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Summary. In this paper we describe how stochastic differential-algebraic equations
(SDAEs) arise as a mathematical model for network equations that are influenced
by additional sources of Gaussian white noise. We discuss the concepts of weak and
strong solutions of SDAEs and give the necessary analytical theory for the exis-
tence and uniqueness of strong solutions, provided that the systems have noise-free
constraints and are uniformly of DAE-index 1. Further, we analyze discretization
methods using the concept of strong convergence. Due to the differential-algebraic
structure, implicit methods will be necessary. We present adaptations of known
schemes for stochastic differential equations (SDEs) that are implicit in the deter-
ministic and explicit in the stochastic part to SDAEs of index 1, in particular we
discuss stochastic analogues to the the drift-implicit Euler and the two-step BDF-
scheme.

1 Problem Formulation

The increasing scale of integration, high tact frequencies and low supply volt-
ages cause smaller signal-to-noise-ratios. In several applications the noise in-
fluences the system behaviour in an essentially nonlinear way such that linear
noise analysis is no longer satisfactory. A possible way out is given by tran-
sient noise analysis. Here a circuit model that includes also noisy elements has
to be considered and to be simulated in time-domain.

We deal with the thermal noise of resistors as well as the shot noise of
semiconductors that are modelled by additional sources of additive or multi-
plicative Gaussian white noise currents that are shunt in parallel to the ideal,
noise-free elements (see Fig. 1). Note, that modeling the internal noise of
the elements as external noise sources was originally justified only for linear
elements and reciprocal networks.

Nyquist’s theorem (see e.g. [B96, DS98, WM98]) states that the current
through an arbitrary linear resistor having a resistance R, maintained in ther-
mal equilibrium at a temperature T , can be described as the sum of the de-
terministic current and a Gaussian white noise process with spectral density
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Fig. 1. Thermal noise of a resistor and shot noise of a pn-junction

Sth := 2kT
R , where k is Boltzmann’s constant. Hence, the additional current

is modelled as

Ith = σth · ξ(t) =
√

2kT
R · ξ(t) ,

where ξ(t) is a standard Gaussian white noise process. In [WM98] a thermo-
dynamical foundation to apply this model to mildly nonlinear resistors and
reciprocal networks is given.
Shot noise of pn-junctions, caused by the discrete nature of current due to the
elementary charge, is also modelled by a Gaussian white noise process. Here
the spectral density is proportional to the current I through the pn-junction:
Sshot := q|I |, where q is the elementary charge. If the current through the pn-
junction is described by a characteristic I = g(u) in dependence on a voltage
u, the additional current is modelled by

Ishot = σshot(u) · ξ(t) =
√

q|g(u)| · ξ(t),

where ξ(t) is a standard Gaussian white noise process. For a discussion of the
model assumptions we refer to [B96, DS98, WM98].

Using the charge-oriented modified nodal analysis (MNA) one formally
obtains specially structured differential-algebraic equations with stochastic
perturbation terms (see [W03, W02], and for the deterministic case [ET00,
GF99]):

A
d

dt
q(x(t)) + f(t, x(t)) +

m
∑

r=1

gr(t, x(t))ξr(t) = 0, (1)

where x is the vector of unknowns consisting of the nodal potentials and
the branch currents of current-controlled elements (inductances and voltage
sources). The vector q(x) consists of the charges of capacitances and the fluxes
of inductances. The leading constant matrix A is a singular incidence ma-
trix which is determined by the topology of the network, f(t, x) describes the
impact of the static elements, gr(t, x) denotes the vector of noise intensities
for the r-th noise source, and ξ(t) is an m-dimensional vector of independent
Gaussian white noise processes. One has to deal with a large number of equa-
tions as well as of noise sources. Compared to the other quantities the noise
intensities gr(t, x) are small.
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2 Solutions of SDAEs

In established numerical integrations the terms q(x) are treated as extra vari-
ables (cf. [GF99]) to guarantee charge-conservation. One can view equation
(1) as a compact formulation of the larger system

A d
dtq(t) + f(t, x(t)) +

m
∑

r=1
gr(t, x(t))ξr(t) = 0,

q(t) = q(x(t)),
(2)

with unknowns (q, x). We understand (1) resp. (2) as a stochastic integral
equation

