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GENERIC TRANSVERSALITY FOR UNBRANCHED COVERS OF

CLOSED PSEUDOHOLOMORPHIC CURVES

CHRIS GERIG AND CHRIS WENDL

Abstra
t. We prove that in 
losed almost 
omplex manifolds of any dimension, generi


perturbations of the almost 
omplex stru
ture suÆ
e to a
hieve transversality for all un-

bran
hed multiple 
overs of simple pseudoholomorphi
 
urves with deformation index

zero. A 
orollary is that the Gromov-Witten invariants (without des
endants) of sym-

ple
ti
 4-manifolds 
an always be 
omputed as a signed and weighted 
ount of honest

J-holomorphi
 
urves for generi
 tame J : in parti
ular, ea
h su
h invariant is an integer

divided by a weighting fa
tor that depends only on the divisibility of the 
orresponding

homology 
lass. The transversality proof is based on an analyti
 perturbation te
hnique,

originally due to Taubes.
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1. Introdu
tion

The Gromov-Witten invariants of 
losed symple
ti
 manifolds are de�ned in prin
iple

by 
ounting J-holomorphi
 
urves for generi
 tame almost 
omplex stru
tures J . One of

the main te
hni
al hurdles in this de�nition is that moduli spa
es of J-holomorphi
 
urves

are not generally manifolds of the \expe
ted" dimension unless multiply 
overed 
urves


an be ex
luded; thus in pra
ti
e, the de�nition usually requires more sophisti
ated te
h-

niques su
h as virtual 
y
les, abstra
t multivalued perturbations, or stabilizing divisors,

see e.g. [FO99,LT98,Rua99,Sie,CM07, IPa,HWZ℄.

It is nonetheless interesting to ask under what 
ir
umstan
es the \
lassi
al" te
hnique

of perturbing J generi
ally suÆ
es for a 
omplete des
ription of moduli spa
es of multiply


overed 
urves. Results of this nature are desirable for several reasons: one is that the

resulting de�nition of the Gromov-Witten invariants is simpler to understand and to apply.

Another is that the relationship between simple 
urves and their multiple 
overs 
an

reveal nontrivial relations among Gromov-Witten invariants that 
annot be seen by more

abstra
t te
hniques; one example of this phenomenon is the Gopakumar-Vafa 
onje
ture on

symple
ti
 Calabi-Yau 3-folds, see [GV,BP01,BP08,IPb℄. While moduli spa
es of multiply


overed 
urves 
annot generally a
hieve regularity in the usual sense, it is sometimes

enough to show that they are as regular as possible. A simple J-holomorphi
 
urve u with

deformation index 0 is 
alled \super-rigid" if, roughly speaking, the set of all 
overs of u

is an open subset in the moduli spa
e of all J-holomorphi
 
urves (see x1.1 for a more

pre
ise de�nition), so in parti
ular, no sequen
e of 
urves geometri
ally distin
t from u


an 
onverge to any 
over of u. The index relations between simple J-holomorphi
 
urves

and their multiple 
overs make the following 
onje
ture plausible:

1

Conje
ture 1.1. On any 
losed symple
ti
 manifold (M;!) of real dimension at least four,

there exists a Baire subset J

reg

in the spa
e of smooth !-tame almost 
omplex stru
tures

su
h that for all J 2 J

reg

, every 
losed, 
onne
ted and simple J-holomorphi
 
urve with

deformation index 0 is super-rigid.

Some spe
ial 
ases of this 
onje
ture have been proved previously by Lee-Parker [LP07,

LP12℄ and Eftekhary [Eft16℄. The te
hniques used in the present paper are related to those

of [LP07,LP12℄, whi
h also play a role in the announ
ed solution by Ionel and Parker to

the Gopakumar-Vafa 
onje
ture [IPb℄.

For an unbran
hed 
over of a simple 
urve, the super-rigidity 
ondition is equivalent to

the usual notion of Fredholm regularity, and our main result (stated as Theorem 1.3 below)

is that this 
an always be a
hieved by 
hoosing J generi
ally. This may be seen as an

initial step toward a proof of Conje
ture 1.1 in full generality. While the result holds in all

dimensions, its 
onsequen
es are espe
ially interesting in dimension four: as we will show

in x1.2, it implies that Gromov-Witten invariants without des
endants in this setting 
an

be 
omputed without the aid of domain-dependent or inhomogeneous perturbations, and

they therefore satisfy integrality 
onditions that are not apparent from the more general

de�nitions; see Theorem 1.8 and Corollary 1.9.

1

After this arti
le was submitted for publi
ation, the se
ond author produ
ed a preprint [Wenb℄ that

proves Conje
ture 1.1 in all dimensions greater than four, together with a substantial generalization of

Theorem 1.3, using di�erent te
hniques based on the Sard-Smale theorem and representation theory.

http://arxiv.org/abs/1407.0678v3
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Our proof is quite di�erent from the methods that symple
ti
 topologists typi
ally use to

establish transversality: it does not involve the Sard-Smale theorem, but is instead based

on an analyti
 perturbation theory te
hnique introdu
ed by Taubes in his de�nition of the

Gromov invariants of symple
ti
 4-manifolds [Tau96b℄. It works in the symple
ti
 
ategory

in all dimensions greater than two, but it does not work in the algebrai
 or 
omplex


ategory, i.e. if we start with an integrable 
omplex stru
ture J , then our perturbation to

a
hieve regularity will always make J nonintegrable (see Remark 2.1). The method also

is not stri
tly limited to unbran
hed 
overs: for any given 
over of a simple 
urve with

index 0, we will show how to perturb J su
h that the super-rigidity 
ondition is a
hieved

for the given 
over. Sin
e spa
es of unbran
hed 
overs do not have moduli, this suÆ
es

to prove our main result, and it also lends hope that similar methods 
ould be used to

prove Conje
ture 1.1 in full generality, though at present it is not 
lear whether the kind

of perturbation we de�ne 
an a
hieve super-rigidity for all bran
hed 
overs at on
e in a

spa
e with nontrivial moduli.

2

We aim in future work to prove similar results for 
overs of �nite-energy pun
tured J -

holomorphi
 
urves in symple
ti
 
obordisms, whi
h should have interesting appli
ations

in Symple
ti
 Field Theory [EGH00℄ and Embedded Conta
t Homology [Hut14℄. A few

spe
ial 
ases of super-rigidity in the pun
tured 
ase have previously been observed by

the se
ond author [Wen10℄, as well as work of Fabert [Fab13℄, and unpublished work

of Hut
hings [Hut℄; those examples were restri
ted to dimension four, but the methods

introdu
ed in the present paper have no su
h restri
tions.

1.1. The main result. Assume (M;J

�x

) is an almost 
omplex manifold of dimension

2n � 4, U �M is an open subset with 
ompa
t 
losure, and

J (M ; U ; J

�x

)

denotes the spa
e of smooth almost 
omplex stru
tures onM that mat
h J

�x

outside of U ,

with its natural C

1

-topology. If M also 
arries a symple
ti
 stru
ture ! for whi
h J

�x

is !-tame or !-
ompatible, we will denote the 
orresponding spa
es of tame/
ompatible

almost 
omplex stru
tures mat
hing J

�x

outside U by

J

tame

(M;! ; U ; J

�x

); J


omp

(M;! ; U ; J

�x

) � J (M ; U ; J

�x

):

Remark 1.2. The existen
e of a symple
ti
 form on M is not required for any of the argu-

ments in this paper, but sin
e it is important in appli
ations, we will generally assume at

least that (M;!) is symple
ti
 and all almost 
omplex stru
tures under 
onsideration are

!-tame. Note that J

tame

(M;! ; U ; J

�x

) is an open subset of J (M ; U ; J

�x

), thus all state-

ments made about J

tame

(M;! ; U ; J

�x

) will have obvious analogues for J (M ; U ; J

�x

).

With Remark 1.2 in mind, from now on we �x a symple
ti
 form ! on M and assume

J

�x

is !-tame. Given J 2 J

tame

(M;! ; U ; J

�x

), a 
losed 
onne
ted Riemann surfa
e (�; j)

2

A preliminary version of this paper (under a di�erent title) 
laimed a proof of Conje
ture 1.1 using

similar te
hniques, but this argument had gaps that we have thus far been unable to �ll. See Remark 2.7.
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and a J -holomorphi
 
urve

3

u : (�; j)! (M;J), the index of u is the integer

(1.1) ind(u) = (n� 3)�(�) + 2


1

(u);

where we abbreviate 


1

(u) := h


1

(TM; J); [u℄i, [u℄ := u

�

[�℄ 2 H

2

(M). A 
losed and


onne
ted J-holomorphi
 
urve ~u : (

e

�; ~|) ! (M;J) is said to be a (d-fold) multiple


over of u if ~u = u Æ ' for some holomorphi
 map ' : (

e

�; ~|) ! (�; j) of degree d � 2,

and u is 
alled simple if it is non
onstant and is not a multiple 
over of any other 
urve.

The map ' :

e

�! � is generally a bran
hed 
over, and we 
all it unbran
hed (and ~u an

unbran
hed 
over of u) if it is an honest 
overing map, meaning its set of bran
h points is

empty.

We say that the 
urve u : � ! M is Fredholm regular if a neighborhood of u in

the moduli spa
e of unparametrized J-holomorphi
 
urves is 
ut out transversely, see

e.g. [Wena, x4.3℄. In this paper we will mainly deal with immersed 
urves, for whi
h a

pre
ise de�nition of regularity is easier to state: suppose u : � ! M is immersed and

denote its 
omplex normal bundle by N

u

! �. The linearized Cau
hy-Riemann operator

asso
iated to u is the real-linear �rst-order di�erential operator

(1.2) D

u

: �(u

�

TM)! 


0;1

(�; u

�

TM) : � 7! r� + J(u) Æ r� Æ j + (r

�

J) Æ Tu Æ j;

where r is any 
hoi
e of symmetri
 
onne
tion on M . We de�ne the normal Cau
hy-

Riemann operator at u as the restri
tion of D

u

to se
tions of N

u

, 
omposed with the

proje
tion �

N

: u

�

TM ! N

u

, hen
e

D

N
u

= �

N

ÆD

u

j

�(N

u

)

: �(N

u

)! 


0;1

(�; N

u

):

This is also a Cau
hy-Riemann type operator, so its extension to any reasonable Bana
h

spa
e 
ompletions su
h as

(1.3) D

N
u

: W

k;p

(N

u

)!W

k�1;p

(Hom

C

(T�; N

u

))

for k 2 N and p > 1 is a Fredholm operator, and ellipti
 regularity implies that its kernel

and 
okernel do not depend on the 
hoi
es k and p. The 
urve u is then Fredholm regular

if and only if the linear map (1.3) is surje
tive. In the present paper, we will sometimes

deal with multiple 
overs ~u = u Æ ' for whi
h u is immersed but ' may have bran
h

points, in whi
h 
ase D

N

~u


an naturally be de�ned as a Cau
hy-Riemann type operator

on N

~u

:= '

�

N

u

. The 
urve u is then 
alled super-rigid if it is immersed with index 0

and D

N

~u

is inje
tive for every 
over ~u of u. Note that if ' :

e

�! � has degree d 2 N and

Z(d') � 0 denotes the number of bran
h points of ' 
ounted with multipli
ities, then the

Riemann-Hurwitz formula

(1.4) � �(

e

�) + d�(�) = Z(d')

implies

ind(~u) = d � ind(u)� (n� 3)Z(d');

3

When we use the word \
urve" to des
ribe u : (�; j) ! (M;J), we mean that (�; j) is a smooth

(non-nodal) Riemann surfa
e and u is a smooth map, or in some 
ases an equivalen
e 
lass of smooth

maps up to parametrization (this will be 
lear from 
ontext). By default this ex
ludes nodal 
urves, and

when we do mean \nodal 
urve" we will make this expli
it. This usage is 
ommon in symple
ti
 topology

but may di�er from 
onventions in the algebrai
 geometry literature.
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hen
e unbran
hed 
overs of immersed index 0 
urves are also immersed with index 0, and

super-rigidity for unbran
hed 
overs is therefore the same as Fredholm regularity.

Here is our main result.

