Stable Groups

Andreas Baudisch (Berlin)

1 Examples

Stable groups are structures M where a group is a reduct of the structure
and Th(M) is stable.

a) All infinite abelian groups are stable (Szmiliew).

b) Algebraic groups over algebraically closed fields. Fields.

)
)

c) Free groups (Sela).
)

d) Infinite free groups in the variety of c-nilpotent groups of exponent p”

with p > ¢ (B.).

e) Let L be a language of finite signature and 7" be a complete L-theory.
Then there is a complete group theory Tz (Mekler) such that:

T is a theory of 2-nilpotent groups of exponent p (p > 2);
T is interpretable in Ty (stable embedding);

T is x-stable iff Ty, is k-stable;

T is simple iff T; is simple;

T is not one-based;

T is CM-trivial iff T is CM-trivial (B.).

f) Counterexamples to Zil’ber Conjecture in group theory: Uncountably
categorical groups that are not one-based and do not allow the inter-
pretation of an infinite field (B.). (They are 2-nilpotent of exponent
p>2.)

Cherlin-Zil’ber Conjecture: Every simple group of finite Morley rank is an
algebraic group over an algebraically closed field.

Examples above are pure groups (no extra structure) or based on pure fields.



g) Examples with extra structure:

Black Field (Poizat/Baldwin, Holland): ACF, with a predicate for a
proper infinite subset of Morley rank 2.

Red Field (B., Martin-Pizarro, Ziegler): ACF, with a predicate for a
proper (red) infinite additive subgroup of Morley rank 2 (p > 0).

Bad Field (B., Hils, Martin-Pizarro, Wagner): ACF, with a predicate
for a proper (green) infinite multiplicative subgroup of Morley rank 2.

Results about stable groups are often an important part of general
stability theory.

2 Chain conditions

lg.h] = g*h7'gh
g" = h'gh g~ g" (hfixed) inner automorphism
G has exponent n, if n is minimal with ¢" = 1 for all g € G.
e Centralizer of Ain G: Cg(A)={g€ G :[g,A] =1}
e Normalizer of H in G: Ng(H)={9€ G: H=H}
e Derived series of G: G0 = G, G+ = [GO), GD)]

e Lower central series: ['((G) =G, I',41(G) = [I',(G), G].
Note I'(G) = GV = G'.

e Upper central series: Zy(G) = {1}, Z,.1 ={9 € G :[g,h] € Z,(G) for
all h € G}.

e G is solvable of derived length n, if G = (1).
e ( is nilpotent of class n if I',,1(G) = (1) (iff Z,(G) = G).

Definition The subgroups Hy, Ho, ... of G are uniformly defined by ¢(x, y),

if H; = ;(G,b) for some parameter b.

Lemma 2.1 (Trivial Chain Condition) Let G be a stable group. For eve-
ry formula p(z,y) there is some n(p) such that every chain Hy C Hy C ...
of subgroups uniformly defined by p(x,y) has length at most n(p).



Lemma 2.2 Let G be a stable group. For every formula o(z,y) there is some
m(p) such that every intersection of a finite family of subgroups uniformly
defined by ¢(x,y) is the intersection of at most m(yp) of them.

The Proof uses only NIP. Otherwise for each m there are H;...H,, such

ﬂ H;, C ﬂ H; for every 7.
0<i<m 0<i<m
i7#]
Choose b; in the right but not in the left side.
If I is any subset of {1, ..., m}, then define b; = [] b;. It follows G F ¢(b;, a;)
jel

iffi¢ 1. 0

Theorem 2.3 (Baldwin, Saxl) Let G be a stable group. We have the chain
condition for uniformly defined intersections subgroups of G.

Proof. By Lemma 2.2 each element of a chain is uniformly defined as an
intersection of at most m(y) ¢-subgroups. Then apply Lemma 2.1. O

Example: Centralizers

Lemma 2.4 If G is w-stable, then G has no decreasing chain of definable
subgroups.

Proof . 1If H; ;1 C H; then
but the Morley degree of H;.; is smaller. O

Lemma 2.5 FEvery definable injective endomorphism f of an w-stable group
G s surjective.

