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1 Finiteness of isogeny classes

Set-up 1. Define K to be an algebraic number field and S a finite collection of finite places of K.

Notation. We will use GK to denote Gal(K̄/K), the absolute Galois group of K.

Set-up 2. Given a positive integer d, a prime l and assuming Set-up 1, define ρ : GK → GLQl
(V )

to be a semi-simple representation of dimension d, unramified outside of S.

Set-up 3. Use Set-up 1. Given an integer g ≥ 1, define A to be an abelian variety over K of
dimension g with good reduction outside of S.

Theorem 1.1. Fix an integer g ≥ 1. There are only finitely many isogeny classes of abelian
varieties A as in Set-up 3.

Strategy of proof. Choose a prime l. In proving the Tate conjectures we have seen that two abelian
varieties A and B are isogenous iff Vl(A) and Vl(B) are isomorphic as GK representations.

A standard result implies that semi-simple GK-representations are isomorphic if the corre-
sponding trace functions on GK coincide. We will prove the theorem by proving the following two
statements:

• Reduction 1. Find finitely many elements F1, . . . , Fb in GK such that any two representa-
tions ρ1, ρ2 of dimension d = 2g as in Set-up 2 are isomorphic if the corresponding trace of
these finitely many elements are equal, i.e.

tr ρ1(Fi) = tr ρ2(Fi) for all i = 1, . . . , b.

• Reduction 2. Show that there is a finite set of values U depending only on Set-up 1 and
g ≥ 1 which contains the values tr ρ(Fi) for all i and all ρ which is the Tate representation
Vl(A) of some A as in Set-up 3.

These two facts combined imply that there can be only finitely many GK-representations arising
as Vl(A), which in turn imply that there can only be finitely many isogeny classes.

In the rest of this section we establish these two reductions.

1.1 Traces and representations - first reduction

Use Set-up 1. Fix an integer d > 0 and a prime l ∈ Z. Let ρ1, ρ2 be GK-representations as in
Set-up 2. We will denote by ti the composition tr ◦ρi : GK → Ql. As mentioned earlier, the two
representations ρ1 and ρ2 are isomorphic iff t1 = t2. Let us see how far we can force this result.

Let ρ = ρ1 × ρ2 : Zl[GK ] → End(V1) × End(V2) and denote by M the image of ρ. We
are interested in the difference of the traces, that is in the function t = t2 − t1. However, t
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factors through M by (m1,m2) 7→ trm2 − trm1. If t : M → Ql is identically zero, then the two
representations are isomorphic. We now need to find good generators for M to test the value of t.

Since M is finitely generated and Zl is local, any set of generators of M/lM lift to generators
of M (Nakayama’s Lemma). Furthermore, if we follow the quotient we get a map:

ρ̄ : GK → (M/lM)∗

into the units of M/lM . Note that the image of ρ̄ generates M/lM over Zl.
Since M is a finitely generated Zl-module in a Ql vector space of dimension 2d2, M is a free

Zl-module of rank ≤ 2d2. Therefore, M/lM is a Fl-algebra of dimension ≤ 2d2.
Because (M/lM)∗ is finite, ρ̄ factors through a finite quotient of GK . The Fundamental The-

orem of Galois Theory tells us that any finite quotient of GK is Gal(L/K) for some finite Galois
extension L/K. Therefore we have a commutative diagram:

GK (M/lM)∗

Gal(L/K)

ρ̄

Here L depends on the map ρ and we wish to remove this dependence. To that end observe that

#(M/lM)∗ < l2d
2

.

Consequently, [L : K] = |Gal(L/K)| < l2d
2

.
We will now show that L/K is unramified ourside of S, i.e. the inertia group Ip over any place

outside of S is 0. Note that the inertia group over a place is the image of the absolute ramification
over that place (upto conjugation). But Gal(L/K) is isomorphic to the image of ρ̄ and we assumed
ρ was unramified outside of S, which means the absolute inertia of places outside of S are killed
by ρ, and thus by ρ̄. Consequently, Gal(L/K) has no inertia outside of S.

As a consequence of Hermite-Minkowski Theorem, we may choose a finite field extension K̃/K

such that K̃ contains all finite Galois extensions K ′/K of degree < l2d
2

unramified outside of S.
Then ρ̄ factors through as follows:

GK (M/lM)∗

Gal(K̃/K)

ρ̄

ρ̃

We have thus successfully eliminated the dependence of the finite extension on ρ.
Since the image of ρ̄ generates M/lM as a Zl-module, so does the image of ρ̃. Let f1, . . . , fb ∈

Gal(K̃/K) be elements whose conjugacy classes cover Gal(K̃/K). Lift fi’s to GK and denote them
by Fi’s. Since the conjugacy classes of fi’s generate M/lM , the conjugacy classes of Fi’s generate
M by Nakayama. But t is invariant under conjugation, thus we really need to check the finitely
many values t(Fi) for i = 1, . . . , b. If all these values are zero then the two representations ρ1 and
ρ2 are equal.

