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The nonconvex MINLP problem

MINLP
min  ho(x)
s.t. hgp(x)=0
x € |z, T]
Tj € {@3753}7] € B
MINLP<GO

Piecewise C? models can be reformulated to be C?

Applications: process engineering, communication, finance, marketing, and other
areas.
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Structural Properties

e (P) is called convex if all h; are convex
o (P) is called block-separable if h;(xz) = >%_, h¥(z )

e (P) is called quadratic if hi(z) = 21 A;x + 2bl 2z + ¢;

Analysis of 150 problems of GAMS’s MINLPLib:

e 85% problems are nonconvex
e 85% problems are block-separable

e 50% problems are quadratic
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MINLP solution methods

e Relaxation-based methods: branch-and-cut, disjunctive programming, outer
approximation, Benders decomposition, MILP approximation

e Sampling methods: clustering methods, evolutionary algorithms, simulated
annealing, tabu-search

Acceleration tools

e Constraint programming for finding good constraints and box-reduction

e Heuristics for computing near global minimizers and finding regions of interest
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MILP versus MINLP
MILP/MINLP branch-and-cut algorithms:

1. Get solution candidates by projecting solutions of a relaxation onto the feasible
set.

2. Improve the relaxation and the solution candidate by partitioning and adding
cuts.

Large gap between MINLP and MILP codes (CPLEX, XPRESS-MP)

Differences between MINLP and MILP:
e Continuous relaxation: convex underestimation of nonconvex NLP versus LP

e Cut generation: MINLP versus MILP sub-problems

e |ocal solutions: NLP versus LP
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Block-Separable Reformulation

e The block-structure h;(x) = > %_, h¥(x; ) influences the quality and

computation of a relaxation:

— small blocks: fast computation of underestimators and cuts
— large blocks: better relaxations (smaller duality gaps)

e Many problems have a natural block-structure (model components)
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Splitting-schemes

Sparse MINLPs can be reformulated to be block-separable with almost arbitrary
block-sizes by

1. Partition the sparsity graph:

02
Fsparse = {(k,1) | =——=—hi(z) # 0 for some i € {0,...,m} and some z € [z,T]|}
axkaxl
into blocks Ji,...,J,

p

2. For each adjacent node set R, = {i € U Ji | (4,7) € Esparse, J € Ji}, add
I=k+1

new variables y* € IR!?+! and copy-constraints zp, = y* where k =1,...,p.
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5 6 10 7 8

e Blocks: and J; = {3,4,7,8} and Jo = {1,2,5,6, }
o Adjacent nodes: Ry = {2,6}, Ry =)

e New nodes: x9 and g

e Copy constraints: o = x9 and xg = T19

e New blocks: J; = {3,4,7,8,9,10} and Jy = {1,2,5,6, }
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Extended blockseparable reformulation

By replacing block-separable constraints

p
Z h’?(xjk:) <0
k=1

by
p
thk S 07 gf(xJkatzk) :hf(xJk) _tzk Soa k= 17"'7p7
k=1

we obtain a problem with linear coupling constraints

min cTa:—l—Co
ext xeG=xy_{x | ¢°(zr,) <0}
reX = [Ea E]

(useful for generating cuts)
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Convex relaxation and Lagrangian relaxation

Convex relaxation of (Peyt):
(C) min{cl'z + ¢y | € conv(GNX)N H}
Lagrangian relaxation of (Peyt):

(D) max,, ming{c'x + co + p! (Az +b) | z € GN X}

e s0l(C) # sol(D), but val(D) = val(C), since

val(D) = maxmin{c’'z + ¢y + p* (Ax +b) | x € conv(G N X)}
7 x

e Duality gap val(Pext)-val(D) smaller if blocks larger
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Decomposition methods for computing relaxations

1. Dual methods:
solve (D) approximately by a subgradient method

2. Cutting plane methods:
solve (C) approximately by generating supporting hyperplanes

3. Column generation:
solve (C) approximately by generating extreme points and extreme rays

Decomposition:
Subgradients, supporting hyperplanes and extreme points (rays) are computed by
solving several small MINLPs.
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Semidefinite Relaxation

MIQQP
(Q) st.  qi(x) <0, i=1,...,m

where ¢;(z) = x? Az + 20/ v +¢;;, i=0,....,m

e Quadratically constrained quadratic programming (QQP) reformulation by:

