 (cf. Lemma ZT5]). Assume (©, S w G, I, f) is the mimimal regular presen-
tation, and that 0 is faithful and irreducible with Endg(W) =~ K € {R,C,H}. Then

indg (D?) < (dimg W) - indg (D) — m|6],
and if K = R, then the inequality is strict unless all branch points of ¢ have branching order 2.

Proof. By Lemma [3.3] the stabilizer subgroups G are nontrivial for all { € ©”, and the conclu-
sion about branch points of order 2 will hold if and only if all of them are isomorphic to Zs. Now
if @ is faithful, it follows that all nontrivial elements g € G for { € ©” also act nontrivially on W,
hence the decomposition of W into G¢-invariant subspaces contains at least a 1-dimensional K-
linear subspace on which G acts nontrivially, giving n,, = dimg K for all w € ©. This implies
the upper bound, and in the case K = R, it is an equality if and only if n,, = 1 for all w € ©,
meaning each G¢ acts on W as the (n—1)-fold direct sum of the trivial representation plus a real
1-dimensional nontrivial representation, which is required to be faithful. But the only nontrivial
faithful real 1-dimensional representation of any finite group is the nontrivial representation
of Zs, hence G = Zs. O

Remark 4.3. Doan and Walpuski have recently shown that an index formula equivalent to that
of Theorem [4.1] can also be derived from Kawasaki’s orbifold Riemann-Roch theorem [Kaw79].
From this perspective, branch points are regarded as orbifold singularities instead of punctures;
see [DWbl, Appendix 2.B].

The remainder of this section is devoted to the proof of Theorem .1l which we shall break
down into five steps.

Step 1: Some notation.
It will be convenient first to complexify the representation. We define V := W @ ¢W and the
complex representation

A:G — Autc(V)

such that A(g)|w = 6(g) for all g € G. Note that for w € © and ¢ € 7 }(w) = ©”", the trivial
representation of G¢ on V is the complexification of the trivial real representation on W, so the
splitting W = W, ® WC, explained above complexifies to a splitting V' = V; ® VCI’ where V; c V
is the largest complex subspace on which G¢ acts trivially, allowing us to write

N, = dimg VCI =n —dimc V¢.
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The complexified representation now gives rise to a complex flat bundle V* := (2” x V)/G,
corresponding twisted bundles
(4.1) EA = E@r V>,  F .= F@p V>,

and a twisted Cauchy-Riemann operator
:['))\ . Wk,p,fzS(E)\) N kal,p,ftS(F)\)‘

The following point is important to understand: the tensor products in (A1) are real, thus EA
and F* each inherit two complex structures J and i, where J comes from the complex structure
of E and ¢ from that of V: they commute with each other and are defined by

JM®v) :=Jn®u, i(n®v) :=n®iv.

In this sense, D* can be regarded as the i-complex-linear extension of D? to complexifications
of the latter’s domain and target space—this notion of “complexification” ignores the fact that
these spaces already have native complex structures J and treats them as real vector spaces,
which is appropriate since D need not be J-complex linear. We therefore obtain the relation

. 1 .
ind(D?) = 3 ind(D?),

and we shall compute ind(].)A) by regarding D> as a real-linear Cauchy-Riemann type operator
on the complex vector bundle (E?, J). Since rankc E* = rankc E-dimg V = 2mn, the punctured
Riemann-Roch formula from [Sch95| §3.3] (or equivalently [Wene, Lecture 5]) gives

(4.2) ind(D*) = 2mn - x(2) + 27 (B>, J Z 1&s (AX —6,),
weO
where @ is an arbitrary choice of asymptotic trivialization, and ,ugZ(Afl‘) — dy) € Z are Conley-
Zehnder indices that depend on certain asymptotic operators A} to be discussed below and the
exponential weight —d,, € (—27/|G|,0) associated to each puncture w € ©. The main difficulty
of the calculation is in choosing a suitable asymptotic trivialization in which both ¢ (E?*,.J) and
p&,(AD — §,) can be computed.
Denote
& = deg(r) = |G,
and for each w € © and ( € 71 (w) = O let
k‘c € {1,...,d,}

denote the branching order of 7 at ¢, meaning 7 is a k¢-to-1 map on a small punctured neigh-
borhood of {. We can then choose punctured neighborhoods U, = ¥ and U = ¥ of w and ¢
respectively, with holomorphic cylindrical coordinates (s,t) € [0,00) x S! on each such that

(s, t) = (kes, ket)
in coordinates on Uc. In these coordinates, any g € G¢ necessarily preserves the end U and
takes the form g(s,t) = (s,t + j/k¢) for some j € {0, ..., k¢ — 1}. This means that G¢ is a cyclic
group of order k¢, and it has a canonical generator g € G¢ such that
gc(s,t) = (s,t +1/ke)  on Ue.

In addition to the cylindrical coordinates, let us choose complex trivializations of E on each
of the corresponding neighborhoods of ©, thus giving an identification

(4.3) Ely, = ([0,00) x S') x E

for each w € ©. For any choice ¢ € 77! (w) = ©”, this also gives us an identification of E> [T
with

(4.4) (([0,0) x S) x (Ey ®z V /GC,
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where the action of G¢ = Zy, on ([0,00) x S*) x (E, ®r V) is determined by

g¢ - ((5’ t)’ n ® U) = ((S’t + 1/kC)’ n ® )‘(gC)v)
This picture can now easily be extended to the “circle compactification” of the punctured surface:
let ¥ and " denote the compact surfaces with boundary obtained by replacing each cylindrical
end [0,0) x St in ¥ and %" respectively by the compact topological manifold [0, 0] x S*. The
connected components of 0¥ and 0%" are then in bijective correspondence with the punctures
w € © or ¢ € O" respectively, and the choice of cylindrical coordinates identifies each of these
components with S'. We shall denote the boundary components accordingly by S}, Sé forw € ©

or ¢ € ©” hence
o= =S, =] sk
weO Ce®”
The covering map 7 : X7 — X now extends to a continuous covering map
7:2" 5%
which restricts on the boundary components to

— = . ql 1 .
e = 7T|S<1 1S = Spey 1t ket

and each g € G also extends naturally to a continuous deck transformation g : £” — %" of 7,
such that if g(¢) = ¢’, then § maps Sé — Sé, via the canonical diffeomorphism composed with

a translation. The identifications ([@3) and (Z4) then yield obvious extensions of E and E* as
topological vector bundles

E -3, E* > >,
and we have

B> = (" E@r V) /G.

Step 2: Asymptotic operators on the twisted bundle.
With the essential notation in place, we can now discuss asymptotic operators. Recall that
after choosing a suitable Hermitian inner product on E over the cylindrical ends, any Cauchy-
Riemann type operator D on E — ¥ with reasonable asymptotic behavior determines real-linear
operators
Ay T(Elsy) = D(Elsy),

for each w € ©, see e.g. [Wen10} §2.1]. These can be regarded as unbounded self-adjoint operators
on L%(E|¢1) with dense domain H'(E|g1), and we say A, is nondegenerate whenever its
kernel is trliuvial, in which case it determines a Conley-Zehnder index

N%Z (Ay) €Z

relative to any choice of complex trivialization ® of E| si. In the case where D is the restriction

to 3 of some operator D € CRg(FE) on X, the operators A,, are very simple and were already
computed in §8.2t they are each the so-called trivial asymptotic operator

Aw = _Jat,

where 0y is a well-defined differential operator on E| s1 since the fibers are all canonically identi-
fied with E,,. This operator is degenerate, but the introduction of negative exponential weights
—0dy < 0 identifies D with another Cauchy-Riemann type operator whose corresponding asymp-
totic operators are A, — d,,, which are nondegenerate for any d,, > 0 sufficiently small.
Denote by
AXT(EMgy) - D(EMgy)

the asymptotic operators associated to D> for each w € ©. These are easiest to understand by
considering the pulled back Cauchy-Riemann operator

7_(_=|=]'))\ . Wl,p,fw*é(ﬂ_*EA) N Lp,fw*é(ﬂ_*F)\),
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whose asymptotic operators we will denote by

AL T (7 EN|g) - D((7* B )

for ¢ € ©”. The relation (71*].))‘) (nomw) =7* (]-))‘77) for sections n € T'(E*) gives rise to the
following relation between asymptotic operators:

(4.5) (W*Aé‘) (fome) = ke - (Agf) ome for fe F(E)‘|Sllu) and ¢ € 7 H(w).

This can be proved via a local computation as in §3.2t writing m(s,t) = (ks, kt) in suitable
holomorphic cylindrical coordinates and I.)An = (0n + Bn)(—ds + idt) for some matrix-valued
function B(s,t) after a choice of trivialization for E* over the end near w, A is represented in
this trivialization by the operator —id; — B(o0,t) by definition. The corresponding trivialized
formula for 7*D* then comes from

D> (non)(s,t) = 7* (D)‘n) o
(On(ks, kt) + B(ks, kt)n(ks, kt)) (—d(ks) + i d(kt))
= (0 + k B(ks,kt)) (nom)(s,t) - (—ds + idt),

hence 7*D* appears in trivialized form as the sum of @ with the zeroth-order term kB(ks, kt).
The trivialized formula for W*Aé‘ is thus —id; — k B(00, kt), which explains the factor of k¢

appearing in ([L5]).

For the following discussion, fix w € © and ¢ € 7 *(w). The definition of D* implies that
7*D* acts on sections @ € I'(7* E®g V) such that (7*D*)(n®uv) = [(W*D)n] ®v whenever
v: ¥ =V is constant. From this, one deduces that for any section f @ v € F(ﬁ'*E Rr V|Sg)

where f is an arbitrary smooth map Sé — FE, and v : Sé — V is constant, we have

(4.6) W*A?(f@u) =—(Jof)®u.
Now to write down a formula for Aj, we can use the natural identification of I'(E*| S1 ) with

the space of G¢-equivariant loops in E,, ®g V,
I'(EMg) = {F € CP(SLEy®rV) | F(t+1/ke) = g - F(t) for all t Sg} .
Acting on G¢-equivariant loops F', (A1) and (.6) imply

(4.7) AN = 1y 01 F,
k¢

where it is understood that J0d; acts on the tensor product by taking F' = f ® v to (J 0rf) ®v
whenever v is locally constant.

Step 3: Trivializations and Conley-Zehnder indices. _
This is the step in which it is helpful to be working with the complexification D* rather than
directly with D?. In order to choose a suitable trivialization ® and compute M%z(Aﬁ — Ow),
we shall first split AQ into a direct sum of operators on J-complex line bundles. Observe that
E | sy = Sl x B, is already canonically trivial, so any complex basis of E,, gives a splitting of
AQ over an m-fold direct sum of isomorphic J-complex bundles of rank 2n,

_ @
Pl - (1)

where

L"=Sl X (C@RV)/GC

and the generator of G = Zy, acts by g¢ - (¢, f @v) = (t + 1/k¢, f ® A(gc)v). Note that s
carries two commuting complex structures, J and ¢, which act on the first and second factor of
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the tensor product respectively. Further: V admits a complex basis (v1,...,v,) consisting of
eigenvectors of A(g¢), and we can then define integers p; € {0,...,kc — 1} for j =1,...,n by

A(ge)v; = e27ripf/k<vj.
Here we can identify VC, c V as the subspace spanned by all v; such that p; > 0. Identifying V'
with C™ via this eigenbasis yields a splitting

A=L0L1®..0L),
where for j =1,...,n,

L]A = Sl X ((C RRr (C) /Zk:<7
with the generator 1 € Zj, acting by 1- (¢, f ®v) = (t + 1/k¢, f ® e2mPilkcy) . This bundle again
carries the two commuting complex structures J and 7 acting on the first and second factors
of the tensor product respectively; it has complex rank 2 with respect to either one. Finally,
since J acts i-complex-linearly on C ®gr C, we can find eigenvectors fi € C ®r C such that
Jfy = tify, so the splitting C®r C = CfL @ Cf_ gives a splitting of J- and i-complex vector
bundles
A
L; + S Lj -

with
(4.8) I}, = (S' x©) / Zi.,

where the generator 1 € Z, acts by 1- (¢, f) = (¢ + 1/ke, e*™Pilke f). Both L>‘+ and L>‘ are
complex line bundles over S, carrying two complex structures J and 4, which satisfy J = i on
L;‘, 4 but J = —ion L;-"f. This splitting of bundles gives a splitting of Ai‘} in the form

(4.9) AN = (6@1 (Az+ ® A2)>@m,

where for j =1,...,n, A)»‘Jr acts on
r(d,) = {fec(s',c ‘ F(t+1/k) = €203/ f(2) for all t e $' |
by
1
A f=TF—idf.
7T ij
Since L)‘ ', are complex line bundles, ,ugZ(A])»‘, + — 0y) can be computed in terms of winding
numbers of eigenfunctions of AJ +» using the relation proved in [HWZ95, Theorem 3.10]. In
particular, if (as will turn out to be true in our case) all eigenspaces of A;-: + have real dimension 2,
then
(4.10) pez(ARy = 6uw) = 2wind®(fj+) +1,
where f; 4+ € F(L 7) is any nontrivial eigenfunction of A — 0y with the largest possible

negative eigenvalue. A Zg -equivariant function f : St —C samsﬁes A)‘ ' f = Af if and only if
it is a complex multiple of

. 2
(4.11) falt) i= eiken g T
¢

Observe that since 0 < &,y < 27/d’ < 27/k¢, every eigenvalue A thus satisfies A — &, # 0; this
proves that the perturbed asymptotic operators A;‘i are all nondegenerate and thus establishes

the Fredholm property for D*. Now to apply (4.10)), we need to find the unique eigenvalue
A =27({ + p;/k¢) for £ € Z such that

277(64-&)—5w<0<27r{(€+1)i%]—5w.
¢
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Since 0 < §,, < 27/d’, this condition is equivalent to

l < 1& </l+1,
k¢
so choosing the appropriate ¢ € Z and plugging in (4.I1]) leads to the formulas
1 if p, =0
i (t) = . J ’
(4.12) fJ”L( ) {e—Zm(k(—pj)t if p; > 0,
fi—(t) i= *mrat,
Let @;i for j =1,...,n denote a choice of J-complex trivializations of L;‘:i such that

wind® (f;1) = wind® (f;_) =0, j=1,....n,
and denote by ®,, the resulting J-complex trivialization of

n ®m
W (Emen)

=1

(4.13) EX

By (4.10), we now have

eF A ®i AN
Hcz (Aj,+ —dw) = picy, (Aj,— —0w) =1,
and thus by (4.9), ,ug% (AQ —68,) = 2mn. Note that, a priori, this construction of ®,, depends on
an arbitrary choice ¢ € 7~!(w), but the fact that ,u%% (A —6,,) turns out to be independent of
this choice tells us that ®,, is uniquely determined up to homotopy. Performing this construction

for all punctures w € O, we will denote the resulting asymptotic trivialization of EA simply by ®.
We’ve proved:

Lemma 4.4. For the asymptotic trivialization ® described above and each puncture w € O,
p&, (AD — 8,) = 2mn. O

Step 4: The relative first Chern number.
It remains to compute c‘ll’(E')‘7 J). Consider the pullback T EX = m*E ®g V. The first factor
in this tensor product has a canonical homotopy class of asymptotic trivializations, which we
shall denote by 7*Uy, as it is the pullback of an asymptotic trivialization Wq for E, satisfying
¢/°(E) = ¢1(E). Moreover, the second factor is globally trivial, thus 7* E* carries a canonical
asymptotic trivialization, denoted by ¥, such that

(BN = dimg V - CT*\PO (n*E) = 2n - deg(r) - ¢} °(E) = 2nd' - ¢1(E).

A

If 7*® denotes the pullback of ® to an asymptotic trivialization of ™E , we then have

. 1 ¥ * T 1 % T ®
c(lb(E)‘) = Ecl ‘I’(w E)‘) =7 [Cip(ﬂ' E)‘) + deg\P(ﬂ <I>)]

(4.14) 1
=2n-c¢1(FE) + 7 deg? (m*®),

where deg? (7*®) € Z denotes the sum over all punctures ¢ € ©” of the degrees of the transition
maps S' — GL(2mn, C) that change ¥ to 7*®. We can compute the latter for each w € © and
¢ e 1(w) € ©" as a sum of winding numbers over a line bundle decomposition analogous to

#13), namely
n ®m
—% T oA A A
]=
where pulling back (£8) via the projection m : St — S! /Zy, gives the trivial line bundle
WZ‘LJ)-:JL =S xC,
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with the pulled back trivialization ¢ <1>— such that the special eigenfunctions f; + in (@I2) have

zero winding as t traverses S'. The restrlctlon Veof Utor *E ‘ g1 is now the direct sum of the
<

standard trivializations on each of the factors 7T*L>»‘, 4+, thus
n
(4.15) deg?¢ = 2 [windg1 (fj,+) + windg: (f;,—)] -

There is an important sublety here: recall that J = +i on L;‘, +, hence the orientation induced
by J on L;:_ is the opposite of the obvious one, and the sign of windg1(f;—) must be reversed
accordingly, giving
0 if p; =0
windg: (f5,+) = L
pj — k( if pj > O,
windgi (fj,-) = —pj-
Plugging this into (£.I5]), we have
deg”< (nf®,) =m > (—k¢) = —mk¢ dimg V.
je{l,...,n}, p; #0

Summing over all ¢ € ©” and plugging into ([£I4)) then gives

. m .
P (EM) =2n-¢1(E) — = D7 ke dime V.
ceor
&nc;a dimc V' = n, is independent of ¢ € 771 (w) for each w € ©, and Dicen—1(w) k¢ = d', this
implies:

Lemma 4.5. ¢X(E*) = 2n - ¢, (E) — MY peo M- O

Step 5: Conclusion of the proof.
Finally, we combine Lemmas [£.4] and and plug into (€2]) to obtain

ind(D*) = 2mn - x(X) + 4n - ¢1(E) — 2m 2 Ny + 2mn|©|

wWEO

=2 mn-x(2)+2n-cl(E)—man ,

and thus
ind(D%) = n[mx (L) + 2¢1(E)] —m Z Ny

wEeO

The expression in brackets is ind(D), so this completes the proof of Theorem (411

5. PETRI’S CONDITION

5.1. The main local result. Standard proofs of transversality results via the Sard-Smale the-
orem (cf. [FHS95,MS12]) typically require some kind of unique continuation lemma, which for
J-holomorphic curves usually means the similarity principle. In this section we will establish
a local result about Cauchy-Riemann type operators that plays this role in the proof of Theo-
rem [D] It combines the usual unique continuation property with an additional “quadratic” local
condition that can be achieved under generic zeroth-order perturbations.

For any pair of smooth real vector bundles E and F' over the same manifold M, one can define
the Petri map

II:T(E)QIF) > T(E®F), Hne®&)[p) =nl)®L(p).
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Since we plan to discuss purely local conditions, let us amend this by fixing a point p € M and
considering the space of germs of smooth sections at p,

I,(E):=T(E)/~,

where 1,7’ € T'(E) represent the same element of I',(E) if and only if they match on some
neighborhood of p. The Petri map then descends to a local Petri map at p,

I1:T,(E) @T,(F) > T,(E® F).

It is easy to see that II is never injective, e.g. its kernel contains fn® £ — n ® f& for any two
sections n € I'(E), & € I'(F) with a smooth function f : M — R. It will sometimes become
injective, however, if the domain is restricted to certain spaces of solutions to linear PDEs. To
express this properly, let us assume D : T'(E) — T'(F) is a linear partial differential operator
with smooth coefficients, and D* : T'(F') — I'(E) is its formal adjoint with respect to a choice of
bundle metrics on F, F' and volume form on M. For any point p € M, both operators descend
to linear maps on the spaces of germs of smooth sections at p, which we will denote by

D, :T,(E) - T'y(F), D, : Ty(F) — Ty(E).

We will also assume D and D* uniquely determine (via extension or restriction) linear maps
D: X(E) > Y(F), D*: X*(F) - Y*(E),

where X(FE), Y*(E), Y(F) and X*(F') are vector spaces of sections (or equivalence classes of
sections defined almost everywhere) of the respective bundles; in typical examples, these will be
Sobolev spaces, sometimes with exponential weight conditions if M is a noncompact manifold
with cylindrical ends. Let us add two conditions of a local nature, both of which are satisfied
for a wide class of elliptic operators, including those of Cauchy-Riemann type:

e (REGULARITY) Every section in ker D ¢ X(FE) or ker D* < X*(F') is smooth.
¢ (UNIQUE CONTINUATION AT p) The maps ker D — ker D, and ker D* — ker D} that
send each section to its germ at p are injective.

The terminology in the following definition is adapted from the work of Doan and Walpuski
[DWb], who borrowed it in turn from algebraic geometry (see e.g. [ACGHS85]).

Definition 5.1. Suppose D : X(F) — Y(F) is a differential operator with formal adjoint
D* : X*(F) —» Y*(E) satisfying the conditions specified above, and p e Y = M. We say that
D satisfies
(1) Petri’s condition, if the restricted Petri map ker D ® ker D* RN I'(E®F) is injective;
(2) Petri’s condition over ! if there is no nontrivial element ¢ € ker D ® ker D* such that
II(t) e I'(E ® F') vanishes identically on U;
(3) the local Petri condition at p if the map ker D), @ ker D}, LN I'yv(E® F) is injective;
(4) Petri’s condition to infinite order at p if there is no nontrivial element ¢ € ker D, ®
ker Dy such that II(¢) has vanishing derivatives of all orders at p.

