

Übungsblatt 3

Vorlesung Analysis 1 (Lehramtsstudiengänge)

Wintersemester 2014/15 Abgabe am 10.11.2014

Aufgabe 7 (vollständige Induktion)

a) Bestimmen Sie die Menge aller natürlichen Zahlen n, für die die Ungleichung

$$2^n \ge 2n + 1$$

gilt. Beweisen Sie Ihr Resultat.

b) Beweisen Sie, dass für alle natürlichen Zahlen n die Zahl

$$d_n := 6^n - 5n + 4$$

durch 5 teilbar ist.

c) Beweisen Sie, dass für alle natürlichen Zahlen $n \geq 2$ die folgende Ungleichung gilt:

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \sqrt{n}.$$

d) Es seien x_1, x_2, x_3, \ldots positive reelle Zahlen. Beweisen Sie, dass für alle natürlichen Zahlen n die folgende Ungleichung gilt:

$$\left(\sum_{k=1}^{n} x_k\right) \cdot \left(\sum_{k=1}^{n} \frac{1}{x_k}\right) \ge n^2.$$

12 P

Aufgabe 8

Es seien $x \in \mathbb{R}$, $\nu, \ell, k \in \mathbb{N}_0$ und $\ell \leq k$. Beweisen Sie die folgenden Formeln für die Binomialkoeffizienten $\binom{x}{\nu}$:

- a) $\binom{-x}{\nu} = (-1)^{\nu} \binom{x+\nu-1}{\nu}$.
- b) $\binom{x+1}{\nu+1} = \binom{x}{\nu} \cdot \frac{x+1}{\nu+1}$.
- c) $\binom{x}{\nu+1} = \binom{x}{\nu} \cdot \frac{x-\nu}{\nu+1}$.
- d) $\binom{x}{k} \cdot \binom{k}{\ell} = \binom{x}{\ell} \cdot \binom{x-\ell}{k-\ell}$.

8 P

— bitte wenden —

Aufgabe 9

Beweisen Sie: Es gibt genau $\binom{n-k+1}{k}$ verschiedene Möglichkeiten, k Zahlen aus der Menge $\{1,2,\ldots,n\}$ so auszuwählen, dass darunter keine zwei benachbarten sind.

Aufgabe (ohne Abgabe)

Lernen Sie das griechische Alphabet, bzw. rufen Sie sich dieses wieder in Erinnerung!

Buchstabe	Name	Buchstabe	Name
α A	Alpha	νΝ	Ny
β B	Beta	$\xi \Xi$	Xi
γ Γ	Gamma	οО	Omikron
δ Δ	Delta	π Π	Pi
$\varepsilon \to $	Epsilon	<i>ο</i> Ρ	Rho
ζ Z	Zeta	σ Σ	Sigma
$\eta \to $	Eta	au T	Tau
$\vartheta \Theta$	Theta	υΥ	Ypsilon
ι I	Iota	$\varphi \Phi$	Phi
$\kappa \mathrm{K}$	Kappa	χ X	Chi
λ Λ	Lambda	$\psi \Psi$	Psi
$\mu \mathrm{M}$	My	$\omega \Omega$	Omega

Kennen Sie die folgenden Mathematiker:

Θαλῆς, Πυθαγόρας, Πλάτων, Άριστοτέλης, Εὐκλείδης, Άρχιμήδης, Διόφαντος?

Hinweis: Am Wortende wird der Buchstabe σ durch den Buchstaben ς ersetzt.

Insgesamt: 24 P