Proof. f(G) C G has the same MR and Morley degree. O

Lemma 2.6 If G is a stable group and A C G is an abelian subgroup. Then
there is a definable abelian subgroup A’ O A. If A is nilpotent of class n, then
we find A’ definable, nilpotent of class n with A C A’.

Proof. Let A’ = Z,(Cs(A)). By Lemma 2.2 A’ is definable. O

There are interesting results in algebra:
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Theorem 2.7 (Bryant, Hartley) Every soluble torsion group satisfying the
chain condition for centralizers is an extension of a nilpotent normal subgroup
by an abelian-by-finite group of finite Prifer rank. Hence this is true for stable
soluble torsion groups.

Definition Finite Priifer rank n: Every finitely generated subgroup has a
generating set of size at most n.

This means for an abelian torsion group A that it can be embedded into
P Z(p) for suitable p;.

1<i<n

Theorem 2.8 (B., Wilson) Let G be a soluble stable group having a nilpo-
tent normal subgroup Ny such that G/Ny is a torsion group. Then G has a
nilpotent normal subgroup N such that G/N is an abelian-by-finite torsion
group of finite Priifer rank.

No-categorical groups

Theorem 2.9 (U. Felgner (1978); W. Baur, G. Cherlin, A. Macintyre (1979))
Every Ng-categorical stable group G s nilpotent by finite.

Theorem 2.10 (O. Kegel (1989) uses classification of finite simple groups)
Every locally finite group of bounded exponent, that satisfies the chain condi-
tion for centralizers, is nilpotent by finite.

Theorem 2.11 (W. Baur, G. Cherlin, A. Macintyre) Every N,-categorical
w-stable group G is abelian by finite.

Open problem: Is every Ny-categorical stable group G abelian by finite?

Background:

A. Lachlan: Ny-categorical superstable theories are w-stable.

E. Hrushovski: There is a stable Ry-categorical theory that is not w-stable.

Connected components
Note:

o If H is a subgroup of GG, then the number of left cosets is equal to the
number of right cosets

(aH)™' = Ha™".



o If H is a subgroup of finite index in GG, then there is a normal subgroup
H* of G of finite index such that H* C H C (.

Let G be stable and sufficiently saturated. Let G°(¢(z, %)) be the subgroup
of G that is the intersection of all groups of finite index in G defined by
©(x,a) for some parameter a in G. By Lemma 2.1 it is a finite intersection
and therefore definable. As an intersection of normal subgroups it is normal.
It is a characteristic subgroup and therefore ()-definable.

G () ¢-connected component;

G = N G%¢) connected component;
peL

G is connected if G = GV.
If G is w-stable then G° is ()-definable.
If G is stable GY is A-definable.

3 Generic types

G stable group not necessarily pure
A definable subset of G.

Essentially due to Poizat based on Cherlin, Zil’ber:

Definition

A is right generic if G = a1 AU ... U a,A for some right translates a;A.

A is left generic if G = Aay U ... U Aa, for some ay,...,a, (iff A7 is right
generic).

A is bi-generic if G = a; Aby U ... U a, Ab, for some ay,...,a,,b1,...,0b,.

We will show that all 3 cases are equivalent. Then we say: A is generic.

Definition p € 5,(G) is generic if it satisfies only generic formulas.
If p is generic, then p~! is generic.

Lemma 3.1 Let A be a definable subset of a stable group G. Then either A
is right generic or its complement —A is left generic.

Proof. Suppose not. Then for any ag,...,a, € G there exists

d¢ (mAa;'u...U(=A)a,’



Hence da; € A for 1 < ¢ < n. Analogously for any ay,...,a, € G there is
some e such that
ae € A for 1 <i<n.

Using this we get by induction by,...,b;,...,¢c1,...,c; such that
Cns1bl, ... Cni1by € A and cibyiq, ..., cpbp € DA

Then if ¢ < j then ¢;b; ¢ A, if j < i then ¢;b; € A. This gives the order
property for the pairs (¢;, b;).

Corollary 3.2 There is a bi-generic complete type.

