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Introduction

Subject of this thesis is the numerical analysis of differential algebraic equa-
tions (DAEs). DAEs are special implicit ordinary differential equations

f(j:(t)ax(t)at) =0,

where the partial Jacobian f}(&,x,t) is singular on the domain of f. The
dynamic behaviour of numerous problems in physics, in chemistry, and in
technical applications can be modelled by differential equations. Addition-
ally, the models often contain implicit nonlinear algebraic equations in order
to take into account conservation laws, geometrical or kinematic constraints,
Kirchhoft’s laws, etc. Hence, DAEs arise in various fields, e.g. in the mo-
tion of mechanical systems, the electric circuit analysis, chemical reaction
kinetics, control theory, semi-discretization of partial differential equations.

The interest in handling DAEs numerically has increased with the devel-
opment of the computer technology. Much progress has been made in the
analysis of DAEs (see e.g. [GM86], [BCP89], [HLR89], [HW91], [RR91]) dur-
ing the last ten years.

In contrast to explicit ordinary differential equation, the integration of DAEs
may cause essential difficulties. Constraints define a manifold on which so-
lutions of the DAE have to lie. Initial values must be chosen in such a way
that they satisfy the constraints. Furthermore, the numerical solution must
not drift too far away from the manifold.

For a better understanding of the behaviour of DAEs, they can be character-
ized by the notion of index. Roughly speaking, the index is a measure for the
deviation of a DAE from an (regular) ODE. DAEs of higher index (> 2) are
ill-posed in the sense that small perturbations in the initial data may cause
arbitrarily large changes in the solution data.

The main scope of this thesis is to study the numerical solution of DAEs
arising from circuit simulation. The differential algebraic equations in this
field are often of lower index (< 2).



2 Introduction

The solution behaviour of index-1 DAEs is well-understood. There are vari-
ous codes handling index-1 differential algebraic equations successfully. Com-
mon codes like DASSL by L.R. Petzold and LSODI by A.C. Hindmarsh
use the BDF method for the integration of DAEs. Recently, also one-step
methods such as Runge-Kutta and extrapolation methods have been used
successfully. The well-known code RADAUS by E. Hairer and G. Wanner
uses the 3stage Runge-Kutta method Radau IIA. The new code CHORAL
by M. Giinther was developed for electric circuit simulation and is based on
Rosenbrock-Wanner methods.

Regarding these facts we are interested in the numerical solution of index-2
DAEs arising from electric networks. We restrict ourselves to initial value
problems. We have chosen the BDF method for our investigations because
this method is especially suited for the integration of initial value problems
of stiff differential equations. The thesis is organized as follows:

- Chapter 1 gives a short introduction to DAEs. We illustrate some
properties by examples of circuit simulation. Further, we introduce the
notion of the index and explain some index concepts.

- In Chapter 2 we look at modern techniques of electric circuit analysis.
We consider the classical and the charge-oriented modified nodal anal-
ysis. The DAEs arising from these simulation techniques are the object
of our interest in the next chapters.

- Chapter 3 deals with the analysis of perturbed initial value problems.
For the numerical solution of DAEs, it is important to study the be-
haviour of a solution of a perturbed IVP in comparison to a solution
of the original IVP.

- The BDF method applied to DAEs is investigated in Chapter 4. The
feasibility, i.e., the solvability of the nonlinear equations in each step, is
studied. Furthermore, we describe the stability behaviour of the BDF
method. It explains the influence of the defects onto the numerical
solution in more detail.

- Chapter 5 deals with circuit simulation. The structure of DAEs aris-
ing in this field is analyzed. We answer the question of the index of
the classic and the charge-oriented modified analysis for some network
classes. We present our results of the numerical simulation of two ap-
plications, of a NAND-gate and of a ring modulator, by means of our
own code DAE2SOL (see [Tis92]) which is based on the BDF method.



- Finally, we state some facts from algebra and analysis in the Appendix.
They are useful for the investigations in the Chapters 3 and 4.
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Chapter 1

Fundamentals of DAEs

Differential algebraic equations are implicit ordinary differential equations of
the form

F@@),2(),8) =0, f:R"xDxT — R, (1.1)

where x : Z — R™ denotes the unknown function, Z is an open interval of R,
and D is an open subset of R™. The partial derivative f}(z,x,t) is singular
and has constant rank on its definition domain Dy := R™ x D x Z.

The behaviour of DAEs differs from that of explicit ODEs in several aspects.
We want to describe some of the essential differences here. For a better
understanding, let us look at special systems.

Definition 1.1
A DAE is called semi-explicit if it is of the form

where z(t) = (z1(t), z2(t)) € R™ x R™ and m = my + mo.

It makes sense to speak of a solution (z1,z5) of the system (1.2)-(1.3) if the
component x; is smooth and x5 is continuous. In comparison with regular
ODEs, it is not necessary to demand smoothness for all components.

Example A. Figure 1.1 shows a small circuit that may be modelled by the
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following simple semi-explicit system

Of) + Is(e™r —1) — I(t) = 0 (1.4)
u(t) = v(t) (1.5)
Q(t) — C - u(t) = 0, (1.6)

where I denotes the current through the circuit, u the voltage at the capac-
itance C', and @) the charge of the capacitance C. The constant Is denotes
the blocked saturation current, the constant Ur represents the voltage in
temperature of the diode.

1

v(t) C

Figure 1.1: Circuit A

This system has a continuous solution
u(t) = v(t),
I(t) = C V() + Is(e¥r — 1),
Q) =C-v(?)

if and only if v is continuously differentiable. For the smoothness of all
components of the solution, the input function v has to be twice differentiable.

If we consider autonomous semi-explicit DAEs
.j?l + f(.’IZ'l,J?Q) =0 (17)
g(l'l,.TQ) - 05 (18)

it is obvious that a solution (xy,x2) of the system (1.7)-(1.8) has to belong
to the submanifold of R™

My ={(%) eR": g(xq1,29) =0}

Therefore, initial values for IVPs of such a DAE have to lie in this subman-
ifold. If g depends on its first component x; only, one differentiation of the
constraint (1.8) implies the relation

9 (x1) f(w1,29) = 0



for a solution of the system (1.7)-(1.8), i.e., initial values for IVPs of such a
DAE must be elements of the more restricted submanifold of R™

My = {(z;) ER™: g(x1) =0, ¢'(x1)f(21,22) = 0}.

In the case of Example A above, the initial value (ug, Iy, Qo) is even uniquely
determined by

Uy = V(to),

v(tg)
IO =C- Vl(t()) + Is(evTo_ - 1),
Q() = C . V(to).

This example reveals a further aspect. The DAE (1.4)-(1.6) involves a differ-
entiation problem. In the case of regular ODEs, we have to do with integra-
tion problems only. Since the differentiation represents an ill-posed problem,
such DAEs provide difficulties in handling them numerically.

Example B. Consider a further simple circuit given in Figure 1.2, which
may be modelled by the system

ug(t)—uy ()

Qt)—Is(e v —1)=0 (1.9)
Te(e ™" — 1) = I(t) =0 (1.10)
uy (t) = v(t) (1.11)
Q(t) — C-us(t) =0 (1.12)
U, - U,
v(t) — C

Figure 1.2: Circuit B

This system has a solution

ug ()—v(t)
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if and only if u, is a solution of the explicit ordinary differential equation

Ig  w®)-v®)
= —|\e Ur

Uso(t) C

In this case, we do not have to differentiate, we must integrate as in the case
of regular ODEs.

For handling DAES, it is useful to characterize DAEs in such a way that the
criteria provide information about their behaviour. Such a characterization
is given by the index of a DAE. Roughly speaking, the index of a DAE is
a measure of the deviation of a DAE from regular ODEs. The literature
provides a number of index concepts. We want to look at some of them in
the next sections.

1.1 Linear DAEs with constant coefficients:
Solution spaces and index definition

The results obtained in studying linear DAEs with constant coefficients
Az(t) + Bz(t) = r(t) (1.13)

form the basis of all index concepts for DAEs. The matrices A and B are
elements of L(R™), where A is singular. The solution of this equation system
is closely related to the properties of the matrix pencil {A, B}. Looking at
the homogeneous system

Ai(t) + Ba(t) = 0

with the initial condition z(¢y) = 0, we obtain an infinite-dimensional solution
space if the matrix pencil is singular, i.e. if the polynomial

p(A) :=det(AA + B)

vanishes identically (see e.g. [GM86]). Therefore, it makes sense to consider
only nonsingular matrix pencils {A, B}. Nonsingular matrix pencils {4, B}
may be transformed into the normal form of Weierstraf (see e.g. [Ganb4]) by
regular matrices E, F' € L(R™)

EAF = diag(I,J), EBF = diag(W, I),
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where W lies in L(R™), J € L(R™) is a nilpotent block matrix with Jordan
blocks of the form

and m = mq + my is true. This transformation leads to a system of the form

u'(t) + Wu(t) = 71(t) (1.14)
JU'(t) + v(t) = 7a(t), (1.15)

which is equivalent to equation (1.13). Equation (1.14) represents a regular
ODE. The solution of the second equation (1.15) can be put as follows:

v(t) = Y (=D (T ()™ (1.16)

k=0

if 75(t) is differentiable sufficiently often and if u denotes the nilpotency
of the Jordan block matrix J. This p is independent of the choice of the
transformation and is called the index of the matriz pencil { A, B}. Naturally,
the index of the DAE (1.13) is defined by this number .

The system (1.14), (1.15), and its solution (cf. (1.16)) make clear:

(i) DAEs do not only represent integration problems, but differentiation
problems, too. Some parts of the right-hand side must be differentiable
sufficiently often.

(ii) Some components of the solution are determined algebraically. This
implies that the choice of initial values is not free for solutions of IVPs.
The initial values must be “consistent” with the DAE.

1.2 The index for nonlinear DAEs

The various index concepts are based on the facts for linear DAEs given in
the section above. Here, we want to touch some of them.

The geometrical index (see e.g. [Rhe84], [RR91], [Rei90], [Gri91]) provides
useful insights into the geometrical and analytical nature of DAEs. For this
approach, DAEs will be regarded as differential equations on manifolds.
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The differential index (see e.g. [GP84|, [GGL85], [BCP89], [Gea90], [CGI3b])
is based on differentiations of the original DAE and often used in the litera-
ture.

The perturbation index (see e.g. [HLR89]) orientates on the behaviour of the
solution of slightly perturbed DAEs in comparison with that of the solution
of the original DAEs. It is a good measure for numerical difficulties.

The tractability index (see e.g. [GM86], [Mar90], [M&r92a]) provides a de-
composition of the DAE into its inherent regular ODE as well as algebraic
equations and differentiation problems. It is suitable for a detailed analysis of
DAEs. Further, it is distinguished by minimal smoothness conditions to the
function f. The circuit simulation provides functions with low smoothness
properties, hence, we will use the tractability index for our investigations in
the next chapters.

Some relations between the tractability index and the geometrical index are
given in [Mé&r94]. In Chapter 3, we present relations between the tractability
index and the other index concepts.

In this paper, we will restrict ourselves to the index 2 case. Results on index 1
will be given if this fits into the framework.

1.2.1 Geometrical index

The geometrical index of a DAE describes the behaviour of DAEs as the
behaviour of regular ODEs on a constraint manifold. For ease of notation,
we consider DAEs in autonomous form

F@), z(t)) = 0. (1.17)

Let f be twice continuously differentiable. Further, let P, (%, x) be the orthog-
onal projection onto im f} (&, z) and Q4(%,z) := I — P,(&, z). Differentiating
equation (1.17) once, applying projections, and dropping the argument ¢, we
obtain a new problem

f1(@,x) == P(z,2) f(2,2) + Qu(T,z) fo(z, x)Z = 0. (1.18)
Any C?%-solution of (1.17) solves equation (1.18).

Definition 1.2
The DAE (1.17) has the local geometrical index 1 around the point (yo, Zo)
€ f71(0)Nf; 1(0) if and only if the partial derivative (f1) (yo, 7o) is invertible.
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In this case, problem (1.18) can be transformed, locally around (yo, x¢), into
an explicit ODE.

Consider Example B on page 9. Rewriting the system as an autonomous
DAE and dropping the argument ¢ we obtain

F—1=0
. ug—uy
Q—Ig(e Ur —1):0
Is(e m —1)=I=0
ur —v(r) =0
Q—C'UQZO.

The canonical projector P,(i,x) is given by

10000
01000
P(iz)=[0 00 0 0
00000
00000

for z := (7, uy,us, I,Q)T. Problem (1.18) reads

7—1
Q—Ig(e T —1)
fild @) = | e ity — i) = 1| =0
iy — V7

QR — Cuy

For the partial derivative (f1)%(vo, o) it holds that

! 0 0 0 0
0 0 0 0 1
(fl),i.(yo,.’ljo) = 0 Iieuzou—Tmo IieugoU_TulO 1o
-V 1 0 0 0
0 0 -c 0 1

Obviously, (f1)%(vo,xo) is invertible for all (yo, o), i-e., the system (1.9)-
(1.12) has the geometrical index 1, even globally. In this case, the geometrical
index concept requires v(t) to be continuously differentiable.
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Let f be three-times continuously differentiable. Introducing the orthogo-
nal projections P, (&, z) onto im (f1)5(Z,2), Qu(%, x) := I — P (&, ) and
differentiating (1.18), we obtain a further problem

fo(&,2) := Pr(&, x) f1(&, ) + Quu(&, z) fi, (£, 2)2 = 0.
(1.19)

Any C*-solution of (1.17) solves the system (1.19).

Definition 1.3

The DAE (1.17) has the local geometrical index 2 around the point (yo, Zo)
€ f10)N f71(0) N f£57'(0) if and only if the partial derivative (f1)’, (o, o) is
singular, the rank (f1)’(y, z) is locally constant near (yo,zo) and the partial
derivative (f2)%(yo, zo) is invertible.

For such DAESs, problem (1.19) can be transformed, locally around (yo, o),
into an explicit ODE.

Consider Example A on page 8. Rewriting the system as an autonomous
DAE and dropping the argument ¢ yields

F—1=0
Q+ Is(efr —1) = I =
u—v(T)=0

Q—-—C-u=0.

The canonical projector P,(,x) is given by

P.(%,z) =

O O O
S O = O
o O OO
o O OO

for z := (7,u,I,Q)”. Problem (1.18) reads

7—1
filia) = | @t Iste™ —1) =1 _
u —vT

Q—-Cu
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For the partial derivative (f1)%(vo, zo), we have

1 0 00

, o 0o 01
(fl)a'v(y(bxo) - v 1 0 0
0 —-C 01

Obviously, (f1)5(yo, o) is singular and has rank 3 for all (yp,zo). For the
projector Py (%, ), we have

2+C? Cy(t) —C?%(t) —C% (1)
Pou(i,z) = 1 C¥(t) 1+C24+C%(1)? C© 1
L) =5 me ¢ C2(1)2 | —CH0 c 2+C¥(t)? —c
—Ci(t) 1 —-C  14+C?24+C%(t)?

Then it holds for the partial derivative (f2)%(yo, zo) of problem (1.19) that

1 _CQQ\',STO) . C\;(OT())ﬂ C\;(OTO) O
0 A -1 7
(fQ);(yo,xO) — . Q0 \ Q0 (7))
—V(’T()) 1-— 2—0 - o% 0 _a_C(') 0
0 -—C-C_1pg L1 1
ag [o 7)) ag

for g := 2+ C? + C?v(19)? and Gy := %e%. Now, one can compute that
this matrix is regular for all 75 and wug, i.e., the system (1.4)-(1.6) has the
geometrical index 2. Note that the geometrical index concept requires v(t)
to be twice continuously differentiable.

1.2.2 Differential index

Roughly speaking, the differential index of a DAE is the number of differen-
tiations that are necessary for the transformation of the DAE into an explicit
ODE.

Definition 1.4
Let f be once continuously differentiable. The DAE 1.1 has the differential
index 1 if and only if the equation system of the variables ¢, z, 2/, z"

f(a:',x,t) =0

d ' . 0 ' " 2 ' ' 2 ' .
%f(a:,x,t) = %f(x,a:,t)x +axf(a:,x,t)ac + 8tf($’$’t)_0

uniquely determines the variable 2’ as a continuous function of (z,?).
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Looking again at Example B, differentiating the system (1.9)-(1.12) and drop-
ping the argument ¢, we obtain the system

.. Jo w-u
Q—U—ie Ur (112—111):0
o wo—w
U—‘;6 Ur (Ug—ﬂl)—lzo
Uy =V
Q - CU'Q = Oa

iLl—V

I u)—u
Uz = 65(6 o —1)

I ug—uy [ ug—uq
I—U—‘;e 2UT1(65 e ir —1)—v)

i.e., the system (1.9)-(1.12) has the differential index 1.

Definition 1.5

Let f be twice continuously differentiable. The DAE 1.1 has the differential
index 2 if and only if it is not of index 1 and the equation system of the
variables ¢, z, =/, ", 2"

[z, t) =0
%f(x',x,t) = % (', z,t)z" + %f(x',x,t)x' + %f(x',x,t): 0
d? 0
P (2, x,t) = @f(x',a:,t)x”' + ... =0

uniquely determines the variable 2’ as a continuous function of (x,t).

For Example A, differentiating the system (1.4)-(1.6) and dropping the ar-
gument ¢, we obtain the system

Is w . .
Q+U—‘;evm—[=0 (1.20)
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Trivially, there is no continuous function A such that all solutions (f u,l,Q,t)
of (1.4)-(1.6) and (1.20)-(1.22), can be described by

f:h(u,I,Q,t).

Consequently, the system (1.4)-(1.6) does not have the differential index 1.
Differentiating (1.4)-(1.6) twice with respect to ¢ we obtain

e I _u I u .
Q + U—‘;eUTil—lr U—S%eUTif —I=0

U=y

Q—Cii=0.

This system, together with the original system (1.4)-(1.6) and the system
(1.20)-(1.22), implies

U=V

. Is
I=Cv+ U—STevTv
Q=1-Is(e’r —1),

i.e., the system (1.4)-(1.6) has the differential index 2.

