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Abstract

We study a rational valuation and hedging principle for contingent claims which inte-
grate tradable and non-tradable sources of risk. The principle is based on the preferences
of a rational investor with constant absolute risk aversion, and uses exponential utility
indifference arguments. Properties of this valuation and of a corresponding hedging
strategy are analyzed in a general semimartingale market framework. To obtain fur-
ther constructive results and properties, a more specific class of semi-complete product
models is studied in detail. This yields a computation scheme, simple valuation bounds,

and results on diversification and information effects.
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1 Introduction

In recent years, there has been a growing interest, both on the academic and on the business side, in
various financial products that incorporate different kinds of risks. Examples include catastrophe
bonds, equity linked life insurance, credit and default risky securities, alternative risk transfers, or
weather derivatives. For an overview and further references, see Kliippelberg (2001).

From a methodologist’s point of view, those products are interesting because they integrate risks
from qualitatively different sources, e.g. classical actuarial risk and financial market risk. On the
one hand, the respective risky future payoff is related to the evolution of assets that are liquidly
traded in financial markets. This relation can be either directly specified by the contract but may
also be more indirect if the payoff is just stochastically correlated to tradable assets. For instance,

it seems plausible that catastrophic events or credit defaults are statistically related to liquidly
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traded indices of certain industries or to stock prices of individual firms. This should allow an
issuer to hedge at least a part of the risk by trading in those assets. On the other hand, the
payoff of such products typically is not purely dependent on liquidly tradable securities so that,
for principal reasons, such risks cannot be hedged perfectly but only partially. Some residual risk
always remains with the issuer. The natural modelling framework for such problems is provided
by incomplete market models which incorporate both tradable and non-tradable factors of risk,
whereas complete models like the Black-Scholes model are inappropriate.

The occurrence of products which integrate qualitatively different risks underlines the need for
integrated theoretical methods to evaluate and hedge them in a consistent manner. Advocated
by Bithlmann (1987), this has lead to a convergence of the formerly distinct areas of insurance
and finance; see Bithlmann (1983), Delbaen and Hazendonck (1989), Gerber and Shiu (1996),
Geman (1999), Embrechts (2000), or Schweizer (2001) among others. For consistency reasons,
it is reasonable to rely on one underlying principle for the valuation and hedging of integrated
risks. In this paper, we use the utility-indifference approach with respect to exponential utility,
which corresponds to the preferences of a rational investor with constant absolute risk aversion.
The approach can be seen as an adaption of the (static) actuarial exponential premium principle
to a dynamical financial market setting, and appeared first in Hodges and Neuberger (1989). At
present, the structure of the mathematical problem is well characterized on an abstract level, cf.
Cvitanié¢ et al. (2001), Frittelli (2000a), Delbaen et al. (2002), Owen (2002), or Rouge and El Karoui
(2000). But more explicit results on the utility-indifference valuation and on the hedging strategy
have been available so far basically in a Brownian model world with a geometric Brownian motion
describing the tradable asset; see Davis (2000), Henderson and Hobson (2002), Henderson (2002),
Musiela and Zariphopoulou (2002a), and the overview in Delbaen et al. (2002). For recent results
in models which involve point processes, see Becherer (2002) and Young and Zariphopoulou (2002).
Related approaches relying on quadratic indifference criteria have been studied by Mgller (2001,
2003a,b) and Schweizer (2001).

The aim of the present paper is twofold. First, we present, on a slightly more general level and in
a form which explicitly accounts for the additional liability, recent martingale duality results for
the indifference valuation and hedging problem with respect to exponential utility. We survey and
show, respectively, that several nice properties still hold in a general dynamic market framework.
Secondly, we study a more specific class of semi-complete product models to obtain more con-
structive results and further original properties, concerning diversification and information effects.
The paper is organized as follows. Section 2.1 describes the general framework where risky secu-
rities prices evolve as semimartingales. We formulate the utility-indifference hedging and pricing
problem in Section 2.3, building on the martingale duality foundations from Section 2.2. The utility-
indifference price 7 of a contingent claim is defined from the perspective of an issuer with constant
absolute risk aversion, such that an issuer who takes the risky future liabilities from the claim is
just compensated in terms of maximal expected utility if he receives the premium 7. In passing
through the paper, we will show that such a valuation basically inherits all “desirable properties”

(cf. Gerber (1979)) from the static exponential premium principle. Besides, it is also consistent
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with the no-arbitrage principle of mathematical finance, cf. Frittelli (2000a), and can be seen a
convex measure of risk in the sense of Féllmer and Schied (2002). Moreover, the utility-indifference
price is a systematic interpolation between the totally risk-averse super-replication value and a
rather risk-neutral valuation which relies on a zero marginal rate of substitution argument. We
define the utility-indifference hedging strategy as the optimal adjustment of the portfolio strat-
egy for an investor who has issued the claim. Building on results from Grandits and Rheinlander
(2002), the solutions to the utility-indifference pricing and hedging problem and also to the util-
ity maximization problem under additional liability are characterized in Section 3 by a stochastic
representation problem. Solving the problem amounts to finding an equivalent martingale measure
whose density has a specific form. This provides a duality verification method for further results,
and the density process of the measure induces the definition of an indifference valuation process.
The latter has an economic interpretation, related to the certainty equivalent of the effective lia-
bility that remains with the issuer after an optimal partial hedge. In Section 4, we turn to a more
specific class of models which are composed by a complete financial sub-market and by a countable
number of additional independent factors of randomness, representing non tradable sources of risk.
This framework in Section 4.1 is flexible enough to study several interesting problems, but it is
still quite explicitly tractable since the set of equivalent martingale measures for the dual problem
has a convenient structure, explored in Section 4.2. Section 4.3 provides simple upper and lower
bounds for the utility-indifference price. If new information about non-market sources of risk only
comes in at discrete times, the utility-indifference price can be calculated by an explicit backward
computation scheme. Moreover, we show that the utility-indifference valuation decreases when
the issuer’s information about the non-tradable factors of risk improves by, say, better monitoring
or reporting. Section 4.4 proves that the utility-indifference price (resp. hedging strategy) for an
aggregated amount of contingent claims is given by the sum of the corresponding prices (resp.
hedging strategies) for the individual claims, whenever those claims are conditionally independent
given the information of the complete sub-market. Under similar assumptions, we finally show how
diversification effects among a large number of individual risks can asymptotically lead to a utility
based valuation for the aggregate which is risk neutral with respect to non-tradable factors of risk

under the objective probability measure P.

2 Preliminaries

In this section, we set up the general modelling framework for this paper. Before we formulate
the utility-indifference valuation and hedging problem in Section 2.3, we summarize some key
martingale duality results on exponential utility maximization, following Delbaen et al. (2002) and
Kabanov and Stricker (2002). We take this as an opportunity to include some slight but useful

generalizations, and to give a presentation which is tailored for our later purposes.
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2.1 General semimartingale framework

Our mathematical framework is given by a probability space (2, F, P), a finite time horizon 7" and
a filtration F = (ft)ogth satisfying the usual conditions of right-continuity and completeness. For
simplicity let Fy be trivial and Fr = F. On occasion, we will introduce further filtrations. All
semimartingales with respect to a filtration that satisfies the usual conditions are taken to have
right continuous paths with left limits. Expectations are taken with respect to P unless specified
otherwise. Let S = (S%);—1, 4 be an R-valued (P,F)-semimartingale. We consider S as the
discounted prices of the tradable risky assets in a financial market which contains a risk-less asset

with discounted price constant at 1. Throughout, we make the
Standing Assumption: S is F-locally bounded. (2.1)

The sets of absolutely continuous and equivalent (local) martingale measures for S with respect to

F, and those with finite relative entropy are defined as

P, = {Q < P|S isalocal (Q,F)-martingale}
P, := {Q~ P |Sisalocal (Q,F)-martingale}
Py = Pp(P):={Q € P | H(Q|P) < o0},

where H(Q|P) = E [Z—g log Z—g] denotes the relative entropy of Q with respect to P, which is always
non negative (cf. Thara (1993)). Intuitively speaking, the relative entropy measures how close a
probability distribution is to another one. We assume throughout that our financial model is free

of arbitrage (cf. Delbaen and Schachermayer (1994)) in the sense that
PPy £0, (22)

and denote by © some set of “permitted” trading strategies. Technically, © is a cone in the space
L(S) of predictable and S-integrable processes. We refrain from a concrete specification of ©
because Delbaen et al. (2002) and Schachermayer (2002) emphasize that there are many possible
choices for ©® which lead to the same maximal expected utility function u. Technically, this is
related to the fact that for several choices of © the martingale approach to the (primal) utility
maximization problem leads to the same dual problem, and to the same value function u. Since
both the utility-indifference price and the corresponding hedging strategy will be defined via u, it
is reasonable to rely on the more robust dual side of the optimization problem (see below) but not
on a specific choice of © to obtain more universal results. We will also see that the duality gives us
a powerful tool to prove many properties of the utility-based pricing and hedging method, because
the dual side provides a convenient path to the primal problem; see Rogers (2001) for a recent

survey on martingale duality approaches.

2.2 Duality results on exponential utility optimization

We need some preparation in order to formulate this robust duality. To this end, let B denote

some random variable and fix some « € (0, 00). If exp(aB) is P-integrable we can define a measure
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dPg := (E[e®B])~1e*B dP. In the sequel, it is sometimes convenient to work under Pg instead of
P. Since Pg ~ P we could replace P by Pg in the definitions of P, and P, without altering these
sets of measures (although the densities with respect to Pp are different from those with respect

to P). Concerning PPy, the situation is less trivial, and we need some further assumptions to obtain
Ps(P) = Ps(Pg). (2.3)

Delbaen et al. (2002) considered the case where B is bounded from below. For random variables

B that are unbounded from below, Lemma, A.1 yields that
E [e(a+5)3] <oo and FE [6763] < oo for some e > 0 (2.4)

implies that B is in L'(Q) for all Q € P;(P), and that (2.3) holds. We can then simply write Ps
without any ambiguity with respect to P or Pg. We will now specify conditions on © that are used

in the sequel. We mostly suppose that for © the following robust duality holds:

supg E [— exp (—a( JT 9ds - B))] = —exp (supgep,{ EqlaB] — H(Q|P)}) (2.5)
holds for any a > 0 and B satisfying (2.4).

