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1. Introduction

For an integer g = 1 we consider the moduli space .%; of smooth spin curves para-
metrizing pairs (C, L), where C is a smooth curve of genus g and L is a theta-characteristic,
that is, a line bundle on C such that L? ~ K¢. It has been known classically that the natural
map n : S — M, is finite of degree 2% and that ¥ is a disjoint union of two components
S and odd corresponding to even and odd theta-characteristics. A geometrically
meamngful compactlﬁcatlon , of ¥, has been constructed by Cornalba by means of stable
spin curves of genus ¢ (cf. [C]). The space , and more generally the moduli spaces y Vr of
stable n-pointed r-spin curves of genus g, parametrizing pointed curves with r-roots of the
canonical bundle, have attracted a lot of attention in recent years, partly due to a conjec-
ture of Witten relating intersection theory on ?fql,/[ to generalized KdV hierarchies (see e.g.
[JKV]).

For each g, r = 0 one can define the locus
ST ={(C,L)e % :h°(L) 2 r+1and i°(L) = r + 1 mod 2}.

We also set .7 := n(,fq’). It has been proved by Harris that each component of & has
r+1
2
small: it is a classical result that %! is a divisor in S, while for r = 2,3 we have that ,qu" has
pure codimension r(r+ 1)/2 in % for all g = 8 (cf. [T1]). On the other hand clearly the
bound is far from optimal when r is relatively large with respect to g in the sense that there

dimension = 3g — 3 — ( > (cf. [H]). This bound is known to be sharp when r is very

1
are examples when 4" + (0 although 3g — 3 — <r—2k > is very negative: the hyperelliptic

locus #; < .4, is contained in % ((9-1)/2] and there are Castelnuovo extremal curves C < P’

of genus 3r such that K¢ = O¢(2 ) which gives that %5, & 0 for all r = 3 (see e.g. [CdC]). I
is thus natural to ask to what extent Harris” bound is sharp. We give a partial answer to thls
question by proving the following:
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Theorem 1.1. For 1 <r =< 11, r # 10, there exists an explicit integer g(r) such that
. . 1
Jor all g = g(r) the moduli space # has at least one component of codimension <VJ2r ) in

;. The general point [C, L] of such a component corresponds to a smooth curve C = P", with
L= @C(l) and KC = (ﬁ’c(?.).

For a precise formula for g(r) we refer to Section 3. We conjecture the existence of

. ) 1 2
a component of 3;’ of codimension (V—; ) for any r =1 and g = (r+ > and we

indicate a way to construct such a component (see Conjecture 3.4). Theorem 1.1 is proved
inductively using the following result:

Theorem 1.2. We fix integers r,go 2 1. If ¥,' has a component of codimension

r—+1
( —; > in 4, then for every g = go, the space ' has a component of codimension

1
<r42— ) in 9.

To apply Theorem 1.2 however, one must have a starting case for the inductive
argument. This is achieved by carrying out an infinitesimal study of the loci & which will
relate theta-characteristics to Gaussian maps on curves. Recall that for a smooth curve C
and a line bundle L on C, the Gaussian or Wahl map ; : N> H'(L) — H(K¢ ® L?) is
defined essentially by

U (sat) = sdt— tds.

The map ; has attracted considerable interest being studied especially in the context of
deformation theory (see [W1] and the references therein). Wahl proved the remarkable fact
that if C sits on a K3 surface then y, . cannot be surjective, which should be contrasted
with the result of Ciliberto, Harris and Miranda saying that /¢ . is surjective for the general
curve C of genus g = 10 or g = 12 (cf. [CHM]). In a completely different direction, in a
previous work we made essential use of the Gaussian map g, . for g = 10 to construct a
counterexample to the Harris-Morrison Slope Conjecture on effective divisors on .4, (cf.
[FP).

There are several powerful criteria in the literature ensuring the surjectivity of
Y; when L has large degree (see e.g. [Pa], Theorem G), but very little seems to be known
about when is the map ¥, injective, or more generally, what is the behaviour of ), when
the line bundle L is special (cf. [W1], Question 5.8.1). In Section 5 we go some way towards
answering this question by showing the following:

Theorem 1.3. For the general curve C of genus g and for any line bundle L on C of
degree d < g + 2, the Gaussian map VY, is injective.

