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Overview

• The nonconvex MINLP problem

• Reformulations

• Relaxations

• Solution Algorithms
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The nonconvex MINLP problem

MINLP

(P)

min h0(x)
s.t. hE(x) = 0

hI(x) ≤ 0
x ∈ [x, x]
xj ∈ {xj, xj}, j ∈ B

MINLP⇔GO
Piecewise C2 models can be reformulated to be C2

Applications: process engineering, communication, finance, marketing, and other
areas.
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Structural Properties

• (P) is called convex if all hi are convex

• (P) is called block-separable if hi(x) =
∑p

k=1 hk
i (xJk

)

• (P) is called quadratic if hi(x) = xTAix + 2bT
i x + ci

Analysis of 150 problems of GAMS’s MINLPLib:

• 85% problems are nonconvex

• 85% problems are block-separable

• 50% problems are quadratic
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MINLP solution methods

• Relaxation-based methods: branch-and-cut, disjunctive programming, outer
approximation, Benders decomposition, MILP approximation

• Sampling methods: clustering methods, evolutionary algorithms, simulated
annealing, tabu-search

Acceleration tools

• Constraint programming for finding good constraints and box-reduction

• Heuristics for computing near global minimizers and finding regions of interest
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MILP versus MINLP

MILP/MINLP branch-and-cut algorithms:

1. Get solution candidates by projecting solutions of a relaxation onto the feasible
set.

2. Improve the relaxation and the solution candidate by partitioning and adding
cuts.

Large gap between MINLP and MILP codes (CPLEX, XPRESS-MP)

Differences between MINLP and MILP:

• Continuous relaxation: convex underestimation of nonconvex NLP versus LP

• Cut generation: MINLP versus MILP sub-problems

• Local solutions: NLP versus LP
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Block-Separable Reformulation

• The block-structure hi(x) =
∑p

k=1 hk
i (xJk

) influences the quality and
computation of a relaxation:

– small blocks: fast computation of underestimators and cuts
– large blocks: better relaxations (smaller duality gaps)

• Many problems have a natural block-structure (model components)
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Splitting-schemes

Sparse MINLPs can be reformulated to be block-separable with almost arbitrary
block-sizes by

1. Partition the sparsity graph:

Esparse = {(k, l) | ∂2

∂xk∂xl
hi(x) 6= 0 for some i ∈ {0, . . . ,m} and some x ∈ [x, x]}

into blocks J1, . . . , Jp

2. For each adjacent node set Rk = {i ∈
p⋃

l=k+1

Jl | (i, j) ∈ Esparse, j ∈ Jk}, add

new variables yk ∈ IR|Rk| and copy-constraints xRk
= yk where k = 1, . . . , p.
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Example

1 2 3 4

5 6 7 8

9

10

• Blocks: and J1 = {3, 4, 7, 8} and J2 = {1, 2, 5, 6, }

• Adjacent nodes: R1 = {2, 6}, R2 = ∅

• New nodes: x9 and x10

• Copy constraints: x2 = x9 and x6 = x10

• New blocks: J1 = {3, 4, 7, 8, 9, 10} and J2 = {1, 2, 5, 6, }

Workshop on Advances in Continuous Optimization, Istanbul, Friday - Saturday , July 4-5, 2003 8



Extended blockseparable reformulation

By replacing block-separable constraints

p∑
k=1

hk
i (xJk

) ≤ 0

by
p∑

k=1

tik ≤ 0, gk
i (xJk

, tik) = hk
i (xJk

)− tik ≤ 0, k = 1, . . . , p,

we obtain a problem with linear coupling constraints

(Pext)

min cTx + c0

s.t. x ∈ H = {x | Ax + b ≤ 0}
x ∈ G = ×p

k=1{xIk
| gk(xIk

) ≤ 0}
x ∈ X = [x, x]

(useful for generating cuts)
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Convex relaxation and Lagrangian relaxation

Convex relaxation of (Pext):

(C) min{cTx + c0 | x ∈ conv(G ∩X) ∩H}

Lagrangian relaxation of (Pext):

(D) maxµ minx{cTx + c0 + µT (Ax + b) | x ∈ G ∩X}

• sol(C) 6= sol(D), but val(D) = val(C), since

val(D) = max
µ

min
x
{cTx + c0 + µT (Ax + b) | x ∈ conv(G ∩X)}

• Duality gap val(Pext)-val(D) smaller if blocks larger
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Decomposition methods for computing relaxations

1. Dual methods:
solve (D) approximately by a subgradient method

2. Cutting plane methods:
solve (C) approximately by generating supporting hyperplanes

3. Column generation:
solve (C) approximately by generating extreme points and extreme rays

Decomposition:
Subgradients, supporting hyperplanes and extreme points (rays) are computed by
solving several small MINLPs.
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Semidefinite Relaxation