Occasionally, we will also require that
© contains Oy := {19 € L(S) ‘19 - S is a (@, F)-martingale for all Q € IP’f} . (2.6)

For appropriate spaces ©, both properties constitute key duality results from Delbaen et al. (2002)
and Kabanov and Stricker (2002): Equation (2.5) states that the value of the utility optimization
problem over © is given by value of the corresponding dual problem over the set P,, and (2.6)

ensures that the optimal investment strategy is attained in ©.

Example 2.1 Consider the following spaces of strategies: ©; := {# € L(S)|9 - S is a Q5-
martingale} (with QP given by Prop. 2.2), Oy := Oy, O3 := {9 € L(S)|9 - S is bounded } ,
or O4:= {9 € L(S)| (9 -S)” is bounded }. Then (2.5) is satisfied for ©1,02,03, and O, (see Del-
baen et al. (2002), Schachermayer (2002, 2001)); while (2.6) is satisfied for ©, by definition and
thus also for ©; D O,. &

In the next proposition we recall central duality results from Delbaen et al. (2002) and Kabanov

and Stricker (2002) on the exponential utility maximization problem
T
u(zx — B) :=u(x — B;a) :=sup F [— exp (—a(w + / 9dS — B))] (2.7)
J€O 0

and the corresponding dual problem

sup {aEq[B] — H(Q|P)} . (2.8)
QeP;

Related results have also been obtained by several other authors.
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Proposition 2.2 Assume (2.2), (2.4) and (2.5). Then

1. There ezists a unique QP € Py NP, which mazimizes (2.8).

2. The density of QP takes the form dg—; = exp (—oz(cB + fOT 9BdS — B)) for some 98 € L(S)
such that 98 - S is a QB-martingale and c® € R. Moreover, 9% is in O .

3. The mazimal expected utility in (2.7) is given by
u(z — B;a) = —e *Pexp <sup {aFEqg[B] — H(Q|P)}> )
QE]P’f

4. and u(x — Bya) = E [— exp (—oz(x + fOT 9BdS — B))] = —exp(—a(z — cP)).

The measure Q° (corresponding to B = 0) minimizes H(Q|P) over @ € P, and is therefore
called minimal entropy martingale measure. Although our assumptions on B and on the space of
strategies are slightly more general than in Delbaen et al. (2002) and Kabanov and Stricker (2002),
it is straightforward to adapt their proofs. The details are relegated to the appendix.

2.3 Utility-indifference pricing and hedging - formulation of the problem

We now introduce our main objects of interest: a utility-based valuation and a corresponding
hedging strategy for a risky future payoff.

Definition 2.3 If there is a unique solution w(B) = n(B;a) to the equation
u(z;a) =u(z + 7 — B;a), (2.9)
we call this solution the utility-indifference (selling) price for B.

In the absence of dynamical trading opportunities (this corresponds to letting S = Sy be constant)

the utility-indifference price 7 is defined as the solution of the equation
U(z) = E[U(z + 7 — B)] (2.10)

with a utility function U which is exponential in our setting, i.e. U(z) = — exp(—az). The solution
7 to equation (2.10) yields a valuation method which has been known for a long time. In fact, the
origins of the idea can be traced back to the 18th century when Daniel Bernoulli (1738) suggested
that an investor, say gambler, will rank risky ventures, say lotteries, by their expected utilities. In
actuarial mathematics, such a valuation method is known as the “premium principle of equivalent
utility” (cf. Gerber and Parfumi (1998) for an overview) and has certain desirable properties if and
only if the utility function U is exponential (cf. Gerber (1979), chapter 5)

In the presence of a dynamical financial market, investors can maximize their expected utility and
reduce risk from a terminal liability B by dynamical trading. Taking this into account, leads to
Definition 2.3 for the utility-indifference price. This adaptation of the classical idea from the static
situation to the dynamic financial market case appeared first in Hodges and Neuberger (1989),

and 7(B) can be interpreted as the adjustment to the investor’s initial capital that compensates
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for the additional terminal liability B in terms of maximal expected (exponential) utility. In this
sense, m(B) is a subjective fair valuation (premium) for the liability B from the perspective of a
risk averse investor and can be considered as a measure of risk, cf. Remark 3.1. One might also
consider m(B) in terms of acceptable financial positions as the minimal premium needed to achieve

an acceptable financial position at terminal time. In fact,
T
W(B)Ziﬂf{@/E]R‘.’E‘F’!J‘F/ 0dS —Be A forsomeﬁE@}
0

with A := {X | E[U(X)] > £} being the set of acceptable positions for utility U(z) = — exp(—ax)
and acceptance level £ = u(z; ). But let us emphasize that in general 7(B) must not be considered

as a price for which B can be bought and sold in the financial market.

Remark 2.4 (Extensions) In the same spirit, one could define a corresponding utility-indifference
buying price as the unique solution 7°(B) to the equation u(z) = u(z — «® + B). It is easy to see
that 7°(B) = —w(—B) holds if the latter is defined. Furthermore, it may be relevant to consider
the utility-indifference (selling) price of an additional claim B for an issuer who already has a
liability, say, C. One can verify that the unique solution w(B|C) to the equation u(z — C) =
u(z + n(B|C) — (B + C)) is given by 7n(B|C) = n(B + C) — n(C), provided the latter terms are
defined. To see this, note that u(z — C) = u(z — 7(C)) = u(z — 7 (C) + (B + C) — (B + C)) holds
thanks to (3.2). o

We now define the hedging strategy ¥ (B;a) as the adjustment of the optimal strategy without
liability that is necessary to obtain a strategy that is optimal under the terminal liability B. More
vaguely, it is the part of the optimal strategy 97 that stems from the additional liability B.

Definition 2.5 Under the assumptions for Proposition 2.2, we define the utility-indifference hedg-
ing strategy ¥ for B by
Y(B) = ¥(B; a) := 9B — 90, (2.11)

Part 2 of Proposition 2.2 implies that 92 and 9° are unique in the sense that the processes i 9B dS
and [ 90 dS, respectively, are unique. Hence, the hedging strategy is unique in the sense that [ S
is unique. More formally, v is defined in the quotient space of L(S) with respect to the equivalence
relation ¥ ~ & :& [9dS = [£dS. The definition of 9 can be extended similarly as the one for =,
in analogy to Remark 2.4.

Remark 2.6 (Relaxing the exponential moment condition)

In some applications, the integrability condition (2.4) will not be satisfied by the claim. To explain a
straightforward way to relax this condition, let B be such a claim — e.g. a call option B = (Sr—K)*
in a Black-Scholes type model. Suppose there exists & € © such that B := B — fOTf dS satisfies
(2.4) and that © is a linear space. Given that the assumptions for Proposition 2.2 hold, we can
then apply our analysis for B to obtain «(B;a) = n(B;a), using the linearity of ©. Analogously,
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Y(B) = 9(B) + £ can be taken as the utility-indifference hedging strategy for B. In the example,
choosing & = 1 for instance transforms B into a bounded claim B = (S} — K)t — (81, - S}). ¢

3 General properties and verification methods

Under the assumptions needed for Proposition 2.2, one obtains (see eq. (4.6) in Delbaen et al.

(2002)) the following formula for the utility-indifference price

1

(B50) = swp { BolB) - L (H(@IP) - H(@IP)) | (3.1)
QE]P’f x

This yields almost directly that the following properties (3.2)-(3.7), shown by Frittelli (2000a) and

Rouge and El Karoui (2000) under additional assumptions and in part by different methods, still

hold in the present framework:

Independence on initial capital) 7(B; a) does not depend on z,

( (3
(Monotonicity in «) a +— m(Bj;a) is increasing in a, (3.
(Volume-scaling) m(BB; ) = pw(B; fa) for € (0,1], and (3
( (3

Translation invariance) (B +c¢a)=n(B;a)+c forceR

If fact, equation (3.4) holds for any S € (0,00) provided that both sides satisfy formula (3.1). For

bounded random variables B;,Bs and A € [0, 1], formula (3.1) moreover yields

(Convexity) m(AB1 + (1 — A\)Bg; ) < An(Bi;a) + (1 — A)w(Bs; ) , and (3.6)
(Monotonicity) m(By;a) < w(Bg;a) if By < By . (3.7)

Remark 3.1 (Interpretation as a measure of risk)

By (3.5)—(3.7), the mapping o : X — w(—X;«) satisfies all axioms which constitute a convez
measure of risk on the set of bounded random variables. For the notion and a discussion of such
risk measures we refer to Follmer and Schied (2002). Let us just note here that g assigns a
monetary measure of risk to a financial position X, corresponding to a liability B = —X. This
point of view is instructive for the understanding and interpretation of some subsequent results,
like Corollary 3.3. In general, p is not additive or sub-additive; and it is a semantic question
whether a risk measure should be so. A risk measure that is imposed by an external regulator,
e.g. a supervising agency, should be sub-additive because otherwise a supervised entity could just
split up to meet the requirements, cf. Artzner et al. (1999). However, for its own sake a firm
might be well advised to view its aggregated risks in a risk-averse way which discriminates against
correlated exposures and honors diversification — as the latter is fairly common sense. To penalize
concentrated exposures with respect to specific risks, the properties of positive homogeneity and
sub-additivity have to be dropped. As a consequence, the risk analysis of the aggregate becomes

more complex since it cannot be done by parts in general. In principle, each individual risk has
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to be judged with respect to its contribution to the overall exposure, see Remark 2.4. However,

individual risks which are sufficiently independent can be treated separately, see Section 4.4. O

For any B € L°°(P) that is attainable in the sense that B = b+ foTﬁdS for ¢ € L(S) with [9dS
bounded (uniformly in t), we have Eg[B] = b for all Q € P,. By (3.1) this yields elementary
No-Arbitrage (NA) consistency of 7 in the sense that

T
(Elementary NA-consistency) ™ (b + / 9 dS; a) =b (3.8)
0

for b € R and 9 € L(S) with [9dS bounded — implying 7(B; @) = Eg[B] for all Q € P, (for such
B). Since Q° is in P,, Proposition 3.2 below moreover implies that the utility-indifference price of

any bounded claim lies within the interval of possible arbitrage free valuations, that is

(NA-consistency) Qinﬂf» Eq[B] < n(B;a) < sup Eg[B] for B € L*(P). (3.9)

clPe QEPe
In this sense, consistency of © with the No-Arbitrage principle also holds for non attainable claims.
The latter was originally pointed out by Frittelli (2000a) in a related but slightly different context.