AQ(s)
∣

∣

∣

t

t0
+

t
∫

t0

f(s, X(s))ds +
m
∑

r=1

t
∫

t0

gr(s, X(s))dBr(s) = 0 ,

Q(t) = q(X(t)),

(3)

where the second integral is an Itô-integral, and B denotes an m-dimensional
Wiener process (or Brownian motion) given on the probability space (Ω,F , P )
with a filtration (Ft)t≥t0 . Due to the singularity of the incidence matrix A
and the special structure of the system (3), it involves constraints. We call the
system (3) a stochastic differential-algebraic equation (SDAE). The solution
is a stochastic process X(t, ω) depending on the time t and on the random
sample ω. The value of the solution process at fixed time t is a random variable
X(t, ·) = X(t) whose argument ω is usually not written. For a fixed sample
ω representing a fixed realization of the driving Wiener noise, the function
X(·, ω) is called a realization or a path of the solution. Due to the influence
of the Gaussian white noise, typical paths of the solution are nowhere differ-
entiable. A process is called a strong solution of (3) if it is adapted to the
filtration (i.e., it does not depend on future information), and if, with proba-
bility 1, its sample paths are continuous, the integrals in (3) exist and (3) is
fulfilled.

The theory of stochastic differential equations distinguishes between the
concepts of weak and strong solutions. The concept of weak solutions is ap-
plied if one is interested only in the time-evaluation of the distribution of the
solution. One then computes moments of the solution process like expecta-
tion and variance. The strong solution concept is applied if one is interested
in solution paths.

We illustrate the output of both concepts by simulation results for a noisy
MOSFET-ring-oscillator cf. [KRS92, P00]). Only thermal noise in the MOS-
FETs and in the resistors is considered. The corresponding circuit diagram
is given in Fig. 2. To make the differences between the solutions of the noisy
and the noise-free model for this simple example more visible, we dealt with
a system where the diffusion coefficients had been scaled by a factor of 1000.
We plotted values of the nodal potential at node 1 versus the time. The solu-
tion of the noise-free system is given by the dashed line. In the left of Fig. 3 we
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Fig. 2. Figure 2: Thermal noise sources in a MOSFET ring-oscillator model

present quantities obtained from moments of the solution: the mean µ and the
boundaries of the confidence interval [µ− 3σ, µ + 3σ], where σ is the estimate
for the standard deviation. The mean appears damped and differs consider-
ably from the noiseless, deterministic solution. In the right we present two
sample paths (dark solid lines). They indicate that the large deviations from
the mean seen in the left picture are mainly due to phase noise. Transient noise
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Fig. 3. Statistical parameters and solution paths for the nodal potential at node 1

analysis computes paths of the solution. It allows the computation of moments
in a post-processing step. The necessary numerical analysis therefore uses the
concept of strong solutions and of strong convergence of approximations.

Combining knowledge from the theory of stochastic differential equations
and the theory of differential-algebraic equations the existence and uniqueness
of a strong solution of the SDAE (3) is proved in [W03] under the following
conditions, which we suppose also in the next chapter: First, assume that the
deterministic MNA-system

A d
dtq(t) + f(t, x(t)) = 0,

q(t) = q(x(t)),
(4)

is globally an index 1 DAE in the sense that the constraints are regularly and
globally uniquely solvable for the algebraic variables. Second assume that the
coefficients f, G, q of the SDAE (3) are globally Lipschitz-continuous with re-
spect to x and continuous with respect to t, and, third, assume that the SDAE
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(3) possesses noise-free constraints. This guarantees a solution process that is
not directly affected by the white noise process, which is true for the MNA
system if there are always capacitances in parallel to a noise source. This is
quite restrictive in the actual noise modeling. Nevertheless, one can also han-
dle many situations where this condition is violated. Often noisy constraints
are only needed for the determination of algebraic solution components that
do not interact with the dynamical ones. Future work should be dedicated to
the classification of such situations.

3 Integration schemes for index 1 SDAEs

We present adaptations of known schemes for stochastic differential equations
(SDEs) that are implicit in the deterministic and explicit in the stochastic
part to the SDAE (3). Designing the methods such that the iterates have to
fulfill the constraints of the SDAE at the current time-point is the key idea to
adapt known methods for SDEs to (3). This is realized by an implicit Euler
or BDF-discretization of the deterministic part.

The noise densities given in Sec. 1 contain small parameters, in fact the
square root of Boltzmann’s constant k = 1.3806× 10−23 for thermal noise
and of the elementary charge qe = 1.602× 10−19 for shot noise. To exploit
the smallness of the noise in the analysis of the discretization errors we express
the noise densities in the form

G(t, x) := εG̃(t, x), ε � 1. (5)

3.1 Drift-Implicit Euler-Maruyama Scheme

On the deterministic grid 0 = t0 < t1 < . . . < tN = tend the drift-implicit
Euler Maruyama scheme for (3) is given by

A
q(X`) − q(X`−1)

h`
+ f(t`, X`) + G(t`−1, X`−1)

∆B`

h`
= 0, ` = 1, . . . , N, (6)

where h` = t` − t`−1, ∆B` = B(t`) − B(t`−1), and X` denotes the approxi-
mation to X(t`). Realizations of ∆B` are simulated as N(0, h`I)-distributed
random variables. The Jacobian of (6) is the same as in the deterministic
setting. In general, the Jacobian is solution-dependent and differs from path
to path.