We refer to Theorem 5.4 for a more general statement that bounds the dimension of
Ker(y;) even when d > g + 2. In the case when L is a very ample line bundle giving an
embedding C = P”, Theorem 1.3 can be interpreted as saying that the associated curve
C — PV obtained by composing the Gauss map C — G(2,n+ 1), C 3 p+s T,(C), with
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the Pliicker embedding of the Grassmannian of lines, is nondegenerate. Alternatively one
can read this result in terms of (absence of) certain self-correspondences on the general
curve C (see Proposition 5.7).

In Section 4 we relate the Gieseker-Petri loci on .#, to the moduli spaces ', of n-
pointed spin curves consisting of collections (C, py,..., p,, L), where (C, p1,.. ., pn) € My, p
and L is a degree k line bundle on C such that L>® Oc(p; + -+ p,) = K¢ and
h°(L) = r + 1. Here of course we assume that 2k +n = 2g — 2.

We recall that the Giseker-Petri Theorem asserts that for a general curve C of genus
g and for any line bundle L on C, the map py(L): H'(L) ® H*(Kc ® L) — H(K¢)
is injective (see e.g. [EH2]). It is straightforward to see that if u,(L) is not injective
then h°(L),h°(Kc ® L™') = 2 and it is an old problem to describe the locus in ./#, where
the Gieseker-Petri Theorem fails, in particular to determine its components and their
dimensions.

We fix integers r,d = 1 such that p(g,r,d) =g — (r+1)(g —d +r) = 0. As usual,
GJ(C) is the variety of linear systems g} on C, and if (L, V) e Gj(C), we denote by
u(V): VR H(Kc ® L™') — H°(K¢) the multiplication map. We define the Gieseker-
Petri locus of type (r, d)

GP, ;= {[C] € M, : 3 a base point free (L, V) € G;(C) with x,(V) not injective}.

There are only two instances when this locus is well understood. First, GPq1 41 can be
identified with the above introduced locus .7, ! of curves with a vanishing theta-null which
is known to be an irreducible divisor (cf. [T ]) Then for even g = 4, GP (g+2)/2 1s a divisor
on ./, which has an alternate description as the branch locus of ‘the natural map
H, (4422 — My from the Hurwitz scheme of coverings of P' of degree (g +2)/2 with
source curve of genus g. This last divisor played a crucial role in the proof that .#, is of
general type for even g = 24 (cf. [EH3]). It is natural to ask whether more generally, all loci
GF; , are divisors and we give a partial affirmative answer to this question:

Theorem 1.4. For integers g = 4 and (g +2)/2 < k < g — 1, the Giseker-Petri locus
Gl%1 « has a divisorial component.

As an easy consequence we mention the following:

Corollary 1.5. For g =4 and 0 < n < g — 4, the moduli space Sflln has at least one
component of dimension 3g — 4.

This last statement can be compared to Polishchuk’s recent result that the moduli
space %?n is of pure dimension 3g — 3 +n/2 (cf. [Po], Theorem 1.1).

2. Limit theta-characteristics
In this section, after briefly recalling some basic facts about stable spin curves, we

characterize limit theta-characteristics on certain stable curves of compact type after which
we prove Theorem 1.2.
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We review a few things about the moduli space ¥ (see [C] for more details). If
X is a nodal curve, a smooth rational component R of X is called exceptional if
#(Rn (X — R)) =2. The curve X is called quasistable if every two exceptional compo-
nents are disjoint. Every quasistable curve is obtained by blowing-up some of the nodes of a

stable curve.

A stable spin curve consists of a triple (X, L,o), where X is a quasistable curve
with p,(X) =g, L is a line bundle on X of degree g — 1 with Lg = (g(1) for each excep-
tional component R and o : L?> — wy is a homomorphism such that «¢ # 0 for any non-
exceptional component C of X. A family of stable spin curves is a triple (f : 4 — T, %, a),
where f: % — T is a flat family of quasistable curves, .# is a line bundle on ¥ and
o L — s is a homomorphism such that «c, gives a spin structure on each fibre

C, = 1.

The stack .%; of stable spin curves of genus g has been constructed in [C] where it is
also proved that there exists a finite map = : ¥, — .#, whose fibre over [C] € .#, is the set
of stable spin structures on quasistable curves stably equivalent to C.