Theorem 1.3. Assume (M;!) is a symple
ti
 manifold

4

with tame almost 
omplex stru
-

ture J

�x

, and U is an open subset with 
ompa
t 
losure. Then there exists a Baire subset

J

reg

� J

tame

(M;! ; U ; J

�x

) su
h that for every J 2 J

reg

, all unbran
hed 
overs of simple


losed J-holomorphi
 
urves of index 0 
ontained fully in U are Fredholm regular.

Moreover, if J

�x

is !-
ompatible, then there is a Baire subset J

reg

� J


omp

(M;! ; U ; J

�x

)

su
h that for every J 2 J

reg

, all unbran
hed 
overs of embedded 
losed J-holomorphi



urves of index 0 
ontained fully in U are Fredholm regular.

Remark 1.4. We do not know whether the restri
tion to embedded 
urves in the !-


ompatible 
ase 
an be relaxed; the reason is explained in Remark 3.3. This is in any


ase only a restri
tion in dimension four, sin
e embeddedness is a generi
 property of

holomorphi
 
urves in higher dimensions (see e.g. [Wena, x4.6℄ or [OZ09℄). In the !-tame


ase, our argument works for all immersed 
urves with distin
t transverse self-interse
tions,

whi
h is a generi
 property even in dimension four.

The next two remarks draw attention to generalizations of Theorem 1.3 that might

naturally be expe
ted to hold but do not follow from our arguments, and in some 
ases

are a
tually false.

Remark 1.5. The standard transversality results as in [MS04,Wena℄ for simple J -holo-

morphi
 
urves have straightforward extensions to generi
 1-paramater families fJ

�

g of

almost 
omplex stru
tures, showing in essen
e that the spa
e of pairs

f(�; u) j u is simple and J

�

-holomorphi
g

is a manifold of dimension ind(u) + 1. This means that all simple J

�

-holomorphi
 
urves

are regular for almost every � , but there may be birth-death bifur
ations at a dis
rete

set of parameter values. The work of Taubes [Tau96a℄ shows that when multiple 
overs

are allowed, more general types of bifur
ations must be 
onsidered, so e.g. the extension

of the usual results for simple 
urves to unbran
hed 
overs of index 0 
urves is not at

all straightforward. We will not prove anything in this paper about generi
 1-parameter

families of data.

Remark 1.6. The standard results for simple 
urves do not require the 
urves to be fully


ontained in the perturbation domain U in order to a
hieve transversality; it suÆ
es rather

that they should interse
t U somewhere, the key point being that there is an inje
tive

point mapped into U . Our methods on the other hand work only for 
urves that are fully


ontained in U , and we do not know whether this assumption 
an be weakened. The

reason for this is dis
ussed in Remark 2.1. In this sense, Theorem 1.3 seems to represent

a fundamentally di�erent phenomenon from the usual transversality results for simple


urves.

4

As indi
ated in Remark 1.2, the �rst statement in the theorem 
ould also be stated without referen
e

to any symple
ti
 stru
ture, produ
ing a Baire subset of J (M ; U ; J

�x

).
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1.2. Appli
ation to Gromov-Witten theory. In the results of this se
tion, the words

\for generi
 J . . . " should be understood to mean that there exists a Baire subset of the

appropriate spa
e of almost 
omplex stru
tures for whi
h the statement is true.

Let M

g;m

(A; J) denote the moduli spa
e of smooth unparametrized J-holomorphi



urves in M with genus g and m marked points in the homology 
lass A 2 H

2

(M); the

pre
ise de�nition will be re
alled in the dis
ussion below. We denote the natural evaluation

map by

ev :M

g;m

(A; J)!M

m

;

and let

M

�
g;m

(A; J) �M

g;m

(A; J)

denote the open subset 
onsisting of simple 
urves. For any integer m � 0, the m-point

Gromov-Witten invariant

GW

(M;!)

g;m;A

: H

�

(M)


m

! Q

is de�ned morally by 
ounting interse
tions of the evaluation map with 
y
les inM

m

deter-

mined by an m-tuple of 
ohomology 
lasses. The standard de�nition of these invariants in

[RT97℄ for semipositive symple
ti
 manifolds (whi
h in
ludes all symple
ti
 4-manifolds)

requires generi
 inhomogeneous perturbations to the nonlinear Cau
hy-Riemann equation,

thus breaking the symmetry inherent in multiply 
overed 
urves. We will now show that

when dim

R

M = 4, these invariants 
an also be 
omputed by simpler means that do not

break the symmetry. Re
all from [MS04, x6.5℄ that for any subsetM

�

�M

g;m

(A; J), the

restri
tion ev :M

�

! M

m

is said to be a pseudo
y
le of dimension d � 0 if M

�

is a

smooth d-dimensional manifold andM

g;m

(A; J)nM

�


an be 
overed by subsets on whi
h

ev fa
tors through a smooth map to M

m

from a manifold of dimension at most d� 2. In

this 
ase one 
an de�ne integer-valued interse
tion produ
ts of ev with homology 
lasses

in M

m

. The following proposition for the 
ase m � 1 is presumably not a new result, but

we are not aware of any proof of it in the 
urrent literature; ours will require only the

standard transversality results for simple 
urves.

Proposition 1.7. Assume (M;!) is a 
losed symple
ti
 4-manifold. Then for generi


!-
ompatible or tame almost 
omplex stru
tures J and for every A 2 H

2

(M) and every

pair of nonnegative integers (g;m) satisfying �(2 � 2g) + 2


1

(A) > 0 and m � 1, the

evaluation map ev : M

�
g;m

(A; J) ! M

m

on the set of simple 
urves is a pseudo
y
le of

dimension �(2�2g)+2


1

(A)+2m. The 
orresponding m-point Gromov-Witten invariant


an thus be 
omputed as an interse
tion number

GW

(M;!)

g;m;A

(�

1

; : : : ; �

m

) =

h

ev j

M

�
g;m

(A;J)

i

� (PD(�

1

)� : : :� PD(�

m

)) ;

and in parti
ular, its values are always integers.

The pi
ture for the 0-point invariants with g � 1 is somewhat di�erent, as it turns out

that multiply 
overed 
urves 
annot be avoided in this 
ase, but only unbran
hed 
overs

need be 
onsidered. The arguments behind Proposition 1.7 thus 
ombine with Theorem 1.3

to give the following more novel result.

Theorem 1.8. For generi
 !-tame almost 
omplex stru
tures J on a 
losed symple
ti


4-manifold (M;!), the set of index 0 
urves satisfying any given bound on their genus and

area is �nite, and all of them are Fredholm regular.
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We should again 
aution the reader that we do not know whether the generi
 J in

Theorem 1.8 
an be 
hosen to be 
ompatible with ! (see Remark 1.4), though one 
an

require this if one is only interested in 
overs of embedded 
urves (as in [Tau96a,Tau96b℄).

Choosing J tame is in any 
ase good enough to 
ompute Gromov-Witten invariants.

In order to state the main 
orollary, we 
an asso
iate to any integral homology 
lass

A 2 H

2

(M) in a symple
ti
 manifold (M;!) its symple
ti
 divisibility

d

!

(A) 2 N;

de�ned as the produ
t of the �nite set of integers k 2 N su
h that A = kB for some

primitive 
lass B 2 H

2

(M) with !(B) > 0.

Corollary 1.9. Suppose (M;!) is a 
losed symple
ti
 4-manifold and A 2 H

2

(M) and

g 2 N satisfy �(2� 2g) + 2


1

(A) = 0. Then the 0-point Gromov-Witten invariant 
an be


omputed for generi
 tame almost 
omplex stru
tures J as a signed and weighted 
ount of

�nitely many J-holomorphi
 
urves

GW

(M;!)

g;0;A

=

X

u2M

g;0

(A;J)

�(u)

jAut(u)j

;

where for ea
h 
urve u, �(u) 2 f�1; 1g is determined by an orientation of the determinant

line bundle, and Aut(u) denotes the automorphism group of u. In parti
ular, the number

GW

(M;!)

0;0;A

is always an integer, while for g � 1, d

!

(A) �GW

(M;!)

g;0;A

is an integer.

In order to prepare for the proofs of these results, let us re
all the de�nitions of the

relevant moduli spa
es. Given integers g;m � 0 and a homology 
lass A 2 H

2

(M), the

moduli spa
e of unparametrized J-holomorphi
 
urves M

g;m

(A; J) 
an be de�ned

as the set of equivalen
e 
lasses of tuples (�; j;�; u) where (�; j) is a 
losed 
onne
ted

Riemann surfa
e of genus g, � � � is an ordered set of m distin
t points (the marked

points), and u : (�; j) ! (M;J) is a J -holomorphi
 map satisfying [u℄ = A, with equiv-

alen
e de�ned by (�; j;�; u) � (�

0

;  

�

j;  

�1

(�); u Æ  ) for di�eomorphisms  : �

0

! �.

The automorphism group Aut(u) of [(�; j;�; u)℄ 2M

g;m

(A; J) is the group of biholo-

morphi
 di�eomorphisms  : (�; j)! (�; j) that �x ea
h of the marked points and satisfy

u = u Æ  ; it is always �nite, and is trivial whenever u is simple. The Gromov 
om-

pa
ti�
ation of M

g;m

(A; J) is the spa
e M

g;m

(A; J) of (equivalen
e 
lasses of) stable

nodal 
urves (S; j;�;�; u), where now S may be dis
onne
ted, and the original data are

augmented by an unordered set of distin
t points in S n�, arranged into unordered pairs

� = ff^z

1

; �z

1

g; : : : ; f^z

r

; �z

r

gg ;

su
h that u(^z

i

) = u(�z

i

) for ea
h i = 1; : : : ; r. We 
all the pairs f^z

i

; �z

i

g nodes, and

ea
h individual ^z

i

or �z

i

2 S a nodal point. The 
urves in M

g;m

(A; J) are required to

have arithmeti
 genus g, whi
h means that the surfa
e obtained from S by performing


onne
ted sums at all mat
hed pairs of nodal points is a 
losed 
onne
ted surfa
e of genus g.

The stability 
ondition requires that any 
omponent of S n (�[�) on whi
h u is 
onstant

should have negative Euler 
hara
teristi
. With this 
ondition,M

g;m

(A; J) 
an be given a

natural topology as a metrizable Hausdor� spa
e, and it is 
ompa
t whenever J is tamed

by a symple
ti
 form. A de�nition of the topology may be found e.g. in [BEH

+

03℄; for

sequen
es in M

g;m

(A; J), it amounts to the notion of C

1

-
onvergen
e for j and u after
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a 
hoi
e of parametrization for whi
h all domains and marked point sets are identi�ed.

Curves [(S; j;�;�; u)℄ 2M

g;m

(A; J) with � = ; 
an equivalently be regarded as elements

ofM

g;m

(A; J), and are thus 
alled smooth 
urves to distinguish them from nodal 
urves.

The evaluation map is de�ned by

ev :M

g;m

(A; J)!M � : : :�M : [(�; j; (�

1

; : : : ; �

m

); u)℄ 7! (u(�

1

); : : : ; u(�

m

));

and it extends to a 
ontinuous map on M

g;m

(A; J).

When there is no danger of 
onfusion, we shall sometimes abuse notation by denoting

equivalen
e 
lasses [(�; j;�; u)℄ 2 M

g;m

(A; J) or [(S; j;�;�; u)℄ 2 M

g;m

(A; J) simply by

u 2 M

g;m

(A; J) or u 2 M

g;m

(A; J) respe
tively, and we will refer to the restri
tion of

a nodal 
urve [(S; j;�;�; u)℄ to any 
onne
ted 
omponent of its domain S as a smooth


omponent of u. Re
all that M

g;0

(A; J) has virtual dimension equal to the index of

any 
urve u 2M

g;0

(A; J).

