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Introduction

It is a classical idea that general principally polarized abelian varieties (ppavs) and their moduli
spaces are hard to understand, and that one can use algebraic curves to study some special classes,
such as Jacobians and Prym varieties. This works particularly well in small dimension, where in
this way one reduces the study of all abelian varieties to the rich and concrete theory of curves.
For g ≤ 3, a general ppav is a Jacobian, and the Torelli mapMg → Ag between the moduli spaces
of curves and ppavs respectively, is birational. For g ≤ 5, a general ppav is a Prym variety by a
classical result of Wirtinger [Wir95]. In particular, for g = 5, this gives a uniformization of A5 by
curves, as follows. We denote by Rg the Prym moduli space of pairs [C, η] consisting of a smooth
curve C of genus g and a non-trivial 2-torsion point η ∈ Pic0(C). By Donagi-Smith [DS81], the
Prym map P : R6 → A5 is generically of degree 27, with fibers corresponding to the configuration
of the 27 lines on a cubic surface.

The uniformization of Ag for g ≤ 5 via the Prym map P : Rg+1 → Ag has been used for many
problems concerning ppav of small dimension. Important applications of the Prym uniformization
include the proof of Clemens and Griffiths [CG72] respectively Mumford [M74] of the irrationality
of smooth cubic threefolds, which rely on the distinctions between Pryms and Jacobians, the proofs
of the general Hodge conjecture for the theta divisors of general ppav, see [IvS95] and [ITW16],
or the detailed study of the cohomology and stratification of A5 in terms of singularities of theta
divisors, see for instance [CF05] or [FGSMV]. The Prym map P : R6 → A5 has been also used
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to determine the birational type of A5. It has been proven in [Don84] that R6 (and hence A5) is
unirational. Other proofs followed in [MM83] and [Ver84].

The purpose of this paper is to prove a similar uniformization result for the moduli space A6 of
principally polarized abelian varieties of dimension 6. The idea of this construction is due to Kanev
[Kan89b] and it uses the geometry of the 27 lines on a cubic surface. Suppose π : C → P1 is a
cover of degree 27 whose monodromy group equals the Weyl group W (E6) ⊂ S27 of the E6 lattice.
In particular, each smooth fibre of π can be identified with the set of 27 lines on an abstract cubic
surface and, by monodromy, this identification carries over from one fibre to another. Assume
furthermore that π is branched over 24 points and that over each of them the local monodromy of
π is given by a reflection in W (E6). A prominent example of such a covering π : C → P1 is given
by the curve of lines in the cubic surfaces of a Lefschetz pencil of hyperplane sections of a cubic
threefold X ⊂ P4, see [Kan89a], as well as Section 1 of this paper. Since deg(X∨) = 24, such a
pencil contains precisely 24 singular cubic surfaces, each having exactly one node.

By the Hurwitz formula, we find that each such E6-cover C has genus 46. Furthermore, C is

endowed with a symmetric correspondence D̃ of degree 10, compatible with the covering π and
defined using the intersection form on a cubic surface. Precisely, a pair (x, y) ∈ C × C with

x 6= y and π(x) = π(y) belongs to D̃ if and only if the lines corresponding to the points x and

y are incident. The correspondence D̃ is disjoint from the diagonal of C × C. The associated
endomorphism D : JC → JC of the Jacobian satisfies the quadratic relation (D− 1)(D+ 5) = 0.
Using this, Kanev [Kan87] showed that the associated Prym-Tyurin-Kanev or PTK variety

PT (C,D) := Im(D − 1) ⊂ JC

of this pair is a 6-dimensional ppav of exponent 6. Thus, if ΘC denotes the Riemann theta divisor
on JC, then ΘC|P (C,D) ≡ 6 · Ξ, where Ξ is a principal polarization on P (C,D).

Since the map π has 24 branch points corresponding to choosing 24 roots in E6 specifying the
local monodromy at each branch point, the Hurwitz scheme Hur parameterizing degree 27 covers
π : C → P1 with W (E6) monodromy as above is 21-dimensional (and also irreducible, see [Kan06]).
The geometric construction described above induces the Prym-Tyurin map

PT : Hur→ A6

between two moduli spaces of the same dimension. The following theorem answers a conjecture
raised by Kanev, see also [LR08, Remark 5.5]:

Theorem 0.1. The Prym-Tyurin map PT : Hur → A6 is generically finite. It follows that the
general principally polarized abelian variety of dimension 6 is a Prym-Tyurin-Kanev (PTK) variety
of exponent 6 corresponding to a W (E6)-cover C → P1.

This result, which is the main achievement of this paper, gives a structure theorem for general
abelian varieties of dimension 6 and offers a uniformization for A6 by curves with additional
discrete data. Just like the classical Prym map P : R6 → A5, it is expected that the Prym-Tyurin
map PT will open the way towards a systematic study of abelian 6-folds and their moduli space.
What is essential is less the fact that a general 6-dimensional ppav is a PTK variety, but rather
the rich geometric structure that Theorem 0.1 provides, which is then of use for other applications
presented in Sections 5-11. An immediate consequence of Theorem 0.1 is the following:

Corollary 0.2. For every ppav [A,Θ] ∈ A6, the class 6 · θ5/5! ∈ H10(A,Z) is represented by an
effective curve.
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It is expected that for a general [A,Θ] ∈ A6, the minimal cohomology class θ5/5! is not even
algebraic. Coupled with Corollary 0.2, this would mean that [A,Θ] should not admit any Prym-
Tyurin realization of exponent relatively prime to 6.

The main idea of the proof of Theorem 0.1 is to study degenerations of PTK varieties as the
branch locus (P1, p1 + · · ·+ p24) of the cover π : C → P1 approaches a maximally degenerate point
ofM0,24. The map PT becomes toroidal and its essential properties can be read off a map of fans.
Then, to show that PT is dominant, it is sufficient to show that the rays in the fan describing
the image span a 21-dimensional vector space, i.e. that a certain (21 × 21)-matrix has full rank.
This can be done by an explicit computation, once the general theory is in place. The theory of
degenerations of Jacobians [Ale04] and Prym varieties in [ABH02] is known. One of the main goals
of the present paper is an extension of the theory to the case of PTK varieties. For our purposes
we do not require the answer to the more delicate problem of understanding the indeterminacy
locus of the period map.

The remainder of this work focuses on several birational problems that are related to the geom-
etry of A6 by Theorem 0.1, and on several quite non-obvious parallels between the Prym map and
the Prym-Tyurin map PT . Consider the space H classifying E6-covers [π : C → P1, p1, . . . , p24]
together with a labeling of the set of their 24 branch points. In view of the structure Theorem
0.1, it is of compelling interest to understand the birational geometry of this space. It admits a
compactification H which is the moduli space of twisted stable maps from curves of genus zero
into the classifying stack BW (E6), that is, the normalization of the stack of admissible covers
with monodromy group W (E6) having as source a nodal curve of genus 46 and as target a stable
24-pointed curve of genus 0 (see Section 5 for details). One has a finite morphism

b : H →M0,24.

In Section 6, we show that the canonical class of H is big (Theorem 6.22). From the point of view
of A6, it is more interesting to study the global geometry of the quotient space

Hur := H/S24,

compactifying the Hurwitz space Hur of E6-covers (without a labeling of the branch points). The
Prym-Tyurin map PT extends to a regular morphism PT Sat : Hur→ ASat

6 to the Satake compact-
ification ASat

6 of A6. Denoting by Ag := Aperf
g the perfect cone (first Voronoi) compactification

of Ag, we establish the following result on the birational geometry of Hur, which we regard as a
compact master space for ppav of dimension 6:

Theorem 0.3. There exists a boundary divisor E of Hur that is contracted by the Prym-Tyurin
map PT : Hur 99K A6, such that KHur + E is a big divisor class.

The proof of Theorem 0.3 is completed after numerous preliminaries at the end of Section 9.

In the course of proving Theorem 0.3, we establish numerous facts concerning the geometry of
the space Hur. One of them is a surprising link between the splitting of the rank 46 Hodge bundle
E on Hur into Hodge eigenbundles and the Brill-Noether theory of E6-covers, see Theorem 9.3.
For a point [π : C → P1] ∈ Hur, we denote by D : H0(C, ωC) → H0(C, ωC) the map induced at
the level of cotangent spaces by the Kanev endomorphism and by

H0(C, ωC) = H0(C, ωC)(+1) ⊕H0(C, ωC)(−5),

the decomposition into the (+1) and the (−5)-eigenspaces of holomorphic differentials respectively.
Setting L := π∗(OP1(1)) ∈ W 1

27(C), for a general point [π : C → P1] ∈ Hur, we show that the
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following canonical identifications hold:

H0(C, ωC)(+1) = H0(C,L)⊗H0(C, ωC ⊗ L∨)
and

H0(C, ωC)(−5) =

(
H0(C,L⊗2)

Sym2H0(C,L)

)∨
⊗

2∧
H0(C,L).

In particular, the (+1)-Hodge eigenbundle is fibrewise isomorphic to the image of the Petri map
µ(L) : H0(C,L) ⊗ H0(C, ωC ⊗ L∨) → H0(C, ωC), whenever the Petri map is injective (which
happens generically along Hur, see Theorem 9.2). The identifications above are instrumental in
expressing in Section 9 the class of the (−5)-Hodge eigenbundle E(−5) on a partial compactification
GE6 of Hur in terms of boundary divisors. The moduli space GE6 differs from Hur only along divisors
that are contracted under the Prym-Tyurin map. Note that the class λ(−5) = c1(E(−5)) is equal
to the pull-back PT ∗(λ1) of the Hodge class λ1 on A6. The explicit realization of the class λ(−5)

is then used to establish positivity properties of the canonical class KHur.

An obvious question is to what extent the geometry of Hur can be used to answer the notorious
problem on the Kodaira dimension of A6. Recalling that PT : Hur 99K A6 denotes the extension of
the Prym-Tyurin map outside a codimension 2 subvariety of Hur, the pull-back divisor PT ∗(∂A6)
contains a unique boundary divisor DE6 of Hur that is not contracted by PT . The statement that
A6 is of general type is then equivalent to the bigness of the divisor class 7λ(−5) − [DE6 ] on Hur
(see Corollary 6.3 for a more precise statement). Theorem 0.1 implies that λ(−5) is a big class
on Hur, which is a weaker result. Note that it has been established in [FV16] that the boundary
divisor ∂A6 of the perfect cone compactification A6 is unirational.

We are also able to describe the ramification divisor of the Prym-Tyurin map in terms of the
geometry of the Abel-Prym-Tyurin curve ϕ(−5) = ϕH0(ωC)(−5) : C → P5 given by the linear system
of (−5)-invariant holomorphic forms on C.

Theorem 0.4. An E6-cover [π : C → P1] ∈ Hur such that the Petri map µ(L) is injective lies
in the ramification divisor of the map PT : Hur→ A6 if and only if the Abel-Prym-Tyurin curve
ϕ(−5)(C) ⊂ P5 lies on a quadric.

The conclusion of Theorem 0.4 can be equivalently formulated as saying that the map

Sym2H0(C, ωC)(−5) −→ H0(C, ω⊗2
C )

given by multiplication of sections is not injective. Note the striking similarity between this
description of the ramification divisor of the Prym-Tyurin map and that of the classical Prym
map P : Rg+1 → Ag, see [Bea77]: A point [C, η] ∈ Rg+1 lies in the ramification divisor of P if and
only if the multiplication map for the Prym-canonical curve

Sym2H0(C, ωC ⊗ η)→ H0(C, ω⊗2
C )

is not injective. An important difference must however be noted. While the general Prym-canonical
map ϕωC⊗η : C → Pg−2 is an embedding when g ≥ 5, the Abel-Prym-Tyurin map ϕ(−5) : C → P5

sends the ramification points lying over a branch point of the cover π : C → P1 to the same point
of P5 (see Section 10 below).

It is natural to ask in what way the Prym-Tyurin-Kanev (PTK) varieties considered in this paper
generalize classical Prym varieties. It is classical [Wir95] that the Prym variety of the Wirtinger
cover of a 1-nodal curve of genus g is the Jacobian of its normalization. Thus, if ∆

′′
0 ⊂ Rg+1 is the

boundary divisor of such covers and P : Rg+1 99K Ag is the extension of the Prym map outside
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a codimension 2 subvariety of Rg, then P (∆
′′
0) contains the closure of the Jacobian locus in Ag.

In particular, Jacobians arise as limits of Prym varieties. We generalize this situation and explain
how ordinary Prym varieties appear as limits of PTK varieties.

Via the Riemann Existence Theorem, a general E6-cover π : C → P1 is determined by a branch
divisor p1 + · · ·+ p24 ∈ Sym24(P1) and discrete data involving a collection of roots r1, . . . , r24 ∈ E6

which describe the local monodromy of π at the points p1, . . . , p24. Letting two branch points, say
p23 and p24, coalesce such that r23 = r24, whereas the reflections in the remaining roots r1, . . . , r22

span the Weyl group W (D5) ⊂ W (E6), gives rise to a boundary divisor DD5 of Hur. We show in
Section 8 that the general point of DD5 corresponds to the following geometric data:

(i) A genus 7 Prym curve [Y, η] ∈ R7, together with a degree 5 pencil h : Y → P1 branched simply
along the divisor p1 + · · ·+ p22; the unramified double cover F1 → Y gives rise to a degree 10 map
π1 : F1 → P1 from a curve of genus 13.

(ii) A genus 29 curve F2 ⊂ F
(5)
1 , which is pentagonally related to F1, and is thus completely

determined by F1. Precisely, F2 is one of the two irreducible components of the locus{
x1 + · · ·+ x5 ∈ F (5)

1 : π1(x1) = · · · = π1(x5)
}

inside the symmetric power F
(5)
1 of F1. One has a degree 16 cover π2 : F2 → P1 induced by π1.

(iii) A distinguished point q1 + · · ·+ q5 ∈ F2, which determines 5 further pairs of points(
qi, q1 + · · ·+ ι(qi) + · · ·+ q5

)
∈ F1 × F2

for i = 1, . . . , 5, which get identified. To F2 we attach a rational curve F0 at the point q1 + · · ·+q5.
The resulting nodal curve C1 = F0∪F1∪F2 has genus 46 and admits a map π : C1 → P1 of degree
27 with π|Fi = πi for i = 0, 1, 2, where π0 is an isomorphism. The map π can easily be turned into
an E6-admissible cover having as source a curve stably equivalent to C1. A general point of the
divisor DD5 is realized in this way.

We show in Section 8 that PT ([C1, π]) = P ([F1/Y ]) = P ([Y, η]) ∈ A6; furthermore, the general
6-dimensional Prym variety from P (R7) ⊂ A6 appears in this way. We summarize the above
discussion, showing that the restriction PTDD5

of the Prym-Tyurin map factors via the (generically

injective) Prym map P : R7 99K A6 in the following way.

Theorem 0.5. If DD5 ⊂ Hur is the boundary divisor of W (D5)-covers defined above, one has the
following commutative diagram:

(0.1) DD5
//

PTD5
��

Hur

PT
��

R7
P // A6

The fibre PT−1
D5

(
P [F1/Y ]

)
of the Prym-Tyurin map PTD5 : DD5 99K R7 over a general genus 7

Prym curve [F1/Y ] ∈ R7 is the fibration over the curve W 1
5 (Y ) of degree 5 pencils on Y with fibre

over a pencil A ∈ W 1
5 (Y ) the curve F2 obtained by applying the 5-gonal construction to A.

We close the introduction by discussing the structure of the paper. In Section 1 we discuss
Kanev’s construction, whereas in Section 2 we collect basic facts about the E6 lattice and the
group W (E6) that are used throughout the paper. After recalling the theory of degenerations
of Jacobians and ordinary Prym varieties in Section 3, we complete the proof of Theorem 0.1 in
Section 4, by describing the Prym-Tyurin map in the neighborhood of a maximally degenerate
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point of the space Hur of E6-admissible covers. Sections 5 and 6 are devoted to the birational
geometry of this Hurwitz space. The most important result is Theorem 6.17 describing the Hodge
class λ on Hur in terms of boundary divisors. In Section 7 we completely describe the extended
Prym-Tyurin map PT : Hur 99K A6 to the perfect cone (first Voronoi) toroidal compactification
of A6 at the level of divisors and show that only three boundary divisors of Hur, namely DE6 , Dsyz

and Dazy are not contracted by the map PT (Theorem 7.17). After proving Theorem 0.5 in Section
8, we complete in Section 9 the proof of Theorem 0.3 after a detailed study of the divisors Dazy

and Dsyz of azygetic and syzygetic E6-covers respectively on a partial compactification GE6 of Hur.
The ramification divisor of the Prym-Tyurin map is described in Section 10. Finally, in Section
11, we prove by degeneration a Petri type theorem on Hur.

Acknowledgments: We owe a great debt to the work of Vassil Kanev, who first constructed
the Prym-Tyurin map PT and raised the possibility of uniformizing A6 in this way. The authors
acknowledge partial support by the NSF: VA under grant DMS 1200726, RD under grant DMS
1603526, EI under grant DMS-1103938/1430600. The work of GF and AO has been partially
supported by the DFG Sonderforschungsbereich 647 “Raum-Zeit-Materie”.

1. Kanev’s construction and Prym-Tyurin varieties of E6-type

Consider a cubic threefold X ⊂ P4 and a smooth hyperplane section S ⊂ X. The cubic surface
S contains a set of 27 lines Λ := {`s}1≤s≤27 forming a famous classical configuration, which we shall
review below in Section 2. Consider the lattice ZΛ = Z27 with the standard basis corresponding to
`s’s, and let deg : ZΛ → Z be the degree homomorphism, so that deg(`s) = 1 for all s = 1, . . . , 27.

1.1. By assigning to each line `s the sum
∑
{s′: `s·`s′=1} `s′ of the 10 lines on S intersecting `s, we

define a homomorphism D′Λ : Z27 → Z27 of degree 10. It is easy to check that D′Λ satisfies the
following quadratic equation:

(D′Λ + 5)(D′Λ − 1) = 5

(
27∑
s=1

`s

)
· deg

The restriction DΛ of D′Λ to the subgroup Ker(deg) satisfies the equation (DΛ + 5)(DΛ − 1) = 0.
Consider a generic pencil {St}t∈P1 of cubic hyperplane sections of X. This defines:

• a degree 27 smooth curve cover π : C → P1; the points in the fiber π−1(t) correspond to
the lines lying on St;

• a symmetric incidence correspondence D̃ ⊂ C × C. Let pi : D̃ → C denote the two

projections. Then D̃ has degree deg(p1) = deg(p2) = 10;
• a homomorphism D′ = p2∗ ◦ p∗1 : Pic(C)→ Pic(C) satisfying the following quadratic equa-

tion (see also [Kan89b]):
(D′ + 5)(D′ − 1) = 5π−1(0) · deg;

• the restriction D of D′ to JC = Pic0(C), satisfying (D + 5)(D − 1) = 0.

For a generic such pencil the map π : C → P1 has 24 branch points on P1, corresponding to
singular cubic surfaces in the pencil, each with one node. Over each of the 24 points, the fibre
consists of 6 points of multiplicity two and 15 single points. By the Riemann-Hurwitz formula, we
compute g(C) = 46.

