LaGO - Branch and Cut for nonconvex MINLPs

Stefan Vigerske

Humboldt-University Berlin, Department of Mathematics

Advances in Global Optimization: Methods and Applications Myconos, 16.6.2007

LaGOs Algorithm

Numerical Experiments 000000000 Future Developments

Lagrangian Global Optimizer

General purpose solver for sparse, block-separable, nonconvex MINLPs (not rigorous, partially heuristic)

- 2000 Development started by Ivo Nowak as a solver for nonconvex MIQQPs based on Lagrangian decomposition and semidefinite relaxation
- 2001-2004 Project funded by German Science Foundation: extension to MINLP solver
 - 2006 start of COIN-OR project, LaGO code becomes public now Linear-relaxation based Branch and Cut algorithm version 0.3 (work in progress)

Webpage: https://projects.coin-or.org/LaGO

Book: Ivo Nowak, Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming, Birkhäuser 2005

Paper: LaGO - a (heuristic) Branch and Cut algorithm for nonconvex MINLPs, submitted 2006 Stefan Vigerske, Humboldt-University Berlin LaGO - Branch and Cut for nonconvex MINLPs Introduction ○●○ LaGOs Algorithm

Numerical Experiments

Future Developments

Overview

Ingredients of LaGOs Branch and Cut Algorithm

Preprocessing

Underestimators and Cutting Planes

Boxreduction

Numerical Experiments

Future Developments

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

MINLP

We consider mixed-integer nonlinear problems (MINLP) of the form

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{such that} & h_i(x) \leq 0, \qquad i \in I, \\ & h_j(x) = 0, \qquad j \in E, \\ & x_k \in \mathbb{Z}, \qquad k \in B, \\ & x \in [\underline{x}, \overline{x}] \end{array}$

 $-\infty < \underline{x}_i \leq \overline{x}^i < \infty, i \in \{1, \dots, n\}, c \in \mathbb{R}^n$

- h ∈ C² ([x, x], ℝ^{|I|+|E|}) are black-box functions LaGO needs
 - methods for the evaluation of values, gradients, and Hessians
 - optional: sparsity of jacobian, interval-arithmetic evaluations
- LaGO interfaces problems via GAMS and AMPL

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments 000000000 Future Developments

Overview

Ingredients of LaGOs Branch and Cut Algorithm

Preprocessing

Underestimators and Cutting Planes

Boxreduction

Numerical Experiments

Future Developments

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Preprocessing

- Investigation of problem structure:
 - sparsity of Jacobian (given by interface) and Hessian (by sampling)

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Preprocessing

- Investigation of problem structure:
 - sparsity of Jacobian (given by interface) and Hessian (by sampling)
 - quadratic terms (Hessian in sample points), block-separability

$$h_{i}(x) = \text{const} + b^{T}x + \sum_{k} x_{Q_{k}}^{T} A_{k} x_{Q_{k}} + \sum_{r} g_{r}(x_{N_{r}})$$

for "small" disjoint subsets Q_k and N_r of $\{1,\ldots,n\}$

LaGOs Algorithm

Numerical Experiments

Future Developments

Preprocessing

- Investigation of problem structure:
 - sparsity of Jacobian (given by interface) and Hessian (by sampling)
 - quadratic terms (Hessian in sample points), block-separability

$$h_{i}(x) = \text{const} + b^{T}x + \sum_{k} x_{Q_{k}}^{T} A_{k} x_{Q_{k}} + \sum_{r} g_{r}(x_{N_{r}})$$

for "small" disjoint subsets Q_k and N_r of $\{1,\ldots,n\}$

• convexity (evaluate eigenvalues of Hessian in sample points)

LaGOs Algorithm

Numerical Experiments

Future Developments

Preprocessing

- Investigation of problem structure:
 - sparsity of Jacobian (given by interface) and Hessian (by sampling)
 - quadratic terms (Hessian in sample points), block-separability

$$h_{i}(x) = \text{const} + b^{T}x + \sum_{k} x_{Q_{k}}^{T} A_{k} x_{Q_{k}} + \sum_{r} g_{r}(x_{N_{r}})$$

for "small" disjoint subsets Q_k and N_r of $\{1,\ldots,n\}$

- convexity (evaluate eigenvalues of Hessian in sample points)
- Reduction of box $[\underline{x}, \overline{x}]$:
 - simple constraint propagation (based on interval arithmetic)
 - enclosing a polyhedron defined by linear constraints
 - bounding box for still unbounded variables by "guessing"

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Preprocessing

- Investigation of problem structure:
 - sparsity of Jacobian (given by interface) and Hessian (by sampling)
 - quadratic terms (Hessian in sample points), block-separability

$$h_{i}(x) = \text{const} + b^{T}x + \sum_{k} x_{Q_{k}}^{T} A_{k} x_{Q_{k}} + \sum_{r} g_{r}(x_{N_{r}})$$

for "small" disjoint subsets Q_k and N_r of $\{1,\ldots,n\}$

- convexity (evaluate eigenvalues of Hessian in sample points)
- Reduction of box $[\underline{x}, \overline{x}]$:
 - simple constraint propagation (based on interval arithmetic)
 - enclosing a polyhedron defined by linear constraints
 - bounding box for still unbounded variables by "guessing"
- Initialization of relaxations:
 - 1. quadratic (nonconvex) underestimator q
 - 2. quadratic convex underestimator \breve{q}
 - 3. linearization, dropping integrality restrictions

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments 000000000 Future Developments

Quadratic underestimators

Let $g \in C^{2}\left(\left[\underline{x}, \overline{x}\right], \mathbb{R}\right)$ be nonquadratic and nonconvex.

