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al index 
al
ulation of DAEs in 
ir
uit simulationCaren Tis
hendorf, Humboldt-University of BerlinAbstra
t. Ele
tri
 
ir
uits are present in several appli
ations, e.g. in home 
omputers, television,
redit 
ards, ele
tri
 power networks, et
. The development of integrated 
ir
uit requires numeri
alsimulation. Modern modeling te
hniques like the Modi�ed Nodal Analysis (MNA) lead to di�erentialalgebrai
 equations (DAEs). The analyti
al and numeri
al solutions of these systems depend stronglyon the stru
ture and the index.The paper deals with lumped 
ir
uits 
ontaining voltage sour
es, 
urrent sour
es as well as generalnonlinear but time-invariant 
apa
itan
es, indu
tan
es and resistan
es. We present network-topologi
al
riteria for the index of the DAEs obtained by the 
lassi
al and the 
harge oriented MNA. Furthermore,the index is shown to be limited to 2 for the 
onsidered model-
lass.Key words. Cir
uit simulation, integrated 
ir
uit, di�erential-algebrai
 equation, DAE, index, modi-�ed nodal analysis, MNAAMS subje
t 
lassi�
ation. 94C05, 65L051 Basi
s of ele
tri
 
ir
uit analysisConsider lumped ele
tri
 
ir
uits 
ontaining resistan
es, 
apa
itan
es, indu
tan
es, voltage sour
es and
urrent sour
es. For two-terminal (one-port) lumped elements, the 
urrent through the element andthe voltage a
ross it are well-de�ned quantities. For lumped elements with more than two terminals,the 
urrent entering any terminal and the voltage a
ross any pair of terminals are well de�ned at alltimes (
f. [2℄). Hen
e, general time-invariant n-terminal resistan
es 
an be modeled by an equationsystem of the form jk = gek(u1; :::; un�1) for k = 1; :::; n� 1if jk represents the 
urrent entering terminal k and ul des
ribes the voltage a
ross the pair of terminalsfl; ng (for k; l = 1; :::; n�1). In this 
ase, we 
all the terminal n the referen
e terminal. The Kir
hho�'sCurrent Law implies the 
urrent entering terminal n to be given by jn = �Pn�1k=1 jk. The 
ondu
tan
ematrix Ge(u1; :::; un�1) is de�ned by the Ja
obianGe(u1; :::; un�1) := 0BBB� �ge1�u1 : : : �ge1�un�1... . . . ...�gen�1�u1 : : : �gen�1�un�11CCCA :1



The index e shall spe
ify the 
orrelation to a spe
ial element of a 
ir
uit. Later on we will introdu
ethe 
ondu
tan
e matrix G(u) des
ribing all resistan
es of a 
ir
uit. Correspondingly, the 
apa
itan
ematrix Ce(v1; :::; vn�1) of a general nonlinear n-terminal 
apa
itan
e is given byCe(u1; :::; un�1) := 0BBB� �qe1�u1 : : : �qe1�un�1... . . . ...�qen�1�u1 : : : �qen�1�un�11CCCAif the voltage-
urrent relation is de�ned by means of 
harges byjk = ddtqek(u1; :::; un�1) for k = 1; :::; n� 1:Indu
tan
es 
an be modeled by means of 
uxes byuk = ddt�ek(j1; :::; jn�1) for k = 1; :::; n � 1:Then, the indu
tan
e matrix Le(j1; :::; jn�1) is given by the Ja
obianLe(j1; :::; jn�1) := 0BBB� ��e1�j1 : : : ��e1�jn�1... . . . ...��en�1�j1 : : : ��en�1�jn�11CCCA :Assume all voltage and 
urrent sour
es to be independent sour
es for a while. At the end of the paperwe will generalize the main results for some 
ontrolled sour
es.One of the most 
ommonly used network analyses in 
ir
uit simulation is the Modi�ed Node Analysis(MNA). It represents a systemati
 treatment of general 
ir
uits and is important when 
omputersperform the analysis of networks automati
ally. For the MNA the ve
tor of unknowns 
onsists of allnode voltages and all bran
h 
urrents of 
urrent 
ontrolled elements. Performing the MNA means:1. Write node equations by applying KCL (Kir
hho�'s Current Law) to ea
h node ex
ept for thedatum node: Aj = 0: (1)The ve
tor j represents the bran
h 
urrent ve
tor. The matrix A is 
alled the (redu
ed) in
iden
ematrix and des
ribes the network graph, the bran
h-node relations. Moreover, it holdsaik = 8><>:1 if bran
h k leaves node i�1 if bran
h k enters node i0 if bran
h k is not in
ident with node ifor the elements of A.2. Repla
e the 
urrents jk of voltage 
ontrolled elements by the voltage-
urrent relation of theseelements in equation (1).3. Add the 
urrent-voltage relations for all 
urrent 
ontrolled elements.2



