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Abstract

We compute the class of the compactified Hurwitz divisor TRd in M2d−3

consisting of curves of genus g = 2d − 3 having a pencil g1
d with two un-

specified triple ramification points. This is the first explicit example of a ge-
ometric divisor on Mg which is not pulled-back form the moduli space of

pseudo-stable curves. We show that the intersection of TRd with the bound-
ary divisor ∆1 in Mg picks-up the locus of Fermat cubic tails.

1 Introduction

Hurwitz loci have played a basic role in the study of the moduli space of curves at
least since 1872 when Clebsch, and later Hurwitz, proved that Mg is irreducible

by showing that a certain Hurwitz space parameterizing coverings of P1 is con-
nected (see [Hu], or [Fu2] for a modern proof). Hurwitz cycles on Mg are essen-

tial in the work of Harris and Mumford [HM] on the Kodaira dimension of Mg

and are expected to govern the length of minimal affine stratifications of Mg.
Faber and Pandharipande have proved that the class of any Hurwitz cycle on
Mg,n is tautological (cf. [FP]). Very few explicit formulas for the classes of such
cycles are known.

We define a Hurwitz divisor in Mg with n degrees of freedom as follows: We fix
integers k1, . . . , kn ≥ 3 and positive integers d, g such that

k1 + k2 + · · ·+ kn = 2d − g + n − 1.
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Then Hg: k1,...,kn
is the locus of curves [C] ∈ Mg having a degree d morphism

f : C → P1 together with n distinct points p1, . . . , pn ∈ C such that multpi
( f ) ≥ ki

for i = 1, . . . , n. When n = 0 and g = 2d − 1, we recover the Brill-Noether divi-
sor of d-gonal curves studied extensively in [HM]. For n = 1 we obtain Harris’

divisor Hg: k of curves having a linear series C
d:1→ P1 with a k = (2d − g + 1)-

fold point, cf. [H]. If n = 1 and d = g − 1 then Hg: g−1 specializes to S. Diaz’s
divisor of curves [C] ∈ Mg having an exceptional Weierstrass point p ∈ C with

h0(C,OC((g − 1)p)) ≥ 1 (cf. [Di]).
Since Hg:k1,...,kn

is the push-forward of a cycle of codimension n + 1 in Mg,n,

as n increases the problem of calculating the class of Hg:k1,...,kn
becomes more

and more difficult. In this paper we carry out the first study of a Hurwitz locus
having at least 2 degrees of freedom, and we treat the simplest non-trivial case,
when n = 2, k1 = k2 = 3 and g = 2d − 3. Our main result is the calculation of the
class of TRd := H2d−3: 3,3. As usual we denote by λ ∈ Pic(Mg) the Hodge class

and by δ0, . . . , δ[g/2] ∈ Pic(Mg) the codimension 1 classes on the moduli stack

corresponding to the boundary divisors of Mg:

Theorem 1.1. We fix d ≥ 3 and denote by TRd the locus of curves [C] ∈ M2d−3

having a covering C
d:1→ P

1 with two unspecified triple ramification points. Then TRd is
an effective divisor on M2d−3 and the class of its compactification TRd inside M2d−3 is
given by the formula:

TRd ≡ 2
(2d − 6)!

d! (d − 3)!

(

a λ − b0 δ0 − b1 δ1 − · · · − bd−2 δd−2

)

∈ Pic(M2d−3),

where

a = 24(36d4 − 36d3 − 640d2 + 1885 − 1475),

b0 = 144d4 − 528d3 − 298d2 + 3049d − 2940,

and bi = 12i(2d − 3 − i)(36d3 − 156d2 + 180d − 5), for 1 ≤ i ≤ d − 2.

The divisor TRd is also the first example of a geometric divisor in Mg which

is not a pull-back of an effective divisor from the space Mps
g of pseudo-stable

curves. Precisely, if we denote by R ⊂ Mg the extremal ray obtained by attaching
to a fixed pointed curve [C, q] of genus g − 1 a pencil of plane cubics, then R · λ =
1, R · δ0 = 12, R · δ1 = −1 and R · δα = 0 for α ≥ 2. If δ := δ0 + · · · + δ[g/2] ∈
Pic(Mg) is the total boundary, there exists a divisorial contraction of the extremal

ray R ⊂ ∆1 ⊂ Mg induced by the base point free linear system |11λ − δ| on Mg,

f : Mg → Mps
g .

The image is isomorphic to the moduli space of pseudo-stable curves as de-
fined by D. Schubert in [S]. A curve is pseudo-stable if it has only nodes and
cusps as singularities, and each component of genus 1 (resp. 0) intersects the
curve in at least 2 (resp. 3 points). The contraction f is the first step in carry-
ing out the minimal model program for Mg, see [HH]. One has an inclusion
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f ∗(Eff(Mps
g )) ⊂ Eff(Mg). All the geometric divisors on Mg whose class has

been computed (e.g. Brill-Noether or Gieseker-Petri divisors [EH], Koszul di-
visors [Fa1], [Fa2], or loci of curves with an abnormal Weierstrass point [Di]),

lie in the subcone f ∗(Eff(Mps
g )). The divisor TRd behaves quite differently: If

i : ∆1 = M1,1 ×Mg−1,1 →֒ Mg denotes the inclusion, then we have the relation

i∗(TRd) = α · {j = 0} ×Mg−1,1 +M1,1 × D =

α ·
{

Fermat cubic
}

×Mg−1,1 +M1,1 × D,

where α := 3(2d−4)!
d! (d−3)!

and D ⊂ Mg−1,1 is an explicitly described effective divisor.

Hence when restricted to the boundary divisor ∆1 ⊂ Mg of elliptic tails, TRd

picks-up the locus of Fermat cubic tails!
The rich geometry of TRd can also be seen at the level of genus 2 curves. We

denote by χ : M2,1 → M2d−3 be the map obtained by attaching a fixed tail
[B, q] of genus 2d − 5 at the marked point of every curve of genus 2. Then the
pull-back under χ of every known geometric divisor on M2,1 is a multiple of the
Weierstrass divisor W of M2,1 (cf. [HM], [EH], [Fa1]). In contrast, for TRd we
have the following picture:

Theorem 1.2. If χ : M2,1 → Mg is as above, we have the following relation in

Pic(M2,1):

χ∗(TRd) = N1(d) ·W + e(d, 2d− 5) · D1 + a(d− 1, 2d− 5) · D2 + a(d, 2d− 5) · D3,

where W := {[C, p] ∈ M2,1 : p ∈ C is a Weierstrass point},

D1 := {[C, p] ∈ M2,1 : ∃x ∈ C − {p} such that 3x ≡ 3p},

D2 := {[C, p] ∈ M2,1 : ∃l ∈ G1
3(C), x 6= y ∈ C − {p}

with al
1(x) ≥ 3, al

1(y) ≥ 3, al
1(p) ≥ 2},

and

D3 := {[C, p] ∈ M2,1 : ∃l ∈ G1
4(C), x 6= y ∈ C − {p}

with al
1(p) ≥ 4, al

1(x) ≥ 3, al
1(y) ≥ 3}.

The constants N1(d), e(d, 2d − 5), a(d, 2d − 5), a(d − 1, 2d− 5) appearing in the
statement are explicitly known and defined in Proposition 2.1. We used the nota-
tion al

1(p) := multp(l), for the multiplicity of a pencil l ∈ G1
d(C) at a point p ∈ C.

The classes of the divisors D1,D2,D3 on M2,1 are determined as well (The class
of W is of course well-known, see [EH]):

Theorem 1.3. One has the following formulas expressed in the basis {ψ, λ, δ0} of
Pic(M2,1):

D1 ≡ 80ψ + 10δ0 − 120λ, D2 ≡ 160ψ + 17δ0 − 200λ,

and D3 ≡ 640ψ + 72δ0 − 860λ.