It will be useful to re
all 
ertain index relations for degenerating sequen
es of holo-

morphi
 
urves. Suppose dim

R

M = 2n, and [(�; j

k

; u

k

)℄ 2 M

g;0

(A; J) is a sequen
e


onverging to a stable nodal 
urve [(S; j

1

;�; u

1

)℄ 2 M

g;0

(A; J) with smooth 
ompo-

nents

�

[(S

i

; j

i

1

; u

i
1

)℄ 2M

g

i

(A

i

; J)

	

i=1;:::;r

:

Then if N

i

:= jS

i

\�j � 1 denotes the number of nodal points on S

i

for i = 1; : : : ; r, we

have �(�) =

P

i

[�(S

i

)�N

i

℄, so the index formula (1.1) gives

(1.5) ind(u

k

) =

r

X

i=1

�

ind(u

i
1

)� (n� 3)N

i

�

:

Note that by the stability 
ondition, we have

(1.6) �(S

i

)�N

i

< 0 whenever A

i

= 0:

If A

i

6= 0, then u

i
1

= v

i

Æ '

i

for some simple 
urve v

i

and holomorphi
 map '

i

of degree

d

i

� 1 with Z(d'

i

) � 0 bran
h points, and the Riemann-Hurwitz formula 
ombined with

(1.1) gives

(1.7) ind(u

i
1

) = d

i

� ind(v

i

)� (n� 3)Z(d'

i

):

Proof of Proposition 1.7. Assume J is 
hosen so that all somewhere inje
tive 
urves are

Fredholm regular. Then M

�
g;m

(A; J) is a manifold of real dimension ind(u) + 2m for any

u 2 M

�
g;m

(A; J). The index relations (1.5) and (1.7) imply that if u

k

2 M

�
g;m

(A; J)

is a sequen
e of simple 
urves with ind(u

k

) > 0 
onverging to a nodal 
urve u

1

, then

the non
onstant 
omponents of u

1


over simple 
urves whose indi
es add up to at most

ind(u

k

)� 2. More 
on
retely, if u

1

has smooth 
omponents u

1
1

; : : : ; u

r
1

, ea
h u

i
1

having

N

i

� 1 nodal points, then the 4-dimensional 
ase of (1.5) together with the stability


ondition (1.6) implies

(1.8) ind(u

k

) �

X

fi j u

i
1

6=
onstg

�

ind(u

i
1

) +N

i

�

;
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with equality if and only if u

1

has no 
onstant (i.e. \ghost") 
omponents. This shows in

parti
ular that

(1.9) ind(u

k

) � 2 +

X

fi j u

i
1

6=
onstg

ind(u

i
1

):

Now by (1.7) in the 
ase n = 2, we see that if u

i
1

is a d

i

-fold 
over of a simple 
urve

v

i

, then ind(u

i
1

) � d

i

ind(v

i

), with equality if and only if the 
over is unbran
hed. Sin
e

ind(v

i

) � 0 by generi
ity, this implies that ea
h smooth 
omponent u

i
1

has index at least

two less than ind(u

k

). On the other hand, if u

1

= limu

k

is a smooth 
urve that is a d-fold


over v Æ ' of some simple 
urve v, then (1.7) gives

ind(u

1

) = d � ind(v) + Z(d') � d � ind(v);

and sin
e ind(u

1

) > 0 by assumption and the index is always even, we 
on
lude ind(v) �

ind(u

1

)� 2 unless d = 1. These relations imply the pseudo
y
le 
ondition. �

Proof of Theorem 1.8 and Corollary 1.9. Applying the index relations as in the proof of

Proposition 1.7 above, we �nd that the worst 
ase s
enario for a degenerating sequen
e

of index 0 
urves u

k

! u

1

is that u

1

is an unbran
hed 
over of a simple index 0 
urve.

For generi
 tame J , Theorem 1.3 implies that the latter is regular, hen
e all 
urves in

M

g;0

(A; J) are smooth and regular, and therefore isolated due to the impli
it fun
tion

theorem. The integrality 
ondition in Corollary 1.9 arises from the observation that when-

ever u 2 M

g;0

(A; J) is a d-fold 
over of a simple 
urve v 2 M

g

0

;0

(B; J), we ne
essarily

have A = dB and !(B) > 0, and the order of the automorphism group Aut(u) is an inte-

ger dividing d. For g = 0 the integrality result is stronger, be
ause the Riemann-Hurwitz

formula forbids the existen
e of unbran
hed 
overs with genus 0, hen
e every 
urve in

M

0;0

(A; J) is simple. �

1.3. Outline of the paper. The main steps in the proof of Theorem 1.3 will be explained

in x2, modulo three te
hni
al results 
on
erning (1) the nonlinear problem, (2) the linear

problem, and (3) obstru
tion theory. The remainder of the paper will then be 
on
erned

with these three te
hni
al results: the nonlinear result in x3, the linear result in x5 and

x6, and the obstru
tion theoreti
 result (whi
h is only needed for the 
ase dim

R

M � 6)

in x4. These are followed by a brief appendix re
alling the essential result from analyti


perturbation theory that is needed in x6.

A brief remark on terminology. Sin
e many important obje
ts in this paper do not


arry natural 
omplex stru
tures, our formulas for dimensions and Fredholm indi
es gen-

erally give the real dimension unless otherwise noted, even in 
ases where this number

is always even. The major ex
eptions are the bundles u

�

TM and N

u

asso
iated to a

J -holomorphi
 
urve u : (�; j)! (M;J); these are naturally 
omplex ve
tor bundles and

are des
ribed in terms of their 
omplex rank.

A
knowledgements. The present paper emerged out of dis
ussions between the two au-

thors and Mi
hael Hut
hings and Dan Cristofaro-Gardiner at the Simons Center's Work-

shop on Moduli Spa
es of Pseudo-holomorphi
 Curves II, June 2{6, 2014. We would

like to thank Hut
hings and Cristofaro-Gardiner for 
ontributing useful ideas and en
our-

agement, Helmut Hofer, Dusa M
Du�, Tim Pertuz, Cli� Taubes and Aleksey Zinger for
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enlightening 
onversations, Daniel Rau
h for sending us a 
opy of his PhD thesis, and the

Simons Center for its hospitality and for providing su
h a stimulating environment for


ollaboration. We also thank Eleny Ionel and Tom Parker for pointing out a 
ru
ial error

in our preliminary version of this paper.

2. The main argument

The goal of this se
tion will be to redu
e the proof of Theorem 1.3 to a sequen
e of

three te
hni
al results to be proved in later se
tions.

2.1. Unbran
hed tori in dimension four. Before diving into the details on Theo-

rem 1.3, it may be instru
tive to re
all the argument of Taubes whi
h has inspired the

present approa
h to regularity for multiple 
overs. The Gromov invariants were de�ned

in [Tau96a, Tau96b℄ as 
ertain 
ounts of holomorphi
 
urves in symple
ti
 4-manifolds,

in
luding both embedded 
urves and unbran
hed 
overs of embedded holomorphi
 tori

with index 0. In order to a
hieve transversality for the multiple 
overs, Taubes argued

in [Tau96b, x7(b)℄ as follows. Assume u : T

2

! M is an embedded J-holomorphi
 torus

with index 0, ' : T

2

! T

2

is a holomorphi
 
overing map and ~u = u Æ'. Then the normal

Cau
hy-Riemann operator for ~u 
an be identi�ed with an operator of the form

D =

�

� +A : C

1

(T

2

; C ) ! C

1

(T

2

; C );

where

�

� = �

s

+ i�

t

in holomorphi
 
oordinates s + it on T

2

and A 2 C

1

(T

2

;End

R

(C )).

Taubes shows that one 
an always perturb the ambient almost 
omplex stru
ture along u

su
h that D be
omes

D

�

� := D� + ����

for some � 2 C

1

(T

2

; C

�

) and a small parameter � 2 R. This perturbation of the linear

operator is required to be 
omplex-antilinear, and it must never vanish, but in 
ontrast

to the standard transversality arguments as in [MS04℄, it is allowed to be arbitrarily

symmetri
, so in parti
ular the fa
t that ~u is a multiple 
over poses no diÆ
ulty here. The

main 
hallenge is now to show that this perturbed operator will always be inje
tive for

suÆ
iently small � > 0. The argument for this involves two main ingredients.

(1) Bo
hner-Weitzenb�o
k te
hnique: The following argument shows that D

�

must be

inje
tive for all � � 0. Fix the standard real-valued L

2

-inner produ
t on C

1

(T

2

; C ) and

let D

�

and D

�
�

denote the formal adjoints of D and D

�

respe
tively; expli
itly, we have

D

�

= � + A

�

and D

�
�

� = D

�

� + ����, where � = �

s

� i�

t

and A

�

2 C

1

(T

2

;End

R

(C ))

denotes the pointwise real-linear transpose of A. From these relations, one obtains a

Weitzenb�o
k formula,

(2.1) D

�
�

D

�

� = D

�

D� + �L� + �

2

j�j

2

�;

where L 2 C

1

(T

2

;End

R

(C )) is the zeroth-order real-linear operator L� = �A� +A

�

��� �

(��)��. The 
ru
ial point in (2.1) is that D

�
�

D

�

� and D

�

D� di�er only by a zeroth-order

term|the 
omplex-anti linear nature of the perturbation 
auses all other derivatives of �
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to 
an
el. For all � 2 C

1

(T

2

; C ), we then have

kD

�

�k

2
L

2

= h�;D

�
�

D

�

�i

L

2 =




�;D

�

D� + �L� + �

2

j�j

2

�

�

L

2

= kD�k

2
L

2

+ �h�; L�i

L

2 + �

2

h�; j�j

2

�i

L

2

� kD�k

2
L

2

+ (
�

2

� 


0

�)k�k

2
L

2

(2.2)

for some 
onstants 
; 


0

> 0. Here we have used the fa
t that � is nowhere zero so that

h�; j�j

2

�i

L

2 � 
k�k

2
L

2

.

(2) Analyti
 perturbation theory : RegardD

�

as a 
omplex-linear operatorH

1

(T

2

; C ) !

L

2

(T

2

; C ), or more a

urately on the 
omplexi�
ations of these two spa
es. Then D

�

depends analyti
ally on the parameter � 2 C , so the set of all � 2 C for whi
h D

�

is not

an isomorphism looks lo
ally like the zero-set of an analyti
 fun
tion on C , i.e. D

�

has

nontrivial kernel either for all � or only for a dis
rete subset. (A proof of this fa
t is given

in the Appendix.) Step (1) implies that it is the latter, not the former.

Remark 2.1. The �rst step des
ribed above depends 
ru
ially on the following two prop-

erties of the perturbation, both of whi
h lend a distin
tive 
avor to our main result:

(1) The perturbation from D to D

�

must be antilinear, otherwise the Weitzenb�o
k

formula (2.1) does not hold. This implies that, in general, the generi
 almost


omplex stru
tures for whi
h our transversality result holds 
an never be expe
ted

to be integrable.

(2) The perturbation must also be nowhere zero so that k�k

L

2 
an be bounded below

via h�j�j

2

�i

L

2 in (2.2). This is why our proof of Theorem 1.3 does not work for


urves that only pass through the perturbation domain rather than being fully


ontained in it (see Remark 1.6).

We will see that both of these features also appear in the general 
ase to be dis
ussed

below.

Remark 2.2. A version of the Bo
hner-Weitzenb�o
k te
hnique des
ribed above has also

appeared in the work of Lee and Parker on K�ahler surfa
es with positive geometri
 genus,

see [LP07, Proposition 8.6℄. In their more spe
ialized setting, the terms linear in � vanish

for geometri
 reasons, thus one obtains super-rigidity for all (not ne
essarily small) per-

turbations of the type that they 
onsider, without any need to apply analyti
 perturbation

theory.

2.2. Three te
hni
al results for the general 
ase. We now des
ribe what is required

in order to generalize the argument of Taubes sket
hed above.

The �rst te
hni
al result we will need des
ribes the perturbation of the normal Cau
hy-

Riemann operator realized by a 
ertain 
lass of perturbations to the almost 
omplex stru
-

ture. Working under the assumptions of Theorem 1.3, suppose u : (�; j) ! (M;J) is an

immersed J -holomorphi
 
urve with image fully 
ontained in U , 
hoose a tangent/normal

splitting u

�

TM = T

u

�N

u

with T

u

= imdu, and abbreviate the 
omplex ve
tor bundles

E := N

u

; F := Hom

C

(T�; N

u

) = T

0;1

�
E;

both of whi
h have rank m := n � 1. The normal Cau
hy-Riemann operator D

N
u

then

maps se
tions of E to se
tions of F . Suppose fJ

�

2 J

tame

(M;! ; U ; J

�x

)g

�2(��;�)

is a
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smooth 1-parameter family of almost 
omplex stru
tures su
h that

J

0

� J; and J

�

j

T

u

� J j

T

u

for all � :

Then u : (�; j)! (M;J

�

) is J

�

-holomorphi
 for all � , though the previously 
hosen normal

bundle N

u

� u

�

TM may fail to be J

�

-invariant for � 6= 0. Nonetheless one 
an always

�nd a smooth 1-parameter family of 
omplex bundle isomorphisms

�

�

: (TM; J)! (TM; J

�

)

that �x T

u

and satisfy �

0

= 1, allowing us to de�ne perturbed 
omplex normal bundles

N

u;�

:= �

�

(N

u

) and normal Cau
hy-Riemann operators

D

N
u;�

: �(N

u;�

)! �(Hom

C

(T�; N

u;�

));

so that a 1-parameter family of operators �(E)! �(F ) 
an be de�ned by

�

�1

�

D

N
u;�

�

�

: �(E)! �(F ):

We will prove the following result in x3.