Every condition on the list in Definition [E.Jlimplies the previous one; note that the implication
(3) = (2) in particular follows from our regularity and unique continuation assumptions. The
first two conditions are global in nature, as ker D and ker D* depend on the global properties
of D, including the choice of domains X(E) and X*(F'). These kernels will always be finite
dimensional in the cases we consider, so that it seems unsurprising (if non-obvious) that Petri’s
condition might hold. In contrast, the third and fourth conditions are much stronger and more
surprising because ker D), and ker D are in general infinite dimensional, but the local conditions
are also more powerful, e.g. it will be extremely useful to observe that they are preserved under
pullbacks via branched covers of the base.

Remark 5.2. As defined above, the global versions of Petri’s condition may in general depend
not only on the operator D but also on the auxiliary geometric data (bundle metrics and volume
form) used to define D*, but the local conditions are independent of these choices. Indeed,
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whenever D} and D3 are two operators arising as formal adjoints of D via different choices
of the geometric data, there is a smooth bundle automorphism ® : ' — F that maps local
solutions of Di¢ = 0 to local solutions of D3¢ = 0, so that 1® ® : E® F — E ® F identifies
the two different versions of ker Il c ker D, ® ker D;.

Remark 5.3. It is clear from the definition that the set of points p € M at which the local Petri
condition is not satisfied is open. We will see in §5.4] that Petri’s condition to infinite order can
sometimes be shown to hold at all points in a dense subset of some region U < M, so it follows
in this situation that the local Petri condition also holds at all points in U.

It should be emphasized that whenever we refer to the above definition, we will be regarding
all vector spaces as real vector spaces so that “®” means the real tensor product, even in cases
where D happens to be complex linear. The only exception is Example below, which is a
digression from the main topic at hand.

Example 5.4. Elliptic operators over 1-dimensional domains satisfy something much stronger
than the Petri condition to infinite order, because by local uniqueness of solutions to ODEs, any
linearly-independent set of local sections in ker D or ker D* is also pointwise linearly independent.
For similar reasons, any Cauchy-Riemann type operator D : T'(E) — T'(F) that splits over a
direct sum of complex line bundles with nonpositive first Chern numbers over a closed surface X
must satisfy the global Petri condition over arbitrary subsets i/ < 3. The reason for this is that
on a line bundle £ — ¥ with ¢1(F) < 0, the similarity principle guarantees that global solutions
to D7 = 0 are either trivial or nowhere vanishing, so that globally linearly-independent sets of
solutions are also linearly independent at every point. This property might not hold for the
formal adjoint D*, but since solutions to D*¢ = 0 satisfy unique continuation, any expression of
the form }; ; A ® &; with a nontrivial set of coefficients ¢ € R and linearly-independent sets
{n; € ker D} and {¢; € ker D*} is still guaranteed to be nonzero at every point outside a discrete
subset. Example below shows however that the local Petri condition in this situation is not
always satisfied.

Example 5.5. Complex-linear Cauchy-Riemann operators over a Riemann surface satisfy the
complex version of Petri’s condition to infinite order at every point, i.e. the definition above is
satisfied if real tensor products are replaced by complex tensor products. One can prove this by
choosing holomorphic trivializations and writing elements of ker D and ker D* locally as Taylor
series in z or Z respectively: it then turns out that for any nontrivial ¢ € ker D ®¢ ker D*, the
Taylor series in z and z for the resulting section of £ ®c F at a given point is always nontrivial.
We omit the details since we will not need this fact.

Example 5.6. If we regard the standard Cauchy-Riemann operator D = ¢ on a trivial line
bundle and its formal adjoint D* = —¢@ as real-linear operators, then they do not satisfy the
local Petri condition at any point. A local counterexample is given by

1®iZ—i®RzZ—2Qi+iz®1 € ker d g ker 0.

It follows that the local Petri condition is also not satisfied by any Cauchy-Riemann type operator
that splits off a complex-linear summand.

Example 5.7. Here is an example of a Cauchy-Riemann type operator that does not split off
any complex-linear summand but still fails to satisfy the local Petri condition: take F and F'
to be the trivial complex line bundle over C, with standard bundle metrics and the standard
area form, and consider D := 0 + k, D* = —0 + k, where x : C — C is complex conjugation.
Using coordinates s + it € C, one can associate to every A € (—1, 1) solutions 1y € ker D and
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&y € ker D* defined byﬁ
(s + it) 1= e TVIZN <\/1 — A +ivV1+ )\) ,
Ex(s +it) 1= e AsTVITAT (\/1 — A —iV1+ )\) .

Identifying the fibers C with R? so that the fibers of E ®r F become the space of real 2-by-2
matrices, the products II(n) ® £)) are now constant sections of F ®g F:

I(ny @ &\) (s +1it) = <\/11_—7)\)\2 _z/ll:T> '

. . . b
Such products span the 3-dimensional space of real matrices of the form (_a C) , thus any four

b
such products must be linearly dependent, and the dependence relation gives rise to nontrivial
elements in ker IT by choosing four distinct values of A € (—1,1).

Remark 5.8. An earlier version of this paper (see Appendix[D.2)) claimed that every Cauchy-
Riemann type operator whose complex-antilinear part is invertible at a point p satisfies Petri’s
condition to infinite order at p, but Example [5.7] contradicts that.

The operators in Examples and B.7] are rather special, and our main objective in this
section is to prove that such counterexamples cannot arise for gemeric Cauchy-Riemann type
operators. To set up the result, assume now that X is a Riemann surface with a Hermitian bundle
metric { , )» on TY. We will not require ¥ to be compact since the discussion will be purely
local, but fix a point p € ¥ and an open neighborhood U < ¥ of p with compact closure. Fix also
a complex vector bundle E — ¥ with a Hermitian bundle metric, let F = Homc (TS, E), and
denote by CRr(E) the space of real-linear Cauchy-Riemann type operators D : I'(E) — I'(F).
We shall fix a specific Dg, € CRg(F) and define the space of all Cauchy-Riemann type operators
D that match Dgy outside of U:

CRR(E; U,Dgy) := {D € CRg(E) | D — Dgx = 0 on S\U}.

This is an affine space over the Fréchet space of smooth sections of Homg(E, F') that vanish
outside U, so in particular it is a complete metric space. For every D € CRg(FE), D* will denote
the formal adjoint of D determined by the bundle metrics on F and X.

For any n € I',(E), we define the vanishing order of n at p by

ord(n; p) := sup {k € {0} U N | all derivatives of  at p up to order k vanish} .

For t € I',(E) @ I',(F'), we will then say that ¢ vanishes to order k if ¢ can be written as a
finite sum ¢t = };7; ® {; such that

ord(nj;p) +ord(§;;p) =k for every j.

The usual unique continuation results imply that for every D € CRr(E), nontrivial local solu-
tions to the equations Dy = 0 or D*n = 0 satisfy ord(n; p) < oo at every point. One can easily
prove from this that nontrivial elements ¢ € ker D, ® ker D also cannot vanish to infinite order

(see Proposition [6.12)).
The machinery developed in the next two subsections will prove:

Theorem 5.9. For every £ € N, there exists an integer k = £ and a Baire subset

CRE™(E; U, Dgy) © CRr(E; U, Dygy)

"The inspiration for this example comes from the asymptotic formulas in [HWZ96![Sie08]: in particular on the
cylinder R x S* with coordinates (s,t), a translation-invariant Cauchy-Riemann type equation (0 + B(t))n(s,t) =
0 always has solutions of the form 7(s,t) = e**f(t), where f is an eigenfunction of the asymptotic operator
—i0¢ — B(t) with eigenvalue A € R. In the asymptotic setting one requires solutions to be periodic in ¢, in which
case the eigenvalue A can only take a discrete set of values, but periodicity is not necessary in Example 5.7 and
A can therefore be chosen much more freely.
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with the following significance: for every D € CRﬁéreg(E; U,Dsy), if m,...,m € ker D, and
§1,...,8 € ker Dy are L-tuples of local solutions such that t := Z§=1 n; ®& € I'p(E) ®T(F)
does not vanish to order £, then II(t) € I',(E ® F) does not vanish to order k.

In light of unique continuation, we now set

CREE(E; U, Dgy) == [ | CRE(E; U, D) © CRe(E; U, Dyy)
LeN
and obtain:

Corollary 5.10. There exists a Baire subset
CRR®(E; U, Dgy) € CRr(E; U, Dgy)

such that every D € CRg®(E; U, Dsy) satisfies Petri’s condition to infinite order at the point
pel.

This result can be extended in various ways. For instance, the regular set CRﬁsg (E; U, Dgy)
defined above depends a priori on the choice of a point p € U, but one can also find a Baire
set of operators such that Petri’s condition to infinite order is satisfied simultaneously at every
point in . More generally, one can consider smooth families of operators parametrized by a
finite-dimensional manifold and prove that for generic families, every operator in the family
satisfies these conditions. In §5.4] we will prove that the normal Cauchy-Riemann operators
of J-holomorphic curves can all be assumed to satisfy Petri’s condition to infinite order in
regions where J can be perturbed generically. One of the advantages of focusing on purely
local conditions is that once we establish this result for somewhere injective curves, it carries
over immediately to their multiple covers, which will be a crucial ingredient in the proof of
Theorem

The aforementioned extensions of Corollary [5.10] are all based on the Sard-Smale theorem,
but Theorem [(.9]itself requires (aside from unique continuation) only finite-dimensional analysis
and linear algebra. Indeed, the conditions defining each of the spaces CRgéreg(E ; U, Dgy) in the
statement of the theorem depend only on the k-jet of D € CRg(F ; U, Dgy) at p for some finite
k € N, and this data varies in a finite-dimensional smooth manifold. The idea behind the proof
is roughly to show that the set of jets of operators not satisfying the desired conditions lives in
“walls” whose codimensions can be assumed arbitrarily large by making k larger. These walls
are not submanifolds in general, but are what we call “C'*®-subvarieties,” whose local structure
is nice enough to apply Sard’s theorem as if they were manifolds. (The necessary background
on C®-subvarieties is reviewed in Appendix [Cl) The main technical work behind the proof is
then to estimate the ranks of certain large matrices that determine the codimensions of these
subvarieties.

The rest of this section will proceed as follows. In §5.2] we introduce a general formalism for
studying differential operators via jet spaces at a point, and explain how results such as Theo-
rem [5.9] can be reduced to a specific technical lemma on estimating the ranks of certain finite-
dimensional linear transformations. We will then address this problem for Cauchy-Riemann
operators in §5.3] leading to the proof of Theorem (.91 The extension to a result about nor-
mal Cauchy-Riemann operators of holomorphic curves for generic J will be stated and proved
in §5.41 and §5.5] will then give an important application of Petri’s condition to global transver-
sality problems as arising in Theorem

5.2. Jet space formalism. The contents of this subsection are not specific to Cauchy-Riemann
operators, but may be relevant in principle to any linear partial differential operator with smooth
coefficients.

5.2.1. Germs, jets, and the vanishing order filtration. Fix a smooth n-dimensional manifold M
with a smooth vector bundle £ — M of real rank m € N. For a chosen point p € M, we continue
to denote by
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the vector space of germs of smooth sections of E defined near p. This space has a natural
filtration

(5.1) T, (E) =T,(E)’ oT,(E)! oT,(E)?>...,

where for each k € Z we define I',(E)* = I',(E) as the space of germs of sections whose derivatives
up to order k — 1 at p all vanish. For k < 0 this is a vacuous condition, hence T',(E)¥ = T,(E).
For each k € Z we define the space of k-jets of sections at p by

JVE =Ty, (E)/T,(E)F!.

We will typically abuse notation by using a single symbol such as n to represent a section in
I'(E), its germ in I',(E) and its k-jet in J;fE; when there is need for more clarity in the notation,
we will sometimes write the natural quotient projections as

Jk
I'(E) or T,(E) — JIE,
so that the k-jet of a section 1 € T'(E) at p can be denoted by Jgn € JI?E. The jet space inherits
from (5.I)) a finite filtration

(5.2) JEE = (JFE)’ o (JAE)! o... o (JEE)" o (JEE)M = {0},

where for each ¢ < k, (Jl{f“'E’)é+1 is the kernel of the quotient projection Jlf : JI?E — JIfE.

There is an obvious isomorphism of JSE with the fiber E,, and the spaces J;fE for k < 0 are
all trivial. If we choose local coordinates (z1,...,x,) for M identifying p with 0 € R", together
with a trivialization of F near p, then JI?E for each k € Z becomes naturally identified with the
vector space of R™-valued Taylor polynomials of degree at most k,

(5.3) > %,  ca€R™.

The notation for the filtration above has been chosen so that under this identification, (JI‘?E)Z
becomes the space of Taylor polynomials of degree at most &k that are also O(|z|?).

Given two vector spaces V = V0o VI o V2o iand W = W0 o W! o W? o ... with
filtrations, we will say in general that a linear map T : V — W preserves the filtrations if
T(V™) < W™ for every n > 0.

5.2.2. Differential operators and formal adjoints. Since we are mainly interested in Cauchy-
Riemann type operators, for simplicity we shall only consider differential operators of order 1 in
the following discussion, though the jet space formalism could easily be extended beyond this.

Given a second smooth vector bundle F' — M of real rank ¢ € N and a first-order linear
partial differential operator D : I'(F) — I'(F) with smooth coefficients, D descends to a map
I'p(E) — I'y(F) that sends ker Jz’f c I'y)(E) into ker Jllf_l c I'p(F) for each k € Z, thus it also
descends to a linear map

D:J'E— J) 'F.
Let us denote by
Z,(E,F) < Hom (T,(E),T,(F))

the vector space consisting of all germs at p of linear differential operators I'(E) — T'(F') of
order at most 1 with smooth coefficients. The vector space of linear maps Jz]fE - J;f_lF that
are induced by operators in Z,(E, F') will then be denoted by

2¥(E,F) < Hom (JEE, JF7'F),
and we will again abuse notation by using a single symbol such as D to denote a global differential
operator I'(E) — I'(F), its germ in Z,(E, F), and the map in Qg(E, F') that it determines.
Observe that .@5 (E, F) is a finite-dimensional vector space isomorphic to the (n+1)-fold product

of J;f_l Hom(E, F): indeed, if we fix local coordinates (x1,...,z,) identifying a neighborhood
of p with the n-disk D7 of some radius ¢ > 0, along with local trivializations of E and F' over
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the same neighborhood, then each D € Z,(E, F') is represented by an operator C*(D?,R™) —
C® (D7, RY) of the form

n
(5.4) D =) a;o;+b
j=1
for some smooth functions ay, ..., a,,b: D? — Hom(R™,R¥). For a given n € I'(E), the (k —1)-
jet of Dn at p is thus determined by the (k — 1)-jets of the functions aq, ..., a,,b at that point,
and these are equivalent to bundle maps £ — F' defined near p.
We will also consider a subset

~

9,(E,F) ¢ 9,(E, F),

which is assumed to have the property that for any given D € @p(E,F ), another operator
D' € 2,(E, F) satisfies

D'e .@p(E, F) < D’'=D+ A for some A€ I'y(Hom(E, F)),

ie. @p(E, F) is an affine space over I',(Hom(E, F')). The space of maps JI‘?E — JI?*IF induced
by operators D € .@I,(E7 F) then defines a subset

Sk k
J¥(E,F) c 9¥(E, F),

which is naturally an affine space over the finite-dimensional vector space J;f_l Hom(FE, F).

In order to bring formal adjoints into this picture, we need to make choices of bundle metrics
for F¥ and F' and a volume form on M near p; these choices will often be referred to collectively
as the geometric data. It will be useful to fix geometric data once and for all at the point p
itself, while allowing it to vary at other points near p. Concretely, fix a pair of inner products

gp=<,>Ep0nEpa hp=<,>Fp0an,
along with a nontrivial alternating multilinear n-form
pp € AT M.

Let us denote by S2E* ¢ E*®E* — M the vector bundle of symmetric bilinear forms FQFE —
R. The space of k-jets of bundle metrics on £ which match g, at p is then

JE(m(E)) = {g € JE(S*E*) | 109 = gy}

and it is naturally an affine space over the finite-dimensional vector space ker JS c Jz]f (52E *)
We similarly define the affine spaces

IR (m(F)) = {he JE(SE*) | Joh =y}

and
IR (0) = {ue JEAT*M) | I = iy}

which consist respectively of k-jets of bundle metrics on F' matching h,, at p and k-jets of volume
forms on M matching p, at p. We will again abuse notation by using a single symbol such as
g or {, )g to denote a global bundle metric on E that matches g, at p, or the germ of such a
metric near p, or its k-jet in JI‘? (m(E)), similar remarks apply to JI‘? (m(F)) and JI‘? (U(M))

Any choice of smooth bundle metrics g = (, )p on E and h = {, ) on F and a volume
form p € Q"(M) assigns to each differential operator D : I'(E) — T'(F) a formal adjoint
D* . T'(F) — I'(F) satisfying the relation

f (€. Dy = f (D*€.mypp forall neCP(E), & CP(F).
M M
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Fix local coordinates and trivializations near p to write D again in the form (5.4]). The chosen
bundle metrics and volume form can be written in terms of the standard Euclidean inner product
(', ) and volume form dzq A ... A dz,, as

Coop=G,GY, (O p={H>, p=Fdry ... ndzx,

for some smooth functions F': D" — R, G : D* — End(R™) and H : D" — End(R?), where
F' is everywhere nonzero and G and H take values in the spaces of symmetric positive-definite
matrices. Note that the condition defining D* does not change if the sign of u is reversed,

so without loss of generality let us assume F' > 0. One can then compute a local formula for
D* : C®(D?,RY) — C®(D?, R™) as

(5.5) D* = - Y (G 'a] H)d; + G (bTH — > [ajHo;(In F) + aj(ajTH)]> .

We observe from this formula that the germ D* € Z,(F, E) at p is determined by the corre-
sponding germs of the geometric data g,h,u and D € Z,(E, F). Moreover, if the first-order
terms a; in D are fixed, then for any £ € I'(F)), the (k — 1)-jet of D*¢ at p is determined by the
(k — 1)-jet of g, the k-jets of pu and h, and the (k — 1)-jet of the zeroth-order term b in D. It

follows that the correspondence assigning to each D € Z,(E, F') with germs of geometric data
g, h, v the germ of a formal adjoint D* € Z,(F, E) descends to a well-defined map

(5.6) FHE, F) x JH(m(E)) x JE(m(F)) x J*(o(M)) > 25(F,E).
All the spaces involved in this map are finite-dimensional manifolds, and the map is smooth.

5.2.3. Unique continuation in tensor products. If V. =V0 > VI o V2 > . and W = W° o
W' > W?2 > ... are two vector spaces with filtrations, then V ® W inherits a natural filtration

VOW=VeW) >WVeaW)l>VeWw)>...,
where for each n > 0,
VW) :=V'@W™) +(VIW™ ) +. ..+ (V' W),

Lemma 5.11. Given two filtered vector spaces V. and W, if t € (V. ® W)™ is nontrivial, then

for some r € N, t can be written as
T

t = Z Uj ® wj
j=1
for two linearly-independent setsvy,...,v. € V and wy,...,w, € W such that forallj =1,...,r,
we have
vj € V¥ and w; € W%  where kj +14; =n.
Proof. Suppose t = 29:1 v; @ w; satisfies all of these conditions except that the set vq,...,v,
is linearly dependent, so there exist constants c, ..., ¢, with >’ ; Cvg =0 and not all of the c;

are zero. After reordering the set, we can assume without loss of generality that ¢; # 0 and, for
every j = 2,...,r with ¢; # 0, k; = ky. Writing v1 = 29:2 %vj then gives

T Cs

t = Z v @w; where W;:=w;+ c—]wl.

i=2 !
For each j = 2,...,r, we now have {; = n — k; < n —k; = {1, thus wy € Wt « Wb and
therefore w; € W' hence the shortened sum also satisfies the desired conditions. One can
apply a similar procedure to shorten the sum if instead wq,...,w, is linearly dependent, and

repeating this enough times produces two sets that are both linearly independent. O

Let us say that a differential operator D € Z,(E, F) has the strong unique continuation
property if there exists no nontrivial solution 7 € ker D such that n € Fp(E)k for every k € N.
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Proposition 5.12. If D € Z,(E,F) and D* € 9,(F,E) both have the strong unique con-
tinuation property, then there exists no montrivial element t € ker D ® ker D* such that t €

(Tp(E) ®I’p(F))k for every k € N.

Proof. Given t € ker D®ker D* nonzero, there are uniquely defined finite-dimensional subspaces
V < ker D and W < ker D* such that for any pair of linearly-independent sets 71, ..., n. € ker D
and &,...,& € ker D* with t = 37, 7; ® &,

V = Span{ni,...,n,} and W = Span{&,...,&}.

We claim there exists k € N such that no nontrivial 7 € V is in I',(E)* and no nontrivial £ € W
is in T,(F)*. Indeed, if there does not exist such a number for V, then there exist sequences
n; € V and kj € N with k; — oo and n; € T,(E)* for every j. Since V is finite dimensional,
we can normalize the 7; and then find a convergent subsequence 7; — 7 € V' whose limit is
nontrivial, but must also belong to ()ey I’I,(E)k7 giving a contradiction. The same argument
works for W.