Note, in 
ase of multi-terminal elements with n terminals we speak of bran
hes if they represent a pairof terminals fl; ng with 1 � l � n � 1.In general, the MNA leads to a 
oupled system of impli
it di�erential equations and nonlinear equations,i.e. to a quasilinear di�erential-algebrai
 equation (DAE)A(x) _x+ f(x) = s(t) (2)(
f. [9℄ in this journal). The analyti
al and numeri
al solutions of (2) depend strongly on its stru
tureand on its index. For a detailed dis
ussion of this fa
t we refer to [9℄ in this journal, [7℄ and [14℄. Inthis arti
le we analyze the stru
ture of the DAEs obtained by the MNA in more detail. This impliesimportant information about sensitivity and transient behavior of solutions.Split the in
iden
e matrix A into the element-related in
iden
e matri
es A = (ACALARAVAI), whereAC , AL, AR, AV and AI des
ribe the bran
h-
urrent relation for 
apa
itive bran
hes, indu
tivebran
hes, resistive bran
hes, bran
hes of voltage sour
es and bran
hes of 
urrent sour
es, respe
tively.Denote by e the node potentials (ex
epting the datum node) and by jL and jV the 
urrent ve
tors ofindu
tan
es and voltage sour
es. De�ning by i and v the ve
tor of time-dependent fun
tions for 
urrentand voltage sour
es, respe
tively, we obtain the following equation system from the MNA:AC dq(ATCe)dt +ARg(ATRe) +ALjL +AV jV +AI i = 0; (3)d�(jL)dt �ATLe = 0; (4)ATV e� v = 0: (5)The splitting of the in
iden
e matrix A 
orresponding to 
ertain bran
hes leads to the following usefulstru
tural information for lumped 
ir
uits:Theorem 1.1 Given a lumped 
ir
uit with the (redu
ed) in
iden
e matrix A = (ACALARAVAI), thefollowing relations are satis�ed.1. The matrix (ACALARAV ) has full row rank.2. The matrix AV has full 
olumn rank.3. The matrix (ACARAV ) has full row rank if and only if the 
ir
uit does not 
ontain a 
ut-set
onsisting of indu
tan
es and/or 
urrent sour
es only.4. Let QC be any proje
tor onto kerAC . Then, the matrix QTCAV has full 
olumn rank if and onlyif the 
ir
uit does not 
ontain a loop 
onsisting of 
apa
itan
es and voltage sour
es only.Note, loops 
ontaining only 
apa
itan
es are ex
luded under point 4 whereas 
ut-sets 
ontaining onlyindu
tan
es are in
luded under point 3 of Theorem 1.1.Proof: 3