Compute an underestimator $q(x) = x^T A x + b^T x + c$ by

$$\begin{array}{ll} \min\limits_{A,b,c} & \sum\limits_{x\in S} g\left(x\right) - q\left(x\right) \\ \text{such that} & q\left(x\right) \leq g\left(x\right) \quad x \in S \\ & q\left(\hat{x}\right) = g\left(\hat{x}\right) \end{array}$$

for a sample set $S \subseteq [\underline{x}, \overline{x}]$ and a reference point \hat{x} .

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Quadratic underestimators

Let $g \in C^{2}\left(\left[\underline{x}, \overline{x}\right], \mathbb{R}\right)$ be nonquadratic and nonconvex.

Compute an underestimator $q(x) = x^T A x + b^T x + c$ by

$$\begin{array}{ll} \min\limits_{A,b,c} & \sum\limits_{x\in S} g\left(x\right) - q\left(x\right) \\ \text{such that} & q\left(x\right) \leq g\left(x\right) \quad x \in S \\ & q\left(\hat{x}\right) = g\left(\hat{x}\right) \end{array}$$

for a sample set $S \subseteq [\underline{x}, \overline{x}]$ and a reference point \hat{x} .

- Sparsity of A and b determined by g(x).
- Quality of q(x) depends strongly on the choice of the sample set S

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Quadratic underestimators

Let $g \in C^{2}\left(\left[\underline{x}, \overline{x}\right], \mathbb{R}\right)$ be nonquadratic and nonconvex.

Compute an underestimator $q(x) = x^T A x + b^T x + c$ by

$$\begin{array}{ll} \min\limits_{A,b,c} & \sum\limits_{x\in S} g\left(x\right) - q\left(x\right) \\ \text{such that} & q\left(x\right) \leq g\left(x\right) \quad x \in S \\ & q\left(\hat{x}\right) = g\left(\hat{x}\right) \end{array}$$

for a sample set $S \subseteq [\underline{x}, \overline{x}]$ and a reference point \hat{x} .

- Sparsity of A and b determined by g(x).
- Quality of q(x) depends strongly on the choice of the sample set S
- \Rightarrow A. Neumaier 2006: adaptive choice of S

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Nonconvex quadratic underestimator (cont.)

• initial choice: $S = \text{vert}([\underline{x}, \overline{x}]) \cup \{x_{\min}, \frac{1}{2}(\underline{x} + \overline{x})\} \cup M$ with $\hat{x} := x_{\min}$ a local minimum of g(x) and M a set of random points

LaGOs Algorithm

Numerical Experiments

Future Developments

Nonconvex quadratic underestimator (cont.)

• initial choice: $S = \text{vert}([\underline{x}, \overline{x}]) \cup \{x_{\min}, \frac{1}{2}(\underline{x} + \overline{x})\} \cup M$ with $\hat{x} := x_{\min}$ a local minimum of g(x) and M a set of random points

LaGOs Algorithm

Numerical Experiments

Future Developments

Nonconvex quadratic underestimator (cont.)

- for $x \in S$ with g(x) = q(x), maximize the error $q(x) g(x) \Rightarrow x^*$
- if $q\left(x^{*}
 ight)-g\left(x^{*}
 ight)>\delta_{\mathsf{tol}}$, add x^{*} to S and recompute $q\left(x
 ight)$

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Nonconvex quadratic underestimator (cont.)

• for $x \in S$ with g(x) = q(x), maximize error $q(x) - g(x) \Rightarrow \delta_{\max}$

LaGOs Algorithm

Numerical Experiments

Future Developments

Nonconvex quadratic underestimator (cont.)

- for $x \in S$ with g(x) = q(x), maximize error $q(x) g(x) \Rightarrow \delta_{\max}$
- if $\delta_{\max} < \delta_{tol}$, lower q(x) by δ_{\max}

LaGOs Algorithm

Numerical Experiments 000000000 Future Developments

Convex underestimators

Let $q(x) = x^T A x + b^T x + c$ be a quadratic nonconvex function.

