
J. reine angew. Math. 581 (2005), 151—173 Journal für die reine und
angewandte Mathematik
( Walter de Gruyter

Berlin � New York 2005

Gaussian maps, Gieseker-Petri loci and
large theta-characteristics

By Gavril Farkas at Princeton

1. Introduction

For an integer gf 1 we consider the moduli space Sg of smooth spin curves para-
metrizing pairs ðC;LÞ, where C is a smooth curve of genus g and L is a theta-characteristic,
that is, a line bundle on C such that L2 GKC . It has been known classically that the natural
map p : Sg ! Mg is finite of degree 22g and that Sg is a disjoint union of two components

Seven
g and Sodd

g corresponding to even and odd theta-characteristics. A geometrically
meaningful compactification Sg of Sg has been constructed by Cornalba by means of stable
spin curves of genus g (cf. [C]). The space Sg and more generally the moduli spaces S1=r

g;n of
stable n-pointed r-spin curves of genus g, parametrizing pointed curves with r-roots of the
canonical bundle, have attracted a lot of attention in recent years, partly due to a conjec-
ture of Witten relating intersection theory on S1=r

g;n to generalized KdV hierarchies (see e.g.
[JKV]).

For each g; rf 0 one can define the locus

Sr
g :¼ fðC;LÞ A Sg : h0ðLÞf r þ 1 and h0ðLÞ1 r þ 1 mod 2g:

We also set Mr
g :¼ pðSr

g Þ. It has been proved by Harris that each component of Sr
g has

dimensionf 3g � 3 � r þ 1

2

� �
(cf. [H]). This bound is known to be sharp when r is very

small: it is a classical result that S1
g is a divisor in Sg, while for r ¼ 2; 3 we have that Sr

g has
pure codimension rðr þ 1Þ=2 in Sg for all gf 8 (cf. [T1]). On the other hand clearly the
bound is far from optimal when r is relatively large with respect to g in the sense that there

are examples when Sr
g 3j although 3g � 3 � r þ 1

2

� �
is very negative: the hyperelliptic

locus Hg HMg is contained in M½ðg�1Þ=2�
g and there are Castelnuovo extremal curves C HPr

of genus 3r such that KC ¼ OCð2Þ, which gives that Sr
3r 3j for all rf 3 (see e.g. [CdC]). It

is thus natural to ask to what extent Harris’ bound is sharp. We give a partial answer to this
question by proving the following:
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Theorem 1.1. For 1e re 11, r3 10, there exists an explicit integer gðrÞ such that

for all gf gðrÞ the moduli space Sr
g has at least one component of codimension

r þ 1

2

� �
in

Sg. The general point ½C;L� of such a component corresponds to a smooth curve C HPr, with

L ¼ OCð1Þ and KC ¼ OCð2Þ.

For a precise formula for gðrÞ we refer to Section 3. We conjecture the existence of

a component of Sr
g of codimension

r þ 1

2

� �
for any rf 1 and gf

r þ 2

2

� �
and we

indicate a way to construct such a component (see Conjecture 3.4). Theorem 1.1 is proved
inductively using the following result:

Theorem 1.2. We fix integers r; g0 f 1. If Sr
g0

has a component of codimension

r þ 1

2

� �
in Sg0

, then for every gf g0, the space Sr
g has a component of codimension

r þ 1

2

� �
in Sg.

To apply Theorem 1.2 however, one must have a starting case for the inductive
argument. This is achieved by carrying out an infinitesimal study of the loci Sr

g which will
relate theta-characteristics to Gaussian maps on curves. Recall that for a smooth curve C

and a line bundle L on C, the Gaussian or Wahl map cL :
V2

H 0ðLÞ ! H 0ðKC nL2Þ is
defined essentially by

cLðs5tÞ :¼ s dt � t ds:

The map cL has attracted considerable interest being studied especially in the context of
deformation theory (see [W1] and the references therein). Wahl proved the remarkable fact
that if C sits on a K3 surface then cKC

cannot be surjective, which should be contrasted
with the result of Ciliberto, Harris and Miranda saying that cKC

is surjective for the general
curve C of genus g ¼ 10 or gf 12 (cf. [CHM]). In a completely di¤erent direction, in a
previous work we made essential use of the Gaussian map cKC

for g ¼ 10 to construct a
counterexample to the Harris-Morrison Slope Conjecture on e¤ective divisors on Mg (cf.
[FP]).

There are several powerful criteria in the literature ensuring the surjectivity of
cL when L has large degree (see e.g. [Pa], Theorem G), but very little seems to be known
about when is the map cL injective, or more generally, what is the behaviour of cL when
the line bundle L is special (cf. [W1], Question 5.8.1). In Section 5 we go some way towards
answering this question by showing the following:

Theorem 1.3. For the general curve C of genus g and for any line bundle L on C of

degree d e g þ 2, the Gaussian map cL is injective.

We refer to Theorem 5.4 for a more general statement that bounds the dimension of
KerðcLÞ even when d > g þ 2. In the case when L is a very ample line bundle giving an
embedding C HPn, Theorem 1.3 can be interpreted as saying that the associated curve
C ! PN obtained by composing the Gauss map C ! Gð2; n þ 1Þ, C C p 7! TpðCÞ, with
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the Plücker embedding of the Grassmannian of lines, is nondegenerate. Alternatively one
can read this result in terms of (absence of ) certain self-correspondences on the general
curve C (see Proposition 5.7).

In Section 4 we relate the Gieseker-Petri loci on Mg to the moduli spaces Sr
g;n of n-

pointed spin curves consisting of collections ðC; p1; . . . ; pn;LÞ, where ðC; p1; . . . ; pnÞ A Mg;n

and L is a degree k line bundle on C such that L2 nOCðp1 þ � � � þ pnÞ ¼ KC and
h0ðLÞf r þ 1. Here of course we assume that 2k þ n ¼ 2g � 2.

We recall that the Giseker-Petri Theorem asserts that for a general curve C of genus
g and for any line bundle L on C, the map m0ðLÞ : H 0ðLÞnH 0ðKC nL�1Þ ! H 0ðKCÞ
is injective (see e.g. [EH2]). It is straightforward to see that if m0ðLÞ is not injective
then h0ðLÞ; h0ðKC nL�1Þf 2 and it is an old problem to describe the locus in Mg where
the Gieseker-Petri Theorem fails, in particular to determine its components and their
dimensions.

We fix integers r; d f 1 such that rðg; r; dÞ ¼ g � ðr þ 1Þðg � d þ rÞf 0. As usual,
G r

d ðCÞ is the variety of linear systems gr
d on C, and if ðL;VÞ A G r

d ðCÞ, we denote by
m0ðVÞ : V nH 0ðKC nL�1Þ ! H 0ðKCÞ the multiplication map. We define the Gieseker-
Petri locus of type ðr; dÞ

GPr
g;d :¼ f½C � A Mg : b a base point free ðL;VÞ A G r

d ðCÞ with m0ðVÞ not injectiveg:

There are only two instances when this locus is well understood. First, GP1
g;g�1 can be

identified with the above introduced locus M1
g of curves with a vanishing theta-null which

is known to be an irreducible divisor (cf. [T3]). Then for even gf 4, GP1
g; ðgþ2Þ=2 is a divisor

on Mg which has an alternate description as the branch locus of the natural map
Hg; ðgþ2Þ=2 ! Mg from the Hurwitz scheme of coverings of P1 of degree ðg þ 2Þ=2 with
source curve of genus g. This last divisor played a crucial role in the proof that Mg is of
general type for even gf 24 (cf. [EH3]). It is natural to ask whether more generally, all loci
GPr

g;d are divisors and we give a partial a‰rmative answer to this question:

Theorem 1.4. For integers gf 4 and ðg þ 2Þ=2e k e g � 1, the Giseker-Petri locus

GP1
g;k has a divisorial component.

As an easy consequence we mention the following:

Corollary 1.5. For gf 4 and 0e ne g � 4, the moduli space S1
g;n has at least one

component of dimension 3g � 4.

This last statement can be compared to Polishchuk’s recent result that the moduli
space S0

g;n is of pure dimension 3g � 3 þ n=2 (cf. [Po], Theorem 1.1).

2. Limit theta-characteristics

In this section, after briefly recalling some basic facts about stable spin curves, we
characterize limit theta-characteristics on certain stable curves of compact type after which
we prove Theorem 1.2.
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We review a few things about the moduli space Sg (see [C] for more details). If
X is a nodal curve, a smooth rational component R of X is called exceptional if
K
�
RX ðX � RÞ

�
¼ 2. The curve X is called quasistable if every two exceptional compo-

nents are disjoint. Every quasistable curve is obtained by blowing-up some of the nodes of a
stable curve.

A stable spin curve consists of a triple ðX ;L; aÞ, where X is a quasistable curve
with paðXÞ ¼ g, L is a line bundle on X of degree g � 1 with LR ¼ ORð1Þ for each excep-
tional component R and a : L2 ! oX is a homomorphism such that aC 3 0 for any non-
exceptional component C of X . A family of stable spin curves is a triple ð f : C ! T ;L; aÞ,
where f : C ! T is a flat family of quasistable curves, L is a line bundle on C and
a : L2 ! of is a homomorphism such that aCt

gives a spin structure on each fibre
Ct ¼ f �1ðtÞ.

The stack Sg of stable spin curves of genus g has been constructed in [C] where it is
also proved that there exists a finite map p : Sg ! Mg whose fibre over ½C � A Mg is the set
of stable spin structures on quasistable curves stably equivalent to C.

Remark 2.1. Suppose C ¼ C1 Wp C2 is a curve of compact type with C1 and C2

being smooth curves and gðC1Þ ¼ i, gðC2Þ ¼ g � i. Then it is easy to see that there are no
spin structures on C itself. In fact, p�1ð½C �Þ consists of spin structures on the quasistable
curve X ¼ C1 Wq RWr C2 obtained from C by ‘‘blowing-up’’ C at the node p. Each such
spin structure is given by a line bundle L on X such that L2

C1
¼ KC1

, L2
C2

¼ KC2
and

LR ¼ ORð1Þ. More generally, a spin structure on any curve of compact type corresponds to
a collection of theta-characteristics on the components.

