
Topologial index alulation of DAEs in iruit simulationCaren Tishendorf, Humboldt-University of BerlinAbstrat. Eletri iruits are present in several appliations, e.g. in home omputers, television,redit ards, eletri power networks, et. The development of integrated iruit requires numerialsimulation. Modern modeling tehniques like the Modi�ed Nodal Analysis (MNA) lead to di�erentialalgebrai equations (DAEs). The analytial and numerial solutions of these systems depend stronglyon the struture and the index.The paper deals with lumped iruits ontaining voltage soures, urrent soures as well as generalnonlinear but time-invariant apaitanes, indutanes and resistanes. We present network-topologialriteria for the index of the DAEs obtained by the lassial and the harge oriented MNA. Furthermore,the index is shown to be limited to 2 for the onsidered model-lass.Key words. Ciruit simulation, integrated iruit, di�erential-algebrai equation, DAE, index, modi-�ed nodal analysis, MNAAMS subjet lassi�ation. 94C05, 65L051 Basis of eletri iruit analysisConsider lumped eletri iruits ontaining resistanes, apaitanes, indutanes, voltage soures andurrent soures. For two-terminal (one-port) lumped elements, the urrent through the element andthe voltage aross it are well-de�ned quantities. For lumped elements with more than two terminals,the urrent entering any terminal and the voltage aross any pair of terminals are well de�ned at alltimes (f. [2℄). Hene, general time-invariant n-terminal resistanes an be modeled by an equationsystem of the form jk = gek(u1; :::; un�1) for k = 1; :::; n� 1if jk represents the urrent entering terminal k and ul desribes the voltage aross the pair of terminalsfl; ng (for k; l = 1; :::; n�1). In this ase, we all the terminal n the referene terminal. The Kirhho�'sCurrent Law implies the urrent entering terminal n to be given by jn = �Pn�1k=1 jk. The ondutanematrix Ge(u1; :::; un�1) is de�ned by the JaobianGe(u1; :::; un�1) := 0BBB� �ge1�u1 : : : �ge1�un�1... . . . ...�gen�1�u1 : : : �gen�1�un�11CCCA :1



The index e shall speify the orrelation to a speial element of a iruit. Later on we will introduethe ondutane matrix G(u) desribing all resistanes of a iruit. Correspondingly, the apaitanematrix Ce(v1; :::; vn�1) of a general nonlinear n-terminal apaitane is given byCe(u1; :::; un�1) := 0BBB� �qe1�u1 : : : �qe1�un�1... . . . ...�qen�1�u1 : : : �qen�1�un�11CCCAif the voltage-urrent relation is de�ned by means of harges byjk = ddtqek(u1; :::; un�1) for k = 1; :::; n� 1:Indutanes an be modeled by means of uxes byuk = ddt�ek(j1; :::; jn�1) for k = 1; :::; n � 1:Then, the indutane matrix Le(j1; :::; jn�1) is given by the JaobianLe(j1; :::; jn�1) := 0BBB� ��e1�j1 : : : ��e1�jn�1... . . . ...��en�1�j1 : : : ��en�1�jn�11CCCA :Assume all voltage and urrent soures to be independent soures for a while. At the end of the paperwe will generalize the main results for some ontrolled soures.One of the most ommonly used network analyses in iruit simulation is the Modi�ed Node Analysis(MNA). It represents a systemati treatment of general iruits and is important when omputersperform the analysis of networks automatially. For the MNA the vetor of unknowns onsists of allnode voltages and all branh urrents of urrent ontrolled elements. Performing the MNA means:1. Write node equations by applying KCL (Kirhho�'s Current Law) to eah