A convex α -underestimator (Adjiman and Floudas 1997) of q(x) is

$$\breve{q}(x) = q(x) + \sum_{i=1}^{n} \alpha_i (x_i - \underline{x}_i) (x_i - \overline{x}_i)$$

where

$$\alpha_i = -\lambda_1 \left(\mathsf{Diag} \left(\bar{x} - \underline{x} \right) \mathsf{A} \mathsf{Diag} \left(\bar{x} - \underline{x} \right) \right) \, \left(\bar{x}_i - \underline{x}_i \right)^{-2} \, .$$

• Linearizations of $\breve{q}(x)$ are easily updated after reducing the box $[x, \bar{x}]$ Stefan Vigerske, Humboldt-University Berlin LaGO - Branch and Cut for nonconvex MINLPs

LaGOs Algorithm

Numerical Experiments

Future Developments

Cuts for the Linear Relaxation

• for the nonlinear constraints: linearization of convexified constraints

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Cuts for the Linear Relaxation

- for the nonlinear constraints: linearization of convexified constraints
- for the integrality constraints: COIN-OR Cut Generator Library (Cgl)
- COIN/Cgl provides several types of cuts to cut off a nonintegral solution of an LP

LaGOs Algorithm

Numerical Experiments

Future Developments

x-y=0.5

x-2y=0

x

LaGO - Branch and Cut for nonconvex MINLPs

Cuts for the Linear Relaxation

- for the nonlinear constraints: linearization of convexified constraints
- for the integrality constraints: COIN-OR Cut Generator Library (Cgl)
- COIN/Cgl provides several types of cuts to cut off a nonintegral solution of an LP

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Boxreduction by (simple) Constraint Propagation

Consider a constraint

$$y \leq h(x)$$
 and let $[\underline{h}, \overline{h}] := h([\underline{x}, \overline{x}])$
(i.e., $h(x) \in [\underline{h}, \overline{h}] \forall x \in [\underline{x}, \overline{x}]$).
• If $\overline{h} < \overline{y}$, set $\overline{y} := \overline{h}$

and proceed with other constraints depending on y.

• If $\bar{y} < \underline{h}$, then the node is infeasible.

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Boxreduction by (simple) Constraint Propagation

Consider a constraint

$$y \leq h(x)$$
 and let $[\underline{h}, \overline{h}] := h([\underline{x}, \overline{x}])$
(i.e., $h(x) \in [\underline{h}, \overline{h}] \ \forall x \in [\underline{x}, \overline{x}]$).
If $\overline{h} < \overline{y}$, set
 $\overline{y} := \overline{h}$

and proceed with other constraints depending on y.

- If $\bar{y} < \underline{h}$, then the node is infeasible.
- Does not rely on relaxations.
- Easy and fast to compute (GAMS-interface and FILIB++).
- Only one constraint at a time.

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

х

Boxreduction by enclosing the linear relaxation

Consider a linear relaxation with constraints $Ax \leq b$.

Let x^* be the best solution found so far.

LaGO - Branch and Cut for nonconvex MINLPs

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Overview

Ingredients of LaGOs Branch and Cut Algorithm

Preprocessing

Underestimators and Cutting Planes

Boxreduction

Numerical Experiments

Future Developments

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

GAMS MINLPLib and GlobalLib

- at most 1000 variables and no sin, cos, errorf
 ⇒ 77 MIQQPs, 127 (nonquadratic) MINLPs, 162 QQPs
- timelimit: 1 hour
- NLP subsolver: CONOPT; LP subsolver: CPLEX 10.0

	MIQQPs	MINLPs
number of models	77	127
best known optimal solution found	60	68
local optimal solution found	1	18
no feasible point found	16	41

Note on MINLPs:

- LaGO computes only one quadratic underestimator per function and does not update it in Branch and Cut (implementation issue)
- \Rightarrow stop of branching when all discrete variables are fixed

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

LaGO vs. BARON on MINLPs

LaGO and BARON 7.8.1 on (nonquadratic) MINLPs from MINLPLib:

		optimal value							
	Total	LaGO better	same	BARON better					
BARON fail, LaGO not	9	9							
LaGO faster	12	1	7	4					
both solvers the same	11		5	6					
BARON faster	54		46	8					
LaGO fail, BARON not	34			34					
LaGO and BARON fail	7		7						
Total	127	10	65	52					