Proposition 2.3. Assume the 
urve u : (�; j) ! (M;J) in the above setup is immersed

with only transverse double points, su
h that no point inM is in the image of more than two

distin
t points of �. Then given any real-linear bundle map B : E ! F , one 
an 
hoose

the families of !-tame almost 
omplex stru
tures fJ

�

g and 
omplex bundle isomorphisms

f�

�

g as above su
h that

�

�1

�

D

N
u;�

�

�

= D

N
u

+ �B:

In parti
ular, for any p > 1, this de�nes a family of Fredholm operators W

1;p

(E)! L

p

(F )

that depends analyti
ally on the parameter � . If J is !-
ompatible and u has no double

points, then one 
an also arrange that J

�

2 J


omp

(M;! ; U ; J

�x

) for all � .

Continuing with the above setup, assume now that ind(u) = 0. Then 0 is also the index

of D

N
u

, whi
h is m�(�) + 2


1

(E), hen
e �


1

(E) = m�(�) + 


1

(E) = 


1

(F ), implying the

existen
e of a 
omplex-antilinear bundle isomorphism B : E ! F . Let h ; i denote a

Hermitian bundle metri
 on E, and denote its real part by h ; i

R

; if J is !-
ompatible,

we may assume that h ; i

R

mat
hes the restri
tion of !(�; J �) to N

u

. For our linear

transversality argument, it will be important to establish the following symmetry property

for B, whi
h will be possible due to an obstru
tion theoreti
 argument explained in x4.

Note that the 
ondition des
ribed here is va
uous when E is a line bundle, so this step

did not appear in Taubes's argument of x2.1 and is only needed for the higher-dimensional


ase.

Proposition 2.4. Every homotopy 
lass of 
omplex-antilinear bundle isomorphisms B :

E ! Hom

C

(T�; E) 
ontains one that satis�es the following 
ondition: for all z 2 �,

X 2 T

z

� and �; � 2 E

z

,

h�;B�(X)i

R

= hB�(X); �i

R

:

The remaining 
ru
ial ingredient will be a generalization of Taubes's analyti
 perturba-

tion theory argument des
ribed in x2.1. Fix B : E ! F as given by Proposition 2.4, and

assume ' : (

e

�; ~|)! (�; j) is a holomorphi
 map of degree d � 1. The generalized normal

bundle of ~u := u Æ ' is then

e

E := N

~u

= '

�

E, and we de�ne

e

F := Hom

C

(T

e

�;

e

E) so that
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D

N

~u

maps �(

e

E) to �(

e

F ). If fJ

�

g is a 1-parameter family of almost 
omplex stru
tures as

in Proposition 2.3 so that D

N
u;�

for ea
h � is 
onjugate to D

N
u

+ �B, then the resulting

perturbed normal Cau
hy-Riemann operators D

N

~u;�

are 
onjugate to the family

D

N

~u

+ �B

'

; : �(

e

E)! �(

e

F );

where

B

'

: '

�

E ! Hom

C

(T

e

�; '

�

E) : � 7! B� Æ T':

We will prove the following in x6, using a Weitzenb�o
k formula developed in x5.

Proposition 2.5. Given any B and ' as des
ribed above, the operator D

N

~u

+ �B

'

is

inje
tive for all � 2 R outside of a dis
rete subset.

2.3. Proof of Theorem 1.3. Assuming Propositions 2.3, 2.4 and 2.5, we now prove

the main result. The following topologi
al argument is also inspired by ideas of Taubes

(
f. [MS04, pp. 52{53℄ or [Wena, x4.4.2℄). We shall 
arry out the argument �rst in the

setting of embedded holomorphi
 
urves and 
ompatible almost 
omplex stru
tures, and

then explain what modi�
ations are needed for the immersed/tame 
ase.

Fix an integer g � 0, a homology 
lass A 2 H

2

(M) and a 
losed 
onne
ted and oriented

surfa
e � of genus g. Re
all that the Tei
hm�uller spa
e T (�) = J (�)=Di�

0

(�) is a

smooth manifold di�eomorphi
 to C

N

, with N = 3g�3 for g � 2 or N = g for g = 0; 1. In

parti
ular, T (�) is 
ontra
tible, allowing us to �x a smooth family of 
omplex stru
tures

fj

x

2 J (�)g

x2C

N

for whi
h the natural proje
tion to T (�) is bije
tive. Fix Riemannian metri
s on � andM ,

denoting the resulting distan
e fun
tions all by dist( ; ). Now for any J 2 J (M ; U ; J

�x

)

and N 2 N, de�ne

M

g

(A; J;N) �M

g;0

(A; J)

to 
onsist of every equivalen
e 
lass in M

g;0

(A; J) admitting a representative of the form

(�; j

x

; u) su
h that the following 
onditions are satis�ed:

(1) j

x

is \not 
lose to degenerating":

jxj � N

(2) u is \not 
lose to bubbling":

jdu(z)j � N for all z 2 �;

(3) u is \not 
lose to being non-embedded":

min

z2�

jdu(z)j �

1

N

; and inf

z;�2�; z 6=�

dist(u(z); u(�))

dist(z; �)

�

1

N

;

(4) u is \not 
lose to es
aping U":

dist (u(�);M n U) �

1

N

:

The union of the subsets M

g

(A; J;N) for all N 2 N 
onsists pre
isely of all 
urves in

M

g;0

(A; J) that are embedded and 
ontained in U . We 
laim that for any �xed N 2 N,

M

g

(A; J;N) is 
ompa
t|in fa
t:
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Lemma 2.6. For any N 2 N and any 
onvergent sequen
e J

k

! J 2 J (M ; U ; J

�x

), every

sequen
e u

k

2M

g

(A; J

k

; N) has a subsequen
e 
onverging to an element of M

g

(A; J;N).

Proof. By assumption, the given sequen
e admits representatives of the form (�; j

x

k

; u

k

)

that ea
h satisfy the four 
onditions listed above. Condition (1) implies jx

k

j � N for

all k, so we 
an take a subsequen
e for whi
h the 
omplex stru
tures j

x

k


onverge to

some j

x

with jxj � N . The se
ond 
ondition then implies via ellipti
 regularity that after

passing to a further subsequen
e, the maps u

k


onverge in C

1

to a pseudoholomorphi


map u : (�; j

x

)! (M;J) with jduj � N everywhere. Given this 
onvergen
e, (3) and (4)

are both 
losed 
onditions and are thus also satis�ed by u, so (�; j

x

; u) represents an

element of M

g

(A; J;N). �

Now for ea
h N 2 N, de�ne

J

reg

(N) � J


omp

(M;! ; U ; J

�x

)

to 
onsist of all J 2 J


omp

(M;! ; U ; J

�x

) with the property that for every index 0 
urve

[(�; j; u)℄ 2 M

g

(A; J;N) and every unbran
hed holomorphi
 
over ' : (

e

�; ~|) ! (�; j) of

degree at most N , the 
urve ~u = u Æ ' is Fredholm regular.

We 
laim that J

reg

(N) is open. If this is not the 
ase, then there exists a sequen
e J

k

2

J


omp

(M;! ; U ; J

�x

) 
onverging to J 2 J

reg

(N), together with a sequen
e [(�; j

k

; u

k

)℄ 2

M

g

(A; J

k

; N) and unbran
hed 
overs '

k

: (

e

�

k

; ~|

k

)! (�; j

k

) with deg('

k

) � N for whi
h

ind(u

k

) = 0 but u

k

Æ'

k

is not regular. But then [(�; j

k

; u

k

)℄ has a subsequen
e 
onverging

to an element [(�; j; u)℄ 2 M

g

(A; J;N), and sin
e ea
h (�; j

k

) has only �nitely many

unbran
hed 
overs of degree at most N up to biholomorphi
 equivalen
e, we may also

assume after reparametrization that a subsequen
e of '

k


onverges to another unbran
hed


over ' : (

e

�; ~|)! (�; j) of degree at most N . Sin
e J 2 J

reg

(N), u Æ' is regular, but this


ondition is open and thus gives a 
ontradi
tion.

We 
laim next that J

reg

(N) is dense. To see this, note �rst that by the standard

transversality theory as in [MS04℄, any J 2 J


omp

(M;! ; U ; J

�x

) has a perturbation J

0

2

J


omp

(M;! ; U ; J

�x

) for whi
h all 
urves in M

g

(A; J

0

; N) are Fredholm regular, as all of

them have inje
tive points mapped into U . Sin
e M

g

(A; J

0

; N) is 
ompa
t, the set of

index 0 
urves in M

g

(A; J

0

; N) is now �nite. For ea
h individual su
h 
urve [(�; j; u)℄

and ea
h unbran
hed 
over ' : (

e

�; ~|) ! (�; j), the 
ombination of Propositions 2.3, 2.4

and 2.5 provides a 1-parameter family of perturbed almost 
omplex stru
tures fJ

�

2

J


omp

(M;! ; U ; J

�x

)g with J

0

= J

0

su
h that the normal Cau
hy-Riemann operator of

u Æ ' be
omes inje
tive for suÆ
iently small � > 0. Note that by the impli
it fun
tion

theorem, there is a natural bije
tive 
orresponden
e between the sets of index 0 
urves

in M

g

(A; J

0

; N) and M

g

(A; J

�

; N) for � suÆ
iently small. Now sin
e the set of 
overs

u Æ ' with u 2 M

g

(A; J

0

; N), ind(u) = 0 and deg(') � N is �nite up to biholomorphi


equivalen
e, one 
an repeat this pro
edure �nitely many times to obtain an arbitrarily

small perturbation J

00

of J

0

for whi
h all su
h 
overs be
ome regular, meaning J

00

2

J

reg

(N).

Finally, the desired Baire subset 
an be de�ned as the 
ountable interse
tion of the sets

J

reg

(N) for all possible N 2 N, g � 0 and A 2 H

2

(M), thus 
on
luding the proof of

Theorem 1.3 for embedded 
urves.



GENERIC TRANSVERSALITY FOR UNBRANCHED COVERS OF HOLOMORPHIC CURVES 15

Remark 2.7. The diÆ
ulty in using this method to prove super-rigidity for bran
hed 
overs

is that for a given (�; j) and N 2 N, the set of inequivalent bran
hed 
overs of (�; j)

with degree at most N is generally un
ountable, so there is no guarantee that any single

perturbation J

�


ould make the normal operator inje
tive for all of them at on
e. The

analyti
 perturbation tri
k unfortunately provides no obvious 
ontrol over the fun
tion

' 7! sup

�

�

0

> 0 j D

N
uÆ'

de�ned with respe
t to J

�

is inje
tive for all � 2 (0; �

0

℄

	

;

e.g. it 
ould vary dis
ontinuously as ' moves in the moduli spa
e of bran
hed 
overs.

The above argument 
ould also be repeated verbatim to �nd 
orresponding Baire sub-

sets of J (M ; U ; J

�x

) and J

tame

(M;! ; U ; J

�x

) that establish regularity for unbran
hed


overs of embedded 
urves. This means all simple 
urves without loss of generality if

dim

R

M � 6, but a modi�ed argument is needed in dimension four to handle 
urves with

self-interse
tions. If dim

R

M = 4, we modify the de�nition of M

g

(A; J;N) as follows. For

any simple 
urve u 2M

g;0

(A; J), de�ne the integer d(u) � 0 by

2d(u) =

�
�

f(z; �) 2 �� � j u(z) = u(�) and z 6= �g

�
�

:

Re
all that by the adjun
tion inequality, this number satis�es

A �A � 2d(u) + 


1

(A)� (2� 2g);

with equality if and only if u is immersed with only transverse double points. With this

in mind, de�ne

d(A; g) :=

1
2

(A � A� 


1

(A)) + 1� g;

and de�ne M

g

(A; J;N) via 
onditions (1), (2) and (4) above, plus the following repla
e-

ment of 
ondition (3):

(3a) min

z2�

jdu(z)j �

1

N

;

(3b) There exists a point z

0

2 � su
h that

inf

z2�nfz

0

g

dist(u(z

0

); u(z))

dist(z

0

; z)

�

1

N

;

(3
) M 
ontains d := d(A; g) distin
t points p

1

; : : : ; p

d

2 M at whi
h ju

�1

(p

j

)j > 1,

and

dist ((p

1

; : : : ; p

d

);�) �

1

N

;

where � �M

d

denotes the set of tuples (x

1

; : : : ; x

d

) for whi
h at least two of the

points 
oin
ide.