Now, fixing k € N as in the previous paragraph, suppose t € (I',(E) @ T,(F))?* and t # 0.
Lemma [5.1T] then writes ¢ in the form ) ;1 ® §; where the 7; and §; are necessarily bases of V
and W respectively, but they also satisfy 7; € [,(E)% and § e I'y(F)™ with €5 +m; > 2k for
each j. This implies either £; > k or m; > k in each case, and is thus a contradiction. O

5.2.4. Local rescaling. Every differential operator is locally equivalent (up to choices of coordi-
nates and trivializations) to an arbitrarily small perturbation of an operator with constant coef-
ficients and no lower-order terms. To make use of this observation, we shaAn from now on impose
the following additional condition on the affine space of local operators Z,(E, F) ¢ Z,(E, F):

Assumption 5.13. There exists a choice of coordinates identifying a neighborhood Y = M of p
with D? < R™ and p with 0 € R", along with local trivializations over U, in which the first-order

coefficients a; : D" — Hom(R™,R?) in D = 2.j @j0; + b for each D € @p(E, F') are constant.

Let us fix once and for all a neighborhood &/ © M of p with coordinates and trivializations
for which the condition in Assumption (.13 holds. For every € € [0,1], we then associate
to each D € Z,(E, F) an operator D, € Z,(FE, F) such that if D takes the form Dn(x) =
25 @i (2)d;n(z) + b(z)n(z) in the chosen coordinates and trivializations, then D, is given by

D.n(z) = Z aj(ex)djn(x) + eb(ex)n(z), e € [0,1].

We can similarly associate to each n € I',(E) and & € I',(F') germs of sections 7. € I',(E) and
& € I',(F), which in coordinates take the form

ne(@) :=nlex),  &(x) = E(ew).
We then have
D.n. = e(Dn)e
for every D € 2,(E, F) and n € ') (E). Letting these operators descend to jet spaces, we obtain
for every D € .@I],“(E,F) a smooth 1-parameter family of operators {DE € ‘@Z]?C(E’F)}ae[o 1 and
linear maps 7
JI]fE - JIIfE 1N e,
which for € > 0 are isomorphisms sending ker D ¢ JI‘?E onto ker D, JI?E.

Next, fix geometric data consisting of bundle metrics g = (, Yp on F and h = {, )p on F,
and a volume form p, such that all three match the fixed choices of data g,, h, and p, at p.
Using the same coordinates and trivializations over U, we can write g = (-,G-), h = (-, H-) and
uw=Fdxri A...Adx,, and then define a smooth 1-parameter family of geometric data g., he, e
for € € [0, 1] by replacing the functions G, H and F with

Ge(z) := G(ex), H.(z) := H(ex), F.(z) := F(ex).
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Note that since p corresponds to 0 € D? in coordinates, the modified geometric data still matches
the fixed choices gp, hp, 1, at p, and we can then descend to jet spaces to obtain smooth 1-
parameter families

ge € JEF Y (m(E)),  heeJi(m(F)),  pee JF(o(M))

for € € [0,1]. Now if D* € Z,(F, E) denotes the formal adjoint of D e @p(E,F) with respect
to the geometric data g,h,p and D¥ € Z,(F,E) is defined from D* via the same rescaling
prescription as D, described above, then we see from (5.5]) that D¥ is in fact the formal adjoint
of D, with respect to the data g, he, ue. Moreover, Assumption (.13l impliei that the map
PF(E,F) - Z%(E, F) induced by Z,(E,F) — Z,(E,F) : D — D, preserves 7 (E, F), so we
can now fit the smooth map (5.6]) into the rows of a commutative diagram

T, F) x J5 1 (m(E)) x JF(m(F)) x J¥(o(M)) —*— Z¥(F, E)

TH(E, F) x J5 1 (m(E)) x J5(m(F)) x J¥(o(M)) —*— Z¥(F, B),

where the vertical maps abbreviated by “c” are defined via the corresondences D — D., g — g¢.,
h — he, p— p. and D* — DZX. The case € = 0 is special: since all D € .@p(E, F') have matching
first-order terms and the geometric data g, h, ;v all match at p, Dy and Dy are uniquely-defined
operators that depend on the space .@p(E , F') and the chosen inner products g, and h,, but not

otherwise on the specific choices of operator D € Z,(E, F') or volume form or bundle metrics.
Similarly, the volume form pg and bundle metrics gg and hg are fully determined by the fixed
data pip, g, and hy,.

5.2.5. Right-inverses. Henceforward we impose the following additional assumption.

Assumption 5.14. The operators Dy : J;fE - JI?*IF and D : JI?F - J;,“*IE obtained by
the rescaling procedure in §5.2.4] are surjective.

Remark 5.15. It is not difficult to show that Assumption [5.14] is satisfied whenever the op-
erators in Z,(FE, F') are elliptic. For Cauchy-Riemann operators in particular, this is virtually
obvious, and we will write down explicit choices of right-inverses for that case in §5.3.2

Lemma 5.16. Under Assumption every D € @g(E, F) is surjective, and so is D* €
Qg(F, E) for every choice of geometric data g € J;f_l (m(E)), he Jllf (m(F)) and p e Jllf (v(M)).

Proof. Since D, converges in Hom(J;fE, Jllf_lF) to Dy as ¢ — 0, surjectivity of Dg implies
for any given D € @;f(E, F) that D, is also surjective for all € > 0 sufficiently small. The
isomorphism ker D — ker D, induced by the correspondence n — 1. for all € > 0 then implies
that D is also surjective. The same argument works for the formal adjoints since D} — Dj as
e —0. U

Since we are working in finite-dimensional spaces, surjectivity allows us to choose right-inverses
. Thk—1 k . Thk—1 k
To:J, F— J)F, To:J, E—JF

for Dy and D{ respectively. We would now like to derive from these similar right-inverses for
other operators that are close to Dy and Dy, along with explicit isomorphisms between the
kernels of nearby operators. To this end, consider an open neighborhood

(90, ho, po, Do) € U < JE~H(m(E)) x J¥ (m(F)) x JE (v(M)) x FE(E, F),

which we reserve the right to make smaller as necessary. Given (g, h,u, D) € U, we will as
usual denote by D* the formal adjoint of D with respect to the geometric data (g, h, ). Since
D¢Ty = 1 and D§T§ = 1, we can assume after shrinking ¢/ that for every (g, h, u, D) € U, the
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operators DTy : Jllf_lF - Jllf_lF and D*T : J;f_lE - J;f_lE are both close enough to the

identity to be invertible. This gives rise to right-inverses for D and D*, defined respectively by
T :=ToDTo) ' : Ji7'F > JyE,  T*:=T§D*Ty) " : JJ7'E - JIF.

Notice that T and T* depend smoothly on (g, h,u, D) € U.

For a fixed (g, h, u, D) € U, arbitrary operators close to D in .@I]f(E, F) have the form D :=
D+Afor Ae Jlﬁ“*l Hom(FE, F') small, and the formal adjoint D* with respect to the geometric
data (g, h,u) is then D* + A* where A* € Jk_1 Hom(F, E) is the (k — 1)-jet of the fiberwise
transpose (with respect to g and h) of a smooth bundle map E — F representing A. If A is
small enoughE then we can use the same trick again to write down right-inverses of D and D*
in the form

~ ~

T:=TDT) '=T1+AT) ' =T Y (-1)/(AT),

0
i—0

J
0
T* .— T*(D*T*)—l - T* (]l + A*T* Z A*T*

Shrinking the size of A further if necessary, we can then deﬁne isomorphisms

Upa :=1-TA= 2 Y (TAY : JVE — JiE
7=0
Ui ) = 1= T*A* = Y (1) (T*A*) : J;F — J}F,
§=0

which satisfy

~

DVp 4 = D-A=D and ]3*\112‘D7A) —D* — A* = D*,

*

V(DA Y(b,a)

so they restrict to isomorphisms ker D 28 ker D and ker D* ker D* respectively. The
operators ¥(p_4) and \IfEkD ) depend smoothly on both (g, h, u,D) € Y and A € Jllf_l Hom(FE, F).

5.2.6. The universal Petri moduli space. We now consider the subset
VE c JE 1 (m(E)) x JE(m(F)) x J¥(0(M)) x P%(E, F) x (JjE@JgF)
consisting of all tuples (g, h, u, D, t) such that

tekerD®kerD* ¢ JFE® J,F,

where it should be understood that D* is the formal adjoint of D with respect to the geometric
data g, h, . In light of Assumption [£.14] and Lemma [5.106, the obvious projection endows V¥
with a natural vector bundle structure

Vo N (m(E)) x T (m(F)) x JE(o(M)) x Z5(E, F),

whose fiber over (g, h, i, D) is ker D @ ker D*. We will prefer to think of V¥ rather as a family
of vector bundles over the space of operators .@I]f(E, F), parametrized by the space of geometric

data (g, h, ) € Jﬁfl (m(E)) x J;f (m(F)) x J;f (v(M)). Thus for each (g, h, p), denote

V¥ (g, h, 1) = {(D,t) ‘ (g,h, 11, D, 1) € v’f}.

8We will not need this detail, but it is often possible to choose Ty and T§ so that they have degree +1 with
respect to the vanishing-order filtration, in which case the operators AT, TA, A*T* and T*A* also have this
property and are therefore nilpotent. It follows in this case that all infinite series appearing in this discussion are
actually finite sums, so A does not really need to be small.
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It will be useful to amend these definitions in two ways. Given a pair of real vector spaces V
and W, let us say that an element ¢t € V ® W has rank r if t = Z§=1 v; ® wj for two linearly-
independent sets vy,...,v. € V and wy,...,w, € W. Note that if V is finite dimensional, then
the rank of t € V. ® W under the canonical isomorphism V@ W =~ Hom(V*, W) is just the rank
of the corresponding linear map V* — W. As a consequence, whenever V and W are both
finite dimensional, the set of elements of rank » € N in V ® W is a smooth submanifold whose
codimension is the dimension of Hom/(ker T, coker T') for a linear map T : V* — W of rank r,
giving
. dim{t e VQW | rankt =7} =dimV - dim W — (dim V — ) - (dim W — r)

. = r(dimV +dim W) —r?.

With this understood, we can define for each r € N a smooth submanifold
VE = {(g, h,p,D,t) e V¥ ‘ rankt = 7“},
which is foliated by the smooth family of smooth submanifolds
VE(g,h,p) == {(D,t) e V¥(g, h, ) ‘ rankt = ’I“}

parametrized by the space of geometric data (g, h, ) € JFH (m(E)) x JF(m(F)) x JF(v(M)).
Finally, recalling the filtration by vanishing orders in §5.2.1] we define for each ¢ € {1,...,k} the
open subset

Ve = {0 hm D) eVE | 1¢ (FE@TEF)'],
which is likewise foliated by a smooth family of submanifolds
¢
Vidg,hp) = {(an) €Vi(g,hp) | t¢ (JRE®JSF) }

parametrized by the geometric data (g, h, u).
The Petri map II: I')(E) @ I',(F) — I'y(E ® F') descends for each k € Z to a linear map

" : JJEQJFF — JHE®F)
that preserves the filtration by vanishing orders. Since the projection map Vf o9,y 1) — Jg E®

J;fF sending (g, h,p, D,t) to t is smooth and also depends smoothly on the geometric data
(g, h, i), TI* gives rise to a smooth family of smooth maps

(5:8) 07y Vi(g.hop) = Jy(E@F) : (D, 1) o TI* (1),
whose zero-set we shall denote by
PEilg b 1) = () 71 (0) = {(D,1) € Vg, ) | (1) = 0}

This is the so-called universal Petri moduli space. Our main goal is to prove under suitable
assumptions that it is a C*-subvariety in Vf (g, h, 1) and to establish an effective lower bound
R € N on its codimension. Once this is done; Sard’s theorem (see Appendix [C]) will imply that
for almost every D e .@I]f (E, F), the space

PElg.hou D) = {t | (D,0) € 2Fy(9.h )}

is a C*®-subvariety of codimension at least R in the manifold

VE (9., 1, D) := {t € ker D ® ker D*

rankt =1, t ¢ (J;“E@JITF)E}.

If the codimension R is large enough, this will imply that ,@fg(g, h, i, D) is empty.
Denote the linearization of the map (5.8) at the point (D,t) € 2% ,(g, h, 1) by

Ty

dQHf,Z(ga h7 s D7 t) : T(D,t)vk,f(ga ha M) - J]])C (E ® F)7

T
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where the subscript in “ds” is meant to emphasize that this is a partial derivatve—we differen-
tiate with respect to (D,t¢) while holding (g, h, 1) constant. Estimating the rank of dgﬂfl re-
quires being able to write down a sufficiently large space of tangent vectors in T(D,t)fo’ (9, R, ).
Suppose that (g, h, u, D) belongs to the neighborhood U of (go, ho, po, Do) chosen in §5.2.51
so we have right-inverses T, T* and isomorphisms \I/(D, A)7\I’2=D, ) that depend smoothly on
(g9, h, 1,D) € U and a small zeroth-order perturbation A € J;f_l Hom(E, F'). We can use this to
associate to every A € ng Hom(FE, F') and ¢t € ker D ® ker D* a smooth path

(_55 5) - Vk(g’ h, :U') B (D + SA’ (\I](D,SA) ® \I]EKD,SA))t)

which passes through (D,t¢) at s = 0. Observe that if t = Z§=1 n; ® & for two linearly-

independent sets n1,...,n, € JI?E and &1,...,& € J;I,‘CF7 then W(p ,4) and \I/E"D’SA) map these
to linearly-independent sets when s is close enough to 0, since both operators are then close to
the identity. It follows that if (D,t) € @ﬁg(g, h, i), then the path above is in V,’?,Z(g, h, ) for
0 > 0 sufficiently small. Differentiating it at s = 0, then feeding the resulting tangent vector
into dgl’[ﬁz (g, h, 1, D, t) and multiplying the result by —1 for cosmetic purposes, we obtain the

linear map
L(g,h, 41, D,t) : J)~  Hom(E, F) —» JJ(E®F),
A-TFo (TA®1L +1®T*A)(1).

This depends smoothly on the data (g, h,u,D,t) and is well defined whenever (g, h, u, D) is
sufficiently close to (go, ho, fto, D). The rank of this operator is clearly less than or equal to
that of dgﬂffg(g, h, u,D,t). We shall abbreviate the special case

5.9 L; := L(go, ho, pto, Do, t) : J* 1 Hom(E,F) » JY(E®F
p p

for ¢ € ker Dy ® ker Dfj, as this will turn out to be the only case that matters in practice. In
fact, we can now use the rescaling trick from §5.2.4] to reduce the local analysis of the space
L@fj(g, h, i) to the problem of estimating the rank of L.

For every ¢ € (0,1] and g € Z and every choice of the geometric data (g, h, i), one can define
a diffeomorphism

(510) (b?? : Vfi@(Q? h?:u') i) fi((gsah67l”'6) : (D7t) = (D€7t€)7
where the map ker D @ ker D* — ker D, @ ker D? : t — t. is defined via

1
(5.11) n®E — €_q775®£€-

The scaling factor €7 here is not strictly necessary, but has been added for use in the proof
of Lemma (.19 below. We see that ®. maps @ﬁg(g, h, i) bijectively onto @ﬁg(ge,hg,ug) for
each ¢ € (0,1]. This map is not defined for ¢ = 0, but the data g., he, pe, D. and D} do
have well-defined limits as ¢ — 0; in particular, Dy and D are both operators with constant
coeflicients and no zeroth-order term in our chosen local coordinates and trivializations. The
following definition is highly dependent on this choice of coordinates, but so is the map ®.; there
will be no problem as long as the same choices are used for both.

Definition 5.17. We will say that an element of JI’fE or JI’fF is homogeneous of degree d if,
under the natural identifications of these spaces with spaces of Taylor polynomials determined
by the chosen coordinates and trivializations from Assumption B.I3] it is represented by a
homogeneous polynomial of degree d. Similarly, we will call an element ¢t = Zj n; ®E €

JI?E ® JI‘?F homogeneous of degree d if for every j, the elements 7, € JI?E and §; € JI?F are
homogeneous with degrees adding up to d.

Remark 5.18. The homogeneous elements ¢ € JI]fE ®J§F of degree g are precisely those which
are fixed under the map (5.I1) for every ¢ > 0.
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Lemma 5.19. Suppose that for every homogeneous element t € ker II¥ — JI]fE ® JI]fF of degree
less than ¢ that also belongs to ker Do®ker D, the linear map Ly : Jlﬁ“*l Hom(E, F) — JI‘? (EQF)
has rank at least R € N. Then for every r € N, L@fx(g, h, ) is a C*-subvariety of codimension
at least R in Vﬁg(g, hy ).

Proof. Suppose (D,t) € @ﬁg(g, h,u) and let ¢ € {0,...,¢ — 1} denote the largest integer such
that ¢ € (JYE®JyF)?. Use this value of ¢ to define the scaling factor in (5.11]) for the definition
of the diffeomorphisms @, in (5.10)). Identifying k-jets with Taylor polynomials as in (5.3]), we
can write ¢ as a finite sum Zj n; ® &;, where for each individual value of j, n; € kerD is a
polynomial of degree at most k with lowest-order term of degree u; > 0, §; € ker D* is likewise
a polynomial of degree at most k with lowest-order term of degree v; > 0, and u; +v; > ¢, with
equality u; +v; = ¢ in at least one case. It follows that ¢. € JI]fE ® JI]fF converges as € — 0
to a nontrivial homogenous element ¢y € ker Dy @ ker D JIIfE ® JI]fF of degree ¢ < ¢, and
1% (ty) = 0 since TI¥(¢.) = II¥(t) = 0 for every £ > 0. As a consequence, (ge, he, fie, D¢, t.) € VF
converges as € — 0 to (go, ho, po, Do, to) € V. Since L;, has rank at least R by the hypothesis
of the lemma, it follows for all € > 0 sufficiently small that

randeH]:,Z(g&ahEaM€7D67tE) 2 rankL(g€7h€7M€7D67t6) 2 R

Fix € > 0 in this range. Then an arbitrary element (D’,t') € Vﬁg(g, h,u) in some small neigh-
borhood of (D,t) belongs to ﬁﬁg(g, h,p) if and only if II¥ o ®,(D',#') = 0. Since ®, is a
diffeomorphism, the linearization of II¥ o ®, : fo’g(g, h,p) — J;f(E ® F) at (D, t) has the same
image as the operator dgﬂfl(gg, he, pie, D, te), and thus has rank at least R. ]

5.3. Application to Cauchy-Riemann operators. We shall now apply Lemma [5.T9] for the
specific case of Cauchy-Riemann type operators. For the rest of this section, assume M is a
Riemann surface (X, j), E is a complex vector bundle of complex rank m € N, F' = Hom¢ (TS, E),
and @p(E , F) is the space of germs of real-linear Cauchy-Riemann type operators on E near p €
3. This space of operators satisfies Assumption [B.13] since one can always choose trivializations
and coordinates in which every D € @p(E , F) is a zeroth-order perturbation of ¢ := 05 +id;. To
define formal adjoints, we assume g = {, )g is the real part of a Hermitian bundle metric on F,
 is the area form on ¥ determined by a Hermitian bundle metric ( , )», on T, and h =, g
is the real part of the Hermitian bundle metric determined on F' via the natural isomorphism

F>TY®cE.

Remark 5.20. It is important to keep in mind that the operators D e @p(E, F) are in general
real- and not complex-linear, thus throughout this section, the symbols Hom(V, W) and V ® W
will always refer to real-linear maps and real tensor products unless otherwise noted, even in
cases where V' and W are both complex. We will use the notation Homg (V, W) and V ®c W to
specify the complex analogues of these operations.

5.3.1. A digression on real and complex tensor products. Suppose V and W are complex vector
spaces, and let W denote the complex conjugate of W, i.e. it is the same real vector space,
but with a sign inserted in the definition of its complex structure. There is then a canonical
complex-antilinear isomorphism W — W defined by the identity map, and we shall denote it by

W —>W:we— 0.
The spaces V ®c W and V ®c W are both quotients of the real tensor product V@ W, e.g. we
obtainl/ ®c W from V ® W by introducing the equivalence relation iv ® w ~ v ® tw, and for

V ®@c W the relation is instead iv ® w ~ —v ® tw. If the resulting quotient projections are
denoted by 7, : VW - V@&cW and 7_ : VW — V ®c W, then we obtain an isomorphism

(e, 7)) VRW = (VRcW)® (V &c W).
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This discussion carries over verbatim to a pair of complex vector bundles E and F' over X, giving
a bundle isomorphism

(rp,m ):EQF - (E®c F)® (E®c F).