node exept for thedatum node: Aj = 0: (1)The vetor j represents the branh urrent vetor. The matrix A is alled the (redued) inidenematrix and desribes the network graph, the branh-node relations. Moreover, it holdsaik = 8><>:1 if branh k leaves node i�1 if branh k enters node i0 if branh k is not inident with node ifor the elements of A.2. Replae the urrents jk of voltage ontrolled elements by the voltage-urrent relation of theseelements in equation (1).3. Add the urrent-voltage relations for all urrent ontrolled elements.2



Note, in ase of multi-terminal elements with n terminals we speak of branhes if they represent a pairof terminals fl; ng with 1 � l � n � 1.In general, the MNA leads to a oupled system of impliit di�erential equations and nonlinear equations,i.e. to a quasilinear di�erential-algebrai equation (DAE)A(x) _x+ f(x) = s(t) (2)(f. [9℄ in this journal). The analytial and numerial solutions of (2) depend strongly on its strutureand on its index. For a detailed disussion of this fat we refer to [9℄ in this journal, [7℄ and [14℄. Inthis artile we analyze the struture of the DAEs obtained by the MNA in more detail. This impliesimportant information about sensitivity and transient behavior of solutions.Split the inidene matrix A into the element-related inidene matries A = (ACALARAVAI), whereAC , AL, AR, AV and AI desribe the branh-urrent relation for apaitive branhes, indutivebranhes, resistive branhes, branhes of voltage soures and branhes of urrent soures, respetively.Denote by e the node potentials (exepting the datum node) and by jL and jV the urrent vetors ofindutanes and voltage soures. De�ning by i and v the vetor of time-dependent funtions for urrentand voltage soures, respetively, we obtain the following equation system from the MNA:AC dq(ATCe)dt +ARg(ATRe) +ALjL +AV jV +AI i = 0; (3)d�(jL)dt �ATLe = 0; (4)ATV e� v = 0: (5)The splitting of the inidene matrix A orresponding to ertain branhes leads to the following usefulstrutural information for lumped iruits:Theorem 1.1 Given a lumped iruit with the (redued) inidene matrix A = (ACALARAVAI), thefollowing relations are satis�ed.1. The matrix (ACALARAV ) has full row rank.2. The matrix AV has full olumn rank.3. The matrix (ACARAV ) has full row rank if and only if the iruit does not ontain a ut-setonsisting of indutanes and/or urrent soures only.4. Let QC be any projetor onto kerAC . Then, the matrix QTCAV has full olumn rank if and onlyif the iruit does not ontain a loop onsisting of apaitanes and voltage soures only.Note, loops ontaining only apaitanes are exluded under point 4 whereas ut-sets ontaining onlyindutanes are inluded under point 3 of Theorem 1.1.Proof: 3



1. The Kirhho�'s Current Law implies that the network an not ontain ut-sets formed only byurrent soures. Hene, there is a tree onsisting of apaitive, indutive, resistive and voltagesoure branhes (f. [2℄). The olumns of (ACALARAV ), orresponding to this tree, are linearindependent, i.e. rank (ACALARAV ) = N � 1 (here N denotes the number of nodes of theiruit).2. The Kirhho�'s Voltage Law implies that the network an not ontain loops formed only byvoltage soures. This means, that the olumns of AV are linear independent.3. The matrix (ACARAV ) has full row rank if and only if it has N � 1 linear independent olumns.This is equivalent to the fat that there is a tree of the iruit that