Assume now that C ¼ C1 Wp C2 is a curve of compact type where C1 and C2 are
smooth curves of genus i and g � i respectively. We define an r-dimensional limit theta-

characteristic on C (in short, a limit yr
g ), as being a pair of line bundles ðL1;L2Þ with

Li A Picg�1ðCiÞ, together with ðr þ 1Þ-dimensional subspaces Vi HH 0ðLiÞ such that

(1) fli ¼ ðLi;ViÞgi¼1;2 is a limit linear series gr
g�1 in the sense of [EH1].

(2) L2
1 ¼ KC1

�
2ðg � iÞp

�
and L2

2 ¼ KC2
ð2ipÞ.

Using this terminology we now characterize singular curves in Mr
g :

Lemma 2.2. Suppose ½C ¼ C1 Wp C2� A Mr
g . Then C possesses a yr

g .

Proof. We may assume that there exists a 1-dimensional family of curves f : C ! B

with smooth general fibre Cb and central fibre C0 ¼ f �1ð0Þ stably equivalent to C, together
with a line bundle L on C� C0 and a rank ðr þ 1Þ subvector bundle V H f�ðLÞ over
B� :¼ B � f0g such that L2

Cb
1oCb

for all b A B�. Then for i ¼ 1; 2 there are unique line
bundles Li on C for extending L and such that degY ðLiÞ ¼ 0 for every component Y of
C0 di¤erent from Ci. If we denote by Li :¼ LijCi

and Vi HH 0ðLiÞ the ðr þ 1Þ-dimensional
subspace of sections that are limits in Li of sections in V , then by [EH1], Theorem 2.6, we
know that fðLi;ViÞgi¼1;2 is a limit gr

g�1. Finally, since L2
i and KCi

are isomorphic o¤ p they
must di¤er by a divisor supported at p which accounts for condition (2) in the definition of
a yr

g . r
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We describe explicitly the points in Mr
g XD1, where D1 is the divisor of curves with an

elliptic tail:

Proposition 2.3. Let ½C ¼ C1 Wp E� be a stable curve with C1 smooth of genus g � 1
and E an elliptic curve. If ½C � A Mr

g then either (1) ½C1� A Mr
g�1, or (2) there exists a line

bundle L1 on C1 such that ðC1;L1Þ A Sr�1
g�1 and p A BsjL1j. If moreover p A C1 is a general

point, then possibility (2) does not occur hence ½C1� A Mr
g�1.

Proof. We know that C carries a limit yr
g , say l ¼ flC1

; lEg. By the compatibility re-
lation between lC1

and lE , the vanishing sequence alC1 ðpÞ of lC1
at p is fð0; 2; . . . ; r þ 1Þ. If

lC1
has a base point at p then if we set L :¼ LC1

ð�pÞ we see that ðC1;LÞ A Sr
g�1 and we are

in case (1). Otherwise we set M :¼ LC1
ð�2pÞ and then h0ðC1;MÞ ¼ r, M 2 ¼ KC1

ð�2pÞ and
jM þ pj is a theta-characteristic on C1 having p as a base point.

For the last statement, we note that a curve has finitely many positive dimensional
theta-characteristics each of them having only a finite number of base points, so possibility
(2) occurs for at most finitely many points p A C1. r

We can now prove Theorem 1.2. More precisely we have the following result:

Proposition 2.4. Fix r; gf 1. If Sr
g�1 has a component of codimension

r þ 1

2

� �
in

Sg�1, then Sr
g has a component of codimension

r þ 1

2

� �
in Sg.

Proof. Suppose ½C1;L1� A Sr
g�1 is a point for which there exists a component

Z C ½C1;L1� of Sr
g�1 with codimðZ;Sg�1Þ ¼

r þ 1

2

� �
. We fix a general point p A C1 and

set C :¼ C1 Wp E, where ðE; pÞ is a general elliptic curve. We denote by X :¼ C1 Wq RWs E

the curve obtained from C by blowing-up p, and we construct a spin structure on X given
by a line bundle L on X with LC1

¼ L1, LR ¼ ORð1Þ and LE ¼ OEðt � sÞ, where t � s is a
non-zero torsion point of order 2. Clearly h0ðX ;LÞ ¼ h0ðC1;L1Þf r þ 1. We first claim
that ðX ;LÞ is a smoothable spin structure which would show that ½X ;L� A Sr

g .

To see this we denote by ð f : X ! B;L; a : L2 ! of Þ the versal deformation space
of ðX ;LÞ, so that if B1 denotes the versal deformation space of the stable model C of X ,
there is a commutative diagram:

B ���!s B=AutðX ;LÞ H���! Sg???yf

???yp

B1 ���! B1=AutðCÞ H���! Mg:

We define Br :¼ fb A B : h0ðXb;LbÞf r þ 1; h0ðXb;LbÞ1 r þ 1 mod 2g and Theorem
1.10 from [H] gives that every component of Br has dimensionf dimðBÞ � rðr þ 1Þ=2. We
also consider the divisor DHB corresponding to singular spin curves. To conclude that
ðX ;LÞ is smoothable we show that there exists a component W C 0 of Br not contained in
D (here 0 A B is the point corresponding to ðX ;LÞ).
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Assume that on the contrary, every component of Br containing 0 sits inside D. It is
straightforward to describe Br XD: if ðXb ¼ Cb WRb WEb;LbÞ where b A B, gðCbÞ ¼ g � 1,
gðEbÞ ¼ 1, is a spin curve with h0ðXb;LbÞf r þ 1, then either (1) h0ðCb;LbjCb

Þf r þ 1 or
(2) h0ðCb;LbjCb

Þ ¼ r and LbjEb
¼ OEb

(put it di¤erently, LbjEb
is the only odd theta charac-

teristic on Eb). Since even and odd theta characteristics do not mix, it follows that any
component 0 A W HBr will consist entirely of elements b for which h0ðCb;LbjCb

Þf r þ 1.
Moreover, there is a 1 : 1 correspondence between such components of Br and components
of Sr

g�1 through ½C1;L1�. But then the locus

Z1 :¼ fb A D : ½Cb;LbjCb
� A Z; h0ðEb;LbjEb

Þ ¼ 0g

is a component of Br containing 0 and dimðZ1Þ ¼ dimðZÞ þ 2 ¼ 3g � 4 � r þ 1

2

� �
,

which contradicts the estimate on dimðBrÞ.

Thus ðX ;LÞ is smoothable. We now show that at least one component of Sr
g passing

through ½C;LC � has codimension
r þ 1

2

� �
. Suppose this is not the case. Then each com-

ponent of Sr
g X sðDÞ through ½C;LC � has codimensione

r þ 1

2

� �
� 1 in sðDÞ. Recalling

that p A C1 was general, Proposition 2.3 says that any such component corresponds to
curves C 0

1 XE 0 where E 0 is elliptic and ½C 0
1� A Mr

g�1. But then sðZ1Þ is such a component

and we have already seen that codimðZ1;DÞ ¼
r þ 1

2

� �
, which yields the desired contra-

diction. r

Remark 2.5. Retaining the notation from the proof of Theorem 2.3, if
½C1;L1� A Sr

g�1 is such that L1 is very ample, then a smoothing ½C 0;LC 0 � A Sr
g of

½C ¼ C1 Wp E;LC � corresponds to a very ample LC 0 . Indeed, assuming by contradiction
that there exist points x; y A C 0 such that h0

�
LC 0 ð�x � yÞ

�
f h0ðLC 0 Þ � 1, we have three

possibilities depending on the position of the points r; s A C to which x and y specialize.
The case x; y A E can be ruled out immediately, while x; y A C1 would contradict the as-
sumption that L1 is a very ample line bundle. Finally, if x A C1 and y A E, one obtains that
fx; pg fails to impose independent conditions on jL1j, a contradiction. Thus LC 0 is very
ample.

3. Gaussian maps and theta-characteristics

It may be helpful to review a few things about Gaussian maps on curves and to ex-
plain the connection between Gaussians and theta-characteristics. This will enable us to
construct components of Sr

g of dimension achieving the Harris bound.

For a smooth projective variety X and a line bundle L, we denote by RðLÞ the kernel
of the multiplication map H 0ðLÞnH 0ðLÞ ! H 0ðL2Þ. Following J. Wahl (see e.g. [W1]),
we consider the Gaussian map FL ¼ FX ;L : RðLÞ ! H 0ðW1

X nL2Þ, defined locally by

sn t 7! s dt � t ds:

Since RðLÞ ¼
V2

H 0ðLÞlS2ðLÞ, with S2ðLÞ ¼ KerfSym2 H 0ðLÞ !mL
H 0ðL2Þg, it is clear

that FL vanishes on symmetric tensors and it makes sense to look at the restriction
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cL ¼ cX ;L :¼ FL j
V2H 0ðLÞ :

V2
H 0ðLÞ ! H 0ðW1

X nL2Þ:

If X HPr is an embedded variety with L ¼ OX ð1Þ, one has the following interpretation for
FL: we pull back the Euler sequence to X to obtain that RðLÞ ¼ H 0ðW1

P rjX nL2Þ and then
FL can be thought of as the map obtained by passing to global sections in the morphism
W1

P rjX nL2 ! W1
X nL2. Furthermore, if NX is the normal bundle of X in Pr, tensoring the

exact sequence

0 ! N4
X ! W1

P rjX ! W1
X ! 0ð1Þ

by OX ð2Þ, we obtain that KerðFLÞ ¼ KerðcLÞlS2ðLÞ ¼ H 0
�
N4

X ð2Þ
�
. If X is projectively

normal, from the exact sequence 0 ! I2
X ! IX ! N4

X ! 0 it is straightforward to check
that KerðcLÞ ¼ H 1

�
Pr;I2

X ð2Þ
�
.

The map cL has been extensively studied especially when X is a curve, in the context
of the deformation theory of the cone over X (cf. e.g. [W1]). The connection between
Gaussian maps and spin curves is given by the following tangent space computation due to
Nagaraj (cf. [N], Theorem 1): for ðC;LÞ A Sr

g , if we make the standard identifications
T½C;L�ðSgÞ ¼ T½C �ðMgÞ ¼ H 1ðC;TCÞ ¼ H 0ðC;K 2

CÞ
4, then

T½C;L�ðSr
g Þ ¼

�
ImðcLÞ :

V2
H 0ðLÞ ! H 0ðK 2

CÞ
�?