Remark 2.1. Suppose C = C; U, C, is a curve of compact type with C; and C,
being smooth curves and g(C;) =i, g(C,) = g — i. Then it is easy to see that there are no
spin structures on C itself. In fact, 77! ([C]) consists of spin structures on the quasistable
curve X = C; y, Ry, C; obtained from C by “blowing-up” C at the node p. Each such
spin structure is given by a line bundle L on X such that L21 = K¢, L%z = K¢, and
Lg = Og(1). More generally, a spin structure on any curve of compact type corresponds to
a collection of theta-characteristics on the components.

Assume now that C = C; U, C; is a curve of compact type where C; and C, are
smooth curves of genus i and g — i respectively. We define an r-dimensional limit theta-
characteristic on C (in short, a limit ), as being a pair of line bundles (L1, Ly) with
L; € Pic!”1(C;), together with (r + 1)-dimensional subspaces ¥; = H°(L;) such that

(1) {li = (Li, Vi) },—1 5 is a limit linear series g, ; in the sense of [EHI].
(2) L? = K¢, (2(g — i)p) and L} = K¢, (2ip).

Using this terminology we now characterize singular curves in ﬂ_gr :
Lemma 2.2. Suppose [C = C, U, C3] € /%_g’ Then C possesses a 0.

Proof. We may assume that there exists a 1-dimensional family of curves f : ¥ — B
with smooth general fibre C, and central fibre Cy = f~!(0) stably equivalent to C, together
with a line bundle ¥ on ¥ — Cy and a rank (r+ 1) subvector bundle V' < f,(¥) over
B* := B — {0} such that gcz,, = wc, for all b € B*. Then for i = 1,2 there are unique line
bundles .%; on % for extending ¥ and such that degy (%;) = 0 for every component Y of
Cy different from C;. If we denote by L; := Zj| and V; = H°(L;) the (r + 1)-dimensional
subspace of sections that are limits in L; of sections in V/, then by [EH1], Theorem 2.6, we
know that {(L;, V;)},_, , is a limit g/_,. Finally, since L? and K, are isomorphic off p they
must differ by a divisor supported at p which accounts for condition (2) in the definition of
a Hq". [
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We describe explicitly the points in ,/%_g’ N Ay, where A, is the divisor of curves with an
elliptic tail:

Proposition 2.3. Let [C = C| u, E| be a stable curve with Cy smooth of genus g — 1
and E an elliptic curve. If [C] e ,/%’ then either (1) [C1] € 4, _,, or (2) there exists a line
bundle Ly on C; such that (Cl,Ll) € 9’ 11 and p € Bs|L1| Ifmoreover p € Cy is a general
point, then possibility (2) does not occur "hence [C] € .,

Proof. We know that C carries a limit 9’ say | = {l¢,,lg}. By the compatlblhty re-
lation between /¢, and /g, the vanishing sequence aa (p) of I¢, at pis =(0,2,. +1). If
lc, has a base point at p then if we set L := L¢,(—p) we see that (C1, L) € 9" | and we are
in case (1). Otherwise we set M := L¢,(—2p) and then h°(Cy, M) = r, M? = K¢, (—2p) and
|M + p| is a theta-characteristic on C; having p as a base point.

For the last statement, we note that a curve has finitely many positive dimensional
theta-characteristics each of them having only a finite number of base points, so possibility
(2) occurs for at most finitely many points p € C;. []

We can now prove Theorem 1.2. More precisely we have the following result:

. 1
Proposition 2.4.  Fix r.g 2 1. If 9", has a component of codimension (V—; ) in
. 1
F4-1, then S has a component of codimension (r; ) in .

Proof. Suppose [Cy,Li]€ ¥ is a point for which there exists a component
. . 1 .
Z 3 [C, Ly] of & | with codim(Z, %) = (r—; ) We fix a general point p € C; and

set C := C; U, E, where (E, p) is a general elliptic curve. We denote by X := C; U, R U, E
the curve obtained from C by blowing-up p, and we construct a spin structure on X given
by a line bundle L on X with L¢, = Ly, Lg = Or(1) and Lg = Og(t — s5), where 1 — s is a
non-zero torsion point of order 2. Clearly h°(X,L) = h°(Cy, L)) = r+ 1. We first claim
that (X, L) is a smoothable spin structure which would show that [X, L] € 7.