ontains apaitive, resistiveand voltage soure branhes only. But this means exatly, that the iruit does not ontain aut-set onsisting of indutanes and/or urrent soures only.4. Firstly, assume there is a loop, onsisting of apaitanes and voltage soures only. Then itis easy to verify, that the olumns of the matrix (AVAC) are linear dependent. Therefore, we�nd a nontrivial vetor �xy� (orresponding to the onsidered loop) suh that (AVAC)�xy� = 0:Multiplying this equation with QTC we get QTCAV x = 0. The assumption x = 0 would implyACy = 0, i.e. the onsidered loop would be a loop onsisting of apaitanes only, that we haveexluded. Hene x 6= 0, i.e. kerQTCAV 6= f0g.Seondly, assume there is a nontrivial x suh that QTCAV x = 0. Then AV x 2 kerQTC = im AC ,i.e. there is a y suh that AV x+ACy = 0. Sine x 6= 0, there is a loop onsisting of apaitanesand voltage soures. q.e.d.In the following setion the speial ut-sets and loops onsidered in Theorem 1.1 will be important.Therefore we de�ne:1. A L-I ut-set is a ut-set onsisting of indutanes and/or urrent soures only.2. A C-V loop is a loop, onsisting of apaitanes and voltage soures only.2 DAE index of the network equationsThe solution behavior of DAEs depends strongly on the index of DAEs. Generally, numerial diÆultiesinrease with higher index, sine numerial di�erentiation is an unstable proedure (see e.g. [1℄, [10℄,[12℄). There are di�erent index onepts extending the Kroneker-Index (for linear DAEs) to nonlinearDAEs. The di�erential index ([1℄) is perhaps the one that is most often used in pratial appliations,beause it is easy to determine for a speial given problem. In this artile, we investigate the tratabilityindex ([12℄) for iruit systems in order to apply interesting results about solvability and stability for4



index-1-tratable and index-2-tratable DAEs. Furthermore, this index onept requires only weeksmoothness onditions that are important for iruit simulation.1. The DAE (2) is alled index-1-tratable if the matrix A1(x) := A(x) + f 0x(x)Q is regular for aprojetor Q onto the null spae of A(x).2. The DAE (2) is alled index-2-tratable if(a) it is not index-1-tratable,(b) N \ S(x) is of onstant rank for N := kerA(x) and S(x) := fz : f 0x(x)z 2 im A(x)g,() N1(x) \ S1(x) = f0g for N1(x) := kerA1(x) and S1(x) := fz : f 0x(x)(I �Q)z 2 im A1(x)g.Remark: The following results for the tratability index are also satis�ed for the di�erential index.For a proof we refer to [4℄.Writing system (3)-(5) as a DAE of form (2) the matrix A(x) readsA(x) = 0�ACC(ATCe)ATC 0 00 L(jL) 00 0 01A ; (6)where C(u) := dq(u)du and L(j) := d�(j)dj . The (mostly nonlinear) funtion f(x) and the vetor funtions(t) are given by f(x) = 0B�ARg(ATRe) +ALjL +AV jV�ATLeATV e 1CA and s(t) = 0��AIi(t)0v(t) 1A : (7)Before we present riteria for the index of DAEs in iruit simulation, we want to formulate two usefullemmata.Lemma 2.1 If the apaitane and indutane matries of all apaitanes and indutanes are positivede�nite then the following relations are satis�edkerA(x) = kerATC � f0g � IRnV and im A(x) = im AC � IRnL � f0g;where nL and nV denote the number of indutane branhes and voltage soures, respetively.Note, Lemma 2.1 implies that the null spae kerA(x) as well as the image spae im A(x) do not dependon x.Lemma 2.2 If M is a positive de�nite m � m-matrix and N is a retangular matrix of dimensionk �m, then it holds that kerNMNT = kerNT and im NMNT = im N:5