1.2.3 Perturbation index

The perturbation index interprets the index as a measure of sensitivity of
the solutions with respect to perturbations of the given problem.

Definition 1.6
The DAE 1.1 has the perturbation index 1 along a solution z,(t) on Z; :=
[to, T if, for all functions z(¢) having a defect

there exists an estimate

Iz = ]| < const (Jla(to) = o (to) | + max [la(t)])

whenever the expression on the right-hand side is sufficiently small.
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Studying Example B with a perturbed right-hand side ¢ = (g1, 2, g3, q4)"
and dropping the argument ¢, we obtain

uy—v—g3

w=vtg, I=Isle 7 —-1)—q, Q=Cutaq
as the solution, where u, is a solution of the explicit ODE

. Ig  w2-v-a3 1 .
Uy = 55(6 r = 1)+ S(a— da)

C
and usg, is a solution of the explicit ODE

I UQy —V
1.1/2* = —S(e 2UT — 1)

C

Hence, the following error estimation holds:

Ul —ULx
U2 —U2x
I—-1,
Q—Qx

= |g3| + [ug — ug.| + |Is(e” 7 —e U1 ) — go| + |C(ug — u2.) + 4
< const(|ug(to) — ua«(to)| + [|q]]) (1.23)

< fur — v + Jug — ugi| + | — L] + [Q — Q]

for sufficiently small defects in the initial value and sufficiently small pertur-
bations g, i.e., the system (1.9)-(1.12) has the perturbation index 1.

Definition 1.7
The DAE 1.1 has the perturbation index 2 along a solution z,(t) on Z :=
[to, T if it is not of index 1 and, for all functions z(t) having a defect

f(i(t)’x(t)at) = Q(t)a

there exists an estimate

— < — ;
o = 2. < const (lo(to) — z.(t0)| + maxx )] + max (o))

whenever the expression on the right-hand side is sufficiently small.

Studying Example A with a perturbed right-hand side ¢ = (g1, g2, g3)" and
dropping the argument ¢, we obtain the solution

U=V-+q

v+go

I=C(¥+¢)+dg+Is(elr —1)—q
Q=C{+q)+aqg.
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Hence, the following error estimation holds:
-
(F ) <+ 1= L1+1Q-Ql
= |go] + ds + Cdo + Is(e T — e77) — 1| + |as + Ca
< const(lqll + ll4ll) (1.24)

for sufficiently small perturbations ¢q. Obviously, we do not find a constant
K such that

[ = L] < K([z(to) — z«(to)[ + [lgl])
is true. This implies that the system (1.4)-(1.6) has the perturbation index 2.

We want to remark that the perturbation index concept requires information
about the solution of the DAE.

1.2.4 Tractability index

The tractability index is suitable for a detailed analysis of DAEs. Further,
it distinguishes itself by minimal smoothness conditions to the function f.
The circuit simulation provides functions with low smoothness properties.
Therefore, we will use the tractability index for the investigations in the
next chapters. The function f is assumed to have a constant nullspace of
fi(&,z,t). It should be mentioned that this is frequently the case in applica-
tions, indeed. In particular, this assumption is satisfied for problems arising
from charge oriented MNA (see Chapter 5).

Now, there is a projector @) onto the nullspace ker f. (&, z,t). Denoting P :=
I — @, the relation

f(y,:v,t)—f(Py,a: t):

1
/f sy + (1 —s)Py,z,t)Qds = 0, (y,r,t) € Dy,
0

holds. Hence, equation (1.1) may be written as

f(Pi(t), z(t),t) =0, (1.25)
and the natural solution space is given by

Cy(Z,R™) :={r € C(Z,R™): Px € C'(Z,R™)}. (1.26)
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Let f : Dy — R™ be a continuous function and f; as well as f, be continuous.
Further, we introduce some useful matrix functions

Ay, z,t) = fily, z,1), (1.27)

B(y,z,1) == f,(y,2,1), (1.28)

Gi(y,z,t) == A(y, 7, t) + B(y, 2, 1)Q, (1.29)

B (y,z,t) := B(y,z,t)P, (1.30)

and useful spaces

N = ker A(y, z, 1), (1.31)

S(y,xz,t) :={z € R" : B(y,z,t)z € im A(y,z,t)}, (1.32)

Ni(y, z,t) := ker G1(y, z, t), (1.33)

Si(y,z,t):={z € R" : By(y,x,t)z € im Gy (y,z,1)}.

Definition 1.8
The DAE (1.1) is said to be index-1 tractable on open G C Dy if the
relation

N N S(y,z,t) = {0}
is true for all (y,z,t) € G.

Remark 1.9 Regarding Lemma A.1, it is easy to see that G;(y, z, 1) is non-
singular and the relation

N & S(y,z,t) =R™

is satisfied if the DAE (1.1) is index-1 tractable. Note that the regularity of
(1 is independent of the choice of the projector ().

For Example B we obtain

0001 fre T —fge T 00

oo o0 o0 I
A=1lg 00 0| B@=|"0

000 0 1 0 0 0

0 —C 0 1

for z := (uy,ug, I,Q)T. Thus, the relations
N = {(21, 29, 23, 24)" : 24 = 0},

S(z) = {(z1, 22,23, 24)" : 21 =0, 24 = C, 23 = —€ T 25}
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are true, and N N S(z) = {0} is valid, i.e., the system (1.9)-(1.10) is index-1
tractable.

Definition 1.10
The DAE (1.1) is index-2 tractable on G C Dy if

- the matrix G1(y, z,t) is singular on G,
- rank(G4 (y,z,t)) is constant on G and
- the relation Ny(y,z,t) N Si(y,z,t) = {0} is satisfied on G.

Remark 1.11 Applying Lemma A.1 to G1, B, and to a projector (); onto
N, we conclude the regularity of the matrix

Gq(y, z,t) := G1(y, z,t) + B(y, z,t) PQ1(y, z, 1)
and the validity of the relation
Ni(y,z,t) & Si(y,z,t) =R™
if the DAE (1.1) is index-2 tractable.

In the case of Example A, we now have
001 fe’r —1 0
A=1(0 0 0], B(z) = 1 0
0 00 1

for z := (u,I,Q)T. Thus, the relations
N = {(Zl,ZQ,Zs)T 1 R3 = 0}, S = {(Zl,ZQ,Zg)T 12 = k3 = 0}
are true, and N NS = {(z1, 22, 23)7 : 21 = 23 = 0} # {0} is valid. Choosing

the projector () := (é ((1; §), we obtain
leevr -1 1
Gi(z) =] 1 0 0l
—-C 0 O

and the relations
N1 = {(Zl,ZQ,Zg)T A 0,22 = 23}, Sl = {(Zl,ZQ,Zg)T .23 = O}

are satisfied. Hence, the relation ker G; N S; = {0} holds, i.e., the system
(1.4)-(1.6) is index-2 tractable.
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Chapter 2

Introduction to circuit
simulation

The circuits we want to study here are assumed to be modelled by an RLC-
network, which can be divided into a dynamic network and a non-dynamic
one, that are connected by a b-port. The non-dynamic network consists
of linear resistors, nonlinear resistors, independent sources, and controlled
sources. The dynamic network contains linear and nonlinear capacitances
and inductances. We speak of a nonlinear capacitance if there is a nonlinear
differentiable mapping gc = ¥ (u¢) between charge and voltage of the capaci-
tance. Accordingly, we speak of a nonlinear inductance if there is a nonlinear
differentiable mapping ®;, = ¢(I1) between flux and current of the induc-
tance. Such networks may be modelled by differential algebraic equations
(cf. [Mat87]).

Many modern circuits consist of a large number of elements. If we want
to simulate such networks, the equations have to be generated automati-
cally. We want to study two modern modelling techniques making such
an automatic generation possible, namely, the classical approach and the
charge-oriented approach of the modified nodal analysis (cf. [BG86], [DR91],
[FWZ192], [FG94]).

Firstly, we will illustrate both of them by means of a little example. We con-
sider a double way rectifier with LC filter. The alternative currents through
Vi and V; are being rectified to a directed current through R;. The diodes
D and D, rectify the current. The inductances L, L, and the capacitances
C1, Oy, (4 filter the remaining oscillations of the current.
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Figure 2.1: Double way rectifier with LC filter

The network constants are given by the following equations:

R, =500Q, R,=R;=1009,
Ci,=0C,=0C3=50-10°F, L,=1L,=10H.

The model functions for the diodes are of the form
Ip = G(Vp) :=1072(e*°"? —1).
The voltage sources supply the circuit with the voltage

Vi(t) = Va(t) = 30 sin(27 - 50 - ¢).

2.1 Classical modified nodal analysis

The vector of unknowns z consists of

e the nodal potentials u and

e the currents I of the voltage-controlled elements.

The system contains the equations for each node (except for the node with
the zero potential), which are derived by Kirchhoff’s nodal law. Additionally,
the characteristic equations of the voltage-controlled elements (inductances
and sources) belong to the system. The equations of the current-controlled
elements are set into the system directly.
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In the case of the double way rectifier, we obtain the following system.
. U1
C —+1;=0
1U1 + o + 4
02?:62"‘12—11 :0
031.1,3 =+ G(U3 — U4) =+ G(U3 — U5) — IQ =0
Ug — Ug

R G(ug —ug) =0
%—G(u?,—%):o
_ “41;2”6 + =0
U5};3U7 o

Lljl — (’LL1 — UQ) =0
ngg — (’LLQ — Ug) =0
ug = Vi(t)
The variables I3 and I, describe the currents through the voltage sources V;

and V5. In general, we obtain a differential algebraic equation system of the
form

D(z)z + f(z) = r(t)- (2.1)

Let the components of the unknown vector x be ordered in such a way that
x = () is satisfied — u represents the vector of nodal potentials, and I
represents the vector of currents. Further, let the i-th equation of (2.1)
represent Kirchhoff’s nodal law for the node with the nodal potential u;, and
let the (n, + )-th equation of (2.1) represent the characteristic equation for

the inductance L;.

2.2 Charge-oriented modified nodal analysis

Here, the vector of unknowns contains

e the nodal potentials wu,

e the currents I of the voltage-controlled elements,
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e the charge @) of the capacitances and

e the flux ® of the inductances.

The system contains the equations for each node that are derived by Kirch-
hoft’s nodal law. Additionally, the characteristic equations of the voltage-
controlled elements belong to the system. The equations of the current-
controlled elements are set into the system directly. Finally, the characteristic
equations for charge and flux belong to the system.

This method provides the system
. Uq
_ L4 =0
Q1+ R, + 15
~ Qe+ L —1,=0
— Qs+ G(us —uq) + Gus —uz) — I, =0

Uy — Ug

R G(uz —ug) =0
u5]ggu7 —G(uz —us) =0
_ “4};2”6 +L=0
u5};3u7 .

(bl—(Ul—UQ):O
éQ—(Ug—Ug):O

ug = Vi (t)

ur = Va(t)

Q= —Ciuy
Q2 = —Couy
Q3 = —Csus
S, =1Ly-1
Qy =Ly Iy

for the double way rectifier. In general, we obtain a differential algebraic
equation system of the form
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At this point, let the components of the unknown vector x again be ordered
in such a way that x = (%) is satisfied — u represents the vector of nodal
potentials, and I the vector of currents. Additionally, let the i-th equation
of (2.2) again represent Kirchhoff’s nodal law for the node with the nodal
potential u; and let the (n, + 7)-th equation of (2.2) represent the character-
istic equation for the inductance L;. Let the components of the vector ¢ be
ordered in such a way that ¢ = (g) is satisfied — () represents the vector of
charges, and ® the vector of fluxes. Then, the function g(z) is of the form

ota) = (9).
Remarks 2.1

(1) The coefficient matrix D(x) of equation (2.1) satisfies the relation

D(z) = Ag'(z) = Ad‘((]i—f:). (2.4)

(2) If the network is modelled without capacitances, equation (2.3) reads

9(z) = g2(I).

Correspondingly, if the network is modelled without inductances, equa-
tion (2.3) reads

(3) If the network contains neither a capacitance nor an inductance, i.e.,
if the circuit does not have dynamical elements, then equation (2.3)
disappears completely. Both modelling techniques lead to the same
system

f(z) = ()

in this case. Hence, we may exclude this case when studying the dif-
ferences between both modelling techniques in the following.
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Chapter 3

Solvability of perturbed IVPs
of DAEs

We are interested in the numerical solution of initial value problems of dif-
ferential algebraic equations. Therefore, we study the existence of solutions
of perturbed TVPs of DAEs assuming that the original DAE has a solution
x,. Further, we investigate the stability behaviour of the numerical solution,
i.e., we present estimations for the deviation of the solution of a perturbed
IVP from the solution of the original IVP. For that, we consider compact
intervals Zy C Z. Let Z; be the semi-open interval [a,b) if Z; denotes the
closed interval [a, b]. Further, let G be an open neighbourhood of the trajec-
tory (2.(t), z.(t),t) with ¢t € Zy. Let us speak of a numerical solution if it is a
solution of a perturbed IVP. We speak of an exact solution if it is a solution
of the original IVP.

The first two sections of this chapter deal with index-1 problems. We hope
that these sections will import the idea of the tractability concept. Further-
more, the analysis of general index-2 problems in later sections will be better
understandable if the reader is familiar with the analysis of index-1 DAEs.
The results presented for index-1 problems are well-known (see e.g. [GM86],
[BCP89], [Mar94], [Tis94]).

3.1 Linear index-1 DAEs

Consider the linear index-1 tractable DAE

Ab)i(t) + B(t)z(t) = r(¢) (3.1)
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with constant nullspace ker A(¢) (for an explanation of index-1 tractability
see Subsection 1.2.4). Let A, B, r be continuous. Then, the matrix

G.(t) = A(t) + B()@

is regular (see Remark 1.9 and recall that @ is a projector onto ker A(t)).

For ease of notation, let us drop the argument ¢ in the following. We can
transform equation (3.1) equivalently into the form

Gi'Ai + GT'Bx = Gi'r (3.2)

The relations
Gi'A=P and G{'BQ=Q

imply
Pi+ G{'BPx + Qv = Gy'r. (3.3)
Multiplying (3.3) by P and @, respectively, we obtain the equivalent system
Pi+ PG{'BPx = PGT'r
QGT'BPz + Qx = QG{'r.

The first equation (3.4) represents an explicit ODE for the component Pz.
The second equation (3.5) allows the algebraical determination of the com-
ponent Q)z depending on Pz. Therefore, all solutions z,(t) of the DAE (3.1)
are given by

7, == (I — QGT'B)u, + QGT'r (3.6)
if u, is a solution of the IVP

u+ PG{'Bu = PGy'r (3.7)
u(ty) = up € im P. (3.8)

Hence, one can choose any value in the space im P as the initial value u(to) =
Px(ty). However, the other component Qz () has to satisfy

Qux(to) = QG1 (to)[r(te) — Blto)u(to)].

Hence, an IVP of index 1 is appropriately defined if the initial conditions are
related to the P-component only. Now, we are in a position to formulate the
following theorem.
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Theorem 3.1 Let z, € Cy(Zy, R™) be a solution of the indez-1 tractable
DAE (8.1). Then, the perturbed initial value problem

A(t)z(t) + B(t)z(t) = r(t) + q(1) (3.9)
Pz(ty) =up € im P (3.10)

is uniquely solvable on Cy (Lo, R™) for continuous perturbations q. Further-
more, the estimation

|2 = Zulloo + | PE = Piulloo < K(llglloo + |uo — Pzs(to)])

1s true for a constant K.

The theorem ensures small deviations of the numerical solution from the
exact solution if the perturbations ¢ and the deviation in the initial value are
sufficiently small.

Proof: Following the way taken before introducing the theorem for a per-
turbed right-hand side r + ¢ instead of r, the solution of (3.9)-(3.10) is given
" r:=(—QG'B)u+QGi'(r +q)
if u solves the IVP
o+ PG{'Bu= PG (r +q)
u(to) = up € im P.

The equations (3.6) and (3.7) imply

r—x,= (I —QG'B)(u—u,) + QG'q (3.11)

and
o — i, = —PGT'B(u — u,) + PG 'q.

Then, we find a constant K; such that
a(t) — i ()] < Ka(lu(t) —uc(®)[ + llall) Vi€
is true. Using the Dini derivative

. m(t+h) —m(?)
D.ym(t) = 111’{1>10nf A
for m(t) := |u(t) — u.(t)| and following the proof on page 146 in [Tis94], we
find a constant K, such that

is satisfied. Regarding equation (3.11), the assertion follows immediately.
O
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3.2 Nonlinear index-1 DAEs

We investigate general nonlinear DAEs

f(@(t), z(t),t) =0 (3.12)
that are index-1 tractable on G.

The existence and the behaviour of numerical solutions for index-1 problems
is well-known (see e.g. [BCP89], [GMS86]). We formulate the results in the
following theorem.

Theorem 3.2 Let x, € CN\(Zy, R™) be a solution of the DAE (3.12) which is
index-1 tractable on G. If the perturbation q is continuous, then the perturbed
initial value problem

fa(t), z(t), 1) = q(t) (3.13)
Px(s) =us € imP, |us— Pz.(s)| <7, |¢]lec <o,
(3.14)

is uniquely solvable on Cx(J,R™) for each s € I, and sufficiently small T
and o, where J = [s,S) C Iy. Further, the inequality

[ = Zulloo + [|PE = Piufloo < K ([lglloo + s — Pz.(s)[)

holds.

We want to present a proof of this theorem in order to provide some ideas
that will be helpful for our investigations in the index-2 case later.

Proof: Firstly, we transform the equation

into the equivalent system

A)i(t) + B(t)z(t) + h((t), 2(t), 1) — r«(t) = q(t) (3.15)
where
A(t) = fi(@.(1), 2. (1), 1),
B(t) = fi(2.(t), 2(1), 1),
My, z,t) = fy,z,t) — A()(y — 2.(t)) — B(t)(z — z.(2)),
re(t) = A(t)T. () + B(t)z.(t).
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Then, the function A has the following properties:
h(.(t),z.(t),t) =0, by (4(t), z.(t), 1) = 0, hl (2. (t), z.(),t) = 0.