The Petri map then fits into a commutative diagram

I'(E) @ [(F) 11 y (EQF)

(5.12) lg l;

(N(E) ®c T(F) @ (N(E) @c T(F)) "2 1((E @c F) @ (B @c 7)),

where Il : I'(E) ®c I'(F) - T'(E ®c F) denotes the obvious complez-linear Petri map that
is defined for any two complex vector bundles. Suppose in particular that E and F' are line
bundles and we have chosen complex trivializations for both over some region ¢. The bundle F
inherits from this a trivialization over I such that the canonical map F — F looks like complex
conjugation, and F ®c F and E @c F likewise inherit natural trivializations. The diagram now
allows us to identify the real Petri map with

C*U,C)®C*U,C) - C*U,C)d C*U,C),
f®g— (fg,f9)

5.3.2. The main rank estimate. Fix a holomorphic coordinate chart near p € ¥ and a corre-
sponding complex local trivialization of E such that the Hermitian bundle metrics on T and FE
both match the standard Hermitian inner product at p. The bundle F' naturally inherits from
these choices a local trivialization in which its Hermitian bundle metric also appears standard
at p. These choices identify elements of Jz’fE with polynomials in z and z,

(5.13)

2 zjégc“, cje€C™,
<k
hence
k4 1)(k +2
(5.14) dime JEE = dime JEF = m (1424 ... + (k + 1)) = "EFDET2)

2
Every D € @p(E, F) is now identified with an operator of the form
D=0+A:0"D,C") - C®(D.,C™),

where 0 = 05 +1i0; and A : D, — Endg(C™). The operator Dy obtained by rescaling as in §5.2.4]

is then simply

= 0

DO = a:= 83 +7/at =2__;
0z

and since the rescaled bundle metrics gg, hg and area form g are all standard in these coordi-
nates, the formal adjoint of Dy with respect to this geometric data is

0
Dy =—-0=—(0s —i0;) = —2—.
0 ( S ? t) az
We can therefore choose right-inverses Ty : JI‘?*IF — JI?E and T§ : JI?*IE - JI?F that are
uniquely determined in coordinates by the conditions

. 1 ,
(5.15) T, (zjzfc) - mzﬂ%“o, 0<j+l<k-1, ceCM,
and
. 1 .
(516) TS (ZJZZC) = —mZJ+IZZC, 0< ] +/ < k— 1, ceC™.
J

These choices determine the maps Ly : J;f_l Hom(E, F) — J]’f(E ® F) in (B9). Observe now
that the domain of this operator has a natural splitting

JV 'Hom(E, F) = J} ' Homc(E, F) ® J} '"Home(E, F).
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If we were to restrict to complex-linear zeroth-order terms A € I'(Homc(E, F')), then the per-
turbed operators D = Dy + A would always be equivalent to D under changes of trivialization,
killing any hope that (@fj(go, ho, po, D) might be a smaller space than ,@f,g(go, ho, po, Dg). For
this reason, we shall restrict L; to the complementary subspace consisting of (k — 1)-jets of
antilinear perturbations. Having done this, the following additional detail becomes relevant: for
Ae J;flm(c(E, F)and t = };n; ®¢; € ker Dg ® ker D, the commutative diagram (5.12))
implies

J

=108 ) (ToAn; ®c & + n; ®c T A*E)
i

m_oLy(A) =TEom_ (Z (ToAn; @ &5 +n; ®T6‘A*£j)>

where H(]f: denotes the map induced on k-jets by the complex Petri map Il¢. Since T and T are
complex linear while A4 and &; — &; are antilinear, the expression on the right hand side is the
result of applying some real-linear map to 7 (t) = > ;1 ®c &;; the point here is that real-linear
operators of the form ¢ ® v are well defined on the complex tensor product whenever ¢ and v
are either both complex linear or both complex antilinear. But as mentioned in Example[5.3], Dg
satisfies the complex Petri condition, so the fact that I1¥(t) = 0 implies that IT% o7 (t) = 0 and
thus 7, (t) = 0, so that the expression vanishes automatically. We conclude from this discussion
that all interesting information in L; is carried by the map

(5.17) L,:=m o0 L] i rome(epy ¢ Jy Home (B, F) — J5(E ®c F).

Clearly the rank of L, gives a lower bound for the rank of L;. The workhorse result behind
Theorem [5.9]is now the following:

Proposition 5.21. For every £ € N, there exists a constant Cp > 0 that depends on £ but not
on k, such that for all t € ker II* < ker Dy ® ker D§ that are homogeneous elements of degree

less than ¢ in JI]fE ® JIIfF, the operator Ly : J;f_lHom(c(E, F)— J]’f(E ®c F') satisfies
rank f;t > Cgk‘2.
Lemma 5.22. If Proposition [5.21] holds in the case rankc E = 1, then it holds in general.

Proof. For rankc ' = m € N, the chosen trivializations furnish local splittings £ = F1®...®FE,,
and F' = F1 ® ... ® F), that are respected by Dy and Dy, i.e. both are m-fold direct sums
of identical operators given by 0 or —d respectively. Their chosen right-inverses T and T}
also respect these splittings. Let us denote the resulting splittings of the kernels by ker Dy =
Ki®..®K,, and kerDj = L1 ®...® L, so that ker Dy ® ker D§j splits into m? identical
factors of the form K; ® L;. Similarly, J]]f(E ® F') splits into m?2 identical factors of the form
J;,“(Ei®Fj), and the Petri map IT* : JI?E@J;,“F — J;,“(E@F) sends J;,“Ei®J§Fj to J;,“(Ei®Fj)
for every i and j. A homogenecous element ¢ € ker IT¥ < ker Dy ® ker D{ of degree ¢ < ¢ is now
defined by its m? components ¢;; € ker 0% n (K ® L), at least one of which must be a nontrivial
homogeneous element of degree ¢; call this component t,,. Now consider the restriction of f:t
to the subspace
JEHomc(E,, F,) < Ji~"Home(E, F),

defined as the (k — 1)-jets of bundle maps A : E — F' that annihilate E; for all i # u and have
image in F,. Since the bundle metrics gy and hgy are standard in our chosen trivializations, A*
then belongs to the corresponding subspace Jg_lmC(Fv, E,) c J;f_lHom(c(F, E). Composing
our restriction of L; with the natural projection JHEQF) — J¥(E, ® F,) then produces an
operator J;,“*II{()—mC(Eu, F,) — Jg(Eu ®c F,) that matches the rank 1 case of f;t, and its rank

gives a lower bound for the rank of f;t. O
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The remainder of this subsection is devoted to proving the rankc £ = 1 case of Proposi-
tion B.211

We shall write everything in the chosen coordinates and trivializations so that elements of
Jz]f E, Jz’f F and Jllf (E®c F') are now identified with complex-valued polynomials of degree at most
k in the variables z and z. The holomorphic polynomials form ker Dg, while the antiholomorphic
polynomials form ker D§. Using (.13) to compute the kernel of the Petri map, it turns out that
arbitrary elements of ker I* < JI?E ® J;fF now take the formE

k
t= > [ajm (2 @2 +i2) ®iz") +bjy (i @ 2" — 2/ ®iz")| + R,
7,n=0
where a;y,, bj, € R are real coefficients subject to the condition Zj+n:q Ajp = Zj+n:q bjn = 0 for
every ¢ = 0,...,k, and R is an arbitrary sum of homogeneous elements that have degrees greater
than k and therefore vanish automatically under IT*. For Proposition [5.21] we are interested only
in homogeneous elements of some degree less than /¢, so let us fix an integer ¢ < £ and write

[y

q
t=>la; (@297 +idd @iz ) 4+ b; (i @21 — 2 @izt )],
0

<

where a;,b; € R are now subject to the conditions Zg;é a; = Z?;é b; = 0 and we explicitly
assume that at least one of these coefficients is nonzero. The action of an antilinear bundle map
A e T'(Homg(FE, F)) on a section n € I'(E) can be written in trivializations as

(An)(2) := a(2)n(z)

for some complex-valued function «, thus the map A : JI]fE - Jllf_lF can be written as

An = 2 Q22N
utv<k—1
for some coefficients «,, € C. The transpose A* : JI‘?F — J;f*IE is given by exactly the
same formula—here we are taking transposes of the 1-by-1 matrices a,, and thus leaving them
unchanged, as the antilinearity of A makes the transpose the appropriate transformation here
instead of the Hermitian adjoint. With this data in place and the explicit formulas given in
(EI5) and (5.I6) for To and Tf, we now obtain an explicit formula for Li(A) € J¥(E @c F) as

- o CjQyy uzv+q Cj Quw u+q v

Lt(A)_;)u+§kq(v+j+1zz u+q—jz z),
where we have defined

cj:=a;+ibjeC for j=0,...,q—1
Two immediate remarks are in order: first, the second summation in this formula stops at k — ¢
instead of k—1 because all terms in A with degree larger than k — g produce terms in it (A) that
have degree greater than k and thus vanish in JI‘? (E®c F). Along the same lines, we notice that
whenever A is given by a homogeneous polynomial of degree n, f;t(A) is likewise homogeneous
with degree n + ¢, indicating a natural splitting of the map f,t : J;,“*II{()—mC (E,F) — JI? (E®cF)
into factors
L=-LVe. oL#
(n)

where for eachn = 0,...,k—q, IAJt is defined on the space of homogeneous degree n polynomials
in Jllf_lHom(c(E,F ). (Strictly speaking, there are additional factors defined on homogeneous
polynomials of higher degree, but we will ignore them because they are trivial.)

9This seems a good moment to remind the reader that all tensor products in this section are real tensor
products unless the symbol “®c¢” is used.
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For each individual n € {0, ...,k — ¢}, the map ign) takes the form

q—1 _ q—1
=(n Cj U G u+q zv
L (4) = Z auy-[<27v+;+1>zz*q—<zu+;_j>z+qz].

utv=n 7=0 7=0
To simplify this expression, we can write ¢ = (co,...,cq—1) € C? as a column vector and define
for integers u,v = 0 the complex numbers
(L ... _L)\g (L ... _1
0, = <v+1 erq)c and Ky = <u+q qul)c,

so that now
ig") (A) = 2 Ay - (602“2”“1 — ﬂuz“Jqu”) .
utv=n
If we now identify the homogeneous degree n part of A with the vector in C"*! given by
(Qn,0, n—1.1;- .-, 0 ), and use the monomials

Zn-i—q, Zn-i—q—lz’ Zn+q—222’ . Zn—&-q—l’ Zntq

Cy 2

as a complex basis for the homogeneous degree n + ¢ part of Jllf (E®c F), then f;gn) is represented
by the (n + ¢ + 1)-by-(n + 1) complex matrix

—HKn-1

(5.18) LW = | fo
91 —KkQ

Or,

In this matrix, all entries not written explicitly are understood to be 0.

Lemma 5.23. For any set of distinct positive integers i1, ... ,1q, the matriz
1 1
11+ q 11+ 1
1 1
g +4q g+ 1

1s tnvertible.

Proof. This follows from the well-known formula for so-called Cauchy determinants,

1 1 q i—1
z1 +w 21 + wy HH(Zi_Zj)(wi_wj)
. ) i=1j=i
det : . . : = q 5
v [1Gi+w)
Zg + w1 Zq + Wy i,5=1
see e.g. [PS98] pp. 92 and 279). O

Since at least one of the coefficients a; or b; is nonzero, the vector ¢ € C? cannot be annihilated
by ¢ linearly independent vectors, so we conclude:

Corollary 5.24. In the matriz (5.18]), at most ¢ — 1 of the entries ko, ..., k, can be zero. [
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This result implies that at most ¢ — 1 columns of the matrix (5.I8) need to be eliminated in
order to produce a matrix whose columns are all linearly independent, hence if n > g — 1, we
have R

rankc Lgn) >n—(q—1).
If £ > 2¢, then summing this estimate for n = ¢q, ...,k — q gives
~ 1

rankcLy > 1+24+...+k—2¢+1= §(k—2q+1)(k:—2q+2),

and thus R
rankL; > (k—2¢+1)(k—2¢+2) > (k—20+1)(k— 20+ 2)
whenever k£ > 2¢. This estimate might not be satisfied for k£ underneath this threshold, but
since that is only finitely many cases, we can now just choose a constant Cy > 0 small enough
to achieve Cyk? < rankL; for those cases and Cpk? < (k — 20 + 1)(k — 20 + 2) for all k > 2/.
With this, the proof of Proposition (.21]is complete.
5.3.3. Proof of Theorem [5.9. Consider the C*-subvarieties @fg(g, h,u) Vfg(g, h, ) from
§5.2.6] in the specific setting of local Cauchy-Riemann type operators D € .@p(E,F ) with
rankc £ = m. For any given operator D € .@ﬁ(E,F ), we know from Lemma that
D: Jz’fE — Jllf_lF and D* : Jz’fF — J;f_lE are both surjective, thus (5.14]) gives
dimker D = dimker D* = dim J¥E — dim J} ' F

m(k +1)(k +2) — mk(k + 1) = 2m(k + 1),

and plugging this into (5.7),
(5.19) dim Vf (g, h, p, D) = drm(k + 1) — r7.
Next, combining Proposition (£.21] with Lemma (.19 gives:

Proposition 5.25. For every £ € N, there exists a constant Cy > 0 such that for all integers
k =¥ and all r € N, ﬁfg(g, h,u) Vfg(g, h,u) is a C®-subvariety of codimension at least
Cok?. O

Sard’s theorem (see Propsition [C.3)) now provides a Baire subset
DB, F; r6) € P5(E, F)

such that for all D € ég’reg(E,F; r,0), ,@ff’g(g, h, 1, D) is a C®-subvariety in Vﬁg(g, h, 1, D)
of codimension at least Cyk?. Since this codimension grows quadratically with k& while the
dimension of Vﬁ (9, h, 1, D) grows only linearly, we conclude that for any fixed r,¢ € N, the
space ,@f (9, h, 1, D) is empty for all £ sufficiently large.

To conclude the proof of Theorem .9 we choose for each £ € N some k > ¢ large enough so
that @gz(g, h,pu,D) = & for every D € .@f’reg(E,F; ¢,0), and then define CRHZ{eg(E; U, Dgy)

to be the set of all operators in CRg(E ; U, Dgy) whose k-jets at p belong to .@;f’reg(E, F;0.0).

5.4. Petri’s condition is satisfied for generic J. We now return to the setting of §2] and
consider the moduli space Mg4(A, J) of unparametrized closed J-holomorphic curves u : (X,5) —
(M, J) of genus g = 0 homologous to A € Ha(M) in a symplectic manifold (M,w) of dimension
2n > 4 with J € J(M,w; U, Jsx). Here U < M is an open subset with compact closure, Jgy is a
fixed compatible almost complex structure, and all J € J(M,w; U, Jgy) are assumed to match
Jgx outside of U.

Theorem 5.26. There exists a Baire subset J* < J(M,w; U, Jax) such that for all J € J*®
and every u € My(A,J) with parametrization u : (X,7) — (M, J), the normal Cauchy-Riemann
operator DY € CRr(N,,) satisfies Petri’s condition to infinite order on an open and dense set of
points in u=t(U). In particular, DY satisfies the local Petri condition at every point in u='(U)

(cf. Remark[2.3).
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We will deduce Theorem from the results of the previous subsection after showing essen-
tially that the natural map from the universal moduli space of simple holomorphic curves with
one marked point to the space of k-jets of normal Cauchy-Riemann operators at the marked
point is always a submersion. Up to some technical details still to be addressed, the next lemma
implies this. Recall that a point z € ¥ in the domain of a smooth map v : ¥ — M is called
an injective point if dv(z) : T.X — T,,)M is injective and {z} = v~ !(v(2)). For a simple
J-holomorphic curve, the complement of the set of injective points is a discrete set.

Lemma 5.27. Assume J € J(M,w; U, Jax), and v : (X,5) — (M, J) is a simple J-holomorphic
curve with generalized normal bundle N, c v*T M defined as the w-symplectic complement of
the generalized tangent bundle T, < v*TM. Given any A € Q% (2, Endgr(N,)) with support
contained in the set of injective points in v (U), there exists a smooth family of almost complex
structures

{JT € j(Maw; U, Jﬁx)}re(—e,s)

such that Jy = J, J-(v(z)) = J(v(2)) for all T and z, and the resulting family of normal
Cauchy-Riemann operators DN € CRRr(Ny) for v defined with respect to J; satisfies

8DN | o =TmNoVyYoTvoj=An

for n € T'(Ny), where Y := 0;J;| _, € I'(Endc(TM,J)), V is any connection on M, and
oy v*TM — N, denotes the projection along T,.

Proof. If {J.} is any smooth path in J(M,w; U, Jax) with Jy = J, J-(v) = J(v) for all 7 and
Y := 0;J|;=0, then Y (v) = 0, hence VY is well defined along v independently of any connection.
For n e I'(N,), let us write V,)Y in block form as

T TN
V.Y - (v Yy vy

(5.20)

with respect to the tangent-normal decomposmon v*T'M = T,®N,. Since N, is the w-symplectic
orthogonal complement of T, the fact that J, is always w-compatible then translates into
conditions that constrain V;Y and VnN Y separately and another condition that determines

VZN Y in terms of Vév Ty | namely
w((Vrjl\[TY)v, w) + w(v, (V;‘]FNY)U)) =0

for all (v, w) € T,®N,. This means that w-compatibility does not prevent us from freely choosing
Vév 7Y so long as we (1) do not mind VZN Y being determined by this choice, and (2) do this
only in regions where v has no double points, so that the splitting of TM into T, ® N, is
unambiguous. Now using the definition of the normal Cauchy-Riemann operator, one computes
that for any n € I'(N,),
5DN | —VnNTYoTvoj.

On a region where v has neither critical pomts nor double points and its image lies in the
perturbation domain U, we can therefore choose the normal derivatives of Y along v to make
the above expression match A. O

To prove Theorem [5.26] we will use the Floer C.-topology (cf. [F1o88) §5]) to define spaces of
perturbed data. Given any Jief € J(M,w; U, Jgy), we define

ref‘7(J W ; L{ Jﬁx) c P(Endc(TM Jref))

as the space of smooth Jye-antilinear bundle maps Y that vanish outside U and satisfy w(-,Y-) +
w(Y-,-) = 0; intuitively, this is the tangent space at Jy to the smooth Fréchet manifold
J(J,w; U, Jgx). There is a natural embedding

1 1 !
(5.21) Y Jy = (]1 + §JrefY) Jref (]1 + §JrefY)
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which takes a C%-small neighborhood of 0 in Ty J(J,w; U, Jax) homeomorphically to a neigh-
borhood of Jief in J(M,w; U, Jax). Now choose a Riemannian metric on M in order to define
the C”-norms on I'(End¢(T'M, Jyet)) for each integer v > 0, fix a sequence of positive numbers
e, — 0, and define the C.-norm

o0

(5.22) Ve, ==Y elYov
v=0

for Y € I'(Endc(TM, Jyet)). Fixing any § > 0 sufficiently small, this gives rise to a smooth,
separable and metrizable Banach manifold

j& = {JY ‘ Y e TJrefj(J7w; Z/[?Jﬁx)? ”Y”Cs < 0 and ”YHCO < 5}

which embeds continuously into J(J,w ; U, Jsx) and contains arbitrarily C*-small perturbations
of J.ot. Note that since Y < M has compact closure, the equivalence classes of the individual
C"-norms are each independent of auxiliary choices such as connections or local trivializations,
but the equivalence class of the C.-norm may in fact depend on these choices. This is immaterial,
as the choice of the sequence {€,};>, carries no geometric meaning in itself; what is important
is rather that the space of sections of class C, can always be enlarged by making &, converge to
0 faster. To say this more precisely, let us endow the set

E = {sequenees e={e}u | &r >0forall v,and lim ¢, = 0}
V—00

with a pre-order < defined by

’ . €y
e<e = lim sup —- < oo.

v—oo &y
Definition 5.28. Given a statement S(e) dependent on a choice of € € £, we will say that S(e)
holds for all € € £ with sufficiently rapid decay if there exists €y € € such that S(g) holds
for all € < €g.

Lemma 5.29. The C.-norms on sections Y € Ty J(J,w; U, Jsx) have the following properties:

(1) Ife < €' in E, then there exists a constant ¢ > 0 such that |Y|c. < c|Y|c,, for all Y.
(2) For any given Y, |Y|c. < oo for all e € € with sufficiently rapid decay.
(3) Ewvery countable subset of € has a lower bound in € with respect to the pre-order <.