1. The Kir
hho�'s Current Law implies that the network 
an not 
ontain 
ut-sets formed only by
urrent sour
es. Hen
e, there is a tree 
onsisting of 
apa
itive, indu
tive, resistive and voltagesour
e bran
hes (
f. [2℄). The 
olumns of (ACALARAV ), 
orresponding to this tree, are linearindependent, i.e. rank (ACALARAV ) = N � 1 (here N denotes the number of nodes of the
ir
uit).2. The Kir
hho�'s Voltage Law implies that the network 
an not 
ontain loops formed only byvoltage sour
es. This means, that the 
olumns of AV are linear independent.3. The matrix (ACARAV ) has full row rank if and only if it has N � 1 linear independent 
olumns.This is equivalent to the fa
t that there is a tree of the 
ir
uit that 
ontains 
apa
itive, resistiveand voltage sour
e bran
hes only. But this means exa
tly, that the 
ir
uit does not 
ontain a
ut-set 
onsisting of indu
tan
es and/or 
urrent sour
es only.4. Firstly, assume there is a loop, 
onsisting of 
apa
itan
es and voltage sour
es only. Then itis easy to verify, that the 
olumns of the matrix (AVAC) are linear dependent. Therefore, we�nd a nontrivial ve
tor �xy� (
orresponding to the 
onsidered loop) su
h that (AVAC)�xy� = 0:Multiplying this equation with QTC we get QTCAV x = 0. The assumption x = 0 would implyACy = 0, i.e. the 
onsidered loop would be a loop 
onsisting of 
apa
itan
es only, that we haveex
luded. Hen
e x 6= 0, i.e. kerQTCAV 6= f0g.Se
ondly, assume there is a nontrivial x su
h that QTCAV x = 0. Then AV x 2 kerQTC = im AC ,i.e. there is a y su
h that AV x+ACy = 0. Sin
e x 6= 0, there is a loop 
onsisting of 
apa
itan
esand voltage sour
es. q.e.d.In the following se
tion the spe
ial 
ut-sets and loops 
onsidered in Theorem 1.1 will be important.Therefore we de�ne:1. A L-I 
ut-set is a 
ut-set 
onsisting of indu
tan
es and/or 
urrent sour
es only.2. A C-V loop is a loop, 
onsisting of 
apa
itan
es and voltage sour
es only.2 DAE index of the network equationsThe solution behavior of DAEs depends strongly on the index of DAEs. Generally, numeri
al diÆ
ultiesin
rease with higher index, sin
e numeri
al di�erentiation is an unstable pro
edure (see e.g. [1℄, [10℄,[12℄). There are di�erent index 
on
epts extending the Krone
ker-Index (for linear DAEs) to nonlinearDAEs. The di�erential index ([1℄) is perhaps the one that is most often used in pra
ti
al appli
ations,be
ause it is easy to determine for a spe
ial given problem. In this arti
le, we investigate the tra
tabilityindex ([12℄) for 
ir
uit systems in order to apply interesting results about solvability and stability for4



index-1-tra
table and index-2-tra
table DAEs. Furthermore, this index 
on
ept requires only weeksmoothness 
onditions that are important for 
ir
uit simulation.1. The DAE (2) is 
alled index-1-tra
table if the matrix A1(x) := A(x) + f 0x(x)Q is regular for aproje
tor Q onto the null spa
e of A(x).2. The DAE (2) is 
alled index-2-tra
table if(a) it is not index-1-tra
table,(b) N \ S(x) is of 
onstant rank for N := kerA(x) and S(x) := fz : f 0x(x)z 2 im A(x)g,(
) N1(x) \ S1(x) = f0g for N1(x) := kerA1(x) and S1(x) := fz : f 0x(x)(I �Q)z 2 im A1(x)g.Remark: The following results for the tra
tability index are also satis�ed for the di�erential index.For a proof we refer to [4℄.Writing system (3)-(5) as a DAE of form (2) the matrix A(x) readsA(x) = 0�ACC(ATCe)ATC 0 00 L(jL) 00 0 01A ; (6)where C(u) := dq(u)du and L(j) := d�(j)dj . The (mostly nonlinear) fun
tion f(x) and the ve
tor fun
tions(t) are given by f(x) = 0B�ARg(ATRe) +ALjL +AV jV�ATLeATV e 1CA and s(t) = 0��AIi(t)0v(t) 1A : (7)Before we present 
riteria for the index of DAEs in 
ir
uit simulation, we want to formulate two usefullemmata.Lemma 2.1 If the 
apa
itan
e and indu
tan
e matri
es of all 
apa
itan
es and indu
tan
es are positivede�nite then the following relations are satis�edkerA(x) = kerATC � f0g � IRnV and im A(x) = im AC � IRnL � f0g;where nL and nV denote the number of indu
tan
e bran
hes and voltage sour
es, respe
tively.Note, Lemma 2.1 implies that the null spa
e kerA(x) as well as the image spa
e im A(x) do not dependon x.Lemma 2.2 If M is a positive de�nite m � m-matrix and N is a re
tangular matrix of dimensionk �m, then it holds that kerNMNT = kerNT and im NMNT = im N:5