convex MINLPs: 59

Stefan Vigerske, Humboldt-University Berlin

LaGO on MINLPs - details: up to 20 variables

example	n	I	т	с	error	gap	iter	Time: B&B	Prepr	BARON
batchdes	20	9	20	n	0	< 1%	1	0.02	0.37	=
ex1221	6	3	6	n	0	1.6%	4	0.02	0.07	=
ex1222	4	1	4	n	0	< 1%	1	0.01	0.05	=
ex1223	12	4	14	у	0	< 1%	3	0.04	0.04	=
ex1223b	8	4	10	у	0	< 1%	4	0.04	0.03	=
ex1224	12	8	8	n	0	2.4%	115	0.75	0.36	=
ex1225	9	6	11	n	0	< 1%	8	0.08	0.15	=
ex1226	6	3	6	n	0	< 1%	3	0.01	0.12	=
gkocis	12	3	9	n	0	< 1%	3	0.03	0.11	=
hmittelman	17	16	8	n	0	< 1%	300	0.27	3.49	=
oaer	10	3	8	n	0	< 1%	4	0.03	0.15	=
procse	11	3	8	n	0	< 1%	4	0.04	0.10	=
st_e14	12	4	14	у	0	< 1%	3	0.04	0.05	=
st_e15	6	3	6	n	0	7.1%	6	0.03	0.07	=
st_e29	12	8	8	n	0	2.4%	115	0.77	0.35	=
synthes1	7	3	7	у	0	< 1%	4	0.04	0.08	=
synthes2	12	5	15	у	0	< 1%	8	0.07	0.07	=
synthes3	18	8	24	у	0	< 1%	8	0.14	0.11	=
eg_all_s	8	7	28	n	infeas	< 1%	subsolv	er reports infe	as point	f
eg_disc_s	8	4	28	n	0	54.4%	3078	42 31 67	1 25 07	f
eg_disc2_s	8	3	28	n	0	57.5%	3736	57:42.83	2 17 61	f
eg_int_s	8	3	28	n	0	42%	28	20.07	57.37	f
gear	5	4	1	n	0	< 1%	4	0.00	0.18	=
gear3	9	4	5	n	0	< 1%	4	0.02	0.20	=
gear4	7	4	2	n	100%	96.8%	50000	11:35.34	0.55	+

LaGO on MINLPs - details: up to 20 variables

example	п	I	т	с	error	gap	iter	Time: B&B	Prepr.	BARON
nvs01	4	2	4	n	0	< 1%	233	2.02	0.72	=
nvs02	9	5	4	n	0	< 1%	668	9.84	0.19	=
nvs04	3	2	1	n	0	< 1%	201	0.12	2.07	=
nvs05	9	2	10	n	N/A		bad n	nodeling*		+
nvs06	3	2	1	n	0	< 1%	7	0.00	0.14	=
nvs07	4	3	3	n	0	< 1%	4	0.00	0.20	=
nvs08	4	2	4	n	0	22.3%	19	0.10	0.24	=
nvs09	11	10	1	n	0	< 1%	10	0.00	0.49	=
nvs16	3	2	1	n	0	< 1%	400	0.25	0.18	=
nvs20	17	5	9	у	0	< 1%	5	0.15	0.37	=
nvs21	4	2	3	n	84%	96.9%	1306	8.33	0.86	+
nvs22	9	4	10	n	0	< 1%	22	0.24	1:16.29	=
prob10	3	1	3	n	0	17.8%	3	0.02	0.50	f
spring	18	12	9	n	0	43.6%	665	6.54	1.52	=
st_e36	3	1	3	n	infeas	-9.3%	subso	lver reports in	feas point	+
st_e38	5	2	4	n	0	47.8%	395	2.05	0.40	=
st_e40	5	3	9	n	0	< 1%	58	0.60	0.32	=
windfac	15	3	14	n	0	20.3%	15	0.18	22.37	f

LaGO on MINLPs - details: 21 - 100 variables

example	n	1	т	c	error	gap	iter	Time: B&B	Prepr.	BARON
batch	47	24	74	У	0	< 1%	4	0.16	0.32	=
csched1	77	63	23	n	4%	-66%	wrong	guess on varia	able bound*	+
ex1233	53	12	65	n	0	25.8%	175	3.21	2.83	=
ex1243	69	16	97	n	0	33.5%	108	2.64	4.01	=
ex1244	96	23	130	n	0	21.1%	2474	1:38.14	4.36	=
ex1252	40	15	44	n	0	96.5%	2727	51.60	2.87	f
ex3	33	8	32	n	0	< 1%	5	0.08	0.44	=
fac1	23	6	19	у	7%	< 1%	bad sc	aled objective	function*	+
fac2	67	12	34	n	0	99.4%	62	0.73	6.34	=
feedtray	98	7	92	n	0	81%	13	1.53	19.92	=
gasnet	91	10	70	n	0	98.9%	2047	2:44.73	13.05	f
gear2	29	24	5	n	0	< 1%	53	0.39	0.25	=
m3	27	6	44	у	0	< 1%	20	0.44	0.12	=
mб	87	30	158	у	0	< 1%	15123	26:40.97	0.76	=
minlphix	85	20	93	n	0	99.7%	44	0.85	21.78	_
ortez	88	18	75	n	0	2.2%	119	1.77	1.49	=
st e35	33	7	40	у	15%	< 1%	failure	in convexity of	check*	+
synheat	57	12	65	n	0	28.1%	257	4.29	2.22	=
waterx	71	14	55	n	3%	110.9%	13216	8:47.74	6.48	+
ex1252a	25	9	35	n	0	95.1%	3266	58.08	2.38	f
pump	25	9	35	n	3%	95.1%	3574	1:05.99	2.66	f
st e32	36	19	19	n	N/A		failure	in quadratic e	estimation*	+
t s2	38	33	25	y	0	< 1%	112	2.29	0.23	=