Notice that Fi’s do not depend on the two representations we started with, but only on d and l.
Therefore, with d and l as above, if we are given any two representations ρ1 and ρ2 as in Set-up 2,
then these two representations are isomorphic if and only if tr ρ1(Fi) = tr ρ2(Fi) for all i = 1, . . . , b.

1.2 The Frobenius element

Our choice of Fi’s above will be Frobenius elements. Defining these automorphisms properly is
quite a bit of work, which we begin now.
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1.2.1 Finite extensions

Let K be a number field and let L/K be a finite Galois extension. Fix a prime p of K. Choose a
prime q of L, lying above p. Denote the residue field of p by F(p) = OK/p, and let N(p) = #F(p).
Similarly define F(q) and N(q).

Since OL = intclL Z, any automorphism of L will restrict to an automorphism of OL. Define
D(q/p) = {σ ∈ Gal(L/K) | σq = q}. Each σ ∈ D(q/p) restricts to an automorphism of F(p) =
OL/q over F(p). This gives us a map:

D(q/p)→ Gal(F(q)/F(p)).

Now we will show that this map is surjective. Write L ' K[x]/(f) for some monic and irreducible
f ∈ OK [x]. Similarly, write F(q) ' F(p)[x]/(g). It is easy to see that f mod p is ge for some
integer e. Let α be a root of f , note α ∈ OL. Let ᾱ be its image in F(q). Any automorphism
σ ∈ Gal(F(q)/F(p)) is completely determined by βσ := σ(ᾱ), which is a root of g. Thus we can find
a root of f , say γ, which restricts to βσ. The extension L/K being Galois there is an automorphism
of L taking α to γ. This automorphism restricts to σ. Consequently we have an exact sequence:

0→ I(q/p)→ Gal(Lq/Kp)→ Gal(F(q)/F(p))→ 0

where the kernel I(q/p) is called an inertia subgroup. The inertia group of two primes lying over
p differ by conjugation. We will say p is unramified if any, and hence all, of these inertia groups
over p vanish.

Notice that there is a canonical choice of a generator for Gal(F(q)/F(p)), which we denote by
Frob(q/p) : x 7→ xN(p). One crucial observation is this: If p is unramified, then there is a canonical
lift of the Frobenius action Frob(q/p) on the residue fields to an automorphism in Gal(L/K).
We will call this automorphism a Frobenius element, and continue to denote it with the symbol
Frob(q/p). Any other element in the conjugacy class of Frob(q/p) is of the form Frob(q′/p) for a
prime q′ lying over p. Thus, it is convenient to denote this conjugacy class by Frobp.

1.2.2 Absolute Frobenius

Now we wish to construct a Frobenius element in Gal(K̄/K) corresponding to a prime p of OK .
As before, we need actual primes lying over p to define such an element. One way to choose primes
over p is to consider the following

Set-up 4. Let K ⊂ Q̄ be a number field. Fix an embedding i : Q̄ ↪→ Q̄p, where (p) = p ∩Q, such
that the valuation ideal in Q̄p restricts to p in K.

This setup is useful because for any field extension K ⊂ L ⊂ Q̄, pulling back the valuation
of Q̄p gives a prime q in OL lying over p. Notice that this choice of a prime lying over p in each
extension of K is done in a consistent manner.

Suppose K ⊂ L ⊂ T are a series of finite extensions contained in Q̄, with the chain of primes
p ⊂ q ⊂ r induced from the embedding i. Then we have the following morphism of exact sequences:

0 → I(r/p) → D(r/p) → Gal(F(r)/F(p)) → 0
↓ ↓ ↓

0 → I(q/p) → D(q/p) → Gal(F(q)/F(p)) → 0.

Taking the inverse limit of these short exact sequences over all finite extensions of K in Q̄ we
get an exact sequence (the inverse limit over a compact set being exact):

0 → Ip → D(p) → Gal(F̄(p)/F(p)) → 0. .

Here D(p) is the subgroup of Gal(K̄/K) fixing the infinite chain of primes above p.
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We will denote by Frobp the Frobenius automorphism in Gal(F̄(p)/F(p)), which is also called
the absolute Frobenius. Notice that by construction, any lift of the absolute Frobenius restricts to
Frob(q/p) in Gal(L/K) (modulo inertia).

