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In this note we are following the beginning of chapter IV in [Mum08] and sections
I.10–I.15 in [Mil08]. For omitted proofs, have a look there.

1 On isogenies
First we’re going to prove the following interesting fact:

Theorem 1.1. Let X be an abelian variety and f : Y → X an étale cover by another variety Y.
Assume Y(k) 6= ∅. Then Y can be given a group scheme structure such that it is also an abelian
variety and f is an isogeny.

We are going to make use of the following two results.

Proposition 1.2. Let X be a proper variety over k = k, e ∈ X(k) and let

m : X× X→ X

be a morphism such thatm(e, x) = m(x, e) = x for all x ∈ X(k). Then X is an abelian variety
withm as the multiplication map and e as the identity element.

Lemma 1.3. Let f : X→ Y be a proper smooth morphism of irreducible varieties and
assume there is a section σ : Y → X of f, i.e. f ◦ σ = idY . Then all fibers of f are
irreducible.

Proof of Theorem 1.1. We may base change to Xk and Yk since all required properties
descend (note that we have assumed the existence of a k-rational point of Y, so if Y is
geometrically an abelian variety, it is so already over k).
Let Γm ⊆ X× X× X be the graph ofm and let Γ ′ ⊆ Y × Y × Y be the inverse image

of Γm under the map f× f× f. Our strategy of proof is as follows. We will choose a
component Γ ⊆ Γ ′ that is isomorphic to Y × Y and then use that identification to obtain
a map

Y × Y
∼=−→ Γ ↪→ Γ ′

p3−→ Y
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which will (because of the definition of the graph) induce a group structure on Y
“pulled-back” from X.

We start with the observation that the projection p12 : Γm → X× X onto the first two
factors is an isomorphism. Then Γ ′ → Γm is an étale cover. Consider the following
commutative diagram (not necessarily cartesian):

Γ ′ Γm

Y × Y X× X

p12 p12

f× f

Since themaps on the top, right and bottom are étale covers, by the cancellation theorem
the left projection map p12 is also an étale covering.
Choose a point y0 ∈ Y such that f(y0) = 0X (of course y0 is going to be our identity

element on Y). Then the point (y0,y0,y0) lies in Γ ′ and we denote by Γ the connected
component containing it. The restriction p = p12|Γ : Γ → Y × Y is again an étale cover.
In order to show it is an isomorphism we will show p−1(y0,y0) contains only one point.

Define the two morphisms σ1,σ2 : Y → Γ by σ1(y) = (y0,y,y) and σ2(y) = (y,y0,y).
Then the restriction p|σ2(Y) induces a bijection σ2(Y)→ Y× {y0}. We will show p−1(Y×
{y0}) = σ2(Y), proving that over each y there is only one point in Γ . Equivalently, if
q : Γ → Y is the restriction of p2 : Y × Y × Y → Y to Γ , then q−1(y0) = σ2(Y).

By dimension reasons, σ2(Y) is an irreducible component of q−1(y0), so it is enough
to show that q−1(y0) is irreducible. Since Γ is étale over X × X, it is smooth by the
smoothness of X × X. But Γ is also connected, so it is irreducible. Furthermore the
morphism q is also smooth, since it is the composition of an étale morphism with a
projection. Observe now that σ1 is a section for q. By Lemma 1.3, we can conclude that
the fiber q−1(y0) is irreducible.
Now that we have the isomorphism p : Γ → Y × Y, we consider the composition

ν = p3 ◦ p−1 : Y × Y → Y and check that

ν(y,y0) = (p3 ◦ σ2)(y) = y, ν(y0,y) = (p3 ◦ σ1)(y) = y

Proposition 1.2 implies that Y is an abelian variety with multiplication map ν and
neutral element y0. �

Proposition 1.4. Let f : X → Y be an isogeny of degree n. Then there exists an isogeny
g : Y → X with g ◦ f = [n]X and f ◦ g = [n]Y .