:

In other words, to show that a component Z of Sr
g has codimension

r þ 1

2

� �
in Sg, it

su‰ces to exhibit a spin curve ½C;L� A Z such that h0ðLÞ ¼ r þ 1 and cL is injective. We
construct such curves as sections of certain homogeneous spaces having injective Gaussians
and then we apply Theorem 1.2 to increase the range of ðg; rÞ for which we have a com-

ponent of Sr
g of codimension

r þ 1

2

� �
. We will use repeatedly the following result of Wahl

relating the Gaussian map of a variety to that of one of its sections (cf. [W2], Propositions
3.2 and 3.6):

Proposition 3.1. 1. Suppose X HPr is a smooth, projectively normal variety such that

cX ;OX ð1Þ is injective. If Y HX is a subvariety with ideal sheaf I satisfying the conditions

H 1
�
X ;Ið1Þ

�
¼ 0; H 1

�
X ;I2ð2Þ

�
¼ 0; H 1

�
X ;N4

X ð2ÞnI
�
¼ 0;

then the Gaussian cY ;OY ð1Þ is injective too.

2. Let X HPr be a smooth, projectively normal, arithmetically Cohen-Macaulay

variety and Y ¼ X XPr�n HPr�n a smooth codimension n linear section, where n < r. If

H i
�
X ;N4

X ð2 � iÞ
�
¼ 0 for 1e ie n and cX ;OX ð1Þ is injective, then Y is projectively normal

and the Gaussian cY ;OY ð1Þ is also injective.

We will apply Proposition 3.1 in the case of the Grassmannian X ¼ Gð2; nÞ of 2-
dimensional quotients of Cn and for the line bundle L ¼ OGð2;nÞð1Þ which gives the Plücker
embedding. In this case cOGð2; nÞð1Þ is bijective (cf. [W2], Theorem 2.11).
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We need to compute the cohomology of several vector bundles on Gð2; nÞ and
we do this using Bott’s theorem (see [FH] for a standard reference). Recall that
Gð2; nÞ ¼ SLnðCÞ=P, where the reductive part of the parabolic subgroup P consists of
matrices of type diagðA;BÞ A SLnðCÞ where A A GL2ðCÞ and B A GLn�2ðCÞ. We denote by
Q the universal rank 2 quotient bundle defined by the tautological sequence

0 ! U ! Oln
Gð2;nÞ ! Q ! 0:

Every irreducible vector bundle over Gð2; nÞ comes from a representation of the re-
ductive part of P. If e1; . . . ; en is an orthonormal basis of Rn, the positive roots of SLnðCÞ
are fei � ejgi<j and we use the notation Eða1; . . . ; anÞ for the vector bundle corresponding
to the representation with highest weight a1e1 þ � � � þ anen. We then have the identifications
Q ¼ Eð1; 0; . . . ; 0Þ, OGð2;nÞð1Þ ¼ detðQÞ ¼ Eð1; 1; 0; . . . ; 0Þ and U ¼ Eð0; 0; 1; 0; . . . ; 0Þ. The
cotangent bundle W1

Gð2;nÞ ¼ Q4nU is irreducible and corresponds to the highest weight
ð0;�1; 1; 0; . . . ; 0Þ. Bott’s theorem can be interpreted as saying that the cohomology group
H i

�
Gð2; nÞ;Eða1; . . . ; anÞ

�
does not vanish if and only if i is the number of strict inversions

in the sequence ðn þ a1; n � 1 þ a2; . . . ; 1 þ anÞ and all the entries of this sequence are
distinct.

First we establish the following vanishing result:

Proposition 3.2. Let G ¼ Gð2; nÞHPN with N ¼ n

2

� �
� 1, be the Grassmannian of

lines in its Plücker embedding. We have the following vanishing statements:

(1) H i
�
N4
Gð2 � iÞ

�
¼ 0 for all 1e ie 2n � 5, i3 2 and for i ¼ 2 and ne 6.

(2) H i
�
W1

GnQð�iÞ
�
¼ 0 for 0e ie 2n � 7.

(3) H iþ1
�
N4
G nQð�iÞ

�
¼ 0 for 1e ieminðn; 2n � 7Þ.

(4) H ��Qð�iÞ
�
¼ 0 for 1e ie n.

(5) H iþ1
�
N4
Gð�iÞ

�
¼ 0 for 0e i e n � 1.

Proof. (1) We start with the case i f 3. From the exact sequence (1) it
su‰ces to show that (a) H i�1

�
G;W1

Gð2 � iÞ
�
¼ 0 and that (b) H i

�
G;W1

PN jGð2 � iÞ
�
¼ 0.

From the Euler sequence (b) at its turn is implied by the vanishings
H i�1

�
OGð2 � iÞ

�
¼ H i

�
OGð1 � iÞ

�
¼ 0 which are obvious, while (a) is a consequence

of Bott’s theorem (or of Kodaira-Nakano vanishing). When i ¼ 1, one checks that
H 0

�
G;W1

Gð1Þ
�
¼ 0 (Bott again), and that H 1

�
G;W1

PN jGð1Þ
�
¼ 0 (Euler sequence). The

remaining case i ¼ 2 is handled di¤erently and we employ the Gri‰ths vanishing theorem:
since G is scheme theoretically cut out by quadrics, the vector bundle E ¼ N4

Gð2Þ is globally
generated. From the exact sequence (1) one finds that detðEÞ ¼ OG

�
ðn � 3Þðn � 4Þ=2

�
and

we can write N4
G ¼ KGnE n detðEÞnL, with L an ample line bundle, precisely when

ne 6.

Part (2) is a consequence of Le Potier vanishing (cf. [LP]), while (4) follows from Bott
vanishing since Qð�iÞ ¼ Eð1 � i;�i; 0; . . . ; 0Þ. To prove (3) we tensor the exact sequence
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(1) by Qð�iÞ and we have to show that H i
�
W1

GnQð�iÞ
�
¼ H iþ1

�
W1

PN jGnQð�iÞ
�
¼ 0

which we already treated in parts (2) and (4). Finally, (5) is handled similarly to (1) and we
omit the details. r

For certain r we construct half-canonical curves C HPr of genus gðrÞ with injective
Gaussian. This combined with Theorem 1.2 proves Theorem 1.1.

Proposition 3.3. For 3e re 11, r3 10, there exists a smooth half-canonical curve

C HPr of genus gðrÞ (to be specified in the proof ), such that the Gaussian map cOCð1Þ is

injective. It follows that Sr
gðrÞ is smooth of codimension rðr þ 1Þ=2 at the point ½C;OCð1Þ�.

Proof. Each case will require a di¤erent construction. We treat every situation sep-
arately in increasing order of di‰culty.

r ¼ 3. We let C be a ð3; 3Þ complete intersection in P3, hence gðCÞ ¼ gð3Þ ¼ 10
and KC ¼ OCð2Þ. Clearly NC ¼ OCð3ÞlOCð3Þ, so trivially H 1

�
N4

C ð2Þ
�
¼ 0 which proves

that cOCð1Þ is injective.

r ¼ 4. Now C is a complete intersection of type ð2; 2; 3Þ in P4. Then

gðCÞ ¼ gð4Þ ¼ 13 and NC ¼ OCð2Þ2 lOCð3Þ. Using that C is projectively normal we get

that H 1
�
P4;I2

C ð2Þ
�
¼ 0, hence cOCð1Þ is injective again.

r ¼ 5. This is the last case when C can be a complete intersection: C is of type
ð2; 2; 2; 2Þ in P5, thus gðCÞ ¼ gð5Þ ¼ 17 and like in the r ¼ 4 case we check that
H 1

�
P5;I2

C ð2Þ
�
¼ 0.

r ¼ 8. We choose the Grassmannian Gð2; 6ÞHP14. A general codimension 6
linear section of Gð2; 6Þ is a K3 surface S HP8 with degðSÞ ¼ 14 and we let
C :¼ S XQHP8 be a quadric section of S. Then C is half-canonical and
gðCÞ ¼ gð8Þ ¼ 29. We claim that cS;OSð1Þ is injective, which follows from Proposition 3.1
since H i

�
N4

Gð2;6Þð2 � iÞ
�
¼ 0 for 1e ie 6. To obtain that H 1

�
P8;I2

C ð2Þ
�
¼ 0, by Proposi-

tion 3.1 we have to check that H 1
�
S;OSð�1Þ

�
¼ H 1

�
S;OSð�2Þ

�
¼ 0 (Kodaira vanishing),

and that H 1ðN4
S Þ ¼ 0 , H 1ðNSÞ ¼ 0. Note that S is a general K3 surface of genus 8 hav-

ing rðSÞ ¼ 1 and since by transcendental theory, the Hilbert scheme of such K3 surfaces is
irreducible, it will su‰ce to exhibit a single K3 surface of genus 8 having this property: we
let S degenerate to a union R1 WB R2 of two rational scrolls of degree 7 in P8 joined along
an elliptic curve B A j�KRi

j for i ¼ 1; 2. Then R1 WB R2 is a limit of smooth K3 surfaces
X HP8 of degree 14 and H 1ðR1 WB R2;NR1WBR2

Þ ¼ 0 (see [CLM], Theorem 1.2 for more
details on this degeneration). It follows that H 1ðX ;NX Þ ¼ 0, for a general prime K3 sur-
face X HP8 of degree 14 and then H 1ðS;NSÞ ¼ 0 as well.

r ¼ 7. In this situation we choose the 10-dimensional spinor variety X HP15 cor-
responding to a half-spin representation of Spinð10Þ (see [M] for a description of the pro-
jective geometry of X ). One has that X is a homogeneous space for SOð10Þ, KX ¼ OX ð�8Þ
and degðXÞ ¼ 12. A general codimension 8 linear section of X is a K3 surface S HP7

of degree 12. Take now C to be a quadric section of S and then KC ¼ OCð2Þ and
gðCÞ ¼ gð7Þ ¼ 25. Since N4

X is irreducible (cf. e.g. [W2], Theorem 2.14), we obtain that the
Gaussian map cX ;OX ð1Þ is injective.
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To show that cS;OSð1Þ is injective we verify that H i
�
N4

X ð2 � iÞ
�
¼ 0 for 1e ie 8. For

3e ie 8 this follows from Kodaira-Nakano vanishing for the twists of sheaves of holo-
morphic forms on X in a way similar to the proof of Proposition 3.2, while the i ¼ 1 it is a
consequence of Bott vanishing. For i ¼ 2 we use Gri‰ths vanishing: since X is cut out by
quadrics (see e.g. [M], Proposition 1.9), the vector bundle E :¼ N4