The adjun
tion inequality implies that every 
urve in u 2 M

g

(A; J;N) is immersed with

transverse double points, all at distin
t points in the image, and

S

N2N

M

g

(A; J;N) now


onsists of all 
urves inM

g;0

(A; J) that have these properties. The only other modi�
ation

needed from the embedded 
ase is in the proof that J

reg

(N) is dense. This is where we

need to allow J 2 J

tame

(M;! ; U ; J

�x

) instead of J


omp

(M;! ; U ; J

�x

), as Proposition 2.3

does not provide an !-
ompatible perturbation if u has double points. Note however that

after a small perturbation of any given J , we are free to assume that all simple index 0


urves are immersed with transverse double points at separate points in the image (see

e.g. [Wena, Exer
ise 4.65 and x4.6℄), in whi
h 
ase Propositions 2.3 and 2.5 
an be used
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to �nd an !-tame perturbation in J

reg

(N). With this established, the rest of the proof

goes through as before. �

3. Normal perturbations of almost 
omplex stru
tures

The purpose of this se
tion is to prove Proposition 2.3. Fix a tame almost 
omplex

stru
ture J 2 J

tame

(M;! ; U ; J

�x

) and a 
losed J-holomorphi
 
urve u : (�; j) ! (M;J)

that has image in U and is immersed with at most �nitely many double points, all trans-

verse and at distin
t points in the image. Note that if dim

R

M � 6, this assumption means

u is embedded.

Choose a 
omplex subbundle N

u

� u

�

TM su
h that u

�

TM = T

u

� N

u

, where T

u

:=

imdu. In the 4-dimensional 
ase, our assumption about double points implies that we 
an

also arrange

(T

u

)

z

= (N

u

)

�

and (T

u

)

�

= (N

u

)

z

whenever u(z) = u(�) with z 6= �. To 
onstru
t a suitable perturbation of J , �x Y 2

�(End

C

(TM; J)) with support in U and let

� := 1+

1
2

JY 2 �(End

R

(TM)):

We shall always assume that Y is C

0

-small enough for � to be everywhere invertible, in

whi
h 
ase

J

0

:= �J�

�1

de�nes an almost 
omplex stru
ture that is 
lose to J and therefore tame if Y is suÆ
iently

small. We shall make use of the splitting u

�

TM = T

u

� N

u

and restri
t Y by assuming

that along u, it takes the blo
k form

(3.1) Y (u(z)) =

�

0 Y

NT

(z)

0 0

�

2 End

C

(T

u

�N

u

) for all z 2 �;

where Y

NT

is a (ne
essarily 
omplex-antilinear) bundle map N

u

! T

u

. Note that if u has

any double points, then this 
ondition requires Y to vanish at the images of those points.

Writing the tangent and normal parts of J along u as J

T

: T

u

! T

u

and J

N

: N

u

! N

u

respe
tively, we now have

(3.2) �(u(z)) =

�

1

1
2

J

T

(z)Y

NT

(z)

0 1

�

for all z 2 �;

and thus

(3.3) J

0

(u(z)) =

�

J

T

(z) Y

NT

(z)

0 J

N

(z)

�

for all z 2 �.

This shows that J

0

j

T

u

= J j

T

u

, so u is also J

0

-holomorpi
. We 
an now de�ne a J

0

-invariant

normal bundle along u by

N

0

u

:= �(N

u

) � u

�

TM;

so �j

N

u

: (N

u

; J) ! (N

0

u

; J

0

) is a 
omplex bundle isomorphism by 
onstru
tion. Let

�

N

0

: u

�

TM = T

u

�N

0

u

! N

0

u

denote the resulting normal proje
tion, whi
h gives rise to

a perturbed normal Cau
hy-Riemann operator

D

N

0

u

= �

N

0

ÆD

0
u

�
�

�(N

0

u

)

: �(N

0

u

)! 


0;1

(�; N

0

u

);
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where D

0
u

denotes the linearized Cau
hy-Riemann operator for u as a J

0

-holomorphi



urve. Conjugating this with the bundle isomorphism gives an operator

�

�1

ÆD

N

0

u

Æ � : �(N

u

)! 


0;1

(�; N

u

):

Lemma 3.1. There exists a smooth bundle map A : N

u

! Hom

C

(T�; N

u

) su
h that

�

�1

ÆD

N

0

u

Æ � = D

N
u

+A. For any 
onne
tion r on TM , A is given by the formula

A� = �

N

Æ r

�

Y Æ Tu Æ j:

Remark 3.2. Impli
it in the above statement is that the expression on the right hand

side of the formula does not depend on the 
hoi
e of 
onne
tion. This will follow from

a dire
t 
al
ulation in the proof, but the intuitive reason for it is that under the blo
k

de
omposition of r

�

Y given by the splitting u

�

TM = T

u

�N

u

, only the lower-left blo
k

(mapping T

u

to N

u

) is relevant in the above expression, while the 
orresponding blo
k of

Y itself has been assumed to vanish along u.

Proof of Lemma 3.1. In terms of the splitting u

�

TM = T

u

� N

u

, the perturbed normal

proje
tion u

�

TM ! N

0

u

is given in blo
k form by

�

N

0

=

�

0

1
2

J

T

Y

NT

0 1

�

;

so using (3.2) to write �

�1

(u(z)) =

�

1 �

1
2

J

T

(z)Y

NT

(z)

0 1

�

, we �nd

�

�1

Æ �

N

0

= �

N

:

Re
all now from [Wen10, Lemma 3.8℄ that D

u

maps se
tions of T

u

to (0; 1)-forms valued in

u

�

TM with vanishing normal 
omponent. The same applies to D

0
u

, hen
e for � 2 �(N

u

),

we have �� � � 2 �(T

u

) and thus

�

�

�1

ÆD

N

0

u

Æ �

�

� = (�

�1

Æ �

N

0

)D

0
u

(��) = �

N

(D

0
u

�):

To 
ompute D

0
u

�, 
hoose any smooth 1-parameter family of maps u

�

: � ! M for � 2

(��; �) with u

0

= u and �

�

u

�

j

�=0

= �. Then for any 
onne
tion r on TM and any

holomorphi
 lo
al 
oordinate system (s; t) on some open subset in �, the (0; 1)-form D

0
u

�

is given lo
ally by

(D

0
u

�)�

s

= r

�

�

�

s

u

�

+ J

0

(u

�

) �

t

u

�

�

�
�

�=0

= r

�

�

�

s

u

�

+ J(u

�

) �

t

u

�

+

�

J

0

(u

�

)� J(u

�

)

�

�

t

u

�

�

�
�

�=0

= (D

u

�)�

s

+ r

�

��

J

0

(u

�

)� J(u

�

)

�

�

t

u

�

�

�
�

�=0

= (D

u

�)�

s

+

�

r

�

(J

0

� J)

�

�

t

u+

�

J

0

(u)� J(u)

�

r

�

�

t

u

�

j

�=0

:

(3.4)

By (3.3), the image of J

0

�J has vanishing normal 
omponent everywhere along u, so the

third term on the right hand side of (3.4) does not 
ontribute to �

N

(D

0
u

�). Removing the

lo
al 
oordinates, we thus obtain the global expression

�

�

�1

ÆD

N

0

u

Æ �

�

� = D

N
u

� + �

N

Æ r

�

(J

0

� J) Æ Tu Æ j:
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To simplify the last term, observe that sin
e J

0

= �J�

�1

with � = 1+

1
2

JY , JY = �Y J

and J

2

= �1, we have

(J

0

� J)� = �J � J� =

�

1+

1
2

JY

�

J � J

�

1+

1
2

JY

�

=

1
2

JY J +

1
2

Y = Y;

hen
e J

0

� J = Y �

�1

, and therefore

r

�

(J

0

� J) = (r

�

Y )�

�1

+ Y (r

�

�

�1

):

Composing the se
ond of these two terms with Tu Æ j produ
es a se
tion with vanishing

normal 
omponent due to (3.1), so it does not 
ontribute. In the remaining expression,

�

�1


an be omitted sin
e it a
ts trivially on the tangential 
omponent, and this produ
es

the formula that was 
laimed. �

Proof of Proposition 2.3. Given a bundle map B : N

u

! Hom

C

(T�; N

u

), it will suÆ
e to


arry out the 
onstru
tion in Lemma 3.1 with � repla
ed by the 1-parameter family of

bundle isomorphisms �

�

= 1 +

1
2

�JY , as long as Y 2 �(End

C

(TM; J)) 
an be 
hosen

to mat
h a blo
k expression of the form (3.1) along u, with normal derivative along u

satisfying

(3.5) �

N

Æ r

�

Y Æ Tu Æ j = B� for all � 2 N

u

:

Sin
e Tu Æ j : T�! T

u

is a 
omplex-linear bundle isomorphism, this is 
learly possible if

u is embedded, as one 
an then assume Y = 0 along u and 
hoose its normal derivative

to satisfy (3.5). Note that if J is !-
ompatible, then J

�

will also be !-
ompatible if and

only if Y is everywhere symmetri
 with respe
t to the metri
 !(�; J �), and this 
an also be

a
hieved in the absen
e of double points sin
e (3.5) only 
onstrains the lower-left blo
k of

r

�

Y with respe
t to the splitting u

�

TM = T

u

�N

u

.

We must be a bit more 
areful if dim

R

M = 4 and u has double points. Assume

u(z) = u(�) = p, with (T

u

)

z

= (N

u

)

�

and vi
e versa. We 
an 
hoose lo
al 
oordinates

(z

1

; z

2

) 2 C

2

near p that identify p with the origin, while the images of u near z and � are

identi�ed with subsets of C � f0g and f0g � C respe
tively. In this neighborhood, 
hoose

a 
omplex lo
al trivialization of (TM; J) identifying the normal subspa
es along C � f0g

with f0g � C and those along f0g � C with C � f0g, and let r be the trivial 
onne
tion

with respe
t to this trivialization. We 
laim that in this trivialization near p, a suitable

Y 
an be written in the form

Y (z

1

; z

2

) =

�

0 Y

12

(z

1

; z

2

)

Y

21

(z

1

; z

2

) 0

�

for some fun
tions Y

12

and Y

21

valued in End

C

(C ). Indeed, the 
ondition (3.1) now be
omes

Y

21

(z

1

; 0) = 0 for all z

1

;

Y

12

(0; z

2

) = 0 for all z

2

;

while (3.5) spe
i�es the normal derivatives of Y

21

along C � f0g and Y

12

along f0g � C .

After 
hoosing Y

12

and Y

21

to satisfy these 
onditions, we 
an then also arrange Y

21

(0; z

2

) =

Y

12

(z

1

; 0) = 0 for all z

1

; z

2

ouside some small neighborhood of 0, hen
e Y vanishes along u

outside a neighborhood of p, and the previous argument for the embedded 
ase 
an then

be used to extend Y globally. �
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Remark 3.3. If J is !-
ompatible and u has double points, then the above proof fails

to provide !-
ompatible perturbations J

�

: in a neighborhood of a double point, the last

step in the 
onstru
tion generally for
es the upper-right blo
k of (3.1) to take nonzero

values, thus violating the symmetry 
ondition required for !-
ompatibility. This is why

the statement of Theorem 1.3 in the 
ompatible 
ase is limited to embedded 
urves.

4. Symmetri
 bundle isomorphisms

We now state and prove a result that implies Proposition 2.4.