1.2. We refer to [Kan89b, LR08] for the following facts. The cover π : C → P1 is not Galois. The
Galois group of its Galois closure isW (E6), the reflection group of the E6 lattice. As we shall review
in Section 2, the lattice E6 appears as the lattice K⊥S ⊂ Pic(S). The 27 lines can be identified with
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the W (E6)-orbit of the fundamental weight ω6, and one has a natural embedding W (E6) ⊂ S27.
The intermediate non-Galois cover C → P1 is associated with the stabilizer subgroup of ω6 in
W (E6), that is, with the subgroup W (E6) ∩ S26

∼= W (D5).

1.3. By Riemann’s Existence Theorem, a 27-sheeted cover C → P1 ramified over 24 points is
defined by a choice of 24 elements wi ∈ S27 satisfying w1 · · ·w24 = 1. For a cover coming from a
pencil of cubic surfaces, each wi ∈ W (E6) is a reflection in a root of the E6. It is a double-six,
that is, viewed as an element of S27, it is a product of 6 disjoint transpositions.

Definition 1.4. Let Hur be the Hurwitz space parametrizing irreducible smooth Galois W (E6)-

covers C̃ → P1 ramified in 24 points, such that the monodromy over each point is a reflection in
a root of the E6 lattice.

1.5. Note that points in the space Hur correspond to covers where we do not choose a labeling of

the branch points. The data for the cover C̃ consists of the branch divisor p1 + . . . + p24 on P1,
and, for each of these points, the monodromy wi ∈ W (E6) given by a reflection in a root, once
a base point p0 ∈ P1 and a system of arcs γi in π1(P1 \ {p1, . . . , p24}, p0) with γ1 · · · γ24 = 1 has
been chosen. The elements {wi}24

i=1 generate W (E6) and satisfy the relation w1 · · ·w24 = 1. The
monodromy data being finite, the space Hur comes with a finite unramified cover

br : Hur→M0,24/S24

to the moduli space of 24 unordered points on P1. Thus dim(Hur) = 21. An important fact about
this space is the following result of Kanev [Kan06]:

Theorem 1.6. For any irreducible root system R, the Hurwitz scheme parameterizing Galois
W (R)-covers such that the monodromy around any branch point is a reflection in W (R), is irre-
ducible.

1.7. In particular, the space Hur is irreducible. If [π̃ : C̃ → P1] ∈ Hur, let π : C → P1 be an

intermediate non-Galois cover of degree 27, that is, the quotient of C̃ by a subgroup W (E6)∩S26
∼=

W (D5) in S27. Since W (E6) acts transitively on the set {1, . . . , 27}, the 27 subgroups S26 ⊂ S27 are
conjugate, and the corresponding curves C are isomorphic. Thus, Hur is also a coarse moduli space
for degree 27 non-Galois covers π : C → P1, branched over 24 points such that the monodromy at
each branch point is a reflection of W (E6).

1.8. Let π : C → P1 be an E6-cover as above. Each fiber of π can be identified consistently with the
set of 27 lines on a cubic surface. The incidence of lines, in the same way as for the correspondence

DΛ in 1.1, induces a symmetric correspondence D̃ ⊂ C × C of degree 10, which is disjoint from

the diagonal ∆ ⊂ C × C. In turn, D̃ induces a homomorphism D′ : Pic(C) → Pic(C), whose
restriction D : JC → JC to the degree zero part JC := Pic0(C) satisfies the quadratic relation

(1.1) (D − 1)(D + 5) = 0 ∈ End(JC).

Definition 1.9. The Prym-Tyurin-Kanev (PTK) variety PT (C,D) is defined as the connected

component of the identity PT (C,D) :=
(
Ker(D + 5)

)0
= Im(D − 1) ⊂ JC.

1.10. Using [Kan87], Equation (1.1) implies that the restriction of the principal polarization ΘC

of JC to PT (C,D) is a multiple of a principal polarization. Precisely, ΘC|PT (C,D) = 6 · Ξ, where
(PT (C,D),Ξ) is a ppav. Since

0 = D̃ ·∆ = 2deg(D̃)− 2tr
{
D : H0(C, ωC)→ H0(C, ωC)

}
,
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we obtain that

(1.2) dim PT (C,D) =
1

6

(
g(C)− deg(D̃)

)
=

1

6
(46− 10) = 6,

see also [LR08, Proposition 5.3]. We have the morphism of moduli stacks

PT : Hur −→ A6

[C,D] 7−→ [PT (C,D),Ξ].

Both stacks are irreducible and 21-dimensional. The main result of this paper (Theorem 0.1) is
that PT is a dominant, i.e., generically finite, map.

1.11. Our main concrete examples of E6-covers of P1 are the curves of lines in Lefschetz pencils of
cubic surfaces. The subvariety T ⊂ Hur corresponding to pencils {St}t∈P1 of hyperplane sections
of cubic 3-folds X ⊂ P4 has expected dimension(

7

3

)
− 1 + dim Gr(2, 5)− dim PGL5 = (35− 1) + 6− (25− 1) = 16.

1.12. We now describe the restriction of the map PT to the locus T ⊂ Hur parametrizing such
covers. Let V be a 5-dimensional vector space over C whose projectivization contains X and let
F ∈ Sym3(V ∨) be a defining equation for X. Denote by F := F(X) the Fano variety of lines in X.
Let JX := H2,1(X)∨/H3(X,Z) be the intermediate Jacobian of X. It is well known [CG72] that
the Abel-Jacobi map defines an isomorphism JX ∼= AlbF , where AlbF is the Albanese variety of
F . Let Λ be a Lefschetz pencil of hyperplane sections of X and denote by E its base curve. The
curve C classifying the lines lying on the surfaces contained in Λ lives naturally in F . The map
sending a line to its point of intersection with E induces a degree 6 cover C → E. Furthermore,
the choice of a base point of C defines a map C → JX. So we obtain a well-defined induced map
JC → E × JX. The transpose E × Pic0(F) = E × JX → JC of this map is given by pull-back
on divisors on each of the factors, using the map C → E and the embedding C ↪→ F respectively.
On the locus T we can explicitly determine the PTK variety:

Lemma 1.13. The map JC → E×JX (or its transpose E×JX → JC) induces an isomorphism

of ppav PT (C,D)
∼=→ E × JX.

Proof. We first show that the correspondence D restricts to multiplication by (−5) on both factors

E and JX. For ` ∈ C, let D̃(`) be the sum of the lines incident to ` and E inside X. We denote
by H` the hyperplane spanned by E and ` and put S` := H` ∩X. The lines incident to E and `
form 5 pairs (`1, `

′
1), . . . , (`5, `

′
5), with `+ `i + `′i ∈ | −KS`| for i = 1, . . . , 5.

Consider first the intermediate Jacobian JX. We have

D̃(`) =
5∑
i=1

(`i + `′i) ≡ 5| −KS` | − 5`,

where ≡ denotes linear equivalence in S`. Since | −KS` | is constant as ` varies, it follows that D
restricts to multiplication by (−5) on JX.

Consider the elliptic curve E. Then D̃(`) in E is the sum of the intersection points of `i, `
′
i with

E. Note that (` + `i + `′i)|E is also the intersection of the plane Πi := 〈`, `i, `′i〉 with E. Hence∑5
i=1(` + `i + `′i)|E is the intersection of the 5 planes Π1, . . . ,Π5 with E. Projecting from `, we

see that the union of these planes is the intersection of H` with the inverse image Q of the plane
quintic in P2 = P(V/`) parametrizing singular conics (the discriminant curve for the projection
of X from `). Therefore

∑5
i=1(` + `i + `′i)|E is contained in the intersection Q ∩ E and since the
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two divisors have the same degree, we obtain that
∑5

i=1(` + `i + `′i)|E = Q ∩ E is constant. This
implies that D is multiplication by (−5) on E as well.

So the PTK variety is isogenous to E × JX. To show that they are isomorphic, we show that
the pull-back of the polarization of JC to E × JX is 6 times a principal polarization. This is
immediate on the factor E, since the map C → E has degree 6. To see it on the JX factor as well,
we again use the Abel-Jacobi embedding C ↪→ F ↪→ JX and recall the fact [CG72] that one model
of the theta divisor in JX is the image of the degree 6 difference map ψ : F ×F → AlbF = JX,
defined by ψ(`, `′) = `− `′. �

We denote by IJ 5 the closure in A5 of the moduli space of intermediate Jacobians of cubic
threefolds. We have the following result:

Corollary 1.14. We have the following equality of 11-dimensional irreducible cycles in A6:

PT (T ) = IJ 5 ×A1 ⊂ A5 ×A1 ⊂ A6,

where the closure on the left hand side is taken inside A6.

2. The E6 lattice

In this section we recall basic facts about the E6 lattice. Our reference for these is [Dol12,
Chapters 8,9].

2.1. Let I1,6 be the standard Lorenzian lattice with the quadratic form x2
0−
∑6

i=1 x
2
i . The negative

definite E6 lattice is identified with k⊥, where k = (−3, 1, . . . , 1). Its dual E∨6 is identified with
I1,6/Zk. Let us denote the standard basis of I1,6 by f0, f1, . . . , f6, to avoid confusion with the
edges ei in a graph.

The roots of E6 are the vectors with square −2. There are
(

6
2

)
+
(

6
3

)
+ 1 = 36 pairs of roots

corresponding to αij = fi− fj, αijk = f0− fi− fj − fk and αmax = 2f0− f1− . . .− f6. Obviously,
if r ∈ E6 is a root then −r is a root as well. The simple roots, corresponding to the E6 Dynkin
diagram can be chosen to be r1 = α123, r2 = α12, r3 = α23, r4 = α34, r5 = α45 and r6 = α56.

2.2. The Weyl group W (E6) is the group generated by the reflections in the roots. It has 51,840
elements. The fundamental weights ω1, . . . , ω6 are the vectors in E∨6 with (ri, ωj) = δij.

The exceptional vectors are the vectors in the W (E6)-orbit of ω6. They can be identified with
vectors ` in I1,6 satisfying `2 = k` = −1. There are 6 + 6 + 15 = 27 of them, namely:

ai = fi, for i = 1, . . . , 6;

bi = 2f0 − f1 − · · · − f6 + fi, for i = 1, . . . , 6;

cij = f0 − fi − fj, for 1 ≤ i < j ≤ 6.

2.3. For each root r ∈ E6, there are 15 exceptional vectors that are orthogonal to it, 6 exceptional
vectors with r · ` = 1 and 6 vectors with r · ` = −1. The collections of the 6 pairs of exceptional
vectors non-orthogonal to a root vector are called double-sixes. The elements in each pair are
exchanged by the reflection wr ∈ W (E6) in the root r.

There are 36 double-sixes, one for each pair ±r of roots. For example, the double-six for the
root r = αmax is {a1, a2, . . . , a6}, {b1, b2, . . . , b6}. The reflection group acts transitively on the set
of the exceptional vectors. This gives rise to an embedding W (E6) ⊂ S27. Under this embedding,
each reflection corresponds to a product of 6 transpositions. For example, the reflection in the
root r = αmax is the permutation (a1, b1) · · · (a6, b6) ∈ S27.
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Note that the choice of a root is equivalent to an ordering of a pair: when we write the same
element of W (E6) as a product (b1, a1) · · · (b6, a6), it corresponds to the root −αmax. The W (E6)-
action by conjugation is transitive on the set of reflections, i.e., double sixes, so to study their
properties it is usually sufficient to make computations for one representative.

2.4. For a smooth cubic surface S, the above objects have the following incarnation:

• I1,6 = Pic(S) together with the intersection form,
• k = KS and E6 = K⊥S ⊂ Pic(S),
• the exceptional vectors are identified with the lines `1, . . . , `27 on S,
• a sixer is a set of 6 mutually disjoint lines, a double-six is the set of two sixers corresponding

to the opposite roots.

The relationship between the W (E6)-action and the correspondence given by the line incidence
is as follows.

Definition 2.5. The correspondence on the set of exceptional vectors is defined by setting

D(`) :=
∑

{`′: `′·`=1}

`′.

Remark 2.6. For further use, we retain the following computation:

D(a1) = b2 + · · ·+ b6 + c12 + · · ·+ c16

D(b1) = a2 + · · ·+ a6 + c12 + · · ·+ c16

D(a1 − b1) = (b2 − a2) + . . . (b6 − a6).

2.7. The group W (E6) has 25 irreducible representations corresponding to its 25 conjugacy classes,
which will appear several times in this paper. For conjugacy classes we use the ATLAS or GAP
notation 1a, 2a, 2b, 2c, . . . , 12a, (command ‘CharacterTable(”U4(2).2”)’). The number refers to
the order of the elements in the conjugacy class. For instance, the reflections in W (E6) (products
of six transpositions) belong to the conjugacy class 2c, the product of two syzygetic reflections
belongs to the class 2b, whereas the product of two azygetic reflections belongs to the class 3b
(see Section 5 for precise definitions).

3. Degenerations of Jacobians and Prym varieties

3.1. By a theorem of Namikawa and Mumford, the classical Torelli map Mg → Ag sending
a smooth curve to its Jacobian extends to a regular morphism Mg → Avor

g from the Deligne-
Mumford compactification of Mg to the toroidal compactification of Ag for the second Voronoi
fan. See [AB12] for a transparent modern treatment of this result, and extension results for other
toroidal compactifications of Ag. The result applies equally to the stacks and to their coarse
moduli spaces. Here, we will work with stacks, so that we have universal families over them.

3.2. At the heart of the result of Namikawa and Mumford lies the Picard-Lefschetz formula for
the monodromy of Jacobians in a family of curves, see e.g. [Nam73, Proposition 5]. The map of
fans for the toroidal morphism Mg → Avor

g is described as follows. Fix a stable curve [C] ∈ Mg,
and let Γ be its dual graph, with a chosen orientation. Degenerations of Jacobians are described
in terms of the groups

C0(Γ,Z) =
⊕

vertices v

Zv, C1(Γ,Z) =
⊕

edges e

Ze, H1(Γ,Z) = Ker
{
∂ : C1(Γ,Z)→ C0(Γ,Z)

}
.
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The Jacobian JC = Pic0(C) is a semiabelian group variety, that is, an extension

(3.1) 1→ H1(Γ,C∗)→ Pic0(C)→ Pic0(C̃)→ 0,

where C̃ is the normalization of C. In particular, Pic0(C) is a multiplicative torus if and only if

C̃ is a union of P1’s, or equivalently, if b1 = h1(Γ) = g.
The monodromy of a degenerating family of Jacobians is described as follows. Fix a lattice

Λ ' Zg and a surjection Λ � H1(Γ,Z). The rational polyhedral cone for a neighborhood of
[C] ∈ Mg lives in the space Λ∨ ⊗ R with the lattice Λ∨. It is a simplicial cone of dimension
b1 = h1(Γ) with the rays e∗i corresponding to the edges of Γ. Here, e∗i is the linear function on
H1(Γ,Z) ⊂ C1(Γ,Z) taking the value δij on the edge ej ∈ C1(Γ,Z).

The rational polyhedral cone corresponding to a neighborhood of [JC] ∈ Avor
g lives in the space

Γ2(Λ∨) ⊗ R = (Sym2(Λ) ⊗ R)∨, where the lattice Γ2(Λ∨) is the second divided power of Λ∨. It
is a simplicial cone with the rays (e∗i )

2 for all e∗i 6= 0, which means that ei is not a bridge of the
graph Γ. We explain what this means in down to earth terms. In an open analytic neighborhood
U of [C], one can choose local analytic coordinates z1, . . . , z3g−3 so that the first N coordinates
correspond to smoothing the nodes of C, labeled by the edges ei of the graph Γ. Thus, we have a
family of smooth curves over the open subset V = U −⋃N

i=1{zi = 0}.
Then a complex-analytic map V → Hg to the Siegel upper half-plane is given by a formula (see

[Nam73, Thm.2] or [Nam76, 18.7])

(zi) 7→
N∑
i=1

Mi ·
1

2π
√
−1

log zi + (a bounded holomorphic function),

where Mi are the g×g matrices with integral coefficients corresponding to the quadratic functions
(e∗i )

2 on Λ� H1(Γ,Z). After applying the coordinatewise exponential map

C
g(g+1)

2 → (C∗)
g(g+1)

2 , uij 7→ exp(2π
√
−1 uij),

the matrices Mi · (log zi/2π
√
−1) become Laurent monomials in zi. This monomial map describes

a complex-analytic map from a small complex-analytic neighborhood U of [C] ⊂ Mg to an ap-
propriate étale neighborhood of Ag. For the arguments below the above two formulas suffice. In
particular, we do not need to know the indeterminacy locus of the extended maps. Thus, we will
not need explicit coordinates near a boundary of Avor

g .

3.3. The following weak form of Torelli’s theorem is a sample of our degeneration technique. This
is far from being the easiest way to prove the Torelli theorem, but it gives a good illustration of
our method which we later apply to PTK varieties.

Lemma 3.4. The image of the Torelli map Mg → Ag has full dimension 3g − 3.

Proof. For every g, there exists a 3-edge connected trivalent graph Γ of genus g (exercise in
graph theory). By Euler’s formula, it has 3g − 3 edges. Recall that a connected graph is 2-edge
connected if it has no bridges, i.e., the linear functions e∗i on H1(Γ,Z) are all nonzero, and it is
3-edge connected if for i 6= j one has e∗i 6= ±e∗j , i.e., (e∗i )

2 6= (e∗j)
2.

Let C be a stable curve whose dual graph is Γ and whose normalization is a disjoint union of P1’s.
Then the 3g− 3 matrices Mi in Formula (3.2), i.e. the functions (e∗i )

2, are linearly independent in
Sym2(Zg), cf. [AB12, Remark 3.6]. By looking at the leading terms as zi → 0, this easily implies
that the image has full dimension 3g − 3.
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After applying the exponential function, the map becomes

(z1, . . . , z3g−3) 7→ (monomial map)× (invertible function).

Since the monomial part is given by monomials generating an algebra of transcendence degree
3g − 3, the image is full-dimensional. �

Remark 3.5. Note that the regularity of the extended Torelli mapMg → Avor
g played no role in

the proof of Lemma 3.4. All we need for the conclusion is the fact that the monodromy matrices
Mi are linearly independent.

3.6. The theory for Jacobians was extended to the case of Prym varieties in [ABH02]. We briefly
recall it. LetRg be the stack of Prym curves of genus g, classifying admissible pairs [C, ι] consisting
of a stable curve with involution ι : C → C, so that C/ι is a stable curve of genus g and the map
C → C/ι is an admissible map of stable curves. We refer to [Bea77] and [FL10] for background
on Rg. Consider one pair [C, ι] ∈ Rg and a small analytic neighborhood U of it. As before, Γ is
the dual graph of C.

Then the space H1(C,Z) of the Jabobian case is replaced by the lattice H1/H
+
1 . Here, H+

1 and
H−1 are the (+1)- and the (−1)-eigenspaces of the involution action ι∗ on H1(C,Z) respectively.
Via the natural projection H1 � H1/H

+
1 , we identify H−1 with a finite index sublattice of H1/H

+
1 .

