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Abstract. Electric circuits are present in several applications, e.g. in home computers, television,
credit cards, electric power networks, etc. The development of integrated circuit requires numerical
simulation. Modern modeling techniques like the Modified Nodal Analysis (MNA) lead to differential
algebraic equations (DAEs). The analytical and numerical solutions of these systems depend strongly
on the structure and the index.

The paper deals with lumped circuits containing voltage sources, current sources as well as general
nonlinear but time-invariant capacitances, inductances and resistances. We present network-topological
criteria for the index of the DAEs obtained by the classical and the charge oriented MNA. Furthermore,

the index is shown to be limited to 2 for the considered model-class.
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1 Basics of electric circuit analysis

Consider lumped electric circuits containing resistances, capacitances, inductances, voltage sources and
current sources. For two-terminal (one-port) lumped elements, the current through the element and
the voltage across it are well-defined quantities. For lumped elements with more than two terminals,
the current entering any terminal and the voltage across any pair of terminals are well defined at all
times (cf. [2]). Hence, general time-invariant n-terminal resistances can be modeled by an equation

system of the form
g =gr(u1, ..;tn_1) for k=1,..n—1

if ji represents the current entering terminal k and wu; describes the voltage across the pair of terminals
{l,n} (for k,1 =1,...,n—1). In this case, we call the terminal n the reference terminal. The Kirchhoff’s
Current Law implies the current entering terminal n to be given by j, = — 22;11 jk- The conductance

matrix G°(u1, ..., un—1) is defined by the Jacobian
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The index e shall specify the correlation to a special element of a circuit. Later on we will introduce
the conductance matrix G(u) describing all resistances of a circuit. Correspondingly, the capacitance

matrix C°(v1,...,vn—1) of a general nonlinear n-terminal capacitance is given by
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if the voltage-current relation is defined by means of charges by

: d
Je = qu(ul, vyUn—1) for k=1,..,n—1.

Inductances can be modeled by means of fluxes by

d ., . )
Ukza@c(]l,---,]n—l) for k=1,...,n—1.

Then, the inductance matrix L°(j1, ..., jn—1) is given by the Jacobian
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Assume all voltage and current sources to be independent sources for a while. At the end of the paper

we will generalize the main results for some controlled sources.

One of the most commonly used network analyses in circuit simulation is the Modified Node Analysis
(MNA). It represents a systematic treatment of general circuits and is important when computers
perform the analysis of networks automatically. For the MNA the vector of unknowns consists of all

node voltages and all branch currents of current controlled elements. Performing the MNA means:

1. Write node equations by applying KCL (Kirchhoff’s Current Law) to each node except for the

datum node:
Aj =0. (1)

The vector j represents the branch current vector. The matrix A is called the (reduced) incidence

matrix and describes the network graph, the branch-node relations. Moreover, it holds

1 if branch k leaves node ¢
air, = ¢ —1 if branch k enters node 7
0 if branch k is not incident with node

for the elements of A.

2. Replace the currents j;, of voltage controlled elements by the voltage-current relation of these

elements in equation (1).

3. Add the current-voltage relations for all current controlled elements.



Note, in case of multi-terminal elements with n terminals we speak of branches if they represent a pair

of terminals {I,n} with 1 <l <n-—1.

In general, the MNA leads to a coupled system of implicit differential equations and nonlinear equations,

i.e. to a quasilinear differential-algebraic equation (DAE)
A(z) + f(z) = s(t) (2)

(cf. [9] in this journal). The analytical and numerical solutions of (2) depend strongly on its structure
and on its index. For a detailed discussion of this fact we refer to [9] in this journal, [7] and [14]. In
this article we analyze the structure of the DAEs obtained by the MNA in more detail. This implies

important information about sensitivity and transient behavior of solutions.

Split the incidence matrix A into the element-related incidence matrices A = (Ac AL ArAv Ar), where
Ac, Arn, Ar, Av and A; describe the branch-current relation for capacitive branches, inductive
branches, resistive branches, branches of voltage sources and branches of current sources, respectively.
Denote by e the node potentials (excepting the datum node) and by jr and jy the current vectors of
inductances and voltage sources. Defining by i and v the vector of time-dependent functions for current

and voltage sources, respectively, we obtain the following equation system from the MNA:

dq(AL - ; ;
Ao% + Arg(ARe) + Arji + Avjv + Ari = 0, (3)
d¢c(liL) —ATe = o, (4)
A€€ —v = 0. (5)

The splitting of the incidence matrix A corresponding to certain branches leads to the following useful

structural information for lumped circuits:

Theorem 1.1 Given a lumped circuit with the (reduced) incidence matriz A = (AcArArAv Ar), the

following relations are satisfied.