Proof. Property (1) follows easily from the observation that ¢ < &’ if and only if there exist
constants C' > 0 and 1y € N such that ¢, < Cel, for all v > 1y. To prove (2), observe that
any nontrivial smooth section Y vanishing outside of U is of class C; for €, := 1/ (2" - |Y]cv),

then apply (1). Finally, € € € is a lower bound for the countable subset {e(1) e ¢B)  }c &
whenever ¢, < min {6,(,1), e ,6,(/V)} for every v. U

Let us discuss the geometric data to be used in formulating the local Petri condition for a
holomorphic curve. Given J € J(M,w; U, Jsy), the complex vector bundle (T'M,J) carries
a natural Hermitian metric whose real part is g5 = w(-,J:). If u : (X,5) - (M,J) is J-
holomorphic and is immersed at the point ( € X, then g; can be pulled back to define a
Riemannian metric on ¥ near ¢ in the conformal class of j, thus giving rise to an area form
fy on ¥ and compatible bundle metrics g, on N, and h, on Hom¢(T%, N,) near ¢, where for
concreteness we are also free to assume N, c u*TM is the gj-orthogonal complement of T,.
In order to avoid ambiguity, we shall assume in the following that DY and (D)* are defined
via these specific choices of geometric data near any given immersed point ¢ € 3; note that this
would not be a valid global definition for (D')* since the pulled back metric on ¥ becomes
singular at critical points, but this will not matter since we only intend to study finite jets of
(DN)* at a specific immersed point. Recall from Remark that Petri’s condition does not
depend on choices of geometric data. Moreover, while the global topological type of N, may
change (because the number of critical points may change) as u moves about in its moduli space,
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the germs of DY and (DY)* at an immersed point can still be assumed to depend smoothly
on u.
Let us denote by
aa(AJ) € My 1(A,J)

the open subset consisting of simple curves with one marked point such that the marked point
is an injective point with image in &/. We will abuse notation and write elements of M;l(A, J)
as (u, (), where u : (£, j) — (M, J) is a specific parametrization and ¢ € ¥ is the marked point.
Using the notation of §5.2.6] we then define for each k,r, ¢ € N with ¢ < k the space

M A T) 1= {6 1) | (.0) € M3 (A4, 0), € VEy(gus hus DY) |

where gy, hy,, 1o, are the specific choices of geometric data determined by v and g; as described
in the previous paragraph. The extra term ¢ is an element in the tensor product of the k-jet
versions of ker DY and ker(DX)* at ¢, having rank r and not vanishing to order £. We will be
interested especially in the subset

METEA, ) = {(u, ¢.t) € MET(A, ) ‘ T (t) = o}.
To understand the structure of these spaces, we define corresponding universal moduli spaces:
(AT = {w ) [ Te Ty (w0 e M3 (4,0}
YA T = {(u ¢,t,J) ‘ Je T, (u,(,1) € MET(A, J)}

AT = (Gt ) [ Te 7 (ot e MET (A}

We shall always choose € € £ to have sufficiently rapid decay so that, by standard arguments
n [MS12], % (A, J:) is a smooth, metrizable and separable Banach manifold such that
the projection %% (A, J:) — J: : (w,(,J) = J is a smooth Fredholm map whose index is

the virtual dimension of M7 (A, J). It follows that the same is true for ?//Zfir’z(A, Je), as the
additional k-jet data ¢ varies in a smooth finite-dimensional manifold that depends smoothly on
the k-jet of the operator DY at the immersed point ¢, and this in turn depends smoothly on
(u, ¢, J) € %1 (A, Te).

It will be convenient to impose an extra condition defining an open subset of %g]fir’z(A, Jz).
For each £ € N, let Cy > 0 denote the constant furnished by Proposition (.25 in §5.3] with the
roles of the bundles E, F' and point p in that subsection played by N, Hom¢(T%, N,) and ( € &
respectively.

Definition 5.30. Given J € J(M,w; U, Jgx) and € € €, we will say that an element (u,(,t) €

MI;;Z(A J) is e-regular if J € J. and (u,(,t,J) has a neighborhood O ¢ ?//\RM(A J:) such

that O n ?/glflrg(A J:) is a C*-subvariety of ?//\k M(A J.) with codimension at least Cyk?.
Note that e-regularity is an open condition by construction, i.e. the set of tuples (u,(,t,J) €

%g]fir’z(A, J-) such that (u,(,t) is e-regular is open. The important consequence of Lemma [5.27]
will be that it is generally also nonempty.

Lemma 5.31. Any given (u,(,t) € ./\/lkrg(A Jref) 18 e-reqular for all e € € with sufficiently
rapid decay.

Proof. Observe first that Jof € J- for every € € €. Now given (u,(,t) € .MI;’{’K(A, Jref ), define
the Fréchet space

Yy = {Y e Ty, T (M,w; U, Jax) ‘ Yues) = 0}

and for each € € £ the Banach space

V. = {Y € Ty T(M,w; U, Jg) ‘ Y]u =0 and [Y]e, < oo},
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where the latter is regarded as a closed Subspace of Ty, J. with the C.-topology. Abbreviating
E := N, and F := Hom¢ (7%, N,,), Lemma [5.27] provides a surjective linear map

0: Y0 = JE (Homg(E, F)) : Y > JE ' (Ay),

where Ay denotes (the germ near ¢ of) the zeroth-order term determined by Y according to the
formula Ayn = mnoV,Y oTuoj. Since the target space of Wy is finite dimensional, Lemma [5.29]
implies that it remains surjective when restricted to the subspace ). for € € £ with sufficiently
rapid decay. Each Y € ). now gives rise to a 1-parameter family of almost complex structures
Jr = Jry € J- defined via (5:21]), which match Jyt along w and satisty Jy = Jyer. This defines
a smooth family (u,(, J-) € %, (A, J:) that deforms the normal Cauchy-Riemann operator of
u in the direction of Ay but leaves the geometric data along u unchanged. It follows that the
linearization at (u,(,t, Jref) of the natural projection ma

(5.23) Uy (A, J2) = Vi (0,6t T) = (gus hus s, DY)
is surjective onto Tpy 7t)V 1(Gus s p1y), and the result then follows from Proposition O

T

Applying the Sard-Smale theorem to the projection ?//Zfir’z(A, Jo) = To: (u,(,t,J) — J as
in Proposition [C.3] we can associate to each € € € and each set of positive integers k,r, ¢ with
k > ¢ a Baire subset

Tk, l) € J.
such that for all J € J-®(k,r,{), ./\/lk M( J) is a smooth finite-dimensional manifold and the
open set of e-regular elements in

METHA,T) = METH(A, )

is a C®-subvariety of codimension at least Cyk?. The dimension of ./T/(\];:{’K(A, J) is the Fredholm
index of the projection @\k’T’Z(A Je) — Je, which is larger than that of %% (A, J:) — Je by
dim V* K(gu,hu,uu,D ). Plugging in (5.19)), this gives

dlka M(A, J) = vir-dim M 1 (A, J) +4r(n — 1)(k + 1) —r?.

This number grows linearly with k, while the codimension C;k? grows quadratically, thus for
any fixed r, £, g, A, the integer

(5.24) vir-dim MPTY(A, J) 1= vie-dim Mg,1 (A, J) + 4r(n — 1) (k + 1) — 7% — Cok?

becomes negative for all k € N sufficiently large. Taking the countable intersection of the Baire

sets Jz ®(k,r,£) for all k,r, ¢, g, A, we obtain:

Corollary 5.32. For every e € &, there exists a Baire subset J:® = J. such that for all J € J:®
and any given g = 0, A € Ho(M) and r,{ € N, the set of e-reqular elements in Mk M(A, J) is
empty whenever k is large enough for the integer in (5.24)) to be negative. O

For the proof of Theorem [(5.20, we will use a variation on a popular trick due to Taubes,
presenting the desired set J'¢ < J(M,w; U, Jsy) as the intersection of an explicit countable
collection of open and dense subsets. This depends on the ability to decompose the relevant
moduli space into a countable union of compact subsets, and as preparation, the following lemma
gives a way of doing this for the moduli space of complex structures. Given a smooth oriented
surface X, we let J(X) denote the space of smooth complex structures on ¥ compatible with
the orientation, with its natural C*-topology. For integers g,m > 0, Mg, will denote the

1OStrictly speaking, the definition of fo’ ¢ in this context depends on the germs near ¢ € ¥ of the vector bundles
N, and Hom¢(T'E, N,,), which vary as (u, ¢, t,.J) moves in ?//\k "{(A, J.), so for the purposes of (5.23)), VE, should
be replaced with a suitable fiber bundle over ?//;k’ (A, J.), of which the map in (5.23) is a section. This detail
makes little difference for the present argument, however, since the family (u, ¢, J-) € OZ/g’:‘l (A, J:) involves a fixed

curve with a fixed marked point and JT|im(u) also fixed.
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(uncompactified) moduli space of Riemann surfaces with genus g and m marked points; recall
that elements of the latter are equivalence classes of tuples (X, j,©) where (X, 7) is a Riemann
surface of genus g and © c ¥ is an ordered set of m points.

Lemma 5.33. Given integers g,m = 0, fix a closed surface 2 of genus g and an ordered set of
m points © = {(1,...,(n} € 4. Then there exists a nested sequence of compact subsets

JHZ,0)c J3(2,0)c J3(2,0)c...c T (D)
such that every element of Mgy, has a representative (3,4, 0) for some j € J5¥(%,0), K € N.

Proof. Let m : J(X) > Mg m : j — [(X,7,0)] denote the natural projection. Choose for each
Jj € J(¥) a smooth slice T; < J(X) through j for the natural action of Diffo(X,0) on J(X),
i.e. Tj locally parametrizes the Teichmiiller space of (X,0) near j. Since Teichmiiller space is
finite dimensional, 7; contains a compact neighborhood V; < 7; of j, and the image of V; under
7 is then a neighborhood of [(¥,7,0)] in Mg ,,. Since the latter is second countable, we can
then find a sequence ji, jo,Js,... € J(¥) such that J,eym(Vi;) = Mgm. Set JE(Z,0) :=
Vip U U Ve O

Proof of Theorem [2.26. For the following definition, we fix a model surface 3, of genus g and
a point ¢ € X4, along with Riemannian metrics on X, and M, denoting the various induced
distance functions by dist(-,-). The Levi-Civita connection then induces connections on the
bundles E = N, and F = Homc(T%,, N,) appearing below, which can be used in defining
metrics on the jet spaces JfE and Jé“F. For each K,/ € N, fix an integer k := k(K,¢) > { large
enough so that

(5.25) vir-dim MPPY(A, 7) <0 forall ref{l,... K}

With this choice in place, we define
K
NK( ) UMIM"K(A J)
r=1
as a set of elements (u,(,t) satisfying quantitative versions of the various conditions defining
the spaces .Mk M(A J). Concretely, we require every element of A% (J) to be representable as
a curve u : (Eg, j) = (M, J) with marked point ( € ¥, and ¢ € ng(gu,hu,,uu,DN) with [t| =1
such that:
(1) Domains do not degenerate: j belongs to the compact set J%(,, {¢}) from Lemma[5.33l
(2) Bubbles do not form: sup_ ey, |du(z)| < K.
(3) The marked point does not escape: dist(u(¢), M\U) = 1/K.
(4)

The marked point remains an injective point:

1 . dist(u(¢),u(z)) _ 1
d > — d f ———7 >
(Ol 2 - and - inf D) K
(5) The rank of t does not blow up: rankt < K.
(6) The vanishing order of t does not increase: Writing £ = N, and F' = Homc (7%, E),

the distance of t € Jé“E ® J?F from the subspace (J?E ® J?F)g is at least 1/K.

Now let
TR = {7 e g U ) | NE () = 2}

To see that J &K is open, suppose the contrary: then there exist sequences J, € J (M, w ; U, Jax)
and (uy,(,t,) € N¥(J,) with J, —» J € J"*% as v — . Assuming the parametrizations
uy = (Bg,50) — (M, J,) satisfy all of the conditions listed above, elliptic regularity combined
with the compactness of J%(2,, {¢}) and the condition [t,| = 1 then gives a subsequence con-
verging to an element of N5 (J), which is a contradiction.

We claim that J™%% is also dense. To see this, recall that the reference structure Jyf in the
definition of 7. was arbitrary, so it will suffice to prove that for some ¢ € £, 7. contains arbitrarily
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C.-small perturbations of Jy that are in J™&%. The argument of the previous paragraph
shows that N5 (J.) is compact, so since e-regularity is an open condition, Lemma [5.31] implies
after taking a lower bound for finitely many choices of € € £ that every element of N5 (J,ef)
is e-regular, and so therefore is everything in some open neighborhood of N'K(J.ef) x {Jret}
in %g]fir’z(A, J:). Since J:® < J. is a Baire subset, we can choose a sequence J, € J:°®
with J, — Jyet, and we claim that J, € J™&X for all v sufficiently large. If not, then after
restricting to a subsequence, there exists a sequence (uy,(,,t,) € N¥(J,) which converges by
the compactness argument in the previous paragraph to an element of N'X (J,e¢), implying that
(uy,Cy,ty) is e-regular for v large. In light of the assumption vir-dim MS:;’Z(A, J) < 0, this
contradicts Corollary
The space
T = () T < T(Mw; U, Jgy)
KeN

is now a Baire subset. If J € J"8 and there exists a simple J-holomorphic curve u : (X,j) —
(M, J) of genus g with an injective point ¢ € u~!(i4) < ¥ at which Petri’s condition is not
satisfied to infinite order, then we can define u as an element of M7 (A, J) by calling ¢ the
marked point. Since nontrivial elements ¢ € ker DY ® ker(DX)* have finite rank and cannot
vanish to infinite order at any point, we can then normalize ¢ and thus find an element (u,(,t) €
NE(J) for K sufficiently large, which is a contradiction. This proves that for J € J"%, all
simple curves v : (3,7) — (M, J) satisfy Petri’s condition to infinite order at every injective
point in v~!(2), which is an open and dense subset of v~!(). It follows that the condition is
also satisfied for all multiple covers u = v o ¢ at points in u~}(U) = o~ (v™1(U)) that are not
branch points and are preimages of injective points; that is likewise an open and dense subset

of u=t(U). O

Remark 5.34. The proof above would work equally well to find generic families of almost
complex structures depending on finitely many parameters such that Petri’s condition is always

satisfied. The key point is that for the parametric moduli spaces analogous to MI;:I’E(A, J) and

M\I;:I’E(A, J), the codimension of the former in the latter grows quadratically with k, while the

dimension of the larger space grows only linearly, so that the space analogous to .MI;’{’K(A, J)
will always turn out to be empty for generic choices if k£ is made sufficiently large, no matter
how many extra dimensions are added to the original moduli space by introducing parameters.

The extension to families is important for the bifurcation theory discussed in §2.41

5.5. A global application. We now give an application of Petri’s condition which will be
crucial for the proof of Theorem [Dl The setting is as follows: assume FE and F' are smooth real
vector bundles over a smooth (not necessarily compact) manifold M, with chosen bundle metrics
{, Ye, {, Yr and a chosen volume from x on M which are used to define L?-pairings

iy = fM<n,n'>E b (EE fM<5,f'>Fu

for n,n’ € T(F) and &, ¢ € T'(F). The product {n,n);2 is well defined for two (not necessarily
smooth or compactly supported) sections 1,1 of E whenever the function {(n,n g belongs to
LY(M, 1), and in this case we will say they are L?-orthogonal if (n,7');2 = 0; an analogous
definition applies for sections of F. Consider a linear partial differential operator D : I'(E) —
I'(F') and its formal adjoint D* : I'(F') — I'(E) defined via {{, Dn);2 = (D*&, n)2 for all smooth
sections 7, £ with compact support. We will consider the extensions of both of these operators
to certain Banach space completions,

D:X(F) > Y(F), D*: X*(F) - Y*(E),
where X(F) and Y*(FE) are Banach spaces of sections of E in some regularity class defined

almost everywhere, while Y (F') and X*(F') are likewise Banach spaces of sections of F. In this
functional-analytic setting, we impose the following assumptions:
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(1) D and D* are Fredholm operators whose kernels consist only of smooth sections;

(2) kerD* < Y(F), and the L2-product (£, &' )2 is well defined whenever ¢ € Y(F) and
&' € ker D*, so in particular it is well defined whenever both are in ker D*;

(3) Y(F) = im D @ker D*, where the two factors in this splitting are closed L?-orthogonal
subspaces.

We shall denote the natural projection resulting from the third assumption by
7m:Y(F) — ker D*.

Remark 5.35. In the setting of §3.2], the assumptions above are satisfied for a Cauchy-Riemann
type operator D: F(E ) — F(F ) over a punctured Riemann surface 3, using the weighted Sobolev
spaces X(F) := WFP=9(FE) and Y (F ) Wh=Lp.=8(F) for k € N, p € (1,0) and exponential
weights § = {d,, > O}we@7 recall that D is Fredholm if all 6,, are chosen to be sufficiently small.
For the formal adjoint D*, we then define X*(F) := Whp:0 (F ) and Y*(E) := WF128(E), so

that Proposition B.I3] provides the necessary splitting of Y (F).

Lemma 5.36. Given the assumptions above, suppose U < M is an open subset such that D
satisfies Petri’s condition over U. Assume moreover that V  I'(Hom(E, F')) is a linear subspace
satisfying the following conditions:
(1) ®ne Y(F) for all ® € V and n € ker D.
(2) There exists a dense subset A < U with the following property: for every z € A and
&y € Hom(E,, F.), there exists a ® € I'(Hom(E, F)) satisfying ®(z) = ®¢ such that for
every neighborhood U' < U of z, B® € V for some smooth function B : M — [0,1] with
compact support in U' satisfying f(z) =
Then the linear map L : V' — Hom(ker D, ker D*) defined by L(®)n = 7w(®n) is surjective.

Proof. Fix bases 01,...,n, € kerD and &,...,&, € ker D*. Since im D = ker 7 is L?-orthogonal
to ker D*, we then have

<L(¢)n7x7§]>L2 = <(bn7/7§j>L2 for all Z = 17"'7m7 j = 17"'7“7
and these matrix elements determine L(®) : ker D — ker D*. Now if L is not surjective, there
exists a nontrivial linear map ¥ : ker D — ker D* which is “orthogonal” to every L(®) in the
sense that its matrix elements W := (¥n;,§;) 12 € R satisfy

DI, &2 =0
/[:7-7
for every ® € V. We can rewrite this as

O—Z\I/”f«bm,sjw [ ¢ oee@ons (Z\I’”m®§j)u7

2]

where Z P 7; ®¢&; is regarded as a section of E®Q F'. Since the U are not all zero, this section
is the 1mage of a nontrivial element of ker D ® ker D* under the Petri map, so by assumption,
it does not vanish identically on ¢. Now choose a point z € A at which this section is nonzero.
Lemma [5.37] below provides a linear map ®¢ : E, — F, such that the integrand is positive near z
for any ® € V satisfying ®(z) = ®¢, and we can then make the entire integral positive after
multiplying ® by smooth bump functions with sufficiently small support. O

We used:

Lemma 5.37. Suppose V' and W are real finite-dimensional vector spaces, { , ) : WQW — R is
an inner product on W, and T € V QW is nonzero. Then there exists a linear map ® : V - W
such that { , Yo (2®1)(T) > 0.

Proof. Choosing a basis vy,...,v, of V, we have T' = Z?:I v;@uw); for unique vectors wy, ..., wy, €
W, which do not all vanish since 7' # 0. Choosing ® : V' — W such that ®(v;) = w; for all j
then gives (, ) o (2@ 1)(T) = 3} {wj, w;) > 0. O
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6. PROOF OF THE STRATIFICATION THEOREM

We are now in a position to prove Theorem [DI The main idea behind the proof is standard,
though some details are less so: we will write down a universal moduli space with a projection
to a suitable Banach manifold of perturbed data whose regular values have the property stated
in the theorem. The hard part is of course to prove that the universal moduli space is a
smooth Banach manifold—this follows from the implicit function theorem after proving that
some version of the operator defined in (3:24)) is surjective, and that is where the results of the
previous section on Petri’s condition are needed.

Fix Jief € J(M,w; U, Jiy) and consider again the space J. of Floer C.-small perturbations
of Jrer as constructed in §5.4] via a choice of decaying positive sequence € = {¢,};, € €. For
each of the choices of data in the statement of Theorem [D] we define a universal moduli space

UNTes b1y )
consisting of pairs (u, J) with J € J. and u belonging to the isosymmetric stratum
MUT ;5 by, ) = ME (Mg (A, T 0, ).

We shall denote elements of M%(.J; £1,...,4,) by u = vop, where we have chosen parametriza-
tions of the underlying simple curve v : (¥,j) — (M, J) and the d-fold branched cover ¢ :
(X, 5") > (X,7). Recall from §3 that for every such element u = v o ¢, there is a unique
isomorphism class of minimal regular presentations for ¢, giving rise to a regular cover

5: 65~ ()
with automorphism group G := Aut(p), where 3 is the punctured surface obtained from ¥
by removing the critical values of ¢. We can then consider the J-holomorphic curve @ :=
vop: (i],j\) — (M, J) and its normal Cauchy-Riemann operator Dév, defined as in §3.2/ on a
Sobolev space of sections of E := Nj over the punctured domain S with negative exponential
weights close to zero. Recall that its formal adjoint (Dg )* is defined on a similar Sobolev
space of sections of F' := Ho—mC(Ti, N3), but with corresponding positive exponential weights.
The notation associating to each (u = v o, J) € ZNJe; l1,...,4y) a regular covering map

¢ of potentially larger degree and corresponding J-holomorphic curve & = v o ¢ will be used
consistently in the following.

Definition 6.1. Given integers k, ¢ > 0 and an almost complex structure .J, we define the subset
MUT; by, s k) = {u e MUT; b,... 0y) dimkerDuN = k and dimcoker]juN = c}.
This gives rise to a universal moduli space

UNTe; b1yl ko) € U Tz 6y )
consisting of all pairs (u,.J) such that J € J. and w € M%(J; 41,... b k,c).

By the results of §3.0 in particular Lemma .24, the connected components of the sub-
sets MY(J; 01,..., b ; k,c) for individual values of k and ¢ are precisely the walls described
in Theorem [D] (see also Remark 2.T14)). We would thus be able to apply the standard Sard-
Smale argument toward a proof of Theorem [D]if we could show that % (T, ; £1,... b ; k,¢) C
w d(je; l1,...,0p) is a smooth Banach submanifold of the correct finite codimension on each
component. What we will actually show is that this is true for a certain open subset of
%d(je i l1,... 4y ; k,c), which suffices due to the genericity of Petri’s condition.