The degeneration of Prym varieties as groups is

P (C, ι) = Ker(1 + ι∗)0 = Im(1− ι∗), ι∗ : Pic0(C)→ Pic0(C).

The monodromy of a degenerating family of Prym varieties is obtained by restricting the mon-
odromy map for JC to the (−1)-eigenspace. Combinatorially, it works as follows: For every edge
ei of Γ we have a linear function e∗i on the group H−1 , the restriction of the linear function on
H1(C,Z). For the divisor {zi = 0} on U corresponding to smoothing the node Pi of C, the mon-
odromy is given by the quadratic form (e∗i )

2 restricted to H1(Γ,Z)−. Similarly to Lemma 3.4, this
can be used to prove various facts about the Prym-Torelli map, but we will not pursue it here.

4. Degenerations of Prym-Tyurin-Kanev varieties

We choose a concrete boundary point in a compactification of the Hurwitz scheme Hur. We
start with a single cubic surface S and the set {`1, . . . , `27} of 27 lines on it. Sometimes we shall
use the Schläfli notation {ai, bi, cij} for them, as in Section 2. We fix an embedding of W (E6) into
the symmetric group S27 permuting the 27 lines on S.

4.1. We choose 12 roots ri which generate the root system E6. Let wi ∈ W (E6) be the reflections
in ri; they generate W (E6). As we saw in Section 2, each wi is a double-six. Fixing the root ri
gives it an orientation.

4.2. Consider a nodal genus 0 curve E whose normalization is a union of P1’s and whose dual
graph is the tree T shown in the left half of Figure 1. The 24 ends of this tree correspond to 24
points p1, . . . , p24 on E. We label the points by roots r1, . . . , r12. Each of the outside vertices has
two ends, we use the same label ri for both of them.

Definition 4.3. Let π : C → E be an admissible 27 : 1 cover ramified at the point pi with
monodromy wi for i = 1, . . . , 24.

For every irreducible component of E, the product of the monodromy elements equals 1; this
count includes the nodes. Since we required that for every component on the boundary the two
wi’s are the same, the map is unramified at the nodes. Thus, π is étale over E \ {p1, . . . , p24}.
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. . .

cij

Figure 1. The tree T for the target curve E of genus 0

4.4. Here is a concrete description of the dual graph Γ of C. It has

10× 27 + 12× (6 + 15) vertices and 21× 27 edges

Each vertex v of T in the étale part has 27 vertices over it. Over each of the outside 12 vertices,
there are 6 vertices, where the map P1 → P1 is 2 : 1 and ramified at a pair of the points pi and
pi+12, and 15 other vertices where the map P1 → P1 is 1 : 1.

All the nodes of E lie in the étale part, so for each internal edge e of the tree T there are 27
edges of Γ.

4.5. The graph Γ is homotopically equivalent to the following much simpler graph Γ′. It has:

(1) 27 vertices {vs}27
s=1, labeled by the lines on S. (Here, s stands for “sheets”.)

(2) 12 × 6 edges eij. For each of the twelve roots ri, there are 6 edges. For example, for
r = rmax, the edges are (a1, b1), . . . , (a6, b6). The first edge is directed from a1 to b1, etc.

The graph Γ′ is obtained from Γ by contracting the tree in each sheet to a point, and removing
the middle vertex of degree 2 for each of the 12× 6 paths corresponding to the double-sixes. The
process is illustrated in the right half of Figure 1.

By Euler’s formula, the genus of Γ is 12 × 6 − 27 + 1 = 46. Thus, the curve C has arithmetic
genus 46.

4.6. Next we define a symmetric correspondence D̃ ⊂ C × C of degree 10, as follows. To each
point Q ∈ C over the étale part in the sheet labeled `i, associate 10 points in the same fiber of π
that are labeled `ij by the lines that intersect `i.

This defines the curve D̃0 ⊂ C0 × C0, where C0 = C \ π−1{p1, . . . , p24}. The correspondence

D̃ ⊂ C ×C is the closure of D̃0. Let pi be a ramification point with monodromy wi. Without loss
of generality, we may assume w = wmax. The points in the fiber π−1(pi) are labeled a1b1, . . . , a6b6

and cij for i 6= j. Then the correspondence is described by:

a1b1 7→
6∑
i=2

(aibi + c1i), c12 7→ a1b1 + a2b2 +
∑
i,j 6=1,2

cij, etc.
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Lemma 4.7. There exists an analytic neighborhood U ⊂M0,24 of the point [E, p1, . . . , p24] and a

family of covers πt : Ct → Et together with correspondences D̃t ⊂ Ct × Ct over U , which extends

π : C → E and D̃.

Proof. Since the map π is étale over each node of E, the families Ct and D̃t extend naturally.
The monodromy data determine the Ct’s as topological spaces. Then the finite map Ct → Et
determines a unique structure of an algebraic curve on Ct. �

Lemma 4.8. The correspondence D̃ ⊂ C × C induces an endomorphism of the homology group

D : H1(Γ,Z) → H1(Γ,Z) satisfying the relation (D − 1)(D + 5) = 0. The (−5)-eigenspace H
(−5)
1

can be naturally identified with Ker(φ), where

φ :
12⊕
i=1

ZRi → E6, Ri 7→ ri.

Here, Ri is a basis vector for the (−5)-eigenspace for the action of D on the rank 6 lattice generated

by the edges of Γ′ above the root ri. Since the vectors ri generate E6, one has rkH
(−5)
1 = 6.

Proof. We will work with the graph Γ′ defined in 4.5, since the homology groups of Γ and Γ′ are
canonically identified. The group C0(Γ′,Z) of vertices is

⊕27
i=1 Zvi. The endomorphism D0 on it

is defined in the same way as the correspondence on the 27 lines. The induced endomorphism D1

on C1(Γ′,Z) is the following. Pick one of the roots ri. Without loss of generality, let us assume
r = αmax. Then

D1(a1, b1) = −(a2, b2)− . . .− (a6, b6).

By Remark 2.6, D commutes with ∂, so defines an endomorphism on H1(Γ′,Z).
The endomorphism D1 on C1(Γ′,Z) splits into 12 blocks each given by the (6 × 6)-matrix N

such that Nii = 0 and Nij = −1 for i 6= j. It is easy to see that (N − 1)(N + 5) = 0 and that the
(−5)-eigenspace of N is 1-dimensional and is generated by the vector (a1, b1) + . . .+ (a6, b6).

This gives an identification C1(Γ′,Z)(−5) =
⊕12

i=1 ZRi. The homomorphism ∂ : C1 → C0 is

defined by Ri 7→
∑27

s=1(ri, e
s)vs, where es are the 27 exceptional vectors. Since the bilinear form

on E6 is nondegenerate and es span E∨6 , one has

∂
( 12∑
i=1

niRi

)
= 0 ⇐⇒

(
φ
( 12∑
i=1

niRi

)
, es

)
= 0 for s = 1, . . . , 27 ⇐⇒ φ

( 12∑
i=1

niRi

)
= 0.

Therefore, H
(−5)
1 = C

(−5)
1 ∩Ker(∂) = Ker(φ). �

It is an elementary linear algebra exercise to pick an appropriate basis in Ker(φ), which becomes
especially easy if r1, . . . , r6 form a basis in E6.

Theorem 4.9. The limit of PTK varieties P (Ct, Dt) as a group is the torus (C∗)6 with the

character group H
(−5)
1 . For each of the 21 internal edges ei of the tree T , the monodromy around the

divisor {zi = 0} in the neighborhood U ⊂M0,24 is given by the quadratic form Mi =
∑27

s=1((esi )
∗)2

on H
(−5)
1 .

Proof. The first statement is immediate: the limit of the Jacobians as a group is a torus with the
character group H1(Γ,Z), and the PTK varieties are obtained by taking the (−5)-eigenspace.

Every internal edge ei of T corresponds to a node of the curve E. Over it, there are 27 nodes of
the curve C. The map is étale, so the local coordinates zsi for the smoothings of these nodes can be
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identified with the local coordinate zi. By Section 3, the matrix for the monodromy around zsi = 0
is ((esi )

∗)2. The monodromy matrix for PTK varieties is obtained by adding these 27 matrices
together and restricting to the (−5)-eigenspace. �

To compute the linear forms (esi )
∗ onH1(Γ,Z), we unwind the identificationH1(Γ,Z) = H1(Γ′,Z).

Lemma 4.10. Let p :
⊕12

i=1 ZRi →
⊕21

j=1 Zej be the map which associates to Ri the oriented path
in the tree T of Figure 1 from the central point O to an end labeled ri. Via the identification
H1(Γ,Z)(−5) = Ker(φ) ⊂⊕12

k=1 ZRk, the linear functions (esi )
∗ are defined by the formula

(esi )
∗(Rk) = 〈rk, `s〉 · 〈p(Rk), e

∗
i 〉,

where the first pairing is E6 × E∗6 → Z, and for the second one 〈ej, e∗i 〉 = δij.

Proof. Let (vs1 , vs2) be an edge in Γ′. To it, we associate the path in the graph Γ going from the
center of level s1 to the center of level s2:

path(Os1 , r
s1
1 ) + path(vs1 , vs2)− path(Os2 , r

s2
1 ).

This rule gives an identification H1(Γ′,Z) = H1(Γ,Z).
For each of the 12 roots rk, we have 6 edges in the graph Γ′ going from the vertices s with
〈rk, `s〉 = 1 to the vertices s with 〈rk, `s〉 = −1. The contribution of Rk to the adjusted cycle
therefore is

27∑
s=1

〈rk, `s〉 · path(Os, rk) =
27∑
s=1

〈rk, `s〉 · p(Rk)
∣∣
ei=esi

The value of the linear function esi on it is therefore given by the formula in the statement. �

To complete the computation, we have to do the following:

(1) Choose a basis of the 6-dimensional space H1(Γ,Z)(−5) = Ker(φ) ⊂⊕12
k=1 ZRk.

(2) Compute the 21× 27 linear functions (esi )
∗ on this 6-dimensional space.

(3) Compute the 21×27 quadratic functions ((esi )
∗)2, each of which is a symmetric 6×6-matrix.

(4) And finally compute the 21 monodromy matrices Mi =
∑27

s=1((esi )
∗)2 of Theorem 4.9.

Theorem 4.11. There exist collections of E6 roots r1, . . . , r12 generating the lattice E6 for which
the 21 symmetric (6× 6)-matrices Mi of Theorem 4.9 are linearly independent.

Proof. A concrete example is r1 = α135, r2 = α12, r3 = α23, r4 = α34, r5 = α45, r6 = α56, r7 = α456,
r8 = α26, r9 = α123, r10 = α125, r11 = α256, r12 = α15. An explicit computation using the the
formula in Lemma 4.10, aided by a computer algebra system, shows that

(1) The monodromy matrices Mi are all divisible by 6. This corresponds to the fact that the
restriction of the principal polarization from the Jacobian to the PTK variety is 6 times a
principal polarization.

(2) For the normalized forms M ′
i = Mi/6, the determinant of the corresponding (21 × 21)-

matrix is 212 6= 0.

A Mathematica notebook with an explicit computation is available at [Web15]. �

Corollary 4.12. Theorem 0.1 holds.

Proof. By the same argument as in the proof of Lemma 3.4, the image of the complex-analytic
map U → A6 has full dimension 21. Thus, the map PT : Hur→ A6 is dominant. �
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Remark 4.13. Computer experimentation shows that for a very small portion of random choices
of the roots r1, . . . , r12, the matrices Mi are linearly independent. In most of these cases the
determinant is 212 but in some cases it is 213.

A necessary condition is for the roots r1, r2 to be non-orthogonal, and similarly for the pairs
r3, r4, etc. Experimentation also shows that there is nothing special about the graph in Figure 1.
Any other trivalent graph with 12 vertices of degree one works no worse and no better.

5. Admissible covers and semiabelian Prym-Tyurin-Kanev varieties

In this section, we introduce the space H of admissible E6-covers and define semiabelian Prym-
Tyurin-Kanev varieties of E6-admissible pairs. Then we study extensions of the Prym-Tyurin map
to the Satake compactification Asat

6 and the perfect cone toroidal compactification A6 := Aperf
6 .

5.1. The Hurwitz space.

5.1. We denote by H the Hurwitz space of E6-covers π : C → P1 together with a labeling
(p1, . . . , p24) of its branch points. Let H be the compactification of H by admissible W (E6)-covers.
By [ACV03], the stack H is isomorphic to the stack of balanced twisted stable maps into the
classifying stack BW (E6) of W (E6), that is,

H :=M0,24

(
BW (E6)

)
.

By a slight abuse of notation, we shall use the same symbol H both for the stack and for the
associated coarse moduli space. For details concerning the local structure of spaces of admissible
coverings, we refer to [ACV03]. Note that H is a smooth stack isomorphic to the normalization of
the Harris-Mumford moduli space HME6 defined (in the case of covers with Sn-monodromy) in
[HM82]. The boundary H \M0,24

(
BW (E6)

)
is a divisor with normal crossings. Points of HME6

are E6-admissible coverings [π : C → R, p1, . . . , p24], where C and R are nodal curves of genus 46
and 0 respectively, and p1, . . . , p24 ∈ Rreg are the branch points of π. The local monodromy of
π around pi ∈ P1 is given by a reflection wi ∈ W (E6), for i = 1, . . . , 24. Let b : H → M0,24 be
the branch morphism and ϕ : H →M46 be the source morphism. Obviously, S24 acts on H and
the projection q : H → Hur is a principal S24-bundle. Passing to the S24-quotient and denoting

M̃0,n :=M0,n/Sn, we consider the induced branch and source maps

br : Hur→ M̃0,24 and ϕ : Hur→M46,

respectively. For 2 ≤ i ≤ 12, let Bi :=
∑
|T |=i δ0:T ∈ Pic(M0,24) be the boundary class, where

the sum runs over all subsets T ⊂ {1, . . . , 24} of cardinality i. Recall that δ0:T is the class of the
closure of the locus of pointed curves consisting of two rational components, such that the marked

points lying on one component are precisely those labeled by T . Let B̃i be the reduced boundary

divisor on M̃0,24 which pulls-back to Bi under the quotient map M0,24 → M̃0,24.

For each E6-cover [π : C → P1] ∈ Hur, there is an induced Kanev endomorphism at the level of
Jacobians D : JC → JC and at the level of differentials D : H0(C, ωC) → H0(C, ωC), which we
denote by the same symbol. This induces a splitting

H0(C, ωC) = H0(C, ωC)(+1) ⊕H0(C, ωC)(−5)

into (+1) and (−5)-eigenspaces respectively. From (1.2), it follows that

dim H0(C, ωC)(−5) = dim PT (C,D) = 5,
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hence dim H0(C, ωC)(+1) = 40. We have a decomposition of the rank 46 Hodge bundle E := ϕ∗(E)
pulled-back from M46 into eigenbundles

E = E(+1) ⊕ E(−5),

where, as we pointed out, rk(E(+1)) = 40 and rk(E(−5)) = 6. We set λ(+1) := c1(E(+1)) and
λ(−5) := c1(E(−5)), therefore λ := ϕ∗(λ) = λ(+1) + λ(−5). We summarize the discussion in the
following diagram:

(5.1) H q //

b
��

Hur

br
��

ϕ //M46

M0,24
// M̃0,24.

5.2. Semiabelian Prym-Tyurin-Kanev varieties.

Lemma 5.2. Let [π : C → R, p1, . . . , p24] ∈ H be an E6-admissible cover. Then it comes with a

correspondence D̃ ⊂ C × C inducing an endomorphism D : JC → JC of the semiabelian group
variety JC = Pic0(C), which satisfies the same identity (D−1)(D+5) = 0 as for covers of smooth
curves. The group variety PT (C,D) := Im(D − 1) is a semiabelian group subvariety of JC.

Proof. Consider any one-parameter family πs : Cs → Rs of E6-admissible covers over a smooth
base (S, 0) such that πs is smooth for s 6= 0 and π0 = π. It gives an identification of the smooth
fibers of π with the nearby fibers of πs up to the monodromy W (E6). Thus, we have a symmetric

degree 10 correspondence D̃0 on the smooth locus of π, and it clearly does not depend on a chosen

one-parameter family. We take D̃ ⊂ C × C to be the closure of D̃0.
By the above identification, this correspondence satisfies the identity

(D′ − 1)(D′ + 5) = 5 · Trace(π) .

The target curve R is a tree of P1s, so Pic0(R) = 0. Any element of Pic0(C) can be represented

by a divisor on C of multidegree (0, . . . , 0) supported on the smooth locus of C. Thus, D̃ in-
duces a correspondence D : Pic0C → Pic0(C) satisfying (D − 1)(D + 5) = 0. The image of a
homomorphism (D − 1) : JC → JC is a semiabelian variety, which finishes the proof. �

Definition 5.3. Any semiabelian variety G has a unique extension 1 → T → G → A → 0. We
call tor(G) = T and ab(G) = A the toric and abelian parts of G respectively, and we call their
dimensions the toric and abelian ranks of G. In particular, we shall talk about the toric rank kPT
of a Prym-Tyurin-Kanev (PTK) variety PT .

Lemma 5.4. Let 1→ T → G→ A→ 0 be a semiabelian variety with an endomorphism satisfying
(D − 1)(D + 5) = 0. Then:

(1) P := Im(D − 1) coincides with Ker(D + 5)0, the connected component of identity.
(2) D induces homomorphisms DT of the toric part T and DA of the abelian part A.
(3) The toric part of P coincides with PT := (DT −1)T , and the abelian part of P is isogenous

to PA := (DA − 1)A.

Proof. (1) One has the inclusions Im(D − 1) ⊂ Ker(D + 5)0, Im(D + 5) ⊂ Ker(D − 1)0, and

Ker(D − 1) ∩Ker(D + 5) ⊂ G[6],
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which is a finite group. Since G is also 6-divisible, Im(D − 1) are Im(D + 5) span G, and so they
are semiabelian subvarieties of complementary dimensions. The quotient Ker(D + 5)/ Im(D − 1)
is the kernel of a surjective homomorphism (D + 5): G/ Im(D − 1) → Im(D + 5) of varieties of
the same dimension, so it is finite. Thus, Im(D − 1) = Ker(D + 5)0.

(2) The homomorphism from the affine variety T to the projective variety A is constant, so
D(T ) ⊂ T and we get DT = D|T , which in turn induces an endomorphism DA of A = G/T .

(3) Clearly, Im(DT − 1) ⊂ Im(D − 1) and Im(D − 1) � Im(DA − 1). The kernel of the
homomorphism Im(D − 1)→ Im(DA − 1) ⊂ A is T ∩ Im(D − 1). One has

Im(DT − 1) ⊂ T ∩ Im(D − 1) ⊂ Ker(DT + 5).