1.2.3 Characteristic polynomial of the Frobenius element

Definition 1.2. Use Set-up 4. Let GK = Gal(K̄/K). Let V be a k-vector space, for some field
k, and consider a representation ρ : GK → GLk(V ). The representation ρ is said to be unramified
at a prime p if ρ(Ip) = 0. In this case, we can lift the absolute Frobenius element in anyway we
like and still the image ρ(Frobp) is well defined. We shall call this the Frobenius element of the
representation ρ over p.

Recall that Set-up 4 implies that we have a chosen prime lying over p in every finite extension
of K. Making a different series of choices, i.e. a different compatible inclusion of K into Q̄p,
would have conjugated the inertia group and any lift of the absolute Frobenius. This means,
any construction done with the Frobenius element of the representation that is invariant under
conjugation can be defined using just p. For instance, the characteristic polynomial of ρ(Frobp)
and consequently the trace and determinant are well defined even without the choice of a series of
primes lying above p.

In summary we have:

Fact 1.3. Let K be a number field, and p a prime of OK . Suppose ρ : Gal(K̄/K) → GLk(V )
is unramified at p. Then we may unambigously define a polynomial which is the characteristic
polynomial of ρ(Frobp).

The primes of OK are called finite places. They correspond to inclusions K → Q̄p for primes p.
The infinite places are the inclusions K → C. The corresponding Frobenius element for an infinite
place is simply the restriction onto K the conjugation action on C. No lifting is required here.
From now on we will freely talk about the Frobenius element Frobv for a place v of K, whether v
is finite or infinite.

1.3 The trace of Frobenius - second reduction

Set-up 5. Evoke Set-up 1. Given a prime l ∈ Z and an integer d ≥ 1, choose K̃ ⊂ K̄ a finite
Galois extension of K, containing all Galois extensions K ′/K of degree < l2d

2

unramified outside
of S.

Recall that in Section 1.1, we dealt with finitely many elements F1, . . . , Fb whose conjugacy
classes covered G̃ = Gal(K̃/K). Now we will determine a certain collection of elements having this
property, whose traces we can control. Our goal is to prove Reduction 2 of Section 1.

A consequence of the density theorem of Čebotarev is the following:

Theorem 1.4. Evoke Set-up 1. Let L/K be a finite Galois extension, unramified outside of S.
Then there exists a finite set of places T of K such that the conjugacy classes {Frobv | v ∈ T}
cover Gal(L/K).

Set-up 6. Use Set-up 5. Find a finite set of places T of K as in Theorem 1.4 for the extension
K̃/K using the set Sl = S ∪ {places dividing l}.

Notice that if ρ is a representation of Gal(K̃/K) unramified at T , then the value tr ρ(Frobv) is
well defined for all v ∈ T , and so are the characteristic polynomials (see Fact 1.3).

Evoke Set-up 3. Further choose a finite place v /∈ Sl. Then the Gal(K̄/K)-representation on
Vl(A) is unramified at v. Hence, we can define the characteristic polynomial of Frobv with respect
to this action, we will denote it by P (A, v).
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Theorem 1.5 (Weil). The polynomial P (A, v) is independent of l. Furthermore, the coefficients

of P (A, v) are integers and all the roots (over C) have absolute value equal to N(v)
1
2 .

Fix N ∈ R and d ∈ N to define the set X = {f ∈ C[x] | f =
∏d
i=1(x − λi), |λi| = N}. It is

clear that the coefficients of the polynomials in X are bounded. Thus, the subset of X consisting
of polynomials with integer coefficients must be finite. For each A of dimension g, the polynomial
P (A, v) has degree 2g and has the bound N(v)

1
2 on the absolute value of its roots. We have just

shown:

Fact 1.6. Fixing g ≥ 1, there are only finitely many polynomials that are realized as the character-
istic polynomial of Frobv on Vl(A) for any A as in Set-up 3 and any prime l which is not divisible
by v.

Of course the trace of Frobv is just the coefficient of x2g−1 in P (A, v). Let Uv be the set of
finitely many integers which are realized as the coefficient of x2g−1 in some P (A, v) (v is fixed).
Let U =

∏
v∈T Uv.

Our first reduction implies that a Gal(K̄/K)-representation Vl(A) is determined by the tuple
(trVl(A) Frobv)v∈T , which lies in the finite set U . This proves Reduction 2 and thus completes the
proof of Theorem 1.1.

2 Finiteness of isomorphism classes

The goal of this section is to prove:

Theorem 2.1. Use Set-up 1. There are only finitely many isomorphism classes of abelian varieties
of dimension g ≥ 1 over K with good reduction outside of S.