Proposition 4.1. Suppose E ! � is a Hermitian ve
tor bundle, let h ; i

R

denote the

real part of its bundle metri
, and suppose L ! � is a 
omplex line bundle. Then every

homotopy 
lass of 
omplex-antilinear bundle isomorphisms B : E ! Hom

C

(L;E) 
ontains

one that satis�es the 
ondition

h�;B�(X)i

R

= hB�(X); �i

R

for all (X; �; �) 2 L�E �E:

Observe �rst that a 
hoi
e of 
omplex-antilinear isomorphism B : E ! Hom

C

(L;E)

is equivalent via the 
orresponden
e B�(X) =

b

BX(�) to a 
hoi
e of 
omplex-antilinear

bundle map

b

B : L! End

C

(E)

with the property that for all nonzero X 2 L,

b

B(X) is invertible. Proposition 4.1 is

then equivalent to showing that every homotopy 
lass of bundle maps

b

B with the above

property 
ontains one for whi
h

b

B(X) is always symmetri
. This is 
learly true for the

restri
tion of

b

B to the 0-skeleton of �, sin
e the spa
e of antilinear isomorphisms on any


omplex ve
tor spa
e is 
onne
ted and 
ontains one that is symmetri
. Extending this to

the 1-skeleton and then the 2-skeleton of � is possible due to Proposition 4.2 below.

Identify C

m

with R

2m

so that End

C

(C

m

) is regarded as the real subspa
e of End

R

(R

2m

) =

End

R

(C

m

) 
onsisting of linear maps that 
ommute with the standard 
omplex stru
ture

i 2 GL(2m;R). We then denote

Aut

C

(C

m

) := End

C

(C

m

) \GL(2m;R);

Aut

S
C

(C

m

) :=

�

A 2 Aut

C

(C

m

) j A = A

T

	

;

where A

T

means the usual transpose of real 2m-by-2m matri
es.

Proposition 4.2. We have

�

1

�

Aut

C

(C

m

);Aut

S
C

(C

m

)

�

= �

2

�

Aut

C

(C

m

);Aut

S
C

(C

m

)

�

= 0:

The proof of the proposition o

upies the remainder of this se
tion. Observe �rst that


omposition with the real-linear isomorphism

C

m

! C

m

: v 7! �v

identi�es Aut

C

(C

m

) with GL(m; C ) � GL(2m;R) and Aut

S
C

(C

m

) with

GL

S

(m; C ) :=

�

A 2 GL(m; C ) j A = A

T

	

;
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where in the latter 
ase A

T

denotes the transpose (not the adjoint!) of them-by-m 
omplex

matrix A, i.e. A

T

= A

y

. The proposition is therefore equivalent to the 
omputation

(4.1) �

1

�

GL(m; C );GL

S

(m; C )

�

= �

2

�

GL(m; C );GL

S

(m; C )

�

= 0:

We prove this in �ve steps.

Step 1. Consider the map

(4.2) Q : GL(m; C )=O(m; C ) ! GL

S

(m; C ) : A 7! A

T

A;

where O(m; C ) denotes the 
omplex orthogonal group fA 2 GL(m; C ) j A

T

A = 1g. We


laim that Q is a bije
tion. Inje
tivity is easy to 
he
k; surje
tivity follows from the fa
t

that every A 2 GL

S

(m; C ) de�nes a symmetri
 nondegenerate 
omplex bilinear form

(v; w) 7! v

T

Aw;

and all su
h forms are equivalent up to a 
hoi
e of basis. Sin
e GL(m; C ) is 
onne
ted, it

follows that GL

S

(m; C ) is 
onne
ted.

Step 2. We 
laim that for all m 2 N, O(m; C ) has exa
tly two 
onne
ted 
omponents.

It is 
lear that there are at least two, as every A 2 O(m; C ) has detA = �1. It suÆ
es

therefore to prove that SO(m; C ) := fA 2 O(m; C ) j detA = 1g is 
onne
ted. This is true

for m = 1 sin
e SO(1; C ) is the trivial group. The 
laim then follows by indu
tion using

the �bration

SO(m� 1; C ) ,! SO(m; C )

�

! H

m�1

;

where H

m�1

:= fv 2 C

m

j v

T

v = 1g and �(A) is de�ned as the �rst 
olumn of A. The fa
t

that � is surje
tive 
an be proved using the same argument that is used in diagonalizing

quadrati
 forms: it redu
es to the fa
t that any given v

1

2 H

m�1


an be extended to a


omplex basis v

1

; : : : ; v

m

2 H

m�1

of C

m

su
h that v

T

i

v

j

= Æ

ij

.

Step 3. We 
laim that �

1

(GL(m; C )=O(m; C ))

�
=

Z is generated by the proje
tion to

GL(m; C )=O(m; C ) of the path


 : [0; 1℄ ! GL(m; C ) : t 7!

0
B
B
B
�

e

�it

1

.

.

.

1

1
C
C
C
A

:

To see this, 
onsider the long exa
t sequen
e of the �bration O(m; C )

�

,! GL(m; C )

p

!

GL(m; C )=O(m; C ):

: : : �! �

1

(GL(m; C ))

p

�

�! �

1

(GL(m; C )=O(m; C ))

�

�!

�

0

(O(m; C )) �! �

0

(GL(m; C )) = 0:

Any loop in GL(m; C )=O(m; C ) 
an be represented as a path � : [0; 1℄ ! GL(m; C ) with

�(0) = 1 and �(1) 2 O(m; C ), and the map � 
an then be written as

�[�℄ = det�(1) 2 f1;�1g = �

0

(O(m; C ));

applying the result of Step 2. Sin
e ker � = im p

�

, any su
h path � with det�(1) = 1

is equivalent in �

1

(GL(m; C )=O(m; C )) to a loop in GL(m; C ), and using the standard



GENERIC TRANSVERSALITY FOR UNBRANCHED COVERS OF HOLOMORPHIC CURVES 21


omputation of �

1

(GL(m; C )) = �

1

(U(m)), any su
h loop is homotopi
 to

S

1

! GL(m; C ) : t 7!

0
B
B
B
�

e

2�kit

1

.

.

.

1

1
C
C
C
A

for some k 2 Z. Thus any su
h element of �

1

(GL(m; C )=O(m; C )) is an even power

of 
. If on the other hand det �(1) = �1, then we 
an 
on
atenate � with the loop

t 7! [�(1)
(t)℄ in GL(m; C )=O(m; C ), whose determinant at t = 1 is positive, implying

that � � 
 2 �

1

(GL(m; C )=O(m; C )) is an even power of 
, so this proves the 
laim.

Step 4. We 
laim that the 
omposition of the map Q in (4.2) with the in
lusion

GL

S

(m; C ) ,! GL(m; C ) indu
es an isomorphism

�

1

(GL(m; C )=O(m; C )) = �

1

(GL(m; C )):

This follows by 
omputing the a
tion of this map on the generator of �

1

(GL(m; C )=O(m; C ))

as des
ribed in Step 3.

Step 5. Consider the homotopy exa
t sequen
e for (GL(m; C );O(m; C )):

: : : �!�

2

(GL(m; C ))

�

2

�! �

2

�

GL(m; C );GL

S

(m; C )

�

�

2

�!

�

1

�

GL

S

(m; C )

�

�

�

�! �

1

(GL(m; C ))

�

1

�! �

1

�

GL(m; C );GL

S

(m; C )

�

�

1

�!

�

0

�

GL

S

(m; C )

�

= 0:

We showed in Step 4 that �

�

is an isomorphism, thus �

1

= 0, implying that �

1

is inje
tive

and thus

�

1

�

GL(m; C );GL

S

(m; C )

�

= 0:

Moreover, the inje
tivity of �

�

implies �

2

= 0, so �

2

is surje
tive and, sin
e �

2

(GL(m; C )) =

�

2

(U(m)) = 0,

�

2

�

GL(m; C );GL

S

(m; C )

�

= 0:

This 
ompletes the proof of Proposition 4.2 and hen
e, by standard obstru
tion theory as

in [Ste51℄, Proposition 4.1.

5. A Weitzenb

�

o
k formula for antilinear perturbations

In preparation for the proof of Proposition 2.5, we now explain a generalization of the

Weitzenb�o
k formula that was derived in x2.1 for trivial bundles on the torus.

Throughout this se
tion, we assume (�; j) is a 
losed 
onne
ted Riemann surfa
e and

(E; J)! (�; j) is a 
omplex ve
tor bundle of rank m 2 N with Hermitian stru
ture h ; i

E

.

Fix also a j-invariant Riemannian metri
 on �, whi
h is the real part of a Hermitian

stru
ture h ; i

�

on T�, and denote the indu
ed volume form on � by d vol. This 
hoi
e

determines a 
omplex-linear bundle isomorphism

5

(5.1) T�! �

0;1

T

�

� : X 7! X

0;1

:= h�;Xi

�

5

We are using the 
onvention that Hermitian bundle metri
s are antilinear in the �rst and linear in the

se
ond argument.
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and 
onsequently a global trivialization

(5.2) �

1;0

T

�

�
 �

0;1

T

�

�! C : �
X

0;1

7! �(X):

Moreover, the rank m 
omplex bundle

F := �

0;1

T

�

�
E

inherits from h ; i

�

and h ; i

E

a Hermitian bundle metri
 h ; i

F

, and we shall de�ne

real-valued L

2

-pairings for se
tions of E and F by

h�; �i

L

2

(E)

:= Re

Z

�

h�; �i

E

d vol; for �; � 2 �(E);

h�; �i

L

2

(F )

:= Re

Z

�

h�; �i

F

d vol; for �; � 2 �(F ):

Given any real-linear map D : �(E) ! �(F ), the formal adjoint D

�

: �(F ) ! �(E) is

de�ned via the relation

h�;D�i

L

2

(F )

= hD

�

�; �i

L

2

(E)

for all � 2 �(E); � 2 �(F ):

Re
all that D : �(E)! 


0;1

(�; E) = �(F ) is 
alled a Cau
hy-Riemann type operator

on E if it satis�es the Leibniz rule

D(f�) = (

�

�f)� + f D� for all f 2 C

1

(�;R); � 2 �(E);

where

�

�f := df+i df Æj. Similarly, we will say that D : E ! 


1;0

(�; E) = �(�

1;0

T

�

�
E)

is an anti-Cau
hy-Riemann type operator on E if it satis�es

(5.3) D(f�) = (�f)� + f D� for all f 2 C

1

(�;R); � 2 �(E);

with �f := df � i df Æ j. If D is of Cau
hy-Riemann type, then it is well known that D

�

is


onjugate via real-linear bundle isomorphisms to another Cau
hy-Riemann type operator;

more pre
isely, the natural 
omplex bundle isomorphism

(5.4) �

1;0

T

�

�
 F = �

1;0

T

�

�
 �

0;1

T

�

�
E = E

de�ned via (5.2) identi�es �D

�

with an anti-Cau
hy-Riemann type operator

�D

�

: �(F )! �(E) = �(�

1;0

T

�

�
 F ) = 


1;0

(�; F ):

Proposition 5.1. Suppose D : �(E)! �(F ) is a real-linear Cau
hy-Riemann type oper-

ator, B : E ! F is a 
omplex-antilinear bundle map satisfying the symmetry 
ondition

(5.5) Reh�;B�(X)i

E

= RehB�(X); �i

E

for all (X; �; �) 2 T��E �E;

and D

B

:= D + B. Then the 
omplex ve
tor bundle

6

Hom

C

(E;F ) admits a real-linear

anti-Cau
hy-Riemann type operator �

H

su
h that for all � 2 �(E),

D

�
B

D

B

� = D

�

D� +B

�

B� � (�

H

B)�:

6

We de�ne the 
omplex stru
ture on Hom

R

(E;F ) and its subbundles su
h as Hom

C

(E;F ) via the


omplex stru
ture of F , i.e. B 7! J ÆB.
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Remark 5.2. In the above formula, the produ
t of �

H

B 2 


1;0

(�;Hom

C

(E;F )) with

� 2 �(E) is interpreted as a se
tion of E via the produ
t pairing

�

�

1;0

T

�

�
Hom

C

(E;F )

�


E ! �

1;0

T

�

�
 F

and the isomorphism (5.4).