In other words, the functions h, hfy and A/, map small neighbourhoods of the
trajectory {(Z.(t), z.(t),t), t € Iy} into small spheres around zero.

Since the DAE (3.12) is index-1 tractable, the matrix
Gi(t) = A() + B()@Q

is regular (see once more Remark 1.9 and recall that ) is a projector onto
ker A(t)). Regarding

1
/f (py + (1= ¢)Py,z,1)Qdp = 0, (y,z,t) € Dy

0
and dropping the argument ¢, the system (3.15) is equivalent to
G 'Ai + G 'Bx + G 'h(Pi,z,) — G'r. = Gy 'q.

Using the relations G7*A = P and G7'BQ = @, we obtain

Pi+G{'BPz + Qz + G{'h(Pi,z,-) — Gy 'r. = G 'q.

(3.16)
Multiplying (3.16) by P and @, respectively, and introducing
u:= Pz, v:=Qu, Uy := Px,, v, := Qu,,
we obtain
w4+ PGT'Bu + PGT h(t,u +v,-) — PGy'r, = PGTq
(3.17)
QGT'Bu+v+ QG7 h(u,u+v,-) — QGT'r, = QGT'q.
(3.18)

Now, we may solve the algebraic part (3.18) of the DAE with respect to v in a
neighbourhood of the solution z,. We introduce a function F': U,(z,) — R™
defined by

F(v,u',u,q,t) = QGT(t)B(t)u + v — QGT'r, — QG (t)g
+QGT ()W u+v,t), (3.19)
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where
Ua(zs) = {(v,u',u,q,t) : [v—v.(t)|+]|u' =0 (t)|+|u—u.(t)|+]q] < a, t € Ty}
and the value of « is so small that (v',u + v,t) € G is satisfied for

(v, u,q,t) € Uy(x,).

Note that the variables v, u’, u and ¢ play the role of parameters here. Then,
F(v,(t),us(t), us(t),0,8) =0, Fl(va(t), (), us(2),0,8) =1 Vit eI

is true, and the implicit function theorem provides a function

[ Uy(z,) = R”,
where
Up(z.) = {(u/,u,q,t) : |u' — (b)) + Ju — ua(t)| + |g] < p, t € Ty},
which has continuous partial derivatives fy, fu, fq and satisfies the relations

F(f(', u,q,t),u' u,q,t) =0, fu', u,qt)=Qf(, u,q,t)
Flia(t), uu(t),0,8) = v.(t),  for (i (1), ua(t),0,2) = 0.

Inserting the function f into equation (3.17) we obtain (dropping the argu-
ment t)

o+ PG, Bu + PG h(i,u+ f(i,u,q,-), ) — PG, 'r, = PG| 'q.
(3.20)

We introduce a function K : V,(x,) — R™ defined by
KW' u,q,t) :=u' + PG{'(t)B(t)u — PG]'r, — PGT'(t)q
+ PG (t)h(v',u + f(u',u,q,1),1),
where
Va(z.) = {(v, q,t) : |u' — u(t)] + |u — u(t)| + |¢] < @, t € Ty}

Again, the variables v/, u and ¢ play the role of parameters at this point.
The function K has contmuous partial derivatives K/, K, K and satisfies
the relations

K(0,(t),u,(t),0,8) =0, K., (1,(t),us(t),0,t) =1  Vte€TI.
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Applying the implicit function theorem again, we solve the system (3.20)
with respect to v’ and obtain an explicit ODE of the form

u' = k(u,q,t), (3.21)
where k is a function mapping V,(z,) into R™ with
Vo(zy) = {(u,q,t) : |u—u(t)|+ ¢l <o, t €Ly}

The function k£ has continuous partial derivatives l};, 15; and satisfies the
relations

K(k(u,q,t),u,q,t) =0, k(u,q,t) = Pk(u,q,t), 1.(t) = k(u.(t),0,t).
We may solve the regular IVP
u=k(u,q,t), u(s)=u, €imP

on CY(J,R™) with J := [5,5) C Zy and s € Ty if |us — u.(s)| + ||g]|eo is
sufficiently small. Then, the unique solution of the IVP (3.13)-(3.14) is given
by

x(t) = u(t) + f(k(u(t), ¢(t), 1), u(t), q(t), 1). (3.22)

Since f has the continuous derivatives f’,, f! and fé’ and Z; is a compact
interval, there is a constant L7 such that

[0 = vulloo < L (Il = thelloo + [l — telloo + llglloo) (3.23)

is satisfied. Since k& has the continuous derivatives k! and 15;, and Z; is a
compact interval, there is a constant Lj such that

ji(t) = i ()] < L (Ju(t) — ua(t)| + [lllc)  VEET.

Analogously to the estimations in the proof of Theorem 3.1 on page 31, we
obtain

u(t) — u.(8)] < (") = 1)(Ju(s) — u(s)] + [lallee) VEE T
Now, there is a constant K7 such that the relation
[u = oo < Ki(lu(s) — ue(s)] + [lglo)
is satisfied. Further, the inequality

16 = ][0 < Ka(Ju(s) = uals)| + ll4lloo)
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is true for a constant K,. Regarding the estimation (3.23) for v and the
description (3.22) of the solution z, we obtain

(lz = zulloo + [P — Piloc) < K(luls) — us(s)| + [laloo)
for a constant K, i.e.,
(lz = 2ulloo + [P — Piylloc) < K(Jus — Pai(s)| + [laloo)-

|

Theorem 3.2 provides a relation between the tractability index and the per-
turbation index immediately.

Corollary 3.3 If the assumptions of Theorem 3.2 are satisfied, then the
DAFE 3.12 has the perturbation index 1.

Following the proof of Theorem 4.1 in [M&r95], for the special class of quasi-
linear systems

Az (t) + g(z(t)) = r(t), (3.24)
we may additionally derive a relation to the differential index.

Theorem 3.4 If the assumptions of Theorem 3.2 are satisfied, then the DAFE
3.12 has the differential index 1.

3.3 Properties of projectors and spaces re-
lated to index-2 DAEs

Before analyzing index-2 tractable DAEs, we present some useful properties
of the projectors and spaces describing the index-2 DAEs in more detail (for
definitions see Subsection 1.2.4).

The first two lemmata describe the image-space and the kernel of the matrix
function QQ1(y,z,t). If we look at Example A in Chapter 1, this matrix
function has the form

QR =

o OO
o O O
O = O
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1 00 0 00
Q=01 0] and@;, =0 0 1].
0 00 0 01

In other words, Q@) represents the current /. This is the variable depending
on the derivative of the input function v(¢). Later we will see that the ma-
trix function QQ1(y, x,t) is useful for describing the differentiation problem
involved in the index 2 DAE.

if we choose

Lemma 3.5 Independent of the choice of the projectors Q and Q1(y,x,t)
the relation

imQQl(ya €, t) =NN S(y7 z, t)
18 satisfied.

Proof: Let us drop the argument (y, z,t) in the following.

(C) For any z € imQQ;, we have z € im@) = ker A = N. Further, there
exists a w € R™ such that z = QQw is true. Thus,

Bz = BQQ1w = (Gl — A)Qlw = A(—Qlw) €imA
is satisfied, i.e., z € S.

(D) For any z € (NN S) we find a v € R™ such that Bz = Av is valid.
Defining u := z — Pv yields

Giu=G1Qz — Av (z€ N=imQ)
= Bz — Av =0,

i.e., u € Ny =im ). This implies z = Qu = QQ1u, i.e., z € im QQ).
O

Lemma 3.6 Independent of the choice of the projectors @ and Q1(y, x,t),
the relation

kerQQl (ya z, t) = kerQl (ya z, t)

18 true.
Proof: Let us drop the argument (y,x,t) again.

(2) This is obvious.
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(C) Let z € ker QQ1, hence
@1z € ker (). (325)

On the other hand, G1Q1z = 0, which leads to AQ1z = 0. That means
@1z € im Q. Together with (3.25) we obtain @z = 0.
O

Taking into account Lemma A.1, we can choose the projector @ (y, z,t) along
Si(y,z,t). In this case, we speak of the canonical projector Q:(y,z,t).
Further, we denote Py (y,z,t) :== 1 — Q1(y, x, t).

Then, the relation

Q1(y,z,t)Q =0 (3.26)

is true for the canonical projector Qi (y,x,t). This follows from the relation

Ql(ya x, t) - Ql(y: x, t)Ggl(ya x, t)B(y, z, t)Pa
which is a trivial conclusion of Lemma A.1.

Next, we define a projector T(y,z,t) onto the space
NN S(y,z,1)

for index-2 DAEs. Let U(y,x,t) :== I —T(y,z,t). The space NN S(y,z,t)
would be equal to {0} if the DAE were of index 1. This space may be
considered as the space describing the components of a solution involved in
the differentiation problem of an index 2 DAE. In the case of Example A in
Chapter 1 we have seen that

NNS@) = {(21, 2,23)" : 21 = 23 =0}.

Indeed, the current I of a solution of the system (1.4)-(1.6) depends on the
derivative of the second component wu.

Remarks 3.7
(1) For semi-explicit systems

o+ f(u,v,t) =0
g(u7v7t) = 07
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the space N N S(y, z,t) simplifies to

{(2) 2 =0y {(5) : gu(u,v,1)zu + g, (u, v, 1)z = 0}
={(%): 2 =0; g,(u,v,1)z = 0}.

In particular, in the case of Hessenberg systems, i.e., if the function g
does not depend on v, the space NNS(y, z,t) is independent of (y, z, t)
and may be written as {(%*): z, =0} = N.

(2) The matrices T'(y, z,t)Q and U(y, x,t)Q are projectors. This becomes
obvious if we regard

QT (y,z,1)Q =T(y, z,1)Q, (3.27)
since imT'(y, z,t) C im Q.
(3) The relation
PQi(y,z,t)U(y,z,t)Q =0 (3.28)
is satisfied, since Q1 (y,z,t)Q = 0 is fulfilled.

For index-2 DAEs, the matrix Ga(y, x,t) is regular (see Remark 1.11), and
the following lemma provides a description of im A(y,z,t) that is closely
related to the splitting technique used in the next sections.

Lemma 3.8 The projector functions and matriz functions defined above sat-
1sfy the relation

im A(y, z,t) = ker ([PQu(y, 1) + Uy, 2,)QG5 " (v, 7, 1)) -
Proof: Let us drop the argument (y, z,t) again.

(C) For any z € ker (PQ, + UQ)G,", we obtain
PQ.Gy'z =0 and UQRGy'z =0.
Regarding im (TQG,') CimT C im S, we obtain
r=[A+ BQ + BPQ\|G;'r = AG; 'z + BTQG5 'z € im A.

(D) For any z € im A, we find a y € R™ such that £ = Ay is true. This
implies G5 'z = P, Py, which leads to

(PQ1 +UQ)G3'y =UQP Py = -UQQ.y = 0.
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|

Lemma 3.9 The image space of G1(y, z,t) may be described by
imGi(y,x,t) = ker (Ql(y,x,t)Ggl(y,x,t)) )

Proof: Let us drop the argument (y, z,t) again.

(C) For any z € imGy, we find a y such that x = Gy is true. Hence,
Q1Gy 'z = Q1G5 Gy = Q1 Py = 0 is fulfilled.

(D) For any z € ker {Q1G3 '}, we obtain

r=GyGy'lr = G1G, ' + BPQ,G,'r = G1G, 7.

O
3.4 Linear index-2 DAEs
We consider the linear index-2 DAE
AW)E(t) + B)z(t) = r(1). (3.29)

Systems of higher index (i.e., index-2 systems, too) are characterized by the
fact that there is no algebraic transformation for dividing the DAE into the
inherent regular ODE and an algebraic equation. However, we possibly find
a splitting into 3 parts,

(a) inherent explicit ODE,
(b) part describing the inherent differentiation problem,

(c) purely algebraic part.

Dropping the argument ¢ we may rewrite the system (3.29) as
Gy'Ai + G3'Bx = Gy 'r.
Using the relations

Gy'A= PP
Gy;'B=G,'BPP +Q, +Q
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for any projector ) onto ker A and the canonical projector ); onto ker Gy
along S;, we obtain

P,Pi + Gy'BPPix + Q12 + Qr = G 'r. (3.30)
Multiplying the system by PP, TQP,, UQ + PQ,, and taking into account

Qi =Q:Gy'BP, QiQ=0, PPQ=0, TQQ:=QQ:, UQQ =0,
as well as (3.27) and (3.28), the system (3.30) is equivalent to

PP+ PP,G;'BPPix = PP,Gy 'r
—QQ1%+TQP,Gy;'BPPx +TQx = TQP,.G, 'r
UQRG,'BPPiz+ (UQ + PQ1)x = (UQ + PQ,)G,'r.

Note that the equivalence is given, because
I=PP +TQP +(UQ+ @Q)(UQ + PQy)

is true. Supposing the canonical projector )y to be smooth, and defining
u:= PPz, w:=TQz, y:= (PQ:+UQ)z,

we obtain

i— PP (u+ Py) + PP,G;'Bu= PP,G;'r (3.31)
—QQ1(P)) + QQuu+ TQP,Gy' Bu+ w=TQPG,'r (3.32)

UQG;'Bu+y= (UQ+ PQy)G;'r.
(3.33)

This system looks complicated, but it provides the structure of linear index-2
DAEs. Concerning Lemma 3.8 it is obvious that equation (3.33) represents
the inherent algebraic part of the DAE. This equation makes it possible to
determine the component y as a function of the component u. Inserting the
term for y into equation (3.31), this equation represents the inherent explicit
ODE of the DAE determining the component u of the system. Finally,
equation (3.32) represents the part describing the inherent differentiation
problem and makes it possible to determine the component w, the so-called
index-2 component, where we have to differentiate a part of equation (3.33)
(to be precise, we have to differentiate PQ,G5"'q).

Note that the splitting technique given here slightly differs from the splitting
technique in former papers of Marz et al. Now, the following theorem is true.
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Theorem 3.10 Let z, € Ck(Zy,R™) be a solution of the index-2 tractable
DAFE (8.29). Further, let the canonical projector Q1(t) and the right-hand
side PQ1G5'r be smooth. Then, the perturbed initial value problem

A(t)a(t) + Bt)z(t) = r(t) + q(t) (3.34)
PPy (to)z(ty) = uo € im PPy (t,) (3.35)

is uniquely solvable on C(Zo,R™) for continuous perturbations q with the
part PQ1G5'q € C*. Further, the estimation

d
= 2.l + -2 (PP (& = 2. <
d(PQ:Gy"
K (ol + 1 9P D g = PR )] (530

is fulfilled.

Remark 3.11 If we additionally assume the perturbation-part UQG5 g and
the matrix function UQG5 "B to be smooth, then the solution belongs not
only to Cy(Zy, R™) but the component U ()Qz(t) is also smooth.

Proof: Following the splitting technique described above for the perturbed
right-hand side r + ¢ instead of 7, the solution of (3.34)-(3.35) is given by

r:=u+[(UQ+ PQ.)G; ' (r +q) — UQG, "' Bu]

+[TQPG; ' (r +q) — TQP,Gy ' Bu — QQu + QQl%(PQle_l(T +q))]
(3.37)

if » is a solution of the IVP

i — PP (u+ PQ:G;'(r +q)) + PP,G;*Bu = PP,G;*(r + q)
U(to) = Ug € 1mPP1(t0)

This implies

d _
o =l < s (=l + el + 135 (PRIG5 0

and
u(t) = (t)] < Ko (Ju®) —ut)| + lgllo)  VEET

for certain constants K; and K. Now, the assertion follows with the same
arguments as in the proof of Theorem 3.1.
O
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3.5 Nonlinear index-2 DAEs

We consider quasilinear index-2 DAEs of the form

At)a(t) + gla(t),£) = 0 (3.38)

with constant nullspace ker A(¢). The DAEs arising from charge oriented
MNA belong to this class of quasilinear DAEs (see Chapter 5). Let z, €
Cx(Zy, R™) be again a solution of (3.38). In the following, we compute the
useful projectors and matrix functions in z, and denote

T(t) :=T(2u(t), 2.(2),),  U(t) := U(@a(t), 2:(1), 1)
Q1(t) = Qu(#.(2), 2.(1), 1), Pr(t) := Pr(2.(1), 24(1), 1)
G1(t) = Gr(2.(1), 2. (1), 1), Ga(t) := Ga(@.(t), 2. (1), 1)

Q1(t) is chosen as the canonical projector onto ker G (t) along
S1(t) ={z e R™ : g.(z.(t),t)z € im A(¢t)}.

Note that the calculation of these matrix functions and projectors is only of
theoretical interest. In praxis, we do not need these special projectors.

Assumption: The function

§(z,) := [U()Q + PQ: ()]G (t)g(x, t)
is twice continuously differentiable.

This assumption means that the derivative free part of the DAE has to be
twice continuously differentiable. For Hessenberg systems of index 2

u+ g(u,v,t) =0,
h(u,t) =0,

where z = (%) and g = (7 ), the function § has the form

B0, 1) = <M (x*(t)(,)t)h(u, t))

with M := g¢!(hlg,)~'. Hence, essentially h(u,t) is required to be twice
continuously differentiable. The matrix M (z.(t),t) can be considered as a
certain normalization.
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Theorem 3.12 Let z, € Ck(Zy,R™) be a solution of the index-2 tractable
DAE (8.38). Further, let UQx, € C'(Zy, R™) be fulfilled and let Q. as well
as UQG5'B be of class C". If the structural condition

Qi) + g, (,) — G (w.(1),1)) T (H)Q =0 (3.39)

for all (x,t) with |z —x.(t)| < o is satisfied, the perturbation q is continuous,
and its part

Q(t) == [U[t)Q + PQ:1(t)]Gy (t)a(t)

is of class C', then the perturbed initial value problem

A(t)z(t) + a(x(t), 1) = q(t) (3.40)
PPi(s)x(s) =us € imPPl(s) |us — PPy(s)x.(s)| <7 (3.41)
llglloo + || ||oo <o (3.42)

is uniquely solvable on Ck(J,R™) for each s € T, and sufficiently small T
and o, where J :=[s,S) C Iy. Moreover, the inequality

Iz .llo + 15 (PPy(z = 2.) o <
(||q||oo+|| oo + i, — PPl(s)x*(s)l>

s satisfied for a constant K.