As an aside, Proposition 3.2 also yields
(Nonnegative market-adjusted safety loading) 7(B;a) > Ego[B]. (3.10)

Comparing 7(B;a) with Ep[B] would not make much sense in a dynamical financial market. To
see this, observe that (bounded) attainable claims can be perfectly hedged by their replication
costs which is the expectation of the payoff under a martingale measure @@ € P, (cf. the remark
before (3.8)), and is typically different from the expectation under the objective probability P. A
notable exception where is makes sense to compare 7(B;«) with Ep[B] is a situation where the
claim B incorporates only independent non-tradable sources of risk which can be separated from
the financial market. For details, see (4.22) (there, Ep[B] = Ego[B] holds for any Zr-measurable
claim B).

The integrability conditions subsequently imposed on B in (3.12) hold if and only if B € Lex,(P)N
Lexp(QP), where Lexp(P) := {X | Eplexp(e| X|)] < oo for some £ > 0} denotes the Orlicz space.
Both the conditions in (3.11) and in (3.12) are satisfied for B € L*°(P) in particular.

Proposition 3.2 (risk-aversion asymptotics)
Suppose (2.2) and (2.5) hold. Then a +— w(B;a), a € (0,00), is non-decreasing and

lim 7(B;a) = sup Eg[B] if (2.4) holds for all c, (3.11)
atoo QEeP.
liﬁ)nr(B;a) = Egqo[B] if (2.4) holds for o small enough, and B € Lexp(Q%).  (3.12)

Hence, the utility-indifference price tends to the super-replication price, which is equal to the

supremum of the expectation of B over all equivalent martingale measures, when the risk-aversion
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tends to infinity. For vanishing risk aversion, the utility-indifference price tends to a risk-neutral
valuation under the minimal entropy martingale measure Q°. Recalling Remark 2.4, one can see
that the utility-indifference buying price —n(—B;«) tends to the lower bound of the interval of
arbitrage-free prices, that is the infimum of the expectation of B over all martingale measures,
when the risk aversion tends to infinity. Rouge and El Karoui (2000) proved these asymptotics
for bounded claims in a Brownian setting, using methods from the theory of backward stochastic
differential equations. For the locally bounded semimartingale framework, the limit (3.11) was
proven by Delbaen et al. (2002) (cf. the proof of their Prop. 11) and it remains to show (3.12) here.
Independently of this work, Stricker (2002) has recently found an alternative proof for (3.12) under

a slightly weaker integrability condition, using the Fenchel inequality.

Proof of Proposition 3.2: From (3.1) and (3.3) follows that 7(B; a) > Ego[B] for all a and that
m(B;a) decreases for decreasing «. Hence,

. . 1
BoolP) < ligr(B:0) = inf sup {Eaip1 - 2 (1@IP) - (@) |

Suppose Ego[B] + ¢ < limgy o m(B; a) for some § > 0. Then we could find for any o small enough
some @, € Py such that

. (3.13)

N

1
(FoulB] - EqolB)) - - (H(QalP) - H(QIP)) >
Using the inequality Eq, [|B|] < 1 (H(Q4|P) + 1Ep [¢f'B']) (cf. (A.2)), we then obtain that

1 0

const + (% - E) (H(Qa|P) - H(QO\P)) >3 (3.14)

where const = 1 (2Ep[efIBl] + H(Q°|P)) — Eqo[B] is nonnegative, finite (for some ¢ > 0), and
does not depend on a. As the term in the second bracket of (3.14) is nonnegative for all «, the
inequality implies

lim (H(Qa|P) — H(Q"|P)) =0. (3.15)

al0
and therefore H(Q,|Q°) — 0 since H(Qu|P) > H(Q.|Q%) + H(Q"|P) by Theorem 2.2 of Csiszar
(1975). In particular, Q, converges to @ in entropy, therefore in total variation, and

Eq,[B] = Eg[B] for a ] 0. (3.16)

The latter is evident for B € L°. We next show it for B € Lexp(Q°). By a classical variational

inequality for the relative entropy (Theorem 1.4.4 in Thara (1993), plus monotone convergence),

1
BQ,[1BI15>0)) < < (H(QalQ") +10g Ego| exp (e| BlLjn1se)) |) (3.17)

holds for all random variables B and ¢ > 0, ¢ > 0. By hypothesis, there is ¢ > 0 such that
exp(e|B|) € L'(Q%). For a | 0 and ¢ 1 oo the right hand side of (3.17) tends to zero. It follows
that (3.16) also holds for non-bounded random variables B € Lexp(Q°). We conclude that the
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limes inferior for « | 0 of the left hand side in (3.13) is less than or equal to 0. Clearly, this is a
contradiction which proves the claim. U

In view of the volume scaling property (cf. (3.4) plus subsequent remark), the limits in Proposi-

tion 3.2 can be rewritten as volume-asymptotics of the utility-indifference price. This yields

Corollary 3.3 (volume asymptotics) Suppose (2.2) and (2.5) hold. For any « € (0,00), the map-
ping B +— %w(ﬂB; a), B € (0,00), is non-decreasing and

1
lim —7(BB;a) = sup Eg[B] if (2.4) holds for all c, (3.18)
Btoo f3 QeP.

1
lﬂifol EW(;@B;&) = FEg[B] if (2.4) holds for a small enough, and B € Lexp(Q°). (3.19)

The appearing quantity %w(ﬁB ;) can be interpreted as price per unit for a given amount (volume)
B of claims B. It is increasing in 8 since 7 is defined as a risk-averse and subjective fair valua-
tion from the issuer’s perspective. For concreteness, consider an insurance company that insures
skyscrapers against earthquakes and has already many clients in San Francisco. Adding a further
client there, would increase the volume of the insured risk that is exposed to the next big earth-
quake in northern California. Provided the insurer has to keep its risks and cannot resell them,
he would prefer — ceteris paribus — an in other respects comparable risk elsewhere. That is, his
risk-averse valuation of an additional earthquake-related insurance risk is higher when it increases

his already large exposure to the next big earthquake in California.

Remark 3.4 (Relation to the ‘zero marginal rate of substitution’price)
Suppose B is bounded, « equals 1, and © 4 is a subset of ©. By Parts 2 and 4 of Proposition 2.2,

we have

Ep [U’(:v + [T 90 ds) B]
oz (—e =)

with U(z) := —e~*. By formula (3) in Davis (1997), this shows that Ego[B] equals Davis’ so-called

“fair price” p for B with respect to the exponential utility function U. The definition of p relies on

Eqo[B] = Ep [e—C"—foT 9°ds B] - (3.20)

a classical idea of “zero marginal rate of substitution” from economics, cf. also Duffie and Skiadas
(1994). Intuitively, p is defined such that an investor cannot increase his expected (exponential)
utility by diverting an infinitesimal amount of his capital into the option contract. By (3.12), (3.19),
and (3.20) we can consider the “fair price” p as the limit of the utility-indifference valuations for
B for vanishing risk-aversion or infinitesimal contract volume, respectively. Moreover, p provides a
(sharp) lower bound for 7(B; @), a € (0, 00). o

Our next aim is to characterize the utility-indifference hedging strategy 1 and the indifference price

7. To this end, we formulate a martingale criterion which is sufficient to identify both of them and
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which serves as a verification theorem in the sequel. It also leads in a natural way to the definition
of a utility-indifference price process (mt);e[o,7], and reveals further general properties of (m:) and
9. Our starting point is the following proposition which provides sufficient criteria for the solution
to the dual problem (2.8). Basically, it is a reformulation of results by Grandits and Rheinlédnder
(2002) which includes a terminal liability B; see the appendix for technical details.

Proposition 3.5 Assume (2.4). Suppose the density of Q € P, takes the form
dQ T .
—Q:exp —a(c+/ ﬂdS—B) for some ¢ € R and ¥ € L(S)
dP 0

and one of the following two conditions holds:

(i) -8 is a Q-BMO-martingale and B+ Jo 9ds) ¢ LY(P) for some e >0, or
(i) Q€P; and d € Op.

Then Q € P, NPy solves the dual problem i.e. Q = QB, 9 =98 and ¢ = P (cf. Prop. 2.2).

As a consequence from variant (ii), one can now characterize the indifference price = and the

hedging strategy 1 by a condition that is both necessary and sufficient:

Corollary 3.6 Suppose the assumptions for Proposition 2.2 hold.
1. The hedging stmtfgy P(B) is in Oz aiLd satisfies % = exp (—OA(W(B) + fOsz(B) ds — B)) .
2. Conversely: Let ¢ € Op, m € R and Q € Py such that

A T
%6320 = exp (—a(fr +/0 P dS — B)) (3.21)
holds. Then we have ¢(B) = 1, ©(B) = & and QP = Q.