The proof of Proposition 5.1 will rely mainly on a few basi
 observations about anti-

Cau
hy-Riemann operators. Re
all that a 
omplex-valued fun
tion f on an open subset of

� is 
alled antiholomorphi
 if it satis�es �f � 0. The 
omposition of a holomorphi
 and

an antiholomorphi
 fun
tion is antiholomorphi
, and the produ
t of two antiholomorphi


fun
tions is also antiholomorphi
, thus it makes sense to speak of antiholomorphi
 ve
tor

bundles over �. Anti-Cau
hy-Riemann type operators have several properties analogous

to Cau
hy-Riemann type operators, notably:

(1) The di�eren
e between two anti-Cau
hy-Riemann type operators on the same bun-

dle is a zeroth-order operator.

(2) The 
omplex-linear part of any real-linear anti-Cau
hy-Riemann type operator is

also an anti-Cau
hy-Riemann type operator.

(3) Every antiholomorphi
 ve
tor bundle 
arries a natural 
omplex-linear anti-Cau
hy-

Riemann operator that annihilates lo
al antiholomorphi
 se
tions, and 
onversely,

every 
omplex-linear anti-Cau
hy-Riemann operator on (E; J) ! (�; j) indu
es

an antiholomorphi
 bundle stru
ture in this way.

The �rst two statements are easy 
onsequen
es of the Leibniz rule (5.3). The third is non-

trivial, but is equivalent to the 
orresponding fa
t about Cau
hy-Riemann type operators

and holomorphi
 bundles over Riemann surfa
es.

Lemma 5.3. Suppose E

1

and E

2

are 
omplex ve
tor bundles over (�; j) endowed with

anti-Cau
hy-Riemann type operators D

1

and D

2

respe
tively. Then Hom

C

(E

1

; E

2

) admits

an anti-Cau
hy-Riemann type operator D

12

su
h that for all � 2 �(Hom

C

(E

1

; E

2

)) and

� 2 �(E

1

),

D

2

(��) = (D

12

�)� +�(D

1

�):

Proof. Write D

1

= D

C
1

+A and D

2

= D

C
2

+B, where D

C
1

and D

C
2

are 
omplex-linear anti-

Cau
hy-Riemann type operators (e.g. the 
omplex-linear parts ofD

1

andD

2

respe
tively),

so

A : E

1

! �

1;0

T

�

�
E

1

and B : E

2

! �

1;0

T

�

�
E

2

are zeroth-order terms. Then D

C
1

and D

C
2

indu
e antiholomorphi
 bundle stru
tures on

E

1

and E

2

, and Hom

C

(E

1

; E

2

) therefore inherits lo
al trivializations with transition maps

that are produ
ts of antiholomorphi
 fun
tions, giving rise to an antiholomorphi
 stru
ture

and a 
orresponding 
omplex-linear anti-Cau
hy-Riemann operator D

C
12

that satis�es

D

C
2

(��) = (D

C
12

�)� +�(D

C
1

�)

for all � 2 �(Hom

C

(E

1

; E

2

)) and � 2 �(E

1

). The desired operator 
an then be de�ned as

D

12

= D

C
12

+ C, where C : Hom

C

(E

1

; E

2

) ! �

1;0

T

�

� 
 Hom

C

(E

1

; E

2

) is a bundle map

taking the form

(C�)� = B(��)� �(A�) 2 �

1;0

T

�

�
E

2

for (�; �) 2 Hom

C

(E

1

; E

2

)�E

1

. �
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For any ve
tor bundle (E

1

; J

1

) over �, let E




1

denote its 
onjugate bundle, de�ned

as the same real ve
tor bundle but with 
omplex stru
ture �J

1

. The identity map gives

a natural 
omplex-antilinear bundle isomorphism

E

1

! E




1

: v 7! �v;

and if E

1


arries a Hermitian bundle metri
 h ; i

E

1

, its 
onjugate inherits a Hermitian

stru
ture de�ned by

h�v; �wi

E




1

= hw; vi

E

1

:

There are 
anoni
al 
omplex-linear bundle isomorphisms

(E

1


E

2

)




= E




1


E




2

; Hom

C

(E

1

; E

2

)




= Hom

C

(E




1

; E




2

); Hom

C

(E




1

; E

2

) = Hom

C

(E

1

; E

2

);

where the third of these identi�es � 2 Hom

C

(E




1

; E

2

) with the antilinear map

B : E

1

! E

2

: � 7! ���:

The metri
 on � determines a 
omplex-linear isomorphism

(T�)




! �

1;0

T

�

� :

�

X 7! X

1;0

:= hX; �i

�

;

so together with (5.1), this identi�es �

1;0

T

�

� and �

0;1

T

�

� with ea
h other's 
onjugate

bundles. Observe now that if D : �(E)! �(F ) is a Cau
hy-Riemann type operator, then

D




�� := D�

de�nes an anti-Cau
hy-Riemann type operator

D




: �(E




)! �(F




) = �

�

(�

0;1

T

�

�
E)




�

= �(�

1;0

T

�

�
E




) = 


1;0

(�; E




):

Given an antilinear bundle map B : E ! F , let � : E




! F denote the 
orresponding


omplex-linear bundle map su
h that

B� = ���;

and let �

y

: F ! E




denote the adjoint of � with respe
t to the Hermitian stru
tures on

E




and F , i.e.

h�; ���i

F

= h�

y

�; ��i

E




for all (��; �) 2 E




� F:

Conjugating this then gives a bundle map

�

y

=

�

�

y

: F




! E:

We 
laim that � : E




! F 
an also be regarded as a bundle map F




! E. Indeed, using

the isomorphism

F




= (�

0;1

T

�

�
E)




= �

1;0

T

�

�
E




;

we obtain from � : E




! F a bundle map

F




= �

1;0

T

�

�
E




1
�

�! �

1;0

T

�

�
 F;

where the target 
an be identi�ed with E via (5.4).

Lemma 5.4. Fix a 
omplex-linear bundle map � : E




! F and let B : E ! F : � 7! ���.

Then B satis�es the symmetry 
ondition (5.5) if and only if � and

�

�

y

de�ne identi
al

bundle maps F




! E.
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Proof. It will suÆ
e to show that (5.5) holds if and only if for every z 2 �, � 2 E

z

and

�

� 2 F




z

,

Reh�

�

�; �i

E

= Reh

�

�

y

�

�; �i

E

:

Choose any nonzero ve
tor X 2 T

z

�; we 
an then write � = X

0;1


� 2 �

0;1

T

�

z

�
E

z

= F

z

where � := �(X)=jXj

2
�

2 E

z

. Similarly, ��� = B� = X

0;1


 �, where � := B�(X)=jXj

2
�

2

E

z

. Then

h

�

�

y

�

�; �i

E

= h

�

�;

�

��i

F




= h���; �i

F

= hX

0;1


 �;X

0;1


 �i

F

= hX;Xi

�

h�; �i

E

= hB�(X); �i

E

:

Likewise, writing �

�

� = X

0;1


 � for � := B�(X)=jXj

2
�

2 E

z

, we use the natural isomor-

phisms (5.2), (5.4) and

(�

0;1

T

�

�)




! �

1;0

T

�

� : X

0;1

7! X

1;0

to obtain

h�

�

�; �i

E

= h�(X

1;0




�

�); �i

E

= hX

1;0


 �

�

�; �i

E

= hX

1;0


X

0;1


 �; �i

E

=

�

hX;Xi

�

1

jXj

2
�

B�(X); �

�

E

= hB�(X); �i

E

:

�

Proof of Proposition 5.1. Writing D

�
B

= D

�

+B

�

, we �rst expand

D

�
B

D

B

� = (D

�

+B

�

)(D+B)� = D

�

D� +B

�

B� +D

�

(B�) +B

�

(D�):

We will see that all derivatives of � 
an
el in the sum of the last two terms. Write

B� = ���, where � 2 �(Hom

C

(E




; F )). To understand D

�

(B�) = D

�

(���), we 
an view

�D

�

as an anti-Cau
hy-Riemann type operator on F , and sin
e D




is likewise an anti-

Cau
hy-Riemann type operator on E




, Lemma 5.3 provides an anti-Cau
hy-Riemann type

operator �

H

on Hom

C

(E




; F ) su
h that

(5.6) �D

�

(���) = (�

H

�)�� + �D




��:

For the �nal term in the expansion, observe that for any z 2 �, � 2 E

z

and � 2 F

z

,

Reh�;B�i

F

= Reh�; ���i

F

= Reh�

y

�; ��i

E




= Reh�;

�

�

y

�

�i

E

= Reh

�

�

y

�

�; �i

E

;

whi
h gives the formula B

�

� =

�

�

y

�

�, hen
e

(5.7) B

�

(D�) =

�

�

y

D




��:

Putting (5.6) and (5.7) together and applying Lemma 5.4, we have

D

�

(B�) +B

�

(D�) = �(�

H

�)�� + (

�

�

y

� �)D




�� = �(�

H

�)��;

and the stated formula follows by using the natural identi�
ation of Hom

C

(E




; F ) with

Hom

C

(E;F ) to view �

H

as an anti-Cau
hy-Riemann type operator on the latter. �

Suppose next that (

e

�; ~|) is another 
losed 
onne
ted Riemann surfa
e.
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De�nition 5.5. Given a non
onstant holomorphi
 map ' : (

e

�; ~|)! (�; j) and a Cau
hy-

Riemann type operator D on E, de�ne '

�

D to be the unique Cau
hy-Riemann type

operator on '

�

E that satis�es

(5.8) ('

�

D)(� Æ ') = '

�

(D�) for all � 2 �(E):

The uniqueness of '

�

D is 
lear from (5.8). To see that su
h an operator always exists,

write D = D

C

+ A where D

C

is a 
omplex-linear Cau
hy-Riemann type operator and

A : E ! F is a real-linear bundle map, whi
h we 
an view equivalently as a (0; 1)-form

valued in End

R

(E). Then D

C

indu
es a holomorphi
 bundle stru
ture on E, whi
h pulls

ba
k to de�ne a holomorphi
 stru
ture on '

�

E and 
onsequently a Cau
hy-Riemann type

operator '

�

D

C

. The operator '

�

D

C

+ '

�

A then satis�es (5.8).

Example 5.6. If u : (�; j)! (M;J) is an immersed J-holomorphi
 
urve and ~u = u Æ ',

then D

N

~u

= '

�

D

N
u

.

The next lemma is only interesting when ' has bran
h points and is thus not needed

for the proof of Theorem 1.3, but the general 
ase of Proposition 2.5 requires it. Given D

and B as in Proposition 5.1 and a non
onstant holomorphi
 map ' : (

e

�; ~|) ! (�; j), let

us abbreviate

e

E = '

�

E;

e

F = �

0;1

T

�

e

�


e

E;

e

D = '

�

D : �(

e

E)! �(

e

F ):

Viewing B as an End

C

(E)-valued (0; 1)-form on �, we 
an then de�ne

e

B = '

�

B 2 


0;1

(

e

�;End

C

(

e

E));

e

D

B

=

e

D+

e

B : �(

e

E)! �(

e

F ):

Choose a Hermitian stru
ture h ; i

e

�

on T

e

�, whose real part is then a ~|-invariant Rie-

mannian metri
 on

e

�. The bundles

e

E and

e

F now inherit natural Hermitian stru
tures,

the former as the pullba
k of E and the latter as the tensor produ
t �

0;1

T

�

e

� 


e

E, and

these determine formal adjoint operators

e

D

�

and

e

D

�
B

. The symmetry assumption (5.5) on

B implies that

e

B also satis�es this 
ondition, so that Proposition 5.1 gives a Weitzenb�o
k

formula over

e

� in the form

e

D

�
B

e

D

B

� =

e

D

�

e

D� +

e

B

�

e

B� � (

~

�

H

e

B)�

for some anti-Cau
hy-Riemann type operator

~

�

H

on Hom

C

(

e

E;

e

F ).