To see this we denote by (f : # — B, %, 0: £* — wy) the versal deformation space
of (X, L), so that if B; denotes the versal deformation space of the stable model C of X,
there is a commutative diagram:

B —~— B/Aut(X,L) ——

J#

B —— Bl/Aut(C) e

AN

—
3

Lm§'

We define B" := {be B: h°(Xy,Ly) = r+ 1,h°(X,, Ly) = r + 1 mod 2} and Theorem
1.10 from [H] gives that every component of B" has dimension = dim(B) — r(r + 1)/2. We
also consider the divisor A = B corresponding to singular spin curves. To conclude that
(X, L) is smoothable we show that there exists a component W 5 0 of B" not contained in
A (here 0 € B is the point corresponding to (X, L)).
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Assume that on the contrary, every component of B”" containing 0 sits inside A. It is
straightforward to describe B" n A: if (X, = C, U Ry U Ep, L) where be B, g(Cy) =g — 1,
g(Ey) =1, is a spin curve with h°(Xy, Ly) = r+ 1, then either (1) A°(Cy, Lyc,) 2 r+ 1 or
(2) h°(Cy, Lyc,) = r and Ly, = O, (put it differently, L, is the only odd theta charac-
teristic on Ejp). Since even and odd theta characteristics do not mix, it follows that any
component 0 € W < B will consist entirely of elements » for which 4°(C,, Lyc,) =zr+1.
Moreover, there is a 1:1 correspondence between such components of B” and components

of %’;1 through [Cy, L;]. But then the locus

% :={beA:[Cy,Lyc,) € Z,h*(Ep, Lyjr,) = 0}

. 1
is a component of B" containing 0 and dim(Z)) =dim(Z)+2=3g—4— <H2_ ),
which contradicts the estimate on dim(B").

Thus (X, L) is smoothable. We now show that at least one component of 57;" passing
1
through [C, L] has codimension <r—|2— ) Suppose this is not the case. Then each com-
_ 1
ponent of %" N a(A) through [C, Lc] has codimension < <r—2k ) — 1 in g(A). Recalling

that p e C; was general, Proposition 2.3 says that any such component corresponds to
curves C{ N E' where E' is elliptic and [C{] € .4, . But then ¢(Z7) is such a component

: 1 S .
and we have already seen that codim(Z7,A) = (rer ), which yields the desired contra-
diction. []

Remark 2.5. Retaining the notation from the proof of Theorem 2.3, if
[C1,Li] € % is such that L; is very ample, then a smoothing [C’,L¢c/]€ ¥, of
[C = C) U, E, Lc] corresponds to a very ample L¢r. Indeed, assuming by contradiction
that there exist points x, y € C' such that h°(L¢(—x — y)) 2 h°(L¢) — 1, we have three
possibilities depending on the position of the points r,s € C to which x and y specialize.
The case x, y € E can be ruled out immediately, while x, y € C; would contradict the as-
sumption that L; is a very ample line bundle. Finally, if x € C|; and y € E, one obtains that
{x, p} fails to impose independent conditions on |L,|, a contradiction. Thus L¢- is very
ample.

3. Gaussian maps and theta-characteristics

It may be helpful to review a few things about Gaussian maps on curves and to ex-
plain the connection between Gaussians and theta-characteristics. This will enable us to
construct components of & of dimension achieving the Harris bound.

For a smooth projective variety X and a line bundle L, we denote by R(L) the kernel
of the multiplication map H°(L) ® H°(L) — H°(L?). Following J. Wahl (see e.g. [W1]),
we consider the Gaussian map ®; = ®y 1 : R(L) — H°(Q} ® L?), defined locally by

S®t— sdt —tds.

Since R(L) = N> H(L) ® S>(L), with Sy(L) = Ker{Sym> H°(L) X5 H(L?)}, it is clear
that ®; vanishes on symmetric tensors and it makes sense to look at the restriction
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Y=Yy =@ : N H(L) — H'(Q} ® L?
L X,L* LIN'HO(L) * A (L) — H(Qy )-

If X = P" is an embedded variety with L = (x(1), one has the following interpretation for
®;: we pull back the Euler sequence to X to obtain that R(L) = H O(Q})rl v ® L?) and then
@, can be thought of as the map obtained by passing to global sections in the morphism
Q},r‘ v ® L? — Q) ® L. Furthermore, if Ny is the normal bundle of X in P’, tensoring the
exact sequence

(1) 0— Ny = Qpriy = Qp — 0

by (x(2), we obtain that Ker(®,) = Ker(y;) @ S>(L) = H°(Ny(2)). If X is projectively
normal, from the exact sequence 0 — f/‘% — Sy — Ny — 0 it is straightforward to check
that Ker(y, ) = H' (P, #3(2)).

