Relaxation-Based Methods for Solving Nonconvex MINLPs

Ivo Nowak
Humboldt University Berlin

$$
\text { June 30, } 2003
$$

Overview

- The nonconvex MINLP problem
- Reformulations
- Relaxations
- Solution Algorithms

The nonconvex MINLP problem

MINLP
(P)

$$
\begin{array}{cl}
\min & h_{0}(x) \\
\text { s.t. } & h_{E}(x)=0 \\
& h_{I}(x) \leq 0 \\
& x \in[\underline{x}, \bar{x}] \\
& x_{j} \in\left\{\underline{x}_{j}, \bar{x}_{j}\right\}, j \in B
\end{array}
$$

MINLP $\Leftrightarrow \mathrm{GO}$
Piecewise C^{2} models can be reformulated to be C^{2}

Applications: process engineering, communication, finance, marketing, and other areas.

Structural Properties

- (P) is called convex if all h_{i} are convex
- (P) is called block-separable if $h_{i}(x)=\sum_{k=1}^{p} h_{i}^{k}\left(x_{J_{k}}\right)$
- (P) is called quadratic if $h_{i}(x)=x^{T} A_{i} x+2 b_{i}^{T} x+c_{i}$

Analysis of 150 problems of GAMS's MINLPLib:

- 85% problems are nonconvex
- 85% problems are block-separable
- 50% problems are quadratic

MINLP solution methods

- Relaxation-based methods: branch-and-cut, disjunctive programming, outer approximation, Benders decomposition, MILP approximation
- Sampling methods: clustering methods, evolutionary algorithms, simulated annealing, tabu-search

Acceleration tools

- Constraint programming for finding good constraints and box-reduction
- Heuristics for computing near global minimizers and finding regions of interest

MILP versus MINLP

MILP/MINLP branch-and-cut algorithms:

1. Get solution candidates by projecting solutions of a relaxation onto the feasible set.
2. Improve the relaxation and the solution candidate by partitioning and adding cuts.

Large gap between MINLP and MILP codes (CPLEX, XPRESS-MP)
Differences between MINLP and MILP:

- Continuous relaxation: convex underestimation of nonconvex NLP versus LP
- Cut generation: MINLP versus MILP sub-problems
- Local solutions: NLP versus LP

Block-Separable Reformulation

- The block-structure $h_{i}(x)=\sum_{k=1}^{p} h_{i}^{k}\left(x_{J_{k}}\right)$ influences the quality and computation of a relaxation:
- small blocks: fast computation of underestimators and cuts
- large blocks: better relaxations (smaller duality gaps)
- Many problems have a natural block-structure (model components)

Splitting-schemes

Sparse MINLPs can be reformulated to be block-separable with almost arbitrary block-sizes by

1. Partition the sparsity graph:
$E_{\text {sparse }}=\left\{(k, l) \left\lvert\, \frac{\partial^{2}}{\partial x_{k} \partial x_{l}} h_{i}(x) \neq 0\right.\right.$ for some $i \in\{0, \ldots, m\}$ and some $\left.x \in[\underline{x}, \bar{x}]\right\}$
into blocks J_{1}, \ldots, J_{p}
2. For each adjacent node set $R_{k}=\left\{i \in \bigcup_{l=k+1}^{p} J_{l} \mid(i, j) \in E_{\text {sparse }}, j \in J_{k}\right\}$, add new variables $y^{k} \in \mathbb{R}^{\left|R_{k}\right|}$ and copy-constraints $x_{R_{k}}=y^{k}$ where $k=1, \ldots, p$.