, je{l,...,n}\ B
, j €D

v € |2, 7] & (5 — ;) (v —T;) <

r; €4z, T} & (5 —z;)(w; —T;) =

e (Q) < polynomial programs
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A spectral dual method

The dual (D) of a QQP is equivalent to a semidefinite program

Eigenvalue formulation of the dual function:

D(p) = c(p) + Y M (A¥(w))
k

For each 11 € dom D, the Lagrangian is convex

(D) is solved by the bundle method NOA (Kiwiel)
(fast initial improvement versus accurate solution)
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Numerical experiments

Data: splitting schemes of sparse MIQQPs up to 1000 variables (No 02)
Computing times for 100 iterations: 1-4 sec.
Eigenvalue computation more stable (QL versus Lanczos)

Evaluation of decomposed dual function is faster (factor 10-100)
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Nonlinear Convex Relaxation of MINLP

Difficulties with dual approach:

e Lagrangian relaxation is a MINLP problem

e Lagrangian is usually not convex for 1 € dom D

The restricted dual problem

(D+) maxuem, D(p),
with
My ={pe M| V?L(z; 1) =0 for all feasible z}

is too difficult to solve !
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Convex underestimator

Replacement of nonlinear functions h; by a convex underestimator h; in (P) yields
a nonlinear convex relaxation:

min

(Cnlp) S.t.

= 5( >~
&
VA
“O
~
|
\'l—‘

a-underestimators (Adjiman and Floudas 97)
f(z) = f(z) + (a, Diag(z — z)(x — 7))

and a > 0 such that V2f(z) = V2f(z) + 2 Diag(a) = 0, Vz € [z, 7]
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Convexified polynomial underestimator

1. Generate a polynomial underestimator ¢q(z) < f(x) Vz € [z, %] by a sampling
technique (using minimizers of f)

2. Set
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Polyhedral Relaxations

min ¢’z + ¢
(Cont) st. Ax+b6<0
ext §f(azjk)§O, re M, k=1,...,p
T € |z, 7]

Replace the nonlinear convex functions §F of (Cey:) by linearizations at sample
points (minimizers)

min ¢z + ¢
(R) st. Ax+b<0
Cgixjk—|—dki <0, 1eMg,k=1,...,p
T € |z,T]
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Valid cuts

Solve separation (pricing) problem (small MINLP):

5k = min Lk(ZL‘Jk; ﬂ) -
s.t. gi(xy,) <0, i € My
g, € [ij,fjk], L BNJy binary

(zg, € V; Grj)

(Sk)

where (i is a dual solution point of (R)

Add to (R) the valid cut:
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Lower bounds:

v; =val(Coxy) < vy, =val(R) < val(P)

Box-reduction:

Let S be the feasible set of (Cext) or (R) and set

X' =0(S) = [inf S,sup S] C [z, 7]

Better reduction if we include into S the level cut

cT:IH—cQg@
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Deformation Heuristic

o
T

-2

-6

_10 1 1 1 1 1 1

Deformation of a parametric problem (P;) into (P), where (Pgy) is a convex
relaxation (C)

Assumption: (P;) is easier to solve than (P), if ¢ is small.
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Box constraint parametric problem

Let

v

H(x;t) = (1 —1t)L(z; p) + TP (x;1)
and P(z;t) be a penalty function of (P) and L(z; i) is a Lagrangian of (C)

(P,) min H(x;t)

r€[z,7]

Then

H(z;0) = L(z; 1) and  lim val(P,) = val(P)

t—1
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The multipath algorithm

Input: 0 <t <to <--- <ty <1 (discretization points)

1. initialize a sample set S

2. for k=1 to N

(a) for x € S: trace a path of (P;) from t; to ¢y, starting from x
(b) add sample points by neighbourhood search and delete sample points with

high value of P(x;p) or wich are close together

3. (local solutions)
for x € S: xp=round(xp), rc=loc_min(zc)
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Quadratic binary programs (QBP) (MaxCut)

min zlAz + 20z < min 2zl Ax
ze{0,1}" ze{—1,1}n

Numerical experiments with a deformation heuristic, up to 3000 variables (Alperin,
No 02)

e dual is an eigenvalue optimization problem

e performance guarantee (Goemans and Williamson 95)

e better than uniformely distributed multistart local optimization
e computing times: 2-20 sec.

e not necessary to solve the dual;
the minimum eigenvalue convexification ©u = —A1(A)e is sufficient
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Partitioning Algorithms

Sub-Problems

(PU)) min{c’x +co | z € SNU}
and
(R[U]) min{c’z + ¢y | z € SNU}

where U C IR"™ and S and S are the feasible sets of (Pex;) and (R) respectively.