X ð2Þ is globally generated,
detðEÞ ¼ OX ð2Þ and one can write N4

X ¼ KX nE n detðEÞnOX ð4Þ. In this way we obtain
that H 2ðN4

X Þ ¼ 0. Thus cS;OSð1Þ is injective, and to have the same conclusion for the
Gaussian of C, the only non-trivial thing to check is that H 1ðNSÞ ¼ 0, which can be seen by
letting S degenerate again to a union of two rational scrolls like in the case r ¼ 8.

r ¼ 6. We consider the Grassmannian G ¼ Gð2; 5ÞHP9 and we denote by X HP6

a general codimension 3 linear section of G, by S :¼ X XQ a general quadric section of
X and by C :¼ S XQ 0 a general quadric section of S. Then S is a K3 surface of genus 6,
KC ¼ OCð2Þ and gðCÞ ¼ gð6Þ ¼ 21. Using Propositions 3.1 and 3.2 we see easily that
cX ;OX ð1Þ is injective. We claim that cS;OSð1Þ is injective as well which would follow from

H 1ðX ;N4
X Þ ¼ 0. Since N4

X=G ¼ OX ð�1Þl3, the vanishing of H 1ðX ;N4
X Þ is implied by that of

H 1ðN4
G nOX Þ which in its turn is implied by H iþ1

�
N4
Gð�iÞ

�
¼ 0 for 0e ie 3 (use the

Koszul resolution). These last vanishing statements are contained in Proposition 3.2 and in
this way we obtain that cS;OSð1Þ is injective. We finally descend to C. To conclude that
cC;OCð1Þ is injective it is enough to verify that H 1ðNSÞ ¼ 0. We could check this again via the
Koszul complex, but it is more economical to use that S is a general K3 surface of genus 6
and to invoke once more [CLM], Theorem 1.2, like in the previous cases.

r ¼ 11. We start with the Grassmannian X ¼ Gð2; 7ÞHP20 for which KX ¼ OX ð�7Þ
and we let C be a general codimension 9 linear section of X . Then C HP11 is a smooth
half-canonical curve of genus gðCÞ ¼ gð11Þ ¼ 43. To conclude that cC;OCð1Þ is injective we
apply directly the second part of Proposition 3.1: the vanishing H i

�
N4

Gð2;7Þð2 � iÞ
�
¼ 0 is

guaranteed by Proposition 3.2 for all 1e ie 9, i3 2. For i ¼ 2 we can no longer employ
Gri‰ths vanishing so we proceed di¤erently: we use (1) together with the vanishing
H 2ðX ;W1

P20jX Þ ¼ 0 coming from the Euler sequence, to write down the exact sequence

0 ! H 1ðN4
X Þ ! H 1ðW1

P20jX Þ ! H 1ðW1
X Þ ! H 2ðN4

X Þ ! 0;ð2Þ

where H 1ðW1
P20jX ÞGH 0ðOX ÞGC and H 1ðW1

X ÞGC. From Bott’s theorem at most one of
the cohomology groups of the irreducible bundle N4

X are 30, hence either H 2ðN4
X Þ ¼ 0 and

then we are done, or else, if H 2ðN4
X Þ3 0 then H 1ðN4

X Þ ¼ 0, and the map in the middle of
the sequence (2) is bijective which yields a contradiction.

r ¼ 9. This is the most involved case. We look at the ample vector bundle F :¼ Qð1Þ
on G ¼ Gð2; 6ÞHP14 and choose a general section s A H 0ðG;FÞ. We denote by Z the zero
locus of s, by I ¼ IZ=G the ideal of Z inside G, and by IZ and IG the ideals of Z and G in
P14 respectively. By adjunction, we have that I=I2 ¼ Q4ð�1ÞnOZ and the Koszul com-
plex gives a resolution for Z:

0 ! OGð�3Þ ! Q4ð�1Þ ! I ! 0:

We first claim that Z HP14 is nondegenerate and projectively normal. This will follow if
we show that H 0

�
G;Ið1Þ

�
¼ 0 and H 1

�
G;IðrÞ

�
¼ 0 for rf 1. Using the Koszul re-

solution, the first vanishing is implied by H 0ðQ4Þ ¼ H 1
�
OGð�2Þ

�
¼ 0 which is clear. For
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the second vanishing we have to check that H 1
�
Q4ðr � 1Þ

�
¼ H 2

�
OGðr � 3Þ

�
¼ 0 for rf 1.

Since Q4ðr � 1Þ ¼ Eðr � 1; r � 2; 0; 0; 0; 0Þ and OGðr � 3Þ ¼ Eðr � 3; r � 3; 0; 0; 0; 0Þ this
can be checked instantly using Bott’s theorem.

Next we claim that the cZ;OZð1Þ is injective. By Proposition 3.1, we have to verify that

(1) H 1
�
G;I2ð2Þ

�
¼ 0 and that (2) H 1

�
G;N4

Gð2ÞnI
�
¼ 0. We start with (1). From the

exact sequence

0 ! I2ð2Þ ! Ið2Þ ! Q4ð1ÞnOZ ! 0;

using that Z is projectively normal, (1) is implied by the bijectivity of the map
H 0

�
Ið2Þ

�
! H 0

�
Q4ð1ÞnOZ

�
. This is a consequence of the isomorphism Q4ð1ÞGQ and

of the Koszul resolution giving that H 0
�
Z;Q4ð1ÞnOZ

�
¼ H 0

�
G;Q4ð1Þ

�
¼ H 0

�
G;Ið2Þ

�
,

where for the first isomorphism one uses that H 0ðG;InQÞ ¼ H 1ðG;InQÞ ¼ 0, which
is straightforward to check via Bott’s theorem.

We turn to (2). The cohomology of InN4
Gð2Þ is computed from the Koszul complex

of I, which yields an isomorphism H 1
�
N4
G nIð2Þ

�
¼ H 1

�
N4
G nQ4ð1Þ

�
(because we have

H i
�
N4
Gð�1Þ

�
¼ 0 for i ¼ 1; 2—this being checked via the sequence (1)). Next we write the

cohomology sequence associated to the exact sequence

0 ! N4
G nQ4ð1Þ ! W1

P14jGnQ4ð1Þ ! W1
GnQ4ð1Þ ! 0:

The map H 1
�
W1

P14jGnQ4ð1Þ
�
! H 1

�
W1

GnQ4ð1Þ
�

is an isomorphism: from the Euler se-
quence one obtains that H 1

�
W1

P14jGnQ4ð1Þ
�
¼ H 0

�
Q4ð1Þ

�
, while tensoring by W1

Gð1Þ the
dual of the tautological sequence, one gets that

H 1
�
W1

Gð1ÞnQ4
�
¼ H 0

�
U4nW1

Gð1Þ
�
¼ H 0

�
Q4ð1Þ

�
(or alternatively, use for this [LP], Corollaire 2). Moreover H 0

�
W1

GnQ4ð1Þ
�

injects

into H 0
�
W1

Gð1Þ
�l6

which is zero by Bott’s theorem. Hence H 1
�
N4
G nQ4ð1Þ

�
¼ 0 and this

proves that cZ;OZð1Þ is injective.

We now take a general codimension 5 linear section of Z which is a curve C HP9

with KC ¼ OCð2Þ. A routine calculation gives that degðCÞ ¼ 3 degðGÞ ¼ 42, hence
gðCÞ ¼ gð9Þ ¼ 43. We claim that cC;OCð1Þ is injective. Since cZ;OZð1Þ is injective, by
Proposition 3.1 we are left with checking that Z is ACM (this amounts to H i

�
OZð jÞ

�
¼ 0

for i3 0; 6 ¼ dimðZÞ, which easily follows from the Koszul complex) and that
H i

�
Z;N4

Z ð2 � iÞ
�
¼ 0 for 1e ie 5 (here NZ ¼ ðIZ=IZÞ4 is the normal bundle of Z in

P14). We employ the exact sequence

0 ! N4
G nOZ ! N4

Z ! I=I2 ! 0;

from which it will su‰ce to show that (a) H i
�
Z;I=I2ð2 � iÞ

�
¼ H i

�
Q4ð1 � iÞnOZ

�
¼ 0

for 1e ie 5 and that (b) H i
�
N4
Gð2 � iÞnOZ

�
¼ 0, which in turn is a consequence of

H i
�
N4
Gð2 � iÞ

�
¼ H iþ1

�
N4
Gð�1 � iÞ

�
¼ 0 and of the vanishing H iþ1

�
N4
G nQ4ð1 � iÞ

�
¼ 0

(for all these use Proposition 3.2).

We are left with (a) which is a consequence of H i
�
Q4ð1 � iÞ

�
¼ 0 (again, use
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Proposition 3.2), of H iþ2
�
Q4ð�2 � iÞ

�
¼ 0, and of H iþ1

�
QnQð�2 � iÞ

�
¼ 0. For this last

statement use that QnQ ¼ S2Ql detðQÞ and each summand being irreducible the van-
ishing can be easily verified via Bott’s theorem. r

We believe that there should be a uniform way of constructing half-canonical curves
C HPr for any rf 3 of high genus gg r and having injective Gaussian maps (though no
longer as sections of homogeneous varieties). Together with Theorem 1.2 this prompts us to
make the following:

Conjecture 3.4. For any rf 3 and gf
r þ 2

2

� �
, there exists a component of Sr

g of

codimension
r þ 1

2

� �
inside Sg.

The bound gf
r þ 2

2

� �
is obtained by comparing the expected dimension

3g � 3 � r þ 1

2

� �
of Sr

g with the expected dimension of the Hilbert scheme Hilbg�1;g; r of

curves C HPr of genus g and degree g � 1. We believe that there exists a component of
Hilbg�1;g; r consisting entirely of half-canonically embedded curves. To prove the Conjec-
ture it would su‰ce to construct a smooth half-canonical curve C HPr of genus

g ¼ r þ 2

2

� �
such that H 1ðC;NC=P rÞ ¼ 0, that is, Hilbg�1;g; r is smooth at the point ½C �

and has expected dimension h0ðC;NC=P rÞ ¼ 4ðg � 1Þ. Note that for such C, the map
CC;OCð1Þ would be injective, in particular C would not sit on any quadrics. This gives

the necessary inequality gf
r þ 2

2

� �
. The main di‰culty in proving Conjecture 3.4 lies

in the fact that the degeneration techniques one normally uses to construct ‘‘regular’’
components of Hilbert schemes of curves, seem to be at odds with the requirement that C

be half-canonical.