The orretness of Lemma 2.1 and Lemma 2.2 follows immediately from the de�nition of positivede�nite matries.Theorem 2.3 Let the apaitane, indutane and resistane matries of all apaitanes, indutanesand resistanes, respetively, be positive de�nite. If the network ontains neither L-I ut-sets nor C-Vloops, then the MNA leads to an index-1-tratable DAE.Remark: If the network ontains a loop, onsisting of apaitanes only, then the Mesh Analysis leadsto an index higher than 1 sine the urrent through suh a loop belongs to the vetor of unknowns andrepresents an index-2 variable. In ase of the MNA, the urrent through suh a loop does not belongto the vetor of unknowns. This fat makes lear, that the index of a iruit equation system dependsalso on the sheme for setting up the equations.Proof of Theorem 2.3: We will show that the DAE (2) is index-1-tratable, i.e. that the matrixA1(x) is regular. Let QC be a onstant projetor onto kerATC . Regarding Lemma 2.1,Q := 0�QC 0 00 0 00 0 I1Arepresents a onstant projetor onto kerA(x). We denote by G(u) := dg(u)du . Then the matrix A1(x) isgiven by A1(x) = 0�ACC(ATCe)ATC +ARG(ATRe)ATRQC 0 AV�ATLQC L(jL) 0ATVQC 0 0 1A : (8)If z = � zezLzV � is any vetor of the null spae of A1(x), then it holdsACC(ATCe)ATCze +ARG(ATRe)ATRQCze +AV zV = 0; (9)�ATLQCze + L(jL)zL = 0; (10)ATVQCze = 0: (11)Multiplying (9) by QTC we obtainQTCARG(ATRe)ATRQCze +QTCAV zV = 0; (12)sine QTCAC = 0. Let QV�C be a projetor onto kerATVQC . Multiplying (12) by QTV�C yieldsQTV�CQTCARG(ATRe)ATRQCze = 0: (13)From (11) we know that ze 2 kerATVQC , i.e.,ze = QV�Cze: (14)Thus, we may write (13) as QTV�CQTCARG(ATRe)ATRQCQV�Cze = 0:6



Lemma 2.2 implies ATRQCQV�Cze = 0. Applying (14) we getATRQCze = 0: (15)Adding (11) and (15), we obtain (AVARAC)TQCze = 0. Applying Theorem 1.1-3 we may onludeQCze = 0: (16)sine the iruit does not ontain an L-I ut-set. Regarding (12) we obtain QTCAV zV = 0. ApplyingTheorem 1.1-4 we �nd out that zV = 0 sine the iruit does not ontain a C-V loop. Regarding (9)and (16) we dedue ACC(ATCe)ATCze = 0:Thus, Lemma 2.2 implies ATCze = 0, i.e. ze belongs to the image spae of the projetor QC . With(16) we onlude that ze = QCze = 0. Sine AV has full olumn rank (see Theorem 1.1) and L(jL) ispositive de�nite, the equations (9) and (10) imply zV = 0 and zL = 0. This means, that the matrixA1(x) is regular and the iruit equation system has index 1. q.e.d.Theorem 2.4 Let the apaitane, indutane and resistane matries of all apaitanes, indutanesand resistanes, respetively, be positive de�nite. If the network ontains an L-I ut-set or a C-V loop,then the MNA leads to an index-2-tratable DAE.Proof: Choosing the same projetors as in the proof of Theorem 2.3, we onstrut a non-zero vetorbelonging to the null spae of A1(x). We onsider the two possiblities:1. The network ontains an L-I ut-set. Applying Theorem 1.1-3 we �nd a nontrivial ze suh thatzTe (ACARAV ) = 0. This implies ze = QCze and for z := 0� ze00 1A holds A1(x)z = 0.2. The network ontains a C-V loop. Applying Theorem 1.1-4 we �nd a nontrivial zV suh thatQTCAV zV = 0. This implies AV zV = ACC(ATCe)ATCze for a ertain ze 2 kerQC . Choosingz := 0� ze0�zV 1A we obtain A1(x)z = 0.Next, we remark that the the intersetionkerA \ S(x) = fz : ATCze = 0; ATV ze = 0; ARG(ATRe)ATRze +ALzL +AV zV 2 im ACgis onstant sine G(ATRe) is positive de�nite.