Remark 3.7 Part 2 of Corollary 3.6 implies in particular that the replicating strategy for a
bounded attainable claim B is the hedging strategy, as it should be. To see this, let B = b+ fOT P dS
with b € R and [ dS bounded (uniformly in ¢). Taking @ := Q° and 7 := b, Part 2 of Corol-
lary 3.6 yields that m(B) = 7 and 4(B) = ¢; that is, the indifference price equals the initial capital
that is needed for the replication of B and the hedging strategy is the replicating strategy. O

Proof of Corollary 3.6:
1. By Proposition 2.2 we have u(c? — B) = —1 = u(c® — 0), and we conclude that 7(B) = ¢? — 0.
Moreover, the hedging strategy 9 (B) = 92 — 9° is in © 4. Computing the density of dQ? with
“1
respect to dQ° via df—; (d(%)) , again using Prop. 2.2, yields part 1.
2. For the “sufficiency”-part, consider
dQ dQ"\ dQ 0, - T o0,
habi A el N ek S — - B . .22
7P (dP 40" exp | —a | (c -|-7r)+/0 (0" +4)dS (3.22)
Proposition 3.5-(ii) then yields Q® = Q, and 97 = 9%+ and c? = ?+7 follow via Proposition 2.2.
As in part 1, 7(B) = c¢? — ¢ = 7 holds, and 9(B) = 92 — 9° = ¢ by the definition of (B). O
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Corollary 3.6 yields that the density process of QF with respect to Q¥ takes the form

a9
dQo

with (7¢)ye0,7] given by

= exp (—a(n(B) + /0t¢(B) ds — Wt)) , te€l0,T], (3.23)

Fi

1 T
™ = log Fgp [exp (a(B— / ¢(B)dS))‘]—"t] , tel0,T]. (3.24)
t
Note that (m;)cjo, is a semimartingale with 77 = B and mg = 7(B). Moreover, we have
Eg[B|IF] < m < Bgs[BIF], tel0,T]. (3.25)

To see this, let Z denote the density process ?f QP v;/ith respect to QY. Starting from the in-
equalities Fgo [g—f log Z—ﬂ]—}] >0 and Egs [% log %p—}] > (0, we can compute the conditional
t t

expectations, using the representation (3.23) for Z and the fact that 1 is in © »4. This yields (3.25).

Definition 3.8 Suppose the assumptions for Proposition 2.2 hold. We call the process (ﬂ't)te[o’T]
in the representation (3.23) the utility-indifference price process of B.

We will give a justification for this definition in the sequel. Beforehand, let us state a density process
version of Corollary 3.6. An analogous reasoning leads to a density process version of Proposition
3.5 and thereby offers an economic interpretation for the indifference price process (Trt)te[O,T]a see

the remarks at the end of this section.

Corollary 3.9 Suppose the assumptions for Proposition 2.2 hold and we have

Q| _ _ b _

a0 = exp (—a(wo +/0 PdS — 7rt)> , tel0,T], (3.26)
for some Q € Py, ¥ € Op, and a semimartingale (7t)teo,r) with 77 = B. Then %(B) = W,
7(B) = 7o, QP = Q and (7y) is the indifference price process.

Fi

Proof: Taking t = T, we obtain by part 2 of Corollary 3.6 that 4(B) = 1, 7(B) = 7o and Q® = Q.
Comparing (3.23) and (3.26) then implies that (7;) is the utility-indifference price process. O

As an application of Corollary 3.9, we now show that the exponential indifference pricing exhibits
an iterativity property. Such a property is already known in a static framework, cf. Gerber (1979),
but it also holds in a dynamical market setting. Moreover, a corresponding iterativity also holds
for the hedging strategy. However, the notion of iterativity must be reformulated to take into
account the information flow F for a simple reason: In financial markets it matters at what time

new information becomes available.

Corollary 3.10 (iterativity of © and )
Suppose the assumptions for Proposition 2.2 hold and B is bounded. Let 7 be a stopping time.

Then the indifference price process and hedging strategy for the claim B := 7w (B) are given by
71(B) = minr(B) and 1(B) = u(B)1 [0 (1), respectively
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It is most natural to consider the claim B as payable at time 7. Note however that we are working
throughout with discounted quantities, and in such a framework it does not really matter at which

time payoffs are due.

Proof: Let dQ := okd

o0 dQ°. From the representation (3.23) we have

Fr

4Q
dQo

with ||, (B)|]oo < ||Bllec < 00 by (3.25) and hypothesis. By Corollary 3.9 this yields the claim. [

= exp <—a(7l'0(B) + /Ot¢(B)1[0’T] ds — ﬂ't/\r)) , teo,T1],

Fi

We conclude this section by giving an interpretation for the process (7). To this end, suppose that
(2.4) holds and that there are some Q € P,, J € L(S) and a semimartingale (cf’)iepo,r) such that
c? = B, 9- 8 is a Q-BMO-martingale,

dQ

t
_ _(.B 370 _ B
7P —exp( a(co +/0 9dS — ¢ )) , te€0,T7, (3.27)

Fi

T 3 —
holds, and e*(B+e Jo 945) ig in L' (P) for some ¢ > 0. Via Proposition 3.5, this yields Q = Q? and
9 = 9P and c(? = ¢B, that is, we have the solution to the dual problem in Proposition 2.2. Since the
terminal density determines the density process, we find that the process (ctB )te[o,T] is determined

by 92 and B. This dependence is analogous to the one in (3.24) and given by the formula
1 T
of =~ log By [exp (a(B - /t 9B dS)) ‘.7-}] ., telo,T]. (3.28)

Note that the expectation here is under the objective probability measure P and not under Q° as in
(3.24). This provides an interpretation to the processes (cf) and thereby also for (m;): The investor
who maximizes his P-expected utility under terminal liability B follows his optimal trading strategy
9B. At time t € [0,T), he then faces the effective liability B — ftT 9P dS which is the difference
between B and the gains from trade that he is going to realize in the remaining time (¢,7"]. Note
that the effective liability can be positive as well as negative. In the latter case, the investor
enjoys an effective gain from present time ¢ until 7. By (3.28), we can interpret c? as the current
(exponential) P-certainty equivalent of this remaining effective liability given the information at
time #: At time ¢, cf is the “time—t—certain” liability that an investor would rate as good as
the remaining effective liability in terms of expected exponential utility. For the investor with no
liability the corresponding certainty equivalent is simply ¢! = élog Ep [exp (a(— i) tT 90 dS)) ‘ft],
t € [0,7]. We can calculate the density process dQB/dQO‘}.t = dQB/dP|j_.t dQO/dP|]__.t1, t€[0,77,
by using formula (3.27) (with @ = QF and 9 = 95). Substituting ¢(B) = 9% —9° and comparing
the result with (3.26) then yields

m=cP —cd, tel0,T]. (3.29)
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Hence, the current utility-indifference price is the difference of the current certainty equivalents
of the effective liabilities between the investor with terminal liability B and the ordinary investor
who has no terminal liability. For further details about certainly-equivalence aspects, we refer to
Frittelli (2000a) who defines a market-consistent economic value of a random financial position
starting from a certainty-equivalence argument. For exponential utility preferences, this leads to
the same valuation formula as the utility-indifference approach. In a Brownian framework, Rouge
and El Karoui (2000) define a process z{ (in their Section 4.2) as an essential supremum of certain
conditional expectations over a set of martingale measures. One could show that their 2§ coincides

with our process cf.

4 Results in semi-complete product models

This section aims for more constructive results on the utility-indifference valuation and hedging
approach, and also explores and illustrates its properties in more detail. To this end, we impose
further structural assumptions on our financial market model, assuming a semi-complete product

model which consists of a complete financial sub-market and additional independent sources of risk.

4.1 The semi-complete product model

We now specify the semi-complete model and the technical assumptions which are supposed to
hold throughout the rest of Section 4. Let T = (F7? )tefo,r) and I' = (Ig)tE[O’T], 1 € N, be filtrations
which satisfy the usual conditions of completeness and right-continuity, and have trivial o-fields at
t = 0. We suppose that S is adapted and locally bounded with respect to F* and that

FY, I}, T?,... are independent under P. (4.1)

Let I = (Z;) be given by Z; := \/;2, 7} and define F = (Ft)iefo,r) via
o -
Fo=FVvL=Fv\ I, te1]. (4.2)
=1
We assume that there is a unique (Q* which is in P, N P; and has an F2-measurable density, i.e.
d
dP

{Q eP, ‘ Q € Py, aq is f%-measurable} ={Q"}. (4.3)

Hence, S has the strong predictable representation property with respect to (F, Q*) (see Jacod
(1979), Cor. 11.4, and Kabanov and Stricker (2001), Cor. 1.3) and conditions (2.1) and (2.2) hold.

Because of (4.3), condition (4.1) is equivalent to assuming that
FY Tk TZ,... are independent under Q*; (4.4)

and it is easy to see that Q* = P on Zy. By Lemma A.2, both F and T inherit the usual conditions
from their sub-filtrations thanks to the independence assumption (4.1).
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Remark 4.1 Assumptions (4.3) and (4.1) mean that our model is composed of a complete financial
market (S,F°) — e.g. the Black-Scholes model or the Binomial-tree model — and additional inde-
pendent sources (factors) I',12,... of risk which are independent from (S,°) under the objective
probability P. Generic examples in the sequel are given by P-independent processes S,Y',Y?, ...,
with FO := FS and I := FV' being the smallest right-continuous and complete filtrations generated
by S and Y, respectively. This class of models includes, for instance, the ones considered in Davis
(2000), Henderson and Hobson (2002), Henderson (2002), and Young and Zariphopoulou (2002).

4.2 The structure of the equivalent martingale measures

For the sequel, we need some structural results on the solution Q? for the dual problem (2.8) and
on the set P, of equivalent martingale measures. Since dQ* = dQ/dP)| 7 dP holds for any Q € Py
we have H(Q*|P) < H(Q|P) for Q € Py, i.e. Q* is the minimal entropy martingale measure:

Q= q°. (4.5)
A similar reasoning yields

Lemma 4.2 Suppose B is F2 VI%—measumble for some k and satisfies (2.4). Then the density
dQP /dQ* of the optimal measure QP for the dual problem (2.8) is F2 VI% -measurable.