1. The matriz (AcALArAv) has full row rank.
2. The matriz Ay has full column rank.

3. The matriz (AcArAv) has full row rank if and only if the circuit does not contain a cut-set

consisting of inductances and/or current sources only.

4. Let Q¢ be any projector onto ker Ac. Then, the matriz Q5 Av has full column rank if and only

if the circuit does not contain a loop consisting of capacitances and voltage sources only.

Note, loops containing only capacitances are excluded under point 4 whereas cut-sets containing only

inductances are included under point 3 of Theorem 1.1.

Proof:



1. The Kirchhoff’s Current Law implies that the network can not contain cut-sets formed only by
current sources. Hence, there is a tree consisting of capacitive, inductive, resistive and voltage
source branches (cf. [2]). The columns of (AcArArAv), corresponding to this tree, are linear
independent, i.e. rank (AcArArAyv) = N — 1 (here N denotes the number of nodes of the

circuit).

2. The Kirchhoff’s Voltage Law implies that the network can not contain loops formed only by

voltage sources. This means, that the columns of Ay are linear independent.

3. The matrix (Ac ArAv) has full row rank if and only if it has N — 1 linear independent columns.
This is equivalent to the fact that there is a tree of the circuit that contains capacitive, resistive
and voltage source branches only. But this means exactly, that the circuit does not contain a

cut-set consisting of inductances and/or current sources only.

4. Firstly, assume there is a loop, consisting of capacitances and voltage sources only. Then it
is easy to verify, that the columns of the matrix (Ay A¢) are linear dependent. Therefore, we
find a nontrivial vector (z) (corresponding to the considered loop) such that (AVAC)(:) =0.
Multiplying this equation with Q¥ we get QEAyz = 0. The assumption = 0 would imply
Acy =0, i.e. the considered loop would be a loop consisting of capacitances only, that we have
excluded. Hence  # 0, i.e. ker QG Ay # {0}.

Secondly, assume there is a nontrivial 2 such that QEAvaz = 0. Then Avz € ker Q5 = im Ag,

i.e. there is a y such that Ayz + Acy = 0. Since x # 0, there is a loop consisting of capacitances

and voltage sources.

q.e.d.

In the following section the special cut-sets and loops considered in Theorem 1.1 will be important.

Therefore we define:

1. A L-I cut-set is a cut-set consisting of inductances and/or current sources only.

2. A C-V loop is a loop, consisting of capacitances and voltage sources only.

2 DAE index of the network equations

The solution behavior of DAEs depends strongly on the index of DAEs. Generally, numerical difficulties
increase with higher index, since numerical differentiation is an unstable procedure (see e.g. [1], [10],
[12]). There are different index concepts extending the Kronecker-Index (for linear DAEs) to nonlinear
DAESs. The differential index ([1]) is perhaps the one that is most often used in practical applications,
because it is easy to determine for a special given problem. In this article, we investigate the tractability

index ([12]) for circuit systems in order to apply interesting results about solvability and stability for



index-1-tractable and index-2-tractable DAEs. Furthermore, this index concept requires only week

smoothness conditions that are important for circuit simulation.

1. The DAE (2) is called index-1-tractable if the matrix A(z) := A(z) + f(2)Q is regular for a
projector @ onto the null space of A(z).

2. The DAE (2) is called index-2-tractable if
(a) it is not index-1-tractable,
(b) NN S(z) is of constant rank for N := ker A(z) and S(z) := {z: fi(z)z € im A(x)},
(c) Ni(z)N Si(z) = {0} for Ni(x) := ker A1(x) and Si(z) :={z: fo(z)(I — Q)z € im Ai(x)}.

Remark: The following results for the tractability index are also satisfied for the differential index.

For a proof we refer to [4].