Definition 6.2. An element u = vope M J; ly,... Ly k,c) will be called Petri regular
if for the regular covering map ¢ and corresponding J-holomorphic curve @ = v o ¢ described
above, the operator D{ALV satisfies Petri’s condition over 4! (U). We will denote the set of Petri
regular curves by

MET 00, s k) € MUT s b, s K0,
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and define the corresponding universal moduli space
%I"?l(jtfv glr"agm; k,C) c %d(jtfv glr"agm; k,C)

to be the set of pairs (u,J) € Z4(Jz; {1, ...,4m; k,c) such that u belongs to the moduli space
ME(T 5 o s )

Remark 6.3. The condition defining M%(J; O, ..., by kyc) is clearly satisfied by any curve
u = vo for which DY satisfies the local Petri condition on v~!(2/), thus by Theorem [5.26] there
is a Baire subset in J (M, w ; U, Jgy) for which M&(J 5 b1, ... by s kyc) = MA(T ;5 bh, ..o s Ky ).

The next several results are aimed at proving that for suitable choices of the sequence &,
UH(Te; b1, ... s K, c) is a finite-codimensional Banach submanifold of Z4(J.; l1, ..., m).

Lemma 6.4. For ¢ € £ with sufficiently rapid decay, %#*(J.; l1,...,ln) carries a smooth
Banach manifold structure such that every (ug = vo o @, Jo) € #HT-; l1,.. ., bw) admits a
neighborhood V < %N Je; L1, ..., by) with a smooth family of vector bundle isomorphisms

VETM —=> v*TM, for (u=vogp,J)eV
mapping Ny, tsomorphically to N,.

Proof. For each (ug = v © @o,Jo) € %4 T.; l1,...,4n), the underlying simple curve vy :
(3,70) — (M, J) lives in the universal moduli space % *(7.) defined in Appendix [Al more
specifically in the subset

%*(je ST 7€m) c %*(\76)
of this space defined by the condition that the ith marked point should have critical order £; and
curves are immersed everywhere else. If € has sufficiently rapid decay, then % *(J.) is a smooth
Banach manifold, and % *(J:; 1, ...,4n) is an open subset of the space ?//\*(jg; b, lm) C
U *(J-), which is shown in Lemmal[A3]to be a smooth finite-codimensional submanifold of % *(7.).
In particular, we can identify an open neighborhood of the element (vg, Jo) in Z*(JTz; £1, ..., lm)
with a smooth finite-codimensional submanifold

X.co M 0)cT xBxJ.

of the zero-set of the nonlinear Cauchy-Riemann operator ¢, where 7 denotes a Teichmiiller
slice through jp in the space of complex structures on ¥, and B is a suitable Banach manifold
of mapsv:¥ —» M.

We claim that there exists a neighborhood Vy = X of (jo, v, Jo) that parametrizes a smooth
family of bundle isomorphisms viTM — v*T'M sending N,, to IN,. Note that this would be
clearly false if we did not impose the critical point constraints on v, as e.g. vg might then have
critical points while v is immersed, in which case N,, and N, would have different topological
types. Assuming N, < v*T'M is always defined as the symplectic orthogonal complement of T,
v*TM with T, := imdv away from critical points, let us recall from [WenlQ] how the latter is
defined at critical points. We have a smooth family of bundles v*T M carrying linearized Cauchy-
Riemann operators D,, whose complex-linear parts DS define a smooth family of holomorphic
structures on v*T'M. The crucial observation is then that dv € T'(Home (TX, v*TM)) is always
a holomorphic section with respect to the holomorphic bundle structures on v*T'M and T, so
choosing a smooth family of holomorphic trivializations and holomorphic coordinates near the
ith marked point, each dv is represented by some holomorphic function of the form

Do, O = g0,
where gq(,l) : D — C™ is another family of holomorphic functions which depend smoothly on
(j,v,J) € Xc but also are nonzero at 0. The main point here is that the critical orders ¢; do
not vary with v. The span of gf,l) (0) thus defines the fibers of T, near each critical point, so we
deduce smooth dependence of T, on (j,v,J) € X., and therefore also of N,.
We can parametrize a neighborhood of ¢q in ./\/lf)( Jjo) as explained in Examples and [3.8]

meaning that if © = {wy,...,w,} < X is the set of critical values of ¢p, we choose a smooth
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family of diffeomorphisms 1, : ¥ — ¥ parametrized by 7 € B?" which are holomorphic near ©
and supported on a slightly larger neighborhood of © such that 1y = Id and

BY — Y%7t (Y (w1), . .., U (wy)

is a diffeomorphism onto an open set. The neighborhood of (ug, Jy) in the space Z4(J. ; {1, ..., tm)
can now be identified with B?" x X, by associating to each (7, (j,v,J)) € B®" x X, the curve
v o (r 0 @), making Z4(J.; ¢1,...,4y) asmooth fiber bundle over % *(J.; 41, ..., lm). O

Lemma 6.5. The subset %(JTz; b1, bm; kye) € YU Tz b1y .. b s Ky ) is open.

Proof. Lemma [6.4]implies that the operators Dg and (D{ALV )* can both be understood as varying
continuously with (u,.J) € ZH(J.; £1,...,4n), and the dimensions of their kernels are locally
constant as long as (u,.J) moves only in the subset % %(J.; ¢1,...,0m; k,c). It follows that
the family of Petri maps defined on ker DY @ ker(D)* and then restricted to @ !() depends
continuously on (u, J) € ZN(J.; £1,...,4m; k,c), and since their domains are finite dimensional,
the injectivity of these maps is an open condition. O

Following Example3.8] the smooth family of operators DY parametrized by Z (7. ; {1, ..., lm)
can now be fit into the general picture from §3] of a parametrized family of bundles with Cauchy-
Riemann operators. In particular, we choose the parameter space P to be the local model of
UNTe: 0, ... y) near (ug, Jo) described in the proof of Lemma [6.4] above,

P:=B” x X. c B¥ x 07Y0) ¢ B x (T x B x J.),
and in the notation of §3] associate to each 7 = (o, (j,v, J)) € P the data
Vri=t,  jri=j, (B J;)i=(Ny,J), Dr:=DJ.
If (ug, Jo) € %N Tz 1, ... by ; k,c), then using the setup in §3.5, we now find a smooth map
(6.1) F.: B” x X. —» Homg (ker Dl%,ker(]-)g))*)
whose zero-set is a neighborhood of (ug, Jo) in Z N Tz l1,... b ; k,c).

Definition 6.6. We will say that (ug, Jo) € Z Tz ; L1, ..., lm; k,c) is e-regular if € € £ has
sufficiently rapid decay to satisfy the conclusions of Lemma and, additionally, the lineariza-
tion of the map (G1)) at (0, (jo, vo, Jo)) is surjective. Given J € J(M,w; U, Jax) and € € &, an
element w in the space M%(J; £1,...,4m ; k,c) will similarly be called e-regular if J € 7. and
(u,J) is e-regular.

In analogy with Definition [5.30}, e-regularity for an element (ug, Jo) € Z N Tz b1, b ; k, C)
just means that a neighborhood of (ug, Jy) in this space is a smooth Banach submanifold with the
“correct” finite codimension in Z (7. ; {1, ...,4m). It could be phrased alternatively as the con-
dition that (ug, Jp) is a transverse intersection of the map (u, J) — D{ALV from %4 J.; C1, ... 0m)
to the relevant space of G-equivariant Fredholm operators with the finite-codimensional sub-
manifold {T | dimker T = dimker D%\g }; expressed in this way, e-regularity is clearly an open
condition and is independent of the choices involved (except of course for the choice of ¢ € £).

Let us define the analogous condition for moduli spaces with fixed J. Note that if the sim-
ple curve vy is regular for the constrained moduli space Mg, (A, Jo; £1,...,4y) as defined in
Appendix [Al then the set

X(Jo):=={(,v,Jo) e X. | jeT, ve B} < ,'(0)
is independent of € € £ and is a smooth finite-dimensional submanifold parametrizing a neigh-
borhood of vy in Mgm(A,Jo; l1,...,m). A neighborhood of uy in MI(J; ly,...,0y) is
then parametrized by the submanifold B?" x X(Jy) © B? x X.. We will say that ug €

Mgm(A, Jo; b, ..., 0y k,c) is regular in its stratum if regularity of vy in the sense above
holds and, additionally, the restricted linearization

r dF<(0,(jo,v0,%0) . . .
Too, )(32 x X (Jo)) AU A )HomG (ker Dé\fo,ker(Dgo) )

J0,V0,%0)
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is surjective. This can also be rephrased as a transverse intersection condition in the space of
Fredholm operators, and is thus open and independent of choices (including £). Our goal is to
show that all curves satisfy this condition for generic J.

Lemma 6.7. Ifu =vo0p e M Jus,; 1,...,0n; k,c) is Petri reqular, then it is e-reqular for
all € € € with sufficiently rapid decay.

Proof. Clearly (u,Jief) € %HTz; la,--- bm; k,c) for every e € €, and we shall assume &
has sufficiently rapid decay so that % %(J.; ¢1,...,4y) is a smooth Banach manifold. By
Lemma [5.27], there is a large space of smooth perturbations Y € T J(M,w; U, Jax) that
give rise via (5.2I) to smooth l-parameter families J; := J;y € J(M,w; U, Jax) for which v
remains .J,-holomorphic, and the normal Cauchy-Riemann operator DY is perturbed in the
direction of an arbitrary smooth zeroth-order term Ay with support in v~ (/) away from the
discrete set of critical and double points of v. Such a perturbation defines a tangent vec-
tor (0,Y) € Ty, ef)?/d(jg; l1,...,0y) whenever ¢ has sufficiently rapid decay for Y to be of

T

class C.. Assuming this for the moment, the resulting perturbation to D{LAV is
DaN ~ Dév + Q*Ay,

hence differentiating F. in the direction (0,Y) produces a G-equivariant linear map L(Y) :
ker DY — ker(DX)* given by (3.24)), namely

L(Y)n = n(($*Ay)n),
in terms of the projection
7 WP =" (NL) — im(DY) @ ker(DY)* — ker(DY)*.
We claim that Y can be chosen to make L(Y') equal to any given element
¥ € Homg; (ker DY, ker(f)g)*).

Indeed, let us abbreviate £ = N, and F' = Homc (T3, N,), and let A < v~ }(if) = ¥ denote the
set of injective points of v that are not critical values of ¢ and have image in ; these form an
open and dense subset of v~ ! (). Since DY satisfies Petri’s condition over @1 (i/), Lemma [5.30

then provides for any given ¥ a section Ae I’(HomR(@*E , @*F )) with compact support in the
open and dense subset $~1(A) = 4~ (U) such that

<£a A\U>L2 = <£’ qI"7>LQ

forall £ e ker(].){iv )* and 7 € ker Dév . Note that we are free to assume the L2-product is invariant
under the action of GG via deck transformations. Then since ¥ is G-equivariant, we also have for
every g € G,

& (gMmre = (7 G Alg™ )2 = (971 ) e = (976, g7 (Um) e = (& W2,
implying that the symmetrization fTG = ﬁ >, e gﬁ also satisfies

<£’ A\Gn>L2 = <£’ qI"7>L2

for all £,7. But the G-invariance of Ag implies Ag = $*A for some A € I'(Homg (E, F))
with compact support in A, hence A = Ay for some Y € Ty _J(M,w; U, Jax), and this

proves the claim. We can now choose any finite collection of perturbations Yi,...,Yy €
T d (M,w; U, Jgx) such that the L(Y;) span Homg (ker DY, ker(D2)*), and choose € € €
so that all of them are of class C.. ]

By the implicit function theorem, the open set of e-regular elements in

%d(je; El"'wgm; k‘,C) = %d(je; El"'wgm)



TRANSVERSALITY AND SUPER-RIGIDITY FOR HOLOMORPHIC CURVES 79

is a smooth Banach submanifold whose codimension near any given element (u,J) is given by
the formula in ([8.23]), and thus matches codim(u) as specified by Definition 2111 We can then
apply the Sard-Smale theorem to the projection

%d(j6;£17"'7€m;kac)_)jtf:(u?‘])'_)‘]

and thus find a Baire subset J:°® < J. such that for all J € J-°, all e-regular elements of
MU(T; by, ... by k,c) are regular in their stratum.

To turn this into a Baire subset of J(M,w; U, Jgx) and drop the e-regularity condition, we
now apply another variation on the Taubes trick that was used in the proof of Theorem [5.26]
i.e. we exhaust the moduli space of Petri regular curves by a countable collection of compact
subsets

NEJYyc ME(T; by, .. s k), KEeN,

in order to define open and dense subsets of J(M,w ; U, Js,) whose intersection has the desired
properties. As in §2.2] let h > 0 denote the genus of d-fold branched covers of a genus g surface
as determined by the branching data b and the Riemann-Hurwitz formula. We shall again write
b = (by,...,b,) for some r > 0, where each individual b; is a tuple (b},...,b%) of natural
numbers satisfying Z?;l b} = d. Now fix a closed model surface X, of genus g along with an
ordered set of distinct points © = (z1,...,xy,) in ¥, and a continuous function Fy : ¥, — [0, )
that is positive on ¥\O and, using local complex coordinates z to identify a neighborhood of
each x; with D © C so that x; becomes 0 € D, satisfies

F,(2) = |2|% near x;, j=1...,m.
Similarly, fix a closed model surface ¥;, of genus h, an ordered set of distinct points

0 = (¢,..., ¢t ¢, ¢

in Xp,, and a continuous function Fj : 3j, — [0, 00) that is positive on X,\©" and takes the form
Fh(z)=|z|b£71 neargg, j=1,...,q;, i=1,...,7

in suitable local coordinates. We also make arbitrary choices of Riemannian metrics on X,
Y, and M so as to define the various distance functions dist( , ) and norms referred to below.
We then define N5 (J) to consist of every element in M%(J; £y,... 4y ; k,c) that admits a
representative of the form u = vo g : (X,5) — (M, J), with v : (34,7) — (M, J) simple and
v (Zh,7) = (%,7) a d-fold holomorphic branched cover, such that v is critical of order ¢; at
x; for i = 1,...,m and ¢ has branching order bZ at Cf forj=1,...,¢qsand ¢ =1,...,7, and the
following quantitative conditions are also satisfied:

(1) Domains do not degenerate: Using the compact sets of complex structures provided by
Lemma5.33] j € J7X(3,,0) and j' € TX (), 0).
(2) Bubbles do not form: sup s, |dv(z)| < K and sup.ey, |dp(2)| < K.
(3) Injective points do not disappear: There exists a point ¢ € ¥4 such that
dist(v(¢),v(2)) _ 1 1

1
|dv(Q)] = = zeggl\{(} T asc) and  dist(v(¢), M\U)

(4) Critical orders do not increase:

ol 1 e 1

e Fy(z) KM Leane Fulz) © K

(5) Images of branch points do not collide: There exist distinct points w; = ¢(¢!) = ...

©(¢) e By for i = 1,...,r such that

1
dist(w;, wj) > I forall 4,5 =1,...,r with 7 # j.
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(6) Kernels do not get larger: Writing E := N; and F := Hom¢ (TS, N; a) for the canonically
defined regular cover @ : 3 — M of v, the operator DN WkP=0(F) - Wh1p.-8(F)
satisfies

: 1
N _ k7p7_5 ~
HDa ”)‘Wk_l,p,_a > Ko klergj . In = &Elwem-s forall neWFP=I(N).

(7) Curves remain Petri regular: For the regular cover u, the Petri map II : ker Dg ®
ker(DY)* — T'(E ® F) satisfies the estimate

(O] ooy =

where $K .= {z el | dist(a(z), M\U) > 1/K} and the norm on the tensor product

ker DﬁN ®ker(DﬁN )* is defined via any norms on ker Dév and ker(]')fjv )* that vary contin-
vously with uwe MA(J; by,... b k,c).

Clearly every element of M%(J; £1,..., 4y ; k,c) belongs to some N5 (J) for K € N sufficiently
large. Now define

TEK « J(M,w; U, Ja)

via the property that J € 7 if and only if every element of A% (.J) is regular in its stratum.

We claim that J™&% is open in J(M,w; U, Jay). Indeed, suppose J, € J(M,w; U, Jay)
is a sequence converging to J € J™&X as v — oo such that for every v, there exists a curve
u, € NK(J,) that is not regular in its stratum. Given parametrizations u, = v, o ¢, with
vy (Bg,50) = (M, J,) and @, : (X4, 4,,) = (4, ju) satisfying the conditions above, conditions 1]
and 2] imply via standard elliptic regularity arguments that there are C'®-convergent subse-
quences v, — v, j, — j, v, — @ and j, — j', so that u, itself converges to the composition
of a J-holomorphic curve v : (£g4,5) — (M, J) and another d-fold holomorphic branched cover
©:(Xn,7") — (%,7). Since all conditions in the definition of N¥(.J) are closed, they are also sat-
isfied for the limit u. Condition Bl then guarantees that v has an injective point mapped into U,
conditions M and [l ensure that both v and ¢ satisfy the given constraints on critical orders and
branching data, and condition [6] implies via Lemma below that dim ker DUN = dim ker DaN,, .
It follows that w € M%(J; £y,...,0m; k,c), thus u also belongs to N5 (J) and must therefore
be regular in its stratum. Regularity must then also hold for u, with v sufficiently large, since
it is an open condition, and this is a contradiction.

The use of condition [l in the above argument depends on interpreting it in terms of the
injective map induced by Dév on the quotient of its domain by its kernel, and then feeding this
into the following functional-analytic lemma:

Lemma 6.8. Suppose X and Y are Banach spaces, T, : X — Y is a sequence of Fredholm
operators converging to a Fredholm operator T : X — Y, and there exists a constant ¢ > 0 such
that

ITrnzly = clme]x)er T,

where m, : X — X/kerT,, is the quotient projection. Then dimker T,, = dimker T for all n
sufficiently large.

Proof. One can use the same trick as in the proof of Lemma to find a sequence of Banach
space isomorphisms ®,, : X — X converging to 1 such that ker T,, ¢ ®,(ker T) for every n
sufficiently large. Then if dim ker T,, < dim ker T for all n, we can find a bounded sequence x,, €
®,, (ker T) such that the norm of m,(x,) in X /ker T, is bounded away from zero. Equivalently,

n = ®,(v,) for a bounded sequence v,, € ker T, which then has a subsequence convergent to
some v € ker T since dim ker T < o0, implying a corresponding subsequence x,, — T4 and thus
T,z, — 0. The latter contradicts the estimate in the hypothesis. O
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We claim that 7% is also dense in J (M,w; U, Jax). Since the reference structure Jyef €
J(M,w; U, Jgx) can be chosen arbitrarily, it suffices to find some ¢ € € and a sequence J,, €
Jres K guch that J, — Jye in the C.-topology. The argument used above for openness shows
that N5 (J,f) is compact, and condition [7limplies that every curve in N5 (J,f) is Petri regular,
so by Lemma[6.7] one can choose a lower bound for a finite set of choices € € £ and thus assume
that every curve in A/ K (Jyet) is e-regular. Now pick a sequence .J, € J:® with J, — J.f, and
arguing by contradiction, suppose .J,, ¢ J™&% meaning there exists a sequence u, € N5 (.J,)
such that each w, is not regular in its stratum. After passing to a subsequence, the previous
compactness argument shows that u, converges to some u € N'X(J.), implying that u, is e-
regular for all v sufficiently large. That contradicts the definition of J-°® and thus proves the
claim.

To conclude, gy J reg;K is now a Baire subset of J (M, w; U, Jgy) containing almost complex
structures J such that every Petri regular curve in MY%(J; fy,..., 4y ; k,c) is regular in its
stratum. By Theorem [5.26], we can intersect this with another Baire subset in order to assume
that every curve in M%(J; £q,...,4m ; k, c) is Petri regular. The resulting Baire subset depends
on the choices of data d, b, G, g, m, A, {1,...,¢n, k, but since there are only countably many
such choices, a further countable intersection of Baire subsets now produces a Baire subset of
almost complex structures for which the result of Theorem [D] holds. The proof of Theorem [Dlis
thus complete.

7. SUPER-RIGIDITY IN DIMENSION FOUR

We now prove the 4-dimensional case of Theorem [A] using intersection-theoretic arguments
that are essentially unrelated to the rest of the paper. Throughout this section, assume (M, J)
is an almost complex manifold with

dim M = 4.

The genus zero case is an “automatic” phenomenon, i.e. it does not require any genericity
condition except for ensuring that the index 0 simple curve is immersed:

Proposition 7.1. Every simple immersed J-holomorphic sphere v : (S?,i) — (M, J) of index 0
in an almost complex 4-manifold is super-rigid.

Proof. Assume ¢ : (X', §') — (S2,1) is a d-fold branched cover and v = voy. Since v is immersed,
the Riemann-Roch formula implies

0 = ind(v) = ind DY = x(5%) + 2¢1(NV,),

hence c1(N,) = —1. Then ¢;(N,) = c1(¢*N,) = —d, so if n € ker DY is nontrivial, its algebraic
count of zeroes is negative, violating the similarity principle. O

For the genus one case, we use a variant of the “magic trick” proposed by Hutchings [Hut] in
the context of Embedded Contact Homology.

Proposition 7.2. A simple immersed J-holomorphic torus v : (T2,j) — (M,.J) of index 0 in
an almost complex 4-manifold is super-rigid if and only if all its unbranched covers are Fredholm
reqular.