Proof. The proof that a finite algebraic group scheme G of rank n is annihilated by
[n] is long and technical, so we direct the reader to [EvGM14], Exercise 4.4. and all
results cited there. We only remark here that you can reduce to the case where the
characteristic of k is prime and G = G0 is local. Here we use that in characteristic 0 all
finite group schemes are reduced anyway, so G0 = {?} (a theorem of Cartier). A short
proof of this fact can be found in [Oor66]. In fact, all group schemes in characteristic 0
are reduced, but this is harder.
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Now since deg(f) = n, the finite group scheme ker(f) has rank n. Then ker(f) ⊆
ker([n]X), so there is an isogeny

g : Y = X/ ker(f)→ X/ ker([n]X) = X

such that [n]X = g ◦ f. Now

[n]Y ◦ f = f ◦ [n]X = (f ◦ g) ◦ f

and since f is flat and surjective, it is an epi and cancels on the right, so [n]Y = f◦g. �

Definition 1.5. For abelian varieties X, Y we set End0(X) = End(X) ⊗Z Q as well as
Hom0(X, Y) = Hom(X, Y)⊗Z Q. ♦

By the previous proposition, all isogenies become invertible in Hom0(X, Y), since we
can always choose an inverse up to multiplication by n, which is invertible in Q.
Definition 1.6. An abelian variety A is simple if there is no nontrivial abelian subvari-
ety B ⊆ A. ♦

Theorem 1.7 (Poincaré’s irreducibility theorem). For any abelian variety A, there are
simple abelian subvarieties A1, . . . ,Am ⊆ A, pairwise nonisogenous, and integers n1, . . . ,nm
such that the addition map

An1
1 × · · · ×A

nm
m → A

is an isogeny. The numbers ni and the isogeny type of the Ai are uniquely determined.
Proof. By induction it suffices to show that for each abelian subvariety B ⊆ A there is
another abelian subvariety C ⊆ A such that B+ C→ A is an isogeny. So let i : B→ A
denote the inclusion and letL be any ample line bundle onA. Consider the composition

i∨ ◦ λL : A→ B∨

and define B ′ to be the connected component of the identity of its kernel. If B ′ is
geometrically reduced, it is an abelian variety and we will assume this. Then

dimB ′ > dimA− dimB

Consider the restriction of i∨ ◦ λL to B:

(i∨ ◦ λL ◦ i)(b) = i∗(t∗bL⊗ L−1)

= i∗t∗bL⊗ i∗L−1

= L|B ⊗ L|−1
B

So this is just λL|B . Ampleness is inherited when restricting to subvarieties, so L|B
is also ample and therefore ker λL|B is finite. This implies B ∩ B ′ is finite and hence
B× B ′ → A is an isogeny by dimension reasons. �

Remark 1.8. Using a finiteness result about semisimple algebras and the Poincaré
irreducibility theorem, Lenstra, Oort and Zarhin proved in [LOZ96] that every abelian
variety X over a field contains only finitely many abelian subvarieties, up to isomor-
phism. More precisely, the number of orbits of the set of abelian subvarieties under
the automorphism group of X is finite. ♦
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2 The Tate module
In this section we are always working with the rational points of A over a separable
closure of k. For notational simplicity, we will therefore assume that k is separably
closed. Recall that in this case, for any n not divisible by p = char(k), we have

A(k)[n] ∼= (Z/nZ)2g (2.1)

Of particular interest are the torsion subgroups for n a power of some prime `. We
collect the information of the `m-torsion of A for all exponentsm in a single object.

Definition 2.1 (Tate module). Let ` be a prime. The `-adic Tate module of A is

T`(A) = lim←−
m

A(k)[`m] ♦

Equation (2.1) yields a structure theorem for T`(A).

Proposition 2.2. Let ` 6= char k be a prime. Then T`(A) is a free Z`-module of rank 2g.

The proof just uses the definition of the `-adic integers and some structure properties
of torsion groups. Since the Tatemodule is free, all abelian varieties of a fixed dimension
have isomorphic Tate modules. The object may therefore appear to be trivial or not of
great use. But note that the isomorphism given in (2.1) is noncanonical, and the same
is true for T`(A) ∼= (Z`)2g. It turns out that actually a lot of structure is hidden in the
Tate module. We are particularly interested in the action of the absolute Galois group
of k on T`(A).