The structural condition (3.39) generalizes the structural condition (3.5) in
[MT94]. It ensures that a recursively defined vector field is given on the
solution manifold. Hence, Theorem 3.12 is a generalization of Theorem 3.4
in [MT94].

There are networks, e.g. the ring modulator (see Chapter ch.simulation), for
which the condition (3.5) given in [MT94] is not satisfied. Therefore, we have
looked for a generalization. The new structural condition (3.39) seems to be
satisfied for electric networks. In any case, all circuit-examples of index 2 we
know fulfil (3.39).

We will discuss condition (3.39) after the proof of the theorem in more detail.

Proof: As in Section 3.2 we transform the equation

A(t)2(t) + g(x(t), 1) = q(t)
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into the equivalent system
At)z(t) + B(t)z(t) + h(a(t), 2(t), 1) — r.(t) = q(t), (3.43)

where

B(t) := gy (z.(2), 1),
h(z,t) := g(z,t) — g(z.(1), 1) — B()(z — 2.(1)),
ro(t) = A@t)E. () + B(t)z. (%),

Then, the function A has the properties
h(z.(t),t) =0, h.(z.(t),t)=0 Vtel.

Again, h is constructed in such a way that the functions ~ and A, map small
neighbourhoods of the trajectory {(Z.(t), z.(t),t), t € Zy} into small spheres
around the zero.

Since the DAE (3.38) is index-2 tractable, the matrix Go(t) is regular (see
Remark 1.11).

Dropping the argument ¢, the system (3.43) is equivalent to
GytAi + Gy'Bar + Gy h(x, ) — Gy, (t) = G5 lq.
Using the relations
G,'A= PP, G,'BQ=Q, G,'BPQ,=Q
we now have

P,Pi+G,'BPPiz + Q17+ Qx + G, 'h(x,-) — Gy 'r.(t) = G, 'q.

(3.44)
Multiplying (3.44) by PP, TQP;, (UQ + PQ), and introducing
u:=PPz, w:=TQz, y:=(UQ+ PQ )z,
we obtain similarly to the linear case (see Section 3.4)
i— PP(u+ Py) + PP.G;'Bu— PPG;'r,
+ PPGy ' h(u+w +y,-) = PPGy'q (3.45)
— QQ1(Py) + QQru+TQPGy ' Bu+ w
—~TQP,Gy'r.(t) + TQP,Gy 'h(u+ w+y,-) = TQP,Gy g (3.46)

UQG,'Bu+y— (UQ + PQ1)G, 'r.(t)

HUQ + PQ1)G; h(u+TQu +y,) = (UQ + PQ,)Gyq.
(3.47)
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We may solve the algebraic part (3.47) of the DAE with respect to ¥ in a
neighbourhood of the solution x,. We introduce

Fly,u,w,q,t) == UR)QG; (1) Bt)u +y — (UR)Q + PQ:1(t))G5  (¢)r.(t)
+[UBQ + PQL(V]GT ) h(u +T () Qw + y,t) — §
= U(H)QGy (1) B(t)(u — w.) + (y — v)
+[U)Q + PQ1(V)]Gy ) h(u + T#)Qw + y,t) — q.

Note that the variables y, u, w and ¢ are parameters here. Then, the relations

F(y, (), us(t), ws(t),0,t) =0,

F! (ya(t), wa (1), w(8), 0,8) = 1,
Fly(ye(t), ua (), wa(£),0,8) = U(H)QG, ' (1) B(t),

7 (e (1), s (), wa (1), 0,8) = —1,

Fi(ya(t), ua(t), w. (1), 0, 1) = —U)QG, ' () B(t)ih. (t) — 4. (2)

are true for all ¢ € Zy, and the relations

F;(y’ U, w, é’ t) =1+ f{(ua w, Yy, t)a
F(y,u,w,4,t) = H(u, w9, )T(£)Q,
2 1

F;‘(ya u’ w’ é’ t)
are satisfied for all (y,u,w, 4, t) in a neighbourhood of the trajectory
(0 (8), us (£), w4 (1), 0, 2)
if the function H is defined by
H(u,w,y,t) := [PQ:(t) + U()QIG; (D) h(u + T(t)Qu + y, 1)
= go(u+T()Qu +y,t) — go(: (1), 2).
Now, the implicit function theorem provides a function
'E Uy(z,) = R™

satisfying

f(u*(t)a w*(t)a 0, t) = y*(t),

where

Uy(zy) = {(u,w,q,t) 1 |u—u.t)] +|w—wt)]+ 14 <p, t €},
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This function satisfies the relations

fluw,48) = [UDQ + PQi)]f (u w, 4, 1)

Q1 (t) fry(u,w,§,t) =0

for § € im [U(t)Q + PQ1(t)]. The latter relation follows from the structural
condition (3.39) since

QL) Foy(ww,4,1) = = QQUE)(I + H (u,w,y,1)) " H (u, w,y, )T ()Q
= = QRO — (I + H(u,w,y,1)) IT()Q
= QQ:(O)(I + H(u,w,y,1))'IT(HQ =0
is true. Furthermore, the relations
Q1) [ (us (1), wi(2),0,8) = ~QQu (1),
QQ: (8) F(ua (1), wa(£),0,) = QQ1 (D). (1)
are true for all ¢t € Z.

Inserting f(u,w, g,t) into the equations (3.45) and (3.46), and regarding

. = R = N ]
QuPY = Qi (u,w,4, )i+ Q1 fyu,w,4,0) ]

we obtain

+ Qlf:f(ua w, (ja t)a

i— PPi(u+ Pf(u,w,q,-)) + PP.G;'Bu — PP.G;'r,

+ PPIGQ_Ih(u +w + f(ua w, (ja ')a ) = PP1G2_1q
(3.48)

= = da =
- QQl(f;L(ua w, Qa )U + fﬁj(ua w, qAa )d_;] + f;(ua w, qAa ))

+QQu+TQP,Gy'Bu+w—TQP,Gy'r,

+TQP,Gy ' h(u+ w+ f(u,w,q,-), ) = TQPIGy'q.
(3.49)

We apply the expression for 4 from (3.48) to equation (3.49) and obtain a
nonlinear equation that may be solved with respect to w in a neighbourhood
of the solution z,. Now,

— Q01 [, (u,w,4,1) (PPi(u+ Pf(u,w,§,-)) - PPiGy ' Bu
+PPGy'r, — PPGy ' h(u+w + f(u,w,§,-),") + PPG3'q)
— Q1 fh(u,w, 4, 1)d — Q@1 fy(u, w, 4, 1) + QQru — TQPG3'r,

+ TQPIGQ_IBU tw+ TQPnglh(’U, tw+ f_(uv w, g, ')7 ) = TQPIGQ_IQ
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is satisfied. We denote di(t)
A q
t) i = ——=
pt) = —
and, dropping the argument ¢, we define a function
é(w u ﬁv ij q, ) =
— QQ: [, (u,w,4,-) (PPi(u+ Pf(u,w,4,")) — PP.G, " Bu
+ PPlGQ_ Tx — PP1G2_1h(U+ w+ f(uawai '): ) + PP1G2_1Q)
— QQ1f3(u,w,4,)p — QQ1fy(u,w, 4, -) + QQuu +w — TQPGy'r.
+ TQPIGQ_IBU’ + TQP1G2_1h’(u +w+ f(ua w, Qa ')a ) - TQPIGEIQ

Note that the variables w, u, p, ¢ and ¢ play again the role of parameters at
this point. Then,

G(w,(t), us(t),0,0,0,8) = 0, G (ws(t),u.(t),0,0,0,t) = I.

The implicit-function theorem provides a function

g: Upy(z,) - R™,
where

Upy(22) = {(w: 9,4, 4,1)  [u—w.(t)| + |p| + 14| + [g[ll < p2, t € Lo}

This function satisfies the relation g(u,p, q, q,t) = T(¢t)Qg(u, p, 4, ¢,t) for all
(u, P, q,t) in a neighbourhood of the trajectory (u.(t),0,0,0,t¢). Furthermore,
the relation

g(u(t),0,0,0,t) = w.(t)
is fulfilled for all ¢ € Zy. Applying g to equation (3.48), we obtain
i— PP (u+ Pf(u,w,§,-)) + PP,G;*Bu — PP,G;'r,
+ PPiGy h(u+§(u,p,4,¢,) + f(u, §(u, 9, 4,4,-),4,-) = PPGy'q. (3.50)
Now, we may solve the regular IVP (3.50) together with the initial condition
u(s) = us, us; € imPP(s)

on C'(J,R™) with J = [s,5) C Zp if |us —u.(s)| +[p|+ |G| +|q| is sufficiently
small. Multiplying (3.50) by PP; and regarding

PPl()(U’wqa) 0, VteJ,
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we conclude - -
u—PPlu:PPlu—PPlPPlu,

which implies

d .
Defining @ := (I — PP;)u provides an ODE
di .
— = PP,PPiu
dt 1 1U

with
u(s) = (I — PPi(s))u(s) = (I — PPi(s))PPi(s)us =0,
i.e., 4(t) = 0 for all t € J. This leads to
u(t) = PP (t)u(t) Vte J.

Assuming p = % and ¢ to be sufficiently small, which includes ¢ to be small,
too, the unique solution of the IVP (3.40)-(3.42) is given by
Ti=u+ ﬁ(uaﬁa qAaq’ ) + E(uaé(uaﬁa qA7Qa ')ana )
in a neighbourhood U, (z,), where
Ups (@) :=A{(z,8) : |z —2.(t)| < ps, t € T}
The relation (3.50) implies

a(t) = . (t)] < La(fu(t) — u.(t)] + II%IIOO +llallo), t=>s,
(3.51)

for a certain constant L;. Consequently, there is constant K; such that the
relation
dg

lu = telloo < Kr(lu(s) = ue(s)] + [l lloo + llallo0) (3.52)

is satisfied. Since g has the continuous partial derivatives g,, g5, 5, g,, and
1, is a compact interval, there is a constant L; satisfying

dg
oo + llalleo)- (3.53)

lw = willoo < Ly(|lu = uslloo + 11—

Since f: has the continuous partial derivatives f_’u, :ﬁu, :ﬁj, and Z; is a compact
interval, we find a constant L 7 such that

1Y = Yalloo < L[t = talloo + [0 = willoo + lllloo) (3.54)
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is true. Now, the estimations (3.51)-(3.54) provide
d
Iz = @lloo + 1|2 (PP = 2)) oo

< K(u(s) = . (5)] + 19 + )

for a certain constant K.
O

Let us present some cases in which the structural condition (3.39) is satisfied.
We hope that this will make the condition easily accessible for the reader.

1. If the function g satisfies the relation
la(e, 1) — (P, 1)] € im A, (¢) (3.55)

in a neighbourhood of the trajectory (z.(t),t) (t € Zy), then the struc-
tural condition (3.39) is true. This becomes obvious if we regard the
following facts. The relation (3.55) implies

Qi(1)Gy ()8, (7, 1) — g, (2. (1),1)Q = 0.

Hence,

are fulfilled. Now,

Q1(t)(I + gs (2, 1) — Ga(x.(1), 1)) 'T(HQ

o0

= Q0 3 (5(e. 1) + (e 0.0 T()Q
— () 2(—13@1@) 82 t) — 8 (0. (0, D) T(HQ
— () ﬁl(—ml(t) 8 t) — 8 (o (1), D)

(=PQ:1(1)[8, (2, 1) — 82(2. (1), DIT()Q)
= 0.

Condition (3.55) is equivalent to the condition

Q" (1)[g(z, 1) — g(Pz,1)] € im Q" () g, (z.(2), 1)@
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if @*(t) projects along im A(t). This condition is equivalent to the
structural condition (3.5) in [MT94]. Unfortunately, the circuit simu-
lation provides examples for which the condition (3.55) is not satisfied.

2. If the function g satisfies the relation

[g(z, 1) — o((I = T(*)Q),1)] € im A(#) (3.56)

in a neighbourhood of the trajectory (z.(t),t) (¢t € Zy), then the struc-
tural condition (3.39) is valid. This is easily seen when considering the
following facts. The relation (3.56) implies

(65 (2, 1) — 8, (. (), )T (£)Q = 0.
Therefore,
Q1) +8: (2, 1) — 8u(z. (1), )) ' T()Q

=t )( + [, (2, 1) — g (2 (), D)) -
(8L (1) — g (2. (1), ) T()Q = 0

is true.

3. If the space N N S(z,t) does not depend on z in a neighbourhood of
the trajectory (z.(t),t) (t € Zy), then the condition (3.39) is true. This
follows from (3.56) and

(e, 2) — o((I = T()Q)z )] = - [ akls — $T()Qz, 1) AT (1),
which implies

[o(z,) —g((I - T()Q)z,1)] € im A(t)
since

im (T($)Q) C (N N S(x — $T(1)Qa, 1))
is fulfilled. Up to now, we know only examples of circuit simulation
(obtained by the charge-oriented MNA) for which the space NN S(z,t)

is constant. The question whether this space is always independent of
(z,t) is still open.

4. For Hessenberg systems

Ty = gy (21,22, 1)

0= gé(xlvt)
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condition (3.39) is obviously satisfied, because
NN S(:Cl,.TQ,t) =N

is constant in this case.

Theorem 3.12 provides a relation between the tractability index and the
perturbation index.

Corollary 3.13 If the assumptions of Theorem 3.12 are satisfied, then the
perturbation index of the DAE (3.38) is not greater than 2.

Remark 3.14 General differential algebraic equations
f(z,z,t) =0 (3.57)
with constant nullspace ker f; can be transformed into a quasilinear DAE

Pr—y=0 (3.58
fly,z,t) =0, (3.59)
equivalently. System (3.57) is index-2 tractable if and only if the system

(3.58)-(3.59) is so. Hence, the results for quasilinear systems (3.38) can be
generalized to systems of the form (3.57).



Chapter 4

BDF applied to index-2 DAEs

In this Chapter we want to describe the behaviour of the BDF applied to
index-2 DAEs. In numerous papers (e.g. [Bre83], [GP84], [GGL85], [LP86],
[BE88], [BCP89], [Mér92a|, [Tis95]) the BDF method has already been ana-
lyzed for several classes of index-2 problems. In this paper, we concentrate
on the class arising from MNA in circuit simulation. Since these systems
are not of Hessenberg form, we have to generalize the well-known results
on this class. Further, we are interested in the question, under which as-
sumptions the BDF method is feasible, i.e., under which assumptions the
nonlinear equations arising from the method have a unique solution. The
results presented here are a generalization of the results given in [Tis95]. As
already mentioned in Chapter 3, there are electric networks, for which the
structural condition in [Tis95] is not valid. Therefore, we introduce a new
(more general) structural condition (3.39) that is satisfied for all circuit ex-
amples (arising from the charge-oriented MNA) that we know. Therefore,
we want to assume (3.39) to be satisfied.

We consider quasilinear index-2 tractable DAEs of the form
A)2(t) + g(=(t),t) =0 (4.1)

with constant nullspace ker A(t) as in Section 3.5. Note that the charge-
oriented MNA provides DAEs of quasilinear form with constant nullspace
ker A(t) (see Chapter 2).

The splitting technique used in the next sections is closely related to that of
Chapter 3. The properties of some projectors and spaces given in Section 3.3
will be frequently applied in the following.
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4.1 Analysis

We assume the assumptions of Theorem 3.12 to be fulfilled. We consider a
partition 7 of the closed interval Z, with the following properties.

7T1t0<t1<"'<tN:T, (42)
hmin S t( - t(—l S hmaza hmin > 07 14 Z 1a

ho_
ki < =L < ky, €21,
by

if k1 and k9 are suitable constants (cf. [Gri81], [GMS86]).
Then, the BDF may be formulated in the following way

k

1
A(tg)h—e QpiTp_; + g(ﬂig, tg) = (5@, L > k. (43)
=0

Here, §; describes the perturbations in the ¢-th step for ¢ > k, which is
caused by numerical computations including the errors arising from solving
the nonlinear equations (e.g. with a Newton-like method). As usually, we
denote the stepsize in the /-th step by hy, i.e., hy = t; — t,_1. Moreover, we
introduce

Tpi=x— 2,(ty), £>0,

1 k

= A(t))—
Ty (tg) he izo

iy (to—i) + g(wa(te), te), £> k.

It should be mentioned that the 7, defined in this way represents the local
error of the BDF of order k in the /-th step, and it is of order O(h%) if Pux,
is sufficiently smooth. This becomes obvious if we regard that z,.(t;) is a
solution of the system (4.1), and

1 k

= A(t,)—
Ty (tg) hg Z

gy (t—i) + 9(x«(te), te)
— A(L) (hlz > P (t) - (Pa:*)'(tg)>

is true. At this point, we want to remark that the local error lies in im A(%;).
This will be important later.
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Now, equation (4.3) may be written as

1

k
Iy D cnZe—i + 9(Ze + x4 (te), te) — g(@i (o), te) +7¢ — 6 = 0,

1=0

Alte)

which is equivalent to

1 k
Agh— Z Qpo_; + Bg.’i’g + ﬁ(.’f?g, tz) + Ty — (Sg = 0, (4.4)
£ =0
where
Ag = A(tg)
By = g (z. (), te)
A, t) = gz + 2.(t), 1) — g(2.(t), 1) — gy (w.(t), ). (4.5)

The function #(z,t) is continuous on Dy, where
Dy :={(z,t) e R" xZ : (z+z.(t),t) € D xT}.