Acknowledgment: I have benefitted from discussions with R. Pandharipande
(5 years ago!) on counting admissible coverings.
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2 Admissible coverings with two triple points

We begin by recalling a few facts about admissible coverings in the context of
points of triple ramification. Let Htr

d be the Hurwitz space parameterizing degree

d maps [ f : C → P1, q1, q2; p1, . . . , p6d−12], where [C] ∈ M2d−3, q1, q2, p1, . . . , p6d−12

are distinct points on P1 and f has one point of triple ramification over each of q1

and q2 and one point of simple ramification over pi for 1 ≤ i ≤ 6d− 12. We denote

by Htr
d the compactification of the Hurwitz space by means of Harris-Mumford

admissible coverings (cf. [HM], [ACV] and [Di] Section 5; see also [BR] for a sur-

vey on Hurwitz schemes and their compactifications). Thus Htr
d is the parameter

space of degree d maps

[ f : X
d:1−→ R, q1, q2; p1, . . . , p6d−12],

where [R, q1, q2; p1, . . . , p6d−12] is a nodal rational curve, X is a nodal curve of
genus 2d − 3 and f is a finite map which satisfies the following conditions:
• f−1(Rreg) = Xreg and f−1(Rsing) = Xsing.
• f has a point of triple ramification over each of q1 and q2 and simple ramification
over p1, . . . , p6d−12. Moreover f is étale over each point in Rreg − {q1, q2, p1, . . . ,
p6d−12}.
• If x ∈ Xsing and x ∈ X1 ∩ X2 where X1 and X2 are irreducible components of X,
then f (X1) and f (X2) are distinct components of R and

multx{ f|X1
: X1 → f (X1)} = multx{ f|X2

: X2 → f (X2)}.

The group S2 ×S6d−12 acts on Htr
d by permuting the triple and the ordinary

ramification points of f respectively and we denote by Hd := Htr
d /S2 ×S6d−12

for the quotient. There exists a stabilization morphism σ : Hd → Mg as well as

a finite map β : Hd → M0,6d−10. The description of the local rings of Htr
d can

be found in [HM] pg. 61-62 or [BR] and will be used in the paper. In particular,

the scheme Htr
d is smooth at points [ f : X → R, q1, q2; p1, . . . , p6d−12] with the

property that there are no automorphisms φ : X → X with f ◦ φ = f .

2.1 The enumerative geometry of pencils on the general curve

We shall determine the intersection multiplicities of TRd with standard test curves
in Mg. For this we need a variety of enumerative results concerning pencils on
pointed curves which will be used throughout the paper. For a point p ∈ C and
a linear series l ∈ Gr

d(C), we denote by

al(p) :
(

0 < al
0(p) < al

1(p) < . . . < al
r(p) ≤ d

)

the vanishing sequence of l at p. If l ∈ G1
d(C), we say that p ∈ C is an n-fold point if

l(−np) 6= ∅. We first recall the results from [HM] Theorem A and [H] Theorem
2.1.
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Proposition 2.1. Let us fix a general curve [C, p] ∈ Mg,1 and an integer d ≥ 2d − g −
1 ≥ 0.
• The number of pencils L ∈ W1

d (C) satisfying h0(L ⊗ OC(−(2d − g − 1)p)) ≥ 1
equals

a(d, g) := (2d − g − 1)
g!

d! (g − d + 1)!
.

• The number of pairs (L, x) ∈ W1
d (C) × C satisfying h0(L ⊗OC(−(2d − g)x)) ≥ 2

equals

b(d, g) := (2d − g − 1)(2d − g)(2d − g + 1)
g!

d! (g − d)!
.

• Fix integers α, β ≥ 1 such that α + β = 2d − g. The number of pairs (L, x) ∈
W1

d (C)× C satisfying h0(L ⊗OC(−βp − γx)) ≥ 1 equals

c(d, g, γ) :=
(

γ2(2d − g)− γ
)

(

g

d

)

.

• The number of pairs (L, x) ∈ W1
d (C)× C satisfying the conditions

h0(L ⊗OC(−(2d − g − 2)p)) ≥ 1 and h0(L ⊗OC(−3x)) ≥ 1 equals

e(d, g) := 8
g!

(d − 3)! (g − d + 2)!
− 8

g!

d! (g − d − 1)!
.

We now prove more specialized results, adapted to our situation of counting
pencils with two triple points:

Proposition 2.2. (1) We fix d ≥ 3 and a general 2-pointed curve [C, p, q] ∈ M2d−6.
The number of pencils l ∈ G1

d(C) having triple points at both p and q equals

F(d) := (2d − 6)!
( 1

(d − 3)!2
− 1

d! (d − 6)!

)

.

(2) For a general curve [C] ∈ M2d−4, the number of pencils l ∈ G1
d(C) having triple

ramification at unspecified distinct points x, y ∈ C, equals

N(d) :=
48(6d2 − 28d + 35) (2d − 4)!

d! (d − 3)!
.

(3) We fix a general pointed curve [C, p] ∈ M2d−5,1. The number of pencils L ∈ W1
d (C)

satisfying the conditions

h0(L ⊗OC(−2p)) ≥ 1, h0(L ⊗OC(−3x)) ≥ 1, h0(L ⊗OC(−3y)) ≥ 1

for unspecified distinct points x, y ∈ C, is equal to

N1(d) := 24(12d3 − 92d2 + 240d − 215)
(2d − 4)!

d! (d − 2)!
.
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Remark 2.3. In the formulas for e(d, g) and F(d) we set 1/n! := 0 for n < 0.

Remark 2.4. As a check, for d = 3 Proposition 2.2 (2) reads N(3) = 80. Thus for
a general curve [C] ∈ M2 there are 160 = 2 · 80 pairs of points (x, y) ∈ C × C,
x 6= y, such that 3x ≡ 3y. This can be seen directly by considering the map
ψ : C × C −→ Pic0(C) given by ψ(x, y) := OC(3x − 3y). Then
ψ∗(0) = 1

2

∫

C×C ψ∗(ω ∧ ω) = 2 · 32 · 32 = 162, where ω is a differential form
representing θ. To get the answer to our question we subtract from 162 the con-
tribution of the diagonal ∆ ⊆ C × C. This excess intersection contribution is
equal to 2 (cf. [Di]), so in the end we get 160 = 162 − 2 pairs of distinct points
(x, y) ∈ C × C with 3x ≡ 3y.

Proof. (1) This is a standard exercise in limit linear series and Schubert calculus
in the spirit of [EH]. We let [C, p, q] ∈ M2d−6,2 degenerate to the stable 2-pointed

curve [C0 := P1 ∪ E1 ∪ . . . ∪ E2d−6, p0, q0], consisting of elliptic tails {Ei}2d−6
i=1 and

a rational spine, such that {pi} = Ei ∩ P1, and the marked points p0, q0 lie on
the spine. We also assume that p1, . . . , p2d−6, p0, q0 ∈ P1 are general points, in
particular p0, q0 ∈ P1 − {p1, . . . , p2d−6}. Then F(d) is the number of limit g1

d’s on
C0 having triple ramification at both p0 and q0 and this is the same as the number
of g1

d’s on P1 having cusps at p1, . . . , p2d−6 and triple ramification at p0 and q0.

This equals the intersection number of Schubert cycles σ2
(0,2)

σ2d−6
(0,1)

(computed in

Htop(G(1, d), Z)). The product can be computed using formula (v) on page 273
in [Fu1] and one finds that

σ2
(0,2) σ2d−6

(0,1)
= (2d − 6)!

( 1

(d − 3)!2
− 1

d! (d − 6)!

)

.