Writing system (3)-(5) as a DAE of form (2) the matrix A(z) reads

AcC(AZe)AL 0 0
Alx) = 0 L(jz) 0, (6)
0 0 0
where C'(u) := d‘;(:) and L(j) := dd;;”. The (mostly nonlinear) function f(z) and the vector function
s(t) are given by
Arg(A%e) + Arjr + Avijv —Ari(t)
f(z) = —ATe and s(t) = 0 . (7)

ATe v(t)
Before we present criteria for the index of DAEs in circuit simulation, we want to formulate two useful
lemmata.
Lemma 2.1 If the capacitance and inductance matrices of all capacitances and inductances are positive
definite then the following relations are satisfied
ker A(z) = ker AL x {0} x R™ and im A(z) =im Ac x R"™ x {0},

where nr, and ny denote the number of inductance branches and voltage sources, respectively.

Note, Lemma 2.1 implies that the null space ker A(x) as well as the image space im A(x) do not depend

on r.

Lemma 2.2 If M is a positive definite m X m-matriz and N is a rectangular matriz of dimension

k x m, then it holds that

ker NMNT =ker NT  and im NMNT =im N.



The correctness of Lemma 2.1 and Lemma 2.2 follows immediately from the definition of positive

definite matrices.

Theorem 2.3 Let the capacitance, inductance and resistance matrices of all capacitances, inductances
and resistances, respectively, be positive definite. If the network contains neither L-I cut-sets nor C-V

loops, then the MNA leads to an index-1-tractable DAE.

Remark: If the network contains a loop, consisting of capacitances only, then the Mesh Analysis leads
to an index higher than 1 since the current through such a loop belongs to the vector of unknowns and
represents an index-2 variable. In case of the MNA, the current through such a loop does not belong
to the vector of unknowns. This fact makes clear, that the index of a circuit equation system depends

also on the scheme for setting up the equations.

Proof of Theorem 2.3: We will show that the DAE (2) is index-1-tractable, i.e. that the matrix

Aj(x) is regular. Let Q¢ be a constant projector onto ker AL. Regarding Lemma 2.1,

Qc 0 0
Q=10 0 0
0 0 I

represents a constant projector onto ker A(z). We denote by G(u) := dgd—(u"). Then the matrix A;(z) is

given by
AcC(ALe) AL + ArG(A%e)ARQC 0 Av
Ai(z) = —A7Qc L(jz) 0 |. (®)
AT Qo 0 0

If 2 = (gé) is any vector of the null space of Ai(x), then it holds

AcC(ALe) ALz + ArG(ARe)ARQcze + Avzy = 0, (9)
—ATQcze + L(jr)zr = 0, (10)
AVQcze = 0. (11)

Multiplying (9) by Q% we obtain
QCARG(ARe) ARQoze + Qe Avzy =0, (12)
since QL Ac = 0. Let Qv_c be a projector onto ker AL Qc. Multiplying (12) by Q¥ _ o yields
QV-cQEARG(ARe) ARQoze = 0. (13)
From (11) we know that z. € ker ATQc¢, i.e.,
Ze = Qv_Cze- (14)
Thus, we may write (13) as

Qv_cQEARG(ARe)ARQcQv_cze = 0.



Lemma 2.2 implies ARQcQv_cz. = 0. Applying (14) we get
ARQeoz. =0. (15)
Adding (11) and (15), we obtain (AvArAc)TQcz. = 0. Applying Theorem 1.1-3 we may conclude
Qcze =0. (16)

since the circuit does not contain an L-I cut-set. Regarding (12) we obtain QL Ay zy = 0. Applying
Theorem 1.1-4 we find out that zy = 0 since the circuit does not contain a C-V loop. Regarding (9)
and (16) we deduce

AcC(ALe)ALz. = 0.

Thus, Lemma, 2.2 implies ALz, = 0, i.e. z. belongs to the image space of the projector Qc. With
(16) we conclude that ze = Qcze = 0. Since Ay has full column rank (see Theorem 1.1) and L(jz) is
positive definite, the equations (9) and (10) imply zy = 0 and zr = 0. This means, that the matrix
Ai(z) is regular and the circuit equation system has index 1.

q.e.d.

Theorem 2.4 Let the capacitance, inductance and resistance matrices of all capacitances, inductances
and resistances, respectively, be positive definite. If the network contains an L-I cut-set or a C-V loop,

then the MNA leads to an index-2-tractable DAE.