The quantities introduced above have the following properties:

1. The matrix pencil { Ay, B/} is index-2 tractable for all ¢.
2. Vt e T: K(0,t) = 0.

3. The function # is continuously differentiable with respect to z, and
h.(0,t) = 0 is satisfied for all ¢ € Z.

We want to use the splitting technique described in Section 3.5. We define

Uy :=1-T,=U(ty)
G = Ag+ BiQ = G1(ty)
Piy:=1— Q= Pi(te)
G = Ay + BiPQuy = Ga(ty),

where T, = T'(t;) is a projector onto
NNS, = NﬂS(tg) = {Z eR™: Az = 0, B,z € imAg},
and Q¢ = Q1(t,) is the canonical projector onto ker Gy, along

Sy = {Z € R": B,Pz € im Glg} = Sl(te).
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With Lemma A.1, the relations

Gy Ay = Py P,
Gyt Be = Gy BeP Py + Gy BiPQuo + Go) BiQ
= Gy BePPyy+ Que + Q

are easy to verify. Now, the following lemma provides some further informa-
tion about the function #.

Lemma 4.1 Let z, € Cy be a solution of the system (4.1). For each € > 0
there exists a radius 6(€) > 0 such that the following statements are true for
all z € R™ with ||z|| < d(¢) and t € Iy.

(i) Iz )l < ell=ll, N7,z 0] <e
(ii) The relations
IU)Q + PQ:(1)]Gy (a2, )| < ellzll,
IUQ + PQL1IGE (D), (2, t)]| < €
are satisfied.

The correctness of this lemma follows from the continuity properties of the
function A.

Multiplying the /-th equation of (4.4) by the regular matrix G;;" we obtain
the equivalent equation

1 & - 5 . N
PMPh_g > aufei + Gy BiP Py + QueEe + Qe
i—0

+ Gy (T, ) + Gof (T — 60) = 0 (4.6)

for £ > k. Multiplying the system by PPy, T;QPy, UiQPy + PQ1, and
regarding

Qu = QuGy' BP, QuQ =0, PP,Q =0, T,QQu=QQu,
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the system (4.6) is equivalent to

1 & _ N
PPMh_g > e + PPyGyy BeP Py,
1=0

+ PPyGy Bi(Fe, ty) + PPLuGY (o —8) =0 (4.7)

1 & _ 3 3
— QQue— Y anZe—i + TYQP1,Gy) BePPyyiy + ToQ
h

£ =0
+ TgQPlgGQ_;ﬁ(.’i‘g, tg) + TZQPMGQ_; (Tg — 5@) =0 (48)
UiQG3i BeP Py + (U@ + PQue)
+ (UgQ + PQM)Gz}lﬁ(jg, tg) — (UgQ + PQM)GEKI(SK = 0. (4.9)
The equivalence is given because

I = PP+ T)QPy + (Que + Q)(UiQPry + PQuy)

is fulfilled. Fortunately, the influence of the local error vanishes in equation
(4.9), since 74 € im A, (as already remarked on page 54) and Lemma 3.8 are
valid. Defining

tp := PPyZy, W :=TQ%e, §¢:= (UQ + PQ1)Ty,
the system (4.7)—(4.9) is of the form
1 & 1 &
— > it + — Y i P(Pig — Pro—j)(Tie—j + Jo—j)
he 5 he j=1

+ PPyGyy Byiig + P PGy il + Wy + o, te) + PPrGop (1o — 8¢) =0

(4.10)
1 & 1 &E
- QQu— Y e — — > aQ(Qre — Quo—j)Te—;
he i hy j=1
+ g + TyQProG5, Byl
+ TgQPlgGZ_elﬁ(ﬂg + Wy + G, te) + TZQPMGZ_; (Tg—(Sg) =0
(4.11)

Ye + UgQG;;Bgﬂg + (UzQ + Png)Ggelﬁ(ﬂg + We + Yo, tg)

— (UgQ + PQM)GEZIQ = 0.
(4.12)
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Equation (4.10) reflects the inherent, discretized, explicit ODE in the u-
component. Equation (4.12) is purely algebraic and makes it possible to
determine the y—component, which depends on the other components only
algebraically. Finally, equation (4.11) represents the differentiation problem
of the DAE in discretized form, from which we obtain the w—component.

Now, we want to introduce the following notations

o = (UQ + PQ1y)Gyptby, 0>k, (4.13)
0 = (UiQ+PQu)Gyti(Ze, te) + (UiQ+PQu)Te, £ <k, (4.14)

for making the expressions below somewhat easier. Considering again the
system (4.10)-(4.12), we see that d, represents the defect in the algebraic part
for £ > k. For the starting values, the corresponding defects are described
by (4.14), which will become more transparent when regarding the relation

(UiQ + PQ1o)Goy Tilde, te) + (UeQ + PQue) e
= (UiQ + PQ10)G3/ (9(me, te) — g(mu(te), te)).

4.2 Feasibility and stability

The following theorem is a generalization of Theorem 3.1 in [Tis95] since
the structural condition (3.39) is more general. Further, it contains the im-
plicit Euler case, which was lacking in Theorem 3.7 in [M#r92a]. The results
for the implicit Euler method as a special case of the Runge-Kutta method
presented in [HLR&9] - Theorem 4.1 and 4.2 - are included, because the Hes-
senberg index-2 systems belong to our class of index-2 DAEs considered in
this chapter. Besides the convergence of the BDF method (see also [BCP89]
Theorem 3.2.2), we describe the stability behaviour. Furthermore, the theo-
rem provides the feasibility of the BDF method, i.e., the unique solvability
of the nonlinear equations arising from the BDF method.

Theorem 4.2 Let the assumptions of Theorem 3.12 be fulfilled. Supposed
there 1s a constant C' > 0 such that the starting values satisfy the relation

||PP1gCUg — PPM(IJ*(Q)H < Chg, l< k‘, (415)

then the following statements are true:
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(i) There are constants ¥ > 0 and r > 0 such that the BDF with

0| <9, £>k and ——<9, £>0,
is feasible for all partitions (4.2) with sufficiently small stepsize, i.e.,
the nonlinear equations are solvable with xy € B(z.(te), 7).
(ii) Supposed there is a constant Cy > 0 with
166l < Cihe,  £>k, (4.16)
[0ell < Ci, £>0,

then we find a constant Cy > 0 such that the following error estimation
holds:

_ < _
max . (1) — 20l) < Co| max |Pr. (t) ~ Pri|

I e||

+ max 100 — 7¢|| + max ==

Remark 4.3 In general, it is not easy to see which part of the perturbation
0 represents the sensitive perturbations 5, but, often it is not difficult to
determine the image space of A(t). Therefore, the following relation might
be useful for controlling the sensitive perturbations 5. Separating ¢, into
Sre + One With dg, € im A, and 6y, € im A, " yields a constant C such that

||Se|| < C|onell

is satisfied, since Lemma 3.8 is true.

Proof: Let ¢ > k be fixed, and let the /-th step of the BDF method be
transformed equivalently into the system (see Section 4.2)

1 1 &
ilig—; + — Y i P(Pig — Pro_j) (le—j + Fo—;)
hg =0 he] 1
+ PPMG;ZIBgUg + PPMG;@ ﬁ(uz + we + Yy, tg) + PPMG;; (Tg — (5@) =0

(4.17)

k
- QQM Zaezye e higz i Q(Qre—Que—j) U j
7j=1

+ Wy + TgQPlgG;elBeﬂg
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+ TgQPlng_elﬁ(’ag + Wy + G, tg) + TgQPlgGQ_el (’7'@—(5@) =0
(4.18)

o + UsQG! Byitg + (UeQ + PQ1¢) G Bty + g + G, te) — 0p = 0,
(4.19)

where &, is defined by (4.13) and (4.14). Following the pattern of equation
(4.19), we now define the function

F(y,u,w,8,t) ==y — 6+ U(t)QG; ' (t)B(t)u
+(UBQ + PQ.(1)Gy ()A(u +T(#)Qw +y,t). (4.20)

Then F is is of class C2. Furthermore,

F(0,0,0,0,£) =0, F'.(0,0,0,0,t) = I, teI,

is fulfilled. Then, the following fact is true.

There exist a radius o and a unique C?-function

= ~

flu,w,d6,t) : B(0,a) x Iy — B(0, p)

with the properties

(i) :(f(u, w’ 57 t)’u’w7 37 t) = 0
(ii) f(0,0,0,£) =0, f,(0,0,0,t) =0, F,(0,0,0,£) =0, f4(0,0,0,¢) =1

(i) Py w,8,2)] < ull + [l + 3113] (4:21)

(iv) If 6 € im [U(t)Q + PQ:(t)] is fulfilled, then

P, w,8,1) = [UB)Q + PQu1)] f(u, w, 5,1). (4.22)
is satisfied.

(v) Q: () f (u,w,d,t) = 0. (4.23)

Lemma A.2 and Lemma A.3 (see Appendix) imply the correctness of the
assertions (i)-(iii). Multiplying equation (i) by [U(¢)Q + PQ1(t)], we obtain
the relation (iv). The assertion (v) follows from the structural condition
(3.39) in the same way as on page 47.
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Now, we have to solve the following system

1

k
W > auitie—; + PPuGyy Beil
¢

1=0

1 & 5 .
+ h_e ZO%‘P(PM - Pu—j)(ue—j + Pf(ue—j,we—j, 5€—j;t£—j))
j=1

+ PPyGof (g + g + [ (Tig, Wy, 0¢, t4), te) + P PG (g — 67) = 0
(4.24)

k = ~
— QQu— > i f(Tp—iy, We—i, Op—iy te—i) + TeQPreGoy Betig

=0
L
y > Q(Qre — Que—j)le—j + Wy
j=1

+ ToQ PGy B + e + f(ﬂe, We, 0, g), o) + TiQPuGy) (e — 6¢) =0
(4.25)

e — [ (g, Wy, 8@, tg) = 0.
(4.26)

Regarding Lemma 3.6 and (4.23),

Q1(t) fl,(u, w,6,) =0
is true for u, w,d € B,(0). Using (4.22), we obtain

P f(thg—iy Wiy Op—iy toi) = PQle—z’f:(ae—z’, We—iy Op—iy te—i)
= PQuyif (fig—i, 0, 0p—i, tr_s)
1 = ~
+ P/O Q1o f (g, SWe—iy O, ) ds W
= P.][_T(ﬂ'ff’iﬁ 0, Sg,i, tg,i) (427)

for i = 0,...,k and fGg_;, We—i, 0¢—; € Ba(0) (note that d,_; € im [U(t—;)Q +
PQ1(te—i)]). Now, considering the relations

Ql[ == QMP, PPIZ—Z' = PPM_Z'P for 7= 0, ceey k,
the system (4.24)-(4.26) is equivalent to
1

k
~ -1 ~
Z O Up—; + PPMG% By,
¢ i=0
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» Z i P(Pry — Pioj)(tig—j + P f(iie—j, 0, 6—j, te—;))
7j=1

+ PPMG% fl(Ue + wyp + (’&g, Wy, S@, tg), tg) + PPMG;ZI (Tg — 5@) =0
(4.28)

- QQIZ Z i f (@e—i, 0, 0iy to—i) + TeQ Py G/ Beiig

k
— h_ >y Q(Qre — Que—j)le—j + e
74 j=1

—+ TZQPMGQ_ZIﬁ(fLe + wy + (ﬂg, Wy, 5@, te), te) —+ TgQPlgG;ZI (Tg — 5@) =0
(4.29)

Yo — f(ﬂz, Wy, Sz, tg) = 0.
(4.30)

In order to be able to solve equation (4.29) with respect to w0y, it is obviously
necessary to investigate the term

k = A~
QQue Y i f (=i, 0,004, te—s)
i=0

with respect to its relationship to the stepsize h, in more detail. Therefore,
we write this term in the following equivalent form:

1 & - .
QQwh—e > o fTig—i, 0,00, o)
i=0

1 & - . _
= QQu+— . g f(Te—s,0, 00—, te—;) — £(0,0,0,t,—;)]

1_
—QQM Zaez /fL(S?lzfi,O,O,tzfi) ds g ;

/.f5 U’E zao 553 zatﬁ )d86£ i

1 _ 1 k
= QQu/ fh (51,0, 0, ) dsh— il
()
0,0,%,) — f' (sfig—i, 0,0,
_QQM/ Za’fj S’U,g, Z) }.i;u(suﬁ g Uy Uy bg g) dsﬂ,@,j

~

dp—
¢

+QQ1¢/ Zaezf5 i, 0, $0¢—i, te—;)
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Due to (4.28), the term h%; %, qusiig_; may be replaced by

g, . L& _ = .
— PPy,Gy Byiig — e > g P(Pi — Pig—j)(tig—j + f(@e—j,0,00—j,te—j))
j=1

— PPyGy iy + g + f(fig, We, Og, te), te) — PPuGy (e — 84).-

Then, we obtain the following, long description for the most sensitive term
of the index-2 DAE
k

1 _ R
QQue— Y i f (i, 0, 0p—i, to—;) =

hé i=0

1
QQu/O fu(s1, 0,0, %) ds (—PPuGg_ngeﬂe

1 & B - .
y > agP(Piy— Pr_j)(tie—j + f(tie—j, 0,005, te—5))
j=1
— PPMG;,}?’L(&@ + Wy + ]F_(’l]g, Wy, Sg, tg), tg) — PPMG;; (Tg — 5@))

tE (81, 0,0, 1) — F! (stig—;, 0,0, ¢,
_QQM/OZOWJCU( ¢ 0) hf:( £—j EJ)

ds ﬂg,j

1 k _ . S0
+QQ1e/O > i f5(te—s, 0, 500_i, te—s) ds ;z :
i=0

£

Now, we may solve (4.29) with respect to w,. We define a function

Go(w, Gy, 0g—i, 7o — 0g) =

1
- QQM/O fu(81e,0,0,2¢) ds (-PPsz_elBeﬂe

1 & B - .
y > oy P(Pre — Pupj)(lie—j + f(tle—j, 0, 0e—j, te—j))
7j=1

— PPlgGQ_zlﬁ(ﬂe +w+ f(’&g, w, Sg, te), tg) — PPMGQ_@I (Tg — 5[))

1k F! (siig, 0,0,t7) — f' (stig_i,0,0,t0_;) . _
—i—QQle/OZoaejf“( : ! }{;( - ej)dsu@_j
=1

~

1k = A Op;
- QQM/O Doy f3(e-i, 0, 00—, te—i) ds <
i=0

1 & N
Y Z i Q(Qre — Que—j)lp—j +w
£ =1
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+ TgQPlgGZ_elﬁ(’ng + w4+ fT(ﬂg, w, 3@, tg), tg) + TgQPlgGZ_el (Tg — 5@)
Writing C:r’g(w, Tpis Opi, To — d¢) we mean
Go(W, Tigy e gk Oty -y gy T — O1).-

Further, the index 7 goes from 0 to k£ and the index j goes from 1 to k in the
following, provided that no other information is given.

Then, the function G:g is continuously differentiable,
G0) =0, Gp,(0)=T1,
and we may conclude:
There is a radius o (independent of the partition) and a unique C'-function
Ge(lte—i, 0¢—is7e — 8¢) = B(0,0) — R™
with the following properties.

(1) Ge(Ge(Tie—s, de—i, Te — O¢), le—iy de—iyTe — 8¢) = 0, Ge(0) =0
o741

i)  9:.(0) =(—QPwG3/ By, h—gQ(QM — Que-1); -
2% Q(Que = Quect): 22 QQues -y “EQQue, ~TIQP1Gy)
he he he
ity il b= 501 < {1+ 21QPG Bl i
k
v _
+ 200+ 22200(Qu - Que ) e
j=1

24 2 _
L QQul Il + {1+ 2ATQP G5 I} e = o]
¢ (4.32)

+i{1+2

=0
For the proof of this assertion use Lemma A.2 and Lemma A.3, or modify
the proof of Lemma 3.3 in [Tis95].

It remains to solve equation (4.28) with respect to @, which has the following
form

k
Z optlp_; + h@PPlgGQ_ZIBgﬂg -+ h@PPMGQ_ZI (Tg — 5@)

=0
k - ~
+ Y g P(Py — Pyy_j)(te—j + f(Go—j, 0,005, te—;))
j=1

+ heP PGy BT + Go(Tie s, Op_iy 7o — )

+ [ (g, Ge(Tig—i, o3, T — 82), bgy te), e) = 0
(4.33)
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We define
Ry(u,iig_j, 004,00 — 1) :=

k
QU + Z Olgjﬂ,g,j + thPMGQ_elBgu
j=1

+ heP PGyt fi(u + f(u, Go(tio—s, s, 7 — 0¢), g, te)
(t

+ Go(Tip—s, Op—i, Te — 00), te)
k — ~
+ Z i P(Prg — Pro—j)(tg—j + f(tie—j,0, 0605, te—5))

+ thPuG% ( 53)
fori=0,...,kand j =1,...,k. Then, Ry, is continuously differentiable,
Ry(0) =0, Ry,(0) = gl + hePPuGy} By.

Taking into account the properties of #, f: , and g,, we obtain by the same
arguments as above:
There is a radius x (independent of the partition) and a unique C'-function

Fe(tig 3,004,600 —70) + B((0),x) — B(0,X)
for sufficiently small h, with the properties
Ry(Foldie g, 8¢ iy 00 — 72), g5, 00400 — ) = 0, 7(0) = 0.

The function determined in this way
Zo(iig_j, 00— 6p — Tg) :=
Foltig_j, O0—i, 00 — 7o) + + [(Feliio i»00_ir 00— T1), 0p, )
+ Ge(Fe(tte—j, 00—y 60 — Te), Tg—jy Oe—iy 00 — T2)
(41

is a solution of the system (4.17
solution x, at the time point ,.

9), i.e., the BDF method provides a

Considering again equation (4.33), using the estimations (4.21) and (4.32),
and taking standard arguments for explicit ODEs, we find a constant ¢’ > 0
for suitable constants k; and ky (see (4.2)) such that

g <chy forl>k

is true, provided that the assumption (4.15) is satisfied. Finally, the asser-
tions of the theorem follow immediately.
O
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Remarks 4.4

(1)

For the problems given in Theorem 4.2, a week instability is present
in all components of the solution. In the proof we have seen that the
inherent differential ODE is influenced by the defects in the algebraic
part of the DAE. However, from the theory for linear index-2 prob-
lems (see e.g. [Mar92a]) we know that instability occurs only in the
algebraic components (Qz). Unfortunately, this is not correct for all
DAEs. There are even DAEs in Hessenberg form (cf. Examples 1 and
2 in Section 3.2 of [Tis95]) for which the instability occurs also in the
differential components (Pz).