The map y; has been extensively studied especially when X is a curve, in the context
of the deformation theory of the cone over X (cf. e.g. [W1]). The connection between
Gaussian maps and spin curves is given by the following tangent space computation due to
Nagaraj (cf. [N], Theorem 1): for (C,L) € %, if we make the standard identifications
Tic.1)(%) = Tic|(My) = H'(C,Tc) = H°(C, KZ)", then

Tiey(%) = (Im(y,) : NP HO(L) — H(KZ))".

. . r+1\ . .
In other words, to show that a component 2 of % has codimension < ) ) in %, it

suffices to exhibit a spin curve [C, L] € Z such that 2°(L) = r + 1 and y; is injective. We
construct such curves as sections of certain homogeneous spaces having injective Gaussians
and then we apply Theorem 1.2 to increase the range of (g, r) for which we have a com-

. . . 1 : .
ponent of %" of codimension (r ; ) . We will use repeatedly the following result of Wahl
relating the Gaussian map of a variety to that of one of its sections (cf. [W2], Propositions

3.2 and 3.6):

Proposition 3.1. 1. Suppose X = P" is a smooth, projectively normal variety such that
Yy oy (1) Bs injective. If Y < X is a subvariety with ideal sheaf J satisfying the conditions

H' (X, 7(1)) =0, H'(X,7%2)=0, H'(X,Ny2)®7)=0,
then the Gaussian Yy ¢, is injective too.

2. Let X = P" be a smooth, projectively normal, arithmetically Cohen-Macaulay
variety and Y = X nP"™" < P"™" a smooth codimension n linear section, where n <r. If
Hi(X, Ny(2 - z)) =0 for 1 =i <nand iy ¢, is injective, then Y is projectively normal
and the Gaussian \y ¢, is also injective.

We will apply Proposition 3.1 in the case of the Grassmannian X = G(2,n) of 2-
dimensional quotients of C" and for the line bundle L = g, (1) which gives the Pliicker
embedding. In this case Y, , ) is bijective (cf. [W2], Theorem 2.11).
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We need to compute the cohomology of several vector bundles on G(2,n) and
we do this using Bott’s theorem (see [FH] for a standard reference). Recall that
G(2,n) = SL,(C)/P, where the reductive part of the parabolic subgroup P consists of
matrices of type diag(A4, B) € SL,(C) where A € GL>(C) and B € GL,_»(C). We denote by
2 the universal rank 2 quotient bundle defined by the tautological sequence

O—>JZZ—>(QG%<")—>Q—>O.

Every irreducible vector bundle over G(2,n) comes from a representation of the re-
ductive part of P. If e, ..., e, is an orthonormal basis of R”, the positive roots of SL,(C)
are {e; — ¢;},.; and we use the notation E(ay, ..., a,) for the vector bundle corresponding
to the representation with highest weight a;e; + - - - 4+ a,e,. We then have the identifications
2=E(1,0,...,0), O, (1) = det(2) = E(1,1,0,...,0) and % = E(0,0,1,0,...,0). The
cotangent bundle QIG(Z’,,) = 2Y ® % is irreducible and corresponds to the highest weight
(0,—1,1,0,...,0). Bott’s theorem can be interpreted as saying that the cohomology group

H'(G(2,n),E(ay,...,a,)) does not vanish if and only if i is the number of strict inversions
in the sequence (n+aj,n—1+ay,...,1+a,) and all the entries of this sequence are
distinct.

First we establish the following vanishing result:

Proposition 3.2. Let G = G(2,n) =« PV with N = <Z> — 1, be the Grassmannian of

lines in its Pliicker embedding. We have the following vanishing statements:
(1) H(NJ2—=1i)) =0 forall1 £i<2n—5, i+ 2 and for i =2 and n < 6.
2) H(Qf ® 2(—i)) =0 for 0<i<2n—7.
(3) HHY (N ® 2(—i)) =0 for 1 <i < min(n,2n—7).
(4) H*(2(—i)) =0 for 1 <i <n.
(5) H(NY(=i)) =0 for0<i<n—1.