Proof: Choosing the same projectors as in the proof of Theorem 2.3, we construct a non-zero vector

belonging to the null space of A;(z). We consider the two possiblities:

1. The network contains an L-I cut-set. Applying Theorem 1.1-3 we find a nontrivial ze such that
Ze
ZZ(A(,'ARAv) = 0. This implies ze = Qcz. and for z:= | 0 holds Ai(z)z = 0.
0

2. The network contains a C-V loop. Applying Theorem 1.1-4 we find a nontrivial zy such that

QLAvzy = 0. This implies Ayvzy = AcC(ALe)ALz. for a certain z. € kerQc. Choosing
Ze
z = 0 we obtain A;(z)z = 0.

—2v

Next, we remark that the the intersection
ker ANS(z) ={z: Agze =0, Agze =0, ARG(Age)Agze + Apzp + Avzy € im Ac}

is constant since G(A%Ke) is positive definite.



Ze

It remains to show that Ni(z) N Si(z) = {0} is satisfied. Choosing z = ZL € Ni(z) N Si(x),
2v

regarding (8) and defining Po := I — Q¢ we find o and « such, that

AcC(ALe) ALz + ArG(ARe)ARQez + Avzy = 0, (17)
—ATQcze + L(jr)zr = 0, (18)
ATQeoz. = 0, (19)
ArG(A%e)ARPoze + Arzr, = ArG(A%e)ARQoa
+ AcC(ALe)ALa + Avy, (20)
AL Poz. = ALQea. (21)

Multiplying (17) by Q¥ _ Q& (cf. proof of Theorem 2.3-1), regarding (19) and applying Lemma 2.2 we
obtain AZQcz = 0. This implies together with (19) that

Qcze = Qcrv ze (22)
for a projector Qory onto ker(AcArAv)T. Multiplying (20) by QE gy and using (18) we obtain
0=QCrvArz =QCrvALL™ (i) ALQo% = QrvALL™ (iL) ALQeRY 2.
Lemma 2.2 leads to ATQcrvze =0, i.e.
Qcze = Qcrvze =0, (23)

since (AcArArAy) has full row rank (see Theorem 1.1). Introducing Qv_c as a projector onto

ker QT Av we follow from (17) and (21)

AcC(ALe)ALze + AvQv_czv = 0,

ngcAgze =0.

Using the fact that

M N
ker (NT 0> =ker M x ker N

for a positive semidefinite matrix M and any matrix NN, this leads to Agze =0and 0= AVQV,CZV =
Ay zy, which implies Pocze = 0 and zy = 0, since Ay has full column rank (see Theorem 1.1-2).
Together with (23) and (18) we obtain z = 0.

q.e.d.

Note, a similar result was presented in [15] for networks consisting of linear resistances, inductances

and capacitances as well as constant sources, ideal transformers and gyrators. There, it was shown that
the branch voltage - branch current equation system has an index not greater than 2. Furthermore,
in [11] it was already proved that the Tableau Analysis for networks containing linear capacitances,

resistances and voltage sources only provides a DAE index 2 if there is a C-V loop in the circuit.



Theorem 2.3 and Theorem 2.4 permits the application of a number of well-known results about solv-
ability and stability for index-1 and index-2 DAEs (see e.g. [6], [10], [13], [16]). Here, we instance
the application of Theorem 4.4. in [13] in order to describe the sensitivity of solutions for DAE sys-
tems (3)-(5) with respect to small perturbations. Let us introduce the appropriate solution space

Cx = {z = (e,jr,jv) € C(T): Poe € C'(T), jr € C'(T)} for a compact interval Z.

Theorem 2.5 Let the capacitance, inductance and resistance matrices of all capacitances, inductances
and resistances, respectively, be positive definite. Given a solution x. := (e, (jr)«, (jv)«) € Ck of
(3)-(5), to € I. Let C(ALe), L(jr) be continuously differentiable and g(Ake), i(t), v(t) be twice

continuously differentiable.

(i) Then, perturbed initial value problems

AcC(Ale)ALe + Arg(Afe) + Arjr + Avjv + Ari = 6,
L(j)jr. — ALe = 61,
ALe—v = 6y,
(e(to), jr(to),jv (to)) = (eo,(jz)o,(jv)o)
satisfying
Qoeo = Qcex(to) and  (jv)o = (jv)-(to) (24)
as well as
Qg—oAgeo = Qg—oAge*(tO) and QgRVAL(jL)O = QgRVAL(jL)*(tO) (25)
are uniquely solvable on C} supposing |xo — x«(to)| as well as ||6]|lco (for & = (8e,6r,6v)),

47 (QCRvI)los 15:(QV -0V )lleo are sufficiently small.