By (1) applied to T the difference between the last and the first groups is finite. Therefore, the
difference between the middle and the first groups is finite. In other words, the homomophism
Ker(P/PT → PA) has finite kernel. Thus, P/PT is an abelian variety that is the abelian part of
P , it is isogenous to PA, and PT is the toric part of P . �

The structure of an E6-admissible map π : C → R makes the computation of PT (C,D) espe-
cially easy. The target curve R is a tree {Ri ' P1}ni=1 of smooth rational curves. Then we have
induced maps πi : Ci → Ri and correspondences Di for Ci satisfying the same quadratic identity.
The curves Ci are smooth; however, they may be disconnected.

Lemma 5.5. One has the following:

(1) The abelian part of PT (C,D) is isogenous to
∏n

i=1 P (Ci, Di).

(2) The correspondence D̃ induces correspondences DC0, DC1 and DH1 on the cycle groups
C0(Γ,Z), C1(Z) and on the homology group H1(Γ,Z) = Ker

{
C1(Γ,Z)→ C0(Γ,Z)

}
of the

dual graph Γ of C. The toric part of the semiabelian variety PT (C,D) has the character
group Im(DH1 − 1).

Proof. (1) follows from Lemma 5.4. The definition and properties of the correspondences on
C0(Γ,Z), C1(Γ,Z) and H1(Γ,Z) are immediate. For a homomorphism φ : T1 → T2 of tori with
dual homomorphism φ∗ : X2 → X1 of character lattices, Imφ is a torus with character lattice
Imφ∗. We apply this to the toric part of JC whose character lattice is H1(Γ,Z) and use Lemma
5.4. �

5.3. Extensions of the Prym-Tyurin map.

5.6. There are several natural targets to consider for the extended Prym-Tyurin map. The easiest
one is the Satake-Baily-Borel compactification Asat

g = Ag t Ag−1 t · · · t A0 (g = 6 in our case).

Other natural targets are the toroidal compactifications Ag = Aperf
g and Avor

g for the perfect cone,

respectively 2nd Voronoi fans. The space Aperf
g has the advantage of having only one boundary

divisor. The space Avor
g is modular: by [Ale02] it is the normalization of the main component of

the moduli space of principally polarized stable semiabelic varieties.

All toroidal compactifications of Ag contain the same open subset Ãg introduced by Mumford
[Mum83], the moduli space of principally polarized abelian varieties of dimension g together with
their degenerations of toric rank 1, This is a partial compactification of Ag isomorphic to the

blow-up of the open subset ASat
g,tor.rk≤1 = Ag t Ag−1 in Asat

g . Moreover, Ãg = Ag t D̃g, where D̃g

is the universal Kummer variety over Ag−1. The closure of D̃g in Aperf
g is the unique boundary

divisor Dg.
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On the other hand, by [Mum83], any semiabelian variety G with a principally polarized abelian
part of dimension g − 1 has a canonical compactification X, a rank-1 degeneration of ppav. In
the language of [Ale02], in this case there exists a unique principally polarized stable semiabelic
pair (Gy X ⊃ Θ). So the moduli of toric rank ≤ 1 semiabelian varieties and the moduli of toric
rank ≤ 1 stable semiabelic pairs are the same.

Lemma 5.7. Let C → R → S be a family of admissible covers parameterized by H over a reduced
scheme S such that the restrictions of C → S, R → S are smooth over an open dense subset. Then
there is a semiabelian group scheme PT → S whose fiber over s ∈ S is PT (Cs, Ds) as defined
above.

Proof. By taking the closure of the correspondence over U , we obtain a correspondence on C
whose fibers were described in Lemma 5.2. Thus, we have a semiabelian group scheme Pic0

C/S
together with an endomorphism D over S giving an endomorphism as in Lemma 5.2 fiberwise.
Then PT := Im(D − id) satisfies the conditions of the statement. �

Lemma 5.8. The map PT : Hur → A6 extends to a regular map PT sat : Hur → Asat
6 . A point

[C → R] maps to the abelian part of PT (C,D).

Proof. As discussed in the previous section, Hur is a smooth stack and the boundary Hur \Hur is
a divisor with normal crossings.

The extension exists by Borel’s extension theorem [Bor72]. To find the image of [C → R] it
is sufficient to consider a one-parameter family of covers parameterized by (S, 0) with covers of
smooth curves for s 6= 0. It is known that for any family of dimension g semiabelian varieties
G→ S whose restriction to S \0 is a family of principally polarized abelian varieties, the image of
0 ∈ S of the extended map to ASat

g is the abelian part of G0. We apply this to the family PT → S
of the previous lemma. �

Theorem 5.9. The rational map PT : Hur 99K Aperf
6 has an indeterminacy locus of codimension

at least 2. On the open subset Hurtor.rk≤1 ⊂ Hur where PTK varieties have toric rank ≤ 1, the

map is regular and proper, and it factors through Ã6.

Proof. The indeterminacy locus has codimension ≥ 2 simply because Hur (viewed as a vari-

ety) is normal and Aperf
6 is proper. By the discussion in Paragraph 5.6, we have a regular

map Hurtor.rk≤1 → Avor
6 and Lemma 5.8 implies that the image is contained in Ã6. Thus, we

have a morphism PT : Hurtor.rk≤1 → Ã6 ⊂ Aperf
6 . Since both maps g : Ã6 → ASat

6,tor.rk≤1 and

g ◦ PT : Hurtor.rk≤1 → ASat
6,tor.rk≤1 are proper, it follows that PT is proper. �

6. Positivity properties of the Hurwitz space of E6-covers

In this section we study in detail the divisor theory on the Hurwitz space H. In particular, we
express explicitly the Hodge class λ in terms of boundary classes and we prove that the canonical
class of H is big. We recall that the pull-back of the Hodge class under the morphism

ϕ : Hur→M46,

is the sum

λ := ϕ∗(λ) = λ(+1) + λ(−5) := c1(E(+1)) + c1(E(−5))

of the first Chern classes of the Hodge eigenbundles for the +1 and the −5 eigenvalues, see
Paragraph 5.1.
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Lemma 6.1. Both Hodge eigenclasses λ(+1) and λ(−5) ∈ CH1(Hur) are nef.

Proof. Kollár [Kol90] showed that the Hodge bundle E is semipositive, therefore the eigenbundles
E(+1) and E(−5) as quotients of E are semipositive as well. Therefore det(E(+1)) and det(E(−5)) are
nef line bundles. �

6.2. The conclusion of Theorem 0.1 can be restated in terms of the positivity of λ(−5). The fact
that the map PT : Hur → A6 is dominant implies that the class λ(−5) ∈ CH1(Hur) is big. One
can formulate a necessary and sufficient condition for A6 to be of general type in similar terms.

Corollary 6.3. Let Di be the irreducible divisors supported on Hur \ Hurtor.rk≤1. Then to prove
that A6 is of general type, it suffices to show that there exist some integers ai such that the divisor
PT ∗(KA6

) +
∑
aiDi on Hur is big.

Proof. If this divisor is big on Hur, then its corresponding linear system has maximal Iitaka
dimension. Then the linear system |PT∗PT ∗(KA6

)| has maximal Iitaka dimension as well. Since

all boundary divisors Di are contracted under the Prym-Tyurin map, we write PT∗

(
PT ∗(KA6

)
)

=

PT∗

(
PT ∗(KA6

) +
∑

i aiDi

)
= deg(PT )KA6

. So KA6
is big. �

We now turn to describing the geometry of the Hurwitz space H. We make the following:

Definition 6.4. For a partition µ = (µ1, . . . , µ`) ` n, we define lcm(µ) := lcm(µ1, . . . , µ`) and
1
µ

:= 1
µ1

+ · · · + 1
µ`

. For i = 2, . . . , 12, we denote by Pi the set of partitions µ ` 27 associated to

the cycle decompositions of the conjugacy classes of products of i reflections in W (E6) ⊂ S27.

The possible partitions of 27 corresponding to products of reflections can be read off Table 1.
For instance, we find that P2 =

{
(210, 17), (36, 19)

}
.

6.5. We now describe a way of indexing the boundary divisors of Hur. We fix the following
combinatorial data:

(1) A partition I t J = {1, . . . , 24}, such that |I| ≥ 2, |J | ≥ 2.
(2) Reflections {wi}i∈I and {wj}j∈J in W (E6), such that

∏
i∈I wi = u,

∏
j∈J wj = u−1, for some

u ∈ W (E6). The sequence w1, . . . , w24 is defined up to conjugation by the same element
g ∈ W (E6).

To this data, we associate the locus of E6-admissible covers with labeled branch points

t :=
[
π : C → R, p1, . . . , p24

]
∈ HME6 ,

where [R = R1 ∪q R2, p1, . . . , p24] ∈ B|I| ⊂M0,24 is a pointed union of two smooth rational curves
meeting at the point q. The marked points lying on R1 are precisely those labeled by the set
I. Over q, the map π is ramified according to u, that is, the points in π−1(q) correspond to
cycles in the permutation u considered as an element of S27. Let µ := (µ1, . . . , µ`) ` 27 be the
partition induced by u ∈ S27 and denote by Ei:µ the boundary divisor on H classifying E6-twisted
stable maps with underlying admissible cover as above, with π−1(q) having partition type µ, and
precisely i of the points p1, . . . , p24 lying on R1. Only partitions from the set Pi introduced in
Definition 6.4 are considered.

In Table 1 we give the list of partitions of 27 appearing as products of reflections in W (E6)
(using the GAP notation for the conjugacy classes). For future use, we also record the invariants
1
µ
, for each partition µ. If one partition from this list appears in Pi, it will appear in Pi+2j, for all
i+ 2j ≤ 12.
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Minimal number of reflections Partition µ of 27 Conjugacy class 1
µ

0 127 1a 27
1 (26, 115) 2c 18
2 (210, 17) 2b 12
2 (36, 19) 3b 11
3 (212, 13) 2d 9
3 (45, 21, 15) 4d 27

4
3 (61, 34, 23, 13) 6e 6
4 (212, 13) 2a 9
4 (39) 3c 3
4 (46, 13) 4a 9

2
4 (45, 23, 1) 4b 15

4
4 (55, 12) 5a 3
4 (63, 23, 13) 6b 5
4 (62, 32, 24, 1) 6d 4
5 (45, 23, 1) 4c 15

4
5 (62, 35) 6f 2
5 (64, 31) 6g 1
5 (83, 21, 1) 8a 15

8
5 (101, 53, 21) 10a 6

5
5 (121, 61, 42, 1) 12b 7

4
6 (39) 3a 3
6 (64, 31) 6a 1
6 (63, 23, 13) 6c 5
6 (93) 9a 1

3
6 (122, 31) 12a 1

2

Table 1. Products of reflections in W (E6)

6.6. We recall the local structure of the morphism b : H → M0,24, over the point t, see also
[HM82] p.62. The (non-normalized) space HME6 is locally described by its local ring

(6.1) Ôt,HME6
= C[[t1, . . . , t21, s1, . . . , s`]]/s

µ1
1 = · · · = sµ`` = t1,

where t1 is the local parameter onM0,24 corresponding to smoothing the node q ∈ R. By passing
to the normalization ν : H → HME6 , we deduce that over each point t′ ∈ ν−1(t) the map
b : H →M0,24 is ramified with index lcm(µ). The fibre ν−1(t) consists of µ1 · · ·µ`/lcm(µ) points.

The local ring at t′ is then given by Ôt′,H = C[[τ, t2, . . . , tb−3]], and the normalization map ν is
given in local coordinates by

t1 = τ lcm(µ), s1 = ζ
lcm(µ)
µ1

µ1 , . . . , s` = ζ
lcm(µ)
µ`

µ` ,

where ζµi is a µi-th root of unity for i = 1, . . . , `. This description implies that for each i =
2, . . . , 12, we have a decomposition

b∗(Bi) =
∑
µ∈Pi

lcm(µ)Ei:µ.

In view of applications to the Kodaira dimension of H, we discuss in detail the pull-back b∗(B2).
We pick a point t = [π : C = C1 ∪ C2 → R = R1 ∪q R2, p1, . . . , p24] ∈ b∗(B2) as in in 6.5, where
Ci = π−1(Ri). Without loss of generality, we assume that I = {1, . . . , 22}, thus p1, . . . , p22 ∈ R1

and p23, p24 ∈ R2. The group G = 〈w1, . . . , w22〉 generated by the reflections in the remaining
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roots r1, . . . , r22 ∈ E6 is the Weyl group for a lattice L = LG ⊂ E6. Since
∏24

i=1 wi = 1, it follows
that w23 · w24 ∈ G, hence rk(L) ≥ rk(E6)− 1 = 5.

6.7. Assume that the reflections w23 and w24 corresponding to the coalescing points p23 and p24

are equal, hence w23 = w24. In this case, the corresponding partition is µ = (127) and we set
E0 := E2:127 . We denote by EL the boundary divisor of admissible covers in E2:(127) corresponding
to the lattice L. The map b is unramified along each divisor EL and we have

E0 =
∑
L⊂E6

EL ⊂ H.

The general cover t corresponding to each divisor EL carries no automorphism preserving all
branch points p1, . . . , p24, that is, Aut(t) = {Id}.

Suppose now that the reflections w23 and w24 are distinct. Following [Dol12, Section 9.1], we
distinguish two possibilities depending on the relative position of the two double-sixes, described
in terms of a general admissible cover t =

[
π : C = C1 ∪ C2 → R1 ∪q R2, p1, . . . , p24

]
.

6.8. The reflections w23 and w24 form an azygetic pair, that is, the corresponding roots r23 and
r24 satisfy r23 · r24 6= 0. In this case, 〈w23, w24〉 = W (A2) and r23 + r24 or r23 − r24 is again a root
that is azygetic to both r23 and r24. The double-sixes associated to w23 and w24 share 6 points
and the permutation w23 ·w24 decomposes into 6 disjoint three cycles, therefore µ = (36, 19) ` 27.
Accordingly, C2 = π−1(R2) decomposes into six rational components mapping 3 : 1, respectively
9 components mapping isomorphically onto R2. If

Eazy := E2:(36,19) ⊂ H
is the boundary divisor parametrizing such points, then b is triply ramified along Eazy. The general
point of Eazy has no non-trivial automorphisms preserving all the branch points.

6.9. The reflections w23 and w24 form a syzygetic pair, that is, r23 · r24 = 0. We have 〈w23, w24〉 =
W (A2

1). The two associated double-sixes share 4 points and w23 · w24 ∈ S27 decomposes into a
product of 10 disjoint transpositions, therefore µ = (210, 17). Eight of these transpositions are
parts of the double-sixes corresponding to w23 and w24 that remain disjoint respectively. Note
that C2 consists of 8 rational components mapping 2 : 1 onto R2, as well as a smooth rational
component, say Z, mapping 4 : 1 onto R2. The fibers π−1

Z (q), π−1
Z (p23) and π−1

Z (p24) each consist
of two ramification points. We denote by

Esyz := E2:(210,17) ⊂ H
the boundary divisor of admissible syzygetic covers. For a general cover t ∈ Esyz, note that
Aut(t) = Z2, see Remark 6.12.

6.10. To summarize the discussion above, we have the following relation:

(6.2) b∗(B2) = E0 + 3Eazy + 2Esyz.

In opposition to E0, we show in Theorem 7.15 that the boundary divisors Eazy or Esyz have fewer
components. Precisely, for a general element t ∈ Eazy or t ∈ Eazy, we have G = W (L) = W (E6),
hence the subcurve C1 = π−1(R1) is irreducible.

6.11. The Hurwitz formula applied to the ramified cover b : H → M0,24, coupled with the

expression KM0,24
≡∑12

i=2

( i(24−i)
23
− 2
)
Bi to be found, e.g., in [KM13], yields

(6.3) KH = b∗KM0,24
+ Ram(b) = − 2

23
[E0] +

19

23
[Esyz] +

40

23
[Eazy] +N,
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where N is the effective combination of the boundary divisors of H disjoint from E0, Esyz and

Eazy, with the coefficient of [Ei:µ] for i = 3, . . . , 12 being equal to lcm(µ)
( i(24−i)

23
− 1
)
− 1 > 0.

The ramification divisor of the projection q : H → Hur is contained in the pull-back b∗(B2)
(recall the commutative diagram 5.1). Note that B2 is the ramification divisor of the quotient

map M0,24 → M̃0,24. The general point of each of the components of E0 and Eazy admits an
involution compatible with the involution of the rational curve R2 preserving q and interchanging
the branch points p23 and p24 respectively. No such automorphism exists for a general point of
the divisor Esyz (see Remark 6.12), thus

Ram(q) = E0 + Eazy.

Remark 6.12. We illustrate the above statement in the case of the divisor Esyz. We choose a
general point t :=

[
π : C → R = R1 ∪q R2, p1, . . . , p24

]
∈ Esyz, and denote by πZ : Z → R2, the

degree 4 cover having as source a smooth rational curve Z and such that π∗Z(q) = 2u + 2v, and
π∗Z(pi) = 2xi + 2yi, for i = 23, 24. Then Aut(t) = Z2. Indeed, there exists a unique automorphism
σ ∈ Aut(Z) with σ(u) = u, σ(v) = v, σ(x23) = y23 and σ(x24) = y24 and such that πZ ◦ σ = πZ .
Note that σ induces the unique non-trivial automorphism of t fixing all the branch points. In
contrast, the general point of Eazy corresponds to an admissible cover which has no automorphisms
fixing all the branch points.

Definition 6.13. On the space Hur of unlabeled E6-covers, we introduce the reduced boundary
divisors D0, Dsyz, Dazy, as well as the boundary divisors

{
Di:µ : 3 ≤ i ≤ 12, µ ∈ Pi

}
which pull-back

under the map q : H → Hur to the corresponding divisors indexed by E’s, that is, q∗(D0) = 2E0,
q∗(Dazy) = 2Eazy, q∗(Dsyz) = Esyz and q∗(Di:µ) = Ei:µ, for 3 ≤ i ≤ 12 and µ ∈ Pi. More generally,
for each sublattice L ⊂ E6, we denote by DL ⊂ Hur the reduced divisor which pulls back to EL
under the map q.

If D is an irreducible divisor on Hur, we denote as usual by [D] := [D]Q ∈ CH1(Hur)Q its Q-
class, that is, the quotient of its usual class by the order of the automorphism group of a general
point from D.

Theorem 6.14. The canonical class of the Hurwitz space Hur is given by the formula:

KHur = −25

46
[D0] +

19

23
[Dsyz] +

17

46
[Dazy] +

12∑
i=3

∑
µ∈Pi

(
lcm(µ)

(i(24− i)
23

− 1
)
− 1
)

[Di:µ].

Proof. We apply the Riemann-Hurwitz formula to the map q : H → Hur and we find

q∗(KHur) = KH − [E0]− [Eazy] = −25

23
[E0] +

19

23
[Esyz] +

17

23
[Eazy] + · · · ∈ CH1(H).

�

6.1. The Hodge class on the space of admissible E6-covers.

6.15. We describe the Hodge class on the Hurwitz space H in terms of boundary divisors. Let
ψ1, . . . , ψ24 ∈ Pic(M0,24) be the cotangent tautological classes corresponding to the marked points.
The universal curve overM0,24 is the morphism π := π25 :M0,25 →M0,24, forgetting the marked
point labeled by 25. The following formulas are well-known, see e.g., [FG03]:
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Proposition 6.16. (1) c1(ωπ) = ψ25 −
∑24

i=1 δ0:i,25 ∈ CH1(M0,25).