Proof. We will assume for most of the proof that v : (3, 7) — (M, J) has unspecified genus g > 1.
Since v is immersed with index 0, it is regular if and only if its normal Cauchy-Riemann operator
DY is injective, so given this and the assumption that the same holds for all unbranched covers
u = v o, we need to show that DY is also injective for u = v o ¢ where ¢ : (¥',5") — (%, )
is any holomorphic branched cover. We will prove this by induction on the degree d := deg(¢p),
thus assume it is true for all covers up to degree d — 1. Note that since ind(v) = 0, we have

(7.1) indDY = x(Z) + 2¢,(N,) = 0,

and if ¢ has branch points, then ¥’ has genus ¢’ > 1 by the Riemann-Hurwitz formula.
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By the construction in the proof of Proposition [B.Il one can endow the total space of the
normal bundle 7 : N, — 3 with an almost complex structure Jy such that Jy-holomorphic
curves uy : (S,7) = (N, Jy) correspond to sections 7 € ker Df}\f)w along holomorphic branched

covers ¥ = Touy, : (S,i) = (,5). If ker DY contains a nontrivial element 7, the inductive
hypothesis implies that the corresponding .Jy-holomorphic curve u, is somewhere injective. We
can view v itself as a Jy-holomorphic embedding into V,, and u, is homologous to its d-fold
cover, so applying the adjunction formula to both u, and v as Jy-holomorphic curves in NV,,

Uy ® Uy = 20(uy) + 1 (u;TNU) —Xx(Z") =26(uy) + d-c1(v*TN,) — x(2)
= d?(vev) =d? c;(N,) = d?-c;(v*TN,) — d* - x (%),

where §(u,) = 0 denotes the algebraic count of double points and critical points of u,. Solving
for §(uy) and plugging in (ZI) to compute ¢1(v*T'N,) = x(Z) + c1(Ny) = 3x(E) =1 — g, we
have

26(uy) (d

=d(d—1) - c1(v*TN,) — d* - x(2) + x(¥')
— d(d

-1
—1(1—g)—2d*(1—g) +2-2¢' =d(d +1)(g—1) —2(s' ~ 1)

Plugging in g = 1 and the fact that ¢’ > 1, this gives a contradiction since §(u,) cannot be
negative. O

Remark 7.3. In the spirit of §2.4] the two results above show that the story of super-rigidity
and bifurcations is simpler in dimension four. In the genus zero case bifurcations can be avoided
altogether: since having a critical point is a codimension 2 condition (see Appendix[Al), index 0
simple curves for generic 1-parameter families of almost complex structures can be assumed
immersed, and therefore super-rigid by Prop. [[.Il This is no longer true in the genus one case
since regularity of some unbranched cover might fail under a generic homotopy, producing the
birth-death or degree-doubling bifurcations in [Tau96a], but Prop. implies that this is the
only danger—the only bifurcations that can happen involve unbranched covers with ¢’ = 1 and
d € {1,2}, and they are already described in [Tau96al.

APPENDIX A. MODULI SPACES WITH PRESCRIBED ORDERS OF CRITICAL POINTS

The proposition below is well known to experts, but a proof of it is difficult to find in the
literature, so we will sketch one here.

Fix a symplectic manifold (M,w) of dimension 2n, n € N, and suppose J € J(M,w). Recall
that if (X, ) is a connected Riemann surface and u : (X,j) — (M, J) is a nonconstant J-
holomorphic curve with a critical point du(z) = 0, then the critical point is isolated and has a
well-defined positive order,

ord(du; z) € N,

characterized by the property that ord(du;z) = ¢ if z is a zero of order ¢ for the section du €
I'(Homc (T, u*TM)), where the latter is viewed as a holomorphic section with respect to a
natural holomorphic bundle structure on u*T'M determined by the linearized Cauchy-Riemann
operator, see e.g. [Wenl0l §3.3]. When (X, j) is closed, we denote the resulting algebraic count
of critical points by
Z(du) = 2 ord(du; z) =0,
{z€X | du(z)=0}

and note that it vanishes if and only if u is immersed. Given integers g,m > 0, a homology class
A € Hy(M) and a tuple of positive integers ({1, ...,4n), let

Mg,m(AaJ; 617- .. 7€m) c Mg,m(A7 J)

denote the following subset of the moduli space of unparametrized J-holomorphic curves homol-
ogous to A with genus g and m marked points: a map u : (X,75) — (M, J) with marked points
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Cis---,Gm € X representing an element of Mg . (A, J) belongs to Mg, (A, J; 41, .., 4y) if and
only if it is critical at all marked points,

ord(du; () = 4; for j=1,...,m,
and it is immersed everywhere else.

Proposition A.1. Fiz an open subset U < M with compact closure and a compatible almost
complex structure Jgy € J(M,w). There exists a Baire subset

T cJ(Mw; U, Jx)
such that for all J € J™® and all gym >0, A€ Hy(M) and (¢1,...,0y,) € N™, the open subset of

Mgm(A,J; by, ... Ly) consisting of somewhere injective curves that pass through U is a smooth
manifold with dimension equal to its virtual dimension, where

vir-dim Mg (A, J 5 1, .., 4y,) = vir-dim Mg( 2 (2nl; — 2).

Corollary A.2. For generic compatible J in any closed symplectic 2n-manifold, all closed,
connected and somewhere injective J-holomorphic curves u with m = 0 critical points satisfy
ind(u) = 2nZ(du) — 2m.

One well-known consequence of this result is that for generic J, somewhere injective index 0
curves in almost complex manifolds of dimension at least four are always immersed. Another
proof of this is given in [OZ09], though it is analytically somewhat more complicated than the
one given below.

It will suffice to prove that the same statement as in Prop. [Ad] holds for the slightly larger
moduli space .

Mgm(A, J5 b, )
characterized by the condition ord(du;(;) > ¢; for all j = 1,...,m without requiring u to be
immersed outside the marked points. Indeed, Mg (A, J; b1,...,0n) C ./(/(\gm(A, Ji by, ly)
is an open subset. We shall borrow from Zehmisch [Zeh15] the notion of holomorphic jets: given
a point p in an almost complex manifold (M, J) and an integer r > 0, a holomorphic 7-jet at
p is an equivalence class of J-holomorphic curves

u: (De, i) = (M, J)

with u(0) = p, where (D7) denotes the e-disk in C, and two curves are considered equivalent
if their partial derivatives at 0 match up to order r. The nonlinear Cauchy-Riemann equation
implies that the holomorphic r-jet represented by u is determined by the holomorphic part of
its Taylor polynomial of degree r (see [Wenal, Prop. 2.99]), and moreover, every holomorphic
Taylor polynomial of degree r is realizable as the r-jet of a local J-holomorphic curve ([Wenal,
Theorem 2.100]). Thus the space of all holomorphic r-jets at p is a real 2rn-dimensional vector
space, and the union of these spaces for all p € M forms a smooth manifold
Jet”y (M)

of real dimension 2n(r + 1).

We shall analyze the local structure of ./\//\lg,m(A, J by, ..., L) following a minor modification
of the scheme outlined in [Wenal Chapter 4]. For simplicity, we shall assume in this exposition
that 2g +m > 3, so that we only need to deal with stable marked Riemann surfaces. (For the
finitely many non-stable cases, see Remark [A.5l) Given (X, jo, ©,ug) representing an element
of ./\//\lg,m(A, Ji by, ..., 0y), with marked points © := ((1,...,(n), choose a Teichmiiller slice
through jo: this means a smooth (6g — 6 + 2m)-dimensional family 7 of complex structures on
Y. that includes jo and parametrizes a neighborhood of [j] in the Teichmiiller space of complex
structures modulo diffeomorphisms that are homotopic to the identity and fix ©. The tangent
space T}, 7T is also required to define a closed complement of the image of the canonical Cauchy-
Riemann operator on T'Y restricted to the space of vector fields vanishing at ©, cf. [Wenal,
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Definition 4.29]. Moreover, we can arrange for 7 to have the following two properties (cf. [Wen10,
Lemmas 3.3 and 3.4]):
e 7 is invariant under the action of the group Aut(X,jy,©) of biholomorphic maps on
(X%, jo) fixing ©;
e There exists a neighborhood of © on which every j € T matches jo.
Now let r := max{¢,..., ¢y}, and choose any k € N and p € (1, 0) such that

(A1) (k—r)p>2,
so the Sobolev embedding theorem implies that functions of class W*P on ¥ are also in C”. We
define the Banach manifold
B := WkP(s, M)
and smooth Banach space bundle £ — T x B with fibers
E(j,u) = Wkin (HOII]((:((TE,]), (U*TM’ J))),

so that
0j:TxB—>E:(j,u)y»Tu+JoTuoj

defines a smooth section. We say that (X, jg, ©,u¢) is Fredholm regular if the linearization
Dé](j@a U(]) : T]OT@ Wk,p(uacTM) - Wkin (HOHI((:((TZ,jo), (USTM’ J)))

of this section at (jo,uo) is surjective, in which case a neighborhood of (jo,ug) in ;(0) is a
smooth finite-dimensional manifold, and its quotient by the natural action of Aut(X, jo, ©) can
be identified naturally with a neighborhood of [(%, jo, ©,ug)] in Mg, (A, J). To incorporate the
critical point condition, fix holomorphic coordinates identifying a neighborhood of each marked
point (; with the standard unit disk (ID,7); note that this can be done for all j € T at once since
they are assumed to match jy near ©. Then since B has a continuous inclusion into C” (3, M),
there is a well-defined and smoothH] jet evaluation map

ev : 5;1(0) — Jetf}l(M) X ... % Jetf}m(M),
whose ith factor for i = 1,...,m is the holomorphic ¢;-jet represented by u in its parametrization
by (D,7) at {;. We will say that (3, jo, ©,up) is regular for the constrained moduli space
./(/l\g,m (A, J; ly,... by if it is Fredholm regular and the jet evaluation map is transverse to the
submanifold
Z < Jet'} (M) x ... x Jet' (M)

consisting of m-tuples of jets of constant maps. Note that this condition does not depend on the
chosen holomorphic coordinates near the marked points, as it is equivalent to the condition that
u should have vanishing derivatives up to order ¢; at (; for each ¢ = 1,...,m. Whenever the
regularity condition is satisfied, ev1(Z) < 5;1 (0) inherits the structure of a smooth submanifold

with real codimension 2n ), ¢;, so ./(/(\gm(A, J; 4y, ..., 0y) in general becomes an orbifold near
[(%, jo, ©,up)], with

dim My (A,J; €1, L) = dim M (A, ) 2n2£

= dim My(A, J) 4+ 2m — QnZEi
= dim M ( Z (2nl; —2).

HThe smoothness of ev is clear because it is the restriction to 071(0) of a map B — Jet’t (M) x ... x Jet’r (M)
which in the natural Banach manifold charts provided by [EII67] looks like a linear map evaluating derivatives of
functions at the fixed points ® c X. This works because we are choosing to represent elements of Mg m (A, J)
by maps with marked points at fixed positions; of course there is no actual constraint on the movement of the
marked points, but this freedom is seen in our setup by varying j in 7 instead of varying the points (i, ..., (m.
This is a notable difference from the setup in [OZ09].
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To prove that the constrained regularity condition can be achieved generically, fix J.t €
J(M,w; U, Jgx) and a suitable sequence of positive numbers ¢, — 0, and consider a Banach
manifold 7; of almost complex structures in J (M,w; U, Jsy) that are C.-close to Jier (cf. §5.4)).
This gives rise to two universal moduli spaces,

U*(J:) ={(u,J) | Je T. and u € M (A D)}

and
D (T by ) = {(u,J) | JeJ. and ue M2, (A, J; el,...,em)},
where we abbreviate by
Mg (A, J) € Mg (A, J),

ME (AT 0 ) © Myn(A T 5 6 )
the subspaces defined via the condition that u be somewhere injective and pass through U. As
is well known, % *(J-) is a separable and metrizable smooth Banach manifold if €, converges to
0 fast enough, and for [(%, jo,©,uo)] € M5 (4, Jy), a neighborhood of (ug, Jo) in % *(J:) can
be identified with the zero-set of a smooth section

0:T xBxJ.—E:(j,u,J) v os(u),
where £ now denotes the Banach space bundle with fibers
E(ugy = WETHP (Home (TS, ), (u*T M, J))).

The tangent space T(y,,1,)% *(J:) is the kernel of the surjective operator

L := Dd(jo, w0, Jo) : Tjo T ® WHP(uTM) ® Ty, J- — WELP(Home (TS, uf TM))
(y,n,Y) = JooTugoy + Dyyn +Y o Tug o jo,

where D, is the linearized Cauchy-Riemann operator associated to ug : (X, jo) — (M, Jy). We
can again define the smooth jet evaluation map

(A.2) ev:01(0) —» Jetf}1 (M) x ...x Jetf}m (M)

and identify a neighborhood of (ug, Jy) in @\"‘(‘78 01, ..., 0y) with ev 1(Z). The main technical
ingredient behind Proposition [A.T]is now the following.

Lemma A.3. Ife, — 0 fast enough, then the jet evaluation map ([A2) is a submersion.

Proof. We need to show that for any X € Tev(uo)(Jetf}l (M) x ... x Jetf}m (M)), there exists an
element (y,n,Y) € ker L with
dev(ug)n = X.

Let us first observe that this problem can be solved locally near the marked points: in fact,
there exists a smooth section n € I'(u§T M) with

Dy,n=0mnear ®© and dev(ug)n=X.

This follows from the local existence theorem for J-holomorphic curves with prescribed holo-
morphic derivatives at a point, cf. [Wenal Theorem 2.100]. More precisely, choose a smooth path
vY=(,-yYm) : (—0,9) — Jetf}l (M) x...x Jetf}m(M) with v(0) = ev(up) and §(0) = X. Then
the local existence theorem provides for each ¢ = 1,...,m a smooth family of J-holomorphic

curves ug) : D. — M defined on sufficiently small disks D. < C such that the holomorphic #;-jet

()

represented by u;’ is v;(7) for each 7. The desired section n € I'(u§T M) can now be constructed

by writing it in our chosen holomorphic coordinates near each marked point (; as 8Tu§i) |r—o and
then extending it arbitrarily outside these neighborhoods.
Given 7 as above, we aim now to find a pair (£,Y) € W*P(udTM) ® Tj,J- such that

L(0,7+&Y)=L(0,{,Y)+Dyn=0 and dev(ug)§ =0,
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in which case (0,7 +&,Y) € Ty, 10)% *(J:) and dev(uo, Jo)(0,n7 +§,Y) = X. We will use
the weighted Sobolev spaces described in §3.21 Let 3 = ¥\O, and assume without loss of
generality that uy'(U) c X is disjoint from ©; this can be achieved at the cost of shrinking U
and therefore the space of perturbations J.. As a consequence, Y o Tug o jo now has compact
support in ¥ for any Y € T';,J.. Using the fixed holomorphic coordinates on neighborhoods of
marked points ¢; € ©, we can identify them biholomorphically with half-cylinders [0,00) x S*
and fix trivializations of ujTW on these neighborhoods to define weighted Sobolev norms and
a bounded linear map

D, : WP (udTM|s) — W 120 (Home (TS, ud TM)|s,),

where sections 7 of class W*P9 are required to satisfy e®*n e W*P([0,0) x S') when expressed
in the chosen trivialization and holomorphic coordinates (s,t) € [0,00) x S* on each cylindrical
end near ©. As explained in §3.2] Duo is asymptotic to the trivial asymptotic operator at each
puncture and is thus Fredholm for any § € R\27Z. We claim that whenever this condition is
satisfied, the linear map

Ls : WEPS(uTM|y) @ Ty Je — W12 (Home (TS, uf TM)|3,)
(§,Y) = Dyyé +Y 0 Tug 0 jy

is surjective. The proof is more or less standard: we start with the case £k = 1 and note that
since ]qu is Fredholm, L has closed range, so it is not surjective if and only if there exists a
nontrivial section A € (LP°)* = L%~ for 1/p + 1/q = 1 which is L?-orthogonal to the images of
both n — ]qun and Y — Y oTugojy. Since ug has an injective point zg € Y with u(zp) €U, the
latter implies that A vanishes near zp; this depends on €, converging to 0 fast enough for 7'y, J:
to contain an abundance of bump functions with arbitrarily small support. The former implies
in turn that X\ is a weak solution to the formal adjoint equation DZOA = 0 and is therefore
smooth with isolated zeroes, giving a contradiction. The case of general k£ € N follows from this
via elliptic regularity, namely Lemma 3171

With this claim in place, we observe that —D,,,n vanishes near © and thus restricts to S as
a section of class W*=1P9 for any § > 0, thus we can find £ € WHPO(uTM|s.) and Y € T, T
such that

L(0,£,Y)=—-D,n on X.

Since Y has compact support in 3 and D,,n = 0 near O, this equation implies D, & = 0 near O.
The continuous inclusion W9 < CO implies that ¢ also has a continuous extension over ¥
that vanishes on ©; moreover, since (Al implies a continuous inclusion W*P — C1, ¢ has
a bounded first derivative on the cylindrical ends, implying via a short computation that for
1 < g < 2, the L%-norm of its derivative on punctured disk-like neighborhoods of © is finite. It
follows that the extension of & over the punctures is in W14 on ¥, and elliptic regularity then
implies that it is smooth everywhere. Finally, the exponential weight condition implies that in
each holomorphic coordinate system identifying the neighborhood of a marked point (; € © with
D such that (; is at the origin, we have

€(2)] < el

for some constant ¢ > 0. But the choice of § > 0 in this discussion was arbitrary, so choosing it
large enough, we can arrange for £ to have vanishing derivatives of arbitrarily large finite order
at ©, proving dev(ug)¢ = 0. O

The lemma implies that U* (Jz; b1, ...,0n) is a separable and metrizable smooth Banach
manifold, so we can now apply the Sard-Smale theorem to the projection

@\*(je;ﬂl,...,ém)—)jez(u,J)l—)J,

giving a Baire subset of 7 for which ./(/l\;,m (A, J; 4q,...,0p) is a manifold of the correct dimen-
sion, and the countable intersection of these subsets for all g, m, A and (¢1,...,4,,) is again
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comeager in 7., proving that there is a C®-dense subset of J(M,w ; U, Jgx) for which the state-
ment of the theorem holds. To turn this into a Baire subset of J(M,w ; U, Jsy), one can use the
standard Taubes trick (see e.g. [Wenal §4.4.2]): present /(/l\;m(A, J; ..., 0p) as a countable
union of compact subsets, and associate to each one a set of regular almost complex struc-
tures, which is open by construction and dense due to the argument above, so its intersection is
comeager.

Remark A.4. Lemma [A.3] implies that for generic .J, the jet evaluation map can be made
transverse to any given submanifold, hence this method can be used to understand any moduli
space of holomorphic curves with marked points satisfying conditions on their derivatives, e.g. the
incidence/tangency conditions studied by Cieliebak-Mohnke [CMO7,/CMI8] or McDuff-Siegel
[MS].

Remark A.5. The assumption 2g + m > 3 misses only four special cases, and for these the
discussion above is modified as follows:

(1) The automorphism group Aut(X, jo, ©) is not finite, but is instead a nontrivial Lie group;
(2) The usual formula dim 7 = 6g — 6+ 2m for the dimension of Teichmiiller space is wrong.

In fact, these two differences cancel each other out in the sense that
dim 7 — dim Aut(X, jo, ©) = 6g — 6 + 2m,

which is why the stated formulas for the virtual dimensions of the moduli spaces Mgy (A, J)
and Mg, (A, J; lq,...,¢y) remain correct in these non-stable cases. In the cases with genus
zero, Teichmiiller space is trivial and there is thus no need to include a Teichmiiller slice in the
argument; the only difference is then the fact that dividing 3;1(0) by Aut(X, jo, ©) changes its
dimension. There is no need to discuss the non-stable genus one case here since that case also
has m = 0, and thus does not involve critical point constraints.

APPENDIX B. SUPER-RIGID CURVES ARE ISOLATED

In this appendix we prove the following precise version of the statement that the multiple
covers of a super-rigid curve form an open and closed subset of the ambient moduli space.

Proposition B.1. Suppose (M, Jy) is a sequence of almost complex manifolds with J, — Joo
in C® on some compact subset containing a super-rigid Jo-holomorphic curve ugy : (2, joo) —
(M, Jy). Then for sufficiently large k, there exists a sequence of Ji-holomorphic curves uy :
(3, 7k) = (M, Jy) with ji — jo and ur — uyg in C®, and if vy is any sequence of smooth
closed Ji-holomorphic curves Gromouv-convergent to a stable nodal Jy-holomorphic curve with
image contained in ux(X), then for all k sufficiently large, every vy is either a biholomorphic
reparametrization or a multiple cover of uy.

Note that this statement belongs to the almost complex category and makes no reference to
any symplectic structure. Other than that detail, a nearly identical statement has been proved
before by Zinger, see [Zinlll Prop. 3.2]. The proof given below is essentially the same and is
included mainly for the sake of completeness; it just requires the extra step of introducing an
auxiliary symplectic structure in order to use Gromov’s compactness theorem. Recall from §2.71
that if u e My(A,J) and d > 1 and h > 0 are integers, we denote by

My, (d;u) © My (dA, J)

the moduli space of all stable nodal d-fold covers of v with arithmetic genus h.

Suppose Ji — Jo is a C®-convergent sequence of almost complex structures on a manifold
M, and [(E, jo, uxw)] € My(A, Jp) is a super-rigid curve. Then uy is Fredholm regular with
index 0, so the implicit function theorem implies the existence of curves uy : (X, jx) — (M, J)
for sufficiently large k such that jr — joo and up — us in C%; these curves are unique up
to biholomorphic reparametrization, and are also simple and immersed for sufficiently large k.
Assume v € Mp(dA, Ji) is a sequence of Ji-holomorphic curves converging to a nodal cover
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U € /Wh(d; Uy ) for some d > 0. We will show that if the curves vy are not covers of wuy for all
sufficiently large k, then rescaling the normal fibers near uy as k — o0 gives rise to a nontrivial
section in the kernel of the normal Cauchy-Riemann operator on some cover of u,, contradicting
super-rigidity.