MIQQP

(Q)
min q0(x)
s.t. qi(x) ≤ 0, i = 1, . . . ,m

x ∈ [x, x], xB binary

where qi(x) = xTAix + 2bT
i x + ci, i = 0, . . . ,m

• Quadratically constrained quadratic programming (QQP) reformulation by:

xj ∈ [xj, xj] ⇔ (xj − xj)(xj − xj) ≤ 0, j ∈ {1, . . . , n} \B

xj ∈ {xj, xj} ⇔ (xj − xj)(xj − xj) = 0, j ∈ B

• (Q) ⇔ polynomial programs
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A spectral dual method

• The dual (D) of a QQP is equivalent to a semidefinite program

• Eigenvalue formulation of the dual function:

D(µ) = c(µ) +
∑

k

λ1(Ak(µ))

• For each µ ∈ dom D, the Lagrangian is convex

• (D) is solved by the bundle method NOA (Kiwiel)
(fast initial improvement versus accurate solution)
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Numerical experiments

• Data: splitting schemes of sparse MIQQPs up to 1000 variables (No 02)

• Computing times for 100 iterations: 1-4 sec.

• Eigenvalue computation more stable (QL versus Lanczos)

• Evaluation of decomposed dual function is faster (factor 10-100)
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Nonlinear Convex Relaxation of MINLP

Difficulties with dual approach:

• Lagrangian relaxation is a MINLP problem

• Lagrangian is usually not convex for µ ∈ dom D

The restricted dual problem

(D+) maxµ∈M+ D(µ),

with
M+ = {µ ∈M | ∇2L(x;µ) < 0 for all feasible x}

is too difficult to solve !
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Convex underestimator

Replacement of nonlinear functions hi by a convex underestimator h̆i in (P) yields
a nonlinear convex relaxation:

(Cnlp)
min h̆i(x)
s.t. h̆i(x) ≤ 0, i = 1, . . . ,m

x ∈ [x, x]

α-underestimators (Adjiman and Floudas 97)

f̆(x) = f(x) + 〈α, Diag(x− x)(x− x)〉

and α ≥ 0 such that ∇2f̆(x) = ∇2f(x) + 2 Diag(α) < 0, ∀x ∈ [x, x]
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Convexified polynomial underestimator

1. Generate a polynomial underestimator q(x) ≤ f(x) ∀x ∈ [x, x] by a sampling
technique (using minimizers of f)

2. Set
q̆(x) = q(x) + 〈α, Diag(x− x)(x− x)〉

f

q

q

f
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Polyhedral Relaxations

(Cext)

min cTx + c0

s.t. Ax + b ≤ 0
ğk

i (xJk
) ≤ 0, i ∈ Mk, k = 1, . . . , p

x ∈ [x, x]

Replace the nonlinear convex functions ğk
i of (Cext) by linearizations at sample

points (minimizers)

(R)

min cTx + c0

s.t. Ax + b ≤ 0
cT
kixJk

+ dki ≤ 0, i ∈ Mk, k = 1, . . . , p
x ∈ [x, x]

Workshop on Advances in Continuous Optimization, Istanbul, Friday - Saturday , July 4-5, 2003 18



Valid cuts

Solve separation (pricing) problem (small MINLP):

(Sk)

δk = min Lk(xJk
; µ̂)

s.t. gk
i (xJk

) ≤ 0, i ∈ M̃k

xJk
∈ [xJk

, xJk
], xB∩Jk

binary
(xJk

∈
∨

j Gkj)

where µ̂ is a dual solution point of (R)

Add to (R) the valid cut:
Lk(x; µ̂) ≥ δk
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Lower bounds:

v1 = val(Cext) ≤ v2 = val(R) ≤ val(P )

Box-reduction:

Let S̆ be the feasible set of (Cext) or (R) and set

X ′ = �(S̆) = [inf S̆, sup S̆] ⊂ [x, x]

Better reduction if we include into S̆ the level cut

cTx + c0 ≤ v
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Deformation Heuristic
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Deformation of a parametric problem (Pt) into (P), where (P0) is a convex
relaxation (C)

Assumption: (Pt) is easier to solve than (P), if t is small.

Workshop on Advances in Continuous Optimization, Istanbul, Friday - Saturday , July 4-5, 2003 21



Box constraint parametric problem

Let
H(x; t) = (1− t)L̆(x;µ) + tP (x; t)

and P (x; t) be a penalty function of (P) and L̆(x;µ) is a Lagrangian of (C)

(Pt) min
x∈[x,x]

H(x; t)

Then
H(x; 0) = L̆(x;µ) and lim

t→1
val(Pt) = val(P )
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The multipath algorithm

Input: 0 < t1 < t2 < · · · < tN < 1 (discretization points)

1. initialize a sample set S

2. for k = 1 to N

(a) for x ∈ S: trace a path of (Pt) from tk to tk+1 starting from x
(b) add sample points by neighbourhood search and delete sample points with

high value of P (x; ρ) or wich are close together

3. (local solutions)
for x ∈ S: xB=round(xB), xC=loc min(xC)
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Quadratic binary programs (QBP) (MaxCut)

min
x∈{0,1}n

xTAx + 2bTx ⇔ min
x∈{−1,1}n

xTAx

Numerical experiments with a deformation heuristic, up to 3000 variables (Alperin,
No 02)

• dual is an eigenvalue optimization problem

• performance guarantee (Goemans and Williamson 95)

• better than uniformely distributed multistart local optimization

• computing times: 2-20 sec.