One of the key ingredients we are going to be using is the finiteness of the isogeny classes. Since
there are only finitely isogeny classes, we need only show each isogeny class contains finitely many
isomorphism classes. Another key ingredient is

Theorem 2.2 (Falting’s Height Theorem). Let K be a number field, g ≥ 1 an integer and c > 0 real
number. Then there are only finitely many isomorphism classes of principally polarized semi-stable
abelian varieties of dimension g over K, having height less than c.

To use Falting’s height theorem we need to reduce our problem from that of counting abelian
varieties with good reduction outside of S to that of counting abelian varieties that admit a principle
polarization and are semi-stable.

Fact 2.3. Using Zarhin’s Trick as explained in [Bru15] we immediately conclude that isomor-
phism class of abelian varieties are finite if isomorphism classes of abelian varieties with principal
polarization is finite.

Fact 2.4. Let A be an abelian variety as in Set-up 3. There is a finite field extension K ′ of K
such that all abelian varieties B in the isogeny class clK′(A) of A are semi-stable. Here clK′(A)
denotes the isogeny class of A×K K ′ over K ′. See [Fal+92, p. 169] for more clarification.

In using the last fact we must be careful. In passing from clK(A) to clK′(A) we become more
generous with the automorphisms that we allow. Therefore, the isomorphism classes ‘grow larger’
decreasing the number of isomorphism classes. Hence it should be checked that infinitely many
isomorphism classes over K can not be identified to one isomorphism class over K ′. But I won’t
go into this here.

Facts 2.3 and 2.4 imply that Theorem 2.1 will follow from the following
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Theorem 2.5. Let K be a number field and g ≥ 1 an integer. Let A be a semi-stable princi-
pally polarized abelian variety over K. The isogeny class cl(A) of A contains only finitely many
isomorphism classes of semi-stable principally polarized abelian varieties.

To achieve this result we need only prove that the Falting’s height h : cl(A)→ R≥0 is bounded.
This bound will be achieved by the following

Theorem 2.6. Let K be a number field and g ≥ 1 an integer. There exists a finite set of primes
N such that for any principally polarized abelian variety B over K and any isogeny φ : B → B′ of
degree relatively prime to all elements in N we have

h(B) = h(B′).

Proof. The proof will be given next week by Barbara.

To control the degree of isogenies we need the following

Lemma 2.7. Let N be a set of primes. Suppose two abelian varieties B and B′ over K are
isogenous and TlB ' TlB

′ as Gal(K̄/K)-modules for all l ∈ N . Then there exists an isogeny
φ : B → B′ such that the degree of φ is prime to all elements in N .

Proof. See [Fal+92, p. 169].

Here is how to use this lemma. Suppose B ∈ cl(A) and µ : B → A is an isogeny. Then
the inclusion TlB ↪→ VlB composed with the isomorphism VlB

∼→ VlA induced by φ, gives us a
Gal(K̄/K)-invariant lattice in VlA. If B′ ∈ cl(A) has an isogeny to A giving us a lattice in VlA
isomorphic to TlB then we may conclude, using the lemma above, that B and B′ have an isogeny
of degree relatively prime to l. This is the idea we are going to pursue now. To that end we need
a standard result about lattices in VlA.

Lemma 2.8. Let Ul be the set of isomorphism classes of Gal(K̄/K)-invariant lattices in VlA.
Then Ul is finite.

Proof of Theorem 2.5. Let N be the finite set of primes given by Theorem 2.6 for the abelian
variety A. Define

U =
∏
l∈N

Ul

where Ul is the finite set defined in Lemma 2.8. Any isogeny A′ → A gives us a lattice λA′,l ∈ Ul as
discussed above. Therefore we get a tuple λA′ ∈ U . Despite the notation here, this tuple depends
on the isogeny and not just on A′. Let Ũ be the subset of U consisting of tuples that are realized
by an isogeny. Since Ũ is a finite set, we can find finitely many isogenies

µi : Ai → A i = 1, . . . , n

such that Ũ = {λA1 , . . . , λAn}.
Consequently, any isogeny B → A must satisfy λB = λAi

for some i. We may now apply
Lemma 2.7 to conclude that there exists an isogeny φi : B → Ai of degree relatively prime to all
primes in N .

We must further insist that whenever possible we choose Ai to be semi-stable and principally
polarizable. Thus, for any semi-stable and principally polarizableB having λB = λAi the conditions
of Theorem 2.6 are satisfied and therefore h(B) = h(Ai).

In particular, the height function on semi-stable principally polarizable elements of cl(A) is
bounded by maxi h(Ai). Using Falting’s Height Theorem completes the proof.
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