Proof: We may assume that S is bounded, otherwise one could F°-localize so that it is. It
suffices to consider the case k = 1. Under the present conditions, the optimal measure QF to
(2.8) exists (see the proof of Proposition 2.2). Define dQ' := dQ* /dPg| FOvIh dPpg and recall that
dPp := (E[e*P])1e®B dP. Then S is a martingale with respect to (Q', (F? V I})seqo,r]) and

dQ' _ (dQ'\ (dPs\ (dP\ . o
a0 (dPB 1P FL is Fp V Zp-measurable.

In combination with (4.4), this implies that F2 V Z} is Q'-independent from Z2 V Z3. V..., and so
S is also a (Q', F)-martingale. By construction of Q' we have H(Q'|Pg) < H(Q?|Pg) and Q' ~ P.
Since Q? is unique and minimizes H(Q|Pg) over Q € P, (cf. Lemma A.1), this yields Q' = QZ. O

In the semi-complete model, the set P, of equivalent martingale measures has a rather simple

structure which is analyzed next. We denote by E* the expectation with respect to Q™.

Lemma 4.3 Let () be some measure equivalent to P and let Z denote the F-density process of Q
with respect to Q*. Then @ is an element of P, if and only if

E*Z|F)VI)=Zs; forall 0<s<t<T. (4.6)

In particular, taking s = 0 gives E*[Z;|F?] =1 for t € [0,T).
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Proof: Again, we can assume that S is bounded. Otherwise we can F0-localize appropriately. Let
us first show necessity: Fix s < T and define

Zy := E*[Zp|FO N I,) = E*[Z|FOV L), tels,T),
where the equality follows via conditioning on F;. To show (4.6), it suffices to prove
Zy =7, for tel[s,T]. (4.7)
To this end, define (L¢);cjo.r) by Lt == 1jg 5 (t) + (Z1/ Zs)1(579(t)- Then
S and L are martingales with respect to (Q*, (Fy V Zs)sefo,1]) (4.8)

by the independence hypothesis (4.4) and the construction of L, respectively. A little calculation
shows that also LS is a (Q*, (F? V Ts)tefo,r))-martingale. In fact,

ZuSu = E*[Z78)|Fu] = E* [E*[Zﬂf,? V Z,]S:

fu] , s<u<t<T,
implies — by taking E*[-|F0 V Z,] of both sides — that
B[ Z,|FoV T,]S, = B* | B (21| F} VIU]St‘]-'S VL], s<u<t<T. (4.9)
Via conditioning on F{ VZ;, one sees that the right hand side equals E* [E* [Z7|FP V I5)S: ‘.7-",9 \ Is] .
Using the definitions of Z and L, we can then rewrite (4.9) as
LySy = E*[L4Sy|FOV I, for s<u<t<T. (4.10)

In combination with the definition of L and (4.8), this establishes that LS is a martingale with
respect to (Q*, (F? V Zs)epo,r))- From (4.4) and (4.3) it follows by Theorem 3.2 in Amendinger
et al. (2003) that S has the strong predictable representation property with respect to (Q*, (F? Vv
Ts))tejo,r])- That is, any local (Q*, (F V Zs)e[o,7])-martingale orthogonal to S must be constant
(Jacod (1979), Theorem 11.3). Hence L is constant at Ly = 1 and this establishes (4.7).

Finally, to show sufficiency just note that (4.6) and (4.4) imply

E* [Z:S|FOVI,) = B [StE* (2| F0 v I,]

FO VIS] = E*[S,Z,|FO V T,] = Z,S5, .

4.3 A computation scheme and explicit bounds

We now derive a backward computation scheme for the utility-indifference price process in the case

where the additional information flow I = (Z;),[o,7] is piecewise constant, i.e.
Iy =1y, fort€ [ty,tg+1) and k=0,...,n—1, (4.11)

with deterministic times 0 =ty < t; < --- < ¢, = T. This will also lead to simple upper and lower

bounds for the utility-indifference price which are valid even if condition (4.11) does not hold.
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Theorem 4.4 (Computation scheme) Assume (2.4), (2.5), and (4.11). Then the utility-indifference

price process (my) is recursively determined by m;, = B and

Fi

k+1

1
m = FBE* |:a log Ep I:eomtk"‘l VItk] ‘.7:750 VItk:| ,T € [tk,tk+1), (412)

and the utility-indifference price at time t = 0 is w(B; a) = 7.

Having this result, a second reading of the proof reveals (via (4.14)) that
t
Ty = Ty, + ’lﬁ(B)dS, t € [tkatk—}—l) .
tr

That means, the indifference price process (m;) is piecewise self-financing, and the hedging strat-
egy ¥ (B) is the replicating strategy for élog Ep [exp(onrtkH) |.7-",5(3chl VItk] over the time period
(tg,tr+1]- As the subsequent proof reveals, one could alternatively state (4.12) with the expectation
FEp replaced by E*. However, the given formula emphasizes where the true world probability P

comes into play, and is also more reminiscent to the heuristics in Remark 4.5.

In a way, the computation scheme for the utility-indifference price resembles the common backwards
computation method of the replication price in the binomial tree model: The indifference price at
time t; can be computed as the conditional expectation of a functional of the price at time .
In fact, the scheme reduces to the unique no-arbitrage valuation 7y = E*[B|F;] when the claim
only depends on tradable factors of risk, that is when B is F%—measurable. We emphasize that
the measures Q* and P are typically well-known — in contrast to Q. Note that the computation
of (m) is “local” in time, although 7 is derived from an optimization problem whose solution is
typically not myopic (i.e. optimizing exponential utility locally seperately over each time period does
in general not lead to an investment strategy which maximizes exponential utility from terminal
wealth over all periods up to time 7', as it would be the case for logarithmic utility, cf. e.g. Becherer
(2001a)). The scheme provides an explicit recursion formula and does not necessitate a numerical
(approximative) search for the intermediate optimization at each period, as it appears often in

dynamical programming.

Remark 4.5 1. Before proving Theorem 4.4, we give a heuristic explanation for the recursion
formula (4.12). At time ¢j; the utility-indifference price of the claim B for an investor with expo-
nential utility is m, , and the investor possesses the information Tgﬂﬂ V1., Before he comes to

know the new additional information, he has information fgw , VI, and would assign the certainty

equivalent 7y, = élog Ep [exp(onrt,c 1) Fgc+ ) vItk] to m,_,. By no-arbitrage considerations,
the only reasonable price for 7y, at time ¢ € [tg,tgy1) is 7y = E*[7y, , |Fy] since 7y, can be
replicated from m; by a self-financing trading strategy. This replication is possible because the
model is “piecewise complete”. More precisely, Theorem 3.2 in Amendinger et al. (2003) shows
that (St)ie(ty by

2. Independently, Musiela and Zariphopoulou (2002b) have obtained a different proof for a formula

] has the representation property with respect to (Q*, (F? VItk)te[tk,tk+1])-
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like (4.12) by direct calculations for the primal utility optimization problem in a one-period model.
<o

Proof of Theorem 4.4: Corollary 3.6 and the subsequent remarks show that the F-density process
of QP with respect to Q¥ has the form

7y = exp (—a (m + /Ot¢(B)dS - 7rt>> ., telo,T],

with 77 = B and 9(B) € O . For t € [tg,tg4+1) we obtain

* Zt 0
1 = E [% ftkHVIt] (4.13)
= exp| —«a / Y(B)dS + 7 | | B [ea”kﬂ ]:chVItk]
(t’tk+1]

using Lemma 4.3, assumption (4.11) and the fact that f(t,tk+1] P(B)dS is fch VI -measurable due
to (4.11) and the predictability of 1. This measurability is readily verified when the integrand is
an elementary predictable process. By standard approximation arguments the measurability then
also holds for left continuous processes with right limits, for bounded predictable processes, and
finally for integrable predictable processes (cf. Mémin (1980), Lemma V.3). Solving for 7 in (4.13)
leads to

#

k+1

1
T = —/ ¢(B) dS + — log E'* [eaﬂtk+1 VIt] , t e [tkatk—H) ) (414)
(t’tk—{—l} «

and taking @Q*-expectations conditional on .7-"? VI = .7-"? V I, yields (4.12). To see this, note that
(B)-S is a Q*-martingale, and E* [exp(awtk+l) | ftokﬂ V Itk] equals Ep [exp(amk+1) | '7:89+1 \% Itk]
by hypothesis (4.4). Ol

To illustrate some qualitative properties of the indifference price 7 and to clarify the computation
method, we next give an example with a simple claim and model. The outlined ideas are extendable

to more complex contingent claims. A more quantitative analysis shall be done elsewhere.

Example 4.6 Consider a claim B whose payoff depends on the evolution of a tradable asset S
but takes place only if a certain additional event “7” does not happen until maturity. Let S evolve

according to the binomial tree model, i.e.

S(k+1)% :Sk%Yk-l-l fork:O,...,n—l,

where Sy € (0,00), d =1, and Y1,Y5,... are i.i.d. with P[Y, =U] =1 - P[Y, =1/U] =:p € (0,1)
for some U € (1,00). By piecewise constant interpolation this model can be embedded in our
continuous-time framework, taking S; := Syr/, fort € [k% , (k + 1)%) In order to view S as usual
as an approximation of the Black-Scholes model, we parameterize U := exp (0 \/m) by a volatility

parameter o € (0,00). Additional non-tradable sources of risk are represented by a Poisson process
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N, P-independent of S, with intensity A > 0. Let N; := Nitm, t € [k% , (k + 1)%), be an
observation of N in discrete time. The ‘event’ is taken to occur at the time 7 := inf{¢ : N; > 0} of
the first jump of ]Vt. With FO := F¥ and I := Fﬁ, the example fits in the framework of Section 4.1.
Note that N, Y7, Ys, ... are Q*-independent (cf. 4.4), Q*[Vy =U] = 1—Q* [V, =U '] =1 ¢ = g,j//;;
for all k, and the Q*-intensity of N is the same as under P since Q* = P on Zr.