(2) This is more involved. We specialize [C] ∈ M2d−4 to [C0 := P1 ∪ E1 ∪ . . . ∪
E2d−4], where Ei are general elliptic curves, {pi} = P1 ∩ Ei and p1, . . . , p2d−4 ∈ P1

are general points. Then N(d) is equal to the number of limit g1
d’s on C0 with

triple ramification at two distinct points x, y ∈ C0. Let l be such a limit g1
d. We

can assume that both x and y are smooth points of C0 and by the additivity of
the Brill-Noether number (see e.g. [EH] pg. 365), we find that x, y must lie on the
tails Ei. Since [Ei, pi] ∈ M1,1 is general, we assume that j(Ei) 6= 0 (that is, none
of the Ei’s is the Fermat cubic). Then there can be no li ∈ G1

3(Ei) carrying 3 triple
ramification points. There are two cases we consider:
a) There are indices 1 ≤ i < j ≤ 2d − 4 such that x ∈ Ei and y ∈ Ej. Then

alEi (pi) = a
lEj (pj) = (d− 3, d), hence 3x ≡ 3pi on Ei and 3y ≡ 3pj on Ej. There are

8 choices for x ∈ Ei, 8 choices for y ∈ Ej and (2d−4
2 ) choices for the tails Ei and Ej

containing the triple points. On P1 we count g1
d’s with cusps at {p1, . . . , p2d−4} −

{pi, pj} and triple points at pi and pj. This number is again equal to σ2
(0,2)

σ2d−6
(0,1)

∈
Htop(G(1, d), Z) and we get a contribution of

64

(

2d − 4

2

)

σ2
(0,2) σ2d−6

(0,1)
= 32(2d − 4)!

( 1

(d − 3)!2
− 1

d! (d − 6)!

)

. (1)

b) There is 1 ≤ i ≤ 2d − 4 such that x, y ∈ Ei. We distinguish between two
subcases:
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b1) alEi (pi) = (d− 3, d− 1). On P1 we count g1
d−1’s with cusps at p1, . . . , p2d−4 and

this number is σ2d−4
(0,1)

(in Htop(G(1, d − 1), Z)). On Ei we compute the number of

g1
3’s having triple ramification at unspecified points x, y ∈ Ei − {pi} and ordinary

ramification at pi. For simplicity we set [Ei, pi] := [E, p]. If we regard p ∈ E as the
origin of E, then the translation map (x, y) 7→ (y − x,−x) establishes a bijection
between the set of pairs (x, y) ∈ E × E − ∆, x 6= p 6= y 6= x, such that there
is a g1

3 in which x, y, p appear with multiplicities 3, 3 and 2 respectively, and the

set of pairs (u, v) ∈ E × E − ∆, with u 6= p 6= v 6= u such that there is a g1
3 in

which u, v, p appear with multiplicities 3, 2 and 3 respectively. The latter set has
cardinality 16, hence the number of pencils g1

3 we are counting is 8 = 16/2. All in
all, we find a contribution of

8(2d − 4) σ2d−4
(0,1)

= 16

(

2d − 4

d − 1

)

. (2)

b2) alEi (pi) = (d − 4, d). This time, on P1 we look at g1
d’s with cusps at {p1, . . . ,

p2d−4}−{pi} and a 4-fold point at p1. Their number is σ(0,3) σ2d−5
(0,1)

∈ Htop(G(1, d),

Z)). On Ei we compute the number of g1
4’s for which there are distinct points

x, y ∈ Ei −{pi} such that pi, x, y appear with multiplicities 4, 3 and 3 respectively.
Again we set [Ei, pi] := [E, p] and denote by Σ the closure in E × E of the locus

{(u, v) ∈ E × E − ∆ : ∃l ∈ G1
4(E) such that al

1(p) = 4, al
1(u) ≥ 3, al

1(v) ≥ 2}.

The class of the curve Σ can be computed easily. If Fi denotes the numerical
equivalence class of a fibre of the projection πi : E × E → E for i = 1, 2, then

Σ ≡ 10F1 + 5F2 − 2∆. (3)

The coefficients in this expression are determined by intersecting Σ with ∆ and
the fibres of πi. First, one has that Σ ∩ ∆ = {(x, x) ∈ E × E : x 6= p, 4p ≡ 4x} and

then Σ ∩ π−1
2 (p) = {(y, p) ∈ E × E : y 6= p, 3p ≡ 3y}. These intersections are

all transversal, hence Σ · ∆ = 15, Σ · F2 = 8, whereas obviously Σ · F1 = 3. This
proves (3).

The number of pencils l ⊆ |OE(4p)| having two extra triple points will then
be equal to 1/2 #(ramification points of π2 : Σ → E) = Σ2/2 = 20. We have
obtained in this case a contribution of

20(2d − 4) σ(0,3) σ2d−5
(0,1)

= 80

(

2d − 4

d

)

. (4)

Adding together (1),(2) and (4), we obtain the stated formula for N(d).
(3) We relate N1(d) to N(d) by specializing the general curve from M2d−4 to
[C ∪p E] ∈ ∆1 ⊂ M2d−4, where [C, p] ∈ M2d−5,1 and [E, p] ∈ M1,1. Under this

degeneration N(d) becomes the number of admissible coverings f : X
d:1→ R hav-

ing as source a nodal curve X stably equivalent to C ∪p E and as target a genus
0 nodal curve R. Moreover, f possesses distinct unspecified triple ramification
points x, y ∈ Xreg. There are a number of cases depending on the position of x
and y.
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(3a) x, y ∈ C − {p}. In this case deg( fC) = d and because of the generality of
[C, p], fC has to be one of the finitely many g1

d’s having two distinct triple points
and a simple ramification point at p ∈ C. The number of such coverings is pre-
cisely N1(d). By the compatibility condition on ramification indices at p, we find
that deg( fE) = 2 and the E-aspect of f is induced by |OE(2p)|. The curve X is ob-

tained from C∪p E by inserting d− 2 copies of P1 at the points in f−1
C ( f (p))−{p}.

We then map these rational curves isomorphically to f (E). This admissible cover
has no automorphisms and it should be counted with multiplicity 1.

(3b) x, y ∈ E−{p}. The curve [C] ∈ M2d−5 being Brill-Noether general, it carries
no linear series g1

d−2, hence deg( fC) ≥ d − 1. We distinguish two subcases:

If deg( fC) = d − 1, then fC is one of the a(d − 1, 2d − 5) linear series g1
d−1 on

C having p as an ordinary ramification point. Since C and E meet only at p, we
have that deg( fE) = 3, and fE corresponds to a g1

3 on E having two unspecified

triple points and a simple ramification point at p. There are 8 such g1
3’s on E (see

the proof of Proposition 2.2). To obtain a degree d admissible covering, we first

attach a copy (P1)1 of P1 to E at the point q ∈ f−1
E ( f (p)) − {p}, then map (P1)1

and C map to the same component of R. Then we insert d − 2 copies of P1 at the
points lying in the same fibre of fC as p. All these rational curves map to the same
copy of R as E. Each of these 8a(d − 1, 2d − 5) admissible coverings is counted
with multiplicity 1.

If deg( fC) = d, then fC corresponds to one of the a(d, 2d − 5) linear series g1
d

with a 4-fold point at p. By compatibility, fE corresponds to a g1
4 in which p and

two unspecified points x, y ∈ E appear with multiplicities 4, 3 and 3 respectively.
There are 20 such g1

4’s on E, hence 20a(d, 2d − 5) admissible coverings.
(3c) x ∈ E − {p}, y ∈ C − {p}. In this situation deg( fC) = d and fC corresponds
to one of the e(d, 2d − 5) coverings g1

d on C having a triple point at p and another
unspecified triple point at y ∈ C. Then deg( fE) = 3 and 3x ≡ 3p, that is, there are
8 choices of the E-aspect of f . We obtain X by attaching to C copies of P1 at the

d − 3 points in f−1
C ( f (p)) − {p}, and mapping these curves isomorphically onto

f (C).
By degeneration to [C ∪p E], we have found the relation for [C, p] ∈ M2d−5,1:

N(d) = N1(d) + 20a(d, 2d − 5) + 8a(d − 1, 2d − 5) + 8e(d, 2d − 5).

This immediately leads to the claimed expression for N1(d).

3 The class of the divisor TRd

The strategy to compute the class [TRd] is similar to the one employed by Eisen-

bud and Harris in [EH] to determine the class of the Brill-Noether divisors [Mr
g,d]

of curves with a gr
d in the case ρ(g, r, d) = −1: We determine the restrictions of

TRd to M0,g and M2,1 via obvious flag maps. However, because in the definition

of TRd we allow 2 degrees of freedom for the triple ramification points, the calcu-
lations are much more intricate (and interesting) than in the case of Brill-Noether
divisors.
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Proposition 3.1. Consider the flag map j : M0,g → Mg obtained by attaching g

general elliptic tails at the g marked points. Then j∗(TRd) = 0. If we have a linear
relation

TRd ≡ a λ −
d−2

∑
i=0

bi δi ∈ Pic(Mg), then bi =
i(g − i)

g − 1
b1, for 1 ≤ i ≤ d − 2.