(ii) For the solution x = (e, jr, jv) of (i) the inequality
- d, 7 d =
lle = ulloo < K(lldlloe + 17 (Qervde)lleo + | 7 (Qv-cdv)lleo + |20 —a(to))  (26)

is true for a constant K > 0.

Remarks:

1. The conditions (24) and (25) guarantee consistent initial values (see [3]). This is useful for
implementing a monitor in circuit simulation packages which gives hints to the user about network

variables for that he can choose initial values and for which he must not.

2. The inequality (26) implies that Q% gy 6. and Q¥ _ o0y reflect the critical defects. This is useful
for implementing a monitor in circuit simulation packages which identifies critical parts of the

circuit and invokes special treatment for them in order to avoid failures for numerical integration.



3. QL rv = 0iff the circuit does not contain an L-I cut-set (cf. Theorem 1.1-3).
4. QT _ =0 iff the circuit does not contain a C-V loop (cf. Theorem 1.1-4).

5. Theorem 2.5 implies that the perturbation index ([10]) coincides with the tractability index for
systems (3)-(5).

6. Theorem 2.3 and Theorem 2.4 remain valid if the network contains additionally voltage controlled
current sources and each of them satisfy the following condition: The current source belongs to a
loop consisting of this source and capacitances only. This fact is important since many networks
contain transistor elements, which are often modeled by means of such voltage controlled current

sources. For an example, we look at a MOSFET model (cf. [7]):
Gate

Bulk

The current from node 2 to node 3 is controlled by the branch voltages vas, ves and vps.
Obviously, the current source belongs to the loop consisting of the source, the capacitance between
the nodes 2, 1 and the capacitance between the nodes 1, 3. Hence, Theorem 2.3 and Theorem

2.4 are satisfied for networks containing such MOSFET models.

7. Theorem 2.3 and Theorem 2.4 can also be extended to circuits with other kinds of controlled

sources. For a detailed discussion we refer to [5].

8. For networks containing any kind of controlled sources, the index can be greater than 2. A simple

example of this is a varactor. For a detailed description of higher index cases see [8].

Finally, look briefly at systems obtained by charge oriented MNA:

Acqe + Arr(Age) + Arjr + Avijv + Arj = 0, (27)
¢ —Ale = 0, (28)

ATe—v = 0, (29)

qo = q(Age), (30)

o = o(jr). (31)

10



In comparison with the classical MNA, the vector of unknowns consists additionally of the charge of
capacitances and of the flux of inductances. Moreover, the original voltage-charge and current-flux

equations are added to the system.

Theorem 2.6 The indezx of system (27)-(31) coincides with the index of the classical MNA system
(8)-(5) for the lower inder case (< 2).

Note, im Ac = im Acq (ALe)AL as well as ker AL = ker Acq' (A%e) AL hold true and ¢’ is regular.

Then, following the proof of Theorem 5.6 and 5.7 in [17] we obtain the correctness of Theorem 2.6.

Remarks:

1. Theorem 2.6 implies that Theorem 2.3 and Theorem 2.4 are also valid for DAE systems of the
form (27)-(31) obtained by charge oriented MNA.

2. Theorem 2.5 remains valid for systems (27)-(31) if we suppose the conditions

(gc)o = (qc)«(to) and (pr)o = (¢r)«(to)

to be satisfied, additionally. This follows from considerations in [3] and Theorem 2.5.

3 Summary

Firstly, we have performed an analysis of networks containing general nonlinear but time-independent
capacitances, inductances and resistances as well as independent current sources and independent
voltage sources. Then, the MNA for such networks has been shown to lead to a DAE-index 1 if
and only if the network contains L-I cut-sets or C-V loops. Additionally, the DAE-index for these
equation systems has been proved to be not greater than 2. These results are particularly useful when
implementing an index monitor in circuit simulation package which identifies critical parts of the circuit
to invoke a special treatment for them in order to avoid failures of the numerical integration and gives

hints to the user about network variables for which initial values can be chosen.
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