Proof. (1) We start with the case i=3. From the exact sequence (1) it
suffices to show that (a) H'"!(G,Qg(2 —i)) =0 and that (b) H"(G,Q},N‘GQ —i)) =0.
From the Euler sequence (b) at its turn is implied by the vanishings
H™'(0g(2—1i)) = H(Og(1 —i)) =0 which are obvious, while (a) is a consequence
of Bott’s theorem (or of Kodaira-Nakano vanishing). When i =1, one checks that
H(G,Qg(1)) =0 (Bott again), and that HI(G,Q]l,NlG(l)) =0 (Euler sequence). The
remaining case i = 2 is handled differently and we employ the Griffiths vanishing theorem:
since G is scheme theoretically cut out by quadrics, the vector bundle £ = NY(2) is globally
generated. From the exact sequence (1) one finds that det(E) = Og ((n — 3)(n — 4)/2) and
we can write N = Kg ® E ® det(E) ® L, with L an ample line bundle, precisely when
n<6.

Part (2) is a consequence of Le Potier vanishing (cf. [LP]), while (4) follows from Bott
vanishing since 2(—i) = E(1 —i,—i,0,...,0). To prove (3) we tensor the exact sequence



Farkas, Gaussian maps and theta-characteristics 159

(1) by 2(—i) and we have to show that H'(Qf ® 2(—i)) = H*!(Qy pric ® 2(=i)) =0
which we already treated in parts (2) and (4). Finally, (5) is handled similarly to (1) and we
omit the details. [

For certain r we construct half-canonical curves C = P" of genus ¢(r) with injective
Gaussian. This combined with Theorem 1.2 proves Theorem 1.1.

Proposition 3.3. For 3 <r < 11, r £ 10, there exists a smooth half-canonical curve
C = P’ of genus ¢(r) (to be specified in the proof), such that the Gaussian map Y ) is
injective. It follows that %, is smooth of codimension r(r + 1)/2 at the point [C, Oc(1)].

Proof- Each case will require a different construction. We treat every situation sep-
arately in increasing order of difficulty.

r=3. We let C be a (3,3) complete intersection in P, hence g(C) = g(3) = 10
and K¢ = 0c(2). Clearly Ne = 0c(3) @ Oc(3), so trivially H'(NY(2)) = 0 which proves
that Y1 s injective.

r=4. Now C is a complete intersection of type (2,2,3) in P* Then
g(C)=yg(4) =13 and N¢ = QC(2)2 @ Oc(3). Using that C is projectively normal we get
that H' (P*, #2(2)) = 0, hence Y,y is injective again.

r=>5. This is the last case when C can be a complete intersection: C is of type
(2, 2,2,2) in P, thus g(C) =¢(5) =17 and like in the r =4 case we check that
H' (P, J3(2)) =

r=8. We choose the Grassmannian G(2,6) c P'*. A general codimension 6
linear section of G(2,6) is a K3 surface ScP® with deg(S) =14 and we let
C:=SNnQcP® be a quadric section of S. Then C is half-canonical and

g(C) = g(8) = 29. We claim that g () is injective, which follows from Proposition 3.1
since H'(Ng(,¢)(2—1i)) =0 for I <i < 6. To obtain that H' (P%,.72(2)) = 0, by Proposi-
tion 3.1 we have to check that H'! (S Os(—1)) = H'(S, 0s(-2)) = 0 (Kodaira vanishing),
and that H'(Ny) =0 & H!(Ns) = 0. Note that S is a general K3 surface of genus 8 hav-
ing p(S) = 1 and since by transcendental theory, the Hilbert scheme of such K3 surfaces is
irreducible, it will suffice to exhibit a single K3 surface of genus 8 having this property: we
let S degenerate to a union R; Ug R, of two rational scrolls of degree 7 in P® joined along
an elliptic curve B e |—Kp,| for i = 1,2. Then R; Ug R is a limit of smooth K3 surfaces
X < P? of degree 14 and H'(R, up R>, Ng,4r,) = 0 (see [CLM], Theorem 1.2 for more
details on this degeneration). It follows that H'(X,Ny) = 0, for a general prime K3 sur-
face X < P® of degree 14 and then H'(S, Ng) = 0 as well.