LaGO on MINLPs - details: 101 - 1000 variables

example	n	I	m	с	error	gap	iter	Time: B&B	Prepr.	BARON
beuster	158	52	115	n	N/A		functio	on not defined	over box*	f
cecil 13	841	180	899	n	N/A		1834	58 57 06	1 04 70	+
contvar	297	88	285	n	4%	62.5%	2847	57:32.90	2:27.62	+
csched2	401	308	138	n	19%	-93%	wrong	guess on varia	able bound	+
eniplac	142	24	190	n	0	16.4%	12805	59:51.35	9.03	=
enpro48	154	92	215	n	4%	46.5%	16047	59 57 62	2.64	+
enpro56	128	73	192	n	0	28.2%	14163	59:58.01	2.09	=
fo7_2	115	42	212	у	0	93.1%	16578	59 58 97	1.24	+
fo7	115	42	212	у	N/A		14713	59:59.08	1.23	+
fo8	147	56	274	у	N/A		11110	59:58.35	1.96	+
fo9	183	72	344	у	N/A		7959	59:57.52	2.90	+
gastrans	107	21	150	n	0	< 1%	11	0.50	6.26	=
hda	723	13	719	n	0	90.7%	209	5:41.58	2:25.39	f
johnall	195	190	193	n	0	< 1%	1	0.37	41.10	=
m7	115	42	212	у	0	76.9%	14738	59:58.81	1.25	=
mbtd	211	200	71	n	N/A		1	2.09	64 25 51	f
o7 2	115	42	212	у	N/A		15012	59:58.86	1.25	+
07	115	42	212	у	N/A		15672	59:58.85	1.24	+
oil2	937	2	927	n	0	< 1%	1	0.54	3 57 11	=
parallel	206	25	116	n	0	100.8%	88	6.25	20.65	=
ravem	113	54	187	n	0	23.7%	15612	32:30.78	1.77	=
risk2b	464	14	581	у	0	< 1%	7	2.72	13.25	=
stockcycle	481	432	98	у	1%	2%	13292	59:55.21	4.80	+

LaGO on MINLPs - details: 101 - 1000 variables

example	n	1	т	с	error	gap	iter	Time: B&B	Prepr.	BARON
water4	196	126	138	n	N/A		15564	59:42.48	17.67	+
waterz	196	126	138	n	N/A		14245	59:42.76	17.31	f
fo7_ar25_1	113	42	270	у	N/A		15240	59 58 74	1.49	+
fo7 ar2 1	113	42	270	у	N/A		15419	59:58.80	1.48	+
fo7_ar3_1	113	42	270	y	N/A		14945	59:58.77	1.51	+
fo7_ar4_1	113	42	270	y	59%	58.3%	14474	59:58.65	1.50	+
fo7_ar5_1	113	42	270	у	N/A		16976	59 58 57	1.53	+
fo8_ar25_1	145	56	348	у	N/A		9132	59:57.88	2.33	+
fo8_ar2_1	145	56	348	у	N/A		10653	59:57.94	2.35	+
fo8_ar3_1	145	56	348	у	N/A		8878	59:57.59	2.41	+
fo8_ar4_1	145	56	348	у	N/A		13195	59 57 59	2.43	+
fo8_ar5_1	145	56	348	у	N/A		11615	59:57.78	2.45	+
fo9_ar25_1	181	72	436	у	N/A		5889	59:56.90	3.57	+
fo9_ar2_1	181	72	436	у	N/A		6439	59:56.46	3.58	+
fo9_ar3_1	181	72	436	y	N/A		6051	59 56 52	3.65	f
fo9_ar4_1	181	72	436	у	N/A		9067	59 56 58	3.68	+
fo9_ar5_1	181	72	436	у	N/A		9719	59:56.40	3.73	f
m7_ar25_1	113	42	270	у	0	< 1%	3288	5 54 38	1.46	=
m7_ar2_1	113	42	270	у	0	< 1%	18314	40 11 04	1.45	=
m7_ar3_1	113	42	270	y	11%	20.4%	19332	59:58.66	1.50	+
m7_ar4_1	113	42	270	у	0	< 1%	9474	30:23.16	1.50	=
m7_ar5_1	113	42	270	у	14%	20.6%	17296	59:58.58	1.53	+