Proof. We show if AU B bi-generic, then either A is generic or B is generic.
If G=a;(AUB)b U...Ua,(AU B)b, then

G = (A U ... Ua,Ab,) U (a1 Bby U...Ua,Bb,).

By Lemma 3.1 the first or the second union is bi-generic. Hence A or B is
bi-generic.

We have shown:

A finite union of non-generic definable sets is non-generic and hence # G.
By compactness we get that negations of non-generic formulas form a con-
sistent set. O]

Lemma 3.3 A generic type does not fork over (.

Proof. Let o(z,y) be a formula. We use the local rank R?(p). Let ¢(z) be
with parameters.

i) R2(¢(x)) > 0if ¢(x) is consistent.
If ¢ is limit ordinal.
ii) R2(¢(x)) > 8 if R#(y(x)) > S for all 3 < 4.

iii) R?(¢(x)) > B+1if for each i < w there is ¥; which is a finite collection
of p-formulae, such that:

a) Fori < j <w WV;and ¥; are contradictory (i.e. either there are
¢(x,b) € ¥; and —p(z,b) € U; or there are —p(x,b) € ¥; and
o(x,b) € V;.

b) Foreachi <w RE(YANAT;) > 0.

Note:



o If T is stable, then R?(1(x)) is finite.

o R5(p) = min{RZ(¢(x)) - ¢(Z) € p}.

Let T be stable. Let p(z) € S,,(A), A C B and let ¢(x) € S,(B) be a forking
extension of p. Then there is some p(z,y) such that R?(p) > R¥(q).

Let p be a generic type over M where (G is defined in M. The parameters are
in acl((). It is sufficient to show, that R?(p) is maximal for all ¢(z, 7).

It is sufficient to consider formulas ¢(u -z - v, y) only. Let ¢ be a type where
R?(q) is maximal.

If ¢)(x) € p, then ¥(G) is generic. Hence there are a, b with ay(x)b is in g.
Hence ¢(x) is of maximal R?-rank. O

Lemma 3.4 For every ¢(x,y) there is a natural number n(yp) such that if
©(G,a) is a generic set, then G is covered by n(p) sets a (G, a)b.

Proof. Let G be highly saturated. Let p be generic over G. If ¢(G,a) is
generic, then p(axb,a) € p for some a, b. Hence ¢(G,a) is generic iff G F
Juv d,(u, v, a) where d,, is the definition of p for ¢(uzv, y). The result follows
from compactness. U

The lemma provides us a formula v,(y) such that: ¢(z,a) is generic iff
G E ¢, (a).

Note generic types are defined over models G. By Lemma 3.3 they do not
fork over (). Hence it makes sense to consider their restrictions to subsets of
G as generic types.

Lemma 3.5 a) Nonforking extensions of generic types are generic.

b) If a and b are generic and independent over A, then ab is generic.
Furthermore a and ab and b and ab are independent.

Proof. a) By the definition it is sufficient to consider a generic type p over
G and its heirs. Then formulas p(x,y) A =, (y) are not in cl(p) (class of
fundamental order). Then this is true for every heir and the heirs are generic.

b) W.Lo.g. A = G. Otherwise consider a non-forking extension of tp(a,b/A)
over G. Choose G = G, b € Gy, G; | a. Then a is generic over GG;. Hence
a

ab is generic over G; and therefore over G. (A bi-generic = Ab bi-generic.)
Since tp(ab/G;) dnf G, ab | b. Analogously ab | a. O
G a



Corollary 3.6 Every b is the product of two generics. If tp(b/G) = p 1is
given and p(x) is a bi-generic formula, then there is a ¢ € G such that

cpE o(x).

Proof. Assume tp(a/b) 3 ¢(x) is generic and a | b. Then tp(a/Gb) is gene-
G

ric (Lemma 3.5). Hence tp(ab~!/Gb) is generic. ab~! | b and tp(ab™'/G) is

G
generic (Lemma 3.3). If ¢ = ab™!, then ¢ 'a = b and a = c¢b. Since b | c,
G
there is some ¢’ € G such that F ¢(c'b). O

Corollary 3.7 A formula ¢(x) is right-generic iff it is left-generic iff it is

bi-generic.