4. Gieseker-Petri loci

In this section we construct divisorial components of the loci GP1
g;k. The method we

use is inductive and close in spirit to the one employed in Section 2 to construct compo-
nents of Sr

g of expected dimension. We begin by describing a setup that enables us to an-
alyze the following situation: if fLbgb AB� and fMbgb AB� are two families of line bundles
over a 1-dimensional family of smooth curves fXbgb AB� , where B� ¼ B � fb0g with b0 A B,
we want to describe what happens to the multiplication map

mb ¼ mbðLb;MbÞ : H 0ðXb;LbÞnH 0ðXb;MbÞ ! H 0ðXb;Lb nMbÞ

as Xb degenerates to a singular curve of compact type X0.

Suppose first that C is a smooth curve and p A C. We recall that if l ¼ ðL;VÞ is a
linear series of type gr

d with L A PicdðCÞ and V HH 0ðLÞ, the vanishing sequence of l at p

alðpÞ : 0e al
0ðpÞ < � � � < al

rðpÞe d;
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is obtained by ordering the set fordpðsÞgs AV . If L and M are line bundles on C and
r A H 0ðLÞnH 0ðMÞ we write that ordpðrÞf k, if r lies in the span of elements of the form
sn t, where s A H 0ðLÞ and t A H 0ðMÞ are such that ordpðsÞ þ ordpðtÞf k.

Let mL;M : H 0ðLÞnH 0ðMÞ ! H 0ðLnMÞ be the multiplication map. We shall use
the following observation: suppose fsigHH 0ðLÞ and ftjgHH 0ðMÞ are bases of global
sections adapted to the point p A C in the sense that ordpðsiÞ ¼ aL

i ðpÞ and ordpðtjÞ ¼ aM
j ðpÞ

for all i and j. Then if r A KerðmL;MÞ then there must exist distinct pairs of integers
ði1; j1Þ3 ði2; j2Þ such that

ordpðrÞ ¼ ordpðsi1Þ þ ordpðtj1Þ ¼ ordpðsi2Þ þ ordpðtj2Þ:

Suppose now that p : X ! B is a family of genus g curves over B ¼ SpecðRÞ, with R

being a complete DVR with local parameter t, and let 0; h denote the special and the ge-
neric point of B respectively. Assume furthermore that Xh is smooth and that X0 is singular
but of compact type. If Lh is a line bundle on Xh then, as explained in [EH1], there is a
canonical way to associate to each component Y of X0 a line bundle LY on X such that
degZðLY

jZ
Þ ¼ 0 for every component Z of X0 di¤erent from Y . We set LY :¼ LY

jY
which is a

line bundle on the smooth curve Y .

We fix s A p�Lh a section on the generic fibre. We denote by a the smallest integer
such that tas A p�L

Y , that is, tas A p�L
Y � tp�L

Y . Then we set

sY :¼ tas A p�L
Y and sY :¼ sY

jY A H 0ðY ;LY Þ:

For a di¤erent component Z of the special fibre X0 meeting Y at a point p, we define
similarly LZ;LZ; s

Z and sZ. If we write sZ ¼ tbsY A p�L
Z for a unique integer b, we have

the following compatibility relation between sY and sZ (cf. [EH1], Proposition 2.2):

degðLY Þ � ordpðsY Þe be ordpðsZÞ:ð3Þ

An immediate consequence of this is the inequality

ordpðsY Þ þ ordpðsZÞf degðLY Þ ¼ degðLZÞ:

Assume from now on that we have two line bundles Lh and Mh on Xh and we choose
an element r A H 0ðXh;LhÞnRh

H 0ðXh;MhÞ. If Y and Z are components of X0 meeting at p

as above, we define rY :¼ tgr A H 0ðX ;LY ÞnR H 0ðX ;M Y Þ, where g is the minimal integer
with this property. We have a similar definition for rZ A H 0ðX ;LZÞnR H 0ðX ;M ZÞ.
Between the sections rY and rZ there is a relation rZ ¼ tarY for a uniquely determined
integer a. To determine a we proceed as follows: we choose bases of sections fsi ¼ sY

i g
for H 0ðX ;LY Þ and ftj ¼ tY

j g for H 0ðX ;M Y Þ such that ordpðsi;Y Þ ¼ aLY

i ðpÞ and

ordpðtj;Y Þ ¼ aMY

j ðpÞ, for all relevant i and j (cf. e.g. [EH1], Lemma 2.3, for the fact that
this can be done). Then there are integers ai and bj defined by sZ

i ¼ ta isi and tZ
j ¼ tbjtj. To

obtain a formula for the integer a we write rY ¼
P
i; j

fijsi n tj, where fij A R. We have the
identity

rZ ¼
P
i; j

ðta�a i�bj fijÞðta isiÞn ðtbjtjÞ;
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from which we easily deduce that a ¼ maxi; jfai þ bj � nð fijÞg, where n denotes the valua-
tion on R (see also [EH2], Lemma 3.2).

Lemma 4.1. With the above notations, if rY :¼ rY
jY
A H 0ðY ;LY ÞnH 0ðY ;MY Þ and

rZ :¼ rZ
jZ
A H 0ðZ;LZÞnH 0ðZ;MZÞ, then

ordpðrY Þ þ ordpðrZÞf degðLY Þ þ degðMY Þ:

Proof. By definition, there exists a pair of indices ði1; j1Þ such that nð fi1 j1Þ ¼ 0 and

ordpðrY Þ ¼ ordpðsi1;Y Þ þ ordpðsj1;Y Þ

and clearly af ai1 þ bj1
. To get an estimate on ordpðrZÞ we only have to take into account

the pairs of indices ði; jÞ for which ai þ bj ¼ aþ nð fijÞf ai1 þ bj1
. For at least one such pair

ði; jÞ we have that

ordpðrZÞ ¼ ordpðta isi;ZÞ þ ordpðtbjtj;ZÞf ai þ bj:

On the other hand, by applying (3) we can write

ordpðrY Þ ¼ ordpðsi1;Y Þ þ ordpðtj1;Y Þf degðLY Þ þ degðMY Þ � ai1 � bj1
;

whence we finally have that ordpðrZÞ þ ordpðrY Þf degðLY Þ þ degðMY Þ. r

We now fix integers g and k such that gf 4 and ðg þ 2Þ=2e k e g � 1 and consider
the locus GP1

g;k of curves ½C � A Mg for which the Gieseker-Petri Theorem fails for a base
point free pencil g1

k. We denote by GP1
g;k the closure of GP1

g;k in Mg and we study GP1
g;k in-

ductively by understanding the intersection GP1
g;k XD1.

Definition 4.2. For a smooth curve C of genus g, a Gieseker-Petri ðgpÞ1
k-relation

consists of a linear series ðL;VÞ A G1
kðCÞ, V HH 0ðLÞ, together with an element

r A PKerfm0ðVÞ : V nH 0ðKC nL�1Þ ! H 0ðKCÞg:

If C ¼ C1 Wp C2 is of compact type with C1 and C2 smooth of genus i and g � i respec-
tively, a ðgpÞ1

k-relation on C is a collection ðl;m; r1; r2Þ, where l ¼ fðLC1
;VC1

Þ; ðLC2
;VC2

Þg
is a limit g1

k on C,

m ¼
��

MC1
¼ KC1

�
2ðg � iÞp

�
nL�1

C1
;W1

�
;
�
MC2

¼ KC2
ð2ipÞnL�1

C2
;W2

��
is a limit gg�k

2g�2�k on C, and elements

r1 A PKer
�

VC1
nWC1

! H 0
�
KC1

�
2ðg � iÞp

���
;

r2 A PKer
�

VC2
nWC2

! H 0
�
KC2

ð2ipÞ
��

satisfying the relation ordpðr1Þ þ ordpðr2Þf 2g � 2.

For a curve C of compact type, we denote by Q1
kðCÞ the variety of ðgpÞ1

k-relations on
C together with the scheme structure coming from its natural description as a determi-
nantal variety. The discussion above shows that if ½C � A GP1

g;k then Q1
kðCÞ3j. Our strat-
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egy is to construct ðgpÞ1
k-relations on certain singular curves and prove that they can be

deformed to nearby smooth curves filling up a divisor in Mg. The most important technical
result of this section is the construction of the moduli space of ðgpÞ1

k-relations over the
versal deformation space of a curve of compact type inside the divisor D1:

Theorem 4.3. Fix integers gf 4 and k such that ðg þ 2Þ=2e k e g � 1. Let C be a

smooth curve of genus g � 1, p A C and X0 :¼ C Wp E, where E is an elliptic curve. We de-

note by p : X ! B the versal deformation space of X0, with X0 ¼ p�1ð0Þ and 0 A B. Then

there exists a scheme Q1
k ! B, quasi-projective over B and compatible with base change, such

that the fibre over b A B parametrizes ðgpÞ1
k-relations over Xb. Furthermore each component

of Q1
k has dimensionf dimðBÞ � 1 ¼ 3g � 4.

Proof. The scheme Q1
k is going to be the disjoint union of subschemes where

the vanishing sequences of the aspects of the two underlying limit linear series of a ðgpÞ1
k-

relation are also specified. We will prove the existence for the component corresponding to
vanishing sequences ð1; 2Þ and ðk � 2; k � 1Þ for the limit g1

k and ð1; 2; . . . ; g � k þ 1Þ and
ðg � 3; g � 2; . . . ; 2g � 3 � kÞ for the limit gg�k

2g�2�k respectively. The construction is entirely
similar for the other compatible vanishing sequences. In our proof we will use Theorem 3.3
in [EH1] where a moduli space of limit linear series over the versal deformation space of a
curve of compact type is constructed.