Proof. The second part of the statement is a consequence of the first: For an effec-

tive divisor D ≡ aλ − ∑
d−2
i=0 biδi ∈ Pic(Mg) satisfying the condition j∗(D) = ∅,

we have the relations among its coefficients: bi = i(g−i)
g−1 b1 for i ≥ 1 (cf. [EH]

Theorem 3.1).
Suppose that [X := R ∪x1

E1 ∪ . . . ∪xg Eg] ∈ j(M0,g) is a flag curve corre-

sponding to a g-stable rational curve [R, x1, . . . , xg]. The elliptic tails {Ei}g
i=1 are

general and we may assume that all the j-invariants are different from 0. In par-
ticular, none of the [Ei, xi]’s carries a g1

3 with triple ramification points at xi and at

two unspecified points x, y ∈ Ei − {xi}. Assuming that [X] ∈ TRd, there exists

l ∈ G
1
d(X) a limit g1

d, together with distinct ramification points x 6= y ∈ X, such

that al
1(x) ≥ 3 and al

1(y) ≥ 3. By blowing-up if necessary the nodes xi (that is, by

inserting chains of P1’s at the points xi), we may assume that both x, y are smooth
points of X.

We make use of the following facts: On R we have that the inequality

ρ(lR, x1, . . . , xg, z1, . . . , zt) ≥ 0,

for any choice of distinct points z1, . . . , zt ∈ R − {x1, . . . , xg}. On the elliptic tails,
we have that ρ(lEi

, xi, z) ≥ −1, for any point z ∈ Ei − {xi}, with equality only

if z − xi ∈ Pic0(Ei) is a torsion class. Using these remarks as well as and the
additivity of the Brill-Noether number of l, since ρ(l, x, y) = −3 it follows that
there must exist an index 1 ≤ i ≤ g such that x, y ∈ Ei −{xi}, and ρ(lEi

, xi, x, y) =

−3. This implies that alEi (xi) = (d − 3, d) and that lEi
(−(d − 3)xi) ∈ G1

3(Ei) has
triple ramification points at distinct points xi, x and y. This can happen only if Ei

is isomorphic to the Fermat cubic, a contradiction.

The next result highlights the difference between TR and all the other geo-
metric divisors in the literature, cf. [HM], [EH], [H], [Fa1], [Fa2]: TR is the first
example of a geometric divisor on Mg not pulled-back from the space Mps

g of
pseudo-stable curves.

Proposition 3.2. If TRd ≡ a λ − ∑
d−2
i=0 bi δi ∈ Pic(Mg), then a − 12b0 + b1 =

4a(d, 2d − 4).

Proof. We use a standard test curve in Mg obtained by attaching to the marked
point of a general pointed curve [C, q] ∈ M2d−4,1 a pencil of plane cubics. If

R ⊂ Mg is the family induced by this pencils, then clearly R · λ = 1, R · δ0 =
12, R · δ1 = −1 and R · δj = 0 for j ≥ 2.

Set-theoretically, R ∩ TRd consists of the points corresponding to the elliptic
curves [E, q] in the pencil, for which there exists l ∈ G1

3(E) as well as two distinct
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points x, y ∈ E − {q} with al
1(q) = al

1(x) = al
1(y) = 3 (It is a standard limit linear

series argument to show that the triple points of the limit g1
d must specialize to

the elliptic tail). Then E must be isomorphic to the Fermat cubic, (thus j(E) = 0,
and this curve appears 12 times in the pencil. The pencil l ∈ G1

3(E) is of course
uniquely determined. Since Aut(E, q) = Z/6Z while a generic element from
M1,1 has automorphism group Z/2Z, each point of intersection will contribute
4 = 24/6 times in the intersection R ∩ TRd. On the side of the genus 2d − 4
component, we count pencils L ∈ W1

d (C) with aL
1 (q) ≥ 3. Using Proposition 2.1

their number is finite and equal to a(d, 2d − 4), hence R · TRd = 4a(d, 2d − 4).

Next we describe the restriction of TRd under the map χ : M2,1 → M2d−3

obtained by attaching a fixed tail B of genus 2d − 5 to each pointed curve [C, p] ∈
M2,1. It is revealing to compare Theorem 1.2 to Propositions 4.1 and 5.5 in [EH]:

When ρ(g, r, d) = −1, the pull-back of the Brill-Noether divisor χ∗(Mr
g,d) is irre-

ducible and supported on W . By contrast, TRd displays a much richer geometry.

Proof of Theorem 1.2. We fix a general pointed curve [B, p] ∈ M2d−5,1. For each
[C, p] ∈ M2,1, we study degree d admissible coverings [ f : X → R, q1, q2; p1, . . . ,

p6d−12] ∈ Htr
d with source curve X stably equivalent to C ∪p B, and target R a

nodal curve of genus 0. Moreover, f is assumed to have distinct points of triple
ramification x, y ∈ Xreg, where f (x) = q1 and f (y) = q2. It is easy to check that
both x and y must lie either on C or on B (and not on rational components of X
we may insert). Depending on their position we distinguish four cases:
(i) x, y ∈ B. A parameter count shows that deg( fB) = d and p ∈ B must be a
simple ramification point for fB. By compatibility of ramification sequences at p,
then fC must also be simply ramified at p, that is, p ∈ C is a Weierstrass point and
fC is induced by |OC(2p)|. There is a canonical way of completing { fC, fB} to an

element in Hd, by attaching rational curves to B at the points in f−1
B ( f (p)) − {p}.

For a fixed [C, p] ∈ W , the Hurwitz scheme is smooth at each of the points t ∈ Htr
d

corresponding to an admissible coverings { fC, fB} of the type described above.
Since t has no automorphisms permuting some of the branch points, it follows

that Hd = Htr
d /S2 ×S6d−12 is also smooth at each of the N1(d) points in the fibre

σ−1([C ∪p B]). This implies that N1(d) · W appears as an irreducible component

in the pull-back divisor χ∗(TRd).
(ii) x, y ∈ C, deg( fB) = d. Clearly deg( fC) ≥ 4 and the B-aspect of the covering
must have a 4-fold point at p. There are a(d, 2d − 5) choices for fB, whereas fC

corresponds to a linear series lC ∈ G1
4(C) with a

lC
1 (p) = 4 and which has two other

points of triple ramification. To obtain the domain of an admissible covering, we

attach to B rational curves at the (d− 4) points in f−1
B ( f (p))−{p}. We map these

curves isomorphically onto fC(C). The divisor a(d, 2d − 5) · D3 is an irreducible
component of χ∗(TRd).
(iii) x, y ∈ C, deg( fB) = d − 1. In this case the B-aspect corresponds to one
of the a(d − 1, 2d − 5) linear series lB ∈ G1

d−1(B) with simple ramification at p,
while fC is a degree 3 covering having two unspecified points of triple ramifi-
cation and simple ramification at p ∈ C. To obtain a point in Hd, we attach a

rational curve T′ to C at the remaining point in f−1
C ( f (p) − {p}. We then map
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T′ isomorphically onto fB(B). Next, we attach d − 3 rational curves to B at the

points f−1
B ( f (p)) − {p}, which we map isomorphically onto fC(C). Each result-

ing admissible covering has no automorphisms and is a smooth point of Hd. Thus
a(d − 1, 2d − 5) · D2 is a component of χ∗(TRd).
(iv) x ∈ C, y ∈ B. After a moment of reflection we conclude that deg( fB) = d, that

is, fB corresponds to one of the e(d, 2d − 5) coverings lB ∈ G1
d(B) with alB

1 (p) = 3

and alB
1 (y) = 3 at some unspecified point y ∈ B − {p}. The C-aspect of f is

determined by the choice of a point x ∈ C − {p} such that 3x ≡ 3p. Hence
e(d, 2d − 5) · D1 is the final irreducible component of χ∗(TRd).