Via Theorem 4.4 one could now value various claims whose payoffs depend on the joint evolution

of S and N. Here, let us consider a claim

B .= STl{NT:O} = ST1{7->T} )

that simply pays one unit of the tradable asset, say a stock index, provided that some further
(insurance) event — technically the stopping time 7 — has not happened until maturity 7. The
backwards calculation scheme of Theorem 4.4 is somewhat similar to the standard method for the
pricing of (only) replicable options in the complete standard binomial model that does not contain
non-tradable factors of risk. But a (conditional) 2-step expectation is needed now. The scheme
(4.12) can be implemented in a tree model for (S;, N;) with a

double tree-step F, ﬁ) ffkﬂ \ A—N> Fiy 4, for each time step tx — g1,

one for each processes’ increment. As usual, claims like B can be treated efficiently in a recombinant
tree (cf. Baxter and Rennie (1996), ch. 2.2) while payoffs that depend on the whole path would
necessitate a non-recombinant tree. For the figures, we computed (7;) on a tree-grid with various
starting values for Sy. To illustrate properties of the utility-indifference pricing, it is more instructive
to plot some qualitative quantities instead of the utility-indifference prices themselves. Those
quantities are plotted as a function of the tree-grid’s coordinates and interpolated to a surface.

Figure 1: The utility-indifference price as a fraction of the superreplication price
[Quantity (4.15) (Z-axis) as a function of log(S;/Sp) (X-axis) and ¢ (Y -axis)]

As concrete parameters, let T := 1, 0 = 1.0, n := 15, A(¢) := 0.2, and risk aversion « := 1. This
leads to P[Ny = 0] =~ 0.82, U =~ 1.295, q =~ 0.483, and for, say, Sy := 1 one obtains w(B;1) =~ 0.894.
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More generally, the indifference price process (m;) for B is a function of (¢,S;) on [0, 7], and null
on [7,T]. Due to Kramkov (1996), we know that supg.p, Eg[B] is the super-replication value,
i.e. the smallest initial amount needed to eliminate (a.s.) the possibility of any losses from B by
dynamical trading. By (3.11) this amount equals limy oo 7(B; ) and can be interpreted as the
utility-indifference price ‘for infinite risk aversion’. Figure 1 shows the relation (in percent) of the

indifference value to the super-replication price provided that N has not jumped so far, that is

100

¢ Tt

=100 on [0,7] . 4.15
SuPgep, Eq[B|F] St 10,71 ( )
In turn, for vanishing risk aversion « | 0 the utility-indifference price tends to E*[B] by (3.12).
Recalling that Q* = P on Zr, the latter limit can be seen as a risk-neutral valuation (under P)
with respect to non-tradable factors of risk. In this sense, the fraction in

T — E*[B|.7:t] o 1007‘(',5 - StP[T > T|.7:t]

100
E*[B|ft] StP[T > T|ft]

on [0,7] . (4.16)

represents the relative safety loading of the indifference valuation 7;(B;1) for risk aversion o = 1
with respect to the risk neutral valuation “for & = 0”. Figure 2 shows this relative safety loading

(in percent) as a function of S; and ¢, given that N has not jumped up to time ¢. Finally, let us

Figure 2: Relative safety loading of the utility-indifference price
[Quantity (4.16) (Z-axis) as a function of log(S;/Sy) (X-axis) and t (Y-axis)]

explain the phenomena showing up in Figures 1 and 2. When the claim is ‘still alive’, that is for
(t,w) € [0,7[, the issuer faces the potential obligation to pay the liability St at time T in case
7 > T. The larger the current value of S; the larger is the potential liability B = (S;(S1/St))1{7>1}
since (S7/S;) is independent of F;. Hence, the potential liability becomes more challenging for the
financial power of the issuer at higher values of S;. Consequently, the safety loading incorporated
in the risk averse valuation m; of the liability increases, and 7 tends to the super-replication value
in the extreme case; cf. the right sides of the figures. In contrast, for rather small values of S;

the potential liability poses no serious problems to the issuer’s abilities to take risk. Consequently,
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his valuation basically coincides with the risk neutral valuation which is the ‘survival probability’
P[r > T'|7 > t] multiplied by the replication value S; for S7. This is shown on the left sides of the
figures. Intuitively plausible, the safety loading decreases as the time T" — ¢ to maturity decreases
because this reduces the probability for a still possible event at 7 € (¢,7]; i.e. the uncertainty
about the non-tradable risk (from 7) still present in the claim becomes smaller and the potential
(effective) liability becomes more predictable. In contrast, the uncertainly about St stems from a
tradable source of risk and could be perfectly hedged at any time ¢ by trading in S (simply buy and
hold one unit of the asset for S;) — if it would only be separate from the trigger event {r > T'}. In a
way, we have exhibited dependencies of the utility-indifference price on the size of a risky position
which are similar as the results from Corollary 3.3. But here the effects concern the whole valuation

process and vary over time, dynamically adapted to the current risk exposure of the issuer. &

The next result shows that the more accurate and early the information on the non-marketed

sources of risk (that is Zy) comes in (via I), the lower becomes the utility-indifference price.

Proposition 4.7 (Monotonicity of m with respect to additional information)
Let T and T be filtrations satisfying the usual conditions, with Iy = Iy = fT and such that

7, CT, CI, holds for t € [0,T]. (4.17)

LetF:=TF VI, F:= F°VI, and recall F = F° VI from (4.2). Suppose (2.4) holds and ©(H) := ©3(H)
for each H € {lF, F, ]i*:} Then, the utility-indifference prices which correspond to the information
flows F, F, and ﬁ, respectively, satisfy the relations

m(B;F) > n(B;F) > n(B;F). (4.18)
Note that these bounds do not require assumption (4.11).

Let us comment on some technical aspects in the assumptions. For simplicity, our general frame-
work assumes Fr = F and we assume Iy = Iy = i’T just to stay in this setting and to have
Hy = F for all H € {F, T, ﬁ} To work in our general duality framework, we choose ©(H) = ©3(H)
to have the duality (2.5) for each H, cf. Example 2.1. Alternatively, one could impose the more

general but more abstract assumption that (2.5) holds for each H.

Proof: First, one encounters a minor technical problem since fo and hence j-"\o might be not trivial
(this is needed for Theorem 4.8). So the filtration F a priori does not fit in our framework which
assumes a trivial initial filtration. But this problem can be overcome as follows: Consider the time
interval [—1,T] (instead of [0,T]), and let S; := Sy for ¢ € [—1,0) with all filtrations being trivial
on [—1,0). By this trick, we placed ourself within the framework for all filtrations I, F, and F.

The sets Py of martingale measures corresponding to the different filtrations satisfy the inclusions

P () D P;(F) D Py(F). (4.19)
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To see this, note that S is locally bounded and adapted with respect to FO, FO is a sub-filtration of
F, and F; C F; C F; because of (4.17). This implies (4.19), since a martingale is also a martingale
with respect to a smaller filtration, if it is adapted to the latter.

The independence of F%. and Zr under Q* implies that Q* is in P} (ﬁ) and this yields Q* € P;(H) for
H e {F,F, I/F\} For H = I, we have H(Q*|P) < H(Q|P) for any Q € P;(F) since dQ* = Z—Q dP.

P | o
fT
By (4.19), this implies that Q* minimizes H(Q|P) over P;(H) for any H € {F,F,F}, i.e.,
Q' (H) = Q* for He {FFF}. (4.20)
From (4.19), (4.20) and (3.1) we finally conclude that the relations (4.18) hold. O

To obtain simple bounds for the indifference price 7(Bj; «) in the next result, let us now consider the
following extreme cases of additional information: On the one hand, there might be no additional
information before terminal time 7" such that Z; is trivial for ¢ € [0,7"). The opposite extreme is the
case where all additional information is available from the beginning, that is Zy = Zp. Using the
information-monotonicity of the utility-indifference price, the indifference prices which correspond
to these extreme situations provide bounds for the utility-indifference price in an intermediate
information stage. Due to Theorem 4.4, these bounds can be given in explicit form. To compute
them, one just has to calculate two expectations, one of them conditional, under the measures P
and Q* which are typically well known — in contrast to Q¥. We note that Mgller (2003b) obtained
a similar result for an indifference approach that relies on quadratic objective functions (instead of

exponential utility). A first comparison is made by Example 4.9.

Theorem 4.8 (Simple bounds) Assume (2.4) and (2.5). Then
1 1
—log Ep [exp (aE* [B|Ir])] < w(B;a) < E*|—logEp [exp(aB)|F7]| .  (4.21)
a e

Note that these bounds do not require assumption (4.11).

In the special cases where the claim B either only depends on the complete sub-market or only

depends on market-independent sources of risk, the upper and lower bounds in (4.21) coincide, and

(B;a) = { E*[B] for B being F?-measurable, (4.22)

1 .
~log Eplexp(aB)]  for B being Zr-measurable.

Moreover, one can verify that the indifference hedging strategy 1(B) is the replicating strategy in
the first case and constant at null in the second.

