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1. Introduction

In this lecture we fill in part of the proof the Tate conjecture. Recall our goal:

Claim 1.1. Let K be a number field with absolute Galois group Γ = Gal(K̄/K), and A/K an abelian
variety. Let W ⊆ Vl A be a Ql [Γ]-submodule. Write Gn = (W ∩ Tl A)/ln(W ∩ Tl A) ↪→ A[ln](K̄) and
An = A/Gn. Then the set {An : n ∈N} falls into finitely many isomorphism classes.

Niels explained how the Tate conjecture would follow from this statement, and Daniele showed
that one can reduce to the case where A has semistable reduction over OK. Thus it suffices to
prove the following.

Claim 1.2. The Faltings height

h :
{

semistable abelian varieties over K
}
→ R

satisfies
(1) for all g ∈ N, c ∈ R there are (up to isomorphism) but finitely many semistable abelian varieties

over K of dimension g and height at most c, and
(2) h is bounded on {An : n ∈N}.

As explained by Daniele, (1) follows from the analogous statement for principally polarized
abelian varieties. That boils down to counting points on moduli spaces and will be dealt with
later. Today we prove (2).

Sketch of the proof. For simplicity let K = Q. Let A, An be the connected Néron models of
A, An over Z. Define Gn = ker(A → An). Let’s assume G = (Gn)n∈N is an l-divisible group
(false in general). Then we claim that h(An) = h(A) for all n ∈N. By the isogeny formula, this
means h/2 = d, where h is the height of G/Q and d the dimension of G/Zl .

To prove this, let χ : Γ → Z×l be the determinant character of TlG. We compute χ = χd
0,

where χ0 is the l-cyclotomic character. Choose a Frobenius F ∈ Γ at a suitable prime p. Then
|χ(F)| = ph/2 by the Weil conjectures, and χ0(F) = p.

2. Reduction to l-divisible groups

We work in the following setting. Let K be a number field, A/K an abelian variety, fn : A→ An
isogenies with kernels Gn such that G = (Gn)n∈N is an l-divisible group of height h. Let A,
An be the connected Néron models of A, An over R = OK. Define Gn = ker(A → An). Recall
that it is quasi-finite. In this section we resolve the issue that G = (Gn)n∈N is not necessarily
an l-divisible group.

Let v | l be a place of K. We write R(v) for the localization of R at v and Rv for the completion
at v. As Gn/Rv is quasi-finite over an henselian local ring, there is a decomposition

Gn = G̃n tHn

with G̃n/Rv finite and Hn having empty special fiber. By functoriality, G̃n is a closed subgroup
of Gn. Of course, there is no reason for G̃ = (G̃n)n∈N to be l-divisible.
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Lemma 2.1. We may assume G̃/Rv is l-divisible.

Proof. Observe that G is l-divisible on the generic fiber, being a base change of G. In particular
Gn is finite of order lnh on the generic fiber. Then by induction to n one sees that G̃n is finite of
order lnhn on the generic fiber with hn ≤ h non-increasing. There exists N ∈ N after which hn
is constant. We see G̃(K̄v) = F(K̄v)⊕C for some l-divisible group F/Kv of height hN and some
finite abelian group C ⊆ G̃N(K̄v). Now (G̃N+n/G̃N)n∈N on the generic fiber is (FN+n/FN)n∈N,
hence l-divisible. Replacing A by AN and An by AN+n we may assume N = 0, i.e. that G̃ is
l-divisible on the generic fiber. (This substitution is known as Tate’s trick.)

Consider the maps ϕn : G̃n+2/G̃n+1 → G̃n+1/G̃n given by multiplication by l. It is an
isomorphism on the generic fiber. Writing G̃n+1/G̃n = Spec En, this means that the maps
ϕ∗n : En → En+1 are isomorphisms after − ⊗Rv Kv. Therefore (En)n∈N is an increasing sys-
tem of orders in the finite-dimensional Kv-algebra E = E0 ⊗Rv Kv. It must stabilize at some
N ∈ N, meaning that ϕn is an isomorphism for all n ≥ N. Applying Tate’s trick once again,
we may assume N = 0. By a simple diagram chase we see that then G̃/Rv is l-divisible. �

Theorem 2.2. Assume G̃/Rv is l-divisible for all places v | l. Then h(A) = h(An) for all n ∈N.

We prove this in next section. Note that without the assumption, the proof of lemma 2.1 shows
that h(Am) = h(An) for all m, n large enough.

To finish this section, we compute #s∗Ω1
Gn/R. Daniele showed s∗Ω1

Gn/R =
⊕

v|l s∗Ω1
Gn/Rv

.
Now, s∗Ω1

Gn/Rv
= s∗Ω1

G̃n/Rv
since taking differentials commutes with taking completions; and

the completions of Gn and G̃n coincide since they have the same special fiber. Then apply
proposition 2.4 below to G̃/Rv to obtain

#s∗Ω1
Gn/R = ∏

v|l
#(Rv/lnRv)

dv = ∏
v|l

ln[Kv :Ql ]dv (2.3)

where dv is the dimension of the l-divisible group G̃/Rv.