As a consequence of Proposition 3.1 and Theorem 1.2 we are in a position to
determine all the δi-coefficients (i ≥ 1) in the expansion of TRd in the basis of
Pic(Mg):

Theorem 3.3. If TRd ≡ a λ − ∑
d−2
i=0 bi δi ∈ Pic(Mg), then we have that

bi =
(2d − 6)!

2 d!(d − 3)!
i(2d − 3 − i)(36d3 − 156d2 + 180d − 5), for all 1 ≤ i ≤ d − 2.

Proof. We use the obvious relations χ∗(δ2) = −ψ, χ∗(λ) = λ, χ∗(δ0) = δ0,
χ∗(δ1) = δ1. If for a class E ∈ Pic(M2,1) we denote by (E)ψ the coefficient of

ψ in its expansion in the basis {ψ, λ, δ0} of Pic(M2,1) (see also the next section for
details on the divisor theory of M2,1), then, using Proposition 3.2, we can write
the following relation:

b2 =
2(g − 2)

g − 1
b1 = N1(d)(W )ψ + e(d, 2d − 5)(D1)ψ+

a(d − 1, 2d − 5)(D2)ψ + a(d, 2d − 5)(D3)ψ.

We determine the coefficients (Di)ψ for 1 ≤ i ≤ 3 by intersecting each of these

divisors with a general fibral curve F := {[C, p]}p∈C ⊂ M2,1 of the projection

π : M2,1 → M2. (Note that (W)ψ = 3).
It is useful to recall that if [C, q] ∈ M2,1 is a fixed general pointed curve and

a ≥ b ≥ 0 are integers, then the number of pairs (p, x) ∈ C × C, p 6= x satisfying
a linear equivalence relation a · x ≡ b · p + (a − b) · q in Pica(C), equals

r(a, b) := 2(a2b2 − 1). (5)

We start with D1 and note that F · D1 is the number of pairs (x, p) ∈ C × C with
x 6= p, such that 3x ≡ 3p, which is equal to r(3, 3) = 160 and then (D1)ψ =

r(3, 3)/(2g − 2) = 80. To compute F · D2 we note that there are 80 = r(3, 3)/2
pencils L ∈ W1

3 (C) with two distinct triple ramification points. From the Hurwitz-
Zeuthen formula, each such pencil has 4 more simple ramification points, thus
(D2)ψ = 4 × 80/(2g − 2) = 160. Finally, F · D3 = n0/2, where by n0 we denote

the number of pencils l ∈ W1
4 (C) having one unspecified point of total ramifi-

cation and two further points of triple ramification, that is there exist mutually
distinct points x, y, p ∈ C with al

1(p) = 4 and al
1(x) = al

1(y) = 3.
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We compute n0 by letting C specialize to a curve of compact type [C0 := C1 ∪q

C2], where [C1, q], [C2, q] ∈ M1,1. Then n0 is the number of admissible coverings

f : X
4:1→ R, where R is of genus 0 and X is stably equivalent to C0 and has a

4-fold ramification point p ∈ Xreg and triple ramification points x, y ∈ Xreg. We
distinguish three cases:
(i) x, y ∈ C2 and p ∈ C1 (Or x, y ∈ C1 and p ∈ C2). In this case deg( fC1

) =
deg( fC2

) = 4 and we have the linear equivalence 4p ≡ 4q on C1. This yields

15 choices for p 6= q. On C2 we count g1
4’s with total ramification at q, and two

unspecified triple points. This number is equal to 20 (see the proof of Proposition
2.2). Reversing the role of C1 and C2 we double the number of coverings and we
find 600 = 2 · 15 · 20 admissible g1

4’s.
(ii) x, p ∈ C2 and y ∈ C1 (Or x, p ∈ C1 and y ∈ C2). In this situation deg( fC1

) = 3
and deg( fC2

) = 4 and on C1 we have the linear equivalence 3y ≡ 3q, which

gives 8 choices for y. On C2 we count lC2
∈ G1

4(C2) in which two unspecified

points p, x ∈ C2 appear with multiplicities 4 and 3 respectively, while a
lC2
1 (q) = 3.

By translation, this is the same as the number of pairs of distinct points (u, v) ∈
C2 − {q} × C2 − {q} such that there exists l2 ∈ G1

4(C2) with al2
1 (q) = 4, al2

1 (x) =

al2
1 (y) = 3. This number equals 40 (again, see the proof of Proposition 2.2). By

reversing the role of C1 and C2 the total number of coverings in case (ii) is 640 =
2 · 8 · 40.
(iii) x, y, p ∈ C1 (or x, y, p ∈ C2). A quick parameter count shows that deg( fC2

) =
2 and multq( fC2

) = multq( fC1
) = 2. Hence fC2

is induced by |OC2
(2q)|. On C1

we count g1
4’s in which the points p, x, y, q appear with multiplicities 4, 3, 3 and 2

respectively. The translation on C2 from p to q shows that we are yet again in the
situation of Proposition 2.2 and this last number is 20. We interchange C1 and C2

and we find 40 admissible g1
4’s on C1 ∪ C2 with all the non-ordinary ramification

concentrated on a single component.
By adding (i), (ii) and (iii) together, we obtain n0 = 600 + 640 + 40 = 1280.

This determines (D3)ψ = n0/(2g − 2) = 640 and completes the proof.

4 The divisor theory of M2,1

The remaining part of the calculation of [TRd] has been reduced to the problem of
determining the divisor classes [Di] (i = 1, 2, 3) on M2,1. We recall some things
about divisor theory on this space (see also [EH]). There are two boundary divisor
classes:
• δ0, whose generic point is an irreducible 1-pointed nodal curve of genus 2.
• δ1, with generic point being a transversal union of two elliptic curves with the
marked point lying on one of the components.

If π : M2,1 → M2 is the universal curve then ψ := c1(ωπ) ∈ Pic(M2,1)
denotes the tautological class and λ = π∗(λ) ∈ Pic(M2,1) is the Hodge class.
Unlike the case g ≥ 3, λ is a boundary class on M2, and we have Mumford’s
genus 2 relation:

λ =
1

10
δ0 +

1

5
δ1.
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The classes ψ, λ and δ1 form a basis of Pic(M2,1)⊗Q. The class of the Weierstrass
divisor has been computed in [EH] Theorem 2:

W ≡ 3ψ − λ − δ1. (6)

We start by determining the class of D1 of 3-torsion points:

Proposition 4.1. The class of the closure in M2,1 of the effective divisor

D1 = {[C, p] ∈ M2,1 : ∃x ∈ C − {p} such that 3x ≡ 3p}
is given by [D1] = 80ψ + 10δ0 − 120λ ∈ Pic(M2,1).

Proof. We introduce the map χ : M2,1 → M4 given by χ([C, p]) := [B ∪p C],

where [B, p] is a general 1-pointed curve of genus 2. On M4 we have the divi-
sor of curves with an exceptional Weierstrass point Di := {[C] ∈ M4 : ∃x ∈
C such that h0(C, 3x) ≥ 2}. Its class has been computed by Diaz [Di]: Di ≡
264λ − 30δ0 − 96δ1 − 128δ2 ∈ Pic(M4).

We claim that χ∗(Di) = D1 + 16 · W . Indeed, let [C, p] ∈ M2,1 be such that
χ([C, p]) ∈ Di. Then there is a limit g1

3 on X := B ∪p C, say l = {lB, lC}, which
has a point of total ramification at some x ∈ Xreg. There are two possibilities:

(i) If x ∈ C, then alB(p) = (0, 3), hence lB = |OB(3p)|, while on C we have the
linear equivalence 3p ≡ 3x, that is, [C, p] ∈ D1.
(ii) If x ∈ B, then alC(p) = (1, 3), that is, p ∈ B is a Weierstrass point and moreover
lC = p + |OC(2p)|. On B we have that alB(p) = (0, 2) and alB(x) = (0, 3), that is,
3x ≡ 2p + y for some y ∈ B − {p, y}. There are r(3, 1) = 16 such pairs (x, y).