Subset with fixed binary variables:

Uy,K:{CEERn | CIZK:yK}
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A rounding heuristic

Solve (Cyip)

Add linearization and deep cuts, and

| solve (R)

Round

Solve the convex NLP subproblem
(Cnlp[Uy,B])

Solve the nonconvex NLP

subproblem (P[U, 5])

Switch some binary variables and
repeat
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Optimal design of complex energy conversion systems
(DFG-project)
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Exhaust Gas

Figure 1: Simple superstructure of the cogeneration plant
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Minimize: Total levelized costs per time unit
Subject to: constraints referring to plant components, material properties,
investment, operating and maintenance cost and economic analysis

e Size: 508 variables and 461 constraints, p = 172 blocks with max |J| = 47
(coded in AMPL)

e Difficulty: some functions have singularities in |z, ] (contrained sampling)
e Lower bound: 5547.13 Euro/h
e Rounding heuristic: 6090.80 Euro/h,

e Best solution: 5995.83 Euro/h (difference of 1.6%)
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Medium size MINLPs from MinlpLib (GAMS)

Data:

e 20 problems
e up to 57 variables 74 constraints

e stop if more than 50 solution candidates

Results:

e solved 24 problems

e computing time: 18 problems in less than 3 sec. and 6 problems between 15
sec. and 6 min.
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Branch-and-Cut Algorithms

The convexification center

Let S be the feasible set of a linear relaxation (R)
(including the level cut 'z + ¢y < D)

We call the analytic center z¢ of S the convexification center of (R).
Since S is an outer approximation of conv(sol(Peyt)) we have

x¢ =~ center(conv(sol( Payy))
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Central cuts

e central binary cut:
branch w.r.t to the most violated binary variable:

j = argmin |z — 0.5(z, + T;)| = argmax dist (x5, {z,, T;})
icB iCB

e central splitting cut
separate € w.r.t the hyperplane

(¢ — 29 ((1 —t)x® +tz° —2) =0, te(0,1)

e central diameter cut:
subdivide w.r.t the hyperplane which goes through z¢ and is parallel to the
boundary-hyperplane with the largest distance to x°
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lllustration

sl s2

e central binary cut: splitting into s; and s»
e central splitting cut: subdivision at g

e central diameter cut: subdivision at g;
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A Branch-and-cut Algorithm

1. Get solution candidates obtained by a relaxation-based heuristic (deformation,
rounding and partitioning) using the relaxations (R) and (Cext).

2. Improve the relaxation and the solution candidate by

e (Cuts:
make linearization and valid cuts to improve (R) and (Cext)

e Subdivision:
make a central binary cut if a binary constraint is strongly violated
else: make a central splitting cut if a local minimizer was found,

else: make a central diameter cut
e Lower bounds: take v(u) = val(Cext|U]) or v(U) = val(R|U])
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The C++ library LaGO (Lagrangian Global Optimizer)

e Input: AMPL, GAMS

e Basic components:
i) block-separable reformulation,

(
(ii) convex relaxations (nonlinear, semidefinite and polyhedral),
(iii) solution algorithms (deformation, rounding, partitioning, branch-and-cut)

(P) ————— (Psplit)—— (Pext)

|

(C) —— (Cext)

[
L

NLP |

SOL

' REF
CUT | LP
{(R)} BR
BOX \ OA
BB
HEU
CUT

Workshop on Advances in Continuous Optimization, Istanbul, Friday - Saturday , July 4-5, 2003

34



Conclusion

e We presented a MINLP solution approach with the following features:

— flexible decomposition through block-separable reformulations
— convex relaxations of quadratic and black-box models
— heuristics and a branch-and-cut method

e Preliminary results with LaGO
e Possible improvements through symbolic reformulations and interval arithmetic

e Future perspectives:

— MINLP tends to be more important (Grossman/Biegler 02)
— adaptive refinement of discretization of stochastic and optimal control
programs via convex relaxations
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