We start by setting some notations. We denote by DHB the ‘‘boundary’’ divisor
corresponding to curves in which the node p is not smoothed. We denote by Cp and Ep

the closures in X of the components of p�1ðDÞ containing C � fpg and E � fpg respec-
tively. By shrinking B if necessary we can assume that OX ðCp þ EpÞ ¼ OX . We denote by
pPC : PC ! B the relative Picard variety corresponding to the family X ! B such that
for b A D and p�1ðbÞ ¼ Xb ¼ Cb WEb with Cb HCp and Eb HEp, the fibre of PC over b

consists of line bundles Lb on Xb with degCb
ðLbÞ ¼ k and degEb

ðLbÞ ¼ 0. Interchanging
the role of C and E we get another Picard variety PE ! B and tensoring with OX ðkCpÞ
gives an isomorphism PC ! PE . We denote by P the inverse limit of PC and PE under this
isomorphism. For b A B and any line bundle L on Xb, we define two new line bundles LC

and LE as follows: if b A B � D then LC ¼ LE ¼ L. If b A D and Xb ¼ Cb Wq Eb, then LC is
the restriction to C of the unique line bundle on Xb obtained from L by tensoring with a
divisor based at q and whose restriction to Eb is of degree 0 (and a similar definition for LE

with C and E reversed). Proceeding in a way identical to [EH1], pp. 356–360, we construct
a space of compatible frames f : F ! B factoring through pP : P ! B, and which para-
metrizes objects

x ¼ fb;L; ðsC
i Þi¼0;1; ðsE

i Þi¼0;1; ðtC
j Þj¼0;...;g�k; ðtE

j Þj¼0;...;g�kg;

where b A B, L is a line bundle of degree k on Xb, ðsC
i Þ (resp. ðsE

i Þ) is a projective frame
inside H 0ðLCÞ (resp. H 0ðLEÞ), while ðtC

j Þ (resp. ðtE
j Þ) is a projective frame inside

H 0
�
ðoXb

nL�1ÞC
�

(resp. H 0
�
ðoXb

nL�1ÞE

�
), subject to the following identifications:

if b A B � D, so Xb is smooth and LE ¼ LC ¼ L, then we identify sC
i ¼ sE

1�i for i ¼ 0; 1
and tC

j ¼ tE
g�k�j for j ¼ 0; . . . ; g � k (that is, there are only two frames, one inside

H 0ðLÞ, the other inside H 0ðKXb
nL�1Þ). If b A D and Xb ¼ Cb Wq Eb then we require

that ordqðsC
i Þf i þ 1, ordqðsE

i Þf k � 2 þ i for i ¼ 0; 1, while ordqðtC
j Þf j þ 1 and

ordqðtE
j Þf g þ j � 3. In this latter case l ¼ fðLC ; hsC

i iiÞ; ðLE ; hsE
i iiÞg is a limit g1

k and

m ¼
��

ðoX nL�1ÞC ; htC
j ij

�
;
�
ðoX nL�1ÞE ; ht

E
j ij

��
is a limit gg�k

2g�2�k on Xb.

Farkas, Gaussian maps and theta-characteristics 165

Brought to you by | Humboldt-Universität zu Berlin
Authenticated | 141.20.57.48

Download Date | 2/7/14 5:19 PM



The scheme F is determinantal and each of its components has
dimensionf dimðBÞ þ g þ 2 þ ðg � k þ 1Þðg � k � 2Þ, which is consistent with the naive
dimension count for the fibre over b A B � D. We also have tautological line bundles
~ssC

i ; ~ssE
i ; ~ssC

j and ~ssE
j over F, with fibres over each point being the 1-dimensional vector

space corresponding to the frame denoted by the same symbol. For 2e ie g � k þ 2,
we consider the rang g vector bundle Ci :¼ p�

�
oX=B nOX ðiCpÞ

�
; hence CiðbÞ ¼ H 0ðXb;LbÞ

for b A B � D, while for b A D the fibre CiðbÞ consists of those sections in
H 0

�
KCb

�
�ði � 1Þq

��
lH 0

�
OEb

�
ði þ 1Þq

��
that are compatible at the node q.

For 1e ie g � k we define a subscheme Gi of F by the equations

~ssC
0 � ~ttC

i ¼ ~ssC
1 � ~ttC

i�1 and ~ssE
1 � ~ttE

g�k�i ¼ ~ssE
0 � ~ttE

g�k�iþ1:ð4Þ

Here by ð~ssC
a � ~ttC

b ÞðxÞ we denote the element in PH 0
�
ðoXb

ÞC
�

obtained by multiplying
representatives of ~ssC

a ðxÞ and of ~ttC
b ðxÞ for each x A F, b ¼ fðxÞ. To make more sense of (4),

for each x A F the element
�
ð~ssC

0 � ~ttC
i ÞðxÞ; ð~ssE

1 � ~ttE
g�k�iÞðxÞ

�
gives rise canonically to a point

in P
�
ðf�Ciþ1ÞðxÞ

�
and abusing the notation we can consider ð~ssC

0 � ~ttC
i ; ~ssE

1 � ~ttE
g�k�iÞ and

ð~ssC
1 � ~ttC

i�1; ~ss
E
0 � ~ttE

g�k�iþ1Þ as sections of the Pg�1 bundle Pðf�Ciþ1Þ ! F. Then Gi is the

locus in F where these sections coincide and therefore each component of Gi has
dimensionf dimðFÞ � g þ 1.

We define Q1
k as the union of the scheme theoretic images of Gi for 1e ie g � k

under the map

Gi C x 7!
wi
�
b; l;m; r1 ¼ ðsC

0 n tC
i � sC

1 n tC
i�1Þ; r2 ¼ ðsE

1 n tE
g�k�i � sE

0 n tE
g�k�iþ1Þ

�
;

where we recall that l and m denote the underlying limit g1
k and g

g�k
2g�2�k respectively. From

the base point free pencil trick applied on both Cb and Eb, it is easy to see that Q1
k contains

all ðgpÞ1
k-relations on the curves Xb ¼ Cb Wq Eb, the points coming from Gi corresponding

to those ðb; l;m; r1; r2Þ for which ordqðr1Þf i þ 2 and ordqðr2Þf 2g � i � 4.

We are left with estimating dimðQ1
kÞ: having fixed ðb; l;m; r1; r2Þ inside wiðGiÞ,

there are two cases to consider depending on whether Xb is smooth or not. In each case
we obtain the same estimate for the fibre dimension of wi but here we only present the
case b A D, when Xb ¼ Cb Wq Eb. We have a one dimensional family of choices for each
of ðsC

0 ; s
C
1 Þ and ðsE

0 ; s
E
1 Þ, and after choosing these, ðtC

i ; tC
i�1Þ and ðtE

g�k�i; t
E
g�k�iþ1Þ are

uniquely determined (again, use the base point free pencil trick). For choosing the re-
maining tC

a , a3 i; i � 1 we have a ðg � kÞðg � k þ 1Þ=2 � ð2g � 2k � 2i þ 1Þ-dimensional
family of possibilities, while for tE

b , b3 g � k � i; g � k � i þ 1 we get another
ðg � kÞðg � k þ 1Þ=2 � 2i þ 1 dimensions. Adding these together we get that each compo-
nent of Q1

k has dimensionf 3g � 4. r

We can now prove Theorem 1.4. More precisely we have the following inductive
result:

Theorem 4.4. Fix integers g; k such that gf 4 and ðg þ 2Þ=2e k e g � 1. Suppose

GP1
g�1;k�1 has a divisorial component Z for which a general ½C � A Z is such that there exists a

0-dimensional component of Q1
k�1ðCÞ whose general point corresponds to a base point

free g1
k�1. Then GP1

g;k has a divisorial component Z 0, for which a general curve ½C 0� A Z 0 is
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such that Q1
kðC 0Þ has a 0-dimensional component corresponding to a base point free g1

k.
Moreover, if e : Mg�1;1 ! Mg�1 is the forgetful morphism, then using the identification

D1 ¼ Mg�1;1 �M1;1, we have that Z
0
XD1 I e�ðZÞ �M1;1.

Proof. We choose a general curve ½C � A Z HGP1
g�1;k�1, a general point p A C and

we set X0 :¼ C Wp E, where E is an elliptic curve. By assumption, there exists a base point
free ðA;VÞ A G1

k�1ðCÞ and r A PKer
�
m0ðVÞ

�
such that dimðA;V ;rÞ Q1

k�1ðCÞ ¼ 0. In partic-

ular Ker
�
m0ðVÞ

�
is 1-dimensional and h0ðAÞ ¼ 2. Let p : X ! B be the versal deformation

space of X0, DHB the boundary divisor corresponding to singular curves, and we consider
the scheme n : Q1

k ! B parametrizing ðgpÞ1
k-relations, which was constructed in Theorem

4.3. We construct a ðgpÞ1
k-relation z ¼ ðl;m; r1; r2Þ on X0 as follows: the C-aspect of

the limit g1
k denoted by l is obtained by adding p as a base point to ðA;VÞ, while the E-

aspect of l is constructed by adding ðk � 2Þp as a base locus to jOEðp þ qÞj, where
q A E � fpg satisfies 2ðp � qÞ1 0. Thus the vanishing sequences alC ðpÞ and alE ðpÞ are

ð1; 2Þ and ðk � 2; k � 1Þ respectively. The C-aspect of the limit g
g�k
2g�2�k we denote by

m, is the complete linear series jMC j ¼ jKCðpÞnA�1j which by Riemann-Roch has
vanishing sequence ð1; 2; . . . ; g � k þ 1Þ at p. Finally the E-aspect of m is the subseries
of

��OE

�
ð2g � 1 � kÞp � q

��� with vanishing ðg � 3; g � 2; . . . ; 2g � k � 3Þ at p. From the
base point free pencil trick it follows that we can choose uniquely the relations rC

on C and rE on E such that ordpðrCÞ ¼ 3 and ordpðrEÞ ¼ 2g � 5 (we use that
h0ðC;KC nA�2Þ ¼ dim

�
Ker

�
m0ðVÞ

��
¼ 1 by assumption, hence rC is essentially r up to

subtracting the base locus).

From Theorem 4.3, every component of Q1
k passing through z has

dimensionf 3g � 4. On the other hand we claim that every component of n�1ðDÞ passing
through z has dimensione 3g � 5 and that z is an isolated point in n�1ð½X0�Þ. Assuming
this for a moment, we obtain that z is a smoothable ðgpÞ1

k-relation in the sense that
there is a component of Q1

k through z which meets n�1ðB � DÞ. From this it follows that
½X0� A GP1

g;k XD1. Since by construction the curves ½X0� fill up a divisor inside D1, we
conclude that GP1

g;k has a divisorial component Z 0 such that Z 0 XD1 I e�ðZÞ �M1;1.

Furthermore, because the vanishing sequences of the C and E-aspects of l add up
precisely to k, every g1

k on a smooth curve ‘‘near’’ X0 which specializes to l, is base point
free (cf. [EH1], Proposition 2.5). We obtain that a point z 0 A n�1ðB � DÞ near z will satisfy
dimz 0 ðQ1

kÞ ¼ 3g � 4 and will correspond to a smooth curve ½C 0� A GP1
g;k, satisfying all the

required conditions.