(2)
24∑
i=1

ψi =
12∑
i=2

i(24− i)
23

[Bi] ∈ CH1(M0,24); (3) κ1 =
12∑
i=2

(i− 1)(23− i)
23

[Bi].

We now find a boundary expression for the Hodge class at the level of H.

Theorem 6.17. The Hodge class at the level of H is given by the following formula:

λ =
12∑
i=2

∑
µ∈Pi

1

12
lcm(µ)

(9i(24− i)
23

− 27 +
1

µ

)
[Ei:µ].

Note that a boundary formula for λ in the case of Sn-covers appeared first in [KKZ11] and was
confirmed later with algebraic methods in [vdGK12].

Proof. Over the Hurwitz space H we consider the universal E6-admissible cover f : C → P , where
P := H ×M0,24

M0,25 is the universal orbicurve of genus zero over H. Over a general point

t = [C → R, p1, . . . , p24] of a boundary divisor Ei:µ, where µ = (µ1, . . . , µ`) ∈ Pi corresponds to
the local description (6.1), even though P has a singularity of type Alcm(µ)−1, the space C has
singularities of type Alcm(µ)/µi−1 at the ` points corresponding to the inverse image of Rsing.

Let φ : P → H and q : P → M0,25 be the two projections and put v := φ ◦ f : C → H and

f := q ◦ f : C → M0,25. The ramification divisor of f decomposes as R1 + · · · + R24 = R ⊂ C,
where a general point of Ri is of the form [C → R, p1, . . . , p24, x], with x ∈ C one of the six
ramification points lying over the branch point pi. In particular f∗([Ri]) = 6[Bi], where Bi ⊂ P
is the corresponding branch divisor.

We apply the Riemann-Hurwitz formula for f and write: c1(ωv) = f ∗q∗c1(ωπ) + [R]. We are
going to push-forward via v the square of this identity and describe all the intervening terms in
the process. Over H we have the identity:

v∗c
2
1(ωv) = v∗

(
f
∗
c2

1(ωπ) + 2f
∗
c1(ωπ) · [R] + [R]2

)
.

We evaluate each term: v∗

(
f
∗
c1(ωπ) · [R]

)
=

24∑
i=1

φ∗

(
q∗c1 (ωπ) · 6[Bi]

)
= 6

24∑
i=1

φ∗q
∗
(
c1(ωπ) · [∆0:i,25]

)
= 6b∗

( 24∑
i=1

ψi

)
.

Furthermore, we write f ∗(Bi) = 2Ri + Ai, where the residual divisor Ai defined by the previous
equality maps 15 : 1 onto Bi. Note that Ai and Ri are disjoint, hence f ∗([Bi]) ·Ri = 2R2

i , therefore

v∗([Ri]
2) = 3φ∗([B

2
i ]) = 3φ∗(q

∗(δ2
0:i,25)

)
= −3b∗(ψi).

Using Proposition 6.16, we find that

v∗([R]2) = v∗

( 24∑
i=1

[Ri]
2
)
≡ −3

12∑
i=2

i(24− i)
23

b∗(Bi).

We use Proposition 6.16, and the relation π∗(δ
2
0:i,25) = −ψi, to write:

v∗f
∗
c2

1(ωπ) = φ∗

(
27q∗c2

1(ωπ)
)

= 27b∗π∗

(
ψ25 −

24∑
i=1

δ0:i,25

)2

=
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27b∗
(
κ1 −

24∑
i=1

ψi

)
≡ −27b∗

( 12∑
i=2

Bi

)
.

We find the following expression for the pull-back of the Mumford κ class to H:

(6.4) v∗c
2
1(ωv) ≡

12∑
i=2

(9i(24− i)
23

− 27
)
b∗(Bi) ≡

12∑
i=2

∑
µ∈Pi

lcm(µ)
(9i(24− i)

23
− 27

)
Ei:µ.

Using Mumford’s GRR calculation in the case of the universal genus 46 curve v : C → H, coupled
with the local analysis of the fibres of the map b, we have that

12ϕ∗(λ) ≡ v∗c
2
1(ωv) +

12∑
i=2

∑
µ∈Pi

lcm(µ1, . . . , µ`)
( 1

µ1

+ · · ·+ 1

µ`

)
Ei:µ.

Substituting in (6.4), we finish the proof. �

Remark 6.18. Using Definition 6.13, we spell out Theorem 6.17 at the level of Hur:

(6.5) λ =
33

46
[D0] +

7

46
[Dazy] +

17

46
[Dsyz] + · · · ∈ CH1(Hur).

Proposition 6.19. The morphism ϕ : H → M46 has ramification of order 12 along the divisor
E0. In particular, the class ϕ∗(δ0)− 12[E0]− 2[Esyz] ∈ CH1(H) is effective.

Proof. The morphism ϕ factors via Hur, that is, ϕ = ϕ◦q, where we recall that q : H → Hur is the
projection map and ϕ : Hur→M46. We have observed that q is ramified along E0. Furthermore,
since the general element of ϕ(E0) is an irreducible 6-nodal curve, the local intersection number(
ϕ(Γ) · δ0

)
ϕ(t)

, for any curve Γ ⊂ Hur passing through a point t ∈ q(E0), is at least equal to 6.

Finally, [Esyz] appears with multiplicity 2 because, as pointed out in Remark 6.12, each point of
Esyz has an automorphism of order 2. �

6.2. The positivity of the canonical class of H.

6.20. To establish the bigness of the class KH, we use Moriwaki’s class [Mor98]

mo := (8g + 4)λ− gδ0 −
b g
2
c∑

i=1

4i(g − i)δi ∈ CH1(Mg).

It is shown in [Mor98] that mo non-negatively intersects all complete curves inMg whose members
are stable genus g curves with at most one node. Furthermore, the rational map φn·mo :Mg 99K Pν
defined by a linear system |n·mo| with n� 0, induces a regular morphism onMg. In our situation
when g = 46, this implies that the pull-back ϕ∗(mo) is an effective Q-divisor class on H, which
we shall determine. In what follows, if D1 and D2 are divisors on a normal variety X, we write
D1 ≥ D2 if D1 −D2 is effective.

Proposition 6.21. The following divisor class on the Hurwitz space H is effective:

− 2

23
E0 +

523

2415
Esyz +

62

115
Eazy +

12∑
i=3

∑
µ∈Pi

93

1610
i(24− i)lcm(µ)Ei:µ
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Proof. We give a lower bound for the coefficient of Ei:µ in the expression ϕ∗(λ) of Theorem 6.17,
by observing that for a partition (µ1, . . . , µ`) ` 27, the inequality 1

µ1
+ · · ·+ 1

µ`
≤ 27 holds. Using

this estimate together with Theorem 6.17 ϕ∗(λ) = 33
23

[E0] + 17
46

[Esyz] + 7
23

[Eazy] + · · · , as well as
Proposition 6.19, we write

0 ≤ 1

210
ϕ∗(mo) ≤ 372

210
ϕ∗(λ)− 46 · 12

210
[E0]− 46 · 2

210
[Esyz] =

− 2

23
[E0] +

523

2415
[Esyz] +

62

115
[Eazy] +

12∑
i=3

∑
µ∈Pi

93

1610
i(24− i)lcm(µ)[Ei:µ].

The scaling has been chosen to match the negative E0 coefficient in the class KH of (6.3). �

As a step towards determining the Kodaira dimension of Hur we establish the following:

Theorem 6.22. The canonical class of H is big.

Proof. Recalling that b : H →M0,24, for each 0 < α < 1, using (6.3) we write the equality

KH = (1− α)b∗(κ1) + αb∗(κ1)−
12∑
i=2

∑
µ∈Pi

Ei:µ.

Since the class κ1 ∈ CH1(M0,24) is well-known to be ample, in order to establish that KH is big,
it suffices to show that for α sufficiently close to 1, the class αb∗(κ1) −∑i,µ∈Pi [Ei:µ] is effective.
After brief inspection, this turns out to be a consequence of Proposition 6.21. �

7. The Prym-Tyurin map along the boundary components of Hur

In this section we study the extended Prym-Tyurin map and refine the analysis of the boundary
divisors of Hur. In particular we identify the divisors that are not contracted by the extended
Prym-Tyurin map PT : Hur 99K A6.

7.1. Following 6.5, we denote by EI:L1,L2,µ the divisor of H of E6-admissible covers

t := [π : C := C1 ∪ C2 → R1 ∪q R2, p1, . . . , p24],

where I ∪ J = {1, . . . , 24}, R1 contains the branch points {pi}i∈I , with roots {ri}i∈I generating
the lattice L1 ⊂ E6 and the corresponding reflections generating the group G := W (L1) ⊂ W (E6),
whereas R2 contains the branch points {pj}j∈J , with roots {rj}j∈J generating the lattice L2 ⊂ E6

and reflections generating the group H := W (L2) ⊂ W (E6) respectively. We set u :=
∏

i∈I wi,
therefore u−1 =

∏
j∈J wj. As before, µ ` 27 is the partition corresponding to the cycle type of

u ∈ S27 which describes the fibre π−1(q). Let OG (respectively OH) denote the set of orbits of
G (respectively H) on the set 27 := {1, . . . , 27}. In particular, there is a bijection between OG

(respectively OH) and the set of irreducible components of C1 (respectively C2). Returning to
the notation in 6.5, for µ ∈ Pi we write Ei:µ =

∑
|I|=i,L1,L2

EI:L1,L2,µ, the sum being taken over
sublattices L1 and L2 of E6 as above.

Definition 7.2. Let u ∈ W (E6) and let A = A1t . . .tAa and B = B1t . . .tBb be two u-invariant
partitions of the set 27. We define the graph Γ(u,A,B) to be the following bipartite graph:

(1) The vertices are A1, . . . , Aa and B1, . . . , Bb respectively.
(2) The edges correspond to cycles Ck in the cyclic representation of u ∈ S27, including cycles

of length 1.
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(3) For each cycle Ck, there exist unique vertices Ai and Bj containing the set ck. Then the
edge Ck joins Ai and Bj.

When both partitions A and B are trivial, that is each consists of the single set 27, we set
Γu := Γ(u, 27, 27) and Γ1 := Γ(1, 27, 27) respectively.

Example 7.3. The graph Γ1 has 2 vertices and 27 edges. One has C1(Γ1,Z) = Z27, and
H1(Γ1,Z) ' Z26 consists of elements

∑27
s=1 nses with

∑27
s=1 ns = 0. There is a natural degree 10

homomorphismDC1 : C1(Γ1,Q)→ C1(Γ1,Q) with eigenvalues 10, 1,−5, which induces a homomor-
phism DH1 : H1(Γ1,Q)→ H1(Γ1,Q) with (+1)-eigenspace of dimension 20 and (−5)-eigenspace of
dimension 6 respectively.

In particular, for the dual graph Γ of C, the group H1(Γ,Z) comes with an endomorphism DH1

by Lemma 5.5.

Theorem 7.4. Let t ∈ EI,J :L1,L2 be a general point in a boundary divisor of H corresponding to
the above data. Then the toric rank of the PTK variety PT (C,D) equals the dimension of the

(−5)-eigenspace H1

(
Γ(u,OG, OH),Q

)(−5)
of the endomorphism DH1 on H1

(
Γ(u,OG, OH),Q

)
.

Proof. By Lemma 5.5, the toric rank of PT (C,D) equals

rank Im(DH1 − 1) = rank ker(DH1 + 5) = dim(H1 ⊗Q)(−5).

�

In case both curves C1 and C2 are irreducible, the above result simplifies considerably.

Corollary 7.5. Assume that |OG| = |OH | = 1, that is, both groups G and H act transitively on
the set 27. Then the toric rank of PT (C,D) equals the dimension of invariant subspace of u in
the 6-dimensional representation E6 ⊗Q of W (E6).

Corollary 7.5 agrees with the result of [LR08, p.236] concerning the abelian part of PT (C,D).

Lemma 7.6. For u ∈ W (E6), the following statements hold:

(1) H1(Γu,Q)(−5) =
(
H1(Γ1,Q)(−5)

)u
(that is, the u-invariant subspace), and

(2) H1(Γ(u,A,B),Q)(−5) ⊂ H1(Γu,Z)(−5).

Proof. Suppose we have the following cycle decomposition u = C1 · C2 · · · · Ck ∈ S27 and let
n := ord(u) and `(Ci) denote the length of Ci. We write C1(Γu,Z) =

⊕k
i=1 ZeCi . Then one

has an orthogonal projection C1(Γ1,Z) � C1(Γu,Z) given by e 7→ 1
n

∑n−1
i=0 u

i · e for an edge e,

which identifies C1(Γu,Z) with a sublattice in C1(Γ1,Q) via the injection eCi 7→ 1
`(Ci)

∑
j∈Ci ej.

This induces a surjection from H1(Γ1,Z) to H1(Γu,Z), which clearly commutes with D, that is,
D(C1(Γu,Z)) ⊂ C1(Γu,Z). It follows that H1(Γu,Z)(−5) is the projection of H1(Γ1,Z)(−5) to the
(−5)-eigenspace in C1(Γu,Q) and that H1(Γu,Q)(−5) =

(
H1(Γ1,Q)(−5)

)u
.

The graph Γ(u,A,B) is obtained from Γu by splitting the two vertices into a + b new ver-
tices. This can be obtained by inserting in place of the two vertices two trees with a and
b vertices – without changing H1 – and then removing the edges of these trees. Thus, one
has an inclusion H1(Γ(u,A,B),Z) ⊂ H1(Γu,Z), commuting with D, which gives an inclusion
H1(Γ(u,A,B),Z)(−5) ⊂ H1(Γu,Z)(−5). �

Lemma 7.7. The (−5)-eigenspace H1(Γ(u,A,B),Q)(−5) is a subspace of the u-invariant subspace
(E6 ⊗Q)u in the standard 6-dimensional W (E6)-representation.
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Proof. Indeed, H1(Γ1,Q)(−5) = E6 ⊗Q, therefore (H1(Γ1,Q)u)(−5) = (E6 ⊗Q)u. �

7.8. In order to illustrate Theorem 7.4 in concrete situations, we classify all root sublattices of
E6. Recall that with the notation of Section 2, the standard roots in the E6 Dynkin diagram are

r2 = α12, . . . , r6 = α56, and r1 = α123. In the extended Dynkin diagram Ẽ6 there is an additional
root r0 = −αmax, so that 3r4 + 2r1 + 2r3 + 2r5 + r2 + r6 + r0 = 0.

Lemma 7.9. The following is the complete list of root sublattices L ⊂ E6:

(1) If dim(L) = 6, then L is either E6, or isomorphic to A5A1, or A3
2.

(2) If dim(L) = 5, then L is isomorphic to A5, D5, A4A1, A3A
2
1, or A2

2A1.
(3) If dim(L) = 4, then L is isomorphic to A4, D4, A2

2, A3A1, A2A
2
1, or A4

1.
(4) If dim(L) = 3, then L is isomorphic to A3, A2A1, or A3

1.
(5) If dim(L) = 2, then L is isomorphic to A2, or A2

1.
(6) If dim(L) = 1, then L is isomorphic to A1.

Furthermore, all the above sublattices (and the associated subgroups) can be obtained by removing

vertices from the extended E6 diagram Ẽ6:

r2• r3• r4• r5• r6•

•r1

?r0 .

If the root lattices L,L′ corresponding to reflections subgroups G and G′ of W (E6) are isomorphic,
then they differ by an automorphism of the E6 lattice, and the corresponding subgroups G and G′

are conjugate in W (E6).

Proof. We first note that there is a natural bijection between root sublattices L of E6 and subgroups
G generated by reflections of W (E6). One has Aut(E6) = W (E6) ⊕ Z2, with Z2 acting on E6 by
multiplication by ±1. Any automorphism of E6 induces an automorphism of W (E6), and the
kernel of φ : Aut(E6)→ AutW (E6) is Z2. Finally, by [Fra01, Section 2.3]), all automorphisms of
W (E6) are inner, so that AutW (E6) = W (E6) and φ is surjective.

Thus, the proof reduces to showing that all root sublattices of E6 are of the above types, and
that if L,L′ are isomorphic as abstract root lattices, then they differ by an element of Aut(E6).
The statement that all such root sublattices correspond to proper subdiagrams of the extended

Dynkin diagram Ẽ6 is an a posteriori observation.
The standard method for finding all root sublattices of a given root lattice is described in

[BdS49, Dyn52]. A modern treatment can be found in [DL11, Theorem 1]. The method is to
repeatedly apply the following two procedures to Dynkin diagrams Γ, starting from Γ = E6: (1)
remove a node, and/or (2) replace one of the connected components Γs of Γ by an extended Dynkin

diagram Γ̃s and remove a node from it. Applying the above method repeatedly, we obtain all the
lattices listed above. The fact that isomorphic root sublattices differ by an automorphism of E6

is a case by case computation. This can also be found in [Osh06, Table 10.2]. �

7.10. Table 2 lists the orbits for one choice of roots (the other choices being similar) for each type
of lattice. The last column describes the degrees of the maps from the irreducible components of
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C1 to R1. We keep the Schläfli notation ai, bi, cij for the elements of the set 27, which is being
identified with the set of lines of a cubic surface. The smooth (possibly disconnected) curve C1

is a 27-sheeted cover of R1 = P1, with branch points {pi}i∈I with local monodromy given by the
reflection wi, and an additional branch point q, with local monodromy u−1, where u = Πi∈Iwi.