For a successful integration of quasilinear index-2 DAEs with the vari-
able order variable stepsize BDF method the following aspects should
be taken into consideration.

- If the nullspace of the leading coefficient matrix is not constant,
the BDF need not converge, even need not work at all (see [GP84]).

- In general, all components of the solution will be influenced by a
week instability arising from defects in the derivative-free part of
the DAE. That’s why, for obtaining a solution, it is necessary to
ensure that these defects remain smaller than the stepsize used.
Additionally, for the BDF of an order greater than 1 the compo-
nents of the starting values in the involved inherent ODE must be
sufficiently exact in relation to the stepsize.

- If the algebraic components go into the DAE only in a linear
way, the integration will work better when the stepsize and order
control is based on the differential components only (see [Tis95]).
These components are not affected by the week instability. In
order to improve the other variables a smaller stepsize won’t be
helpful. Therefore, the defects in the algebraic part of the DAE
have to be made smaller.

Remark 4.5 Since general index-2 differential algebraic equations

fli,z,t) =0 (4.34)

with constant nullspace ker f; can be equivalently transformed into a quasi-
linear index-2 DAE

Pi—y=0 (4.35)
fly,z,t) =0, (4.36)
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the results for quasilinear systems (4.1) can be generalized to systems of
the form (4.34). For the class of quasilinear DAEs satisfying the structural
condition (2.2) in [Tis95], this was already done in [Fre95].
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Chapter 5

Simulation of electrical circuits

In this chapter, we investigate the problem of the index of the systems arising
from modified nodal analysis. This problem was already studied in [FG94] for
some examples. We present some results for all models whose capacitances
are described by a one-port. In this case, each capacitance of the network has
two uniquely determined nodals (including the node with the zero potential),
enclosing this capacitance. That means, for each capacitance of the network
the voltage through this capacitance may be expressed by the difference of
the nodal potentials of these two uniquely determined nodals. Note that a
wide class of electric networks can be modelled in such a way since general
capacitances can often be modelled by controlled current sources in such a
way that
I=¢ with ¢= f(u).

For an example, see the nonlinear current source in the MOSFET model on
page 88.

5.1 Structure of the circuit systems

From Chapter 2 we know that the classical modified nodal analysis leads to
systems of the form

D(x)i + f(z) = r(t). (5.1)
The charge-oriented modified nodal analysis implies systems of the form
A+ @) = r(t) (5.2)

q = g(z). (5.3)
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Recall the relation D(z) = Ag'(z) for the systems above.

Let us denote the number of nodals by n,, > 0 and the number of inductances
in the network by n; > 0. Further, we sort the vector z and the vector ¢ in

such a way that
u
— —(Q
T (frf)’ a=(%)

where u represents the vector of nodal voltages, I;, the vector of inductances,
I the vector of voltage-controlled sources, ) the vector of charges, and ®
the vector of fluxes.

Let all capacitances of the network have a certain direction. Then, each
capacitance has a uniquely determined “left” node and a uniquely determined
“right” node (if we regard also the node with the zero potential). The voltage
through the capacitance may be expressed by the difference of the nodal
potential of the right and of the left node.

We numerate the capacitances and the inductances in the network in such
a way that (); represents the charge of the capacitance C; for j = 1,...,n¢
and ®; represents the flux of the inductance L; for j = 1,...,nz. Now, the
entries a;; of the rectangular matrix A in equation (5.2) satisfy the following
relations.

e If the i-th node is the right node of the capacitance C}, then a;; is equal
to 1.

e If the i-th node is the left node of the capacitance Cj, then a;; is equal
to —1.

e If the current through the inductance L; is denoted by z; = I,;_,, , then
a;; is equal to 1.

e Otherwise, a;; is equal to 0.

For more clarity, we look again at the double way rectifier on page 23. In
that case, the incidence matrix A has the following structure:

[=NeNeNeleNoleNoNeNelS
[N e NN NNl Nel Sl
SO OO O OO
[=NeoNol S loloNoloNoNoN el
OO OO OCDOOOOO
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where
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[=NelololoNeNoRoRoRoRa)
[=NeleloBololol=-ReRoNe}
oo CcoOoCcoo0o0o
[=NeleloBoNeloRoleRoRa)
[=NeNeNoleNeNeNeNeNoNa)

The matrix A describes the topology of the dynamical network elements. Are
there any relations to the entries of ¢'(z) (see equation (2.4))7 We are able to
answer this question if we analyze the expressions for the capacitances and
inductances in the network in more detail.

For each capacitance in the network, there is a positive, differentiable function
tj such that

Q; = ¥;(vj)

is satisfied for the voltage v; of the capacitance C;. Therefore,
Q; = ¥j(v3)0;

is valid. Furthermore, the voltage v, is a linear function of u. More precisely,
it is equivalent to uy — u; (ux denotes the nodal potential of the right node,
u; denotes the nodal potential of the left node of the capacitance C;). Hence,
we may write

Hw) 0 ... 0
I N
6 0 ;C(.vnc)

The entries y;; of the matrix Y satisfy the following relations.

e [f the j-th node is the right node of the capacitance C; and the nodal
potential of the j-th node is denoted by u;, then y;; is equal to 1.

o [f the j-th node is the left node of the capacitance C; and the nodal
potential of the j-th node is denoted by u;, then y;; is equal to —1.

e Otherwise, y;; is equal to 0.
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In the case of the double way rectifier, the matrix Y has the form
-1 0 00O0O00O0
Y = 0 -1 00O0O0O0|.
0 0 -1 0000
For each inductance, there is a positive, differentiable function ¢; such that
®; = ;L)
is satisfied for the current I; through the inductance L;. Now,
®; = (1) 1;

is fulfilled. Hence, we may write

oiz)y 0 .. 0
i 0 hzx) ... 0 .
d=1| | “02_() _ .| zi
0 0 ... ¢, (2)

if the entries z;; of Z satisfy the following relations.

o If the current through the inductance L; is denoted by z; = I, , then
zi; is equal to 1.

e Otherwise, z; is equal to 0.
For the double way rectifier, we have
1 000
7= ( 0100 > '
These facts lead to the following property of the function g(z) (see the equa-
tions (5.3) and (2.4)).

g'(z) = R(z)A", (5.4)
where

Yi(z) 0 0 0 0 0
0 ¥y(2) 0 0 0 0
oo 0 ' (x) 0 0 0
Rl@)=| 0 0 @ 0 0
0 0 0 0 ¢y(z) 0

0 0 0 0 0 @, ()

is symmetric and positive-definite.
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Remarks 5.1
(1) If the network is modelled without capacitances, the matrix R(z) reads

o)y 0 .. 0

0 5z 0

Rlw) = : ’ ( | y :
0 0 ... ¢, (2)

(2) If the network is modelled without inductances, the matrix R(x) reads

vi(z) 0 ... 0

0 o(x) ... 0
Bay=1". wt() S

0 0 ... ¥ (z)

(3) More precisely, the matrix A may be written as

M 0 Ny,

A = 0 1 nr ,
00 . (5.5)
ng Ny

where M is a matrix with entries —1, 0, 1 only. It describes the oc-
currence of the capacitors in the network. I represents the identity
matrix. The dimension n, represents the number of voltage-controlled
sources of the circuit. Note that if the circuit does not contain all kinds
of elements, some dimensions (e.g. ny) may be zero. Then, obviously,
some rows or columns of the description (5.5) will disappear.

Now, the following lemma is true.

Lemma 5.2 For the systems (5.1) and (5.2)-(5.3), the relations
imA=1imD(z) and kerD(z)= kerg'(z),

are satisfied.

Proof: Since
g'(x) = R(x)A"

is valid for a symmetric, positive-definite matrix R(x), we find a symmetric
regular matrix R,(z) such that R(z) = Rs(x)Rs(x) is satisfied. Hence,

rank AR(x) AT = rank AR,(z)(AR, (7))’ = rank AR, (z) = rank A.
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This implies
im D(z) = im AR(z)A” = im A.

Secondly,
rank AR(z)A” = rank AR, (z)(AR,(z))"
= rank (AR,(z))" = rank R(z)A".
Now,
ker D(z) = ker AR(2) A" = ker ¢'(z)
is valid.

Corollary 5.3 The relation ker D(x) = ker AT is valid.

Proof: It holds that ker D(z) = kerg'(z) = ker R(z)AT. Since, R(x) is
regular, we may conclude ker D(x) = ker AT
a

5.2 Solution spaces adapted to circuit sys-
tems

Due to Corollary 5.3, equation (5.1) can be rewritten more precisely as
D(z)Pi + f(x) —r(t) =0, (5.6)

where P denotes any constant projector matrix projecting along the constant
nullspace N := ker D(z) = ker AT. This reformulation (5.6) provides infor-
mation on what kind of functions we should accept to be solutions of the DAE
(5.1), in fact. Namely, such a solution has to be a continuous function with
a continuously differentiable P-component. However, the other component
should not be expected to belong to C* in general.

Analogously, by introducing the projector P4 along the nullspace of A, the
system (5.2)-(5.3) reads

APag + f(z) = r(1),
¢—g(z)=0.
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Thus, the function spaces
Cy:={x€eC(TR™) :PzeCYT,R")},
Cr:={i=(g,z) € C(T,R*™): Pyg e C(Z,R")}

with m = n, +ny +n, and n = ng + ny, result to be natural ones, where the
solutions of (5.1) resp. (5.2)-(5.3) should belong to.

Theorem 5.4 z € Cy solves (5.1) and q = g(z) if and only if (¢,z) € C,
is a solution of (5.2)-(5.3).

Proof:
(=) Denoting Q := I — P, the projector @ projects onto ker A”. Equation
(5.4) leads to the relation

g(z) — g(Pz) = /01 R(Pz + sQx)ATQds = 0,

i.e., g(x) = g(Pz), *x € D. Hence, if z € C} is a solution of (5.1) and
g = g(z) is satisfied, then
q = g(Px)

is true, i.e., the function ¢ is continuously differentiable. Thus, P4q is also
continuously differentiable, i.e., the pair (¢, z) belongs to Ct. Trivially, (¢, z)
solves the equation system (5.2)-(5.3).

(<) We define an auxiliary function

Paq — Pag(Py) + z
Fu(y, 2, Paq) ::( Ad Q/Zgi )+ Qs )

This function is continuously differentiable, and the relations

T
(Fi)(y,2)(¥; 2, Pag) = (PAR(SZU)A %A)

(Fn)p,q(y, 2, Pag) = (é)

are satisfied for Py € D and ¢ € R™. The matrix (Fy){, , (¥, 2, Pag) is regu-
lar, and the implicit-function theorem provides a continuously differentiable
function f = (fn1, fro)” satisfying

z

<y> N (?:;EEZD » Fu(fn(Pag); f2(Pag), q) = 0.
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Since Fy,(Pz,0, Pag) = 0 and Paq € C* are satisfied for the solution (g, z) of
the system (5.2)-(5.3), the relation Pz € C* is true, i.e., z € C} is fulfilled.
O

Corollary 5.5 If (z,q) € C}, solves (5.2)-(5.8), then we have Pz € C".

5.3 Index of the circuit systems

One of the important questions is the question of the index of the equivalent
systems (5.1) and (5.2)-(5.3). We want to investigate the tractability index
of both systems. Regarding Section 1.2.4, we have to study the relevant
spaces N, S, Ny, and S of (5.1) and (5.2)-(5.3), respectively. In order to
be able to distinguish the relevant spaces for both systems, we will mark the
corresponding spaces of the system (5.2)-(5.3) by a tilde. As in Section 1.2.4
we introduce
N :=kerAg'(z), N:={(1):Ay=0}

and
é”(ac) ={z: f'(z)z € im A}
S(z)={(7): f(z)z €imA, v=g'(z)2}
as well as
Ny(e) = ker (4g'(z) + ['(2)Q)
Ni(z) ={(3): Ay + f(2)2 =0, Qay =g¢'(z)2}
and

Si(z) = {z: [(#)Pz € im (Ag'(z) + ['(#)Q)}
Si(z) ={(2): T, 8: 0=Aa+ f'(z)B, Pay=Qaa—g'(z)3}.

Note that if g is twice differentiable, the spaces introduced correspond to the
spaces introduced in Section 1.2.4 since

Ag'(z +1y)Q — Ag'(2)Q

T

=0

Ag"(z)yQ = lim g

is true for all (y,z) € R™ x D.

The special structure of the circuits implies the hoped-for results:
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Theorem 5.6 System (5.1) is index-1 tractable if and only if system (5.2)-
(5.3) is so.

Proof: o
(=) For any (}) € NN S(x), we get

Ay=0, v=4(z)z, f'(z)Z€imA.
Thus, Ag'(z)Z = 0 is satisfied. Using the condition
NN S(x) ={0},
we obtain Z = 0. The relation v = ¢'(x)Z implies v = 0, i.e.,
Nn S(z)={0}.
(«) For any z € N N S(x) we compute v := ¢'(x)z and Z := z. Then, the

relations
Ay=0, v=4'(2)z, f'(x)2€imA

are satisfied, i.e., (1) € NN S(x). Therefore, Z = 0 is valid, i.e., z = 0.
O

Theorem 5.7 System (5.1) is index-2 tractable if and only if system (5.2)-
(5.3) is so.

Proof: Firstly, we will show that the relation
dim Ny (z) = dim NV, (z) (5.7)

is satisfied.

(1) Let {z',...,2"} be a basis of Ny(z). For any i € {1,...,r} we compute
Z':= @Qz'. Then, 2’ lies in im @ = ker ¢'(z), i.e., ¢'(7)Z* = 0. Setting

7= Pag' @)

2

dependent, we find A, ..., A\, € R such that

T . ’YZ _
E(2)=

we may follow (;Zz) € Ny(z). Assuming (;Zi) e (Z:) to be linearly
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T .
Hence, the relation ) \;2* = 0 is satisfied. Therefore,
i=1

i=1 i=1 i=1

Now, we know

0= Y M(AG (@) + F(0)Q)7 = Ad(2) 3 A,

i=1 i=1

ie., ET: A\iz" € ker Ag'(x) = im Q. Considering (5.8), we may follow
i=1

Z )\izi = 0,
=1

which is a contradiction to the choice of 2',..., 2". Therefore, we are
able to conclude that the set (Zi ),..., (Z:) is a linearly independent

subset of N (z), i.e.,
dim NV (z) < dile(x).
(2) Let (Zi ),..., (Zz) be a basis of N;(z). Regarding the relation
g'(2)7 = Qa7
we obtain
Agd'()7' =0, ie., 7 € imQ. (5.9)
Further, the relation Ay'+ f/(z)z* = 0 is fulfilled for each i € {1, ..., s}.

This implies
f'(z)#" € im A = im Ag'(z),

consequently, there is a unique w® € im P such that

Computing 2! := 7' — w’ and regarding (5.9), we see

(Ag'(z) + f'(2)Q)7" = —Ag'(2)w" + f'(2)7' =0,



5.3 Index of the circuit systems 79

i.e., 2! € Ni(z). Assuming z',..., z° to be linearly dependent, we find
Ai,..., Ay € R such that

1=1

is fulfilled. Then, @ Zs: izt =0 is valid, i.e., ZS: \iZ* = 0. Further,
=1 i=1
AV Ay ==Y f@)Nd =0, QuX A" =Y ¢ @\F =0,
=1 i=1 i=1 i=1

=1 z

which is a contradiction to the choice of (Zi ),..., (Z: ) Finally, the set
{z',...,2°} is a linearly independent subset of N;(z), i.e.,

implying

dim Ny (z) > dim Ny (z).

(—) Regarding the proof of Theorem 5.6 we obtain

N S(z) # {o}.

For any (7) € Ny(z) N Si(z), there exist a, 3 such that

Pyy = Qaa—g'(z)p (5.10)
0=Aa+ f'(z)B (5.11)

hold. Because of (7) € N;i(z), we may conclude that
zZ € ker A¢g'(z) = imQ

if we regard Q4 = ¢'(z)Z. Now, we compute z := Z — P3. Using (5.10) we
obtain
Ag'(z)z = Ag'(z)Z — Ag'(z)8 = —Ag'(x) 5 = Ay.
Since (1) € Ny(z), the relation
—Ay = fl(2)Z = f(z)QZ = f'(2)Qz
is fulfilled. The latter two equations lead to

z € Ni(z). (5.12)
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Further, we conclude
f(@)Pz=—f(z)PB=—f(z)B+ f(2)QB
= Ao+ f'(z)Qp (see (5.11))
= Ag'(z)ay + f'(x)QB (for an «y, since im A = im Ag’)
= (Ag'(z) + f'(z)Q)(Pau + QPB),

that means

~—

03

Now, (5.12) and (5.13) imply z = 0. Because of Z = @z, the relation zZ =
@z = 0 is valid. Further, we obtain from (5.10) that

Ay = —Ag'(z)8 = Ag'(x)Pz =0
is satisfied. Finally, v = Qay =¢'(2)Z =0, i.e.,
Ni(z) N Sy(z) = {0}.
(«) For any z € Ny(z) N Si(x), we find an a4 such that
f'@)Pz = Ag'(z)as + f'(2)Qen. (5.14)
We consider
v = Pag'(2)z, Z:=Qz,
a:= Psg'(x)oy — ¢'(2)z, B :=Qay — 2.
Then, we obtain
Ay + fl(z)2 = Ad'(z)z + f(2)Qz =0
Qay=0=g(2)Qz=g'(z)Z (note imQ = ker ¢'(z)).
Hence,
(1) € Ni(a) (5.15)
is satisfied. Further,
0=(Ag'(z) + f(z)Q)z = —Aa — f'(x)B (see (5.14))
Pay = Pag'(z)z = —Qag'(2)z + ¢'(z)z = Qua — ¢'(2)B,
ie., (1) € Si(x). Together with (5.15) this leads to
(1) € Ni(z) N Si(a),

t
ie, vy =2=0. Now, we know Psg'(z)z =0, Qz = 0. The first relation
implies z € ker A¢g'(z), i.e., z € im(Q). Together with the second relation,
z = 0 is valid, i.e.,
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5.4 Calculation of projectors and index cri-
teria

The charge-oriented modified nodal analysis is preferred in modern circuit
simulation, because it makes it possible to control the charge and flux con-
servation of the circuit. Further, system (5.2)-(5.3) obtained by the charge-
oriented model is trivially one degree smoother than the system (5.1) ob-
tained by the classical model if we regard (2.4). Moreover, we have seen
that both modelling techniques lead to the same index (in the lower case).
Therefore, we want to analyze the charge-oriented system (5.2)-(5.3) in more
detail now.