Proof of Theorem 4.8: We define filtrations T = (ft)te[o,T] and T = (ft)te[o,T]a by letting Z; be
trivial for ¢ € [0,T), Zr := Ty, and Z; := Iy for all ¢ € [0, T]. Then the relations (4.17) hold. Let I
and T be defined as in Proposition 4.7 and let the strategy space for the investor with information
flow H € {F, T, I/F\} be given by O(H) := ©3(H). The latter causes no loss of generality since O3(F)
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satisfies (2.5) and leads to the same utility-indifference value 7(B,F) as any other © for which (2.5)
holds. Proposition 4.7 then yields that the relations

n(B;F) > n(B;F) > n(B;F) (4.23)

hold between the utility-indifference prices for investors with information flows H € {F, T, ]ﬁ} Since
I* and F are piecewise constant, one can compute the foregoing bounds for 7(B;F) via Theorem 4.4

(recalling the argument at the beginning of the proof for Prop. 4.7). This yields the claim. O

Obviously, the presented valuation bounds would not help much if they were too far apart. The
good message of the next example is that they in fact can be fairly close. Taking into account ever
present issues like model uncertainly, the bounds might be sufficiently close to give some valuations
in practice. If this is not the case, there is a straightforward way to compute improved bounds:
Simply take lower and upper piecewise constant ‘bounds’ (ﬁ and TI\) for the information flow I under
consideration, and then compute the valuation bounds from Proposition 4.7 via the computation
scheme from Theorem 4.4. A natural choice would be 7:} = 1y, and ft =Ty for t € [tk,tk+1);

using a subdivision of 0 =ty < t; < :++ < t, =T can further improve the valuation bounds.

Example 4.9 (‘Financial Stop-Loss’ reinsurance contract)

Let us consider an insurance company that seeks protection from a reinsurer against combined
losses from its financial investments and the insured claims. To this end, the latter might offer
a ‘financial stop-loss contract’ which covers a certain range of combined insurance losses Yr and
losses from investments §(Sy — Sr) in financial assets S (non-discounted), a stock index say, up to

time T'. That is, the contract pays at time T in discounted terms the amount
~ o~ +
B := ¢~  min { (YT +6(So — Sp) - Kl) (K — Kl)} (4.24)

where K1 < K9 < oo are the layers of coverage, r > 0 is the risk-less interest rate, and § > 0
quantifies the level of financial investment in the stock index S.
The subsequent setup for this example is essentially borrowed from Mgller (2003a), who however
uses a valuation approach with respect to a different (quadratic) indifference criterion, derived
from the standard deviation principle. As in the Black-Scholes model, the (discounted) stock index
Sy = e "8, is supposed to evolve according to a geometric Brownian motion
dS;
S

where W is a standard Brownian motion, v — r € R is the excess return rate, and o > 0 is the

=(y—r)dt+ ocdW;, Sye€ (0,00),

volatility. Then

S; = Spexp (aWt + ((7 —r)— %O—Q) t) , telo,T], (4.25)

and St is lognormally distributed. The insurance losses up to time 7" are modelled by

—~ — 1
Yr := yo& (kW + pt)r = yo exp (mWT + (u - 5/-;2) T) (4.26)
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where p € R, £ > 0, and yg > 0 are constants and W is another Brownian motion. Of course,
such a modelling clearly is a simplification. Suppose that W and W are correlated with coefficient
0 € [-1,+1]. For |g| < 1, the process W;' = (ﬂ)il (W, — oW}) is well-defined, and W
and W+ are independent P-Brownian motions. The setup fits in the framework of Sect. 4.1 with
.= F" I:=F"" when lo| < 1, and with I being trivial when |g| = 1. The minimal entropy
martingale measure Q* is given by

aQ* . ( y—r _ y—r. l(y—r)?
dP_g< - W)T—exp( > W 5 o2 T,

and S satisfies dS;/S; = cdW;* under Q* where Wy := W; + 1"t is a Q*-Brownian motion. Note
that W+ and W* are independent Q*-Brownian motions and ot = (W, W)t = (W™, W)t

As concrete parameters, let So =1, r =0.05, 0 =0.25, v =0.1, y =0.83, k = 0.15, u =0, o =0,
T =1, K; = 0.85, and K, = 1.15, following Mgller (2003a). In fact, this parameterization specifies
the same probabilistic model as ‘contract 1’ in his Section 6.2. This allows for a first comparison of

the two indifference valuation approaches. Figure 3 shows the upper and lower bounds (4.21) for

0. 065 -
7
7,
e
0.06 Y
7,
7
7,
0. 055 J
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0. 045 _
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Figure 3: Upper (dashed line) and lower (solid line) bounds for the utility-indifference price

of the financial stop loss contract B as a function of ¢ (X-axis)

the (exponential) utility-indifference price 7(B; 1) of the claim (4.24) as a function of the investment
level . Considering the contract value for zero investment at = 0, we see that the risk aversion
a = 1 corresponds to a relative safety loading (cf. (3.10) and (4.5)) of

m(B) m(B) 0.045
—1= —1l=x——-1=1 .

~0.038

This is comparable in size to the safety loading of the valuation principle used for Figure 3 in Mgller
(2003a), where the claim B was valued by 0.048 for 6 = 0. Our Figure 3 shows that the utility
indifference price is minimized by an investment in the financial market with § > 0. Intuitively, this
reflects the fact that gains from the financial investments can offset the insurance losses, resulting in
a sort of diversification bonus. The same effect shows up in Mgller (2003a) but it is more pronounced
here. At first glance, the utility-indifference price moreover achieves its minimum apparently for a

higher investment level d, and leads to somewhat smaller premiums for § > 0. Similar as in Mgller
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(2003a), the valuation bounds are fairly close. In fact, the relative difference between our upper
and lower bounds for the utility-indifference price is less than 2 percent for all § € [0, 1] and about
0.5 percent for § = 0. Overall, the two different indifference valuation approaches yield roughly
comparable results here. A more detailed analysis however is clearly necessary and subject to future
work. One should guess that the differences between the present utility criterion and a symmetric
quadratic criterion as in Mgller (2003a) would be much more pronounced when the distribution
of the payoff is highly skewed (in its tails) — simply because a symmetric criterion punishes all

deviations from the mean, gains as losses, in the same way. O

4.4 Additivity and diversification

We already know that the mapping B +— m(B;«) is linear on the space of bounded attainable
claims in general (see (3.8)). In the static situation which corresponds to setting S = 0, the
utility-indifference price 7(B;a) = 1/alog Ep[exp(aB)] is known to be additive with respect to
independent claims, i.e., 7(By + Bg) = w(Bj) + w(Bs) holds for P-independent variables Bj 2 with
sufficient integrability (see Gerber (1979), chapter 5). In general, 7 is not additive (or sub-additive)
even in the static situation.

In the present section, we are going to obtain similar results on additivity for the dynamic case.
More precisely, we will show that the utility indifference price and the hedging strategy are additive
when applied to a sum of claims which are conditionally P-independent given the information of
the complete financial sub-market. Clearly, this can considerably facilitate the computations for
an aggregated amount of claims since the problem is reduced to the level of individual claims.
Using our additivity result, we then prove that diversification leads asymptotically to a risk-neutral

valuation with respect to a large number of independent additional sources of risk.

Theorem 4.10 (Additivity) Suppose (2.5) holds. Let By, By ... be such that each B; is F3 V It
measurable and satisfies exp(vy|B;|) € L'(P) for all v € R. Then, for all n € N,

T <ZBZ- ;a> = ZW(B,- ca) and 1 (ZBZ- ;a) = Zw(BZ- ‘). (4.27)

Proof: It suffices to consider the case n = 2 since the argument can be iterated. Let Q' := QBi,
i = 1,2, and denote by Z¢ the F-density process of O with respect to Q*. We first show that
dQ := Z}+Z2dQ* defines an element of P,. ZI is F2 V I measurable by Lemma 4.2. Hence Z.1.

and Z% are Q*-independent given .7-"%, and we obtain
E*[Z1Z7|Fp) = E*[Z7| FP)E (27| Fpl = 1-1 =1 (4.28)

using Lemma 4.3. So @ is a probability measure and @ ~ P since Z& > 0. By (4.4) and Lemma 4.3,
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we have E*[Z4|FO v Th V T = E*[Z0|FAV T]) = Z] for i, € {1,2} with i # j, and
E(Z1Z;|F] = E'[ZrZ;i|F) VI V]
= B[22 F VIV T ‘]—}f’ VI v T
= E*|ZpZ}|F) VI vI7]
= ZE [BZHF VT VT ‘f? vTiv T
= ZtthZ for ¢t <T.
Hence, Z'Z? is the density process of Q with respect to Q*. Using (4.4) and Lemma 4.3 gives
E*Z{ZYF)V I, = E*[ZHF) N LE [ Z2|\FY NV I,) = Z1Z2, s<t<T,

and we conclude via Lemma 4.3 that Q is in P.. We next show that H(Q|P) is finite. To this end,
let Z9 := dQ*/dP and consider

H(Q|P) = E*[ZpZ}log(Z9Z177)]
= E*(Z:Z21og Z2) + E*|Z-Z21og Z3) + E*[Z1Z2 1og Z2) .

We prove that the three summands are all finite and thereby establish the last equality. By (4.28)
the first summand equals E*[log Z%] = H(Q*|P) < co. Next E*[ZZ|FYV I = E*[Z2|F0] =1
implies via conditioning on F% V ZL that the second addend equals E*[Z}log Z1] = H(Q'|Q*). It
follows from H(Q'|P) > H(Q'|Q*) + H(Q*|P) (by Csiszar (1975), Theorem 2.2) and Q' € P that
H(Q'|Q*) < oo. Analogously, the third addend is equal to H(Q? Q*) and also finite.