Remark 2.3. How should we think of T`(A)? Consider the case k = C. Then H1(A,Z)
is a lattice in Cg and if we choose a basis, so that A ∼= Cg/Λ, then

T`(A) ∼= lim←−(`
−mΛ)/Λ

= lim←−Λ⊗ (`−mZ/Z)
= Λ⊗ (lim←− `

−mZ/Z)
= Λ⊗ Z`

and therefore T`(A) = H1(A,Z) ⊗ Z`. This is true for general fields k, i.e. T`(A) is
always the first étale homology group of A. ♦

Wecan immediately employ the Tatemodule to show several things aboutHom(A,B).
Torsion-freeness is easy:

Lemma 2.4. For any prime p 6= `, the map

Hom(A,B)→ HomZ`
(T`(A), T`(B))

is injective. As a consequence, Hom(A,B) is torsion-free.
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Proof. Assume T`(α) = 0 for someα ∈ Hom(A,B) (themap is applied componentwise).
Let A ′ be any simple abelian subvariety of A. Then kerα|A′ contains A ′[`m] for allm,
so it is not finite. But sinceA ′ is simple, the kernel must be the wholeA ′, so α|A′ = 0 for
all simple abelian subvarieties of A. This implies α = 0 by the Poincaré irreducibility
theorem. �

We actually would like that Hom(A,B) is a free Z-module of finite rank, which we
cannot conclude yet because Z` is not of finite rank over Z. Our wish comes true
anyway, and in fact we can even give a bound on the rank in terms of the dimensions
of A and B:

Theorem 2.5. Let A,B be abelian varieties and ` 6= char k. Then the natural map

Hom(A,B)⊗ Z` → HomZ`
(T`(A), T`(B))

is injective with torsion-free cokernel. In particular,Hom(A,B) is a free Z-module of rank at
most 4 dim(A)dim(B).

The proof requires more time and lemmas than we can afford, so the interested
reader is instead directed to Theorem I.10.15 in [Mil08].

Corollary 2.6. The Néron–Severi group NS(A) of an abelian variety is a free Z-module
of rank at most 4 dim(A)2.

Proof. The association L 7→ λL defines an injective map NS(A)→ Hom(A,A∨). �

Could it actually be that the map

Hom(A,B)⊗ Z` → HomZ`
(T`(A), T`(B))

is an isomorphism? This is certainly not true in full generality; we need at least some
sensible finiteness hypotheses on k, for example that k is finitely generated over its
prime field. But then still, all homomorphisms A→ B are equivariant under the action
of the absolute Galois group Γ = Gal(k/k). This is not true for all the elements on the
right hand side. So we at least have to restrict to the Γ -equivariant part. Amazingly, it
turns out these restrictions are enough.

Theorem 2.7 (Tate’s isogeny conjecture). Let k be finitely generated over its prime field.
The natural map

Hom(A,B)⊗ Z` → HomZ`[Γ ](T`A, T`B)

is an isomorphism.

We will discuss Tate’s conjecture and its proof in later talks. It was first proved for
finite fields by Tate himself, later extended by Zarhin to many cases of function fields
in positive characteristic and then proved for number fields by Faltings. His proof can
be extended to prove the conjecture for all finitely generated fields.
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3 The Weil pairing
LetA be an abelian variety over k and n be any integer not divisible by p = char k. The
Weil pairing of A is a nondegenerate pairing on geometric points of A and its dual:

en : A(k)[n]×A∨(k)[n]→ µn(k)

Here µn(k) ∼= Z/nZ is the group of roots of unity in k. In this section we will assume
k = k to reduce notational complexity.
To define the Weil pairing, choose x ∈ A(k)[n] and y ∈ A∨(k)[n]. Then y corre-

sponds to a divisor D on A. By previous lemmas we know that [n]∗AD is linearly
equivalent to nD, which is itself linearly equivalent to 0 (by definition). We may there-
fore choose two rational functions f and g with (f) = nD and (g) = [n]∗AD. We can
calculate the divisor of the rational function f ◦ [n]A:

div(f ◦ [n]A) = [n]∗A div(f) = n · [n]∗AD = ndiv(g) = div(gn)

Hence gn/(f ◦ [n]A) is a constant function (say with value c). Then, for all a ∈ A(k),

gn(a+ x) = cf(na+ nx) = cf(na) = gn(a)

so the rational function g/(g ◦ tx) is a root of unity in K(A), hence lies in µn(k).