Firstly, we rewrite the system (5.2)-(5.3) as

G000 e

In the following, we denote the corresponding matrices, projectors, and
spaces of this large system by a tilde, i.e.,

A=(g‘ 8) ﬁ<f)=<qf(§()x>>’ 32:(‘3")’

Since A is an incidence matrix of easy structure, it is not difficult to calculate
a projector Q4 onto its nullspace. Then, the matrix

~._ (Qa O
@:= ( 0 I
represents a projector onto the nullspace of A. We have

so= (0 1), am=(4 1)

Considering the relation (5.4) and Lemma 5.2, the interesting space N NS(&)
may be expressed by

NNS@E) ={(}): Ay =0, f'(z)z €imA, v=g'(z)z}
={(1):7=0, f'(x)z €imA, z € ker AT}.

This information implies the following criteria for the index-1 case.
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Theorem 5.8 The system (5.2)-(5.3) is indez-1 tractable if and only if the
relation
{z: f'(x)z € imA, z € ker AT} = {0}

15 satisfied.
Introducing a projector Q.(z) € L(R™) onto
S(x)={2€R": f'(z)z € im A},
we may also give a criterion for the index-2 case.
Theorem 5.9 Let the subspace
NNnS(z)={z: z € kerA”, f'(z)z € im A}

have constant dimension for x € D. Then, system (5.2)-(5.3) is index-2
tractable if and only if, for x € D,

z€ NN S(z), f'(x)z € imAg'(z)Q.(x) imply  z=0
(5.17)

is satisfied.

Proof: The nullspace of G (%) satisfies the relation

N(E) =kerGy(Z) ={(2): v€kerQu, z € ker AT, Ay + f'(x)z = 0}.
(5.18)

Since the space NN S(x) has constant dimension, the nullspace of G (z) has
also constant dimension

dim G4(#) = dim N N S(z).
Now,
& () (0 (A fi(=)
50) = (0 () em (5, S0 69
={(2): Ay € im Ag'(2)Qu(2)}.
In particular, (7) € ker G1(2) N Sy (&) implies z € S(z), hence

Ay + fl(z)z = 0.
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Now, the assertion follows immediately.

Introduce a continuous matrix function R, (x) satisfying
AR(2)A"R,(x) = A, R.(z) = R.(z)Py. (5.20)
Such a matrix function does exist, e.g. we can choose
R.(z) = (AR(z)AT)" A.
The following theorem describes the relation between the canonical projector

Q1(z) of the system (5.1) and the canonical projector Q:(Z) of the system
(5.2)-(5.3).

Theorem 5.10 Let QQ be a projector onto N and Qi(x) be the canonical
projector onto Ni(x) along Si(z). Then,

5 o (Pag (x)Qi(z)Ru(z) O
Q@ ‘( QQ:(z)R. (x) o)

represents the canonical projector onto Ny(%) along Sy (%).

Proof: Regarding (5.20), and (5.4), the relation
PR, (z)Pag'(x) =P
is satisfied, which yields
Q1(z)R.(2)Pag'(z) = Q1(x). (5.21)

By this relation, it is easy to see that the matrix Q1 (&) defined in the theorem
above is a projector for all Z. Next, we show that

(C) Let () be an element of im Q; (). Then, we find an a such that
7 = Pag'(@)Q1(z) R (2)c
7 = Q@1 ()R, (z)o
Obviously, v lies in ker 4, and z lies in ker A”. Furthermore,
Ay + fi(z)z = Ag'(2)Q1(2) R (z)o + [(2)QQ1 (2) Ri(2)cx
= [Ag'(z) + f'(2)QIQ:(z) R (z) = 0

is true, since Q(z) projects onto Ni(z). Regarding (5.18), we obtain
(7) to be an element of Ni(Z).
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(D) Let (7) be an element of N;(%). Then, the relations
v=Pay, 2=Qz, Ay+f(2)2=0
are satisfied. Thus,
[Ag'(z) + f'(2)QI[PR.(2)y + Q2] = Ay + f'(x)z =0,
ie.,, PR,(xz)y+Qz lies in im Q;(x). Let § be chosen in such a way that
PR.(z)y+ Qz = Qi(z)3
is satisfied. Regarding (5.21), there is an « such that
Q1(2)8 = Q1(z)R.(2)a
is true. Then,
QQi(@)R.(a)a= Qz =2
Pag'(z)Q1(z)Ru(z)o = Pag'(z) R (2)y = Pay =1,
i.e., (1) is an element of im Q, (Z).
Finally, we show B B
ker Q1 (Z) = S1().
(C) Let (1) be an element of ker Q;(Z). Then, the relations
Pag'(2)Q1(z)Ri(z)y =0, QQi(z)R.(x)y=0

are satisfied. The first relation implies PQ:(z)R.(z)y = 0, i.e., together
with the second equation we obtain that R,(z)vy lies in ker Q;(z) =
Si(x). Now, we find an «; such that

f'(@)PR,(z)y = [Ag'(z) + f'(2)Qlas
is fulfilled. Computing
o= Pag(@)o1 — Qug (@) Ru(@)y, 8= Qe — PR.(x)7,
we obtain

Aa+ f'(z)B = Ad'(z)ou + f'(z)Qau — f'(z) PR.(z)y
Qaa — ¢'(v)B = Pag'(z) Ri(2)y — ¢'(2)Qau,

which yields ,
(ng> B (ét _fg§8)> <g> ’

i.e., (1) is an element of S ().
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(D) Let (1) be an element of S; (). Then, we find o and 3 such that
Pyy=Qaa—g'(z)B
is true. Regarding (5.20), we have
f'@)PR(z)y = =f'(@)PB = f'(2)QB — f'(x)B
= ['(#)@QF + Ao = [Ag'(z) + ['(2) QI[P R. (x)o + QF],

i.e., Ri(z)y lies in Si(z) = ker @Q:(x). Therefore Q(z)R.(x)y = 0 is
true, and hence (7) is an element of ker Q;(Z).

5.5 Numerical specifics

Applying the BDF to the charge-oriented modelling, we obtain an equation
system of the following form

k
i@ S cwides + f(ze) = r(te) (5.22)
1=0

A >
q = g(z¢)- (5.23)

In order to obtain a lower-dimensional system, one puts the second equation
into the first one, solves

k
Ahl Z i g(we—;) + f(ze) = 7(t0)
£ =0

by a Newton-like method, and calculates ¢, = g(x,) then.

Remark 5.11 Chapter 4 deals with the BDF applied to quasilinear index-2
DAE:s of the form (4.3). Since, in general, the charge-oriented modified nodal
analysis provides systems belonging to this class of DAEs, we may success-
fully apply the BDF method to general models (i.e., also to models with
non-reciprocal capacitances) if the assumptions of Theorem 4.2 are satisfied.

The investigations in Chapter 4 make clear that all components of the solu-
tion are influenced by a week instability arising from defects in the derivative-
free part of the DAE. Hence, for obtaining a solution, it is necessary to ensure
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that these defects remain smaller than the stepsize used. Obviously, the de-
fects in equation (5.23) vanish. Dividing equation (5.22) by a Qimna onto
im A into the system

k
Ai > e i + Qimaf (20) = Qim ar(te) (5.24)
=0

he =
(I = Qima)f(xe) = (I = Qima)r(te), (5.25)

it is only necessary to observe the defects arising from the solution of equation
(5.25).

The values of the components ¢ are very small (~ 107!2) in comparison to
the values of r (~ 1073). We tested the variable stepsize variable order
BDF method by controlling the “reliable” non-nullspace components only
successfully in [Tis92]. In our case here, the non-nullspace components are
represented by Pagq, i.e., the tolerance requirements must be adapted to ab-
solute values of ~ 10712,

5.6 NAND-gate

5.6.1 Model

Most of the industrially integrated circuits contain NAND- and NOR-gates
as basic elements. These types of gates may be economically produced and
universally used. Figure 5.1 displays a circuit simulating a NAND-gate (see
[GRY4]). It comsists of two n-channel enhancement MOSFETs (ME), one
n-channel depletion MOSFET (MD), and a load capacitor C (cf. [SH68]).

Digital MOS-circuits contain no other elements besides the MOSFETSs as
a rule. MOSFETs also take the function of controlled resistors. In our
example, gate and source of the depletion transistor MD are connected, i.e.,
this MOSFET works as a controlled resistor here.

The drain voltage of MD is constant at Vpp = 5V. The bulk voltages are
not at ground, Vgg = —2.5V. The source voltages of both MEs are at

ground. The gate voltages are controlled by the voltage sources V; and Vj.
The response at node 1 is only LOW (FALSE) if both, the input signal V}
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and the input signal V5, are HIGH (TRUE).

L Og

Figure 5.1: NAND-gate model

The circuit model for the MOSFETs MD and ME is given in Figure 5.2 (see
[SH68]). Later, we will show that the model leads to an index-2 DAE for
the NAND-gate. The model used in [FG94| and [Giin95] is a regularization
of this model and of index-1. The transistors MD and ME differ only in
parameter values (see Table 5.1).

The current 745 flows from drain to source if and only if the controlling voltage
U,s between gate and source is larger than a technology dependent threshold
voltage Ur. The gate is isolated from the channel DS by a thin SiO,-layer,

i.e., the resistance R,y between source and drain is almost infinitely high
(~ 10%5Q).
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Drain

Drain

Gate 4—{ Bulk Gate

Source corresponds to

»— Bulk

Source

Figure 5.2: MOSFET model

Using the charge-oriented modified nodal analysis described in Chapter 2,
we obtain the following DAE system
U1 — U2 Uy —

Uy . . .
Rs - Rd + Q + ngd + ngs =0

(5.26)

— ngs + Qi + UQI%UI + UZR_SdU3 + iy (u12 — up)
+ D (us — U, Uy — U, Uy — Up) = 0 (5.27)

— Quga + Quap + u3};dU4 - U2R_st3 + ipy(Ure — u3)
— 2 (ug — Ug, Uy — Ug, U1g — Up) = O (5.28)
“4]; Y Ipp =0 (5.29)

d

+Qagd + Qogs + 11 =0 (5.30)

— Qags + Qasp + 16 1_%5“11 + UGR_SdW + iy, (w12 — Us)
+ i85 (uy — ug, us — ug, U1g — Ug) = 0 (5.31)

- ngd + deb + U7};dm - UGR:;M + ifd(um — uy)
— 5 (uy — ug, us — ug, U1z — ug) = 0 (5.32)
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+Q3gd + Qags + 12 =0 (5.33)
: - Uy Ug — U0 | .

- Q3gs + Q3sb + E + de + l(?s(ulg — U,Q)

+ iy, (U10 — Ug, Ug — Uy, Uz — Ug) =0 (5.34)
: : Uyg — U Ug — U ,
— Qaga + Qaap + ———— — ——— + it (w12 — 1)
Ry Rgq

— i, (ur0 — Ug, ug — g, Ury — tg) =0 (5.35)

Uip —Us Ui — U11
— =0 5.36
R, R, (5.36)

- Qldb - leb - iﬁ(“m - UQ) - iﬁ(ulz - U3)

- Qde - Q2sb - ifs(um - Uﬁ) - ifd(um - U7)

— Qs — Qb — i, (v12 — ug) — ipy (a2 — ur0) + Ipp = 0 (5.37)
Q—Cu =0 (5.38)

Q1gd — Gga(ur —uz) =0 (5.39)
Q1gs — Ggs(ur — ug) = (5.40)
Q1ap — qap(us — u1z) =0 (5.41)
Qusp — gsp(ug — u12) =0 (5.42)
Q2gd — 9ga(us —uz) =0 (5.43)
Q295 — qgs(us — ug) =0 (5.44)
Qadp — qav(u7 — u12) =0 (5.45)
Qasp — qsp(tus — u12) = 0 (5.46)
Q39a — Gga(us — u1p) =0 (5.47)
Q3gs — qgs(us — ug) =0 (5.48)
Qsap — qap(Ur0 — u12) =0 (5.49)
Q36 — qsp(ug — u12) = 0 (5.50)
—Vpop =0 (5.51)

u1a — Ve =0 (5.52)

~Vi=0 (5.53)

-V=0 (5.54)

The current through the diode between bulk and source as well as the current
through the diode between bulk and drain is given by the function

—ig- (exp(:L)—=1) forU <0
o (exp(E) 1) <

) (5.55)
0 for U >0

ivs(U) = ipa(U) = {
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The current through the controlled current source between drain and source

is modelled by the function

idS(Udsa U957 Ubs) =
0

—B- (140 -Uss) - (Ugs — Urg)

_ﬂ . Uds . (1 + 5 - Uds) - [Q(Ugs — UTE) — Uds]

with Urg = Urg + v - <\/<I> — Ups — \/5) The technical parameters for the

for Ugs — UTE S 0
for 0 < Ugs —Urg < Uygs
for 0 < Uy < Ugs —Urg

MOSFETs MD and ME are given in Table 5.1.

ME MD
is 10~ A 10~ A

Ur 25.85V 25.85V

Uro 0.8V —2.43V
B | 1.748-103A/V? | 5.35-10 %A /V?
v 0.0V 0.2V
) 0.02V ! 0.02V !

P 1.01V 1.28V

Table 5.1: Technical parameters

The values for the resistances are chosen for all MOSFETSs as
Ry, = Ry =4Q, R, =10"Q.

The load capacitance is constant of size C = 0.5 - 107 F. The capacitance
between gate and source as well as that between gate and drain are modelled
as linear capacitors, i.e.,

Qgs(u) = qga(u) = C1 - u with C; = 0.6 - 1072 F.

The capacitance between bulk and drain as well as that between bulk and
source may be modelled on two levels (see [GR94]):

e Level A: Linear capacitances

qap(u) = ge(u) = — Cp - u with Cy = 0.24 - 107 F.
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e Level B: Nonlinear capacitances

- —00-<1>B-(1—,/1—é> for u < 0

qan(u) = gsp(u) .
—C’o-(1+@)-u for u >0

with
Cy=0.24-10 BF and &5 = 0.87V.

5.6.2 Index analysis

Let us study the related spaces for the NAND-gate equation system (5.26)-
(5.54) using the vector

(Qa .’L‘) = (Qa ngda ngsa Qldba leba Qdia QQgsa Q?dba Qsta Q3gda Q3gsa

Q3dba Q3sba Ui, Uz, U3, Ug, Us, Ug, U7, Ug, Uy, U10, U11, U12, Il: IQ, IBB: IDD)-

It is easy to verify that

kerA=N={z: 21=0, 20 = —23 = 24 = —25,
26 = —R7 = 2§ = —R9,
210 = —Z11 = 212 = —213}-

The image space of A may be written as
mA={y: ys=yn=0,y13="y14=... =y =0} (5.56)

This leads to

S(u) ={z: 217 =205 =218 = 201 =0, 299 = R—dzm,zl = (214,
1 1 1 1
TR T R + (E + R—d)224 =0,
29 = C|z14 — 216), 23 = Ci[214 — 215], 24 = Co(us — u12) 216,
z5 = Cy(ug — u12)215, 26 = —Clr29, 27 = —C1210,
zg = Cy(uy — u12) 220, 29 = Ca(us — u12)219, 210 = —C1 203,
211 = —Chzgo, 212 = CQ(Ulo - U12)2’23, 213 = Cg(ug — u12)z22}

if the capacitance function Cs(u) is defined by

e (y(u) =C, in case of Level A
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Co-(1—(1=2)3) foru<o0
o Cg(u)={ 0 ( (u #s) ) - in case of Level B.
CO<1+E) foru>0
Hence,
NﬂS:{Zi 21:,22:...2225:0, 2’29:0}, (557)

i.e., the space N NS is constant, and the structural condition (3.39) is satis-
fied. Further, we see that the components zog, 297 and 29, i.€., I1, Iy and Igp,
represent the critical variables. A differentiation is necessary for computing
these variables.

As a projector @ onto N we choose @ = (g;;) for 4,5 =1, ...,29 with
Q2= Q32 = Q2= —(Qs2 =1, Qo6 = —Gr6 = Qa6 = —(Qss =1

1010 = —q1110 = Q1210 = —G1310 = 1, Qii = 1 fOI‘ Z = 14, ceey 29
¢i; = 0 in all the other cases.

Calculating
Gi(z) := A+ B(z)Q

we obtain that

kerGl(ac) :N1 = {Z: 222242262282210:,212:0, 2929 :O,
Z1a =215 = ... = 225 =0, 208 = —25 — 29 — 213

25 = 23 = —21, Zos = 29 = 27, Zar = 213 = 211}
is constant. For the image space of G(z) we obtain

imG(u) = {y: Yoo + o3 — 2C1 Y29
C

+ C’1+—6325(u) [Y24 — Y20 + C1yag + Cos(u)yar]

+C’1+LCI'26(U) [Y25 — Y23 + C1y20 + Ca6(u)y2r] = 0,
Y18 + Y19 — 2C1Yag

+ CH%CZ?,(U) [Y20 — Y18 + C1yas + Cas(u)yor]

+ C’l—f-LC%u(u) [Y21 — Y10 + C1yas + Cas(u)yar] =0,

C

Cy - [Co1(u) + Coo] + 2C51 (1) Co(ug — ui2) [Ca1(u)y14
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Cyq(u)C
+ Co(ur — ur2)15 + %[%4 + 15
1
+ [C1 + Cas][yis + Co1(u)yer] + [Cr + Co1(uw)][yrr + Ca2yor]] = yis}
if
021(1&) = 02(U3 - U12), sz(u) = 02(U2 - U12)
Czs(u) = Cz(u7 - ulz); 024(U) = 02(U6 - U12)
Czs(u) = Cz(ulo - Ulz), CQG(U) = 02(u9 - U12)-
Thus,
025(U) CQG(U)
Si(u) =4{2: =———|z10+ 212] + =————|211 + z13] =0,
1( ) { Cl+C'25(u)[ 10 12] C1+026(U)[ 11 13]
Cas(u) Ca4(u)
1% T 2|+ 5~ |27 + 2] =0,
C’1+C'23(u)[ 6 8] C’1+C’24(u)[ 4 9]
C

Cr - [Cor (1) + Caa(w)] + 2C51 () Can(w) [[C1 + Caa(u)) 24
Czl(u)

+ [01 + Cgl(u)],2’5 + ng(u)[l + C

Jle2 + 2] = 21},

which implies
N N Si(u) = {0},

i.e., the NAND-gate equation system (5.26)-(5.54) is index-2 tractable.