Hence, Q is in Py N P,. Holder’s inequality yields exp(y|B1 + Bs|) € L*(P) for any v € R since
exp(2v|B;|) € L}(P) by hypothesis. Recalling Q* = Q°, Part 1 of Corollary 3.6 gives

dQ  dQ'dQ? T
i = g = (e £ x) + [ 0B +p(E) ds - 1+ 5) )
and by part 2 of Corollary 3.6 this yields the claim. [l

As an application of the previous theorem, we are going to show that diversification leads asymp-
totically to a risk-neutral valuation with respect to a large number of independent sources I¥ of
risk. This is intuitively very plausible: The further (non-tradable) sources of uncertainty in the
claim are not hedged by dynamical trading but in a way by the law of large numbers. To explain
the contribution of the next result let us first introduce some notation. Let (Nti)tE[O,T]a 1=1,2,...,
be processes (with RCLL-paths) which are i.i.d. and independent of F% under P, and let

It =TV . (4.29)

Each (S, N%) has right continuous paths with left limits. Let f be a fixed real-valued measurable
function on this path-space (with respect to the Skohorod topology) and let the claims be given as

B;:= f(S,N%) ,ieN. (4.30)
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This means that claims can depend on the whole evolution of S and N. To explain the crucial
difference between the intuitive law of large numbers argument from above and the subsequent
corollary, suppose for the moment that f is bounded. The intuitive reasoning above then argues
that % > | B; converges a.s. to B := E*[f(S, N!)|F2] by a conditional version of the law of large
numbers. This limit can be interpreted as follows: By diversifying his portfolio to more but smaller
claims, the issuer can eliminate the risk associated with the uncertainty about the outcomes of the
N%s. Note that such diversification still leaves all risk which stems from the uncertainty about
the future evolution of the asset prices S at the issuer, since all claims B; are linked to the same
S. However, as the tradable assets S span a complete market, the remaining risk can be perfectly
hedged and its price is determined by No-Arbitrage arguments as the replication cost! Technically,
this completeness corresponds to the (Q*,F?)-representation property of S, and by (3.8) we must
have 7(B;a) = E*[B]. Summing up, we have

1 A
W(JL%;;Bi’a>_E[B]’
1=

i.e. E*[B] is the indifference price of the aggregated portfolio of claims B that represents the
case of “infinite diversification”. In comparison to this, the subsequent corollary proves that the

utility-indifference price of the “finitely diversified” portfolio 2 3" | B; itself tends to E*[B] if the

n
diversification increases; i.e.

1 o _
i — i = E*[B].
nlggloﬂ(nz;BZ,a> [B]
1=
In reality, an investor can diversify his risks only by holding a large but finite portfolio. Therefore the
latter limit is the one that is relevant for answering the question: How does increasing diversification
asymptotically affect the indifference price of the overall portfolio of claims? It turns out that both

limits coincide in the present setting. In this sense, the following result justifies the conclusion of

the intuitive reasoning outlined above.

Theorem 4.11 (Diversification) Suppose (4.29) and (2.5) hold. Let By, Bs, ... be given by (4.30)
and suppose that exp(7y|B1|) € L*(P) for all v € R, and By € Lexp(Q*). Then

T (1 > Bi; a> "% E*[B]. (4.31)

By (4.4), the limit in (4.31) takes the form E*[h(S)]|Ep[g(N')] when B; = f(S,N') = h(S)g(N?)
for measurable functions g and h.

Proof: By symmetry, we have 7(f(S,N%)/n;a) = 7(f(S,N')/n;a) for all i. By Theorem 4.10,
(3.4) and Proposition 3.2 we then obtain

x (1 " Bi;a> - (M;a) = (F(SN): %) 2F B [£(S.NY)]

n =1 n n

Since Q° = Q*, this yields the claim. Ol
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We illustrate the result by giving a simple example in the context of equity-linked life insurance.
In the literature, it is common to model the equity prices by a (generalized) Black-Scholes model
and to consider the mortality risk as being P-independent from S, and it is typically argued that
equity linked payments which are conditional on the survival or death of a policy holder should be
valued by the Black-Scholes value of the unconditional payoffs multiplied with the P-probabilities
of survival or death, respectively, see e.g. Brennan and Schwarz (1979) or Rolski et al. (1998)
and references therein. The intuitive reasoning for this is basically that the mortality risks in the
individual policies are eliminated by a law of large numbers. Hence, they are practically not present
for the insurance company. To make this heuristic motivation more rigorous, let us apply the utility

based pricing for an aggregated portfolio of insurance policies.

Example 4.12 (Equity-linked life insurances)

We consider the (discounted) standard Black-Scholes model dS; = S;(ydt + odW;) with constant
coefficients v € Rand o > 0. Let N', N2, ... bei.i.d. Poisson processes with deterministic intensities
A(t), independent of W, and suppose that the information flow T is generated by W, N', N2, ...
The process N’ models the survival of policy holder ¢ who is thought to be alive until the first jump
of N occurs. We consider claims of the form B; = h(S)I (Ni=0} with h measurable and bounded,
e.g. h(S) = K1 + (St — K1)™ A (K2 — K1) with constants K; < K. Theorem 4.11 yields

lim 7 (% > h(S)I{NQ’}_O}> = E*[h(S) I n1—0) = E*[W(S)]P[N7 = 0].
i=1

This means that for a large number of policy holders with small individual contracts the utility-
indifference price of the aggregated portfolio of insurance claims tends to a valuation which is
risk-neutral with respect to mortality risk, although the issuer has absolute risk aversion « > 0 and
mortality risk has been assumed to be non-tradable. So, the utility based argument approves and is
in accordance with a commonly used practice (see, e.g., Rolski et al. (1998)). Just for comparison,
let us note that mortality risk would have to be modelled as a part of the financial market S if it

should be considered as a (liquidly) tradable asset, e.g. as in Sondermann (1991). <o

A Appendix

This section contains more technical results and proofs which are omitted from the main body of
the paper. Some are rather straightforward modifications of existing proofs, and are just included

for the reader’s convenience.

Lemma A.1 Assume (2.4). Then (2.8) holds, B is in L'(Q) for all Q € Py, and

dQ e*B 1
H(Q|P) = Eg |log P, + log W] = H(Q|Pg) + log FeaB] + EglaB]. (A1)

Proof: First, (2.4) implies exp(e|B|) € L' (P). By Lemma 8 in Delbaen et al. (2002) we have

Eole|B[] < H(Q|P) + %Ep 8] Q<P (A.2)
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Using (2.4), we obtain that B € L'(Q) for Q@ € P;(P). This establishes the second equality in
(A1) for Q € Py(P) while the first equality holds by the definition of Pg. We conclude that
Py(P) C Ps(Pp). For the converse inclusion, Lemma 8 in Delbaen et al. (2002) yields that (A.2)
also holds with Pp instead of P. Thus, we obtain that Eg[e|B|] < oo for Q € Py(Pp) since

Ep, [e€|B|] = const Ep [eO‘B“‘B'] < constEp [e(o‘+€)B++€B_]

and the right hand side is finite by hypothesis (2.4). We conclude that (A.1) also holds for @ €
P¢(Pp), and this implies the converse inclusion Pf(Pg) C P (P). u

Proof of Proposition 2.2: The exponential utility maximization problem (2.7) with terminal
liability B reduces to the ordinary utility maximization problem

E[e*®] sup Ep, [— exp <—a(:v + /0 ' ﬂdS))] (A.3)

JEO

without terminal liability but with Pg instead of P by a measure transformation, namely

~exp (_a(m + /0 " s - B)) — exp (—a(m + /0 ' z‘}dS)) (E[&ﬁ%) (A4

Furthermore, (A.1) shows that

sup {EglaB] ~ H(QIP)} +1og == = sup {~H(QIPy)} | (A.5)
QeP; [e*B]  Qep,
so that both suprema are attained by the same QP if the suprema are maxima. Recall that un-
der (2.1) and Py(Pg) NP, # 0 the optimum QP exists, and its density has the form dQ® =
exp (—a(const + (98 - S)1)) dPp with 98 € L(S) such that 92 - S is a QP-martingale (see Corol-
lary 2.1 of Frittelli (2000b) and Proposition 3.2 and the proof of Theorem 4.3 of Grandits and
Rheinlidnder (2002)). This gives part 1 and the first half of part 2. Now we can apply Theorem 2
of Delbaen et al. (2002) (in the extended form due to Kabanov and Stricker (2002)) to the opti-
mization problem (A.3) with © given by ©5 := O N {9 € L(S) | e~ € L'(Pg) } . Rewriting
the results with respect to P instead of P then yields all claims of Proposition 2.2 with © = ©,.
Note that ©,¢ contains O, and in addition only suboptimal strategies which yield expected utility
—00. Thus, the results also hold for © = O and therefore for any © which satisfies (2.5). Note
that the second equality in part 4 follows by part 2. a

Next, we show that Proposition 3.5 restates a result of Grandits and Rheinldnder (2002).
Proof of Proposition 3.5: Assume Pg is well defined. Grandits and Rheinlander (2002) showed
that a measure Q € P, minimizes H(Q|Pg) over Q € P, if its density has the form

T
L exp (—a(c + / 19d5)> for some ¢ € R and 9 € L(S) (A.6)
dPg ;
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and one of the following two conditions holds:
(i) 9-Sisa Q-BMO-martingale and e** Ig'9ds ¢ gt (Pg) for some € > 0, or
(ii) QGPf and@E@M.
Note that (A4.6) in combination with (i) or (ii) already implies that @ € Py NP, since dQ/dPg > 0

and H(Q|Pg)
follows from Proposition 3.2, both in Grandits and Rheinldnder (2002). Rewriting these results

—ac < oo. Variant (i) is just a re-draft of Proposition 3.4 and variant (ii) readily

with respect to P instead of Pp then yields the formulation of our Proposition 3.5. O

For our modelling in Section 4 we needed
Lemma A.2 The filtrations F and I in the setting of Section 4.1 satisfy the usual conditions.

Proof: It suffices to show right-continuity. We extend an idea from He and Wang (1982) to the
case when there are countably many factors of additional risk, and show the argument just for I:
Let A; € Th, i =1,...,n, for some n € N. By (4.4), we have E [\, 14, | Z,] = [1, E[14,|TY] for
any s € [0,T]. Letting s | t for some ¢ € [0,7] and using (4.4) and the usual conditions for the 1"’
then yields

n

n
[T~ T etiafzi - £ | [T
=1

=1

n
E [H 1a; [ Zey
i=1

By monotone class arguments, this implies E[f|Z;+] = E[f|Z;] for all bounded Zp-measurable
functions f and therefore Z;, = 7;. O
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(As requested in the journal’s instructions for authors, we provide each of the paper’s figures

additionally on a single page in this appendix.)
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