Sublattice Roots Orbits Degrees
E6 r1, . . . , r6 {ai, bi, cij} 27
A5A1 r0, r2, . . . , r6 {ai, bi}, {cij} 15, 12
A3

2 ri, i 6= 4 {ai, bi, cij | 1 ≤ i, j ≤ 3}, {ai, bi, cij | 4 ≤ i, j ≤ 6}, 93

{cij | 1 ≤ i ≤ 3, 4 ≤ j ≤ 6}
D5 r1, . . . , r5 {a6}, {ai, b6, cij | 1 ≤ i, j ≤ 5}, {bi, ci6 | 1 ≤ i ≤ 5} 1, 10, 16
A5 r2, . . . , r6 {ai}, {bi}, {cij} 62, 15
A4A1 r0, r2, . . . , r5 {ai, cij | 1 ≤ i, j ≤ 4}, {bi, c56 | 1 ≤ i ≤ 4} 2, 5, 102

{a5, a6}, {bj , cij | 1 ≤ i ≤ 4, 5 ≤ j ≤ 6}
A3A

2
1 r0, r2, r3, r4, r6 {a1, bi, cij , c56 | 2 ≤ i, j ≤ 4}, {b1}, {ai, cij | 2 ≤ i, j ≤ 4} 82, 6, 4, 1

{a5, a6, c15, c16}, {bj , cij | 2 ≤ i ≤ 4, 5 ≤ j ≤ 6}
A2

2A1 ri, i 6= 0, 4 {ai, cij | 1 ≤ i, j ≤ 3}, {bi, cij | 4 ≤ i, j ≤ 6}, {a4, a5, a6} 9, 62, 32

{b1, b2, b3}, {cij | 1 ≤ i ≤ 3, 4 ≤ j ≤ 6}
A4 r2, . . . , r5 {ai, cij | 1 ≤ i, j ≤ 4}, {bi, c56 | 1 ≤ i ≤ 4}, {a5}, {a6} 10, 53, 12

{b5, ci6 | 1 ≤ i ≤ 4}, {b6, ci5 | 1 ≤ i ≤ 4}
D4 r1, r3, r4, r5 {a1, cij , b6 | 2 ≤ i, j ≤ 5}, {ai, c1i | 2 ≤ i ≤ 5}, {a6} 83, 13

{b1}, {bi, ci6 | 2 ≤ i ≤ 5}, {c16}
A2

2 r2, r3, r5, r6 {a1, a2, a3}, {b1, b2, b3}, {a4, a5, a6}, {b4, b5, b6} 9, 36

{c12, c13, c23}, {c45, c46, c56}, {cij | 1 ≤ i ≤ 3, 4 ≤ j ≤ 6}
A3A1 r2, r3, r4, r6 {c56}, {a5, a6}, {b5, b6}, {a1, . . . , a4}, {b1, . . . , b4} 8, 6, 42, 22, 1

{cij | 1 ≤ i, j ≤ 4}, {cij | 1 ≤ i ≤ 4, 5 ≤ j ≤ 6}
A2A

2
1 r1, r2, r3, r5 {a6}, {b6, c45}, {b1, b2, b3}, {c16, c26, c36}, {b5, b6, c64, c65} 62, 4, 32, 22, 1

{a4, a5}, {ai, cij | 1 ≤ i, j ≤ 3}, {cij | 1 ≤ i ≤ 3, 4 ≤ j ≤ 5}
A4

1 r0, r2, r4, r6 {a6}, {b1}, {a1, b6, c23, c45}, {a2, a3, c12, c13}, {a4, a5, c14, c15} 46, 13

{b2, b3, c26, c36}, {b4, b5, c46, c56}, {c24, c34, c25, c35}, {c16}
A3 r2, r3, r4 {c12, c13, c14, c23, c24, c34}, {c15, c25, c35, c45}, {c16, c26, c36, c46} 6, 44, 15

{a1, a2, a3, a4}, {b1, b2, b3, b4}, {ai}, {bi}, 5 ≤ i ≤ 6, {c56}
A2A1 r1, r2, r3 {b1, b2, b3}, {c14, c24, c34}, {c15, c25, c35}, {a1, a2, a3, c12, c13, c23} 6, 34, 23, 13

{c16, c26, c36}, {bj , ckl}, {j, k, l} = {4, 5, 6}, {ai}, 4 ≤ i ≤ 6

A3
1 r2, r4, r5 {c13, c14, c23, c24}, {c15, c16, c25, c26}, {c35, c36, c45, c46} 43, 26, 13

{ai, ai+1}, {bi, bi+1}, {cii+1}, i = 1, 3, 5

A2 r2, r3 {a1, a2, a3}, {b1, b2, b3}, {c12, c13, c23}, {c14, c24, c34} 36, 19

{c15, c25, c35}, {c16, c26, c36}, {ai}, {bi}, {cij}, 4 ≤ i, j ≤ 6

A2
1 r2, r4 {c13, c23, c14, c24}, {c56}, {ai, ai+1}, {bi, bi+1}, 4, 28, 17

{cij , ci+1j}, {aj}, {bj}, {cii+1}, i = 1, 3, j = 5, 6

A1 r0 {ai, bi}, {cij}, 1 ≤ i, j ≤ 6 26, 115

Table 2. Sublattices and Orbits

We apply Theorem 7.4 to compute the toric ranks associated to the divisors

EL :=
∑
|I|=22

EI;L,A1,(127) ⊂ H.

Since dim(L) ≥ 5, using Lemma 7.9, we have the following possibilities:

L ∈ {E6, A5A1, A
3
2, A5, D5, A4A1, A3A

2
1, A

2
2A1}.
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Proposition 7.11. The toric rank of each boundary divisor EL with L 6= E6 is equal to zero. The
toric rank of EE6 is equal to 1.

Proof. Note that there are |OH | = 21 vertices on the right, of which 15 vertices are ends and thus
can be removed without changing the homology of the graph. The remaining 6 vertices each have
degree 2. Contracting unnecessary edges, we reduce the calculation to a graph with |OG| vertices
and 6 edges. The 6 edges correspond to the 6 transpositions appearing in the decomposition of
w23 = w24 ∈ S27.

Assume |OG| = 1, which, by Table 2, is the case if and only if L = E6. ThenH1(Γ,Z) =
⊕6

i=1 Zei
and D(ei) = −∑j 6=i ej. Therefore H1(Γ,Q)(−5) is 1-dimensional and generated by the element
e1 + · · ·+ e6. The other cases follow similarly by direct calculation. �

Remark 7.12. For more details concerning the calculation of the toric rank in the case L = D5,
see Paragraph 8.2.

7.13. Although the divisor theory of H is quite complicated, we now show that most of these
divisors are contracted under the Prym-Tyurin map. We first establish the following:

Theorem 7.14. Assume that the image of a component B of EI:L1,L2 under the rational Prym-

Tyurin map H 99K Aperf
6 has codimension 1 in Aperf

6 . Then {|I|, |Ic|} = {2, 22}.
Proof. With notation as in 7.1, denote Pi := PT (Ci, Di) the PTK varieties for the two parts of
R. Recall that by Lemma 5.4 the abelian part ab(PT ) is isogenous to P1 × P2.

Without loss of generality, we may assume that i := |I| ≥ 12. Since codim(Aperf
6 \ Ã6) ≥ 2, if

the irreducible components Ri, i = 1, 2, of R image of B has codimension 1, then for a general
point of B, the toric rank kP of the corresponding PTK variety P is either 0 or 1.

Suppose first that kP = 0. In this case in fact P ∼= P1 × P2. If both P1 and P2 have positive
dimension, then P belongs to a subvariety of A6 parametrizing products and each such subvariety
has codimension greater than 1. So one of the Pi is zero. The parameter space of P1 has dimension
at most i − 2, that of P2 has dimension at most 22 − i. Since the parameter space of P is 20-
dimensional and i ≥ 12, we have P2 = 0, and dim(P1) = 6. We deduce i = 22.

Now assume kP = 1. In this case the image of B is the boundary divisor D6 of Aperf
6 . Then

P1 × P2 must be a general abelian variety of dimension 5. Once again, one of the Pi is zero.
The assumption i ≥ 12 implies P2 = 0, hence dim(P1) = 5. The parameter space of P1 is 15-
dimensional, which implies i ≥ 17. Let {p1, . . . , p`} = C1 ∩C2 be the set of the nodes of C, which
also label the edges of Γ. For each i, let p′i and p′′i be the points of C1 and C2 respectively that we
identify to obtain pi on C. Choose the orientation of Γ in such a way that each edge pi is oriented
from C1 to C2. The extension

0 −→ H1(Γ,C∗) −→ JC −→ JC1 × JC2 −→ 0

is given by the map φ : H1(Γ,Z) → JC1 × JC2 sending the edge pi to p′′i − p′i. We observe that
the extension

0 −→ C∗ = (DT − 1)H1(Γ,C∗) −→ P −→ ab(P ) −→ 0

is given by the map φP : (DH1 − 1)H1(Γ,Z) → ab(P ). Clearly the composition of φP with the
isogeny ab(P )→ P1×P2 is the restriction of φ to (DH1−1)H1(Γ,Z) composed with the projection
JC1 × JC2 → (DA − 1)(JC1 × JC2) = P1 × P2.

Since P2 = 0, this means that the extension class of P does not depend on C2 (up to a finite
set). Therefore the moduli of C2 does not produce positive moduli for the extension class of P .
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It follows that the cover C1 → R1 depends on 20 moduli, hence R1 contains at least 22 branch
points, therefore i = 22. �

The following result shows that the boundary divisors have many fewer irreducible components
than one would a priori expect. Recall that in 6.8 and 6.9 we introduced the divisors Eazy :=∑
|I|=22EI:L1,A2,(36,19) and Esyz :=

∑
|I|=22EI:L1,A2

1,(2
10,17) respectively.

Theorem 7.15. Assume that |I| = 22 and L2 = A2 or A2
1. Then EI:L1,L2 is empty unless L1 = E6.

In other words, for a general E6-admissible cover[
π : C = C1 ∪ C2 → R1 ∪q R2, p1, . . . , p24

]
∈ Eazy or Esyz,

the curve C1 is irreducible with monodromy W (E6) over R1.

Proof. Consider first the azygetic case L2 = A2. Then, as we saw in 6.8, the curve C2 has 15
components, each of which intersects C1 in exactly one point. Therefore, no component of C2 can
connect two components of C1 and C1 is irreducible.

In the syzygetic case, as we saw in 6.9, the curve C2 has 16 components. Of the components
of C2, only the 4-sheeted cover (denoted by Z in 6.9) intersects C1 in two points. All other
components of C2 intersect C1 in exactly one point. It follows that C1 has at most two irreducible
components. Looking now at Table 2, we see that there are only two possibilities for the lattice
L1, namely L1 = E6 or L1 = A5A1.

We now eliminate the possibility L1 = A5A1 in the syzygetic case. It is a consequence of Lemma
7.9 that the A5 summand of L1 is the orthogonal complement of the A1 summand. Hence the
lattice L1 and the group G1 generated by the reflections w1, . . . , w22 are determined by the A1

sublattice. Since all reflections are conjugate, we can assume that the A1 summand is generated
by the reflection w0 in the root r0 (see 7.10). Since 〈G1, w23〉 = 〈G1, w24〉 = W (E6), the reflections
w23, w24 do not belong to G1. Therefore the pairs (w0, w23), (w0, w24) are azygetic.
After a permutation of the indices {1, . . . , 6}, we can assume that w23 is the reflection in the root
α123 and w24 is the reflection in the root α145 (see, e.g., [Dol12, Section 9.1]). The composition
w23 ·w24 ∈ S27, contains the double transposition (a1, b6)(c23, c45) which acts on the 4-sheeted cover
Z. However, w23 ·w24 also contains the transposition (a2, c13) which acts on a degree 2 component
of C2, i.e., the points corresponding to a2 and c13 come together over the node. Looking at the
orbits of C1 in Table 2 in the A5A1 case, we see that the points a2 and c13 belong to two different
components of C1 and cannot come together over the node, which is a contradiction. �

We now consider the components of the divisor E0 introduced in 6.7. Recall that

EL :=
∑
|I|=22

EI;L,A1,(127) ⊂ H.

Theorem 7.16. For L ( E6 the divisor EL is contracted by PT .

Proof. Let [π : C := C1 ∪ C2 → R1 ∪q R2] be a general element of a component B of EL with
L ( E6. By Proposition 7.11, the toric rank of P := PT (C,D) is 0. As in the proof of Theorem
7.14 and with the notation there, we have P = P1 × P2 = P1 = PT (C1, D1) because all the
components of C2 are rational. Furthemore, since C1 → R1 is not ramified at q, the isomorphism
class of C1 and hence also of P1 is independent of the choice of the point q. It follows that P = P1

depends on at most 19 = dim(M0,22) parameters, hence B is contracted by PT . �

We summarize the results of this section in terms of the Hurwitz space Hur := H/S24:
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Theorem 7.17. The only boundary divisors of Hur that are not contracted under the Prym-Tyurin
map PT : Hur 99K A6 are DE6, Dsyz and Dazy. The divisor DE6 maps onto the boundary divisor
D6 of A6, whereas Dsyz and Dazy map onto divisors not supported on the boundary of A6.

8. Ordinary Prym varieties regarded as Prym-Tyurin-Kanev varieties

The aim of this section is to illustrate how 6-dimensional Prym varieties appear as PTK varieties
of type E6 and thus prove Theorem 0.5. The Prym moduli space R7 has codimension 3 inside A6,
where we identify R7 with the image of the generically injective Prym map P : R7 → A6. We
shall show that the boundary divisor DD5 of Hur is an irreducible component of PT−1(R7) and
we shall explicitly describe the 2-dimensional fibres of the restriction PTDD5

: DD5 99K R7.

8.1. Consider an admissible cover [π : C = C1 ∪ C2 → R1 ∪ R2] in the divisor DD5 of Hur. We
choose such a cover as follows. The cover C1 → R1 has D5-monodromy generated by the roots
r1, . . . , r5, and it is ramified at 22 distinct points. The local monodromy at each branch point
is given by one of the reflections wi ∈ W (D5) associated to ri, choosing the ordering such that∏22

i=1wi = 1. The cover C2 → R2 has A1-monodromy generated by the root r0, and is branched
at 2 points. Both covers are unramified at the point q ∈ R1 ∩ R2. As listed in Table 2, we have
the following irreducible components and orbits for C1:

F1 : {b1, b2, b3, b4, b5, c16, c26, c36, c46, c56}
F2 : {a1, a2, a3, a4, a5, c12, c13, c14, c15, c23, c24, c25, c34, c35, c45, b6}
F0 : {a6},

and the following irreducible components and orbits for C2:

1 ≤ i ≤ 6 Hi : {ai, bi}
7 ≤ i ≤ 21 Hi : {ck(i)`(i)}, for some choice of integers k(i) < `(i), between 1 and 6.

One computes that the three components F1, F2 and F0 of C1 have genera 13, 29 and 0, and
map onto R1 with degree 10, 16 and 1 respectively. The components of C2 are all rational with
H1, . . . , H6 mapping 2 : 1 to R2 and H7, . . . , H21 mapping isomorphically. The description of the
orbits given above also specifies the points of intersection Fi and Hj. For instance, H6 intersects
F2 at a point corresponding to b6 and it intersects F0 at a point corresponding to a6.

8.2. In order to compute the toric rank of the Prym-Tyurin variety P := (D− 1)(JC1), we apply
the correspondence D to the homology group H1(Γ′,Z), where Γ′ denotes the simplified dual
graph of the stable curve C1 ∪ C2 (see Section 4.5 for the notation). The graph Γ′ consists of 2
vertices joined by 5 edges: e1 := (b1, a1), e2 := (b2, a2), e3 := (b3, a3), e4 := (b4, a4), e5 := (b5, a5)
and H1(Γ′,Z) =

⊕4
i=1 Z (ei − ei+1) (see 3.2). One computes

D(∂(e1 − e2)) = D(a1 − b1)−D(a2 − b2) = b2 − a2 − (b1 − a1) = ∂(e1 − e2).

By Remark 2.6, D commutes with ∂, hence D(e1 − e2) = (e1 − e2). Similarly, one checks that
D(ei−ei+1) = (ei−ei+1), for i = 1, . . . , 4, hence (D−1)H1(Γ′,Z) = 0. Therefore, the Prym-Tyurin
variety P := (D − 1)(JC1) has toric rank 0 and it is contained in JC1, since JC2 = {0}.
8.3. As is apparent from the description of the orbits, the correspondence D restricts to a fixed-
point-free involution ι : F1 → F1, a correspondence D2 of valence 5 on F2, a correspondence
D12 : F1 → F2 and its transpose D21 : F2 → F1 of degree 8 over F1 and of degree 5 over F2.
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The variety P is the image of the following endomorphism of JC1 = JF1 × JF2:(
ι− 1 D21

D12 D2 − 1

)
.

8.4. Let f : F1 → Y be the induced unramified double cover on the curve Y := F1/〈ι〉 of genus
7. Note that the degree 10 map π1 : F1 → R1 factors through a degree 5 map h : Y → R1. The
image Q1 := (ι − 1)JF1 ⊂ JF1 is the ordinary Prym variety P (F1, ι) associated to the double
cover [f : F1 → Y ] ∈ R7.

8.5. The relationship between the curves F1 and F2 (or between the tower F1
f→ Y

h→ R1 and the
map π2 : F2 → R1) is an instance of the pentagonal construction ([Don92, Section 5.17]). This is
the n = 5 case of the n-gonal construction, see [Don92, Section 2] or [ILS09a, Section 1], which

applies to covers F1
f→ Y

h→ R1 whose Galois group is the Weyl group W (Dn). The idea is to

consider the following curve inside the symmetric product F
(n)
1 :

h∗F1 :=
{
G ∈ F (n)

1 : Nmf (G) = h−1(t), for some t ∈ R1

}
.

The induced map h∗F1 → R1 is of degree 2n = 32 and one checks that above a branch point t ∈ R1

there are exactly 2n−2 = 8 simple ramification points in h∗F1.

Proposition 8.6. h∗F1 is the union of two isomorphic components h∗F1 = X0tX1, with X0 ' X1

being smooth curves of genus 1 + 2n−3(n+ g(Y )− 5) = 29.

Proof. The splitting is explained in [Don92, Section 2.2] and [ILS09a, Section 1]. The smoothness
is proved in [ILS09a, Lemma 1.1]. The genus calculation follows from the Hurwitz formula. �

Two divisors G1, G2 ∈ h∗F1 with Nmf (G1) = Nmf (G2) belong to the same component if they
share an even number of points of F1.

We specialize to the case n = 5. Let X = X0 be the component of h∗F1 whose fiber over a point
t ∈ R1 can be identified with the class of the divisor c16 + · · · + c56. The proof of the following
result is immediate.

Proposition 8.7. The map ψ : F2 → X given by x 7→ D21(x) ∈ h∗F1 is an isomorphism.

Remark 8.8. Under the above identification, the restriction D2 of the Kanev (incidence) corre-
spondence coincides with the correspondence D defined in [ILS09a, Section 2]. Also, the restriction
D21 of the Kanev correspondence coincides with the correspondence S defined in [IL12, Section
2]. It follows from [ILS09a, Corollary 6.2] that the image Q2 of the ordinary Prym variety Q1 in
JF2 by D21 is the eigen-abelian variety of D2 for the eigenvalue −n+ 2 = −3. It also follows from
[ILS09a, Section 6.6] and [Kan87, Theorem 3.1] that in this case Q2 is a Prym-Tyurin variety of
dimension 6 and exponent −(−3) + 1 = 4 for the correspondence D2. The restriction ρ of the
correspondence D− 1 to Q1 ⊂ JF1 gives the sequence of isogenies of principally polarized abelian
varieties

Q1
ρ−→ P −→ Q2

x1 7−→ ((ι− 1)x1, D12x1) 7−→ D12x1.