We return now to the estimate for dimz

�
n�1ðDÞ

�
: we consider a curve

Xb ¼ Cb Wq Eb with b A D, and let ðl;m; rCb
; rEb

Þ A n�1ðbÞ. Hence the underlying limit
linear series l and m have vanishing sequences alCb ðqÞ ¼ ð1; 2Þ, alEb ðqÞ ¼ ðk � 2; k � 1Þ
and amCb ðqÞ ¼ ð1; 2; . . . ; g � k þ 1Þ, amEb ðqÞ ¼ ðg � 3; g � 2; . . . ; 2g � 3 þ kÞ respectively.

Clearly ordqðrCb
Þf 3ð¼ 1 þ 2 ¼ 2 þ 1Þ. We set

�
Ab ¼ LCb

ð�qÞ;VCb
:¼ VCb

ð�qÞ
�
A G1

k�1ðCbÞ

and �
Bb ¼ LEb

�
�ðk � 2Þq

�
;VEb

:¼ VEb

�
�ðk � 2Þq

��
A G1

2 ðEbÞ:
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We claim that in fact ordqðrCb
Þ ¼ 3 and therefore

ordqðrEb
Þ ¼ 2g � 5ð¼ k � 2 þ ð2g � 3 � kÞ ¼ k � 1 þ ð2g � 4 � kÞÞ:

Indeed assuming that ordqðrCb
Þf 4, from the base point free pencil trick we have that

h0
�
Cb;KCb

nA�2
b ð�qÞ

�
f 1. But h0

�
C;KC nA�2ð�pÞ

�
¼ 0 (use the assumption on C

and the fact that p A C is a general point), which implies that we can assume that
h0
�
Cb;KCb

nA�2
b ð�qÞ

�
¼ 0 for any point in a component of n�1ðDÞ passing through z.

After subtracting base points rCb
can be viewed as an element in the projectivization

of the kernel of the map m0ðVCb
Þ : VCb

nH 0ðKCb
nA�1

b Þ ! H 0ðKCb
Þ, while rEb

is in the
projectivized kernel of the map

m0ðVEb
Þ : H 0ðEb;BbÞnH 0

�
Eb;B

�1
b ð4qÞ

�
! H 0

�
Eb;OEb

ð4qÞ
�
:

In other words ½Cb� A GP1
g�1;k�1 and from the base point free pencil trick we get that

H 0
�
Eb;OEb

ð4qÞnB�2
b

�
3 0, which leaves only finitely many choices for Bb and rEb

. It fol-
lows that dimz n

�1ðDÞe dim½C �ðGP1
g�1;k�1Þ þ 1 þ 1 ¼ 3g � 5. r

Proof of Theorem 1.4. We apply Theorem 4.4 starting with the base case k f 3,
g ¼ 2k � 2. In this situation the locus GP1

2k�2;k is a divisor in Mg which can also be viewed

as the branch locus of the map to Mg from the Hurwitz scheme of coverings C �!k:1 P1

having a genus g source curve (cf. [EH3], Section 5). The locus of ½C � A Mg having infinitely
many base point free g1

k’s is of codimensionf 2, hence by default the general point of
GP1

2k�2;k corresponds to a curve with finitely many ðA;VÞ A G1
kðCÞ. The fact that for each

of these pencils, dim Ker
�
m0ðVÞ

�
e 1, also follows from [EH3]. Applying now Theorem 4.4

repeatedly we construct divisorial components of GP1
2k�2þa;kþa for all k f 3 and af 0. It is

easy to check that in this way we fill all the cases claimed in the statement. r

One could also define the loci GP1
g;k for k e ðg þ 1Þ=2. In this case GP1

g;k coincides

with the locus of k-gonal curves, which is irreducible of dimension 2g þ 2k � 5. When g is
odd, GP1

g; ðgþ1Þ=2 is the well-known Brill-Noether divisor on Mg introduced by Harris and
Mumford (see [EH3]). The Gieseker-Petri divisors GP1

g;k with k f ðg þ 2Þ=2 that we in-
troduced, share certain properties with the Brill-Noether divisor. For instance the following
holds (compare with [EH3], Proposition 4.1):

Proposition 4.5. We denote by j : M2;1 ! Mg the map obtained by attaching a fixed

general pointed curve ðC0; pÞ of genus g � 2. Then for ðg þ 1Þ=2e k e g � 1 we have the

relation j �ðGP1
g;kÞ ¼ qW, where qf 0 and W is the divisor of Weierstrass points on M2;1.

Sketch of proof. We can degenerate ðC0; pÞ to a string of elliptic curves
ðE1 W � � �WEg�2; pÞ, where p lies on the last component Eg�2. We assume that for all
2e ie g � 2, the points of attachment between Ei�1 and Ei are general. Fix now
½B; p� A M2;1 and assume that ½X0 :¼ C0 Wp B� A GP1

g;k. We denote by ðlB;mB; rBÞ the B-
aspect of a ðgpÞ1

k-relation on X0. Then using the setup described at the beginning of Section
4 we obtain that ordpðrBÞf 2g � 4. Since lB is a g1

k and mB is a g
g�k
2g�2�k, the only way this

could happen is if alBðpÞ ¼ ðk � 2; kÞ and amBðpÞ ¼ ð. . . ; 2g � 4 � k; 2g � 2 � kÞ, which
implies that h0

�
OBð2pÞ

�
f 2, that is, ½B; p� A W. r
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Remark 4.6. Using methods developed in this section we can also prove the
following result useful for the computation of the class ½GP1

g;k� A PicðMgÞ: if
e : Mg�1;1 ! Mg�1 is the forgetful morphism and f : Mg�1;1 ! Mg denotes the map at-
taching an elliptic tail at the marked point, then f�ðGP1

g;kÞ is set-theoretically the union
of two divisors: e�ðGP1

g�1;k�1Þ, and the closure D in Mg�1;1 of the locus of curves
½C; p� A Mg�1;1 for which there exists a base point free A A W 1

k ðCÞ such that
h0
�
C;Að�2pÞ

�
f 1 and the multiplication map

H 0ðC;AÞnH 0
�
KC nA4ð2pÞ

�
! H 0

�
KCð2pÞ

�
is not injective. It is natural to view D as a ‘‘pointed’’ Gieseker-Petri divisor on Mg;1.

We consider now the moduli space Sg;n of n-pointed spin curves of genus g and its
subvariety Sr

g;n consisting of elements ðC; p1; . . . ; pn;LÞ, where ½C; p1; . . . ; pn� A Mg;n and

L A PickðCÞ is a line bundle such that L2 nOCðp1 þ � � � þ pnÞ ¼ KC and h0ðLÞf r þ 1.
Of course we assume that 2k þ n ¼ 2g � 2. The base point free pencil trick relates these
loci to the loci GPi

g;k we introduced before. Precisely, if f : Sg;n ! Mg is given by

½C; p1; . . . ; pn;L� 7! ½C �, then f ðS1
g;nÞ ¼ GP1

g;k.

We now look at the divisor Z HGP1
g;k constructed in Theorem 4.4. The condition

that for a general ½C � A Z, the scheme Q1
kðCÞ has a 0-dimensional component with general

point corresponding to a base point free g1
k, can be translated into saying that f �1½C � has

a zero-dimensional component. We obtain in this way that there exists a component Y of
S1

g;n of dimension 3g � 4 such that f ðY Þ ¼ Z. This proves Corollary 1.5.

5. Injectivity of Gaussian maps

We are going to prove Theorem 1.3 by degeneration. Our proof is inspired by the
work of Eisenbud and Harris on the Gieseker-Petri Theorem (cf. [EH2]). Suppose we have
a family of genus g curves p : X ! B over a base B ¼ SpecðRÞ with R being a complete
DVR with local parameter t and let 0 and h respectively, denote the special and the generic
point of R. Assume furthermore that Xh is smooth and that X0 is a curve of compact type
consisting of a string of components of which g of them, E1; . . . ;Eg, are elliptic curves,
while the rest are rational curves, glued in such a way that the stable model of X0 is the
curve E1 Wp1

E2 Wp2
E3 W � � �WEg�1 Wpg�1

Eg. Slightly abusing the notation, for 2e ie g � 1
we will consider pi�1 and pi A Ei to be the points of attachment of Ei to X0 � Ei and we will
choose X0 in such a way that pi � pi�1 is not a torsion class in Pic0ðEiÞ.

We proceed by contradiction and assume that there exists a line bundle Lh on Xh of
degree d, together with a non-zero element

rh A KerfcLh :
V2

H 0ðXh;LhÞ ! H 0ðXh;W
1
Xh

nL2
hÞg:

(Note that because the shape of X0 does not change if we blow-up the surface X , we can
assume that we have a bundle Lh on Xh rather than on the geometric generic fibre Xh.) As
in Section 4, for each component Y of X0 we have the line bundle LY on X extending Lh

and having degree 0 restriction to all components Z 3Y of X0 and we set LY :¼ LY
jY .

Starting with rh A
V2 p�ðLhÞ we obtain elements rY ¼ tarh A

V2 p�ðLY Þ � t
V2 p�ðLY Þ for

uniquely determined integers a, and we define rY :¼ rY
jY A

V2
H 0ðY ;LY Þ.
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Lemma 5.1. For each component Y of X0 we have that

rY A KerfcLY
:
V2

H 0ðY ;LY Þ ! H 0ðY ;W1
Y nL2

Y Þg:

Proof. We use the commutative diagram

V2
H 0ðX0;L

Y
jX0

Þ ���!res V2
H 0ðY ;LY Þ???yc

LY
jX0

???ycLY

H 0ðX0;W
1
X0

nLYn2

jX0
Þ ���!res

H 0ðY ;W1
Y nL2

Y Þ

and keep in mind that the upper restriction map is injective. r

We will use the following observation (similar to the one for ordinary multipli-
cation maps): let C be a smooth curve, p A C and M a line bundle on C. If
r A KerðcMÞ and fsig is a basis of H 0ðMÞ such that ordpðsiÞ ¼ aM

i ðpÞ ¼ ai, then
there are distinct pairs of integers ði1; j1Þ3 ði2; j2Þ with i1 3 j1 and i2 3 j2, such that
ordpðrÞ ¼ ordpðsi1Þ þ ordpðsj1Þ ¼ ordpðsi2Þ þ ordpðsj2Þ. This follows from a local calcu-
lation: if t is a local parameter for C at p, then

cMðsi5sjÞ ¼
�
ðai � ajÞtaiþaj�1 þ h:o:t:

�
dt;

and since cMðrÞ ¼ 0, the number ordpðrÞ must be attained for at least two pairs ði; jÞ.