Example

- Blocks: and $J_{1}=\{3,4,7,8\}$ and $J_{2}=\{1,2,5,6$,
- Adjacent nodes: $R_{1}=\{2,6\}, R_{2}=\emptyset$
- New nodes: x_{9} and x_{10}
- Copy constraints: $x_{2}=x_{9}$ and $x_{6}=x_{10}$
- New blocks: $J_{1}=\{3,4,7,8,9,10\}$ and $J_{2}=\{1,2,5,6$,

Extended blockseparable reformulation

By replacing block-separable constraints

$$
\sum_{k=1}^{p} h_{i}^{k}\left(x_{J_{k}}\right) \leq 0
$$

by

$$
\sum_{k=1}^{p} t_{i k} \leq 0, \quad g_{i}^{k}\left(x_{J_{k}}, t_{i k}\right)=h_{i}^{k}\left(x_{J_{k}}\right)-t_{i k} \leq 0, \quad k=1, \ldots, p
$$

we obtain a problem with linear coupling constraints
($\mathrm{P}_{\mathrm{ext}}$)

$$
\begin{array}{ll}
\min & c^{T} x+c_{0} \\
\mathrm{s.t.} & x \in H=\{x \mid A x+b \leq 0\} \\
& x \in G=\times_{k=1}^{p}\left\{x_{I_{k}} \mid g^{k}\left(x_{I_{k}}\right) \leq 0\right\} \\
& x \in X=[\underline{x}, \bar{x}]
\end{array}
$$

(useful for generating cuts)

Convex relaxation and Lagrangian relaxation

Convex relaxation of $\left(\mathrm{P}_{\mathrm{ext}}\right)$:

$$
\begin{equation*}
\min \left\{c^{T} x+c_{0} \mid x \in \operatorname{conv}(G \cap X) \cap H\right\} \tag{C}
\end{equation*}
$$

Lagrangian relaxation of $\left(\mathrm{P}_{\text {ext }}\right)$:
$(D) \quad \max _{\mu} \min _{x}\left\{c^{T} x+c_{0}+\mu^{T}(A x+b) \mid x \in G \cap X\right\}$

- $\operatorname{sol}(C) \neq \operatorname{sol}(D)$, but $\operatorname{val}(D)=\operatorname{val}(C)$, since

$$
\operatorname{val}(D)=\max _{\mu} \min _{x}\left\{c^{T} x+c_{0}+\mu^{T}(A x+b) \mid x \in \operatorname{conv}(G \cap X)\right\}
$$

- Duality gap $\operatorname{val}\left(\mathrm{P}_{\mathrm{ext}}\right)-\mathrm{val}(D)$ smaller if blocks larger

Decomposition methods for computing relaxations

1. Dual methods:
solve (D) approximately by a subgradient method
2. Cutting plane methods:
solve (C) approximately by generating supporting hyperplanes
3. Column generation:
solve (C) approximately by generating extreme points and extreme rays

Decomposition:
Subgradients, supporting hyperplanes and extreme points (rays) are computed by solving several small MINLPs.

Semidefinite Relaxation

MIQQP
(Q)

$$
\begin{array}{ll}
\min & q_{0}(x) \\
\text { s.t. } & q_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& x \in[\underline{x}, \bar{x}], \quad x_{B} \text { binary }
\end{array}
$$

where $q_{i}(x)=x^{T} A_{i} x+2 b_{i}^{T} x+c_{i}, \quad i=0, \ldots, m$

- Quadratically constrained quadratic programming (QQP) reformulation by:

$$
\begin{aligned}
x_{j} \in\left[\underline{x}_{j}, \bar{x}_{j}\right] & \Leftrightarrow\left(x_{j}-\underline{x}_{j}\right)\left(x_{j}-\bar{x}_{j}\right) \leq 0, & & j \in\{1, \ldots, n\} \backslash B \\
x_{j} \in\left\{\underline{x}_{j}, \bar{x}_{j}\right\} & \Leftrightarrow\left(x_{j}-\underline{x}_{j}\right)\left(x_{j}-\bar{x}_{j}\right)=0, & & j \in B
\end{aligned}
$$

- (Q) \Leftrightarrow polynomial programs

A spectral dual method

- The dual (D) of a QQP is equivalent to a semidefinite program
- Eigenvalue formulation of the dual function:

$$
D(\mu)=c(\mu)+\sum_{k} \lambda_{1}\left(A^{k}(\mu)\right)
$$

- For each $\mu \in \operatorname{dom} D$, the Lagrangian is convex
- (D) is solved by the bundle method NOA (Kiwiel) (fast initial improvement versus accurate solution)

