
ar
X

iv
:1

20
2.

46
85

v4
  [

m
at

h.
SG

] 
 2

1 
D

ec
 2

01
3

CONTACT HYPERSURFACES IN UNIRULEDSYMPLECTIC MANIFOLDS ALWAYS SEPARATECHRIS WENDLAbstra
t. We observe that nonzero Gromov-Witten invariants withmarked point 
onstraints in a 
losed symple
ti
 manifold imply restri
-tions on the homology 
lasses that 
an be represented by 
onta
t hyper-surfa
es. As a spe
ial 
ase, 
onta
t hypersurfa
es must always separateif the symple
ti
 manifold is uniruled. This removes a super
uous as-sumption in a result of G. Lu [Lu00℄, thus implying that all 
onta
tmanifolds that embed as 
onta
t type hypersurfa
es into uniruled sym-ple
ti
 manifolds satisfy the Weinstein 
onje
ture. We prove the mainresult using the Cieliebak-Mohnke approa
h to de�ning Gromov-Witteninvariants via Donaldson hypersurfa
es, thus no semipositivity or virtualmoduli 
y
les are required. Contents1. The statement 11.1. Main result and 
onsequen
es 11.2. Re
olle
tions on Gromov-Witten theory 31.3. Dis
ussion 51.4. A
knowledgments 62. Some preparations 62.1. De�ning the Gromov-Witten pseudo
y
le 62.2. Donaldson hypersurfa
es transverse to a 
onta
t hypersurfa
e 123. The proof 16Appendix A. The forgetful map is a pseudo
y
le 20Referen
es 231. The statement1.1. Main result and 
onsequen
es. In this note, we prove the following.Main theorem. Suppose (M;!) is a 
losed symple
ti
 manifold and V �M is a real hypersurfa
e that is pseudo
onvex for some 
hoi
e of !-
ompatiblealmost 
omplex stru
ture on M . Then the rational Gromov-Witten invari-ants of (M;!), de�ned in the sense of [CM07℄ (see x2.1.1 and x2.1.2), satisfyGW(M;!)0;m;A(PD[V ℄ [ �1; �2; : : : ; �m;�) = 0for all m � 3, A 2 H2(M), �1; : : : ; �m 2 H�(M ;Q) and � 2 H�(M0;m;Q).2010 Mathemati
s Subje
t Classi�
ation. Primary 57R17; Se
ondary 53D45, 53D35.Resear
h supported by a Royal So
iety University Resear
h Fellowship.1

2 CHRIS WENDLRe
all that a real hypersurfa
e V in an almost 
omplex manifold (M;J)is pseudo
onvex (also sometimes 
alled J-
onvex) if the maximal J-invariant subbundle � � TV is a 
onta
t stru
ture whose 
anoni
al 
on-formal 
lass of symple
ti
 stru
tures tames J j�. As an important spe
ial
ase, when (M;!) is a symple
ti
 manifold, we say V � M is a 
onta
ttype hypersurfa
e if ! 
an be written in a neighborhood of V as d� forsome 1-form � whose restri
tion to V is a 
onta
t form. In that 
ase, Vis J -
onvex for any 
hoi
e of !-tame almost 
omplex stru
ture J that pre-serves the 
onta
t stru
ture on V , and without loss of generality one 
analso arrange J to be !-
ompatible.We will show in x1.2 below that the main theorem has the followingimmediate 
onsequen
e:Corollary 1.1. Suppose (M;!) is a 
losed symple
ti
 manifold that is sym-ple
ti
ally uniruled (see De�nition 1.5). Then every 
onta
t type hypersur-fa
e in (M;!) is separating.Some motivation to prove su
h a result 
omes from the Weinstein 
onje
-ture, whi
h asserts that any 
losed 
onta
t type hypersurfa
e in a symple
ti
manifold has a 
losed orbit of its 
hara
teristi
 line �eld. There is a longhistory of results that prove this 
onje
ture under various assumptions onthe existen
e of holomorphi
 
urves in the ambient symple
ti
 manifold,
f. [HV92,LT00,Lu00℄. However, su
h results have often been proved onlyfor separating 
onta
t hypersurfa
es, leaving the question without this ex-tra assumption open. Our theorem thus shows that the extra assumption issuper
uous, e.g. 
ombining it with Guang
un Lu's result, we obtain:Corollary 1.2 (via [Lu00℄). If (V; �) is a 
onta
t manifold that embeds into asymple
ti
ally uniruled symple
ti
 manifold as a 
onta
t type hypersurfa
e,then every 
onta
t form for (V; �) admits a periodi
 Reeb orbit, i.e. theWeinstein 
onje
ture holds for (V; �).For more on symple
ti
 manifolds to whi
h this result applies, see [Hyv12℄and the referen
es therein.Remark 1.3. Our use of the te
hnique of Cieliebak and Mohnke [CM07℄for de�ning the Gromov-Witten invariants via Donaldson hypersurfa
es im-poses 
ertain te
hni
al restri
tions on the s
ope of the above results: (1) Thesetup in [CM07℄ only handles symple
ti
 manifolds with integral 
ohomol-ogy, i.e. [!℄ 2 H2(M ;Z), due to the need for a symple
ti
 hypersurfa
ePoin
ar�e dual to a large multiple of [!℄. One 
an obviously generalize thisto the assumption that [!℄ is any real multiple of an integral 
lass, and of
ourse every symple
ti
 form admits a small perturbation that has this prop-erty. It is likely moreover that the restri
tion to integral 
lasses 
an be liftedentirely by 
hoosing symple
ti
 hypersurfa
es that approximate the relevanthomology 
lasses, and indeed, the re
ent preprint of Ionel and Parker [IP℄
laims to de�ne fully deformation-invariant Gromov-Witten invariants forarbitrary [!℄ 2 H2dR(M) using similar te
hniques. For simpli
ity, we shallnonetheless assume wherever ne
essary that [!℄ is integral, in order to re-main fully 
onsistent with [CM07℄. (2) Following [MNW13℄, one 
an de�nea real hypersurfa
e V in a symple
ti
 manifold (M;!) to be weakly 
on-ta
t if there exists an !-tame almost 
omplex stru
ture J for whi
h V is

http://arxiv.org/abs/1202.4685v4


CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 3J -
onvex. This is equivalent to the 
ondition required in our main theoremif dimV = 3, but in higher dimensions it appears to be more general. It isvery likely that our main theorem holds under this weaker assumption aswell, and the proof given here will imply this at least in the semipositive
ase without 
oupling to gravity (using the standard setup from [MS04℄). Amore general proof will probably be possible in the future using polyfolds(
f. Remark 1.6). In the non-semipositive 
ase, our relian
e on the Don-aldson hypersurfa
e 
onstru
tion [Don96℄ ne
essitates the added restri
tionthat J is 
ompatible with !, not just tamed.1.2. Re
olle
tions on Gromov-Witten theory. In this arti
le, we re-gard the Gromov-Witten invariants of a symple
ti
 manifold (M;!) as anasso
iation to ea
h pair of integers g;m � 0 with 2g + m � 3 and ea
hhomology 
lass A 2 H2(M) of a homomorphism(1.1) GW(M;!)g;m;A : H�(M ;Q)
m 
H�(Mg;m;Q) ! Q ;where Mg;m denotes the Deligne-Mumford 
ompa
ti�
ation of the modulispa
e of Riemann surfa
es with genus g and m marked points. LetPD : H�(M ;Q) ! H�(M ;Q)denote the Poin
ar�e duality isomorphism, or its inverse when 
onvenient.In the absen
e of transversality problems, GW(M;!)g;m;A(�1; : : : ; �m;�) is inter-preted as a 
ount of rigid unparametrized J -holomorphi
 
urves of genus g,for a generi
 !-tame almost 
omplex stru
ture J , withmmarked points su
hthat for i = 1; : : : ;m, the ith marked point is mapped to a generi
 smoothrepresentative of PD(�i) 2 H�(M), and the underlying 
onformal stru
tureof the domain lies in a generi
 smooth representative of � 2 H�(Mg;m). Inpra
ti
e, the transversality problems that arise in this de�nition require 
on-siderable e�ort to over
ome, and the literature 
ontains various approa
hes(e.g. [FO99,LT98,Rua99,Sie,CM07,HWZ℄) whi
h may or may not all de�nethe same invariants.In order to be 
on
rete and also minimize the te
hni
al apparatus needed,in this paper we shall work with the de�nition provided by Cieliebak andMohnke [CM07℄ for the g = 0 
ase, whi
h uses a Donaldson hypersurfa
e asauxiliary data and thus requires the symple
ti
 form to represent an inte-gral 
ohomology 
lass. The essential details of this setup will be reviewed inx2.1.2, though we shall also attempt to express the main argument in termsthat do not depend on these details. In parti
ular, the reader who wouldprefer to avoid serious te
hni
al issues by assuming (M;!) is semipositivemay do so by skipping from x2.1.1 (where we review the main de�nitions inthe semipositive 
ase) straight to x3. In either 
ase, the theory is de�ned es-sentially by 
onstru
ting a suitably 
ompa
ti�ed moduli spa
e MA0;m(M;J)of stable nodal pseudoholomorphi
 spheres homologous to A, withmmarkedpoints, su
h that the natural evaluation/forgetful map(1.2) (ev;�) = (ev1; : : : ; evm;�) :MA0;m(M;J)!Mm �M0;mde�nes a rational pseudo
y
le in the sense of [MS04, x6.5℄, meaning thatrational interse
tion numbers with homology 
lasses in Mm �M0;m 
an be