Proof. It is sufficient to show that bi-generic formulas ¢(z) are right- and left-
generic. Corollary 3.6 says that every element of G can be moved into ¢(z) by
left-multiplication. By compactness ¢(z) is right-generic. The "left-generic"
case is proved analogously. 0

G° and the generics

G'=[)G(p), G(p) 0-definable.

pEeL

In a sufficiently saturated model G° # (1). We consider the action of G on
S1(G) by gp = {p(z) : ¢(gz) € p}. If G X G and tp(a/G) = p for a € G,
then ga realizes gp.

Definition Stab(p) = {g € G : gp = p}.
Consider formulas ¢(u - x, 7).
Definition

Stab?(p) = {g€G:gplo=pl¢}
{9 € G : p(hz,b) € piff p(hgx,b) € p for all h;b in G}

= {9 € G:Vavyldp(p(zz, 7)) < dp(e(zg2,9))]}-

Hence Stab?(p) is a definable subgroup.
Stab(p) = ﬂ Stab?(p) is A -definable.
©

We work with p(u - x,y) to ensure that Stab¥(p) is a subgroup!
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Lemma 3.8 Stab?(p) C G°(¢) and Stab(p) C G° for p € S1(G).

Proof. p contains the information about the coset modulo G°(p(uz, 7)). Hence
Stab?(p) C G%(¢(ux,¥)): Let ¢(x) define G°(p). Ex. b € G with ¢(b~'z) € p.
If g € Stab¥(p) then ¢ (b~'gx) € p. Hence b~'gb and g € G°(y). Note ¥ (x)
defines a normal subgroup. 0

Lemma 3.9 Ifp is generic, then Stab?(p) has finite index in G and Stab(p) =
G°. For every formula o, the generic types have only finitely many pairwise
distinct p-types.

Proof. The first assertion follows from the second. (If p generic, then ap
generic.) The number of types over () is bounded. Since the generic types
do not fork over (), their number is bounded. Hence there are only finitely
many -types of generics, since otherwise we could produce to many by
compactness. [

Theorem 3.10 There is a unique generic in every coset of G°. If G is suf-

ficiently saturated, then G acts transitively on its generics. p is generic iff
Stab(p) = G°.

Proof. If G is sufficiently saturated, then every coset of G° is represented in
G. There is a generic type in G° (principal generic). By translation in every
coset of G there is a generic. We have to show that there are not two generics
in G°.

We choose realizations a and b independent over G. Since Stab(generic) = GY,
b and ab realize the same type over G a and therefore over . Similarly a
and ab have the same type over G. Hence a and b have the same type over
G. Hence there is exactly one generic in a coset of G° given by a translate of
the principal generic.

If p is generic, then Stab(p) = G° by Lemma 3.9. Now assume Stab(p) =
G°. Then this is true for every heir of p. Let a realize p and b realize the
principal generic over G"a. Then a | b. a and ba have the same type over

G
G"b. Furthermore ba is generic over GG~ a. Therefore a is generic over G. [

Theorem 3.11 Let K be a stable infinite field. Then K has no definable
additive or multiplicative subgroup of finite index. Its additive generic is also
the unique multiplicative generic.

Proof. Assume H has finite index in K. Then aH is also such a subgroup.
Hence the intersection of all aH is a finite intersection and it is an ideal I.



Since K is infinite, / # 0 and [ = K.

Let p be the unique generic of K. p is in K*. x — ax is an additive
automorphism. It preserves the additive generic. Hence ap = p for every
a € K*. By Theorem 3.10 p is the multiplicative generic. K~ is connected.[]

4 Groups of finite Morley rank

Definition G is minimal, if every proper definable subgroup is finite. E.g.
connected group of MR 1.

Lemma 4.1 If G is w-stable, then the generic types are the types of maximal
MR.

Proof. (—) Every generic set is of maximal Morley rank.

(«) Let p be of maximal Morley rank. By Theorem 3.10 it is sufficient to
show that Stab(p) = G°. This is clear since {ap : a € G} if finite. O

Theorem 4.2 (J. Reineke) Every infinite minimal w-stable group is abelian.