Example 3.1 (Elliptic curves). We can make all of this very explicit for an elliptic curve
(E, 0E). There is a canonical isomorphism E → Pic0(E) given by P 7→ OE(P − 0E).
Choose x,y ∈ E[n]. Then y corresponds to the line bundle OE(y− 0E) (so D = y− 0E)
and we have the divisors

nD = n · y− n · 0E
and

[n]∗D =
∑
P∈ n
√
y

P −
∑

Q∈E[n]

Q

both linearly equivalent to 0. Pulling this divisor back by tx we see that g and g ◦ tx
have the same poles and zeroes. ♦

Remark 3.2 (See [Sil10]). Morally, we can identify Ext(A,Gm) and A∨ = Pic0(A) as
follows. For any line bundle L ∈ Pic0(A) we denote by L the total space. Then the
multiplication on A induces a multiplication on L and we get various compatibility
conditions. If we denote by G(L) the variety that is Lwith the zero section removed,
then these conditions force a group structure on G(L) and we obtain

1→ Gm → G(L)→ A→ 0

In the other direction, taking any element in Ext(A,Gm), we have to “compactify” to
get a line bundle over A.
As soon as we have the identification A∨ = Ext(A,Gm), the Weil pairing arises

much more naturally. Consider

0→ A[n]→ A
[n]−−→ A→ 0
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and apply Hom(−,Gm):

0→ Hom(A,Gm)
[n]−−→ Hom(A,Gm)→ Hom(A[n],Gm)

δ−→
δ−→ Ext(A,Gm)

[n]−−→ Ext(A,Gm)

Using that Hom(A,Gm) = 0 (there are no nonconstant maps from the compact variety
A to the affine variety Gm) and Hom(A[n],Gm) = Hom(A[n],µn), we get

0→ Hom(A[n],µn)→ A∨ [n]−−→ A∨

so Hom(A[n],µn) is naturally isomorphic to A∨[n] which immediately gives the Weil
pairing. ♦

Definition 3.3. Set Z`(1) = lim←−n(µ`n(k)). By componentwise application, we get a
Weil pairing on the Tate module:

e` : T`(A)× T`(A∨)→ Z`(1) ♦

Definition 3.4. For any homomorphism λ : A→ A∨ we define the induced pairings

eλn : A(k)[n]×A(k)[n]→ µn(k)

and
eλ` : T`(A)× T`(A)→ Z`(1)

by sending (a,a ′) 7→ en(a, λ(a ′)) and (a,a ′) 7→ e`(a, λ(a ′)), respectively. If L is a line
bundle, we set eLn = eλLn and eL` = eλL` . ♦

Proposition 3.5 (Properties of the Weil pairing). Let ϕ : A → B be a homomorphism,
λ ∈ Hom(B,B∨) and L ∈ Pic(B). The Weil pairing satisfies

1. emn(a,a ′)n = em(na,na ′) for allm,n not divisible by char k and all a ∈ A(k)[mn],
a ′ ∈ A∨(k)[mn].

2. e`(a,ϕ∨(b)) = e`(ϕ(a),b) for all a ∈ T`(A), b ∈ T`(B).

3. eϕ∨◦λ◦ϕ
` (a,a ′) = eλ` (ϕ(a),ϕ(a ′)) for all a,a ′ ∈ T`(A).

4. eϕ∗L` (a,a ′) = eL` (ϕ(a),ϕ(a ′)) for all a,a ′ ∈ T`(A).

5. The map L 7→ eL` is a homomorphism Pic(A)→ Hom(∧2T`(A),Z`(1)). In particular,
eL` is skew-symmetric.

Proof. Omitted. �

It is now time to put all these definitions to some use.
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4 Zarhin’s trick
An abelian variety A (by definition) always carries a polarization. But it is not true
that there is always a principal polarization on A. On the other hand, it is true that
(A×A∨)∨ ∼= A×A∨. The problem is that we don’t know whether this isomorphism
comes from a principal polarization, i.e. is of the form λL for some line bundle L.
These facts make (finiteness) results about the moduli of abelian varieties harder than
they should be. Zarhin found an interesting trick to circumvent this problem. He
shows that we just have to take a higher power: (A×A∨)4 always carries a principal
polarization.

Theorem 4.1 (Zarhin’s trick). Let A be an abelian variety. Then (A×A∨)4 is principally
polarizable.

We will need some intermediate results, but their proofs require either étale co-
homology or Mumford’s theory of theta groups. We will therefore proceed without
proving anything more refined. Let p = char k. The various restrictions on the degrees
of the polarizations in the statements below can be removed, but that requires work.
See chapters 20 and 23 in [Mum08].