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It remains to show that N1(x) \ S1(x) = f0g is satis�ed. Choosing z = 0� zezLzV 1A 2 N1(x) \ S1(x),regarding (8) and de�ning PC := I �QC we �nd � and  suh, thatACC(ATCe)ATCze +ARG(ATRe)ATRQCze +AV zV = 0; (17)�ATLQCze + L(jL)zL = 0; (18)ATVQCze = 0; (19)ARG(ATRe)ATRPCze +ALzL = ARG(ATRe)ATRQC�+ACC(ATCe)ATC�+AV ; (20)ATV PCze = ATVQC�: (21)Multiplying (17) by QTV�CQTC (f. proof of Theorem 2.3-1), regarding (19) and applying Lemma 2.2 weobtain ATRQCze = 0. This implies together with (19) thatQCze = QCRV ze (22)for a projetor QCRV onto ker(ACARAV )T . Multiplying (20) by QTCRV and using (18) we obtain0 = QTCRV ALzL = QTCRV ALL�1(iL)ATLQCze = QTCRVALL�1(iL)ATLQCRV ze:Lemma 2.2 leads to ATLQCRV ze = 0, i.e.QCze = QCRV ze = 0; (23)sine (ACALARAV ) has full row rank (see Theorem 1.1). Introduing �QV�C as a projetor ontokerQTCAV we follow from (17) and (21)ACC(ATCe)ATCze +AV �QV�CzV = 0;�QTV�CATV ze = 0:Using the fat that ker�M NNT 0� = kerM � kerNfor a positive semide�nite matrix M and any matrix N , this leads to ATCze = 0 and 0 = AV �QV�CzV =AV zV , whih implies PCze = 0 and zV = 0, sine AV has full olumn rank (see Theorem 1.1-2).Together with (23) and (18) we obtain z = 0. q.e.d.Note, a similar result was presented in [15℄ for networks onsisting of linear resistanes, indutanesand apaitanes as well as onstant soures, ideal transformers and gyrators. There, it was shown thatthe branh voltage - branh urrent equation system has an index not greater than 2. Furthermore,in [11℄ it was already proved that the Tableau Analysis for networks ontaining linear apaitanes,resistanes and voltage soures only provides a DAE index 2 if there is a C-V loop in the iruit.8



Theorem 2.3 and Theorem 2.4 permits the appliation of a number of well-known results about solv-ability and stability for index-1 and index-2 DAEs (see e.g. [6℄, [10℄, [13℄, [16℄). Here, we instanethe appliation of Theorem 4.4. in [13℄ in order to desribe the sensitivity of solutions for DAE sys-tems (3)-(5) with respet to small perturbations. Let us introdue the appropriate solution spaeC1N := fx = (e; jL; jV ) 2 C(I) : PCe 2 C1(I); jL 2 C1(I)g for a ompat interval I.Theorem 2.5 Let the apaitane, indutane and resistane matries of all apaitanes, indutanesand resistanes, respetively, be positive de�nite. Given a solution x� := (e�; (jL)�; (jV )�) 2 C1N of(3)-(5), t0 2 I. Let C(ATCe), L(jL) be ontinuously di�erentiable and g(ATRe), i(t), v(t) be twieontinuously di�erentiable.(i) Then, perturbed initial value problemsACC(ATCe)ATCe0 +ARg(ATRe) +ALjL +AV jV +AI i = Æe;L(jL)j0L �ATLe = ÆL;ATV e� v = ÆV ;(e(t0); jL(t0); jV (t0)) = (e0; (jL)0; (jV )0)satisfying QCe0 = QCe�(t0) and (jV )0 = (jV )�(t0) (24)as well as �QTV�CATV e0 = �QTV�CATV e�(t0) and QTCRVAL(jL)0 = QTCRVAL(jL)�(t0) (25)are uniquely solvable on C1N supposing jx0 � x�(t0)j as well as kÆk1 (for Æ := (Æe; ÆL; ÆV )),k ddt (QTCRV Æe)k1, k ddt ( �QTV�CÆV )k1 are suÆiently small.(ii) For the solution x = (e; jL; jV ) of (i) the inequalitykx� x�k1 � K(kÆk1 + k ddt (QTCRV Æe)k1 + k ddt ( �QTV�CÆV )k1 + jx0 � x�(t0)j) (26)is true for a onstant K > 0.Remarks:1. The onditions (24) and (25) guarantee onsistent initial values (see [3℄). This is useful forimplementing a monitor in iruit simulation pakages whih gives hints to the user about networkvariables for that he an hoose initial values and for whih he must not.2. The inequality (26) implies that QTCRV Æe and �QTV�CÆV reet the ritial defets. This is usefulfor implementing a monitor in iruit simulation pakages whih identi�es ritial parts of theiruit and invokes speial treatment for them in order to avoid failures for numerial integration.9