Proof. If a is not in the center of GG, then C(a) is finite. Let b be generic over
a. {c:cac™! = bab™'} is finite, since C(a) is finite. Hence b is algebraic over
a"bab~'. We get MR (bab™!/a) = MR(b/a). Therefore the conjugacy class of
non-central elements a is generic. By assumption G is connected. There is
only one generic type. The generic conjugacy classes of non-central elements
a, a’ coincide. Hence a and @’ are conjugated. If G is not abelian, then Z(G)
is finite and H = G/Z(G) is infinite and all elements # 1 are conjugated.
Choose a € H, a # 1. Then a? # 1, since otherwise H? = 1 and H abelian.
Then there is some b with b='ab = a~! and therefore b='a~'b = a, because
b~'zb is an automorphism. We get b~2ab* = a and C(b) C C(b?), v* # 1.
Choose ¢ with ¢ 'bc = b?. Finally
Cb) S Clebe™ C...CC("bc™) C ...

=

a contradiction to stability. 0

Corollary 4.3 If MR(G) = 1, then G is abelian by finite. Every w-stable
group contains an infinite definable abelian subgroup.

Proof. If MR(G) = 1 then G° is minimal. If Th(G) is w-stable choose H
infinite definable of minimal MR. Then H° is minimal. O

(True for superstability!)
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Definition A definable subset X C G is indecomposable, if whenever H is
a definable subgroup of G the coset space X/H is either infinite or contains
a unique element.

Example: If X is an infinite connected definable group, then X is indecom-
posable. H definable subgroup. Then X/H and X/X N H have the same
number of cosets.

Lemma 4.4 RM(Stab(p)) < RM(p) for p € S1(G).

Proof. Assume G < Gy, a,b € Gy, tp(a/G) = p, b € Stab(p) with RM(b/G) =
RM(Stab(p)), a | b. Then
a

RM(ba/G"a) = RM(b/G"a) = RM(b/G) = RM(Stab(p))

and
RM(ba/G"a) < RM(ba/G) = RM(p).

The following results are mainly due to B. Zil‘ber.

Theorem 4.5 (Zil’bers Indecomposability Theorem) Let G be a group
of finite Morley rank and {X; : i € I} a collection of definable indecomposa-

ble subsets of G containing 1. Then the subgroup of G generated by |J X; is
i€l
definable and connected.

Proof. If 0 = (i1, ...,1,) € I=¥, then define X? ={ay...a,:a01 € X;,...a, €
X, }- There is some o such that RM(X?) = k is maximal, since MR(G) is
finite.

Let p € Si(G) be a type with "z € X°" and MR(p) = k. We consider
H = Stab(p) and show X; C H for each i € I. Otherwise | X;/H| > 1 since
1€ X;NH and X; ¢ H. Since X; is indecomposable there are ay, as, ... € X;
with a;H # a;H for i # j. Then a; 'a; ¢ H = Stab(p) implies a;p # a;p. We
obtain infinitely many distinct types of MR k : aip, asp, ... All these types
contain the definable set X; X?. Hence X; X has MR = k+1, a contradiction.

We have shown (|J X;) C H. We want to show equality. By Lemma 4.4
icl

RM(H) < RM(p) = RM(X") < RM(H).

Now p € H and RM(p) = RM(H). Therefore p is a generic type of H. By
Theorem 3.10 H acts transitively on its generic types. Since H = Stab(p)
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H fixes p and H is connected. Because X? C H is generic by Corollary 3.6
H = X7?.X7. Hence H is the group generated by |J X; and it is connected.

i€l
O
Corollary 4.6 In Theorem 4.5 there are X,,,...,X,;, such that
<UX> = Xi e X Xy X
el

Action of a group H on X is a map

e v: H x X — X such that v(1,z) = z, y(hy,7y(he, x)) = v(h1he, ).

e YV C X is H-invariant if (V) =Y.

e H acts transitively on Y C X, if for all ¥,y € Y there exist some
h € H with h(y,) = yo.