5.6.3 Numerical results

Taking into account Remark 4.3 and relation (5.56), the sensitive perturba-
tions, which one has to control in relation to the stepsize, are those arising
when solving the equations (5.29), (5.36), and (5.38)-(5.54). Considering
Section 5.5, the equations (5.38)-(5.50) are solved exactly. Further, the de-
fects of the other equations (5.29), (5.36), and (5.51)-(5.54) are small since
these equations are linear. Consequently, the assumptions of Theorem 4.2
are satisfied.

For the numerical integration, we used the Level B approach. The abso-
lute tolerance and the relative tolerance were chosen as 10 2 and 10 3,
respectively. We started at the inconsistent starting value (¢(0),z(0)) = 0
without any problems. The integration required 602 steps over the interval
[Ons, 80ns].
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The input signals are given in Figure 5.3.

7 T T T T T T T T T T T T T T T
input V1
6 input V2 ----— g

10 20 30 40 50 60 70 80
time[ns]

Figure 5.3: Input signals V; and V5

The simulation results reflect the real output of the NAND-gate (see Figure
5.4). The voltage at nodal 1 is low if and only if the input voltages V; and V;
are high. The regions [10ns, 15ns] and [50ns,55ns] are critical. Both signals,
Vi and V5, are relatively high around the points of time 12.5ns and 52.5ns.

Output at node 1

10 20 30 40 50 60 70 80
time[ns]

Figure 5.4: Response at node 1

Regarding (5.57), the currents I; through Vi, I5 through V3, and Igp through
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Vgp represent the so-called index-2 variables. Figure 5.5 shows the result for
I, and Figure 5.6 for I.

current through V1
00006 T T T T T T T T T T T T T T T

0.0004 T

Tl ﬂvﬁ #\ o mvh #\ '

-0.0004 | T

_00006 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80
time[ns]

Figure 5.5: Current Iy

The currents I; and I, vanish in the intervals [5ns, 10ns], [15ns, 20ns],
[25ns, 30ns], [35ns, 40ns], [45ns, 50ns|, [55ns, 60ns|, [65ns, 70ns], [75ns, 80ns]
since the input signals V; and V, are constant in these intervals. This gives
us the possibility to determine the global error in these intervals.

current through V2
00005 T T T T T T T T T T T T T T T

0.0004 - T

0.0003 - T
0.0002 - 4

R I I

-0.0001 | n

-0.0002 | 7
-0.0003 7
-0.0004 7
-0.0005 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80
time[ns]

Figure 5.6: Current I,
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All calculations were carried out by the BDF code DAE2SOL ([Tis92]) with
controlled order and stepsize via the smooth component

5~ _ (Pa 0 (a) _ (Pag
pe= (0 0) ()= (°57)

where

|
cCoocoCcOoocO0OoOR~RR~,OO

OO OO HHFHFEFOOODODOO
HHEHHEFOOOODOOOoOOoOOoOo

b
[=NelololoBoRololoRol e Ne N
[=NeloeloNoBoNoNoNoNel X"
[=NelololoBoRoloRol S = K=N=)
OO0 OHODODOO
DO DODODOCCHOOODODOO
OO OO OHOODODODOOO
OO OHOOODODODODOO
OCOHOOOCOOODODOOO
OH OO0 OODOCDODODOO
HOOQOODODODODODOOOOo

From our experience, this control works essentially more effective than that
of the complete value z,.

As far as the weak instability term h—llQMnglég involved in the error estima-
tion of Theorem 4.2 is concerned, this effect is even typical of index-2 DAEs.
Besides the usual error propagation expected from the index-1 case, a certain
defect component amplified by h, * influences the computation strongly.

By the following table we realize those instability effects. The table shows
the values computed by the constant stepsize backward Euler method with
different stepsizes for approximating the currents I,(7) = 0, I(T) = 0,
Ipp(T) = 0, and Igg(T) = 0, which have to vanish at the final point T =
80-107?. The produced values reflect the theoretical results as expected. If
we decrease the stepsize, the error becomes smaller up to the stepsize 2e-10.
The error increases for stepsizes smaller than 2e — 10. This clearly reflects
the weak instability.

stepsize I I, Ipp Ipp

8e-10  5.41e-10 1.25e-15 2.30e-09 3.29e-09
oe-10  2.36e-10 1.20e-15 1.00e-09 1.44e-09
2e-10  1.51e-10 1.19e-15 6.23e-10 9.00e-10
le-10  1.88e-10 1.22e-15 4.91e-10 1.53e-10
de-11  1.24e-09 2.25e-15 2.72e-09 5.34e-10
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5.7 Ring modulator

5.7.1 Model

The ring modulator considered here represents a small circuit that interferes
a high frequency signal e;(¢) with a low frequency signal ey (t).

Figure 5.7: Ring modulator

This circuit was modelled by [Hor76]. If we discard the very small capaci-
tances of diodes, then we obtain the following DAE by applying the classical
modified nodal analysis.

Cuy =1, —I3-05+ I, - 0.5+ I; — uy /R (5.58)
Cuig = I, — I - 0.5+ Iy - 0.5 + Iy — uy/R (5.59)
0=1I;— GUD,) + GUD,) (5.60)
0=—I;+GUD,) — G(UDs) (5.61)
0=1Is+GUD,) — G(UDs) (5.62)
0= —Is — G(UD,) +G(UDy) (5.63)
Cpiiz = u7/R; + G(UD,) + G(UDy) — G(UD;3) — G(UD,)
(5.64)
Lyl = —uy (5.65)

Lply = —uy (5.66)
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Lsols = up - 0.5 —uz — Ry - I3

Lssly = —u1 - 0.5+ us — Rgz - I
Lsols = ug - 0.5 — us — Rgy - I

Lssls = —ug - 0.5+ ug — Rgz - I
LsiI; = —uy +ey(t) — (Ry+ Rpy) - I
LoiIy = —uy — (Ro + Ry1) - I,

the diode-functions are given by
G(UD) = 40.67286402 - 1077 - [exp(17.7493332 - UD) — 1],
the voltages at the different diodes are expressed by

UD1 = Uz — U5 — U7 — 62(t)
U.D2 = —Uyg + Ug — U7 — 62(t)
UD3 = Uyg + us + u7 + ez(t)

(

UD4 = —U3z — Ug + U7 + €9 t)
For the technical parameters, it holds that

Ry =36.3Q, Ry = Ry =17.30
Ry = R; = 509
R, = 6009, R = 25000
C=16-10"°F, Cp=10-10"°F
L,=445H, Lgi =2-10"2H, Lgy=Lg3=0.5-107H

The input signals are as follows:

ea(t) = 2-sin(27 - 10* - )
ei1(t) = 0.5-sin(27 - 10° - 1).

The considered capacitances of the diodes Cg are of small order 10 12F.
Therefore, the system is extremely stiff. Recent investigations by [DR89]
and [HLR89] have shown the undesirable oscillations in the diode-voltages
to be the smaller the smaller the parameter Cyg is. In case of C's = 0, the
simulation result is most adapted to the curve measured. In this case, the
system (5.58)-(5.72) becomes an index-2 tractable DAE, which we will see in
the next subsection.
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5.7.2 Index analysis

Let us study the related spaces for the ring modulator equation system (5.58)-
(5.72). Tt is easy to verify that

kerA:N:{z: 21:,22:0, 27228:...:2'15:0}.
The image space of A may be written as

imA={y: y3=ys=ys =ys =0} (5.73)

This leads to

S(u,t) ={z: [g1(u,t) + ga(u,t)]z3 — g1(u,t)25 + ga(u,t)ze
— g1 (u, t) + ga(u, t)]2z7 — 210 = 0,
[92(u, ) + g3(u,t)]24 + g3(u, )25 — go(u,t)26
+ [g2(u, t) + g3(u, t)]z7 + 211 = 0,
— g1(u,t)zs + g3(u, t)za + [91(u, t) + g3(u,t)]2s
+ [g1(u, t) + g3(u, t)]z7r — 212 = 0,
94(u, t)z3 — g2(u, t) 21 + [g2(u, ) + ga(u, t)]z6
— [g2(u, ) + ga(u,t)]z7 + 213 = 0}

if the diode-functions g;(u), g2(u), g3(u), and g4(u) are defined by
g1(u,t) := G'(uz — us — uy — eo(t))
g2(u, t) := G'(—uq + ug — ur — e(t))
g3(u, t) := G'(ug + us + u7 + es(t))
9a(u,t) :== G'(—us — ug + ur + ex(t))

with

G'(u) = 17.7493332 - 40.67286402 - 10~° - exp(17.7493332 - u).
Hence,
NNS(u,t)={z: z21=20=0, zr =28 = ... = 215 = 0,

X3 = —R4 = R = —ZG}, (574)

i.e., the space NN S is constant. Thus, the structural condition (3.39) is sat-
isfied. Further, we see that the components z3, z4, 25, and zg, i.e., us, U4, Us,
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and ug represent the critical variables. For computing them, a differentiation
is necessary.

As a projector @ onto N we choose @ = (g;;) for i,7 =1, ..., 15 with

433 = qaa = @55 = gos = 1

¢;; =0 1n all other cases.

Calculating
Gi(z) = A+ B(2)Q

we obtain that
kerGi(z) =Ny ={z: 21=20=0, 2 =28 =29 =0, 214 = 215 =0,
z3 = —z4 = 25 = —26, 23 = —Lsaz10,

zy = Lszzi1 = —21, 25 = —Lsa212, 26 = L3213}

is constant. For the image space of G1(z) we obtain
imGi(z) ={y: ys —ya+ys5 — ye = O}.
Thus, we obtain
S1={z: 210+ 211 + 212 + 213 = 0},
which implies
Ny NS, = {0},

i.e., the ring modulator equation system (5.58)-(5.72) is index-2 tractable.

5.7.3 Numerical results

Due to Remark 4.3 and the relation (5.73), the sensitive perturbations, which
one has to control in relation to the stepsize, are the perturbations resulting
from solving the equations (5.60)-(5.63). These equations contain exponen-
tial functions. Therefore, it is important to keep the defects in these equations
small in relation to the stepsize in order to make the BDF feasible over the
integration interval.

The integration required 944 steps for an absolute tolerance and a relative
tolerance of 1076,

Comparing the simulation result for the output voltage uy presented in Fig-
ure 5.8 with the measured voltage (see e.g. [KRS92]), the simulation results
reflect the real output of the ring modulator.



5.7 Ring modulator 101

Voltage at node 2
0.5 T T T

0.4
0.3
0.2
0.1

-0.1
-0.2
-0.3
-0.4

-0.5 ' ' '
0 0.0005 0.001 0.0015 0.002
time [s]

Figure 5.8: Voltage us

Considering (5.74), the voltages us, u4, us, and ug represent the so-called
index-2 variables. Figure 5.9 shows the result for u3. The time points 5-105,
10-10°°, 15-10°°, 20-10°°, 25-10°°, ... are critical, but the periodical
behaviour over the long integration interval is kept. Figure 5.10 shows the
result for a current, for I,. Unfortunately, we do not know the exact solution.
Therefore, we cannot investigate the errors in more detail.

Voltage at node 3
0.6 T T T

04 -

-0.4 -

-06 1 1 1
0 0.0005 0.001 0.0015 0.002
time [s]

Figure 5.9: Voltage us
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2e-06
1.5e-06
le-06
5e-07

-5e-07
-1le-06
-1.5e-06
-2e-06
-2.5e-06

Current 12

0.0005 0.001 0.0015 0.002
time [s]

Figure 5.10: Current I



Summary

Differential-algebraic equations arise in numerous fields. In particular, mod-
ern modelling techniques in the circuit simulation like the modified nodal
analysis lead to DAEs. The index of such DAEs is often low (< 2). The
solution behaviour of differential algebraic equations depends essentially on
the index of the system. Index-1 DAEs contain integration problems and
algebraic problems. General index-2 DAEs include not only integration and
algebraic problems, but also differentiation problems. Differentiation prob-
lems are ill-posed, i.e., small defects in the initial data may cause arbitrarily
large defects in the solution data. Hence, a careful analysis of the behaviour
of numerical solutions of index-2 DAEs is necessary. Primarily, different
modelling techniques can provide DAEs of different indices.

We investigate two modern modelling techniques, the charge-oriented and
the classical MNA. Both techniques are shown to lead to the same index
if the capacitances of the circuit are all one-port capacitances. Often, this
restriction can be fulfilled, since general capacitances can be interpreted as

current sources whose element equations are formulated in a charge-oriented
way (see e.g. the model of the MOSFET in the NAND-gate).

In Chapter 3, the numerical solvability is proved for a large class of index-2
differential algebraic equations satisfying the structural condition (3.39). All
the circuit-examples with index-2 we know, e.g. the NAND-gate and the ring
modulator, fulfil this condition. The question, whether all index-2 DAEs in
this field have this property, is still open.

The BDF method is shown to be feasible (i.e., the nonlinear equations are
uniquely solvable), and weakly unstable for index-2 DAEs if the defects aris-
ing from solving the nonlinear equations are sufficiently small. Thereby, the
defects in the derivative-free part of the DAE have to be sufficiently small
in relation to the stepsize. In the case of electric circuits, the derivative-free
part consists of the characteristic equations of voltage sources, charges and
fluxes as well as some linear combinations of the nodal equations, that can be
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obtained by following all loops of capacitances of the network. The numerical
results confirm the assertion that an error control based on the differential
components only, i.e., on the “reliable” components only, works well for the
network equation systems of index-2.

The presented simulations of the NAND-gate and the ring modulator demon-
strate the possibility of a successful integration of index-2 circuit DAEs. They
can be considered as model cases for handling other electric networks.



Appendix A

Basics from algebra and
analysis

A fundamental relation between the spaces appearing at the tractability in-
dex and the choice of the corresponding projectors is given by the following
lemma, which may be obtained directly from Theorem A.13. and Lemma
A.14. in [GMS6].

Lemma A.1 Let A., B.,Q. € L(R™) be given, let Q. be a projector onto
kerA,, i.e., Q*> = Q,, imQ, = ker A,. Denote

S, ={2z€R": B,z € imA,}.

Then the following conditions are equivalent:

(i) The matriz G, := A, + B.Q, is regular.
(i) R™ =S, & kerA,

(1i) S. N kerA, = {0}

If G, s reqular, then the relation
Q*s = Q*G*_IB*

holds for the canonical projector Qs (canonical means: Q.5 projects onto
ker A, along S.).
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Proof:
(i)— (i) First, the space R™ can be described as S, + ker A, because

z=(I— Q*G*_IB*)Z + Q.G 'Buz = 2z + 2 (A1)

is satisfied for any z € R™. Now, 2, obviously lies in ker A, since @, is a
projector onto ker A,. For z; we obtain

B*Zl = (I - B*Q*G*il)B*Z = A*G*ilB*Z € 1mA*,
i.e., z; € S,. It remains to show that
S, N ker A, = {0}.

For that, let x € S, N ker A,. Then, z = Q.x holds and there is a z € R™
such that

A,z = B,x = B,Q.r and, hence, G*_IA*Z = G:IB*Q*x,
ie.,
(I —Q.)z=Q.x, thus, 0=Q.z=zx.
(4i)—(4ii) This trivially holds per definition.
(#i)— (i) Let € R™ be chosen such that G,z =0, i.e.,

B,Q.x = —A,x.

Hence, Q.x € S, is satisfied. On the other hand, Q,x lies in ker A,. Thus z €
ker@, holds because of the assumption. That means A,x = 0, consequently
x € im Q,. Now, x = 0 must be fulfilled, and G, is regular.

Since partition (A.1) is unique, the latter assertion follows immediately.
O

The following two lemmas describe known facts from functional analysis (see
[Die85]). We use them in the Chapters 3 and 4.

Lemma A.2 Let Ey, Fs,..., E,, F, (n € N, n > 2) be Banach spaces and
f a C-function mapping an open subset A of

E1XE2X"'XEn

into F'. At the point

2= (29,29, ..., 20)
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of A let f(z°) = 0 be fulfilled, and let the partial derivative Dyf(z°) be
a linear homeomorphism of Ei onto F. Then, there is a connected open
neighbourhood U of

(29,...,20) € By x --- X E,

r¥n

and a unique C'-function u of U into E, in such a way that the equation

u(zy, ..., 10) =29

1s true, and the relations
(u(zoy ..., Zn), Toy .. xy) € A, f(u(xo,...,24), T2y ..., 2,) =0

are satisfied for all (xo,...,x,) € U. Further, the inequality

||u(a:2, s axn) - U(.’L’g, s ,.’L'g)“
< 2| Dgyu(zy, -yl + |22 — 23]l +
+ 2| Dy ul@y, .., zp)|| + 1llon — 25|
is valid for each (xo,...,z,) € U.

Lemma A.3 Let E, F' be Banach spaces, U and V' be open balls in E and
F', respectively, with the center 0 and the radii p and o, respectively. Further,
let v be a continuous function mapping U x V into F of such a kind that

lv(z, 1) — v(z, y2)|| < k|lyr — v2l|

1s satisfied for x € U, yy € V, yo € V, 0 < k < 1. Then, there exists a
unique function f of U into V such that

f(z) =v(z, f(2), zel,

18 true if
[o(z,0)| < p(1—k), =z€U,

18 fulfilled. The mapping f is continuous on U.
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