4 CHRIS WENDLde�ned. The homomorphism (1.1) is then de�ned, up to a 
ombinatorial
onstant (see (2.4)), by(1.3) GW(M;!)0;m;A(�1; : : : ; �m;�) = [(ev;�)℄ � (PD(�1)� : : :� PD(�m)� �) :Remark 1.4. The Gromov-Witten invariants de�ned in [CM07℄ do not in-volve \
oupling to gravity," i.e. they rely on the fa
t that ev :MA0;m(M;J)!Mm is a pseudo
y
le, but do not deal at all with the forgetful map � :MA0;m(M;J) !M0;m, asso
iating to a J-holomorphi
 
urve its underlying
onformal stru
ture. It is nonetheless true in the 
ontext of [CM07℄ that(ev;�) is a pseudo
y
le and hen
e (1.3) is well de�ned; the proof of this fa
tis almost already impli
it in that paper, and we shall spell out the missingingredients in Appendix A. Note that in the semipositive 
ase, the standardapproa
h via domain-dependent almost 
omplex stru
tures suÆ
es to provethat the evaluation map is a pseudo
y
le, but not the forgetful map|see[MS04, pp. 184{186℄. Thus the simpli�ed version of our arguments (avoidingDonaldson hypersurfa
es) for the semipositive 
ase will be valid only for thesimpli�ed invariants GW(M;!)0;m;A : H�(M ;Q)
m ! Z, whi
h mat
h (1.1) if �is de�ned as the fundamental 
lass of M0;m.We now re
all the following standard de�nition.De�nition 1.5. A 
losed symple
ti
 manifold (M;!) is said to be sym-ple
ti
ally uniruled if it has a nonzero rational Gromov-Witten invariantwith at least one pointwise 
onstraint, i.e. there exist A 2 H2(M), an integerm � 3 and 
lasses �2; : : : ; �m 2 H�(M ;Q), � 2 H�(M0;m;Q) su
h that(1.4) GW(M;!)0;m;A(PD[pt℄; �2; : : : ; �m;�) 6= 0;where [pt℄ 2 H0(M) denotes the homology 
lass of a point.Morally, being symple
ti
ally uniruled means one 
an �nd a set of 
on-straints so that there is always a nonzero 
ount of 
onstrained holomorphi
spheres passing through a generi
 point.Proof of Corollary 1.1. If V � M is a nonseparating hypersurfa
e, then[V ℄ 6= 0 2 H�(M ;Q) and one 
an therefore �nd a 
ohomology 
lass �1 2H�(M ;Q) with h�1; [V ℄i = 1. Hen
ePD[V ℄ [ �1 = PD[pt℄:Now if V is also pseudo
onvex for some 
ompatible almost 
omplex stru
-ture, then the main theorem implies that (1.4) 
annot be satis�ed for any
hoi
es �2; : : : ; �m; �, hen
e (M;!) is not uniruled. �Remark 1.6. An earlier version of the present paper made the optimisti

laim that the arguments given here 
an be 
arried out using the polyfoldtheory of Hofer-Wyso
ki-Zehnder [HWZ℄. While that is probably true, sub-sequent dis
ussions with Hofer have led to the 
on
lusion that it is not fullyprovable using the te
hnology in its present state: in parti
ular, homologi-
al interse
tion theory and Poin
ar�e duality are not 
urrently well enoughunderstood in the polyfold 
ontext to justify anything analogous to Equa-tion (3.2). I would like to thank Joel Fish and Helmut Hofer for helping
larify this point.
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ussion. We now add a few more remarks on the 
ontext of themain theorem and its 
orollaries.1.3.1. Nonseparating hypersurfa
es. Nonseparating 
onta
t type hypersur-fa
es do exist in general, though they are usually not easy to �nd. A 
on-stru
tion in dimension 4 was suggested by Etnyre and outlined in [ABW10,Example 1.3℄: the idea is to start from a symple
ti
 �lling with two boundary
omponents, atta
h a Weinstein 1-handle to form the boundary 
onne
tedsum and then atta
h a symple
ti
 
ap to form a 
losed symple
ti
 manifold,whi
h 
ontains both boundary 
omponents of the original symple
ti
 �llingas nonseparating 
onta
t hypersurfa
es. At the time [ABW10℄ was written,examples of symple
ti
 �llings with dis
onne
ted boundary were known onlyup to dimension 6 (due to M
Du� [M
D91℄, Geiges [Gei95,Gei94℄ and Mit-sumatsu [Mit95℄), but re
ently a 
onstru
tion in all dimensions appearedin work of the author with Massot and Niederkr�uger [MNW13℄. It seemslikely that these examples 
an be 
ombined with the symple
ti
 
appingresult of Lis
a and Mati�
 [LM97, Theorem 3.2℄ for Stein �llable 
onta
tmanifolds to 
onstru
t examples of nonseparating 
onta
t hypersurfa
es inall dimensions, but we will not pursue this any further here.Note that it is somewhat easier to �nd examples of weakly 
onta
t hy-persurfa
es that do not separate: for instan
e, 
onsidering the standardsymple
ti
 T4 as a produ
t of two symple
ti
 2-tori, for any nonseparatingloop 
 � T2 the hypersurfa
e 
 � T2 � T4 admits an obvious foliation bysymple
ti
 2-tori, and this foliation 
an be perturbed to any of the tight
onta
t stru
tures on T3 (
f. [Gir94℄). Noti
e that one 
annot use the sametri
k to produ
e a nonseparating weakly 
onta
t hypersurfa
e in T2 � S2with any produ
t symple
ti
 stru
ture, as the latter is uniruled.1 This im-plies the well known fa
t (see [ET98℄) that the obvious foliation by sphereson S1 � S2 
annot be perturbed to a 
onta
t stru
ture.1.3.2. Higher genus. The theorem of Lu [Lu00℄ also establishes the Wein-stein 
onje
ture for separating 
onta
t type hypersurfa
es under the moregeneral assumption(1.5) GW(M;!)g;m;A(PD([pt℄); �2; : : : ; �m;�) 6= 0;i.e. one need not assume g = 0. In fa
t, using the more re
ent te
hnology of\stret
hing the ne
k" [BEH+03℄, one 
an give a straightforward alternativeproof of Lu's result whi
h also shows that any nonseparating 
onta
t hy-persurfa
e in a manifold satisfying (1.5) must have a 
losed 
hara
teristi
.2Note however that in the genus zero 
ase, this is a weaker statement thanCorollary 1.2: it asserts that a parti
ular 
onta
t form on (V; �) � (M;!)admits a 
losed Reeb orbit, but not that this is true for every possible 
hoi
eof 
onta
t form. The obvious stret
hing argument does not appear to implythis stronger statement in general ex
ept when V separates M .1A
tually, the statement of our main theorem for T2�S2 
an be proved by more elemen-tary means without mentioning Gromov-Witten invariants, 
f. [ABW10, Theorem 1.15℄.2For this heuristi
 dis
ussion we are ignoring the usual analyti
al issues of how to de�nethe higher genus Gromov-Witten invariants; de�nitions using the Donaldson hypersurfa
eidea have appeared in re
ent work of Gerstenberger [Ger13℄ and Ionel-Parker [IP℄.