Thus we have proved that χ∗(Di) = D1 + 16 · W (We would have obtained
the same conclusion using admissible coverings instead of limit g1

3’s). We find the

formula for [D1] if we remember that χ∗(δ0) = δ0, χ∗(δ1) = δ1, χ∗(δ2) = −ψ and
χ∗(λ) = λ.

4.1 The divisor TR3 and the class of D2

We compute the class of the divisor D2 on M2,1 by determining directly the class
of TR3 in genus 3 (In this case D3 = ∅). Much of the set-up we develop here is
valid for arbitrary d ≥ 3 and will be used in the next section when we compute
the class [TR4] on M5. We fix a general [C, p] ∈ M2d−4,1 and introduce the
following enumerative invariant:

N2(d) := #{l ∈ G1
d(C) : ∃x 6= y ∈ C − {p} such that l(−3x) 6= ∅

and l(−p − 2y) 6= ∅}.

For instance, N2(3) is the number of pairs (x, y) ∈ C × C, x 6= p 6= y such that
3x ≡ p + 2y, hence N2(3) = r(3, 2) = 70 (cf. formula (5)).
For each d ≥ 4 we fix a general pointed curve [B, q] ∈ M2d−5,1 and define the
invariant:

N3(d) := #{l ∈ G1
d(B) : ∃x 6= y ∈ B − {q} such that l(−3x) 6= ∅

and l(−2q − 2y) 6= ∅}.
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Theorem 4.2. The closure of the divisor TR3 := {[C] ∈ M3 : ∃x 6= p ∈ C with
3x ≡ 3x} is linearly equivalent to the class

TR3 ≡ 2912λ − 311δ0 − 824δ1 ∈ Pic(M3).

It follows that D2 ≡ −200λ + 160ψ + 17δ0 ∈ Pic(M2,1).

Proof. For most of this proof we assume d ≥ 3 and we specialize to the case of M3

only at the very end. We write TRd ≡ a λ − b0 δ0 − · · · − bd−2 δd−2 ∈ Pic(Mg)
and we have already determined b1, . . . , bd−2 (cf. Theorem 3.3) while we know
that a − 12b0 + b1 = 4a(d, 2d − 4) (cf. Proposition 3.2). We need one more relation
involving a, b0 and b1, which we obtain by intersecting TRd with the test curve

C0 :=
{ C

q ∼ p

}

p∈C
⊂ ∆0 ⊂ Mg

obtained from a general curve [C, q] ∈ M2d−4,1. The number C0 · TRd counts
(with appropriate multiplicities) admissible coverings

t := [ f : X
d:1→ R, q1, q2 : p1, . . . , p6d−12] mod S2 ×S6d−12 ∈ Hd,

where the source X is stably equivalent to the curve C ∪{p,q} T (q ∈ C) ob-

tained by ”blowing-up” C
q∼p at the node and inserting a rational curve T. These

covers should possess two points of triple ramification x, y ∈ Xreg such that

f (x) = q1, f (y) = q2. Suppose t ∈ C0 · TR and again we distinguish a num-
ber of possibilities:
(i) x, y ∈ C. Then deg( fC) = d and fC corresponds to one of the N(d) linear
series l ∈ G1

d(C) with two points of triple ramification. The point q ∈ C is such
that l(−p − q) 6= ∅, which, after having fixed l, gives d − 1 choices. Clearly
multq( fC) = multq( fT) = 1. This implies that deg( fT) = 2 and fT is given by

|OT(p + q)|. To obtain out of { fC, fB} a point t ∈ Htr
d , we attach rational curves

to C at the points in f−1
C ( f (p)) − {p, q} and map these isomorphically onto the

component fT(T) of R. Each such cover has an automorphism φ : X → X of order
2 such that φC = idC, φT′ = idT′ , for every rational component T′ 6= T of X, but

φT interchanges the 2 branch points of T. Even though t ∈ Htr
d is a smooth point

(because there is no automorphism of X preserving all the ramification points of
f ), if τ ∈ S6d−12 is the involution exchanging the marked points lying on fT(T),

then τ · t = t. Therefore Htr
d /S2 → Mg is simply ramified at t. In a general

deformation [X → R] of [ f : X → R] in Htr
d we blow-down T and obtain a

rational double point, hence the image of R in Mg meets ∆0 with multiplicity 2.

Since Htr
d /S2 → Mg is ramified anyway, it follows that each of the (d − 1)N(d)

admissible coverings found at this step is to be counted with multiplicity 1.
(ii) x ∈ C, y ∈ T. Since C has only finitely many g1

d−1’s, all simply ramified and
having no ramification in the fibre over q, we must have that deg( fC) = d and
deg( fT) = 3. Moreover, C and T map via f onto the two components of the target
R in such a way that fC(p) = fC(q) = fT(p) = fC(q). In particular, both fC and fT

are simply ramified at either p or q. If fC is ramified at q ∈ C, then fC is induced



The Fermat cubic and special Hurwitz loci in Mg 845

by one of the e(d, 2d − 4) linear series l ∈ G1
d(C) with one unassigned point of

triple ramification and one assigned point of simple ramification. Having fixed l,
there are d− 2 choices for p ∈ C such that l(−2q− p) 6= ∅. On T there is a unique
g1

3 corresponding to a map fT : T → P1 such that f ∗T(0) = 2q + p and f ∗T(∞) = 3y,
for some y ∈ T − {q, p}. Finally, we attach d − 3 rational curves to C at the points

in f−1
C ( f (q)) − {p, q} and we map these components isomorphically onto fT(T).
The other possibility is that fC is unramified at q and ramified at p. The num-

ber of such g1
d’s is N2(d). On the side of T, there is a unique way of choosing

fT : T
3:1→ P1 such that f ∗T(0) = q + 2p and f ∗T(∞) = 3y. Because the map

σ : Hd → Mg blows-down the component T, if [X → R] is a general defor-
mation of [ f : X → R] then σ(R) meets ∆0 with multiplicity 3 (see also [Di],
pg. 47-52). Thus TRd · ∆0 has multiplicity 3 at the point [C/p ∼ q]. The ad-
missible coverings constructed at this step have no automorphisms, hence they
each must be counted with multiplicity 3. This yields a total contribution of
3(d − 2)e(d, 2d − 4) + 3N2(d).
(iii) x, y ∈ T − {p, q}. Here there are two subcases. First, we assume that

deg( fC) = d − 1, that is, fC is induced by one of the
(2d−4)!

(d−1)!(d−2)!
linear series

l ∈ G1
d−1(C). For each such l, there are d − 2 possibilities for p such that

l(−q − p) 6= ∅. Clearly deg( fT) = 3 and the admissible covering f is con-
structed as follows: Choose fT : T → P1 such that f ∗T(0) = 3x, f ∗T(∞) = 3y
and f ∗T(1) = p + q + q′. We map C to the component of R other than fT(T) by us-
ing l ∈ G1

d−1(C) and fC(p) = fT(p) and fC(q) = fT(q). We attach to T a rational

curve T′ at the point q′ and map T′ isomorphically onto f (C). Finally we attach

d − 3 rational curves to C at the points in f−1
C ( f (q)) − {q, p}. Each of these (2d−4

d−1 )
elements of hd is counted with multiplicity 2.