Theorem 4.2. Let ϕ : A→ B be an isogeny of degree d with (d,p) = 1 and λ ∈ NS(A) be
the equivalence class of a polarization. Then λ = ϕ∗λ ′ for some λ ′ ∈ NS(B) if and only if for
all ` | d there exists a skew-symmetric form

e : T`(B)× T`(B)→ Z`(1)

such that
eλ` (a,a ′) = e(ϕ(a),ϕ(a ′))

for all a,a ′ ∈ T`(A).

In other words, if there are skew-symmetric forms behaving like a Weil pairing for
the pullback of a line bundle (see property 4 in Proposition 3.5), then they are indeed
induced by one.

Definition 4.3. Let λ : A→ A∨ be a polarization and suppose ker(λ) ⊆ A[n] for some
n. Then we define

eλ : ker(λ)× ker(λ)→ µn

as follows. Let a,a ′ ∈ ker(λ) and choose a point b withmb = a ′. Then set

eλ(a,a ′) = em(a, λ(b))

Note that m · λ(b) = λ(m · b) = 0, so em is defined on these two points. One uses
the properties of the Weil pairing in Proposition 3.5 to show that the definition is
independent of the choice ofm and b. ♦

Remark 4.4. By passing to the Tate module, i.e. sending a,a ′ to (an), (a ′n) in T`(A),
and using property 5 of Proposition 3.5, we can show that eλ is skew-symmetric. ♦
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Proposition 4.5. Let ϕ : A → B be an isogeny of degree d where (d,p) = 1 and fix a
polarization λ : A→ A∨. Then

λ = ϕ∨ ◦ λ ′ ◦ϕ

for some polarization λ ′ : B→ B∨ of B if and only if

ker(ϕ) ⊆ ker(λ) and eλ|ker(ϕ)×ker(ϕ) = 1

Corollary 4.6. Let λ : A→ A∨ be a polarization such that ker(λ) ⊆ A[n]with (n,p) = 1.
If there is exists a ϕ ∈ End(A)with ϕ(ker(λ)) ⊆ ker(λ) and ϕ∨ ◦ λ ◦ϕ = −λ on A[n2],
then A×A∨ is principally polarized.

Proof. Let
N = {(a,ϕ(a)) | a ∈ ker(λ)} ⊆ A×A}

Then N ⊆ ker(λ × λ) = ker(λ) × ker(λ). Observe that N is of rank deg(λ). We show
that the restriction of eλ×λ to N is trivial. Let (a,ϕ(a)), (a ′,ϕ(a ′)) ∈ N. Then

eλ×λ((a,ϕ(a)), (a ′,ϕ(a ′))) = eλ(a,a ′)eλ(ϕ(a),ϕ(a ′))

= eλ(a,a ′)eϕ∨◦λ◦ϕ(a,a ′)
= en(a, λ(a ′))en(a, (ϕ∨ ◦ λ ◦ϕ)(a ′))
= en(a, λ(a ′))en(a,−λ(a ′))
= 1

We now apply Proposition 4.5 to the projection

p : A×A→ (A×A)/N

and the polarization λ × λ : A × A → A∨ × A∨. Since ker(p) = N ⊆ ker(λ × λ) and
eλ×λ restricted toN×N is trivial, we get that (A×A)/N carries a polarization λ ′ such
that

p∨ ◦ λ ′ ◦ p = λ× λ

which implies
deg(λ ′)deg(p)2 = deg(λ)2

But deg(p) = deg(λ), so deg(λ ′) = 1 and (A × A)/N is principally polarized by λ ′.
Now consider the map

A×A→ (A×A)/N, (a,a ′) 7→ (a,ϕ(a) + a ′)

Its kernel is exactly ker(λ)× {0}, so it factors over A×A∨:

A×A→ A×A∨ = (A×A)/(ker(λ)× {0})→ (A×A)/N

where the last map is an isomorphism by degree reasons. Therefore A×A∨ is princi-
pally polarized as well. �
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Proof of Theorem 4.1. Let (A, λ) be a polarized abelian variety and choose an n prime
to p such that ker(λ4) ⊆ A4(k)[n] (cf. the remark at the beginning of this section).
We need to exhibit an endomorphism ϕ ∈ End(A4) satisfying the assumptions of
Corollary 4.6. By the four squares theorem of Lagrance, there are integers a,b, c,d
with

a2 + b2 + c2 + d2 ≡ −1 (mod n)
Consider the endomorphism ϕ of A4 given by the matrix