6 CHRIS WENDLIt seems unlikely moreover that our main result would hold under themore general assumption (1.5)|
ertainly the method of proof given be-low does not work, as it requires the fa
t that the relevant holomorphi

urves in M 
an always be lifted to a 
over (sin
e S2 is simply 
onne
ted).However, it was pointed out to me by Guang
un Lu that due to relationsamong Gromov-Witten invariants (see [Lu06, x7℄), 
ertain 
onditions onhigher genus invariants will imply that (M;!) is also uniruled, e.g. this isthe 
ase whenever there is a nontrivial invariant of the formGW(M;!)g;m;A(PD([pt℄); �2; : : : ; �m; [pt℄) 6= 0:The reason is that this invariant 
ounts 
urves with a �xed 
onformal stru
-ture on the domain, so one 
an derive holomorphi
 spheres from them bydegenerating the 
onformal stru
ture to \pin
h away" the genus.Remark 1.7. Note that in the above formulation of the Weinstein 
onje
turefor 
losed 
onta
t hypersurfa
es, the ambient symple
ti
 manifold need notbe 
losed, e.g. every 
onta
t manifold is a 
onta
t hypersurfa
e in its own(non
ompa
t) symple
tization. As was shown in [ABW10℄, there are many
onta
t manifolds that do not admit any 
onta
t type embeddings into any
losed symple
ti
 manifold|as far as I am aware, all 
onta
t manifoldsthat are 
urrently known to admit su
h embeddings are also symple
ti
ally�llable.1.4. A
knowledgments. I would like to thank Guang
un Lu for 
ommentson a preliminary version of this paper, Kai Cieliebak for feedba
k on the ap-pendix, and Patri
k Massot, Helmut Hofer, Joel Fish and Jean-Paul Mohsenfor useful 
onversations. The question 
onsidered here was originally broughtto my attention by a talk of Cl�ement Hyvrier about his paper [Hyv12℄ atthe Sixth Workshop on Symple
ti
 Geometry, Conta
t Geometry and In-tera
tions in Madrid, February 2{4, 2012, funded by the ESF's CAST pro-gramme. My approa
h to the proof owes a slight debt to an observationmade by an anonymous referee for the paper [ABW10℄. Likewise, my un-derstanding of Cieliebak-Mohnke transversality owes a substantial debt tothe CNRS-funded Summer S
hool on Donaldson Hypersurfa
es that tookpla
e in La Llagonne, June 17{21, 2013.2. Some preparationsIn this se
tion, we shall review some 
ru
ial de�nitions, starting in x2.1with the 
onstru
tion of the Gromov-Witten pseudo
y
le in both the semi-positive and general 
ases. In x2.2, we will also prove a simple result aboutDonaldson hypersurfa
es that is needed to 
arry out our appli
ation to 
on-ta
t hypersurfa
es in the non-semipositive 
ase.2.1. De�ning the Gromov-Witten pseudo
y
le. We will now reviewthe de�nitions of the moduli spa
es that determine the pseudo
y
le (1.2).We begin with the semipositive 
ase in x2.1.1 before addressing the general
ase in x2.1.2.
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ase. Re
all that a 
losed 2n-dimensional symple
ti
manifold (M;!) is 
alled semipositive if there are no spheri
al homology
lasses A 2 �2(M) satisfying!(A) > 0 and 3� n � 
1(A) < 0:In parti
ular, this is always satis�ed if n = 2 or 3. Under this 
ondition, one
an de�ne integer-valued Gromov-Witten invariantsGW(M;!)0;m;A : H�(M ;Q)
m ! Zfor any m � 3 and A 2 H2(M) by the following pres
ription explainedin [MS04℄. (The original 
onstru
tion of these invariants is due to Ruan[Rua96℄.)Let J� (M;!) denote the spa
e of smooth !-tame almost 
omplex stru
-tures on M , and de�neJS2 := �J 2 �(pr�2 EndR(TM)) j J(z; �) 2 J� (M;!) for all z 2 S2	 ;where pr2 : S2 �M ! M denotes the proje
tion. We 
all JS2 the spa
eof smooth !-tame domain-dependent almost 
omplex stru
tures (where the\domain" is S2). Given J 2 JS2 , a smooth map u : S2 ! M is said to beJ-holomorphi
 if for all z 2 S2,(2.1) du(z) + J(z; u(z)) Æ du(z) Æ i = 0;where i is the standard 
omplex stru
ture on S2 = C [f1g. For any m � 3and A 2 H2(M), we 
an then de�ne the moduli spa
eMA0;m(M;J) = f(u; z)g ;where u : S2 ! M is a J -holomorphi
 map with [u℄ = A, and z =(z4; : : : ; zm) is an ordered (m � 3)-tuple of pairwise distin
t points in S2 nf0; 1;1g. Setting (z1; z2; z3) := (0; 1;1), the evaluation map is thende�ned by ev = (ev1; : : : ; evm) :MA0;m(M;J)!Mm;evj(u; z) = u(zj) for j = 1; : : : ;m:The forgetful map � : MA0;m(M;J) ! M0;m is likewise de�ned by asso-
iating to (u; z) the equivalen
e 
lass of 
onformal stru
tures on S2 with mmarked points positioned at (0; 1;1; z4; : : : ; zm). Note that sin
e we have�xed the positions of the �rst three marked points, there is no need to divideout reparametrizations.Under the semipositivity 
ondition, one 
an show using standard index
omputations (see [MS04℄) that ev : MA0;m(M;J) ! Mm is a pseudo
y
leof dimension 2(n� 3) + 2
1(A) + 2m for generi
 
hoi
es of J 2 JS2 , and forsu
h 
hoi
es, the 
orresponding Gromov-Witten invariant (without 
ouplingto gravity) 
an be 
omputed for �1; : : : ; �m 2 H�(M ;Z) as(2.2) GW(M;!)0;m;A(�1; : : : ; �m) = [ev℄ � (PD(�1)� : : :� PD(�m)) 2 Z:As mentioned already in Remark 1.4, the forgetful map is generally not apseudo
y
le for this de�nition of the moduli spa
e, and we shall thereforeignore 
oupling to gravity in our dis
ussion of the semipositive 
ase.