The 
orre
tness of Lemma 2.1 and Lemma 2.2 follows immediately from the de�nition of positivede�nite matri
es.Theorem 2.3 Let the 
apa
itan
e, indu
tan
e and resistan
e matri
es of all 
apa
itan
es, indu
tan
esand resistan
es, respe
tively, be positive de�nite. If the network 
ontains neither L-I 
ut-sets nor C-Vloops, then the MNA leads to an index-1-tra
table DAE.Remark: If the network 
ontains a loop, 
onsisting of 
apa
itan
es only, then the Mesh Analysis leadsto an index higher than 1 sin
e the 
urrent through su
h a loop belongs to the ve
tor of unknowns andrepresents an index-2 variable. In 
ase of the MNA, the 
urrent through su
h a loop does not belongto the ve
tor of unknowns. This fa
t makes 
lear, that the index of a 
ir
uit equation system dependsalso on the s
heme for setting up the equations.Proof of Theorem 2.3: We will show that the DAE (2) is index-1-tra
table, i.e. that the matrixA1(x) is regular. Let QC be a 
onstant proje
tor onto kerATC . Regarding Lemma 2.1,Q := 0�QC 0 00 0 00 0 I1Arepresents a 
onstant proje
tor onto kerA(x). We denote by G(u) := dg(u)du . Then the matrix A1(x) isgiven by A1(x) = 0�ACC(ATCe)ATC +ARG(ATRe)ATRQC 0 AV�ATLQC L(jL) 0ATVQC 0 0 1A : (8)If z = � zezLzV � is any ve
tor of the null spa
e of A1(x), then it holdsACC(ATCe)ATCze +ARG(ATRe)ATRQCze +AV zV = 0; (9)�ATLQCze + L(jL)zL = 0; (10)ATVQCze = 0: (11)Multiplying (9) by QTC we obtainQTCARG(ATRe)ATRQCze +QTCAV zV = 0; (12)sin
e QTCAC = 0. Let QV�C be a proje
tor onto kerATVQC . Multiplying (12) by QTV�C yieldsQTV�CQTCARG(ATRe)ATRQCze = 0: (13)From (11) we know that ze 2 kerATVQC , i.e.,ze = QV�Cze: (14)Thus, we may write (13) as QTV�CQTCARG(ATRe)ATRQCQV�Cze = 0:6



Lemma 2.2 implies ATRQCQV�Cze = 0. Applying (14) we getATRQCze = 0: (15)Adding (11) and (15), we obtain (AVARAC)TQCze = 0. Applying Theorem 1.1-3 we may 
on
ludeQCze = 0: (16)sin
e the 
ir
uit does not 
ontain an L-I 
ut-set. Regarding (12) we obtain QTCAV zV = 0. ApplyingTheorem 1.1-4 we �nd out that zV = 0 sin
e the 
ir
uit does not 
ontain a C-V loop. Regarding (9)and (16) we dedu
e ACC(ATCe)ATCze = 0:Thus, Lemma 2.2 implies ATCze = 0, i.e. ze belongs to the image spa
e of the proje
tor QC . With(16) we 
on
lude that ze = QCze = 0. Sin
e AV has full 
olumn rank (see Theorem 1.1) and L(jL) ispositive de�nite, the equations (9) and (10) imply zV = 0 and zL = 0. This means, that the matrixA1(x) is regular and the 
ir
uit equation system has index 1. q.e.d.Theorem 2.4 Let the 
apa
itan
e, indu
tan
e and resistan
e matri
es of all 
apa
itan
es, indu
tan
esand resistan
es, respe
tively, be positive de�nite. If the network 
ontains an L-I 
ut-set or a C-V loop,then the MNA leads to an index-2-tra
table DAE.Proof: Choosing the same proje
tors as in the proof of Theorem 2.3, we 
onstru
t a non-zero ve
torbelonging to the null spa
e of A1(x). We 
onsider the two possiblities:1. The network 
ontains an L-I 
ut-set. Applying Theorem 1.1-3 we �nd a nontrivial ze su
h thatzTe (ACARAV ) = 0. This implies ze = QCze and for z := 0� ze00 1A holds A1(x)z = 0.2. The network 
ontains a C-V loop. Applying Theorem 1.1-4 we �nd a nontrivial zV su
h thatQTCAV zV = 0. This implies AV zV = ACC(ATCe)ATCze for a 
ertain ze 2 kerQC . Choosingz := 0� ze0�zV 1A we obtain A1(x)z = 0.Next, we remark that the the interse
tionkerA \ S(x) = fz : ATCze = 0; ATV ze = 0; ARG(ATRe)ATRze +ALzL +AV zV 2 im ACgis 
onstant sin
e G(ATRe) is positive de�nite.
7