LaGO on MINLPs - details: 101 - 1000 variables

example	п	I	т	c	error	gap	iter	Time: B&B	Prepr.	BARON
no7_ar25_1 1	113	42	270	У	12%	49%	13791	59:58.68	1.52	+
no7_ar2_1 1	113	42	270	у	N/A		14020	59:58.61	1.49	+
no7_ar3_1 1	113	42	270	у	N/A		14858	59:58.49	1.53	+
no7_ar4_1 1	113	42	270	у	N/A		14189	59:58.77	1.53	+
no7_ar5_1 1	113	42	270	у	51%	67.4%	14168	59:58.69	1.53	+
o7_ar25_1 1	113	42	270	у	N/A		13292	59:58.66	1.49	+
o7_ar2_1 1	113	42	270	у	N/A		13459	59:58.52	1.48	+
o7_ar3_1 1	L13	42	270	у	N/A		13735	59:58.56	1.52	+
o7_ar4_1 1	113	42	270	у	N/A		13954	59:58.47	1.52	+
o7_ar5_1 1	113	42	270	у	50%	65.9%	14293	59:58.54	1.54	+
08_ar4_1 1	145	56	348	у	N/A		11431	59:57.75	2.44	+
o9 ar4 1 1	L81	72	436	у	N/A		7974	59:56.47	3.76	+
t s12 8	313	668	385	у	N/A		1430	59:10.46	50.29	f
t s4 1	L06	89	65	у	N/A		50000	43 26 17	2.08	+
t s5 1	L62	136	91	у	N/A		14677	59:56.27	3.79	+
tls6 2	216	179	121	у	N/A		8996	59:54.68	5.64	+
tls7 3	346	296	155	у	N/A		7489	59:50.29	9.80	f

LaGOs Algorithm

Numerical Experiments

Future Developments

LaGO vs. BARON on MIQQPs

LaGO and BARON 7.8.1 on MIQQPs from MINLPLib:

		optimal value							
	Total	LaGO better	same	BARON better					
BARON fail, LaGO not	3	3							
LaGO faster	13		13						
both solvers the same	21		21						
BARON faster	24		24						
LaGO fail, BARON not	9			9					
LaGO and BARON fail	7		7						
Total	77	3	65	9					

convex MIQQPs: 22

Stefan Vigerske, Humboldt-University Berlin

LaGO on MIQQPs - details: up to 20 variables

example	п	1	т	с	error	gap	iter	Time: B&B	Prepr.	BARON
alan	9	4	8	у	0	< 1%	3	0.04	0.02	=
ex1223a	8	4	10	у	0	< 1%	3	0.02	0.03	=
fuel	16	3	16	n	0	< 1%	5	0.06	0.04	=
gbd	5	3	5	у	0	< 1%	1	0.01	0.01	=
st e13	3	1	3	n	0	< 1%	2	0.02	0.01	=
st_e27	5	2	7	n	0	< 1%	2	0.01	0.02	=
nvs03	3	2	3	у	0	< 1%	3	0.00	0.02	=
nvs10	3	2	3	у	0	< 1%	3	0.01	0.02	=
nvs11	4	3	4	у	0	< 1%	5	0.04	0.02	=
nvs12	5	4	5	у	0	< 1%	3	0.05	0.03	=
nvs13	6	5	6	n	0	< 1%	4	0.07	0.03	=
nvs14	9	5	4	n	0	< 1%	103	1.31	0.03	=
nvs15	4	3	2	у	0	< 1%	3	0.01	0.02	=
nvs17	8	7	8	n	0	< 1%	9	0.27	0.05	=
nvs18	7	6	7	n	0	< 1%	6	0.17	0.04	=
nvs19	9	8	9	n	0	< 1%	15	0.54	0.06	=
nvs23	10	9	10	n	0	< 1%	37	1.24	0.11	=
nvs24	11	10	11	n	0	< 1%	16	1.04	0.14	=
prob02	7	6	9	n	0	< 1%	33	0.07	0.03	=
prob03	3	2	2	n	0	< 1%	6	0.00	0.01	=
st miqp1	6	5	2	у	0	< 1%	2	0.01	0.02	=
st miqp2	5	4	4	у	0	< 1%	4	0.01	0.02	=
st miqp3	3	2	2	у	0	< 1%	3	0.00	0.02	=
st miqp4	7	3	5	у	0	< 1%	2	0.01	0.02	=

LaGO on MIQQPs - details: up to 20 variables

example	п	I	т	с	error	gap	iter	Time: B&B	Prepr.	BARON
st_miqp5	8	2	14	У	0	< 1%	2	0.02	0.04	=
st_test1	6	5	2	у	0	< 1%	7	0.03	0.02	=
st_test2	7	6	3	у	0	< 1%	3	0.00	0.02	=
st_test3	14	13	11	у	0	< 1%	4	0.03	0.03	=
st_test4	7	6	6	у	0	< 1%	1	0.00	0.02	=
st test5	11	10	12	у	0	< 1%	5	0.01	0.05	=
st test6	11	10	6	у	0	< 1%	4	0.04	0.04	=
st testgr1	11	10	6	у	0	< 1%	3	0.04	0.03	=
st testph4	4	3	11	у	0	< 1%	2	0.00	0.02	=
t n2	9	8	13	n	0	< 1%	45	0.13	0.02	=