We finally deal with the case deg( fC) = d. Since a g1
3 on P1 with two points of

total ramification must be unramified everywhere else, it follows that deg( fT) ≥
4. The generality assumption on [C, q] implies that deg( fT) = 4. The C-aspect of
f is induced by l ∈ G1

d(C) for which there are integers β, γ ≥ 1 with β + γ = 4
and a point p ∈ C such that l(−βp − γq) 6= ∅. Proposition 2.1 gives the number

c(d, 2d − 4, γ) of such l ∈ G1
d(C). On the side of T, we choose fT : T

4:1→ P1 such
that f ∗T(0) = 3x, f ∗T(∞) = 3y and f ∗T(1) = βp + γq. When γ ∈ {1, 3}, up to
isomorphism there is a unique such fT having 3 triple ramification points. By
direct computation we have the formula:

fT : T → P1, fT(t) :=
2t3(t − 2)

2t − 1
,

which has the properties that f
(i)
T (0) = f

(i)
T (∞) = f

(i)
T (1) = 0, for i = 1, 2. When

γ = 2, there are two g1
4’s with 2 points of triple ramification and 2 points of

simple ramification lying in the same fibre. It is important to point out that fT

(and hence the admissible covering f as well), has an automorphism of order
2 which preserves the points of attachment p, q ∈ T but interchanges x and y
(In coordinates, if x = 0, y = ∞ ∈ T, check that fT(1/t) = 1/ fT(t)). This implies

that Htr
d → Md is (simply) ramified at [X → R]. Furthermore, a calculation

similar to [Di] pg. 47-50, shows that the image in Mg of a generic deformation
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in Htr
d of [X → T] meets the divisor ∆0 with multiplicity 4 = β + γ. It follows

that TRd · ∆0 has multiplicity 4/2 = 2 in a neighbourhood of [C/p ∼ q], that is,
each covering found at this step gets counted with multiplicity 2 in the product
C0 · TR. Coverings of this type give a contribution of

2c(d, 2d − 4, 1) + 2c(d, 2d − 4, 3) + 4c(d, 2d − 4, 2) = 128

(

2d − 4

d

)

.

Thus we can write the following equation:

(2g − 2)b0 − b1 = C0 · TRd = (7)

= (d − 1)N(d) + 3N2(d) + 3(d − 2)e(d, 2d − 4) + 128

(

2d − 4

d

)

+ 2

(

2d − 4

d − 1

)

.

For d = 3, when N2(d) = 70, all terms in (7) are known and this finishes the
proof.

5 The divisor TR5 and the class of D3

In this section we finish the computation of [TRd] (and implicitly compute [D3] ∈
Pic(M2,1) and determine N2(d) for all d ≥ 3 as well). According to (7) it suffices
to compute N2(4) to determine [TR4] ∈ Pic(M5). Then applying Theorem 1.2
we obtain [D3] which will finish the calculation of [TRd] for g = 2d − 3. We
summarize some of the enumerative results needed in this section:

Proposition 5.1. We fix a general 2-pointed elliptic curve [E, p, q] ∈ M1,2.
(a) There are 11 pencils l ∈ G1

3(E) such that there exist distinct points x, y ∈ E − {p, q}
with al

1(x) = 3, al
1(q) = 2 and l(−p − 2y) 6= ∅.

(b) There are 38 pencils l ∈ G1
4(E) such that there exist distinct points x, y ∈ E − {p, q}

with al
1(p) = 4, al

1(x) = 3 and l(−q − 2y) 6= ∅.

Proof. (a) We denote by U the closure in E × E of the locus

{(u, v) ∈ E × E − ∆ : ∃l ∈ G1
3(E) such that al

1(q) = 3, al
1(u) ≥ 2, al

1(v) ≥ 2}

and denote by Fi the (numerical class of the) fibre of the projection πi : E × E → E
for i = 1, 2. Using that U ∩ ∆ = {(u, u) : u 6= q, 3u ≡ 3q} (this intersection is
transversal!), it follows that U ≡ 4(F1 + F2)− ∆. If q ∈ E is viewed as the origin
of E, then the isomorphism E × E ∋ (x, y) 7→ (−x, y − x) ∈ E × E shows that the
number of l ∈ G1

3(E) we are computing, equals the intersection number U · V on
E × E, where

V := {(u, v) ∈ E × E : 2v + u ≡ 4q − p}.

Since V ≡ 3F1 + 6F2 − 2∆, we reach the stated answer by direct calculation.
(b) We specialize [E, p, q] ∈ M1,2 to the stable curve [E ∪r T, p, q] ∈ M1,2, where

[T, r, p, q] ∈ M0,3. We count admissible coverings [ f : X
4:1−→ R, p̃, q̃], where

p̃, q̃ ∈ Xreg, R is a nodal curve of genus 0 and there exist points x, y ∈ Xreg with
the property that the divisors 4p̃, 3x, q̃ + 2y on X all appear in distinct fibres of f .
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Moreover [X, p̃, q̃] is a pointed curve stably equivalent to [E ∪r T, p, q]. There are
three possibilities:

(1) x, y ∈ E. Then fT : T
4:1→ (P1)1 is uniquely determined by the properties

f ∗T(0) = 4p and f ∗T(∞) = 3r + q, while fE : E
3:1→ (P1)2 is such that r and some

point x ∈ E − {r} appear as points of total ramification. In particular, 3x ≡ 3r
on E, which gives 8 choices for x. Each such fE has 2 remaining points of simple
ramification, say y1, y2 ∈ E and we take a rational curve T′ which we attach to
T at q and map isomorphically onto (P1)2. Choose q̃ ∈ T′ with the property that
f (q̃) = fE(yi) for i ∈ {1, 2} and obviously p̃ = p ∈ T. This procedure produces
16 = 8 · 2 admissible g1

4’s.

(2) x ∈ T, y ∈ E. Now fT : T
4:1→ (P1)1 has the properties f ∗T(0) = 4p, f ∗T(1) ≥

2r + q and f ∗T(∞) ≥ 3x for some x ∈ T (Up to isomorphism, there are 2 choices

for fT). Then fE : E
2:1→ (P1)2 is ramified at r and at some point y ∈ E − {r}

such that 2y ≡ 2r. This gives 3 choices for fE. We attach two rational curve T′

and T′′ to T at the points q and q′ ∈ f−1
T ( f (q)) − {r, q} respectively. We then

map T′ and T′′ isomorphically onto (P1)2. Finally we choose p̃ = p ∈ T and
q̃ ∈ T′ uniquely determined by the condition fT′(q̃) = fE(y). We have produced
6 = 2 · 3 coverings.

(3) x ∈ E, y ∈ T. Counting ramification points on T we quickly see that deg( fE) =
3 and fE : E → (P1)2 is such that f ∗E(0) = 3x and f ∗E(∞) = 3r, which gives 8

choices for fE. Moreover fT : T
4:1→ (P1)1 must satisfy the properties f ∗T(0) =

4p, f ∗T(1) ≥ q + 2y and f ∗T(∞) = 3r + r′ for some r′ ∈ T. If [T, p, q, r] =

[P1, 0, 1, ∞] ∈ M0,3, then

fT(t) =
t4

t − r′
, where r′ ∈

{1 +
√
−2

4
,

1 −
√
−2

4

}

.

Thus we obtain another 16 = 8 · 2 admissible g1
4’s in this case. Adding (1), (2) and

(3), we found 38 = 16+ 6+ 16 admissible coverings g1
4 on E∪r T and this finishes

the proof.

Proposition 5.2. We fix a general pointed curve [C, p] ∈ M3,1. Then there are 210
pencils l = OC(2p + 2x) ∈ G1

4(C), x ∈ C, having an unspecified triple point.

Proof. We define the map φ : C × C → Pic1(C) given by

φ(x, y) := OC

(

2p + 2x − 3y
)

.