Proposition 2.4. Let R be a noetherian complete local ring with residue characteristic l > 0, and G/R
an l-divisible group of dimension d. Then s∗Ω1

Gn/R = (R/lnR)d.

Proof. We may assume G is connected as the étale part does not contribute to differentials.
Then G corresponds to some d-dimensional divisible formal Lie group Spf(L)/R. Write L =
R[[x1, . . . , xd]] and let ψ : L→ L correspond to multiplication by l on Spf(L). Recall that we have
Gn = Spec(L/〈ψn(xi) : i = 1, . . . , d〉). Now we have

Ω̂1
L/R =

d⊕
i=1

Ldxi, Ω̂1
Gn/R =

d⊕
i=1

L
〈ψn(xi), ∂

∂xi
ψn(x1), . . . , ∂

∂xi
ψn(xd)〉

dxi.

The proposition follows from taking −⊗L R and observing that ψn(xi) = lnxi + higher order
terms. �

2



3. Representation theory

As promised we prove theorem 2.2 using the isogeny formula. From (2.3) we find

h(An)− h(A) = 1
2 log deg fn −

1
[K : Q]

log #s∗Ω1
Gn/R

= 1
2 log lnh − 1

[K : Q]
log ∏

v|l
ln[Kv :Ql ]dv

= n log(l)
(

1
2 h− 1

[K : Q] ∑
v|l
[Kv : Ql ]dv

)
.

Theorem 3.1. h[K : Q]/2 = ∑v|l [Kv : Ql ]dv.

Let Γ = Gal(K̄/K). We consider its rank h representation U = TlG. Let χ : Γ → Z×l be the
determinant character of U.

As we need to apply class field theory results, we move the entire setting from K to Q. Let
Γ′ = Gal(Q̄/Q) and U′ = IndΓ′

Γ U = Zl [Γ′]⊗Zl [Γ] U. It is a rank h[K : Q] representation of Γ′.
Let χ′ : Γ′ → Z×l be its determinant character.

Finally, let χ0 : Γ′ → Z×l be the l-cyclotomic character, and ε : Γ′ → {±1} ⊂ Z×l the sign of
the action of Γ′ on Γ′/Γ.

Lemma 3.2. χ′ = εh · χ∑v|l [Kv :Ql ]dv
0 .

Proof. Let τ : Γ′ab → Γab be the transfer map. From general representation theory we have
χ′ = εh · (χ ◦ τ). (Note that characters factor over the abelian quotients, so this is well-defined.)

Let v be a finite place of K. We want to compute χ at v, i.e. compute its restriction to Dv ⊂ Γ.
Recall that here the decomposition group at v is

Dv = Gal(K̄v/Kv) = Aut(R̄v/Rv) ↪→ Aut(R̄(v)/R(v)) = Γ.

The inertia subgroup is
Iv = ker

(
Dv → Aut(k̄v/kv)

)
where kv is the residue field of Rv. A character of Γ is unramified at v if it is trivial on Iv.

For v - l, Iv acts unipotently (i.e. by linear transformations whose eigenvalues are all 1)
on Tl A as A has semistable reduction. Then Iv acts unipotently on U ⊆ Tl A. As unipotent
transformations have determinant 1, χ is unramified at v.

For v | l, one can show that χGKv
differs from χG̃Kv

by an unramified character, as Iv acts

trivially on TlGKv /Tl G̃Kv ⊆ Tl AKv /TlÃKv . This follows from the orthogonality theorem for the
Weil pairing Tl AKv × Tl A∨Kv

→ Zl(1). Antareep has explained that χG̃Kv
= χdv

0 .

Combining the above, we find that χ′ and εh · χ∑v|l [Kv :Ql ]dv
0 have the same ramification at all

primes p, more precisely: their quotient is nowhere ramified. By class field theory they must
be equal. �

Let B = ResK/Q A be the Weil restriction of A to Q. It is an abelian variety over Q of dimension
[K : Q]dim A. Let p 6= l be a prime where B has good reduction. Let F ∈ Γ′ be a Frobenius at
p, i.e. a lift along the surjection D′p → Gal(F̄p/Fp) of the p-Frobenius.
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Lemma 3.3. |χ′(F)| = ph[K:Q]/2.

Proof. Consider
U′ = IndΓ′

Γ U ↪→ IndΓ′
Γ Tl A = Tl B.

By (the known part of) the Weil conjectures, the eigenvalues of F acting on Tl B are algebraic
with absolute value p1/2. Then the same is true for the subrepresentation U′, and we just
observe that this representation has rank h[K : Q]. �

On the other hand, χ0(F) = p. So also |χ′(F)| = p∑v|l [Kv :Ql ]dv , and theorem 3.1 follows.
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