LaGO on MIQQPs - details: 21 - 100 variables

example	n	/	т	c	error	gap	iter	Time: B&B	Prepr.	BARON
elf	55	24	39	n	0	< 1%	343	14.74	0.23	=
ex1263	93	72	56	n	0	< 1%	4135	4:43.18	0.26	=
ex1264	89	68	56	n	0	< 1%	2992	2:50.49	0.23	=
ex4	37	25	31	n	0	< 1%	50	3.02	0.25	=
fac3	67	12	34	у	0	< 1%	2	0.11	0.39	=
feedtray2	88	36	284	n	0	< 1%	8	2.22	5.45	=
meanvarx	36	14	45	у	0	< 1%	2	0.03	0.08	=
nous1	51	2	44	n	N/A		9338	59 59 76	0.28	+
nous2	51	2	44	n	0	93.6%	8634	1 00 00 38	0.25	=
sep1	30	2	32	n	0	< 1%	46	1.09	0.10	=
spect ra2	70	30	73	n	0	< 1%	83	6.99	0.87	=
du-opt5	21	13	10	у	0	< 1%	71	2.40	0.26	=
du-opt	21	13	10	у	0	< 1%	29864	13 24 68	0.28	=
ex1263a	25	24	36	n	0	< 1%	1317	15.27	0.09	=
ex1264a	25	24	36	n	0	< 1%	4465	1 50 72	0.08	=
ex1265a	36	35	45	n	0	< 1%	819	12.78	0.14	=
ex1266a	49	48	54	n	0	< 1%	178	3.12	0.18	=
st test8	25	24	21	у	0	< 1%	1	0.00	0.12	=
st_testgr3	21	20	21	y	0	< 1%	21	0.27	0.09	=
t n4	25	24	25	n	N/A		19920	1 00 00 17	0.05	+
t n5	36	35	31	n	N/A		11278	1 00 00 41	0.08	+
t n6	49	48	37	n	N/A		9904	1 00 00 15	0.13	+
t n7	64	63	43	n	N/A		9909	1 00 00 12	0.19	+
tloss	49	48	54	n	0	< 1%	817	16.58	0.28	=
tltr	49	48	55	n	0	< 1%	2031	1 06 99	0.21	=

LaGO on MIQQPs - details: 101 - 1000 variables

example	п	1	т	c	error	gap	iter	Time: B&B	Prepr.	BARON
ex1265	131	100	75	n	0	< 1%	2148	3 19 32	0.43	=
ex1266	181	138	96	n	0	< 1%	424	40.79	0.68	=
nuclear14a	993	600	634	n	0	100%	468	54 48 07	5:20.13	f
nuclear24a	993	600	634	n	0	100%	468	54:50.97	5:20.10	f
nuclearva	352	168	318	n	N/A		2488	57 28 17	2:33.59	f
nuclearvb	352	168	318	n	N/A		2433	59:03.20	57.54	f
nuclearvc	352	168	318	n	N/A		2243	59 35 17	26.92	f
nuclearvd	352	168	318	n	N/A		1974	59.31.55	31.61	f
nuclearve	352	168	318	n	N/A		2224	59:28.36	31.66	f
nuclearvf	352	168	318	n	N/A		1932	59 35 33	24.91	f
qap	226	225	31	n	12%	100%	10478	58:47.89	1.12.15	f
qapw	451	225	256	n	N/A		382	57:37.84	2:28.85	+
space25	894	750	236	n	N/A		6413	59 41 49	18.69	+
space25a	384	240	202	n	N/A		11559	59.51.93	8.09	+
st e31	113	24	136	n	0	6.4%	18406	59 59 63	0.36	=
util	146	28	168	n	0	< 1%	747	1 27 59	1.02	=
lop97icx	987	899	88	n	N/A		1523	59:33.58	28.18	+
t n12	169	168	73	n	N/A		7073	59:58.87	1.15	f

LaGOs Algorithm

Numerical Experiments

Future Developments

LaGO vs. BARON on QQPs

running LaGO and BARON 7.8.1 on QQPs from GlobalLib:

		optimal value				
	Total	LaGO better	same	BARON better		
BARON fail, LaGO not						
LaGO faster	10		10			
both solvers the same	86		86			
BARON faster	65	1	64			
LaGO fail, BARON not	1			1		
Total	162	1	160	1		

convex QQPs: 11

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Overview

Ingredients of LaGOs Branch and Cut Algorithm

Preprocessing

Underestimators and Cutting Planes

Boxreduction

Numerical Experiments

Future Developments

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Next Steps

Improve current techniques ...

- generation of quadratic underestimators during Branch and Bound
- improve robustness

•

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

Next Steps

Improve current techniques ...

- generation of quadratic underestimators during Branch and Bound
- improve robustness

• ...

and introduce new ...

- Directed Acyclic Graph (DAG) Representation ⇒ constraint propagation (cf. Branch and Infer, COCONUT Solver)
- mixed-integer linear relaxation + interval gradient cuts ⇒ better approximation of nonconvexities

• ...

Stefan Vigerske, Humboldt-University Berlin

LaGOs Algorithm

Numerical Experiments

Future Developments

LaGO + Bonmin

COIN-OR / LaGO

Strengths:

- handling of nonconvex black-box functions
- boxreduction

Weakenings:

• Branch and Bound algorithm (branching rule, node selection, ...)