Examples:

e X = Ais a group and for each h = — 7(h,x) is an automorphism of

A. We say 7 is the action of the group H as a group of automorphisms
of A.

e H= X isagroup, y(h,z) =h~! x h.
e H=K"and X = A=K". K field, vy(h,z) = ha.

Definition v : H x X — X is an w-stable action if v, H and X are defined
in a w-stable structure.

Lemma 4.7 Assume we have an w-stable action of a group H on a group G
as a group of automorphisms where X C G is H-invariant. If for all definable
H -invariant subgroups J of G either |X/J| =1 or X/J is infinite, then X
1s indecomposable.

Proof. Suppose there is some definable subgroup J of G such that 1 <
|X/J| < Ng. Then X C yJU...Ua,J. If h € H and a € X, then
y(h™',a) € X. Hence v(h™', a) = a;j for some j € J and a = v(h, a;)y(h, j).
Thus

X Cy(h,ar) -y(h, J)U...U~y(h, an)y(h, J)

and therefore
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(%) X/~(h,J) is finite for any h € H.

Let J* = () v(h, J). By the Descending Chain Condition there are hy, ..., h,,

heH
such that
7= () (ki)
1<i<m
By (%) X/J* is finite. Hence 1 < |X/J*| < X,. Since J* is H-invariant, this
is a contradiction. O

Corollary 4.8 i) Let H be a definable connected subgroup of a w-stable
group G. Then g'' = {h='gh : h € H} is indecomposable for a fived
g€ q.

i) If G is connected w-stable and of finite Morley rank, then G’ is connec-
ted and definable.

Proof. i) g — g¢" is a definable action of H on G. g is H-invariant. By
Lemma 4.7 it is sufficient to consider definable J in G with h='Jh = J for
all h € H. If g¥/J is finite, then we choose m minimal such that

gHgalJU...UamJ for al,...,amEgH.

Since J is H-invariant and af € g” we have a?’J = a;J for some j. We get a
transitiv definable action v of H on {ay,...,a,,}. (Transitive since a; = g"'.)
If H* is the subgroup of all h* € H with v(h*,a;) = a;, then H* has finite
index in H. Hence H* = H and m = 1.

ii) Since ¢“ is indecomposable also g~'¢“ is indecomposable and contains 1.
By Zil’ber’s Theorem G’ is definable and connected. O

Theorem 4.9 If g is infinite non-abelian of finite Morley rank such that G
has no non-trivial definable proper normal subgroup. Then G is simple.

Proof. G is connected. If a“ is finite, then C'(a) has finite index in G. Hence
a is central and therefore a = 1 since G is non-abelian. Therefore for a # 1
each {1} U a® is infinite and indecomposable (Lemma 4.7). By Theorem 4.5
{1} Ua® generates a definable normal subgroup of G and therefore G. Since
this is true for every a G is simple. O

Lemma 4.10 Let A be a definable subset of G where G is a w-stable group.
Then A is the union of finitely many mazimal indecomposable subsets, which
are pairwise disjoint.
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Proof. 4

/‘\ A = UA,

A Ay A, A Cal
/I\ -

finitely branching tree

No infinite branch since there is no descending chain of subgroups.
Konigs Lemma: Finite Tree.
Hence A= |J B; B;indecomposable pairwise disjoint.

1<i<k
If B and C' are definable indecomposable subsets and BNC # (), then BUC
indecomposable. O

Theorem 4.11 Simple groups and fields of finite Morley rank are N, -categorical.

Proof. GG simple group, A infinite definable subset. Let A; C A be a definable
maximal indecomposable subset of A (Lemma 4.10). Fora € Ay, B=a"14,
is indecomposable and 1 € B, b~'Bb is indecomposable and 1 € b= Bb for
all b € B.

Hence by Theorem 4.5 (Corollary 4.6) G is a product of finitely many v~! Bb.
Hence for every definable A there are b, ...b, in G such that

G=(a"tA)" .. (a tA)".