Numerical experiments

- Data: splitting schemes of sparse MIQQPs up to 1000 variables (No 02)
- Computing times for 100 iterations: 1-4 sec.
- Eigenvalue computation more stable (QL versus Lanczos)
- Evaluation of decomposed dual function is faster (factor 10-100)

Nonlinear Convex Relaxation of MINLP

Difficulties with dual approach:

- Lagrangian relaxation is a MINLP problem
- Lagrangian is usually not convex for $\mu \in \operatorname{dom} D$

The restricted dual problem
(D_{+})

$$
\max _{\mu \in \mathcal{M}_{+}} D(\mu)
$$

with

$$
\mathcal{M}_{+}=\left\{\mu \in \mathcal{M} \mid \nabla^{2} L(x ; \mu) \succcurlyeq 0 \text { for all feasible } x\right\}
$$

is too difficult to solve!

Convex underestimator

Replacement of nonlinear functions h_{i} by a convex underestimator \breve{h}_{i} in (P) yields a nonlinear convex relaxation:
($\mathrm{C}_{\mathrm{nlp}}$)

$$
\begin{array}{ll}
\min & \breve{h}_{i}(x) \\
\text { s.t. } & \breve{h}_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& x \in[\underline{x}, \bar{x}]
\end{array}
$$

α-underestimators (Adjiman and Floudas 97)

$$
\breve{f}(x)=f(x)+\langle\alpha, \operatorname{Diag}(x-\underline{x})(x-\bar{x})\rangle
$$

and $\alpha \geq 0$ such that $\nabla^{2} \breve{f}(x)=\nabla^{2} f(x)+2 \operatorname{Diag}(\alpha) \succcurlyeq 0, \quad \forall x \in[\underline{x}, \bar{x}]$

Convexified polynomial underestimator

1. Generate a polynomial underestimator $q(x) \leq f(x) \quad \forall x \in[\underline{x}, \bar{x}]$ by a sampling technique (using minimizers of f)
2. Set

$$
\breve{q}(x)=q(x)+\langle\alpha, \operatorname{Diag}(x-\underline{x})(x-\bar{x})\rangle
$$

Polyhedral Relaxations

($C_{\text {ext }}$)

$$
\begin{array}{ll}
\min & c^{T} x+c_{0} \\
\text { s.t. } & A x+b \leq 0 \\
& \breve{g}_{i}^{k}\left(x_{J_{J}} \leq \leq 0, \quad i \in M_{k}, k=1, \ldots, p\right. \\
& x \in[\underline{x}, \bar{x}]
\end{array}
$$

Replace the nonlinear convex functions \breve{g}_{i}^{k} of ($\mathrm{C}_{\text {ext }}$) by linearizations at sample points (minimizers)

$$
\begin{array}{ll}
\min & c^{T} x+c_{0} \\
\mathrm{s.t.} & A x+b \leq 0 \\
& c_{k i}^{T} x_{J_{k}}+d_{k i} \leq 0, \quad i \in M_{k}, k=1, \ldots, p \tag{R}\\
& x \in[\underline{x}, \bar{x}]
\end{array}
$$

Valid cuts

Solve separation (pricing) problem (small MINLP):
$\left(S_{k}\right)$

$$
\begin{aligned}
\delta_{k}=\min & L_{k}\left(x_{J_{k}} ; \hat{\mu}\right) \\
\text { s.t. } & g_{i}^{k}\left(x_{J_{k}}\right) \leq 0, i \in \tilde{M}_{k} \\
& x_{J_{k}} \in\left[\underline{x}_{J_{k}}, \bar{x}_{J_{k}}\right], x_{B \cap J_{k}} \text { binary } \\
& \left(x_{J_{k}} \in \bigvee_{j} G_{k j}\right)
\end{aligned}
$$

where $\hat{\mu}$ is a dual solution point of (R)