COIN-OR / Bonmin

Strengths:

- Mixed-Integer linear relaxation
- Branch and Bound algorithm (use of MIP solver Cbc)

Weakenings:

 handling of nonconvexities (but in preparation for algebraic formulations)

⇒ integrate LaGOs convexification and boxreduction techniques into Bonmin

Stefan Vigerske, Humboldt-University Berlin

Thank you!

PS: Your contribution is welcome at

🗇 • 🔿 • 🚭 🛞 🚷	https://proj	jects.coin-or.	org/LaG	0 👌 🖌 🕻	Go W.			
COIN OR			Login S	ettings Helj	p/Guide About T	Search rac Register		
Wiki	Timeline	Roadmap	Brows	e Source	View Tickets	Search		
		Start I	Page In	dex by Title	Index by Date	Last Change		
Welcome to the LaGO h	nome page)						
Note, that LaGO is still a CC	DIN-OR devel	opment proje	ct.					
Introduction								
LaGO (Lagrangian Global Optimizer) is a software-package for the global optimization of nonconvex mixed-integer nonlinear programs (MINLP). It is written in C++ and is released as open source code under the Common Public Licence (CPL). The code has been written by Ivo Nowak and CStefan Vigerske (Humboldt-University Berlin), who is the COIN project leader for LaGO.								
LaGO is designed to find glo	bal solutions	of mathema	tical opt	imization p	programs of th	e form		
<pre>min f(x) s.t. g(x h(x _L <= x _x</pre>	:) <= 0 :) = 0 <= x_U i integer	i\in B						

nvs05

$$\begin{array}{ll} \min & 1.10471x_3^2 x_4 + 0.04811 y_1 y_2 (14 + x_4) \\ \text{s.t.} & -\frac{4243.28147100424}{x_3 x_4} + x_5 = 0 \\ & -\sqrt{\frac{1}{4}x_4} + \left(\frac{1}{2}y_1 + \frac{1}{2}x_3\right)^2 + x_7 = 0 \\ & -\frac{0.71 \left(84000 + 3000 x_4\right) x_7}{x_3 x_4 \left(0.08 x_4^2 + \left(\frac{1}{2}y_1 + \frac{1}{2}x_3\right)^2\right)} + x_6 = 0 \\ & \frac{0.21952}{y_1^3 y_2} \leq \frac{1}{4} \\ & \sqrt{x_5^2 + 2x_5 x_6 x_8 + x_6^2} \leq 13600 \\ & \frac{504000}{y_1^2 y_2} \leq 30000 \\ & 0.02\sqrt{10^{15}y_1^2 y_2^6} \left(1 - 0.03y_1\right) \geq 6000 \\ & y_1, y_2 \in \{0, \dots, 200\} \\ \end{array}$$

st e35

Problem to determine convexity (due to Hessian evaluation errors) of

$$\sum_{i=0}^{3} 670 \left(\frac{x_{17+i}}{\frac{1}{2} \sqrt[3]{x_{8+i}^2 x_{9+i} + x_{8+i} x_{9+i}^2}} \right)^{0.83} + \sum_{i=0}^{2} \left(\frac{x_{21+i}}{\frac{1}{2} \sqrt[3]{C_i x_{14+i}^2}} \right)^{0.83}$$

with $x_8, \ldots, x_{16} \in [0.01, 1000]$

csched1

Problem to determine bounds on variable z in

$$\begin{array}{rcl} \min & z \\ \text{s.t.} & x_{13}z = & 416000x_4 \left(1 - \exp\left(-\frac{x_1}{10x_4}\right)\right) + 37400x_1 - 100x_4 \\ & + 124615x_5 \left(1 - \exp\left(-\frac{13x_2}{100x_5}\right)\right) + 9000x_2 - 90x_5 \\ & + 278666.7x_6 \left(1 - \exp\left(-\frac{9x_3}{100x_6}\right)\right) + 15840x_3 - 80x_6 \end{array}$$

with $x_1, x_2, x_3, x_{13} \ge 0, x_4, x_5, x_6 \ge \frac{1}{10}$.

÷

◀ Return

fac1

Objective function

$$50 (x_1 + x_2 + x_3 + x_4 + x_9 + x_{10} + x_{11} + x_{12})^{2.5} +70 (x_5 + x_6 + x_7 + x_8 + x_{13} + x_{15} + x_{16})^{2.5} + linear term$$

with $x_1, \ldots, x_{16} \ge 300$.

st e32

CPLEX reports infeasibility for LP which computes quadratic underestimator of

$$\exp\left(-\frac{x}{z}\left(1+y\left(3+z\right)\left(1-z\right)^{3}-z^{2}\right)\right)$$

with $x \in [0.001, 10]$, $y \in [-10, 10]$, $z \in [0.01, 1]$.

▲ Return

beuster

Error in the evaluation of

$$0.0028x_{40}\log\left(\frac{x_{44}-x_{28}}{x_{20}-x_{28}}\right) - 10^7 x_{56}$$

for $x_{20} \ge 0$, $x_{28} \ge 0.001$, $x_{44} \ge 0.01$.