8 CHRIS WENDLThe generi
ity requirement in (2.2) implies that one 
annot generallyassume J to be domain-independent. It will be important for our appli
ationhowever that one 
an do the next best thing: �x any J1 2 J� (M;!), whi
hwe shall refer to hen
eforward as the referen
e almost 
omplex stru
ture.We 
an regard J1 as an element of JS2 with 
onstant dependen
e on z 2 S2,and the tangent spa
e at J1 to the Fr�e
het manifold JS2 is thenTJ1JS2 = �Y 2 �(pr�2 EndR(TM)) j Y (z; p)J1(p) + J1(p)Y (z; p) = 0for all (z; p) 2 S2 �M	:After 
hoosing a smooth family of metri
s on the manifolds of 
omplexstru
tures at points in M , we 
an write any J 2 JS2 in some C0-smallneighborhood of J1 as J(z; p) = expJ1(p) Y (z; p) for some C0-small se
tionY 2 TJ1JS2 . Generi
ity then allows us to 
on
lude the following:Lemma 2.1. There exists a sequen
e Yk 2 TJ1JS2 
onverging to 0 in C1su
h that (2.2) holds with the Gromov-Witten pseudo
y
le ev :MA0;m(M;J)!Mm de�ned for any J = expJ1 Yk. �2.1.2. The Cieliebak-Mohnke approa
h. We now 
onsider (M;!) to be anarbitrary 
losed 2n-dimensional symple
ti
 manifold that satis�es [!℄ 2H2(M ;Z) but is not ne
essarily semipositive. The purpose of this se
tionis to summarize the relevant details of the re
ipe from [CM07℄ for de�ningthe Gromov-Witten invariants.As auxiliary data, we 
hoose an !-
ompatible almost 
omplex stru
tureJ0, and a so-
alled Donaldson hypersurfa
e of degree D 2 N:ZD � (M;!) symple
ti
, su
h that PD[ZD℄ = D[!℄:The existen
e of ZD for large D � 0 is provided by a deep theorem ofDonaldson [Don96℄, and we 
an assume moreover that ZD is nearly J0-holomorphi
, in the sense that its K�ahler angle (see [Don96, p. 669℄) isarbitrarily small if D is suÆ
iently large. It follows in parti
ular that forany � > 0, if D > 0 is suÆ
iently large, one 
an �nd J1 2 J� (M;!) withkJ1 � J0kC0 < � su
h that ZD is J1-holomorphi
. We shall assume in thefollowing that su
h a J1 2 J� (M;!) has been 
hosen and is �xed.For an integer k � 0, suppose T is a k-labelled tree, i.e. a tree togetherwith a partition of f1; : : : ; kg assigning some subset to ea
h vertex � 2 T .We shall write �E� whenever T 
ontains an edge 
onne
ting the verti
es�; � 2 T , and denote by �j 2 T the vertex asso
iated to j 2 f1; : : : ; kg bythe labelling. Then if S� denotes a 
opy of S2 for ea
h � 2 T , we 
an regarda nodal 
urve with k marked points modelled on T as a tuplez = �fz�� 2 S�g�E� ; fzj 2 S�jgj2f1;:::;kg�su
h that for ea
h � 2 T , all the points in this tuple lying on S� (the spe
ialpoints) are distin
t. We asso
iate to z the nodal Riemann surfa
e�z := a�2T S��z�� � z��;where ea
h 
omponent S� is assumed to 
arry the standard 
omplex stru
-ture i. The nodal 
urve z (or equivalently the nodal Riemann surfa
e �z)is 
alled stable if for ea
h vertex � 2 T , there are at least three spe
ial
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tually a property of the labelled tree T , so we 
anequivalently say z is stable if it is modelled on a stable k-labelled tree. Inthis 
ase, z represents an element [z℄ of the Deligne-Mumford spa
e M0;k.There is a natural stabilization map z 7! st(z) that makes any nodal 
urvez into a stable nodal 
urve st(z) by removing verti
es with fewer than threespe
ial points and pla
ing marked points on neighboring verti
es as ne
es-sary; this determines a holomorphi
 surje
tion on the 
orresponding nodalRiemann surfa
es st : �z ! �st(z):For ea
h � 2 T , denote by JS� a 
opy of the spa
e JS2 of domain-dependent almost 
omplex stru
tures de�ned in the previous se
tion, andlet JT := Y�2T JS� :For J 2 JT , a nodal J-holomorphi
 map with k marked points isa pair (z;u), where z is a nodal 
urve with k marked points modelled onT , and u : �z ! M is a 
ontinuous map whose restri
tion to ea
h sphereS� � �z is smooth and J -holomorphi
 (in the sense of (2.1)) with respe
tto the S�-dependent almost 
omplex stru
ture determined by J .Re
all next that sin
eM0;k+1 is a smooth manifold for any k � 2, we 
an
onsider M0;k+1-dependent almost 
omplex stru
turesJ 2 �(pr�2 EndR(TM)) su
h that J([z℄; �) 2 J� (M;!);where as usual we denote the proje
tion pr2 :M0;k+1�M !M . For k � 3,this has a 
onvenient interpretation using the 
anoni
al proje
tion� :M0;k+1 !M0;kwhi
h forgets the last marked point and stabilizes the result. Namely, for anynodal 
urve z with k marked points, ��1([st(z)℄) 
an be identi�ed 
anoni
allywith the nodal 
urve �st(z), i.e. we parametrize ��1([st(z)℄) via the positionof the extra marked point. Thus if z is modelled on the k-labelled tree T , we
an asso
iate to z and the family J above a �z-dependent almost 
omplexstru
ture Jz 2 JT ; Jz(z; �) := J([st(z); st(z)℄; �);where we use [st(z); st(z)℄ as shorthand for the element of ��1([st(z)℄) 2Mk+1 
orresponding to st(z) 2 �st(z) under the above identi�
ation. Forte
hni
al reasons, it is important to 
onsider only families J that are 
o-herent in the sense de�ned in [CM07, x3℄, and we shall denote the spa
eof smooth M0;k+1-dependent !-tame almost 
omplex stru
tures satisfyingthis 
ondition byJk+1 = �J :M0;k+1 ! J� (M;!) j J is 
oherent	 :For our purposes, all that we will need to know about the 
oheren
e 
ondi-tion is stated in the following lemma, whi
h follows immediately from thede�nition in [CM07, x3℄.Lemma 2.2. For any J 2 Jk+1, if z is a nodal 
urve modelled on thek-labelled tree T , then for ea
h � 2 T , the restri
tion of the family�z ! J� (M;!) : z 7! Jz(z; �)

10 CHRIS WENDLto S� depends only on z 2 S� and the spe
ial points of z on S�. �We 
an now de�ne the moduli spa
es needed for the Gromov-Witteninvariants. Given an integer m � 0 and A 2 H2(M), let` := A � [ZD℄ = D!(A) 2 N:We may easily assume ` > 3 by making D 2 N suÆ
iently large (in generalit will be mu
h larger). Choose J 2 J`+1 with the property thatJ([z℄; �) � J1 in a neighborhood of ZD, for all [z℄ 2M0;`+1:Using the 
anoni
al proje
tion �m : M0;m+`+1 ! M0;`+1 that forgets the�rst m marked points and then stabilizes, we 
an asso
iate to J a 
oherentM0;m+`+1-dependent almost 
omplex stru
ture ��mJ . Then for any nodal
urve z modelled on an (m+`)-labelled tree T , we regard a map u : �z !Mas J -holomorphi
 if it satis�es the Cau
hy-Riemann equation (2.1) for the�z-dependent almost 
omplex stru
ture (��mJ)z. Given homology 
lassesfA� 2 H2(M)g�2T su
h that X�2T A� = A;the pair (T; fA�g) is 
alled a weighted tree, and it is 
alled stable if everyvertex � 2 T with A� = 0 has at least three spe
ial points, i.e. marked pointsplus adja
ent verti
es. We de�ne fMfA�gT (M;J ;ZD) to be the spa
e of pairs(z;u) as above su
h that [ujS� ℄ = A� for ea
h � 2 T and u maps ea
h ofthe last ` marked points into ZD. Note that sin
e ZD is J -holomorphi
 (asJ mat
hes J1 near ZD), all isolated interse
tions of u with ZD are positive;in parti
ular, whenever z has no nodes and A 6= 0, the relation ` = A � [ZD℄implies that either the image of u is 
ontained in ZD or the interse
tions ofu with ZD o

ur only at the last ` marked points. The former is ex
ludedunder suitable assumptions on J and for suÆ
iently large D 2 N, due to[CM07, Propositions 8.13 and 8.14℄.Remark 2.3. The 
lass of holomorphi
 
urves de�ned above has the 
ru
ialproperty that all isolated interse
tions with ZD are positive, not only theguaranteed interse
tions at the last `marked points. Sin
e the 
ount of theseinterse
tions is 
ontrolled topologi
ally, positivity provides the ne
essarylower bound on the number of marked points on 
omponents of nodal 
urves,guaranteeing that su
h 
urves have stable domains (see [CM07℄ for details).We write (z;u) � (z0;u0) if there exists a biholomorphi
 isomorphismbetween the nodal 
urves z and z0 su
h that u and u0 are 
orrespond-ingly related by reparametrization. We then de�ne the moduli spa
e ofJ-holomorphi
 
urves modelled on (T; fA�g) asMfA�gT (M;J ;ZD) = fMfA�gT (M;J ;ZD)Æ �;along with the evaluation map,ev = (ev1; : : : ; evm) :MfA�gT (M;J ;ZD)!Mm;whi
h evaluates u at its �rst m marked points. If m � 3, we 
an also de�nethe forgetful map � :MfA�gT (M;J ;ZD)!M0;m;



CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 11whi
h forgets both the map u and the last ` marked points of z, and thenstabilizes the resulting nodal 
urve with m marked points. The top stratumis the 
omponentMA0;m+`(M;J ;ZD) :=MfA�gT (M;J ;ZD); where jT j = 1;
onsisting of equivalen
e 
lasses [(z;u)℄ su
h that z has no nodes; in this
ase u : S2 ! M is simply a pseudoholomorphi
 sphere, for some domain-dependent almost 
omplex stru
ture determined by J and the positions ofits last ` marked points. The union of the spa
es MfA�gT (M;J ;ZD) for allstable weighted trees (T; fA�g) withP�A� = A 
arries a natural topologyas a metrizable Hausdor� spa
e, the Gromov topology, and we denote byMA0;m+`(M;J ;ZD) � [(T; fA�g) stableMfA�gT (M;J ;ZD)the 
losure of MA0;m+`(M;J ;ZD) in this spa
e.If m � 3, then for suitable 
hoi
es of J 2 J`+1 mat
hing the referen
estru
ture J1 near ZD,(2.3) (ev;�) :MA0;m+`(M;J ;ZD)!Mm �M0;mis a pseudo
y
le of dimensiondimMA0;m+`(M;J ;ZD) = 2(n� 3) + 2
1(A) + 2m;and the resulting rational Gromov-Witten invariantsGW(M;!)0;m;A : H�(M ;Q)
m 
H�(M0;m;Q) ! Q ;GW(M;!)0;m;A(�1; : : : ; �m; �) =1`! [(ev;�)℄ � (PD(�1)� : : :� PD(�m)� �)(2.4)are independent of all 
hoi
es. If one ex
ludes the forgetful map and � 2H� �M0;m� from this statement, then it is simply the main result of [CM07℄(and is also valid for any m � 0). We will explain in Appendix A how thearguments of Cieliebak and Mohnke 
an be modi�ed to in
lude the forgetfulmap in the dis
ussion.As alluded to above, the 
onstru
tions in [CM07℄ require some extra as-sumptions on J 2 J`+1 in order to de�ne the Gromov-Witten invariants, butthe details of these assumptions will not 
on
ern us beyond the followinganalogue of Lemma 2.1. Re
all that we have �xed a referen
e almost 
omplexstru
ture J1 for whi
h the Donaldson hypersurfa
e ZD is J1-holomorphi
.We 
an trivially regard J1 as an element of J`+1 with 
onstant dependen
eon M0;`+1. Then any other element of J`+1 that is C0-
lose to J1 
an bewritten as J = expJ1 Yfor some Y 2 TJ1J`+1, where the latter is the Fr�e
het spa
e of 
oherent (see[CM07, x3℄) smooth se
tions of pr�2 EndR(TM)!M0;`+1 �M satisfyingY ([z℄; p)J1(p) + J1(p)Y ([z℄; p) = 0 for all ([z℄; p) 2M0;`+1 �M:

12 CHRIS WENDLLemma 2.4. There exists a sequen
e Yk 2 TJ1J`+1 
onverging to 0 in C1su
h that (2.4) holds with the Gromov-Witten pseudo
y
le (2.3) de�ned forany J = expJ1 Yk. �2.2. Donaldson hypersurfa
es transverse to a 
onta
t hypersurfa
e.In order to apply the Gromov-Witten invariants of [CM07℄ to a situationinvolving pseudo
onvex hypersurfa
es, we need the following additional fa
tabout Donaldson hypersurfa
es.Proposition 2.5. Suppose (M;!) is a 
losed 2n-dimensional symple
ti
manifold with [!℄ 2 H2(M ;Z), J0 is an !-
ompatible almost 
omplex stru
-ture, and V � M is a 
losed (2n � 1)-dimensional J0-
onvex hypersurfa
ewith indu
ed 
onta
t stru
ture� = TV \ J0(TV ) � TV:Then for all D 2 N suÆ
iently large, there exists a Donaldson hypersurfa
eZD � (M;!) of degree D that interse
ts V transversely in a 
onta
t sub-manifold of (V; �). Moreover, for any � > 0, if D 2 N is suÆ
iently large,then one 
an �nd ZD with the above property and an !-tame almost 
omplexstru
ture J1 on M su
h that(1) ZD is J1-holomorphi
;(2) V is J1-
onvex with � = TV \ J1(TV );(3) kJ1 � J0kC0 < �.The proposition is a straightforward appli
ation of Mohsen's relative ver-sion [Moh℄ of an estimated transversality result of Donaldson and Auroux[Don96, Aur97℄. To explain this, we must re
all some details from theasymptoti
ally holomorphi
 methods of Donaldson and Auroux, as usedby Mohsen.We �rst need to de�ne a quantitative measurement of the distan
e ofa real subspa
e of a 
omplex ve
tor spa
e from being 
omplex. Suppose(E; J) is a �nite-dimensional 
omplex ve
tor spa
e with Hermitian innerprodu
t g, and write jvj := pg(v; v) for v 2 E. Then for any real-linearsubspa
e E0 � E of even dimension, de�ne�g(E0;E; J) := maxv2E0; jvj=1dist �Jv;E0�= maxv2E0; jvj=1�minw2E0 jJv � wj� :It will be useful to note that this de�nition depends on the Hermitian metri
only up to positive res
aling, i.e.(2.5) �
g(E0;E; J) = �g(E0;E; J) for all 
 > 0:It also depends 
ontinuously on all the data, thus if B is a 
ompa
t spa
eand (E; J) ! B is a 
omplex ve
tor bundle of �nite rank with Hermitianbundle metri
 g, then for any real subbundle E0 � E of even rank, we 
ansimilarly de�ne �g(E0;E; J) := maxp2B �g(E0p;Ep; J) � 0:
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ti
 stru
ture on (E; J) that tames J , thenany suÆ
iently small perturbation of a 
omplex subbundle is automati
allyalso a symple
ti
 subbundle, thus we have the following.Lemma 2.6. Suppose B is a 
ompa
t spa
e and (E; J) ! B is a 
omplexve
tor bundle of �nite rank, equipped with a Hermitian bundle metri
 g. Inea
h of the following statements, assume E0 � E is a real subbundle of evenrank.(a) E0 is a 
omplex subbundle of (E; J) if and only if �g(E0;E; J) = 0.(b) For any C0-open neighborhood UJ of J in the spa
e of smooth 
om-plex stru
tures on E, there exists a number 
 > 0 su
h that everyE0 � E with �g(E0;E; J) < 
 is a 
omplex subbundle of (E; J 0) forsome J 0 2 UJ .(
) For any symple
ti
 stru
ture ! on E ! B that tames J , there existsa number 
0 > 0 su
h that every E0 � E satisfying �g(E0;E; J) < 
0is a symple
ti
 subbundle of (E;!). �In order to relate the above de�nition to questions of estimated transver-sality, we de�ne (following [Moh℄) for any real-linear map A : V ! Wbetween �nite-dimensional Eu
lidean ve
tor spa
es, the surje
tivity mod-ulus Surj(A) := min�2W �nf0g k� Æ Akk�k � 0:Lemma 2.7. The surje
tivity modulus has the following properties.(a) Surj(A) > 0 if and only if A is surje
tive, and in this 
aseSurj(A) � sup� 1kBk ���� B :W ! V is a right inverse of A� :(b) For any two real-linear maps A;B : V !W ,Surj(A+B) � Surj(A)� kBk:(
) Suppose (V; J; g) and (V 0; J 0; g0) are �nite-dimensional Hermitianve
tor spa
es and A = A1;0 + A0;1 : V ! V 0 is real-linear, whereA1;0 and A0;1 denote the 
omplex linear and antilinear parts respe
-tively. Then(2.6) �g(kerA;V; J) � 2 kA0;1kSurj(A) :Proof. The �rst two properties are proved by straightforward 
omputations.The following proof of the third property was explained to me by Jean-PaulMohsen.Let V �kerA = f� 2 V � j �jkerA = 0g, whi
h is pre
isely the spa
e of dualve
tors on V of the form f� = �ÆA 2 V � j � 2W �g. Now suppose v 2 kerAand jvj = 1. The distan
e of Jv from kerA is the norm of its se
ond part