Proposition 5.2. Suppose Y and Z are two components of X0 meeting at a point q and

let p be a general point on Y . We have the following inequalities:

(1) ordqðrZÞf ordpðrY Þ.

(2) If Y is one of the elliptic components of X0, then ordqðrZÞf ordpðrY Þ þ 2.

Proof. Although (1) is essentially Proposition 3.1 from [EH2] we will briefly go
through the proof and in doing so we will also prove (2). We pick a basis fsi ¼ sY

i g of
p�ðLY Þ such that ordpðsijY Þ ¼ aL

i ðpÞ and for which there are integers ai with the property
that fsZ

i ¼ ta isig form a basis for H 0ðX ;LZÞ (see [EH1], Lemma 2.3 for the fact that
such a basis can be chosen). We then write rY ¼

P
i3j

fijsi5sj, with fij A R, and we can

express rZ ¼ tgrY , where g ¼ max
i3j

fai þ aj � nð fijÞg. Here n denotes the valuation on the

ring R. From the definition of g it follows that there exists a pair ði; jÞ, i3 j, with
g ¼ ai þ aj � nð fijÞ, such that we have a string of inequalities

ordqðrZÞ ¼ ordqðsZ
ijZÞ þ ordqðsZ

jjZÞf ai þ aj f g;ð5Þ

(see also Section 4). On the other hand there exists a pair ði 0; j 0Þ, i 0 3 j 0 such that
nð fi 0j 0 Þ ¼ 0, for which we can write the inequalities

ordpðrY Þ ¼ ordpðsi 0jY Þ þ ordpðsj 0jY Þð6Þ

e
�
d � ordqðsi 0jY Þ

�
þ
�
d � ordqðsj 0jY Þ

�
e ai 0 þ aj 0 e g:
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Combining (5) and (6) we get the first part of the proposition. When moreover the curve Y

is elliptic, since cLY
ðrY Þ ¼ 0, there must exist at least two pairs ði1; j1Þ and ði2; j2Þ for which

(6) holds. On the other hand p � q A Pic0ðY Þ can be assumed not to be a torsion class, and
we obtain that ordpðsijY Þ þ ordqðsijY Þe d � 1 for all indices i except at most one. This and
the fact that the vanishing orders ordpðsijY Þ are all distinct, quickly lead to the inequality
ordqðrZÞf gf ordpðrY Þ þ 2. r

A repeated application of Proposition 5.2 gives the following result:

Proposition 5.3. Let X0 be the curve described in the degeneration above and

which has the stable model
Sg
i¼1

Ei, where Ei are elliptic curves. We denote by pi�1 and

pi the points of attachment of Ei to the rest of X0. If cLh
ðrhÞ ¼ 0, then

ordpg�1
ðrEg

Þf ordp1
ðrE2

Þ þ 2g � 4.

We are now in a position to prove Theorem 1.3. In fact we have a more general
result:

Theorem 5.4. For a general genus g curve C and for any line bundle L on C of

degree d e a þ g þ 2, where af 0, we have that dim KerðcLÞe aða þ 1Þ. In particular, if

d e g þ 2 then cL is injective.

Proof. We apply Proposition 5.3 and degenerate C to X0 ¼ E1 W � � �WEg. We
assume that KerðcC;LÞ is at least 1 þ aða þ 1Þ-dimensional. Then

dim Kerðc
X0;L

E2
jX0

Þf 1 þ aða þ 1Þ

and since the restriction map
V2

H 0ðX0;L
E2

jX0
Þ !

V2
H 0ðE2;LE2

Þ is injective we obtain
that KerðcE2;LE2

Þ is at least 1 þ aða þ 1Þ-dimensional as well. For simplicity let us denote

E2 ¼ E, LE2
¼ L and p1 ¼ p A E2 (recall that p1 A E2 XE1).

If we choose a basis fsig of H 0ðLÞ adapted to the point p, then as we noticed before
for each r A KerðcLÞ there will be at least two distinct pairs of integers ði1; j1Þ3 ði2; j2Þ
where i1 3 j1, i2 3 j2 such that

ordpðrÞ ¼ ordpðsi1Þ þ ordpðsj1Þ ¼ ordpðsi2Þ þ ordpðsj2Þ:

The vanishing sequence aLE1 ðpÞ is eð. . . ; d � 3; d � 2; dÞ, hence the vanishing sequence of
L ¼ LE2

at p is fð0; 2; 3; 4; 5; . . .Þ, which yields that ordpðrÞf 5ð¼ 0 þ 5 ¼ 2 þ 3Þ for
every r A KerðcLÞ. Since dim KerðcLÞf 1 þ aða þ 1Þ, there is a subspace W1 HKerðcLÞ of
dimensionf aða þ 1Þ such that ordpðrÞf 6ð¼ 0 þ 6 ¼ 2 þ 4Þ for each r A W1.

Repeating this reasoning for W1 instead of KerðcLÞ we obtain a subspace W2 HW1

with dimðW2Þf dimðW1Þ � 1 such that ordpðrÞf 7ð¼ 0 þ 7 ¼ 2 þ 5 ¼ 3 þ 4Þ for every
r A W2, and then a subspace W3 HW2 with dimðW3Þf dimðW2Þ � 2 with the property
that ordpðrÞf 8ð¼ 0 þ 8 ¼ 2 þ 6 ¼ 3 þ 5Þ for all r A W3. At the end of this argument we
find at least one element r ¼ rE2

A KerðcLÞ such that ordpðrÞf 2a þ 5. Since this
reasoning works if we replace KerðcLÞ with any of its subspaces having
dimensionf 1 þ aða þ 1Þ, we can assume that rE2

is the restriction to E2 of an ele-
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ment rh in the kernel of the corresponding Gaussian map on the general curve
Xh, which according to the procedure described before Lemma 5.1 will produce
elements rEi

A KerðcLEi
Þ for 1e ie g. Applying Proposition 5.3 we have that

ordpg�1
ðrEg

Þf ordpðrÞ þ 2g � 4 ¼ 2ða þ gÞ þ 1. The vanishing sequence of LEg
at pg is

eð. . . ; d � 3; d � 2; dÞ from which we obtain that on the other hand

ordpg�1
ðrEg

Þe 2d � 5ð¼ d þ ðd � 5Þ ¼ ðd � 2Þ þ ðd � 3ÞÞ;

which combined with the previous inequality yields d f a þ g þ 3 which is a contra-
diction. r

Note that Theorem 5.4 is valid for an arbitrary line bundle on a general genus g curve.
It is clear that Proposition 5.3 would give better su‰cient conditions for the injectivity of
cL if we restricted ourselves to line bundles on C having a prescribed ramification sequence
at a given point p A C. In this case we degenerate ðC; pÞ to ðX0 ¼ E1 W � � �WEg; pÞ, where
X0 is as in Theorem 5.4 and p A E1 is such that p � p1 A Pic0ðE1Þ is not a torsion class. We
leave it to the interested reader to work out the numerical details. We can also improve on
Theorem 5.4 if we look only at a suitably general line bundle L on C:

Proposition 5.5. Fix integers g, d and rf 2 such that d e g þ r,

r ¼ g � ðr þ 1Þðg � d þ rÞf 0 and moreover d < g þ 3 þ r

2ðr � 1Þ . Then if C is a

general curve of genus g and L A W r
d ðCÞ is general, the Gaussian map cL is injective.

Proof. We degenerate C to X0, fix a general point p A E1 and set
a :¼ ½r=ðr � 1Þ� þ 2. Our numerical assumptions imply that r� ða � 2Þðr � 1Þf 0.
From the general theory of limit linear series in [EH1] reducing the Brill-Noether
theory of X0 to Schubert calculus, we know that there exists a smoothable limit
linear series of type gr

d on X0, say l ¼ fLEi
A W r

d ðEiÞgi¼0;...;g having vanishing sequence
f ð0; 1; a; a þ 1; a þ 2; . . . ; a þ r � 2Þ at the point p.

Assume by contradiction that there are elements rEi
A KerðcLEi

Þ coming from an
element r3 0 in the kernel of the corresponding Gaussian on the general curve.
Then ordpðrE1

Þf a þ 1ð¼ 1 þ a ¼ 0 þ ða þ 1ÞÞ and from Proposition 5.2 we get that
ordpg�1

ðrEg
Þf ordpðrE1

Þ þ 2g � 2 ¼ 2g þ a � 1. On the other hand, as we noticed before
ordpg�1

ðrEg
Þe 2d � 5 which gives a contradiction. r

Remark 5.6. The techniques from this section also allow us to study the kernel
S2ðLÞ of the multiplication map mL : Sym2 H 0ðLÞ ! H 0ðL2Þ. In a way similar to the proof
of Theorem 5.4 we can show that if L is an arbitrary line bundle of degree d e g þ a þ 1 on
a general curve C of genus g then dim S2ðLÞe aða þ 1Þ. The a ¼ 0 case of this result has
been established by Teixidor (cf. [T2]). We also note that this result as well as Theorem 5.4,
are meaningful when the bundle L is special. On the other hand the case when L is non-
special (when, under suitable assumptions, we expect surjectivity for both cL and mL), has
been extensively covered in the literature (see e.g. [Pa]).

Theorem 1.3 answers Question 5.8.1 from Wahl’s survey [W1], where the problem is
raised in terms of self-correspondences on a curve. Suppose that C is a smooth curve and
we consider the diagonal DHC � C and the projections pi : C � C ! C for i ¼ 1; 2. For a
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line bundle L on C we denote Li :¼ p�
i L for i ¼ 1; 2. We can rephrase Theorem 1.3 as

follows:

Proposition 5.7. If L is a line bundle of degree d e g þ 1 on a general curve C of

genus g, then H 0ðC � C;L1 þ L2 � 2DÞ ¼ 0.

Proof. We use that H 0ðC � C;L1 þ L2 � 2DÞ ¼ KerðFLÞ ¼ S2ðLÞlKerðcLÞ. We
have proved that KerðcLÞ ¼ 0 while S2ðLÞ ¼ 0 follows from [T2]. r
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