Choose a convergent sequence of Jp-invariant Riemannian metrics and corresponding Levi-
Civita connections V¥. Since the maps wj are immersed, we can define Ji-invariant normal
bundles N,, — X as the orthogonal complements of im dug. These are all isomorphic as real
vector bundles, so we can identify them all with the real bundle N := N,,, < uiTM carrying
a sequence of complex structures

(N7 Jk) 5 (E7Jk)7
and then use the sequence of exponential maps determined by V* to define a C'*®-convergent
sequence of immersions

U NXE) > M
of some fixed neighborhood N (X) © N of the zero section ¥ ¢ N onto some neighborhood of
ug(X), such that Ui|y, = ug. Let fk = WiJy for k = 1,2,3,...,00, so that for k sufficiently
large, the curves v can be identified with jk—holomorphic curves in the total space of N, and
each wy, is identified with the zero section. R

Let my : uXTM — N denote the normal projection, so that V := my o V¥ induces a
connection on N — ¥ (as a real vector bundle), and thus defines a splitting into horizontal and
vertical subbundles

TN=HN®VN.

This splitting is invariant under the diffeomorphisms on N defined by real scalar multiplication.
For z € ¥ and n € N,, the fibers in the splitting admit canonical identifications

HepN =T%, V)N =N,

and we can write jk with respect to the splitting as
> Oék;(Z,?]) /Bki(zan))
Jr(z,n) = ,
k() (%(z,n) (2,1)

for some smoothly varying linear maps ay(z,n) : T.X — T.%, Bx(z,n) : N, — T,% and so forth.
Since uy, : (X, jx) — (M, Ji) is Jr-holomorphic and the fibers of N, are Jy-invariant along wuy,
we have

ar(2,0) = je(2), Ok(2,0) = Jp(ur(2)), Br(2,0) =0, 7x(2,0)=0.

Now for any constant r > 0, the diffeomorphism
®,.: N —> N:(z,n)— (2,rn)

transforms jk to
o) e ati L (ST rﬁk<z,m>>7
k(z 77) r k|( ) (%,yk(z7m7) 5k(Z,T77)

so given any positive sequence r, — 0, the sequence J,:’“ converges in C® on compact subsets of
N to

L joo (2) 0
(B.1) i%(z,n) T (d'yio(z,())n Joo(uoo(z))) .

Lemma B.2. A neighborhood of ¥ in N admits a symplectic form w that tames Jo

00

Proof. We use a variation on Thurston’s method for constructing symplectic forms on fibrations
(cf. [MS17, Theorem 6.1.4]). For any open subset & < X, let A(U) denote the space of smooth
1-forms A on 7! () satisfying the following conditions:

(i) At any point (z,0) € i = N|y in the zero section,
)\|(z70) =0 and d)\|TZE><NZ = 0;
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(ii) The restriction of d\ to fibers in 71 (/) defines a symplectic vector bundle structure on
Ny taming Jo,.
We observe that A(U/) is nonempty whenever there exists a complex trivialization of (N, Jy)
over U, and moreover, it is C®-convex in the sense that if A\g, \; € A(U), then

(Yom)A + (L —yom)Arg € A(UU)
for every smooth function ¢ : U — [0, 1]. It follows that an element of A(X) can be constructed
by patching together local constructions via a partition of unity.
Now given A € A(X), choose an area form o on ¥ taming j,. Then for a sufficiently large
constant K > 0,
w:= Kr*o + d\
is a closed 2-form that tames ﬁo)o at X and hence also in a neighborhood of . g

Remark B.3. The above proof did not use any special properties of jgo except that the zero
section is pseudoholomorphic and the normal fibers along the zero section are also complex. The
same argument shows that for any embedded closed J-holomorphic curve in any almost complex
manifold (M, J), a neighborhood of the curve admits a symplectic form that tames J.

Lemma B.4. Suppose ¥ : Y — Y is a smooth map, j s a complex structure on i and
E e T(Y*N) is a smooth section along 1. Then the map z — &£(z) from S into the total space
of N is a pseudoholomorphic map (%,) — (N,j;oo) if and only if ¥ : (X,7) > (5, jw) is
holomorphic and & € ker Divmow.

Proof. Denote by v : ¥ — N the smooth map into the total space of N defined by v(z) :=

£(z) € Ny(;) © N. Then using (BI)), the equation Tv 4+ Jg, o Tvo j = 0 translates into the two
equations

d)(2) + Joo(¥(2)) 0 dip(z) © j(2) = 0,
and R R
Vn(2) + Joo (e (¥(2))) © V(2) © ] + [dyeo (¥(2), 0)n(2)] dip(2) 0 ] = 0
for = € ¥. The first equation says that v : (i,j) — (X%, jw) is holomorphic, and under this
assumption, the second matches Di\fx‘own = 0 after observing

[dyeo (¥, 0)n] o dip o ] = v © (Vi Joo) © Tuew 0 9h) 0 J.
g

We now prove Proposition [B.1] as follows. Arguing by contradiction, assume after taking a
subsequence that the curves vy : (2,7:) — (M, Jy,) are not covers of uy for any k as k — .
Choose a symplectic form w near the zero section in N = N, as given by Lemma [B.2] and
choose & > 0 such that w tames J2, on {n € N | |n| < 26}. Writing v(z) = &(¢(2)) for
sequences 1y, : > — ¥ and & e T(YfN), we have

1
T = —max |{(2)] > 0
5 ZEY

and r; — 0 by assumption. Then
W 1= (b;kl SEC (iuik) - (N7 J]:k)
is a sequence of smooth pseudoholomorphic curves in a compact subset of the neighborhood
{n e N | |n| <26}, which can be written as wg(z) = ng(¢¥x(z)) where n = ifk satisfies
(B.2) mas [1e(2)] = .
zZEX

Note that since vy converges to a nodal curve in Mh(d; Uy ), We can also assume the maps

Y > — ¥ have fixed degree d. Then since f,:’“ - jgo and the latter is tamed by w in the region
under consideration, Gromov compactness applies to wy and yields a subsequence convergent
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to a stable nodal curve wy € My, (d[%], j?o) By Lemma [B.4] each smooth component w of we,
has the form w(z) = n((z)) where ¥ : (£,7) = (2, jx) is holomorphic and Div‘/‘own =0. We
claim there must be at least one such component for which deg(¢) > 0 and 1 # 0. Indeed, (B.2)
implies that there is at least one component with 1 # 0. If every such component also satisfies
deg(1)) = 0, then 7 is a nonzero constant on this component, as the normal operator D{Xﬁow
is simply the standard Cauchy-Riemann operator on a trivial bundle when ¢ is constant. But
since deg(¢;) = d > 0, any component with deg(y)) = 0 is necessarily connected by a chain of
nodes to another component with deg(¢)) > 0, and on this component, 7 is nonzero at the nodal
point. This implies the existence of a nontrivial element 7 € ker Duwa for some positive degree
holomorphic cover v, and thus violates super-rigidity. The proof of Proposition [B.1lis complete.

APPENDIX C. THE SARD-SMALE THEOREM FOR C®-SUBVARIETIES

The proof of Petri’s condition in §5] requires a version of the Sard-Smale theorem for objects
that are not Banach manifolds but are almost as nice in some analytically quantifiable sense.
The results in this appendix are easy consequences of standard results in the analysis of smooth
Banach manifolds, but expresed in a slightly more general framework.

Suppose X is a smooth Banach manifold and Y < X is a subset. Given k € N, we will say
that Y is a C®-subvariety of codimension at least k if for every = € Y, there exists a
neighborhood U © X of x, a finite-dimensional vector space V and a smooth map f: U —» V
such that:

(1) Y nUd = f10);
(2) rankdf(x) > k.

Proposition C.1. IfY c X is a C®-subvariety of codimension at least k, then for every x € Y,
there exists a smooth Banach submanifold Y < X of codimension k such that a neighborhood of
z Y s contained in'Y .

Proof. Given z € Y, we have Y n U4 = f~%(0) for some open neighborhood = € Y = X and
smooth map f : U — V, with V a finite-dimensional vector space and dimimdf(z) > k. Then
we can choose a linear map A : V — R¥ whose restriction to imdf (z)  V is surjective onto R¥,
hence Aodf (z) : Ty X — R¥ is surjective. Define ¥ < X to be a neighborhood of 2 in (Ao f)~1(0).
The implicit function theorem implies that this is a Banach submanifold of codimension & if the
neighborhood is taken sufficiently small. O

The discussion so far makes sense under a very unrestrictive definition of the term “Banach
manifold,” e.g. in [Lan99], such objects need not even be Hausdorff. In practice, of course,
the Banach manifolds one encounters in applications are typically at least metrizable (hence
Hausdorff and paracompact) and separable. The latter is the condition required for the Sard-
Smale theorem [Sma65]. We will need the following standard bit of general topology:

Lemma C.2. If X is a paracompact and separable topological space, then every open cover of
X has a countable subcover. ]

The following is the main result of this appendix. The proof of Theorem [5.9 uses the special
case in which all manifolds are finite dimensional, so the Fredholm assumption is automatic and
only the finite-dimensional version of Sard’s theorem is needed. The infinite-dimensional version
with the Sard-Smale theorem is required for the proof of Theorem

Proposition C.3. Assume % and Z are separable and metrizable smooth Banach manifolds,
w U — Z is a smooth Fredholm map, and X < % is a C*®-subvariety of codimension at
least k € N. For each z € Z, denote

M(z) =77 2) c %, X(z) ==X n M(z) c M(z),

and let Z;® < Z denote the Baire subset consisting of reqular values of m. Then there exists
a further Baire subset Z\® < Z such that for all z € Zz™® n Z®, X (z) is a C®-subvariety of
codimension at least k in M(z).
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Proof. Suppose x € X, so by assumption, there exists a neighborhood
T €U U,

a finite-dimensional vector space V,, and a smooth map f, : %, — V, such that f~ 1(0) = XU,
and rank df,(x) > k. After possibly shrinking %, to a smaller neighborhood of z, we can use the
argument in the proof of Proposition to find a linear map A, : V, — R¥ such that 0 € R” is
a regular value of Ag o f, : % — RF and

Uy = (Ayo f2) 1 (0) c %

is a smooth Banach submanifold of codimension &k containing X n %,.

Since % is metrizable and separable, X also has both of these properties, thus Lemma
implies that we can find a sequence {z,},°_; of points in X such that every z € X lies in at least
one of the neighborhoods %;,,. Let Z,™® = Z denote the set of regular values of the projection

~ .
Uy, — Z,

The latter is a smooth Fredholm map since @;n is a smooth finite-codimensional submanifold
of % . The Sard-Smale theorem thus implies that Z;® — Z is a Baire subset, and consequently,

o0
ZE =25z

n=1

is also a Baire subset.
Now for any z € Z\® n Zz™® and = € X(z), pick n € N such that « € %,,, and consider the
restricted map
Gn : M(2) N Uy, > Vi, x> [, (2),

whose zero-set is a neighborhood of z in X (z). Regularity and the implicit function theorem

imply that @\;n c % and M(z) € % are transverse submanifolds, so that 0 is also a regular
value of A, 0 g, : M(2) N %, — R¥. It follows that A, odg,(z) : Tz M(z) — R¥ is surjective,
and thus rank dg, (x) > k. O

The results of this discussion combine to yield the following useful consequence:

Corollary C.4. In the setting of Proposition [C.3, if the smooth Fredholm map @ : U — Z
satisfies inddm(x) < k for all x € %, then X(z) is empty for generic z € Z. O

APPENDIX D. HISTORY OF ERRORS

This appendix has been added (at the suggestion of an anonymous referee) in the interest of
transparency: its purpose is to clarify more precisely what went wrong with previous attempts
to prove Theorem [A] and how those attempts are related to the proof in this paper. There were
at least two claims of proofs of super-rigidity that were publicized and then withdrawn before
I ever started thinking about the problem, but since it is not my place to comment on those, I
will only discuss the attempts that I have been involved in.

D.1. Analytic perturbation theory. The original version of [GW17] was a preprint under a
different title [GW], which claimed a proof of Theorem [Al (also in dimension four) for embedded
index 0 curves that are fully contained in the perturbation domain &/ < M. The ideas behind
that argument were almost totally disjoint from those of the present paper, excepting the super-
ficial feature that both derive originally from (separate) ideas developed in Taubes’s work on the
Gromov invariant. The literature on the Gromov invariant contains two quite different methods
to prove transversality for the doubly covered tori that must be counted: one (from [Tau96al)
is based on a splitting of Cauchy-Riemann type operators with respect to irreducible represen-
tations, and gives rise to dimension-counting arguments that provided the original inspiration
for this paper. The other, from [Tau96bl, Proof of Prop. 7.1, Step 7], is in some respects more
novel: it is based on a Weitzenbock formula for Cauchy-Riemann type operators and analytic
perturbation theory. In the setting of [Tau96b], where one needs to prove that a Zs-equivariant
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index 0 Cauchy-Riemann type operator D : I'(E) — I'(F) on a trivial line bundle E — T? can
always be perturbed equivariantly to one that is invertible, these two ingredients combine in the
following way:

(1) The Weitzenbock formula implies that for any complex-antilinear bundle isomorphism
A: E — F, the deformed operator D, := D 4 7A is invertible for all 7 > 0.

(2) Since the deformed operators D, depend analytically on the parameter 7 € R, analytic
perturbation theory as in [Kat95] implies that the set { € R | D is not invertible} is ei-
ther R or is discrete. The first possibility has already been ruled out via the Weitzenbock
formula, so it follows that D, is invertible for all 7 # 0 in some neighborhood of 0.

This technique has the appealing feature that it does not care how symmetric the perturbation
term A € I'(Homg(E, F)) is, thus it can work equally well for simple holomorphic curves and
multiple covers. The preprint [GW] was motivated by the insight that both parts of the argument
can be made to work somewhat more generally: the operator D can have negative index if we
talk about injectivity of D, instead of invertibility, and E can also be a higher-rank bundle if A
is required to satisfy an extra condition which, for topological reasons, can be assumed without
loss of generality. Applying the argument to normal Cauchy-Riemann operators of branched
covers then produces the following result:

Lemma D.1 ([GWIT]). Suppose dim M >4, J € J(M,w; U, Jax), v : (X,7) = (M, J) is an
embedded closed J-holomorphic curve of index 0 with image contained in U, and u = vop where
: (i,j) — (3,7) is a holomorphic branched cover of degree d € N between closed connected
Riemann surfaces. Then there exists a smooth 1-parameter family {J; € J(M,w; U, Jix) }re(—c,e)
such that Jo = J, v and u are J--holomorphic for every T, and the resulting normal Cauchy-
Riemann operators D{XT for w with respect to J; are injective for all T # 0. O

A proof of generic super-rigidity would follow via relatively straightforward topological argu-
ments if one instead had the following stronger statement{?

Lemma(?) D.2. In the setting of Lemmal[D1, the family of almost complex structures {J, €

J(M,w; U, Jix)}re(—e,e) can be chosen so that for some neighborhood O(p) of ¢ in the moduli
N

vop! T are

space of d-fold holomorphic branched covers, the normal Cauchy-Riemann operators D
injective for all T # 0 and ¢’ € O(p).

Unfortunately, Lemma [D.I] does not imply Lemma [D.2] as analytic perturbation theory gives
no obvious way to control the size of the range of parameter values 7 € (—¢,€)\{0} for which
injectivity is guaranteed as ¢ varies in the moduli space of branched covers. This detail was
overlooked in [GWI]; the crucial gap in our argument was pointed out by Ionel and Parker.
What can still be salvaged from Lemma [D.I] and eventually appeared as the main result of the
published paper [GW17], is a result similar to Theorem [Bl about transversality for unbranched
covers: in the unbranched case there is no distinction between Lemmas [D.1] and because
the moduli space that ¢ lives in is discrete.

I currently believe the proof of Theorem [A] originally attempted in [GW] to be unsalvageable.
There are also strong philosophical arguments for preferring the approach of the present paper
over analytic perturbation theory: notably, the use of the Weitzenbock formula requires a more
global class of perturbations (u must be contained in the perturbation domain & < M rather
than merely intersecting it), and the whole strategy seems completely unsuitable for studying
the wall-crossing phenomena mentioned in §2.41 On the other hand, the Weitzenbock argument
(minus analytic perturbation theory) has been usefully exploited by other authors in certain
special settings where geometric information removes the need to assume 7 » 0; see [LPO7.IP18].

127pe question mark in the statement indicates that I do not know whether Lemma [D.2] is true, and I do not
have a strong enough opinion about it to call it a conjecture.
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D.2. Earlier versions of the present paper. The main ideas behind the proofs of Theo-
rems [AHD] have changed very little since the first version of this paper appeared on the arXiv,
but one important technical detail has changed a lot: the proof that generic Cauchy-Riemann
type operators satisfy Petri’s condition["] The intuition from the beginning had been that Petri’s
condition was the main analytical lemma needed for the proof of Theorem [D] (on which Theo-
rems[AHClall depend), and that it should hold due to unique continuation except for some special
class of non-generic Cauchy-Riemann type operators. Up to version 3 on the arXiv [Wenc], a
much more naive approach to this lemma was taken, in which the word “generic” was given a
precise characterization:

(False) Lemma D.3 ([Wenc| Corollary 5.2 and Lemma 3.11]). Suppose E, F — ¥ are complex
vector bundles and D : T'(E) — T'(F) is a Cauchy-Riemann type operator such that the bundle
map D%! € I'(Homc(E, F)) given by the complez-antilinear part of D defines an invertible map
E, — F, at some point z € X.. Then D satisfies Petri’s condition to infinite order at z.

It is relatively easy to show (see [Wenc, Lemma 6.2]) that the hypothesis on invertibility of
complex-antilinear parts is generic, i.e. all normal Cauchy-Riemann operators of J-holomorphic
curves satisfy it for generic (and necessarily non-integrable) J. The benefit of this condition is
that it forces ker D < T'(F) and ker D* < T'(F) to be totally real subspaces, meaning that any
real-linearly independent set of vectors in one of these spaces is also complex-linearly indepen-
dent. The original reason to believe in Lemma [D.3] was the elementary observation mentioned
in Example that for complex-linear Cauchy-Riemann type operators, which can always be
expressed locally as the standard one, the complex version of Petri’s condition (involving com-
plex tensor products) does hold to infinite order at every point; a proof of this may be found
on page 48 of [Wenc|. Lemma [D.3] was thus an attempt to fit real-linear Cauchy-Riemann type
operators into a complex-linear context with the aid of the totally real hypothesis. The proof
was destroyed by a careless mistake in linear algebra: Equations (5.3) and (5.4) in [Wenc| define
certain functions 7}, and 5;; that are meant to be in ker D and ker D* respectively because they
are linear combinations of functions in those spaces, but in fact, the coefficients in those linear
combinations are complex rather than real, while D and D* are only real-linear. Similarly,
the claim in the final paragraph of that proof that certain linear combinations »;, cJ¢; and
>, j ¢t n; satisfy linear Cauchy-Riemann or anti-Cauchy-Riemann equations does not hold, again
because the coefficients ¢/ are complex instead of real. These errors were noticed by Doan and
Walpuski while working on their own alternative exposition of the super-rigidity proof [DWDh].
Example B.7] was found later, showing that Lemma [D.3] is in fact false.

After Lemma[D.3|fell apart, the intuition remained that the failure of the local Petri condition
for a Cauchy-Riemann type operator should be overdetermined in some sense, and the jet space
approach in the current §5 was then developed to make this intuition precise. Lemma [D.3]
has now been replaced by Corollary 510, whose proof is completely different from what was
attempted in [Wenc|, and has an additional advantage over the earlier approach in that the jet
space formalism can potentially be applied to more general classes of operators beyond Cauchy-
Riemann (§5.2] has been written with this in mind). A more detailed informal discussion of the
fix may be found in the blog post [Wend].

For completeness, I should mention a somewhat serious but non-fatal error that was also
pointed out by Doan and Walpuski but corrected between arXiv versions 2 and 3 of this paper.
The definition of the walls appearing in Theorem [D] was slightly wrong in earlier versions,
because it was overlooked that in the splitting of the normal Cauchy-Riemann operator DL
into summands Duj\f p, corresponding to irreducible representations 6;, the kernels and cokernels
of these summands are always modules over the equivariant endomorphism algebra (R, C or

13The term “Petri’s condition” did not appear in the first three versions of this paper on the arXiv, but the
same notion was there under the label of “unique continuation for tensor products” and has sometimes also been
advertised as “quadratic unique continuation”. The current terminology was introduced by Doan and Walpuski
[DWD] after the first version of this paper appeared.
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H) of 8;, and this structure must be respected in talking about their dimensions. The result
was a mistake in [Wenbl Theorem D] that was hard to spot, because the statement looked the
same as in the current version, but its meaning was different. The source of the problem was an
erroneous representation-theoretic dimension calculuation in [Wenbl, Corollary 3.23], which was
stated without proof. A corrected version of that result appears in this version as Corollary B.23]
with a proof given in the preceding paragraph.
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