It remains to show that N1(x) \ S1(x) = f0g is satis�ed. Choosing z = 0� zezLzV 1A 2 N1(x) \ S1(x),regarding (8) and de�ning PC := I �QC we �nd � and 
 su
h, thatACC(ATCe)ATCze +ARG(ATRe)ATRQCze +AV zV = 0; (17)�ATLQCze + L(jL)zL = 0; (18)ATVQCze = 0; (19)ARG(ATRe)ATRPCze +ALzL = ARG(ATRe)ATRQC�+ACC(ATCe)ATC�+AV 
; (20)ATV PCze = ATVQC�: (21)Multiplying (17) by QTV�CQTC (
f. proof of Theorem 2.3-1), regarding (19) and applying Lemma 2.2 weobtain ATRQCze = 0. This implies together with (19) thatQCze = QCRV ze (22)for a proje
tor QCRV onto ker(ACARAV )T . Multiplying (20) by QTCRV and using (18) we obtain0 = QTCRV ALzL = QTCRV ALL�1(iL)ATLQCze = QTCRVALL�1(iL)ATLQCRV ze:Lemma 2.2 leads to ATLQCRV ze = 0, i.e.QCze = QCRV ze = 0; (23)sin
e (ACALARAV ) has full row rank (see Theorem 1.1). Introdu
ing �QV�C as a proje
tor ontokerQTCAV we follow from (17) and (21)ACC(ATCe)ATCze +AV �QV�CzV = 0;�QTV�CATV ze = 0:Using the fa
t that ker�M NNT 0� = kerM � kerNfor a positive semide�nite matrix M and any matrix N , this leads to ATCze = 0 and 0 = AV �QV�CzV =AV zV , whi
h implies PCze = 0 and zV = 0, sin
e AV has full 
olumn rank (see Theorem 1.1-2).Together with (23) and (18) we obtain z = 0. q.e.d.Note, a similar result was presented in [15℄ for networks 
onsisting of linear resistan
es, indu
tan
esand 
apa
itan
es as well as 
onstant sour
es, ideal transformers and gyrators. There, it was shown thatthe bran
h voltage - bran
h 
urrent equation system has an index not greater than 2. Furthermore,in [11℄ it was already proved that the Tableau Analysis for networks 
ontaining linear 
apa
itan
es,resistan
es and voltage sour
es only provides a DAE index 2 if there is a C-V loop in the 
ir
uit.8



Theorem 2.3 and Theorem 2.4 permits the appli
ation of a number of well-known results about solv-ability and stability for index-1 and index-2 DAEs (see e.g. [6℄, [10℄, [13℄, [16℄). Here, we instan
ethe appli
ation of Theorem 4.4. in [13℄ in order to des
ribe the sensitivity of solutions for DAE sys-tems (3)-(5) with respe
t to small perturbations. Let us introdu
e the appropriate solution spa
eC1N := fx = (e; jL; jV ) 2 C(I) : PCe 2 C1(I); jL 2 C1(I)g for a 
ompa
t interval I.Theorem 2.5 Let the 
apa
itan
e, indu
tan
e and resistan
e matri
es of all 
apa
itan
es, indu
tan
esand resistan
es, respe
tively, be positive de�nite. Given a solution x� := (e�; (jL)�; (jV )�) 2 C1N of(3)-(5), t0 2 I. Let C(ATCe), L(jL) be 
ontinuously di�erentiable and g(ATRe), i(t), v(t) be twi
e
ontinuously di�erentiable.(i) Then, perturbed initial value problemsACC(ATCe)ATCe0 +ARg(ATRe) +ALjL +AV jV +AI i = Æe;L(jL)j0L �ATLe = ÆL;ATV e� v = ÆV ;(e(t0); jL(t0); jV (t0)) = (e0; (jL)0; (jV )0)satisfying QCe0 = QCe�(t0) and (jV )0 = (jV )�(t0) (24)as well as �QTV�CATV e0 = �QTV�CATV e�(t0) and QTCRVAL(jL)0 = QTCRVAL(jL)�(t0) (25)are uniquely solvable on C1N supposing jx0 � x�(t0)j as well as kÆk1 (for Æ := (Æe; ÆL; ÆV )),k ddt (QTCRV Æe)k1, k ddt ( �QTV�CÆV )k1 are suÆ
iently small.(ii) For the solution x = (e; jL; jV ) of (i) the inequalitykx� x�k1 � K(kÆk1 + k ddt (QTCRV Æe)k1 + k ddt ( �QTV�CÆV )k1 + jx0 � x�(t0)j) (26)is true for a 
onstant K > 0.Remarks:1. The 
onditions (24) and (25) guarantee 
onsistent initial values (see [3℄). This is useful forimplementing a monitor in 
ir
uit simulation pa
kages whi
h gives hints to the user about networkvariables for that he 
an 
hoose initial values and for whi
h he must not.2. The inequality (26) implies that QTCRV Æe and �QTV�CÆV re
e
t the 
riti
al defe
ts. This is usefulfor implementing a monitor in 
ir
uit simulation pa
kages whi
h identi�es 
riti
al parts of the
ir
uit and invokes spe
ial treatment for them in order to avoid failures for numeri
al integration.9