Add to (R) the valid cut:

$$
L_{k}(x ; \hat{\mu}) \geq \delta_{k}
$$

Lower bounds:

$$
\underline{v}_{1}=\operatorname{val}\left(C_{\mathrm{ext}}\right) \quad \leq \quad \underline{v}_{2}=\operatorname{val}(R) \quad \leq \quad \operatorname{val}(P)
$$

Box-reduction:
Let \breve{S} be the feasible set of ($\mathrm{C}_{\mathrm{ext}}$) or (R) and set

$$
X^{\prime}=\square(\breve{S})=[\inf \breve{S}, \sup \breve{S}] \subset[\underline{x}, \bar{x}]
$$

Better reduction if we include into \breve{S} the level cut

$$
c^{T} x+c_{0} \leq \bar{v}
$$

Deformation Heuristic

Deformation of a parametric problem $\left(P_{t}\right)$ into (P), where $\left(P_{0}\right)$ is a convex relaxation (C)

Assumption: $\left(\mathrm{P}_{t}\right)$ is easier to solve than (P), if t is small.

Box constraint parametric problem

Let

$$
H(x ; t)=(1-t) \breve{L}(x ; \mu)+t P(x ; t)
$$

and $P(x ; t)$ be a penalty function of (P) and $\breve{L}(x ; \mu)$ is a Lagrangian of (C)
$\left(P_{t}\right)$

$$
\min _{x \in[\underline{x}, \bar{x}]} H(x ; t)
$$

Then

$$
H(x ; 0)=\breve{L}(x ; \mu) \quad \text { and } \quad \lim _{t \rightarrow 1} \operatorname{val}\left(P_{t}\right)=\operatorname{val}(P)
$$

The multipath algorithm

Input: $0<t_{1}<t_{2}<\cdots<t_{N}<1$ (discretization points)

1. initialize a sample set S
2. for $k=1$ to N
(a) for $x \in S$: trace a path of $\left(\mathrm{P}_{t}\right)$ from t_{k} to t_{k+1} starting from x
(b) add sample points by neighbourhood search and delete sample points with high value of $P(x ; \rho)$ or wich are close together
3. (local solutions)
for $x \in S$: $x_{B}=\operatorname{round}\left(x_{B}\right), x_{C}=$ loc_min $\left(x_{C}\right)$

Quadratic binary programs (QBP) (MaxCut)

$$
\min _{x \in\{0,1\}^{n}} x^{T} A x+2 b^{T} x \quad \Leftrightarrow \min _{x \in\{-1,1\}^{n}} x^{T} A x
$$

Numerical experiments with a deformation heuristic, up to 3000 variables (Alperin, No 02)

- dual is an eigenvalue optimization problem
- performance guarantee (Goemans and Williamson 95)
- better than uniformely distributed multistart local optimization
- computing times: $2-20 \mathrm{sec}$.
- not necessary to solve the dual; the minimum eigenvalue convexification $\mu=-\lambda_{1}(A) e$ is sufficient

Partitioning Algorithms

Sub-Problems

($P[U]$)

$$
\min \left\{c^{T} x+c_{0} \mid x \in S \cap U\right\}
$$

and
($R[U]$)

$$
\min \left\{c^{T} x+c_{0} \mid x \in \hat{S} \cap U\right\}
$$

where $U \subset \mathbb{R}^{n}$ and S and \hat{S} are the feasible sets of ($\mathrm{P}_{\mathrm{ext}}$) and (R) respectively.
Subset with fixed binary variables:

$$
U_{y, K}=\left\{x \in \mathbb{R}^{n} \mid x_{K}=y_{K}\right\}
$$

where $y \in[\underline{x}, \bar{x}]$ and $K \subseteq B$.