ϕ =


a −b −c −d
b a d −c
c −d a b
d c −b a


Since λ4 = diag(λ, λ, λ, λ) commutes with ϕ, we have ϕ(ker(λ4)) ⊆ ker(λ4). We can
compute ϕ∨ as the transpose of the matrix and therefore we also have

ϕ∨ ◦ λ4 ◦ϕ = ϕT ◦ϕ ◦ λ4

We now readily calculate that

ϕT ◦ϕ = (a2 + b2 + c2 + d2)I4 = −1 �

5 The Rosati involution
We fix a polarization λ : A→ A∨ on an abelian variety A. Recall that, as an isogeny, it
has an “inverse” living in Hom0(A∨,A). We denote it by λ−1.

Definition 5.1. The Rosati involution on End0(A) is given by

α 7→ α† = λ−1 ◦ α∨ ◦ λ ♦

The fixed points of (−)† have a nice interpretation. They exactly correspond to
algebraic equivalence classes of line bundles on A:

Proposition 5.2 ([Mil08], Proposition I.14.2). Let k = k. Then the map

L 7→ λ−1 ◦ λL

sends NS(A)⊗Q to the subset of fixed points in (−)† of End0(A).

Observe that the image need not necessarily be a subalgebra of End0(A). More
precisely, the product αβ of two fixed Q-endomorphisms α and β may itself not be
fixed if End0(A) is noncommutative, since

(αβ)† = β†α† = βα

is not equal to αβ in general.
Using (−)† we can also define a positive-definite bilinear form on End0(A). This will

allow us to prove a lot of finiteness results for abelian varieties and polarizations.
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Theorem 5.3. The bilinear form

End0(A)× End0(A)→ Q, (α,β) 7→ tr(α ◦ β†)

is positive definite, that is tr(α⊗ α†) > 0 for all α 6= 0.

Proposition 5.4. Let λ be a polarization on the abelian variety A. Then:

1. The group of automorphisms of (A, λ) is finite.

2. Let n > 3. If an automorphism of (A, λ) acts as the identity on A(k)[n], then it is the
identity.

6 Finiteness results
Wenow employ all results of this talk to show the finiteness of variousmoduli of abelian
varieties and their polarizations. Our first result only uses the Poincaré irreducibility
theorem.

Theorem 6.1. Let k be a finite field and fix g,d > 0. There are only finitely many isomorphism
classes of abelian varieties of dimension g possessing a polarization of degree d2. In particular,
there are only finitely many isomorphism classes of principally polarized abelian varieties of
each dimension.

Sketch of proof. Use Hirzebruch–Riemann–Roch to show that A can be embedded in
P3gd−1. Its Chow form is then a homogenous polynomial of degree 3gd · g! and deter-
mines the isomorphism class of A. There are only finitely many of these homogeneous
polynomials with coefficients in k. �

Using the Rosati involution and some a lot of algebraic results about orders in
semisimple algebras we could prove the following two theorems:

Theorem 6.2 ([Mil08], Theorem I.15.1). Let A be an abelian variety over any field k and
d be an integer. Then there are only finitely many isomorphism classes of polarized abelian
varieties (A, λ) with λ of degree d.

In the finite field case we knew this already, by Theorem 6.1. The difference is that
we are over any field now and we only consider (varying) polarizations on a fixed
abelian variety.

Definition 6.3 (Direct factor). Let B be an abelian subvariety of an abelian variety A.
We say B is a direct factor of A if there exists another abelian subvariety C ⊆ A such
that

B× C→ A, (b, c) 7→ b+ c

is an isomorphism. Two direct factors B and C are isomorphic if there exists an
automorphism α of A such that α(B) = C. ♦
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Theorem 6.4 ([Mil08], Theorem I.15.3). An abelian variety has only finitely many direct
factors, up to isomorphism.

We can now finally conclude the most interesting result:

Proposition 6.5. Let k be a finite field. For each g there are only finitely many isomorphism
classes of abelian varieties of dimension g over k.

Remark 6.6. Observe that we don’t consider a polarization or its degree anymore. This
is a much stronger result than Theorem 6.1. ♦

Proof. We know (A × A∨)4 is principally polarized by Zarhin’s trick. Theorem 6.1
implies there are only finitely many isomorphism classes of principally polarized
varieties of dimension 8g over k. Since each of them only has finitely many direct
factors (Theorem 6.4) and A is a direct factor of (A×A∨)4, the result follows. �
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