Lemma 5.7. Assume the Riemannian metri
 Reh ; i

e

�

on

e

� is 
at near all 
riti
al points

of '. Then there exists a 
onstant 
 > 0 su
h that

�
�~

�

H

e

B(z)

�
�

� 
jd'(z)j

2

for all z 2

e

�:

Proof. Re
all from the proof of Proposition 5.1 that after identifying Hom

C

(

e

E;

e

F ) with

Hom

C

(

e

E




;

e

F ) by writing

e

B� =

~

��� for

~

� 2 �(Hom

C

(

e

E




;

e

F )), the operator

~

�

H

is determined

by the two anti-Cau
hy-Riemann type operators

e

D




and �

e

D

�

via a Leibniz rule. It will

suÆ
e to 
he
k that j

~

�

H

~

�j � 
jd'j

2

holds in suitable lo
al trivializations in a neighborhood

of ea
h bran
h point z

0

2

e

�. Sin
e the metri
 on

e

� is assumed 
at near z

0

and indu
es

the same 
onformal stru
ture as ~|, we 
an �nd holomorphi
 
oordinates z = s+ it on some

neighorhood

e

U �

e

� of z

0

in whi
h the area form determined by the metri
 is ds^dt, and the

indu
ed bundle metri
 on �

0;1

T

�

e

�j

e

U

satis�es jd�zj

e

�

= 1. Choose holomorphi
 
oordinates
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also on a neighborhood U � � of '(z

0

) and assume without loss of generality that '(

e

U) =

U . Next, �x a unitary trivialization of Ej

U

, pull it ba
k to de�ne a trivialization of

e

Ej

e

U

,

and use this together with the frame d�z to trivialize

e

F = �

0;1

T

�

e

� 


e

E over

e

U . These

trivializations identify D and

e

D lo
ally with operators of the form

D =

�

� +A;

e

D =

�

� +

~

A;

where

�

� = �

s

+ i�

t

, A : U ! End

R

(C

m

) and

~

A :

e

U ! End

R

(C

m

). Using the natural

trivialization indu
ed on

e

E




j

e

U

for whi
h the 
anoni
al antilinear isomorphism

e

E !

e

E




appears as 
omplex 
onjugation,

e

D





an now be written as

e

D




= � +

~

A




;

where

~

A




:

e

U ! End

R

(C

m

) is de�ned by

~

A




�� =

~

A�. Observe now that our trivializations of

e

E and

e

F over

e

U are both unitary, and sin
e the area form

e

U is also standard in 
oordinates,

the formal adjoint of

e

D takes the form

e

D

�

= �� +

~

A

T

:

From these expressions and the Leibniz rule (
f. the proof of Lemma 5.3), one derives a

fun
tion

e

C :

e

U ! End

R

(End

C

(C

m

)) su
h that the lo
al formula for

~

�

H

as a di�erential

operator on End

C

(C

m

)-valued fun
tions is

(5.9)

~

�

H

= � +

e

C where (

e

C�)�� = �

~

A

T

(���)� �(

~

A




��):

Re
all now that sin
e

e

D = '

�

D, A and

~

A represent elements of 


0;1

(�;End

R

(E)) and




0;1

(

e

�;End

R

(

e

E)) respe
tively, with the latter being the pullba
k of the former via '.

To make this expli
it, the fun
tion A : U ! End

R

(C

m

) represents a (0; 1)-form that


orresponds under our trivialization of Ej

U

to d�z 
 A 2 


0;1

(End

R

(C

m

)), and

~

A then


orresponds to the pullba
k '

�

(d�z 
 A) = d �' 
 (A Æ ') = d�z 
 '

0

� (A Æ '), giving the

relation

~

A(z) = '

0

(z)A('(z)):

This implies an estimate of the form j

~

A(z)j � 
j'

0

(z)j and, by (5.9), a similar estimate for

j

e

C(z)j. Finally, viewing

~

� as a (0; 1)-form valued in Hom

C

(

e

E




;

e

E), it is also the pullba
k

of a Hom

C

(E




; E)-valued (0; 1)-form and is thus similarly represented in trivializations by

a fun
tion

~

� :

e

U ! End

C

(C

m

) that satis�es

~

�(z) = '

0

(z)�('(z))

for some fun
tion � : U ! End

C

(C

m

). The estimate j

~

�

H

~

�j = j�

~

� +

e

C

~

�j � 
j'

0

j

2

now

follows by a short 
al
ulation: indeed, j

e

C

~

�j � j

e

Cj � j

~

�j � 
j'

0

j

2

for some 
 > 0, and sin
e '

0

is antiholomorphi
, �

~

� = �

�

'

0

� (� Æ ')

�

= '

0

(��Æ')'

0

similarly satis�es j�

~

�j � 
j'

0

j

2

. �

6. Regularity for the linearized operator

We now state and prove a linear perturbation result that implies Proposition 2.5. The

result is a higher-dimensional generalization of results for 
omplex line bundles that were

proved by Taubes [Tau96a,Tau96b℄, and similar results stated in [Rau04℄.
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Assume (�; j) and (

e

�; ~|) are 
losed 
onne
ted Riemann surfa
es, ' : (

e

�; ~|) ! (�; j) is

a holomorphi
 map of degree d � 1, (E; J) ! (�; j) is a 
omplex ve
tor bundle of rank

m � 1, and D : �(E)! 


0;1

(�; E) is a real-linear Cau
hy-Riemann type operator. As in

the previous se
tion, we shall abbreviate

e

E = '

�

E;

e

D = '

�

D;

where '

�

D : �('

�

E)! 


0;1

(

e

�; '

�

E) denotes the indu
ed Cau
hy-Riemann type operator

on the pullba
k (see De�nition 5.5).

Now assume ind(D) = 0. By the Riemann-Ro
h formula, this means

�


1

(E) =m�(�) + 


1

(E) = 


1

(Hom

C

(T�; E));

so there exists a 
omplex-antilinear bundle isomorphism

B : E ! Hom

C

(T�; E):

Choosing a Hermitian bundle metri
 h ; i

E

on E, we 
an also arrange by Proposition 2.4

that B satis�es the symmetry 
ondition

(6.1) Reh�;B�(X)i

E

= RehB�(X); �i

E

for all (X; �; �) 2 T��E �E:

This gives rise to a 1-parameter family of real-linear Cau
hy-Riemann type operators on

e

E, de�ned by

e

D

�

= '

�

(D+ �B) =

e

D+ �

e

B

for � 2 R, where we abbreviate

e

B := '

�

B with B regarded as an End

C

(E; J)-valued

(0; 1)-form. Let Z(d') � 0 denote the algebrai
 
ount of bran
h points of ', whi
h is

��(

e

�) + d�(�) by the Riemann-Hurwitz formula. Then

ind(

e

D

�

) = m�(

e

�) + 2


1

('

�

E) = m [d�(�)� Z(d')℄ + 2d


1

(E)

= d � ind(D) �mZ(d') = �mZ(d') � 0:

Theorem 6.1. The operators

e

D

�

: �(

e

E) ! 


0;1

(�;

e

E) de�ned above are inje
tive for all

� 2 R outside of a dis
rete subset.

Remark 6.2. The proof of Theorem 1.3 only requires the spe
ial 
ase of Theorem 6.1

for whi
h ' : (

e

�; ~|) ! (�; j) is unbran
hed, and in this 
ase the proof below be
omes

somewhat simpler, e.g. it does not require Lemma 5.7. The general 
ase of Theorem 6.1

may nonetheless be useful for proving stronger super-rigidity results.

As in x2.1, we 
an use analyti
 perturbation theory to redu
e this theorem to a state-

ment for parti
ular values of � . We �rst extend

e

D

�

to a Fredholm operator between

Hilbert spa
es H

1

and L

2

, ea
h regarded as real ve
tor spa
es (sin
e

e

D

�

itself is real and

not 
omplex linear), then 
omplexify and 
onsider the family of 
omplex-linear Fredholm

operators

e

D

�

: H

1

(

e

E)
 C ! L

2

(Hom

C

(T

e

�;

e

E))
 C

for � 2 C . This family depends holomorphi
ally on � . Note that for � 2 R, the underlying

operator

e

D

�

is inje
tive whenever its 
omplexi�
ation is inje
tive. Thus by Proposition A.1

in the appendix, in order to prove Theorem 6.1, it suÆ
es to establish the following:

Lemma 6.3. The operator

e

D

�

is inje
tive for all suÆ
iently large � > 0.
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Proof. Choose a Hermitian bundle metri
 on T

e

� that mat
hes the standard Hermitian

inner produ
t in some 
hoi
e of lo
al holomorphi
 
oordinates near ea
h of the bran
h

points of '. This gives rise to a family of formal adjoint operators

e

D

�
�

with

e

D

�
0

=:

e

D

�

su
h that by Proposition 5.1,

e

D

�
�

e

D

�

� =

e

D

�

e

D� + �

2

e

B

�

e

B� � �(

~

�

H

e

B)�;

and Lemma 5.7 also implies

�
�

~

�

H

e

B

�
�

� 


1

jd'j

2

for some 


1

> 0. Sin
e B is a bundle isomorphism, we 
an �nd another 
onstant 


2

> 0,

su
h that jB�j � 


2

j�j and thus

�
� e

B�

�
�

� 


2

jd'j � j�j:

We then �nd for every � 2 �(

e

E),

k

e

D

�

�k

2
L

2

=

D

�;

e

D

�
�

e

D

�

�

E

L

2

=

D

�;

e

D

�

e

D� + �

2

e

B

�

e

B� � �(

~

�

H

e

B)�

E

L

2

= k

e

D�k

2
L

2

+ �

2

k

e

B�k

2
L

2

� �

D

�; (

~

�

H

e

B)�

E

L

2

�

�

�

2




2
2

� �


1

�






jd'j � �






2
L

2

;

where the 
onstants 


1

; 


2

> 0 are independent of �. Sin
e jd'j > 0 almost everywhere,

we 
on
lude that

e

D

�

is inje
tive whenever �

2




2
2

� �


1

> 0. �

Appendix A. Some analyti
 perturbation theory

The linear perturbation argument of x6 requires a basi
 ingredient from analyti
 per-

turbation theory in the spirit of [Kat95℄. Sin
e we were not able to �nd a referen
e for

the pre
ise result we need, we have in
luded a proof of it in this appendix for the sake of


ompleteness.

Given 
omplex Bana
h spa
esX and Y , denote by L(X;Y ) the Bana
h spa
e of bounded


omplex-linear operators X ! Y , abbreviate L(X) := L(X;X), and let Fred(X;Y ) �

L(X;Y ) denote the open subset 
onsisting of Fredholm operators. Sin
e Fred(X;Y ) 
arries

a natural 
omplex stru
ture as a subset of L(X;Y ), it makes sense to speak of holomor-

phi
 maps into Fred(X;Y ), i.e. maps whi
h are Fr�e
het di�erentiable with 
omplex-linear

derivative.

Proposition A.1. Suppose U � C is a 
onne
ted open subset and U ! Fred(X;Y ) : � 7!

T

�

is a holomorphi
 map, and let

Z = f� 2 U j T

�

is not inje
tiveg:

Then either Z is a dis
rete subset of U , or Z = U .

Proof. Given any T

0

2 Fred(X;Y ), there exist splittings into 
losed linear subspa
es

X = V � kerT

0

; Y =W � 
okerT

0

su
h that T

0

j

V

is an isomorphism V ! W . Using this splitting, we 
an write any other

T 2 Fred(X;Y ) in blo
k form as

T =

�

A B

C D

�

;
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and de�ne O � Fred(X;Y ) to be the open neighborhood of T

0

for whi
h the blo
k A is

invertible. We 
an then de�ne a holomorphi
 map

� : O ! L(kerT

0

; 
okerT

0

) : T 7! D�CA

�1

B:

We 
laim that for allT 2 O, kerT

�
=

ker�(T). To see this, asso
iate to T the isomorphism

	 =

�

1 �A

�1

B

0 1

�

2 L(V � kerT

0

) = L(X):

Then T	 =

�

A 0

C �(T)

�

, and sin
e A is invertible, kerT	 = f0g�ker �(T), from whi
h

the 
laim follows.

Now if U ! Fred(X;Y ) : � ! T

�

is a family of operators depending holomorphi
ally

on � , then �xing any �

0

2 U and pla
ing T

�

0

in the role of T

0

above, one 
an de�ne � on

a neighborhood of T

�

0

so that

� 7! �(T

�

)

de�nes a holomorphi
 
urve mapping into the �nite-dimensional 
omplex ve
tor spa
e

L(kerT

�

0

; 
okerT

�

0

) for � in a neighborhood of �

0

. The set of all � near �

0

for whi
h T

�

is not inje
tive then 
orresponds to the interse
tions of this holomorphi
 
urve with the

strati�ed 
omplex subvariety of noninje
tive maps in L(kerT

�

0

; 
okerT

�

0

), whi
h has pos-

itive 
odimension. The proposition thus follows from the standard results on interse
tions

of holomorphi
 
urves with 
omplex submanifolds. �
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