• not necessary to solve the dual;
the minimum eigenvalue convexification µ = −λ1(A)e is sufficient
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Partitioning Algorithms

Sub-Problems

(P [U ]) min{cTx + c0 | x ∈ S ∩ U}

and

(R[U ]) min{cTx + c0 | x ∈ Ŝ ∩ U}

where U ⊂ IRn and S and Ŝ are the feasible sets of (Pext) and (R) respectively.

Subset with fixed binary variables:

Uy,K = {x ∈ IRn | xK = yK}

where y ∈ [x, x] and K ⊆ B.
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A rounding heuristic
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1. Solve (Cnlp)

2. Add linearization and deep cuts, and
solve (R)

3. Round

4. Solve the convex NLP subproblem
(Cnlp[Uy,B])

5. Solve the nonconvex NLP
subproblem (P[Uy,B])

6. Switch some binary variables and
repeat

Workshop on Advances in Continuous Optimization, Istanbul, Friday - Saturday , July 4-5, 2003 26



Optimal design of complex energy conversion systems
(DFG-project)

Figure 1: Simple superstructure of the cogeneration plant
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Minimize: Total levelized costs per time unit
Subject to: constraints referring to plant components, material properties,
investment, operating and maintenance cost and economic analysis

• Size: 508 variables and 461 constraints, p = 172 blocks with max |Jk| = 47
(coded in AMPL)

• Difficulty: some functions have singularities in [x, x] (contrained sampling)

• Lower bound: 5547.13 Euro/h

• Rounding heuristic: 6090.80 Euro/h,

• Best solution: 5995.83 Euro/h (difference of 1.6%)
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Medium size MINLPs from MinlpLib (GAMS)

Data:

• 26 problems

• up to 57 variables 74 constraints

• stop if more than 50 solution candidates

Results:

• solved 24 problems

• computing time: 18 problems in less than 3 sec. and 6 problems between 15
sec. and 6 min.
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Branch-and-Cut Algorithms

The convexification center

Let Ŝ be the feasible set of a linear relaxation (R)
(including the level cut cTx + c0 ≤ v)

We call the analytic center xc of Ŝ the convexification center of (R).

Since Ŝ is an outer approximation of conv(sol(P ext)) we have

xc ' center(conv(sol(Pext))
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Central cuts

• central binary cut:
branch w.r.t to the most violated binary variable:

j = argmin
i∈B

|xc
i − 0.5(xi + xi)| = argmax

i∈B
dist(xc

i , {xi, xi})

• central splitting cut
separate xe w.r.t the hyperplane

(xc − xe)T ((1− t)xc + txe − x) = 0, t ∈ (0, 1)

• central diameter cut:
subdivide w.r.t the hyperplane which goes through xc and is parallel to the
boundary-hyperplane with the largest distance to xc
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Illustration
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• central binary cut: splitting into s1 and s2

• central splitting cut: subdivision at g2

• central diameter cut: subdivision at g1
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A Branch-and-cut Algorithm

1. Get solution candidates obtained by a relaxation-based heuristic (deformation,
rounding and partitioning) using the relaxations (R) and (Cext).

2. Improve the relaxation and the solution candidate by

• Cuts:
make linearization and valid cuts to improve (R) and (Cext)

• Subdivision:
make a central binary cut if a binary constraint is strongly violated
else: make a central splitting cut if a local minimizer was found,
else: make a central diameter cut

• Lower bounds: take v(u) = val(Cext[U ]) or v(U) = val(R[U ])
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The C++ library LaGO (Lagrangian Global Optimizer)

• Input: AMPL, GAMS

• Basic components:
(i) block-separable reformulation,
(ii) convex relaxations (nonlinear, semidefinite and polyhedral),
(iii) solution algorithms (deformation, rounding, partitioning, branch-and-cut)

(P) (Psplit) (Pext)

(C) (Cext)

{(R)}
LP

OA
BB

SOL
CUT

HEU

CUT

BOX
BR

NLP

REF
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Conclusion

• We presented a MINLP solution approach with the following features:

– flexible decomposition through block-separable reformulations
– convex relaxations of quadratic and black-box models
– heuristics and a branch-and-cut method

• Preliminary results with LaGO

• Possible improvements through symbolic reformulations and interval arithmetic

• Future perspectives:

– MINLP tends to be more important (Grossman/Biegler 02)
– adaptive refinement of discretization of stochastic and optimal control

programs via convex relaxations
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