14 CHRIS WENDLunder the orthogonal de
omposition V = (kerA)� (kerA)?, hen
edist(Jv; kerA) = maxw2(kerA)?nf0g jhw; Jvijjwj = max�2V �kerAnf0g j�(Jv)jk�k= max�2W �nf0g j� Æ A(Jv)jk� Æ Ak :Now, using the fa
t that Av = 0 and that A1;0 
ommutes while A0;1 anti-
ommutes with the 
omplex stru
tures, we haveA(Jv) = A1;0Jv +A0;1Jv = J 0A1;0v � J 0A0;1v = �2J 0A0;1v;hen
e jA(Jv)j � 2kA0;1k, implyingdist(Jv; kerA) � max�2W �nf0g 2k�k � kA0;1kk� Æ Ak = 2 kA0;1kSurj(A) : �Next, assume (M;!) is a 
losed symple
ti
 manifold with [!℄ 2 H2(M ;Z),and J0 is an !-
ompatible almost 
omplex stru
ture. This determines thesequen
e of Riemannian metri
sg := !(�; J �); gD := D � g for D 2 NonM . Let L!M denote a 
omplex line bundle with 
1(L) = [!℄, equippedwith a Hermitian metri
 h ; i and a Hermitian 
onne
tionr whose 
urvature2-form is �2�i!. For D 2 N, we also 
onsider the D-fold tensor powerL
D ! M , with its indu
ed Hermitian metri
 and Hermitian 
onne
tion,also denoted by h ; i and r respe
tively; the latter has 
urvature �2�iD!.For se
tions s :M ! L
D, we denote by �s and ��s respe
tively the 
omplexlinear and antilinear parts of the 
ovariant derivative rs. We will alwaysde�ne C0-norms of rs and related tensors with respe
t to the metri
s gDon TM and h ; i on L
D, e.g.krs(p)kgD := maxX2TpMnf0g jrXsjjXjgD for p 2M;krskgD := supp2M krs(p)kgD ;where jXjgD := pgD(X;X) for X 2 TpX and jvj := phv; vi for v 2 L
Dp .The surje
tivity modulus of rs(p) at points p 2 M will also be de�nedrelative to this 
hoi
e of metri
s, whi
h we shall indi
ate via the notationSurjgD(rs(p)) := min06=�2HomR(L
Dp ;R) k� Æ rs(p)kgDk�k :This means SurjgD(rs(p)) = 1pD Surjg(rs(p)).The next two de�nitions are essentially due to Auroux [Aur97℄, thoughwe have made minor modi�
ations to �t them into the framework of [Moh℄.
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onstants C > 0 and r 2 N, we say that a sequen
eof se
tions sD : M ! L
D (for large D 2 N) is C-asymptoti
ally holo-morphi
 up to order r 2 N if for all D suÆ
iently large,ksDkgD � C; krmsDkgD � C; krm�1 ��sDkgD � CpDfor ea
h m = 1; : : : ; r:(2.7)De�nition 2.9. Given a 
onstant � > 0 and a submanifold V �M , we saythat a sequen
e of se
tions sD :M ! L
D (for largeD 2 N) is �-transversealong V if for all suÆ
iently large D,jsD(p)j < � ) SurjgD �rsD(p)jTpV � � � for all p 2 V .For any (M;!) and J0 as above, Donaldson [Don96℄ 
onstru
ts a se-quen
e of se
tions sD : M ! L
D that are, for some K; � > 0, K-asymptoti
ally holomorphi
 up to order 2 and globally �-transverse (i.e. �-transverse along M). It follows via (2.5) and Lemma 2.7(
) that for suÆ-
iently large D 2 N, ZD := s�1D (0) �M are smooth submanifolds with�g(TZD;TM jZD ; J0) = �gD(TZD;TM jZD ; J0)� maxp2ZD 2k��sD(p)kgDSurjgD (rs(p))� 2K=pD� ! 0 as D !1:Thus by Lemma 2.6, the submanifolds ZD � (M;!) are symple
ti
 anduniformly 
lose to being J0-holomorphi
 for suÆ
iently large D. These arethe Donaldson hypersurfa
es that we made use of in the previous se
tion;indeed, they satisfy PD[ZD℄ = 
1(L
D) = D
1(L) = D[!℄ 2 H2(M).For our purposes, the relevant 
ase of Mohsen's extension of the Donaldson-Auroux transversality theorem 
an now be stated as follows.Proposition 2.10 ([Moh, Th�eor�eme 2.2℄). Assume (M;!) is a 
losed 2n-dimensional symple
ti
 manifold with an !-
ompatible almost 
omplex stru
-ture J0, V � M is a 
losed submanifold of dimension 2n� 1, and � � TVdenotes the J0-
omplex subbundle� := TV \ J0(TV ):Then given any K > 0, � > 0 and mmax 2 N, there exist D0 2 N and � > 0su
h that the following holds. For any sequen
e of se
tions sD : M ! L
D(for large D) whi
h are K-asymptoti
ally holomorphi
 up to order 2, thereexists a sequen
e (for large D) of se
tions tD : M ! L
D su
h that, for allD � D0, the sequen
e tD is �-asymptoti
ally holomorphi
 up to order mmax,and the sequen
e s0D := sD + tD is �-transverse along V , and also satis�esp 2 V and js0D(p)j < � ) SurjgD �rs0D(p)j�p� � �: �Proof of Proposition 2.5. Assume V � M is J0-
onvex, and let sD : M !L
D denote the K-asymptoti
ally holomorphi
 and globally �-transversesequen
e of se
tions provided by [Don96℄. Pi
k � 2 (0; �), and let tD :M ! L
D denote the �-asymptoti
ally holomorphi
 sequen
e provided by

16 CHRIS WENDLProposition 2.10, giving rise to the perturbed se
tions s0D := sD + tD andzero-sets ZD := (s0D)�1(0) � M . Using Lemma 2.7(b), we may assumes0D is also K-asymptoti
ally holomorphi
 and �-transverse after making thesubstitutions K 7! K + � > 0 and � 7! � � � > 0, and by shrinking � > 0further if ne
essary, Proposition 2.10 also guaranteesSurjgD �rs0D(p)j�p� � �for all p 2 ZD\V . This implies that for suÆ
iently large D, ZD � (M;!) isa symple
ti
 submanifold and interse
ts both V and the distribution � � TVtransversely, hen
e the submanifold�D := ZD \ V � Vinherits a smooth oriented hyperplane bundle�D := TZD \ � � T�D:Regarding �D as a real subbundle of the 
omplex ve
tor bundle (�j�D ; J0),Lemma 2.7(
) and (2.5) now imply�g (�D; �j�D ; J0) � maxp2�D 2k��s0D(p)j�pkgDSurjgD �rs0D(p)j�p� � 2K�pD ! 0as D ! 1. Sin
e V is J0-
onvex, there exists a 
onta
t form � on Vsu
h that � = ker� and d�j� is a symple
ti
 ve
tor bundle stru
ture thattames J0. Applying Lemma 2.6, we therefore 
on
lude from the above that(�D; d�) is a symple
ti
 subbundle of (�j�D ; d�) for suÆ
iently large D,implying that �jT�D is 
onta
t, so �D � (V; �) is a 
onta
t submanifold.Moreover, the 
omplex stru
ture J0j� along �D admits a C0-small pertur-bation to a 
omplex stru
ture J1 on � along �D for whi
h �D is J1-invariant.Following the extension pro
edure of [CM07, x8℄, J1 
an then be extendedto an almost 
omplex stru
ture on M that preserves � along V , preservesTZD and is C0-
lose to J0 for suÆ
iently large D. Note that having J1be C0-
lose to J0 implies that J1j� is also tamed by d�j� without loss ofgenerality, thus V is J1-
onvex. �3. The proofWe now pro
eed to the proof of the main theorem.Suppose (M;!) is a 
losed and 
onne
ted symple
ti
 manifold with analmost 
omplex stru
ture J su
h that either of the following 
onditions aresatis�ed:� (M;!) is semipositive and J is !-tame;� [!℄ 2 H2(M ;Z) and J is !-
ompatible.We will assume the Gromov-Witten invariants to be de�ned via the pre-s
riptions in x2.1.1 or x2.1.2 a

ordingly. Suppose V � M is a J-
onvexhypersurfa
e. Arguing by 
ontradi
tion, we assume there is a nontrivialGromov-Witten invariant of the form(3.1) GW(M;!)0;m;A(PD[V ℄ [ �1; �2; : : : ; �m;�) 6= 0for somem � 3, A 2 H2(M), �1; : : : ; �m 2 H�(M ;Q) and � 2 H�(M0;m;Q).The essential idea of the proof will be show that (3.1) implies the existen
e



CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 17of a pseudoholomorphi
 sphere that tou
hes V tangentially from the wrongside, thus 
ontradi
ting pseudo
onvexity.Remark 3.1. In the following we will give a uni�ed argument that appliesto both the semipositive and non-semipositive 
ases, referring as ne
essaryto the slightly di�erent sets of de�nitions in x2.1.1 and x2.1.2. For thesemipositive 
ase, some statements would need to be modi�ed in obviousways by removing all referen
es to � 2 H�(M0;m) and the forgetful map(see Remark 1.4).We must now 
hoose a perturbed almost 
omplex stru
ture J1 that issuitably adapted to the de�nition of the Gromov-Witten invariants. In thesemipositive 
ase, it suÆ
es to set J1 = J . If (M;!) is not semipositive,then we have assumed [!℄ 2 H2(M ;Z) and 
an therefore �nd a sequen
e ofDonaldson hypersurfa
es ZD of large degrees D 2 N as des
ribed in x2.1.2.By Proposition 2.5, after making the degree suÆ
iently large, we 
an �nd asmooth !-tame almost 
omplex stru
ture J1 that is arbitrarily C0-
lose toJ while making ZD a J1-holomorphi
 hypersurfa
e and V simultaneously aJ1-
onvex hypersurfa
e. We shall treat J1 as the referen
e almost 
omplexstru
ture used in Lemmas 2.1 and 2.4.Let J 0 denote a generi
 domain-dependent or M`+1-dependent pertur-bation of J1 as des
ribed in x2.1.1 or x2.1.2 respe
tively, giving rise to themoduli spa
eMA0;m(M;J 0) of J 0-holomorphi
 spheres homologous to A, withthe asso
iated evaluation/forgetful pseudo
y
le(ev;�) = (ev1; : : : ; evm;�) :MA0;m(M;J 0)!Mm �M0;m:In the non-semipositive 
ase, we are assuming as in x2.1.2 that J 0 mat
hesJ1 near ZD and the elements of MA0;m(M;J 0) have extra marked points
onstrained to lie in ZD under evaluation, but these details will play no rolein what follows and we will therefore suppress them in the notation. The
ondition (3.1) now means[(ev;�)℄ � � ([V ℄ � PD(�1))� PD(�2)� : : : � PD(�m)� �� 6= 0:Lemma 3.2. There exists a smooth loop` : S1 !MA0;m(M;J 0)su
h that (ev1 Æ `)�[S1℄ � [V ℄ 6= 0.Proof. We lose no generality by supposing that the 
lasses �1; : : : ; �m 2H�(M ;Q) and � 2 H� �M0;m� are ea
h homogeneous, i.e. they have well-de�ned degrees. By a theorem of Thom [Tho54℄, there are rational numbers
0; : : : ; 
m 6= 0 and smooth submanifolds ��1; : : : ; ��m � M and �� � M0;msu
h that 
0[ ��℄ = � 2 H�(M0;m;Q);
i[��i℄ = PD(�i) 2 H�(M ;Q) for i = 1; : : : ;m:We 
laim that after generi
 smooth perturbations of these submanifolds, wemay assume the pseudo
y
le (ev;�) is weakly transverse to ��1� : : :� ��m� ��

18 CHRIS WENDLin the sense of [MS04, De�nition 6.5.10℄. Indeed, we 
an perturb ��1 su
hthat ev1 is weakly transverse to ��1, so by [MS04, Lemma 6.5.14℄,ev2 jev�11 (��1) : ev�11 (��1)!Mis a pseudo
y
le of dimension dimMA0;m(M;J 0)� deg�1. After perturbing��2, we may also assume this new pseudo
y
le is weakly transverse to ��2,whi
h means (ev1; ev2) is now weakly transverse to ��1 � ��2. Repeating thispro
edurem+1 times proves the 
laim. With this established, we 
an de�nethe 
onstrained moduli spa
eM0 := (ev;�)�1(��1 � : : : � ��m � ��);so that (ev;�)jM0 is a 1-dimensional pseudo
y
le, whi
h means M0 is a
ompa
t 1-dimensional submanifold of MA0;m(M;J 0). Now 
hoose a generi
smooth perturbation V 0 of V �M su
h that��1 t V 0 and ev1 jM0 t V 0:We then have
0 : : :
m�(ev1)�[M0℄ � [V ℄� =[(ev;�)℄ � � ([V ℄ � PD(�1))� PD(�2)� : : :� PD(�m)� �� 6= 0:(3.2)Any 
onne
ted 
omponent of M0 on whi
h the above interse
tion numberis nonzero is then a smooth loop with the stated property. �In order to apply this lemma in proving the main result, we shall borrowan idea from [ABW10℄. Observe that by (3.1), [V ℄ 2 H�(M ;Q) must benontrivial, so V is nonseparating. One 
an therefore 
onstru
t a 
onne
tedin�nite 
over of M , de�ned by 
utting M open along V to produ
e a 
obor-dism with boundary �V t V , and then gluing together an in�nite 
hain of
opies fMngn2Z of this 
obordism. Denote for ea
h n 2 Z the boundary ofthe 
obordism Mn by �Mn = �V �n t V +n ;then ea
h V �n has a neighborhood in Mn naturally identi�ed with a suit-able half-neighborhood of V in M , and we use these identi�
ations to glueMn to Mn+1 along V +n = V �n+1. This produ
es a smooth, 
onne
ted andnon
ompa
t manifold (see Figure 1)fM = [n2ZMn;whi
h has a natural smooth 
overing proje
tion� : fM !Mand is separated by in�nitely many 
opies of the hypersurfa
e V , whi
h weshall denote by Vn := V +n � fM:Let eJ1 := ��J1denote the natural lift of the referen
e almost 
omplex stru
ture J1 to the
over fM , for whi
h the hypersurfa
es Vn are all eJ1-
onvex.
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Figure 1. The 
over � : fM !M de�ned for a nonseparat-ing hypersurfa
e V �M .By Lemma 2.1 or 2.4, we 
an �nd a sequen
e Jk of generi
 stru
tures forwhi
h Lemma 3.2 holds with J 0 := Jk, produ
ing loops`k : S1 !MA0;m(M;Jk) with (ev1 Æ `k)�[S1℄ � [V ℄ 6= 0 for all k;and we may assume moreover that Jk 
onverges in C1 as k ! 1 to thedomain-independent almost 
omplex stru
ture J1. For ea
h k and ea
h� 2 S1, `k(�) 2 MA0;m(M;Jk) is an equivalen
e 
lass of spheres u : S2 !M satisfying a domain-dependent Cau
hy-Riemann equation as in (2.1).Sin
e S2 is simply 
onne
ted, ea
h of the loops `k 
an be lifted to fM asa 
ontinuous family of holomorphi
 spheres fuk�g�2R, and the nontrivialinterse
tion of ev1 Æ `k with V implies that evaluation of uk� at the �rstmarked point tra
es a non
ompa
t path in fM interse
ting Mn for everyn 2 Z. It follows that for ea
h k, there exists a parameter value �k� 2 R forwhi
h the image of uk�k� tou
hes V0 but not the interior of M1.We now have a sequen
e of 
urves uk := uk�k� 2 MA0;m(M;Jk) whi
hadmit lifts to fM that tou
h V0 but not the interior of M1. This is notyet a 
ontradi
tion, be
ause the Cau
hy-Riemann equation satis�ed by ea
h

20 CHRIS WENDLuk involves a domain-dependent almost 
omplex stru
ture. As k ! 1,however, Gromov 
ompa
tness gives a subsequen
e of uk 
onverging to anodal J1-holomorphi
 sphere, and at least one 
omponent of this nodal 
urvelifts to a nontrivial eJ1-holomorphi
 sphere in fM that tou
hes V0 tangentiallyfrom below. Sin
e V0 is a eJ1-
onvex hypersurfa
e, this is a 
ontradi
tion andthus 
on
ludes the proof.Appendix A. The forgetful map is a pseudo
y
leThe purpose of this appendix is to justify the statement, made in x2.1.2,that for suitably 
hosen data, the evaluation/forgetful map(ev;�) :MA0;m+`(M;J ;ZD)!Mm �M0;mas de�ned in the setting of Cieliebak and Mohnke [CM07℄ is a pseudo
y
le,and its rational 
obordism 
lass (after dividing by `!) is independent ofthe 
hoi
es. This is proved in [CM07℄ for ev : MA0;m+`(M;J ;ZD) ! Mm,without a

ounting for the forgetful map, though the arguments ne
essaryfor proving the more general statement are almost already present in [CM07℄,so we shall merely sket
h the ne
essary modi�
ations.In the following, we will often refer to holomorphi
 
urves that 
arry dis-tin
t sets of ordinary and extra marked points; for 
urves in the spa
eMA0;m+`(M;J ;ZD), this means the �rst m and last ` marked points respe
-tively. Re
all that the forgetful map � : M0;m+`(M;J ;ZD) ! M0;m isde�ned by forgetting not only the map into M but also the extra markedpoints, and then stabilizing.Remark A.1. Although � maps the top stratum MA0;m+`(M;J ;ZD) intothe top stratum M0;m of M0;m, it will not generally de�ne a pseudo
y
leMA0;m+`(M;J ;ZD)!M0;m, mainly be
ause M0;m itself is not 
ompa
t.We assume as in x2.1.2 that J0 is a 
ompatible almost 
omplex stru
tureon the 
losed and 
onne
ted 2n-dimensional symple
ti
 manifold (M;!),and ZD � M is a nearly J0-holomorphi
 Donaldson hypersurfa
e of largedegree D 2 N. If D is suÆ
iently large and J 2 J`+1 is 
hosen appropriately(e.g. it must be C0-
lose to J0 and mat
h a referen
e domain-independentstru
ture J1 near ZD, whose restri
tion to ZD is generi
), then [CM07℄ showsthat the natural 
ompa
ti�
ation MA0;m+`(M;J ;ZD) of MA0;m+`(M;J ;ZD)
onsists of strata MfA�gT (M;J ;ZD) modelled on weighted (m + `)-labelledtrees (T; fA�g) that are `-stable, i.e. they are stable even after removingthe m ordinary (but keeping the ` extra) marked points. Moreover, noneof the non
onstant 
omponents of su
h nodal 
urves are 
ontained in ZD.The pseudo
y
le property for (ev;�) is based on the observation that onany stratum MfA�gT (M;J ;ZD) �MA0;m+`(M;J ;ZD) for whi
h T has morethan one vertex, the restri
tion of (ev;�) fa
tors as a 
omposition(A.1) MfA�gT (M;J ;ZD)!MfA�gT 0 (M;J ;ZD)!Mm �M0;m;where the spa
e in the middle is a smooth manifold that either has dimen-sion at most dimMA0;m+`(M;J ;ZD)�2 or fa
tors through another manifoldthat does. The reason we need this fa
torization instead of just 
onsidering



CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 21MfA�gT (M;J ;ZD) itself is that the latter sometimes has arti�
ially large di-mension, due to the presen
e of multiple extra marked points in the same
onstant 
omponent. But sin
e these extra marked points play no role inde�ning the evaluation and forgetful map, we 
an �x this problem by re-moving them, whi
h leads to the fa
torization above. The remainder of thisappendix will be 
on
erned with the de�nition and essential properties ofMfA�gT 0 (M;J ;ZD).As in [CM07℄, we will use the term ghost tree to mean a maximal subtreeT 00 of a weighted tree (T; fA�g) with the property that A� = 0 for all � 2T 00. Similarly, a ghost bubble on a nodal J -holomorphi
 
urve [(z;u)℄ 2MfA�gT (M;J ;ZD) is the 
onstant holomorphi
 
urve obtained by restri
tingu to any 
omponent S� � �z with A� = 0. We shall de�ne the manifoldMfA�gT 0 (M;J ;ZD) roughly as the spa
e of nodal 
urves that one obtains fromelements of MfA�gT (M;J ;ZD) by forgetting all but one of the extra markedpoints on ea
h ghost tree and stabilizing as ne
essary, but keeping all otherinformation, in
luding the 
onformal stru
tures on the ghost bubbles withtheir ordinary marked points. This 
an be de�ned more formally as follows.Suppose `0 � ` is the number of extra marked points on verti
es � 2 T withA� 6= 0 plus the number of ghost trees in T that have at least one extramarked point. Then we asso
iate to T a stable (m+ `0)-labelled tree T 0 viathe following pro
edure:(1) On ea
h ghost tree in T , keep all ordinary marked points and the�rst extra marked point (if any) but remove all other extra markedpoints;(2) Stabilize by removing any verti
es that now have fewer than 3 spe
ialpoints and adjusting neighboring edges a

ordingly. (Note that sin
eT is stable, this step 
an only a�e
t verti
es � 2 T with A� = 0.)By Lemma 2.2, any 
oherent almost 
omplex stru
ture J 2 J`+1 determinesfor every nodal 
urve z modelled on T a �z-dependent almost 
omplexstru
ture Jz whose restri
tion to ea
h 
omponent S� � �z depends onlyon the spe
ial points on S�. It follows that if z is modelled on T 0, then Juniquely determines a domain dependent almost 
omplex stru
ture on any
omponent S� � �z with A� 6= 0 (
f. the dis
ussion pre
eding Corollary 5.9in [CM07℄). We 
an extend this to a �z-dependent almost 
omplex stru
tureJz 2 JT 0by setting JzjS� for ea
h � 2 T 0 with A� = 0 to mat
h the �xed domain-independent referen
e almost 
omplex stru
ture J1. In this way, we 
anspeak of nodal J-holomorphi
 maps (z;u) modelled on the weighted (m+`0)-labelled tree (T 0; fA�g); note that the de�nition of Jz on 
omponents S�with A� = 0 plays no role here sin
e u is ne
essarily 
onstant on su
h
omponents. Denote by fMfA�gT 0 (M;J ;ZD) the spa
e of su
h maps for whi
hthe `0 extra marked points are all mapped into ZD, and denote its quotientby the group of biholomorphi
 isomorphisms byMfA�gT 0 (M;J ;ZD) := fMfA�gT 0 (M;J ;ZD)= � :

22 CHRIS WENDLThere is a natural proje
tionMfA�gT (M;J ;ZD)!MfA�gT 0 (M;J ;ZD)de�ned by forgetting ` � `0 of the extra marked points and then 
ollaps-ing 
onstant 
omponents as ne
essary in order to stabilize the domain.Sin
e all the ordinary marked points are retained in this pro
ess, the fa
-torization (A.1) of (ev;�) is well de�ned. The pseudo
y
le property nowmostly follows from the following lemma, whose proof is exa
tly the sameas [CM07, Lemma 5.6, Prop. 5.7 and Cor. 5.8℄.Lemma A.2. For generi
 J , if e(T 0) denotes the number of edges in thetree T 0, then MfA�gT 0 (M;J ;ZD) is a smooth manifold withdimMfA�gT 0 (M;J ;ZD) = 2(n� 3) + 2
1(A) + 2m� 2e(T 0)= dimMA0;m+`(M;J ;ZD)� 2e(T 0): �We must still deal with the possibility that T has more than one vertexbut T 0 has only one, in whi
h 
ase MfA�gT 0 (M;J ;ZD) 
an be regarded as aspa
e of smooth (non-nodal) 
urvesMA0;m+`0(M;J ;ZD) 
onstrained to sendtheir `0 extra marked points into ZD.3 This spa
e has dimension equal tothat of MA0;m+`(M;J ;ZD), but we 
laim that for generi
 J , if T has morethan one vertex, then 
urves in MA0;m+`0(M;J ;ZD) that arise in this wayfrom elements ofMfA�gT (M;J ;ZD) lie in a subset of 
odimension at least 2.The 
ru
ial point here is that su
h a 
urve will never belong to the opensubset MA;�0;m+`0(M;J ;ZD) �MA0;m+`0(M;J ;ZD)
onsisting of 
urves whose interse
tions with ZD at the `0 extra markedpoints are all transverse, and for generi
 J , [CM07, x6℄ shows that the
omplement of this subset is a �nite union of smooth submanifolds hav-ing dimension at most dimMA0;m+`0(M;J ;ZD) � 2. To see that 
urves inMA;�0;m+`0(M;J ;ZD) are ex
luded, observe that the 
urves in question arisepre
isely in situations where removing the relevant extra marked points fromghost bubbles in T makes all of them unstable|in parti
ular, (T; fA�g) mustin this 
ase 
onsist of the following:� A unique vertex �0 that has all m of the ordinary marked pointsand A�0 = A 6= 0;� One or more ghost trees that ea
h have no ordinary marked pointsbut at least two of the extra marked points.The resulting 
urve in MA0;m+`0(M;J ;ZD) is not 
ontained in ZD but has`0 marked points at whi
h it must interse
t ZD, and if all of these `0 inter-se
tions are transverse, then the fa
t that A � [ZD℄ = ` > `0 implies theremust be additional interse
tions separate from the extra marked points.But sin
e these 
urves are assumed to arise from obje
ts in the 
losure of3Sin
e te
hni
ally J belongs to J`+1 and not J`0+1, the de�nition of J-holomorphi
ityfor 
urves inMA0;m+`0(M;J ;ZD) is a bit subtle and must be understood in the same senseas the pre
eding dis
ussion ofMfA�gT 0 (M;J ;ZD).



CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 23MA0;m+`(M;J ;ZD), the latter implies (via positivity of interse
tions) theexisten
e of 
urves in MA0;m+`(M;J ;ZD) that have interse
tions with ZDoutside their extra marked points, and that is impossible. This proves:Lemma A.3. For generi
 J , if T has more than one vertex and T 0 has onlyone, then the restri
tion of (ev;�) to MfA�gT (M;J ;ZD) fa
tors asMfA�gT (M;J ;ZD)!MA0;m+`0(M;J ;ZD) nMA;�0;m+`0(M;J ;ZD)!Mm �M0;m;where the spa
e in the middle is a �nite union of manifolds having dimensionat most dimMA0;m+`(M;J ;ZD)� 2. �It follows from Lemmas A.2 and A.3 that for generi
 J , (ev;�) is a pseudo-
y
le as 
laimed. Using these same fa
torizations, one 
an similarly adaptthe proof of [CM07, Theorem 1.3℄ to show that the rational pseudo
y
lede�ned by 1`!(ev;�) is independent of the 
hoi
es (J0; ZD; J) up to ratio-nal 
obordism. This involves de�ning 
orresponding moduli spa
es for 1-parameter families of data, as well as moduli spa
es of 
urves with two setsof extra marked points 
onstrained by two Donaldson hypersurfa
es of dif-fering degrees|the idea in ea
h 
ase is to fa
tor (ev;�) as above throughmoduli spa
es in whi
h ea
h ghost tree 
arries at most one extra markedpoint. Su
h moduli spa
es always have small enough dimension to establishthe pseudo
y
le 
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