It follows that G has no Vaughtian pairs. If K is a field, then we do the same
in the additive group. Choose A O A; > a as above and B = A; — a. Then
all bB are indecomposable and contain 0. By Corollary 4.6 for every A there
are by, ...,b, such that

K=h(A—a)+...+b,(A—a).
Again we have no Vaughtian pairs and therefore N;-categoricity. U

Definition The action v : H x A — A is faithful if for every pair hy, hy € H
there is some a € A with vy(hy,a) # v(ha, a).

Theorem 4.12 Let (H,-) and (A, +) be infinite abelian groups with a faithful
w-stable action of H on A as a group of automorphisms. Assume that there
is no infinite definable subgroup B of A that is H-invariant. Then we can
interpret an algebraically closed field.
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Proof. A° is invariant under all definable automorphisms. Hence it is H-
invariant and A = A°. Let a € A be generic over all used parameters.

Clatm 1. Ha is infinite.

If Ha is finite, then H'a is finite and therefore H%a = {a}, as in the proof
of Corollary 4.8.

Let X be {b€ A: H° = {b}}. Then X is generic and every element of A is
a product of two elements of X. Then H = {b} for all b € A. Because H
acts faithfully H° = {1} and H is finite, a contradiction.

Claim 2. Ha U {0} is indecomposable, Ha U {0} is H-invariant.
By Lemma 4.7 we consider only H-invariant subgroups B of A. By assump-
tion they are finite. Therefore Ha U {0}/B is infinite (Claim 1) as desired.

By Theorem 4.5 (Ha U {0}) is a definable infinite H-invariant subgroup of
A. Hence it is A. There is some n such that each element of A is the sum of
n elements in Ha U {0}.

Let End(A) be the ring of endomorphisms of A. Let R be the subring gene-
rated by H in End(A). R is commutative. If b € A, then b = > h;a for

1<i<m
some h; € H and m < n.

For r € R we have
r(b) = Z rhia = Z hira

1<i<m 1<i<m

by commutativity of R. If ry,75 € R and ria = rsa, then r; = ro. Let ra =0
andb= > h;a. Then hy+...+h,, € Rand r = (hy+...+ h,,). Hence for

1<i<m
every r € R there are hy,..., h, from H U {0} such that »r = hy + ...+ h,.
(We define 0a = 0.)

Claim 3. The ring R is interpretable. We define
(hi,...,hn) ~(91,...,9,) if and only if Z h;a = Zgia,
hog=0 ifandonlyif Y ha+» ga=> la

and

h®g=~/ ifand only if ii higja = ifka.
k=1

i=1 j=1

Claim 4. R is a field.
Let r € R, r # 0. Let b € B = ker(r). Then rb = 0 and for any h € H

r(hb) = (rh)b = (hr)b = h(rb) = 0.
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Thus B is H-invariant and by assumption B is finite. Because A is connected
r is surjective. Choose ¢ € A with r¢ =a. Let c=)_h;a and s =>_h; € R.
Then sa = ¢ and rsa = a. la = a implies s ~ 1. By Macintyre R is
algebraically closed. 0

Theorem 4.13 (Zil'ber) If G is an infinite connected, solvable, non-nilpotent
group of finite Morley rank, then G interprets an algebraically closed field.

5 One-based groups

Definition A stable theory 7' is one-based if for every n every model M E T,
every p € S,(M), and every realization a of p we have Ch(p) € acl(a).

Theorem 5.1 (E. Hrushovski, A. Pillay) Let G be a stable one-based group.

i) For any n every definable subset X of G"™ is a Boolean combination of
cosets of acl(D)-definable subgroups of G".

i) G is abelian by finite.

Proof: We assume w-stability.

Claim (1) Let H be a connected definable subgroup of G. Then Cb(H) is
algebraic over ().

Proof of (1): Assume G = G, g € G, tp(g/G) is the generic type of G. Let p
be the generic of H, p’ be the heir of p over G, and tp(a/G) = p'.

Let ¢ = tp(ga/G). Let u = Cb(H), v = Cb(q). By one-basedness v € acl(g-a)
u € G and tp(ga/G) is a generic type of G. Hence ga | u (Lemma 3.3).