The scheme (6) for the SDAE (3) possesses the same convergence proper-
ties as the drift-implicit Euler- Maruyama scheme for SDEs (see [W03, W02]).
In general, its order of strong convergence is only 1/2, i. e.,

‖X(t`) − X`‖L2(Ω) := (E|X(t`) − X`|
2)1/2 ≤ c · h1/2, h := max

`=1,...,N
h`,
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holds for the mean square norm of the global errors. For additive noise, i. e.
G(t, x) = G(t), the order of strong convergence is 1, for small noise (5) the
error is bounded by O(h+ε2h1/2) (see [RW03b], or [MT97] for related results).

The smallness of the noise also allows special estimates of local error terms,
which can be used to control the stepsize. The local error for the Euler-
Maruyama scheme applied to SDEs with small noise is analyzed in [RW03b].
As long as stepsizes with

h` � ε2

are used, the dominating local error (per unit step) term of (6) is

η` :=
1

2

∥

∥

∥
A−

(

f(t`, X`) − f(t`−1, X`−1)
)

∥

∥

∥

L2(Ω)
= O(h` + εh

1/2
` ), (7)

where A− denotes a suitable pseudo-inverse of A. For ε → 0 it approaches the
known error estimate in the deterministic setting. If an ensemble of solution
paths is computed simultaneously, the estimate η` can be approximated and
may be used to control the local error corresponding to a given tolerance. This
results in an adaptive stepsize sequence that is uniform for all solution paths.

3.2 Higher order schemes for small noise SDAEs

Improving the (asymptotic) order of strong convergence of numerical schemes
for SDEs or SDAEs would require to include more information on the driving
noise process than only the increments of the Wiener process. The so-called
Milstein-schemes (see [RW03a, P00]) which possess strong order 1 require
derivatives of the diffusion coefficients and double stochastic integrals. In an
application with a large number of small noise sources one has to pay much
for a merely theoretical gain in accuracy.

When the noise is small, one can believe that the stochastic system, though
of a completely different analytical character, has a solution that is somehow
‘close’ to a deterministic one. Then one can hope that for step-sizes that
are not asymptotically small the error behaviour is still dominated by the
deterministic terms. In addition, one might expect that the stochastic scheme
inherits some of the qualitative properties of the deterministic methods. Thus
motivated, linear two-step Maruyama methods for SDEs has been analyzed
in [BW03, BW04]. Here we present the two-step BDF-Maruyama scheme for
the SDAE (3):

0 = A
q(X`) −

4
3q(X`−1) + 1

3q(X`−2)

h
+

2

3
f(t`, X`)

+ G(t −̀1, X −̀1)
∆B`

h
−

1

3
G(t −̀2, X −̀2)

∆B`−1

h

For small noise the global errors of this scheme are bounded by O(h2 + εh +
ε2h1/2). Below we illustrate this by simulation results for the scalar linear
SDE
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X(t) = 1 +

∫ t

0

αXτdτ +

∫ t

0

εXτdBτ , t ∈ [0, 1]

with the geometric Brownian motion X(t) = exp
(

(α− 1
2ε2)t+εW (t)

)

as exact
solution. We have chosen the parameters α = −1, ε = 10−3. In Fig.4 we show
the mean-square of the global errors vs. the stepsize for the implicit Euler
scheme, the stochastic trapezoidal rule and the two-step BDF-Maruyama-
scheme for 100 computed paths in logarithmic scale. The slopes of the lines
indicate the observed order of convergence of the schemes. For comparisons
a line with slope 1 is given. The error of the Euler scheme shows order 1 be-
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Fig. 4. global error vs. stepsize in logarithmic scale

haviour in the considered range of stepsizes. The two schemes with determin-
istic order 2 show two different regimes. For larger stepsizes the deterministic
part of the error of the form O(h2) dominates and leads to order 2 behaviour,
whereas for smaller stepsizes the error is dominated by a term O(εh). In both
regimes the errors are considerably smaller than those of the Euler-scheme.
The theoretical order 1/2 of the schemes would be observed only for much
smaller stepsizes.
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