A rounding heuristic

1. Solve $\left(C_{n l p}\right)$

2. Add linearization and deep cuts, and solve (R)
3. Round
4. Solve the convex NLP subproblem $\left(\mathrm{C}_{\mathrm{nlp}}\left[U_{y, B}\right]\right)$
5. Solve the nonconvex NLP subproblem ($\mathrm{P}\left[U_{y, B}\right]$)
6. Switch some binary variables and repeat

Optimal design of complex energy conversion systems (DFG-project)

Figure 1: Simple superstructure of the cogeneration plant

Minimize: Total levelized costs per time unit
Subject to: constraints referring to plant components, material properties, investment, operating and maintenance cost and economic analysis

- Size: 508 variables and 461 constraints, $p=172$ blocks with $\max \left|J_{k}\right|=47$ (coded in AMPL)
- Difficulty: some functions have singularities in $[\underline{x}, \bar{x}]$ (contrained sampling)
- Lower bound: 5547.13 Euro/h
- Rounding heuristic: 6090.80 Euro/h,
- Best solution: 5995.83 Euro/h (difference of 1.6\%)

Medium size MINLPs from MinlpLib (GAMS)

Data:

- 26 problems
- up to 57 variables 74 constraints
- stop if more than 50 solution candidates

Results:

- solved 24 problems
- computing time: 18 problems in less than 3 sec . and 6 problems between 15 sec . and 6 min .

Branch-and-Cut Algorithms

The convexification center

Let \hat{S} be the feasible set of a linear relaxation (R) (including the level cut $c^{T} x+c_{0} \leq \bar{v}$)

We call the analytic center x^{c} of \hat{S} the convexification center of (R).
Since \hat{S} is an outer approximation of $\operatorname{conv}\left(\operatorname{sol}\left(P_{\text {ext }}\right)\right)$ we have

$$
x^{c} \simeq \operatorname{center}\left(\operatorname{conv}\left(\operatorname{sol}\left(P_{\text {ext }}\right)\right)\right.
$$

Central cuts

- central binary cut:
branch w.r.t to the most violated binary variable:

$$
j=\underset{i \in B}{\operatorname{argmin}}\left|x_{i}^{c}-0.5\left(\underline{x}_{i}+\bar{x}_{i}\right)\right|=\underset{i \in B}{\operatorname{argmax}} \operatorname{dist}\left(x_{i}^{c},\left\{\underline{x}_{i}, \bar{x}_{i}\right\}\right)
$$

- central splitting cut
separate x^{e} w.r.t the hyperplane

$$
\left(x^{c}-x^{e}\right)^{T}\left((1-t) x^{c}+t x^{e}-x\right)=0, \quad t \in(0,1)
$$

- central diameter cut:
subdivide w.r.t the hyperplane which goes through x^{c} and is parallel to the boundary-hyperplane with the largest distance to x^{c}

Illustration

- central binary cut: splitting into s_{1} and s_{2}
- central splitting cut: subdivision at g_{2}
- central diameter cut: subdivision at g_{1}

A Branch-and-cut Algorithm

1. Get solution candidates obtained by a relaxation-based heuristic (deformation, rounding and partitioning) using the relaxations (R) and ($\mathrm{C}_{\mathrm{ext}}$).
2. Improve the relaxation and the solution candidate by

- Cuts:
make linearization and valid cuts to improve (R) and ($\mathrm{C}_{\text {ext }}$)
- Subdivision:
make a central binary cut if a binary constraint is strongly violated else: make a central splitting cut if a local minimizer was found, else: make a central diameter cut
- Lower bounds: take $\underline{v}(u)=\operatorname{val}\left(C_{\text {ext }}[U]\right)$ or $\underline{v}(U)=\operatorname{val}(R[U])$

The C++ library LaGO (Lagrangian Global Optimizer)

- Input: AMPL, GAMS
- Basic components:
(i) block-separable reformulation,
(ii) convex relaxations (nonlinear, semidefinite and polyhedral),
(iii) solution algorithms (deformation, rounding, partitioning, branch-and-cut)

Conclusion

- We presented a MINLP solution approach with the following features:
- flexible decomposition through block-separable reformulations
- convex relaxations of quadratic and black-box models
- heuristics and a branch-and-cut method
- Preliminary results with LaGO
- Possible improvements through symbolic reformulations and interval arithmetic
- Future perspectives:
- MINLP tends to be more important (Grossman/Biegler 02)
- adaptive refinement of discretization of stochastic and optimal control programs via convex relaxations