0
Furthermore MR(q) = MR(a/G) = MR(H). To finish the proof we show
that u is definable over v.

Then u | ga and v € acl(g - a) implies u € acl(g - a) and u € acl(().
0
We consider f € Aut(G) with f(q) = ¢. It is sufficient to show that f(H(G)) =

H(G).
Let H; = f(H) and ¢; = f(g). Then gH, g1 H, € q. Hence

MR(q) = MR(H) > MR(gH N g H;) > MR(q).
We have MR(gH N g1H;) = MR(H). Since gH N g1H, = ¢g2(H N H;) for

any go € gH N g1 Hy, we have MR(H N H;) = MR(H). Since H is connected
Hy =H and gH = g1 H. O Proof of (1)
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Proof of (ii): We have to show G° is abelian. Hence w.l.o.g. G = G°. We
apply (1) to the group G*: Let H, be the subgroup {(h,g 'hg) : h € G} of
G?. We define an equivalence relation g ~ ¢’ iff H, = H,. H, is definably
isomorphic with G. Hence it is connected. Furthermore g ~ ¢’ iff forall h € G

g 'hg =g 'hg iff g= ¢ mod Z(Q).

Hence ~ is definable. By (1) each H, is acl(()) definable. Then there are
at most countably many H, and ~ has at most countably many classes. By
compactness there are only finitely many ~ classes and Z((G) has finite index
in G. O Proof of (ii)

Claim (2) For every n € w every p € S,(G) there exists b € G such that
Stab(p)b € p.

Proof of (2): W.lo.g. n = 1 and Ch(p) = 0 (we extend the language if
necessary). As above G <X G, g € G, tp(g/G) is the generic type of G,
p' = tp(a/G) is the heir of p and ¢ = tp(ga/G). Since g generic and ¢ | «a,

G
we have g is generic over G"a and therefore

3 a JC; ga.

Let u be Cb(g Stab(p)) and v be Cb(g). We show that
(4)  w and v are interdefinable.
Let f € Aut(G). We show
f(gStab(p)) = g Stab(p) iff f(q) =g
Since ¢ = gp’ and Cb(p') = 0, we have f(q) = f(g) - f(¢') = f(g)p'. Hence

flo)=q it gp'= f(g)p
iff g~ f(g) € Stab(p)
iff gStab(p) = f(g) Stab(p)

iff gStab(p) = f(gStab(p)),

since Cb(Stab(p)) = 0. O Proof of (4)
Since G is one-based, v € acl(ga) and u € acl(ga) by (4). Then a | gaU{u}
G

by (3).
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Assume o' € G with tp(a’/G) =p and o | w.

G
Since v = Cb(q) is definable over u (4), G | ga.
GU{u}
Hence @’ | gaand d | gaU {u}.
GU{u} G
We get,

(5)  tp(ga,u,a/G) = tp(ga,u,d'/G).

Using the parameter u there is a formula in the left type saying ga €
(gStab(p)) - a. Hence we have ga € (gStab(p)) - @’ and a € Stab(p) - a'.
Hence for any two independent (over GG) realizations a and a’ of p we have
a € Stab(p)a’.

Hence there is some b € G such that

x € Stab(p) - b € p.
(The formula is presented in cl(p).) O Proof of (2)

To prove (i) we show

Claim (6) Assume p,p’ € S,,(G) and for any definable subgroup H of G and
any a € G we have

Ha € p if and only if Ha € p'.

Then p = p'.
Proof of (6): W.Lo.g. n =1, MR(p') > MR(p), cEp, /Ep,c | .
G
Then by (2) ¢ € Stab(p)a for some a € G. Hence by assumption ¢ € Stab(p)a
and therefore ¢'c™! € Stab(p). We show dc™! | «
G

MR(dct/GU{c}) = MR(d/GU{c})

R(Stab(p)) Lemma 4.4

AVARAVARLYS

Choose G’ = G, dc! € G and G’ | c¢. Then
c

tp(c'/G") = tp(d'c'e/G') = dcMple/G) = tp(c/G).

Hence tp(c¢’/G’) is a non-forking extension of p and therefore p = p’ since
tp(c'/G) =p'. O
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6 Some further topics
— Group Configurations
— Borovik-Program

— Model Theory of Free Groups
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