A standard calculation shows that φ∗(W1(C)) = g(g − 1) · 22 · 32 = 216
(Use Poincaré’s formula [W1(C)] = θ2/2). Set-theoretically it is clear that
φ∗(W1(C)) ∩ ∆ = {(p, p)}. A local calculation similar to [Di] pg. 34-36, shows
that the intersection multiplicity at the point (p, p) is equal to 6 = g(g − 1), hence
the answer to our question.
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5.1 The invariant N2(d)

We have reached the final step of our calculation and we now compute N2(d). We
denote by Ad the Hurwitz stack parameterizing admissible coverings of degree d

t := [ f : (X, p)
d:1−→ R, q0; p0; p1, . . . , p6d−13],

where [X, p] is a pointed nodal curve of genus 2d − 4, [R, q0; p0 : p1, . . . , p6d−13] is
a pointed nodal curve of genus 0, and f is an admissible covering in the sense of
[HM] having a point of triple ramification x ∈ f−1(q0), a point of simple ramifi-
cation y ∈ X − {p} such that f (y) = f (p) = p0 and points of simple ramification
in the fibres over p1, . . . , p6d−13. The symmetric group S6d−13 acts on Ad by per-
muting the branch points p1, . . . , p6d−13 and the stabilization map

φ : Ad/S6d−13 → M2d−4,1, φ(t) := [X, p]

is generically finite of degree N2(d).
We completely describe the fibre φ−1([C ∪q E, p]), where [C, q] ∈ M2d−5,1

and [E, q, p] ∈ M1,2 are general pointed curves. We count admissible covers
f : (X, p̃) → R as above, where [X, p̃] is stably equivalent to [C ∪q E, p]. Depend-
ing on the position of the ramification points x, y ∈ X we distinguish between the
following cases:
(i) x ∈ C, y ∈ E. From Brill-Noether theory, we know that deg( fC) ∈ {d − 1, d}.
If deg( fC) = d, then one possibility is that both fC and fE are triply ramified at q.
In this case fC is induced by one of the e(d, 2d − 5) linear series l ∈ G1

d(C) with
l(−3q) 6= ∅ and l(−3x) 6= ∅, for some x ∈ C−{q}. The covering fE is of degree 3
and it induces a linear equivalence 3q ≡ 2y + p on E which has 4 solutions y ∈ E.

To obtain X we attach to C rational curves at the d − 3 points in f−1
C ( f (q)) −

{q}. We have exhibited in this way 4e(d, 2d − 5) automorphism-free points in
φ−1([C ∪q E, p]) which are counted with multiplicity 1. Another possibility is

that both fC and fE are simply ramified at q and the fibre f−1
C ( f (q)) contains a

second point z 6= q of simple ramification. The number of such l ∈ G1
d(C) has

been denoted by N3(d). Having chosen fC, then fE : E
2:1→ (P1)2 is induced by

|OE(2q)|. Then we attach a rational curve T to C at z, and we map T
2:1→ (P1)2

using the linear system |OT(2q)| in such a way that the remaining ramification
point of fT maps to fE(p). We produce N3(d) smooth points of Ad/S6d−13 via
this construction. In both these cases p̃ = p ∈ C ∪ E.
(ii) x, y ∈ C. Now deg( fC) = d − 1 and fC is induced by one of the b(d − 1, 2d −
5) = e(d − 1, 2d− 5) linear series l ∈ G1

d−1(C) with l(−3x) 6= ∅ for some x ∈ C −
{p}. Moreover, fC(q) is not a branch point of fC which implies that deg( fE) = 2
and that fE is induced by |OE(p + q)|. Obviously, fC and fE map to different
components of R. To obtain the source (X, p̃) of our covering, we first attach d− 2

rational curves to C at all the points in f−1
C ( f (q)) − {q} and map these curves

1 : 1 onto fE(E). Then we attach a curve T′ ∼= P1, this time to E at the point q
and map T′ isomorphically onto fC(C). The point q̃ ∈ X lies on the tail T′ and is
characterized by the property fT′(p̃) = fC(y), where y ∈ C is one of the 6d − 16
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simple ramification points of l. This procedure produces (6d− 16)b(d− 1, 2d− 5)
admissible coverings in φ−1([C ∪q E, p]).
(iii) x ∈ E, y ∈ E. If deg( fC) = d, then deg( fE) ≥ 4 and fC is given by one of

the a(d, 2d − 5) linear series l ∈ G1
d(C) such that l(−4q) 6= ∅. Then fE : E

4:1→ P1

has the properties that (up to an automorphism of the base) f ∗E(0) = 4q, f ∗E(1) ≥
p+ 2y and f ∗(∞) ≥ 3x, for some points x, y ∈ E−{p, q}. The number of such g1

4’s
has been computed in Proposition 5.1 (b) and it is equal to 38. Therefore this case
produces 38a(d, 2d − 5) coverings. If on the contrary, deg( fC) = d − 1, then fC is
induced by one of the a(d− 1, 2d− 5) linear series l ∈ G1

d−1(C) such that l(−2q) 6=
∅, while fE : E

3:1→ P1 is such that (up to an automorphism of the base) f ∗E(0) ≥
2q, f ∗E(1) = p + 2y, f ∗E(∞) = 3x for some x, y ∈ E − {p, q}. After making these

choices, we attach d − 3 rational curves to C at the point {q′} = f−1
C ( f (q)) − {q}

and we map these isomorphically onto fE(E). Furthermore, we attach a rational

curve T′ to E at the point {q′} = f−1
E ( f (q)) − {q} and map T′ isomorphically

onto fC(C). Using Proposition 5.1 (a), we obtain 11a(d − 1, 2d − 5) admissible
coverings. Altogether part (iii) provides 38a(d − 1, 2d − 5) + 11a(d − 1, 2d − 5)
points in Ad/S6d−13.
(iv) x ∈ E, y ∈ C. In this case, since p and y lie in different components, we
know that we have to “blow-up” the point p and insert a rational curve which
is mapped to the component fC(C) of R. Thus deg( fC) ≤ d − 1, and by Brill-
Noether theory it follows that deg( fC) = d − 1. Precisely, fC is induced by one of
the a(d − 1, 2d − 5) linear series l ∈ G1

d−1(C) such that l(−2q) 6= ∅. Furthermore,

fE : E
3:1→ P1 can be chosen such that f ∗E(0) = p + 2q and f ∗E(∞) = 3x for some

x ∈ E. This gives the linear equivalence 3x ≡ p + 2q on E which has 9 solutions.

We attach d − 3 rational curves at the points in f−1
C ( f (q)) − {q} and map these

1 : 1 onto fE(E). Finally, we attach a rational curve T′ to E at the point p and map
T′ such that f (T′) = f (C). We pick p̃ ∈ T′ with the property that fT′(p̃) = fC(y),
where y ∈ C is one of the 6d − 15 ramification points of fC. We have obtained
9(6d − 15)a(d − 1, 2d − 5) admissible coverings in this way.

We have completely described φ−1([C ∪q E, p]) and it is easy to check that all
these coverings have no automorphisms, hence they give rise to smooth points in
Ad and that the map φ is unramified at each of these points. Thus

N2(d) = deg(φ) = 4e(d, 2d − 5) + (6d − 16)b(d − 1, 2d − 5) + 38a(d, 2d − 5)+

+11a(d − 1, 2d − 5) + 9(6d − 15) a(d − 1, 2d − 5) + N3(d).

For d = 4, we know that N3(4) = 210 (cf. Proposition 5.2), which determines
N2(4) and the class [D3]. We record these results:

Theorem 5.3. The locus D3 of pointed curves [C, p] ∈ M2,1 with a pencil l ∈ G1
4(C)

totally ramified at p and having two points of triple ramification, is a divisor on M2,1.
The class of its compactification in M2,1 is given by the formula:

D3 ≡ 640ψ − 860λ + 72δ0 ∈ Pic(M2,1).
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Theorem 5.4. For a general pointed curve [C, p] ∈ M2d−4,1 the number of pencils
L ∈ W1

d (C) satisfying the conditions

h0(L ⊗OC(−3x)) ≥ 1 and h0(L ⊗OC(−p − 2y)) ≥ 1

for some points x, y ∈ C − {p}, is equal to

N2(d) =
6(40d2 − 179d + 212) (2d − 4)!

d! (d − 3)!
.

Remark 5.5. As a check, for d = 3, the number N2(3) computes the number of
pairs (x, y) ∈ C × C such that p 6= x 6= y 6= p and 3x ≡ p + 2y. This number is
equal to r(3, 2) = 70 which matches Theorem 5.4.

Theorem 5.6. We fix an integer d ≥ 4. For a general pointed curve [C, p] ∈ M2d−5,1,
the number of pencils L ∈ W1

d (C) satisfying the conditions

h0(L ⊗OC(−3x)) ≥ 1 and h0(L ⊗OC(−2p − 2y)) ≥ 1

for some points x, y ∈ C − {p}, is equal to

N3(d) =
84(d − 3)(2d2 − 10d + 13) (2d − 4)!

d! (d − 2)!
.

Remark 5.7. For d = 4, Theorem 5.6 specializes to Proposition 5.2 and we find
again that N3(4) = 210.
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