Proposition 8.9. The map ρ factors through multiplication by 2 to induce an isomorphism Q1 :=
P (F1, ι) ' P and a surjection Q1 → Q2 := P (F2, D2) whose kernel is a maximal isotropic subgroup
H (with respect to the Weil pairing) of the group of points of order 2 in Q1.
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Proof. For an abelian variety A, we denote by nA : A→ A the morphism given by multiplication by
n ∈ Z. It follows from [IL12, Corollary 2.3] that D21 ◦D12 = 8Q1 . A straightforward generalization
of the proof of [IL12, Proposition 3.3] implies that D12 = ϕ ◦ 2Q1 , for an isogeny ϕ : Q1 → Q2

such that ϕ∗ΘQ2 = ΘQ1 , where ΘQi is the polarization of Qi. Therefore we have ϕ ◦ ϕt = 2Q2 .
It follows that the kernel of ϕ is a maximal isotropic subgroup H of the group Q1[2] of points of
order 2 in Q1. Since the restriction of ι− 1 to Q1 is −2Q1 , its kernel is the subgroup of points of
order 2. Therefore ρ = ψ ◦ 2Q1 , where now ψ : Q1 → P is injective, hence an isomorphism. �

9. The Weyl-Petri realization of the Hodge eigenbundles

Since the pull-back of the Hodge class from A6 is precisely the class λ(−5) on Hur, describing it
in terms intrinsic to the Hurwitz space is of obvious importance. Here we show that, at least on an
open dense subset of Hur, both Hodge eigenbundles E(+1) and E(−5) admit a Petri-like incarnation,
which makes them amenable to intersection-theoretic calculations.

9.1. For a smooth E6-cover [π : C → P1] ∈ Hur, set L := π∗(OP1(1)) ∈ W 1
27(C) and let

µ(L) : H0(C,L)⊗H0(C, ωC ⊗ L∨)→ H0(C, ωC)

be the Petri map given by multiplication of global sections. Assume h0(C,L) = 2, so that
h0(C, ωC ⊗ L∨) = 20. If, as expected, for a general choice of [C,L] ∈ Hur, the map µ(L) is
injective, then Im µ(L) is a codimension 6 subspace of H0(C, ωC). Remarkably, this is the (+1)-
eigenspace of H0(C, ωC). At the end of this paper, we shall establish that a general covering from
Hur is Petri general:

Theorem 9.2. For a general point [C,L] ∈ Hur, the multiplication map µ(L) is injective.

Postponing the proof, we have the following description of the Hodge eigenbundles.

Theorem 9.3. Let [C,L] ∈ Hur be an element corresponding to a nodal curve of genus 46 and a
base point free line bundle L ∈ W 1

27(C), such that h0(C,L) = 2 and the Petri map µ(L) is injective.
One has the following canonical identifications:

(i) H0(C, ωC)(+1) = H0(C,L)⊗H0(C, ωC ⊗ L∨).

(ii) H0(C, ωC)(−5) =

(
H0(C,L⊗2)

S2H0(C,L)

)∨
⊗

2∧
H0(C,L).

Proof. Let L be an E6-pencil on C. Consider a general divisor Γ ∈ |L| and the exact sequence

(9.1) 0 −→ OC ·s−→ L −→ OΓ(Γ) −→ 0

induced by a section s ∈ H0(C,L) with div(s) = Γ, and its cohomology sequence

(9.2) 0 −→ H0(C,OC) −→ H0(C,L) −→ H0(OΓ(Γ))
α−→ H1(C,OC) −→ H1(C,L) −→ 0.

There is an action of W (E6) on H0(OΓ(Γ)) compatible with the trivial action on H0(C,L), because
L and H0(L) are pull-backs from P1. We identify the space H0(OΓ(Γ)) with the vector space
generated by the 27 lines on a smooth cubic surface; each line is represented by a point of Γ and
the incidence correspondence of lines is the Kanev correspondence D. Therefore the representation
of W (E6) on H0(OΓ(Γ)) splits into the sum of three irreducible representations: the trivial 1-
dimensional one, the 6-dimensional one which coincides with the representation on the primitive
cohomology of a cubic surface and the 20-dimensional one, which coincides with the one on the
space of linear equivalences on a cubic surface, see for instance [AV12].



THE UNIFORMIZATION OF A6 35

The Kanev correspondence D induces an endomorphism on H0(OΓ(Γ)) compatible with the
endomorphism D∨ ∈ End

(
H1(C,OC)

)
via the cohomology sequence (9.2). On a cubic surface,

the action of the incidence correspondence on the primitive cohomology is equal to multiplication
by −5 and its action on the space of rational equivalences is the identity. Therefore this is also
how the action on H0(OΓ(Γ)) can be described. It follows that the image α

(
H0(OΓ(Γ))

)
contains

the (−5)-eigenspace, that is, we have an inclusion(
H0(C, ωC)(−5)

)∨ ⊆ α
(
H0(OΓ(Γ))

)
=

(
H0(C, ωC)

H0(C,L)⊗H0(C, ωC ⊗ L∨)

)∨
.

When the Petri map µ(L) is injective, the two spaces appearing in this inclusion have the same
dimension and the inclusion becomes an equality, which establishes the first claim.

To prove the second claim, we start by observing that the Base Point Free Pencil Trick yields
the sequence 0 → ∧2H0(C,L) ⊗ L∨ → H0(C,L) ⊗ OC → L → 0. After tensoring with L and
taking cohomology, we arrive at the following exact sequence

0 −→ H0(C,L⊗2)

Sym2H0(C,L)
−→

2∧
H0(C,L)⊗H1(C,OC)

u−→ H0(C,L)⊗H1(C,L) −→ 0.

To describe the map u in this sequence, let us choose a basis s1, s2 ∈ H0(C,L). Then,

u(s1 ∧ s2 ⊗ f) = s1 ⊗ (s2 · f)− s2 ⊗ (s1 · f) ∈ H0(C,L)⊗H1(C,L).

It follows via Serre duality, that Ker(u) consists of all linear maps v : H0(C, ωC) → C vanishing
on H0(C,L)⊗H0(C, ωC ⊗ L∨) ⊂ H0(C, ωC), which proves the claim. �

The identifications provided by Theorem 9.3 extend to isomorphisms of vector bundles over a
partial compactification of Hur which we shall introduce now. This allows us to express to Hodge
classes λ(+1) and λ(−5) in terms of certain tautological classes and define the Petri map globally
at the level of the moduli stack.

9.4. Let M̃46 be the open subvariety of M46 parametrizing irreducible curves and denote by

G1
27 → M̃46 the stack parametrizing pairs [C,L], where [C] ∈ M̃46 (in particular C is a stable

curve) and L is a torsion free sheaf of degree 27 on C with h0(C,L) ≥ 2. Note that G1
27 is a locally

closed substack of the universal Picard stack of degree 27 over M̃46. Let GE6 be the locus of pairs
[C,L] ∈ G1

27, where L is locally free and base point free with h0(C,L) = 2 and the monodromy

of the pencil |L| is equal to W (E6). We denote by σ : GE6 → M̃46 the projection map given by
σ([C,L]) := [C].

9.5. One has a birational map β : Hur 99K GE6 ⊂ G1
27 which can be extended over each boundary

divisor of Hur not contracted under the Prym-Tyurin map (see Theorem 7.17 for a description of
these divisors). Let t := [π : C = C1 ∪ C2 → R1 ∪q R2] be a general point of one of the divisors
DE6 , Dazy or Dsyz, where we recall that Ci := π−1(Ri) for i = 1, 2 and only two branch points
of π specialize to R2. We assign to t the point

[
st(C), st(f ∗OR1∪R2(1, 0))

]
∈ GE6 , where st is the

map assigning to a nodal curve X its stable model st(X) and to a line bundle L on X the line
bundle st(L) on st(C) obtained by adding base points to each destabilizing component of X which
is contracted. Geometrically, for the general point of each of the divisors DE6 , Dazy or Dsyz, the
map β : Hur 99K GE6 contracts the curve C2. We still denote by Dazy, Dsyz and DE6 the images
under β of the boundary divisors denoted by the same symbols on Hur.
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We now describe the effect of β along each of the boundary divisors in question. If t ∈ Dazy

is a general point, then C1 is smooth and L := π∗C1
(OR1(1)) ∈ W 1

27(C1) has 6 triple ramification
points over the branch point q ∈ R1. Then β(t) = [C1, L] ∈ GE6 . If, on the other hand, t is a
general point of Dsyz, then retaining the notation of Remark 6.12, C1 is a smooth curve of genus
45, meeting the smooth rational component Z in two points u, v ∈ π−1(q). Then β(t) = [C ′, L],
where C ′ := C1/u ∼ v is an irreducible 1-nodal curve of genus 46 and L ∈ W 1

27(C ′) is the pencil
inducing the map π. Finally, if t ∈ DE6 , then β(t) = [C ′, L], where C ′ is a 6-nodal curve obtained
from C1 by identifying the points of π−1(q) which belong to the same component of C2.

We record the formula λ = 33
46

[D0] + 7
46

[Dazy] + 17
92

[Dsyz] + · · · ∈ CH1(GE6) for the Hodge class at

the level of GE6 . The factor of 1
2

in front of [Dsyz] compared to (6.5) is explained by the fact that

the general point of Dsyz ⊂ Hur has an automorphism of order 2, whereas its image under β has
only trivial automorphsms.

9.6. At the level of GE6 one can introduce several tautological classes along the lines of [Far09].
We denote by f : CE6 → GE6 the universal genus 46 curve and choose a universal line bundle
L ∈ Pic(CE6) satisfying the property L|f−1([C,L]) = L ∈ W 1

27(C), for each [C,L] ∈ GE6 . We then
define the following tautological classes:

A := f∗
(
c2

1(L)
)
, B := f∗

(
c1(L) · c1(ωf )

)
, κ := f∗

(
c2

1(ωf )
)
∈ CH1(GE6).

Via Grauert’s theorem, we observe that V := f∗L is a locally free sheaf of rank two on GE6 .
Similarly, the sheaf

V2 := f∗(L⊗2)

is locally free of rank 9 over GE6 . Globalizing at the level of moduli the multiplication map of
global sections Sym2H0(C,L) → H0(C,L⊗2), we define the rank 6 vector bundle E2 over GE6 via
the following exact sequence:

0 −→ Sym2(V) −→ V2 −→ E2 −→ 0.

9.7. The choice of L is not unique; replacing L by L′ := L ⊗ f ∗(α), where α ∈ Pic(GE6) and
denoting the corresponding tautological classes by A′,B′ ∈ CH1(GE6) respectively, we find the
relations

A′ = A + 2 · 27 · α and B′ = B + (2 · 46− 2) · α.
It follows that B′ − 5

3
A′ = B− 5

3
A, that is, the class

(9.3) γ := B− 5

3
A ∈ CH1(GE6)

is well-defined and independent of the choice of a Poincaré bundle L. We now describe in a series
of calculations the Chern classes of the vector bundles we have just introduced.

Proposition 9.8. The following relations hold in CH1(GE6):

c1(V2) = λ−B + 2A and c1

(
R1f∗(ωf ⊗ L∨)

)
= λ+

A

2
− B

2
− c1(V).

Proof. We apply Grothendieck-Riemann-Roch to f : CE6 → GE6 and write

c1(V2) = f∗

[(
1 + 2c1(L) + 2c2

1(L)
)
·
(

1− c1(ωf )

2
+
c2

1(Ω1
f ) + c2(Ω1

f )

12

)]
2
.

Now use Mumford’s formula f∗
(
c2

1(Ω1
f ) + c2(Ω1

f )
)

= 12λ, see [HM82] p. 49, and conclude. �
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9.9. Theorem 9.2 (to be proved in Section 10) shows that the Petri map µ(L) is injective for a
general point of [C,L] ∈ GE6 . However, we cannot rule out the (unlikely) possibility that µ(L)
is not injective along a divisor N on GE6 . We denote by n := [N] ∈ CH1(GE6). This (possibly
zero) class is effective. Globalizing Theorem 9.3, we obtain isomorphisms of vector bundles over
GE6 −N:

E(+1) = R1f∗
(
ωf ⊗ L∨

)
⊗ V and E(−5) = E∨2 ⊗ det(V).

Extending this to GE6 , there exists an injection of vector bundles R1f∗
(
ωf ⊗ L∨

)
⊗ V ↪→ E(+1),

with quotient a sheaf supported on N and on possibly other higher codimension cycles.

Proposition 9.10. The following formulas hold at the level of GE6:

λ(+1) = 2λ− γ + n and λ(−5) = −λ+ γ − n.

Proof. We have that λ(+1) = c1

(
R1f∗

(
ωf⊗L∨

)
⊗V
)
−[N] ∈ CH1(GE6) and the rest is a consequence

of Theorem 9.3 coupled with Proposition 9.8. �

Proposition 9.11. We have that A = 27c1(V) ∈ CH1(GE6).

Proof. Recall that GE6 has been defined as a locus of pairs [C,L] such that L is a base point free
pencil. In particular, the image under f of the codimension 2 locus in CE6 where the morphism of
vector bundles f ∗(V)→ L is not surjective is empty, hence by Porteous’ formula

0 = f∗

(
c2(f ∗V)− c1(f ∗V) · c1(L) + c2

1(L)
)

= −27c1(V) + A.

�

Essential in all the ensuing calculations is the following result expressing the divisor Dazy in
terms of Hodge eigenbundles and showing that its class is quite positive:

Theorem 9.12. The following relation holds:

[Dazy] = 5λ+ λ(−5) − 3[DE6 ]−
5

6
[Dsyz] + n ∈ CH1(GE6).

Proof. The idea is to represent Dazy as the push-forward of the codimension two locus in the
universal curve CE6 of the locus of pairs [C,L, p] such that h0(C,L(−3p)) ≥ 1. We form the fibre
product of the universal curve CE6 together with its projections:

CE6

π1←−−− CE6 ×GE6
CE6

π2−−−→ CE6
.

For each k ≥ 1, we consider the locally free jet bundle Jk(L) defined, e.g., in [Est96], as a locally

free replacement of the sheaf of principal parts Pkf (L) := (π2)∗

(
π∗1(L) ⊗ I(k+1)∆

)
on CE6 . Note

that Pkf (L) is not locally free along the codimension two locus in CE6 where f is not smooth. To

remedy this problem, we consider the wronskian locally free replacements Jkf (L), which are related
by the following commutative diagram for each k ≥ 1:

0 // Ωk
f ⊗ L //

��

Pkf (L)

��

// Pk−1
f (L)

��

// 0

0 // ω⊗kf ⊗ L // Jkf (L) // Jk−1
f (L) // 0

Here Ωk
f denotes the OGE6

-module Ik∆/I(k+1)∆. The first vertical row here is induced by the

canonical map Ωk
f → ω⊗kf , relating the sheaf of relative Kähler differentials to the relative dualizing
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sheaf of the family f . The sheaves Pkf (L) and Jkf (L) differ only along the codimension two
singular locus of f . Furthermore, for each integer k ≥ 0 there is a vector bundle morphism
νk : f ∗(V) → Jkf (L), which for points [C,L, p] ∈ GE6 such that p ∈ Creg, is just the evaluation

morphism H0(C,L) → H0(L|(k+1)p). We specialize now to the case k = 2 and consider the
codimension two locus Z ⊂ CE6 where ν2 : f ∗(V) → J2

f (L) is not injective. Then, at least over
the locus of smooth curves, Dazy is the set-theoretic image of Z. A simple local analysis shows
that the morphism ν2 is simply degenerate for each point [C,L, p], where p ∈ Csing. Taking into
account that a general point of Dazy corresponds to a pencil with six triple points aligned over
one branch point, and that the stable model of a general element of the divisor Dsyz corresponds
to a curve with one node, whereas that of a general point of DE6 to a curve with six nodes and
so on, we obtain the formula:

6[Dazy] = f∗c2

(
J2
f (L)

f ∗(V)

)
− 6[DE6 ]− 3[Dsyz] ∈ CH1(GE6).

The fact that Dsyz appears with multiplicity 3 is a result of the following local computation. We
choose a family F : X → B of curves of genus 46 over a smooth 1-dimensional base B, such that X
is smooth, and there is a point b0 ∈ B such that Xb := F−1(b) is smooth for b ∈ B \ {b0}, whereas
Xb0 has a unique node N ∈ X. Assume also that L ∈ Pic(X) is a line bundle such that Lb := L|Xb
is a pencil with E6-monodromy on Xb for each b ∈ B, and furthermore [Xb0 , Lb0 ] ∈ Dsyz. Choose
a local parameter t ∈ OB,b0 and x, y ∈ OX,N , such that xy = t represents the local equation of X

around the point N . Then ωF is locally generated by the meromorphic differential τ = dx
x

= −dy
y

.

We choose two sections s1, s2 ∈ H0(X,L), where s1 does not vanish at N and s2 vanishes with
order 2 at N along both branches of Xb0 . Then we have the relation s2,N = (x2 + y2)s1,N between
the germs of the two sections s1 and s2 at N . We compute

d(s2) = 2xdx+ 2ydy = 2(x2 − y2)τ, and d(x2 − y2) = 2(x2 + y2)τ.

In local coordinates, the map H0
(
Xb0 , Lb0

)
→ H0

(
Xb0 , Lb0|3N

)
is then given by the 2 × 2 minors

of the following matrix: (
1 0 0

x2 + y2 x2 − y2 x2 + y2

)
.

This completes the proof that [Dsyz] appears with multiplicity 3 in the degeneracy locus.

We compute: c1(J2
f (L)) = 3c1(L) + 3c1(ωf ) and c2(J2

f (L)) = 3c2
1(L) + 6c1(L) · c1(ωf ) + 2c2

1(ωf ),
hence

f∗c2

(
J2
f (L)

f ∗(V)

)
= 3A + 6B− 3(d+ 2g − 2)c1(V) + 2κ1 = 6γ + 2κ1.

Furthermore, κ1 = 12λ − 6[DE6 ] − [Dsyz] − · · · , hence after applying Proposition 9.10, we obtain
the claimed formula. �

We can also express the divisors Dsyz and Dazy in terms of the Hodge eigenclasses.

Proposition 9.13. The following formulas hold in CH1(GE6):

[Dazy] =
25

16
λ+

51

16
λ(−5) +

3

4
[DE6 ] +

51

16
n and [Dsyz] =

33

8
λ− 21

8
λ(−5) − 9

2
[DE6 ]−

21

8
n.

Proof. Combine Theorem 9.12 with the expression of the Hodge class λ in terms of the boundary
divisor classes on GE6 . �

Corollary 9.14. We have [Dsyz] ≤ 33
8
λ− 21

8
λ(−5) − 9

2
[DE6 ].
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We are now in a position to determine the class of the ramification divisor of the Prym-Tyurin
map in terms of the classes already introduced. Recall that D6 := A6 \ A6 is the irreducible
boundary divisor of the perfect cone compactification of A6 and λ1 ∈ CH1(A6) denotes the Hodge
class. Note that KA6

= 7λ1 − [D6], see [Mum83].

Theorem 9.15. The ramification divisor of the map PT : GE6 99K A6 is given by[
Ram(PT )

]
=

73

32
λ− 221

32
λ(−5) − 9

8
[DE6 ] +

3

32
n.

Proof. The general point of DE6 corresponds to a semi-abelian variety of torus rank 1, whereas

for all the other boundary divisors in br∗(B̃2) the corresponding torus rank is zero. Moreover
PT ∗(D6) = DE6 (recall that in this proof, the map PT is defined on the partial compactification
GE6 , the formula above does not hold on Hur). Via the Hurwitz formula, we obtain that[

Ram(PT )
]

= KGE6
− PT ∗

(
7λ1 − [D6]

)
= KGE6

− 7λ(−5) + [DE6 ].