3. QTCRV � 0 i� the iruit does not ontain an L-I ut-set (f. Theorem 1.1-3).4. �QTV�C � 0 i� the iruit does not ontain a C-V loop (f. Theorem 1.1-4).5. Theorem 2.5 implies that the perturbation index ([10℄) oinides with the tratability index forsystems (3)-(5).6. Theorem 2.3 and Theorem 2.4 remain valid if the network ontains additionally voltage ontrolledurrent soures and eah of them satisfy the following ondition: The urrent soure belongs to aloop onsisting of this soure and apaitanes only. This fat is important sine many networksontain transistor elements, whih are often modeled by means of suh voltage ontrolled urrentsoures. For an example, we look at a MOSFET model (f. [7℄):
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The urrent from node 2 to node 3 is ontrolled by the branh voltages vGS , vBS and vDS.Obviously, the urrent soure belongs to the loop onsisting of the soure, the apaitane betweenthe nodes 2, 1 and the apaitane between the nodes 1, 3. Hene, Theorem 2.3 and Theorem2.4 are satis�ed for networks ontaining suh MOSFET models.7. Theorem 2.3 and Theorem 2.4 an also be extended to iruits with other kinds of ontrolledsoures. For a detailed disussion we refer to [5℄.8. For networks ontaining any kind of ontrolled soures, the index an be greater than 2. A simpleexample of this is a varator. For a detailed desription of higher index ases see [8℄.Finally, look briey at systems obtained by harge oriented MNA:ACq0C +ARr(ATRe) +ALjL +AV jV +AIj = 0; (27)�0L �ATLe = 0; (28)ATV e� v = 0; (29)qC = q(ATCe); (30)�L = �(jL): (31)10



In omparison with the lassial MNA, the vetor of unknowns onsists additionally of the harge ofapaitanes and of the ux of indutanes. Moreover, the original voltage-harge and urrent-uxequations are added to the system.Theorem 2.6 The index of system (27)-(31) oinides with the index of the lassial MNA system(3)-(5) for the lower index ase (� 2).Note, im AC = im ACq0(ATCe)ATC as well as kerATC = kerACq0(ATCe)ATC hold true and �0 is regular.Then, following the proof of Theorem 5.6 and 5.7 in [17℄ we obtain the orretness of Theorem 2.6.Remarks:1. Theorem 2.6 implies that Theorem 2.3 and Theorem 2.4 are also valid for DAE systems of theform (27)-(31) obtained by harge oriented MNA.2. Theorem 2.5 remains valid for systems (27)-(31) if we suppose the onditions(qC)0 = (qC)�(t0) and (�L)0 = (�L)�(t0)to be satis�ed, additionally. This follows from onsiderations in [3℄ and Theorem 2.5.3 SummaryFirstly, we have performed an analysis of networks ontaining general nonlinear but time-independentapaitanes, indutanes and resistanes as well as independent urrent soures and independentvoltage soures. Then, the MNA for suh networks has been shown to lead to a DAE-index 1 ifand only if the network ontains L-I ut-sets or C-V loops. Additionally, the DAE-index for theseequation systems has been proved to be not greater than 2. These results are partiularly useful whenimplementing an index monitor in iruit simulation pakage whih identi�es ritial parts of the iruitto invoke a speial treatment for them in order to avoid failures of the numerial integration and giveshints to the user about network variables for whih initial values an be hosen.Referenes[1℄ Brenan, K.E., Campbell, S.L., Petzold, L.R.: The Numerial Solution of Initial Value Problems inOrdinary Di�erential-Algebrai Equations, North Holland Publishing Co. (1989).[2℄ Desoer, C.A., Kuh, E.S.: Basi iruit theory, MGraw-Hill, Singapore (1969).[3℄ Est�evez Shwarz, D.: Consistent initial values for DAE systems in iruit simulation. In preparation.[4℄ Est�evez Shwarz, D., Tishendorf, C.: Strutural analysis for eletri iruits and onsequenes forindex alulation. Part I: Passive iruits. In preparation.11
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