3. QTCRV � 0 i� the 
ir
uit does not 
ontain an L-I 
ut-set (
f. Theorem 1.1-3).4. �QTV�C � 0 i� the 
ir
uit does not 
ontain a C-V loop (
f. Theorem 1.1-4).5. Theorem 2.5 implies that the perturbation index ([10℄) 
oin
ides with the tra
tability index forsystems (3)-(5).6. Theorem 2.3 and Theorem 2.4 remain valid if the network 
ontains additionally voltage 
ontrolled
urrent sour
es and ea
h of them satisfy the following 
ondition: The 
urrent sour
e belongs to aloop 
onsisting of this sour
e and 
apa
itan
es only. This fa
t is important sin
e many networks
ontain transistor elements, whi
h are often modeled by means of su
h voltage 
ontrolled 
urrentsour
es. For an example, we look at a MOSFET model (
f. [7℄):
1

Source

Gate

Drain

Bulk

4

32

The 
urrent from node 2 to node 3 is 
ontrolled by the bran
h voltages vGS , vBS and vDS.Obviously, the 
urrent sour
e belongs to the loop 
onsisting of the sour
e, the 
apa
itan
e betweenthe nodes 2, 1 and the 
apa
itan
e between the nodes 1, 3. Hen
e, Theorem 2.3 and Theorem2.4 are satis�ed for networks 
ontaining su
h MOSFET models.7. Theorem 2.3 and Theorem 2.4 
an also be extended to 
ir
uits with other kinds of 
ontrolledsour
es. For a detailed dis
ussion we refer to [5℄.8. For networks 
ontaining any kind of 
ontrolled sour
es, the index 
an be greater than 2. A simpleexample of this is a vara
tor. For a detailed des
ription of higher index 
ases see [8℄.Finally, look brie
y at systems obtained by 
harge oriented MNA:ACq0C +ARr(ATRe) +ALjL +AV jV +AIj = 0; (27)�0L �ATLe = 0; (28)ATV e� v = 0; (29)qC = q(ATCe); (30)�L = �(jL): (31)10



In 
omparison with the 
lassi
al MNA, the ve
tor of unknowns 
onsists additionally of the 
harge of
apa
itan
es and of the 
ux of indu
tan
es. Moreover, the original voltage-
harge and 
urrent-
uxequations are added to the system.Theorem 2.6 The index of system (27)-(31) 
oin
ides with the index of the 
lassi
al MNA system(3)-(5) for the lower index 
ase (� 2).Note, im AC = im ACq0(ATCe)ATC as well as kerATC = kerACq0(ATCe)ATC hold true and �0 is regular.Then, following the proof of Theorem 5.6 and 5.7 in [17℄ we obtain the 
orre
tness of Theorem 2.6.Remarks:1. Theorem 2.6 implies that Theorem 2.3 and Theorem 2.4 are also valid for DAE systems of theform (27)-(31) obtained by 
harge oriented MNA.2. Theorem 2.5 remains valid for systems (27)-(31) if we suppose the 
onditions(qC)0 = (qC)�(t0) and (�L)0 = (�L)�(t0)to be satis�ed, additionally. This follows from 
onsiderations in [3℄ and Theorem 2.5.3 SummaryFirstly, we have performed an analysis of networks 
ontaining general nonlinear but time-independent
apa
itan
es, indu
tan
es and resistan
es as well as independent 
urrent sour
es and independentvoltage sour
es. Then, the MNA for su
h networks has been shown to lead to a DAE-index 1 ifand only if the network 
ontains L-I 
ut-sets or C-V loops. Additionally, the DAE-index for theseequation systems has been proved to be not greater than 2. These results are parti
ularly useful whenimplementing an index monitor in 
ir
uit simulation pa
kage whi
h identi�es 
riti
al parts of the 
ir
uitto invoke a spe
ial treatment for them in order to avoid failures of the numeri
al integration and giveshints to the user about network variables for whi
h initial values 
an be 
hosen.Referen
es[1℄ Brenan, K.E., Campbell, S.L., Petzold, L.R.: The Numeri
al Solution of Initial Value Problems inOrdinary Di�erential-Algebrai
 Equations, North Holland Publishing Co. (1989).[2℄ Desoer, C.A., Kuh, E.S.: Basi
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