Recall that the canonical class KHur has been expressed in terms of boundary divisors on Hur.
Using Theorem 9.12, we can pass to a new basis in CH1(GE6) involving the Hodge eigenbundles
and one boundary divisor, namely DE6 . After simple manipulations we obtain

(9.4) KGE6
=

73

32
λ+

3

32
λ(−5) − 17

8
[DE6 ] +

3

32
n,

which then leads to the claimed formula. �

We now complete the proof of Theorem 0.3. In what follows, we revert to the notation of the
introduction and PT : Hur 99K A6 denotes the extended Prym-Tyurin map.

Theorem 9.16. The canonical class of the partial compactification GE6 of Hur is big. It follows
that there exists a divisor E on Hur with PT∗(E) = 0, such that KHur + E is big.

Proof. The varieties GE6 and Hur differ in codimension one only along boundary divisors that are
collapsed under the Prym-Tyurin map. Showing that KGE6

is big implies therefore the second
half of the claim, and thus Theorem 0.3. Using Theorem 6.14 (note the caveat about the already
mentioned factor 1

2
in front of the coefficient of [Dsyz] when passing from Hur to GE6), coupled

with Proposition 9.13, we write:

KGE6
= −25

46
[DE6 ] +

19

46
[Dsyz] +

17

46
[Dazy] ≥ −25

46
[DE6 ] +

19

46
[Dsyz] +

17

46

(25

16
λ+

51

16
λ(−5) +

3

4
[DE6 ]

)

=
867

736
λ(−5) +

425

736

(
λ− 196

425
[DE6 ]

)
.

Putting Proposition 6.19 together with the fact that λ(−5) is big, the conclusion follows by com-
paring the ratio of the λ and [DE6 ]-coefficients of the last expression. Indeed, it is shown in (6.20)
by pulling-back the Moriwaki class from M46 that the Q-class λ − 6

8+ 4
g

[DE6 ] = λ − 23
31

[DE6 ] is

effective on GE6 . It follows that λ− 196
425

[DE6 ] is then also an effective class, hence KGE6
is big. �
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10. The ramification divisor of the Prym-Tyurin map

The aim of this section is to describe the differential of the Prym-Tyurin map PT and prove
Theorem 0.4. In this section, the tangent spaces we consider are those of the corresponding
moduli stacks. As in the previous section, we fix a smooth E6-cover π : C → P1 with branch
divisor B := p1 + · · ·+ p24 and denote L := π∗(OP1(1)).

Via the étale map br : Hur → M0,24/S24, we identify the cotangent space T∨[C,π](Hur) with

H0(P1, ω⊗2
P1 (B)). The cotangent space T∨[P (C,f)](A6) is identified with Sym2H0(C, ω⊗2

C )(−5).

Definition 10.1. Let R and A be the ramification and antiramification divisors of π, that is, the
effective divisors of C defined by the formulas

π∗(B) = 2R + A, KC = π∗(KP1) +R, 2KC + A = π∗(2KP1 +B).

Definition 10.2. Let tr : π∗OC(−A)→ OP1 be the trace map on regular functions. For an open
affine subset U ⊂ P1, a regular function ϕ ∈ Γ(U,OC(−A)), and a point y ∈ U , one has

tr(ϕ)(y) =
∑

x∈f−1(y)

ϕ(x),

counted with multiplicities. Note that tr is surjective. Let π∗OC(2KC)→ OP1

(
2KP1 + B

)
be the

induced trace map at the level of quadratic differentials. We denote the corresponding map on
global sections by Tr : H0(C, ω⊗2

C )→ H0(P1, ω⊗2
P1 (B)).

Theorem 10.3. The codifferential (dPT )∨[C,π] : T∨[PT (C,π)]

(
A6

)
→ T∨[C,π]

(
Hur

)
is given by the fol-

lowing composition of maps:

Sym2H0(ωC)(−5) ↪→ Sym2H0(ωC)
mul−−→ H0(ω⊗2

C )
Tr−→ H0(ω⊗2

P1 (p1 + · · ·+ p24)).

Proof. The second map is the codifferential of the Torelli map M46 → A46. The first map is
the codifferential of the map from the moduli space of ppav of dimension 46 together with an
endomorphism D having eigenvalues (+1) and (−5) (with eigenspaces of dimensions 20 and 6
respectively) to A6. The third map is the codifferential of the map Hur→M46. �

10.4. We now analyze the differential dPT at a point [C, π] ∈ Hur in detail. For each of the
24 branch points pi ∈ P1, let {rij}6

j=1 ⊂ C be the ramification points lying over pi. The formal
neighborhoods of the points rij are naturally identified, so that we can choose a single local
parameter x and write any quadratic differential γ ∈ H0(C, ω⊗2

C ) as

γ = ϕij(x) · (dx)⊗2 near rij ∈ C.
Choose a local parameter y at the point pi, so that π is given locally by the map y = x2. We can
use the same local parameter at the remaining 15 antiramification points {qik}15

k=1 over pi at which
π is unramified, and write γ = ψik(y) · (dy)⊗2 near qik ∈ C, for k = 1, . . . , 15.

Lemma 10.5. The kernel of the trace map Tr : H0(C, ω⊗2
C ) → H0

(
P1, ω⊗2

P1 (B)
)

consists of qua-
dratic differentials γ such that

6∑
j=1

ϕij(rij) = 0, for i = 1, . . . , 24.
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Proof. From y = x2, we get dy = 2x dx and (dx)⊗2 = (dy)⊗2/4y. We have that

Tr(γ) =

(
1

4y

6∑
j=1

(
ϕij(x) + ϕij(−x)

)
+

15∑
k=1

ψik(y)

)
· (dy)⊗2 near pi.

Suppose Tr(γ) = 0. Then the leading coefficient 1
2

∑6
j=1 ϕij(rij) is zero. Conversely, assume that

the 24 expressions are zero. Then Tr(γ) ∈ H0(P1, ω⊗2
P1 ) = 0. �

In order to understand the condition in Lemma 10.5, we recall the action of the endomorphism
D : H0(C, ωC) → H0(C, ωC) induced by the Kanev correspondence in local coordinates at the
points p ∈ C and q ∈ π−1(p), see also Theorem 9.3.

10.6. The unramified case. Suppose that π is unramified at p, thus Γ := π−1(p) =
∑27

s=1 qs.
Since π is étale, we can use the same local parameter y at p, as well as at each qs ∈ C. Let
α ∈ H0(C, ωC). In a formal neighborhood of each point qs, we write locally α = αs(y)dy.

Assume p = [0 : 1] ∈ P1. One has
∑27

s=1 Resqs(α · x0x1 ) = 0, so
∑27

s=1 αs(qs) = 0. The action of the

correspondence on (αs) is described by an endomorphism of Ô26 =
{∑27

s=1 αs = 0
}
⊂ Ô27, where

Ô = ÔP1,p. This endomorphism is given by the same integral (26× 26)-matrix as the action of D
on H0(OΓ(Γ))/H0(C,L), as in the proof of Theorem 9.3. Thus, D has two eigenvalues (+1) and
(−5) with the eigenspaces of dimensions 20 and 6 respectively. Choose a basis {vm}6

m=1 of the
(−5)-eigenspace in Z26. Then an element α(−5) ∈ H0(C, ωC)(−5) can be locally written uniquely
as

α(−5) =
6∑

m=1

δmvm ∈ Ô27, for some δm ∈ Ô.

10.7. The ramified case. Suppose π is branched at p and π−1(p) consists of ramification points
r1, . . . , r6 and 15 antiramification points qk. The points ri correspond to the ordered pairs (ai, bi)
of sheets coming together. On the sheets, the correspondence is defined by

ai 7→
∑
j 6=i

(bj + cij) and bi 7→
∑
j 6=i

(aj + cij), for i = 1, . . . , 6.

As above, we use a local coordinate y for p ∈ P1 and the 15 points qk ∈ C, and a local coordinate
x for the ramification points ri, with y = x2. Thus, we write locally

α = αri(x)dx near ri, and α = αqk(y)dy near qk.

The local involution x 7→ −x splits the differential form into the odd and even parts:

αri(x)dx = αodd
ri

(x2)dx+ αev
ri

(x2)xdx,

αri(−x)d(−x) = −αodd
ri

(x2)dx+ αev
ri

(x2)xdx.

The even part can be written in terms of y as 1
2
αev
ri

(y)dy. The odd parts have no such interpretation
and we claim that they do not mix with the 15 sheets on which π is étale:

Lemma 10.8. The correspondence D induces an endomorphism on the 6-dimensional Ôy-module
of odd parts 〈αodd

ri
dx〉. It is given by a matrix which has 0 on the main diagonal and (−1) else-

where. The (−5) eigenspace is 1-dimensional with generator (1, . . . , 1), and, for every element
α ∈ H0(C, ωC)(−5), one has

(αodd
r1
, . . . , αodd

r6
) = (φ, . . . , φ), for some φ = φ(y) independent of i = 1, . . . , 6.
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Proof. This case is obtained by taking a limit of the unramified case. We work in the complex-
analytic topology. A ramification point r ∈ C is a limit of two points qai , qbi ∈ C on the sheets
ai and bi respectively. The local parameters x, x′ at qai , qbi are identified as x′ = −x. One has
y = x2 = (x′)2 and we look at the limit as x tends to 0. From dx′ = −dx it follows

αqai (x)dx = αodd
ri

(x2)dx+ αev
ri

(x2)xdx,

αqbi (x)dx = −αodd
ri

(x2)dx+ αev
ri

(x2)xdx.

Under the correspondence between the 27 sheets, the αodd contributions from ai and bi to the 5
sheets cij (j 6= i) cancel out. Conversely, the terms αcij contribute to αev but not to αodd at the
point ri.

It follows that the homomorphism D sends the Ô6 block of the odd parts αodd
ri

to itself. The
matrix of this linear map is the same as the matrix of an endomorphism of Z6 with the basis
of vectors ai − bi, that is, ai − bi 7→ −

∑
j 6=i(aj − bj). It is easy to see that this linear map has

eigenvalues (+1) and (−5) and that the (−5)-eigenspace is one-dimensional and is generated by
the vector (1, . . . , 1). The statement now follows. �

Corollary 10.9. Let β ∈ Sym2H0(C, ωC)(−5) and let γ = mul(β) be its image in H0(C, ω⊗2
C ).

Then in the notation of Lemma 10.5, one has ϕij(rij) = ϕij′(rij′), for all i = 1, . . . , 24 and all
1 ≤ j, j′ ≤ 6.

Proof. Let α, α′ ∈ H0(C, ωC)(−5). Then in the notation of Lemma 10.8, one has
mul(α⊗ α′)(rij) = αodd

rij
(rij) · (α′)odd

rij
(rij) = φ(0)φ′(0), which is independent of j = 1, . . . , 6. �

Lemma 10.8 has consequences for the geometry of the Abel-Prym-Tyurin canonical curve

ϕ(−5) = ϕH0(C,ωC)(−5) : C → P5.

In stark contrast with the case of ordinary Prym-canonical curves, the map ϕ(−5) is far from being
an embedding.

Proposition 10.10. For an E6-cover π : C → P1, we have ϕ(−5)(ri1) = · · · = ϕ(−5)(ri6), for each
i = 1, . . . , 24.

Proof. This is a consequence of Lemma 10.8: the condition that α ∈ H0(C, ωC)(−5) vanishes along
the divisor ri1 + · · ·+ ri6 is expressed by a single condition φ(0) = 0, therefore
dim

∣∣H0(C, ωC)(−5)(−ri1 − · · · − ri6)
∣∣ = 4. �

Finally we are in a position to describe the ramification divisor of the map PT . Like in the
classical Prym case, it turns out that the infinitesimal study of the Prym-Tyurin map can be
reduced to the projective geometry of he Abel-Prym-Tyurin curve:

Proof of Theorem 0.4. Using Lemma 10.5 and Corollary 10.9, it follows that the map PT is
ramified at a point [C, π] ∈ Hur, if and only if there exists 0 6= β ∈ Sym2H0(C, ωC)(−5) such that

mul(β) ∈ H0(C, 2KC −R) = H0(C,KC − 2L) = Ker(µ(L)),

where the last equality follows from the Base Point Free Pencil Trick applied to the Petri map
µ(L). If now µ(L) is injective, it follows that mul(β) = 0, which finishes the proof. �
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11. A Petri theorem on Hur

We now prove the Petri-like Theorem 9.2, using a degeneration similar to the one used to
establish the dominance of the map PT . We start with a cover πt : Ct → P1 ramified in 24
points such that the local monodromy elements are reflections wi in 12 pairs of roots r1, . . . , r12

generating the lattice E6. We consider a degeneration in which the 12 pairs of roots with the same
label come together. The degenerate cover π : C → P1 is branched at 12 points q1, . . . , q12 ∈ P1.
Over each point qi there are 6 simple ramification points. The curve C is nodal with 12× 6 = 72
ordinary double points. We record the following fact:

Lemma 11.1. The curve C has 27 irreducible components isomorphic to P1 and the restriction
of π to each of them is an isomorphism.

Note that the cover π is not admissible in the sense of Section 5. The corresponding admissible
cover is obtained by replacing each point qi ∈ P1 by an inserted P1 with two additional marked
points pi, pi+12, and modifying the curve C accordingly.

11.2. The 27 irreducible components {Xs ' P1}27
s=1 of C are in bijection with the lines {`s}27

s=1

on a cubic surface. Let Γ be the dual graph of C. For each root ri with i = 1, . . . , 12, there are
6 pairs of lines (aij, bij) such that ri · aij = 1, bij = aij + ri, hence ri · bij = −1. To each pair
we associate an edge (aij, bij) of Γ directed from the vertex aij to the vertex bij. We also fix 12
ramification points qi ∈ P1 \ {0,∞} = C∗ and denote by {psi}nsi=1 the nodes of C lying on Xs.
Clearly, π(psi) ∈ {q1, . . . , q12}, for all s and i.

Lemma 11.3. The space H0(C, ωC) is naturally identified with

H1(Γ,C) = Ker
{ 12⊕
i=1

6⊕
j=1

C(aij, bij)→
27⊕
s=1

C`s
}
.

To an edge (aij, bij) over a root ri one associates a differential form ωij equal to dz
z−qi on Xaij , to

− dz
z−qi on Xbij and 0 on Xs, for s 6= aij, bij. Then H0(C, ωC) is the subspace of

27⊕
s=1

H0
(
Xs, KXs

( ns∑
i=1

psi
))

of the forms ω =
∑
cijωij, such that for 1 ≤ s ≤ 27 the sum of residues of ω on Xs is zero.

Equivalently, for each 1 ≤ s ≤ 27, one considers a space of forms

ωs =
∑

s∈{aij ,bij}

ci
dz

z − qi
, such that

∑
i

ci = 0.

Then a form ω ∈ H0(C, ωC) is equivalent to a collection of log forms {ωs}27
s=1 satisfying the 72

conditions Resqi(ωaij) + Resqi(ωbij) = 0, for each edge (aij, bij) of Γ.

Proof. This follows by putting together two well known facts:

(1) Let C be a nodal curve with normalization ν : C̃ → C and nodes pi ∈ C such that ν−1(pi) =
{p+

i , p
−
i }. Then H0(C, ωC) is identified with the space of sections

ω̃ ∈ H0
(
C̃,KC̃(

∑
(p+
i + p−i ))

)
satisfying Resp+i (ω̃) + Resp−i (ω̃) = 0.

(2) A section of H0
(
P1, KP1(

∑
i qi)
)

is a linear combination
∑

i ci
dz
z−qi , with

∑
i ci = 0. �
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In practice, assume that H0(Xs, ωC|Xs) is identified with the space of fractions

Ps(x)∏ns
i=1(x− π(psi))

dx,

where Ps(x) is a polynomial of degree ns − 2. Then H0(C, ωC) ⊆⊕27
s=1H

0(Xs, ωC|Xs) is charac-
terized by the condition that for every node of psj = ps′j′ ∈ C joining components Xs and Xs′ , the
sum of the residues

Ress :=
Ps(π(psj))∏

i 6=j
(
π(psj)− π(psi)

)
and Ress′ respectively is 0.

11.4. We wish to show the injectivity of the Petri map

µ(L) : H0(C,L)⊗H0(C, ωC ⊗ L∨)→ H0(C, ωC)

for a 72-nodal curve C corresponding to a cover π : C → P1 as above.

Lemma 11.5. Let H0(P1,O(1)) = 〈x0, x1〉 ⊂ H0(C,L). Then the subspace

H0(C, ωC ⊗ L∨)⊗ 〈x0〉 ⊂ H0(C, ωC ⊗ L∨)⊗H0(C,L) ⊂ H0(C, ωC)

consists of elements {ωs}27
s=1 as above, satisfying for each 1 ≤ s ≤ 27 the additional condition∑

ciqi = 0. Similarly, the subspace H0(C, ωC ⊗ L∨) ⊗ 〈x1〉 ⊆ H0(C, ωC) consists of elements
{ωs}27

s=1 as above, satisfying for 1 ≤ s ≤ 27 an additional condition
∑

ci
qi

= 0.

Proof. We identify H0(C, ωC ⊗ L∨) with H0(C, ωC(−π∗∞)), hence H0(C, ωC ⊗ L∨) ⊗ 〈x0〉 is the
space of forms {ωs}27

s=1 such that for each s = 1, . . . , 27, they satisfy the equality

0 = Res∞
(
ωs ·

x1

x0

)
= −

∑
Resqi

(
ωs ·

x1

x0

)
= −

∑
ciqi.

�

To prove Theorem 9.2, it is sufficient to find one degeneration π : C → P1 such that

(1) h0(C,L) = 2.
(2) The linear subspaces H0(C, ωC ⊗ L∨) ⊗ 〈x0〉, H0(C, ωC ⊗ L∨) ⊗ 〈x1〉 and H0(C, ωC)(−5)

generate the vector space H0(C, ωC).

The initial input consists of 12 points qi ∈ P1 \ {0,∞} = C∗, and 12 roots ri generating the
lattice E6. We obtain a system of linear equations in the 72 variables

xij = Resqi(ωaij) = −Resqi(ωbij), for i = 1, . . . , 12 and j = 1, . . . , 6.

For each of the spaces H0(C0, ωC ⊗L∨)⊗ 〈x0〉, respectively H0(C, ωC ⊗L∨)⊗ 〈x1〉, we get 2× 27
equations. By Lemma 10.8, H0(C, ωC)(−5) is the subspace of H0(C, ωC) of forms {ωs}27

s=1 satisfying
xij = xij′ for all 1 ≤ j, j′ ≤ 6 and i = 1, . . . , 12. This gives a system of 27 + 12× 5 equations.

Lemma 11.6. The above conditions are satisfied for the following choices of roots and ramification
points:

(1) r1 = α135, r2 = α12, r3 = α23, r4 = α34, r5 = α45, r6 = α56, r7 = αmax, r8 = α124,
r9 = α234, r10 = α35, r11 = α13, r12 = α36.

(2) qi = i, for i = 1, . . . , 12.

Proof. This is now a straightforward linear algebra computation, which we performed in Mathe-
matica. It can be found at [Web15]. �
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