r=7. In this situation we choose the 10-dimensional spinor variety X = P' cor-
responding to a half-spin representation of Spin(10) (see [M] for a description of the pro-
jective geometry of X). One has that X is a homogeneous space for SO(10), Ky = Ox(—8)
and deg(X) = 12. A general codimension 8 linear section of X is a K3 surface S = P’
of degree 12. Take now C to be a quadric section of S and then K¢ = (c(2) and
g(C) = ¢g(7) = 25. Since Ny is irreducible (cf. e.g. [W2], Theorem 2.14), we obtain that the
Gaussian map ¥y ¢, ;) Is injective.
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To show that yig ¢ () is injective we verify that H'(Ny(2 —i)) = 0 for 1 <i < 8. For
3 <i < 8 this follows from Kodaira-Nakano vanishing for the twists of sheaves of holo-
morphic forms on X in a way similar to the proof of Proposition 3.2, while the i = 1 itis a
consequence of Bott vanishing. For i = 2 we use Griffiths vanishing: since X is cut out by
quadrics (see e.g. [M], Proposition 1.9), the vector bundle E := Ny/(2) is globally generated,
det(E) = Ox(2) and one can write Ny = Ky ® E ® det(E) ® Ox(4). In this way we obtain
that H?(Ny) = 0. Thus g s(1) 18 injective, and to have the same conclusion for the
Gaussian of C, the only non-trivial thing to check is that H'(Ns) = 0, which can be seen by
letting S degenerate again to a union of two rational scrolls like in the case » = 8.

r = 6. We consider the Grassmannian G = G(2,5) < P? and we denote by X c P°
a general codimension 3 linear section of G, by S := X n Q a general quadric section of
X and by C := S n Q' a general quadric section of S. Then S is a K3 surface of genus 6,
Kc = 0¢c(2) and ¢(C) = g(6) = 21. Using Propositions 3.1 and 3.2 we see easily that
Yy 0,1y 1s injective. We claim that y () 18 injective as well which would follow from
H'(X,Ny) = 0. Since Ny = Ox(—1)®°, the vanishing of H' (X, Ny) is implied by that of
H'(N¢ ® Ux) which in its turn is implied by H!'(NY(—i)) =0 for 0 <i <3 (use the
Koszul resolution). These last vanishing statements are contained in Proposition 3.2 and in
this way we obtain that Y ¢ (1) is injective. We finally descend to C. To conclude that
Ye, ce(1) 18 Injective it is enough to verify that H '(Ns) = 0. We could check this again via the
Koszul complex, but it is more economical to use that S is a general K3 surface of genus 6
and to invoke once more [CLM]|, Theorem 1.2, like in the previous cases.

r = 11. We start with the Grassmannian X = G(2,7) = P? for which Ky = Oy (—7)
and we let C be a general codimension 9 linear section of X. Then C = P'! is a smooth
half-canonical curve of genus g(C) = g(11) = 43. To conclude that ¢ ¢ is injective we
apply directly the second part of Proposition 3.1: the vanishing H ’(NGV(M) (2 - z)) =0is
guaranteed by Proposition 3.2 forall 1 <7 <9, i + 2. For i = 2 we can no longer employ
Griffiths vanishing so we proceed differently: we use (1) together with the vanishing
H*(X, Qllazo‘ ) = 0 coming from the Euler sequence, to write down the exact sequence

) 0 — H'(NY) — H'(Q;

onlX) — Hl(QAl/) - Hz(NXv) — 0,

where Hl(Qll,zo|X) ~ H°(0y) = C and H'(Qy) =~ C. From Bott’s theorem at most one of
the cohomology groups of the irreducible bundle Ny’ are #0, hence either H?(Ny) = 0 and
then we are done, or else, if H*>(Ny) = 0 then H'(Ny) = 0, and the map in the middle of

the sequence (2) is bijective which yields a contradiction.

r =9. This is the most involved case. We look at the ample vector bundle 7 := 2(1)
on G = G(2,6) = P and choose a general section s € H°(G, .7 ). We denote by Z the zero
locus of s, by .# = .7, the ideal of Z inside G, and by .7z and .% the ideals of Z and G in
P'* respectively. By adjunction, we have that .#/.#% = 2¥(—1) ® (/7 and the Koszul com-
plex gives a resolution for Z:

0— Og(-3) — 2Y(—-1) — 4 —0.

We first claim that Z = P'* is nondegenerate and projectively normal. This will follow if
we show that H%(G,.#(1)) =0 and H'(G,#(r)) =0 for r = 1. Using the Koszul re-
solution, the first vanishing is implied by H%(2") = H'(0g(—2)) = 0 which is clear. For
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the second vanishing we have to check that H'(2Y(r — 1)) = H*(Og(r — 3)) = 0 for r > 1.
Since 2¥(r—1)=E(r—1,r—2,0,0,0,0) and Og(r—3)=E(r—3,r—3,0,0,0,0) this
can be checked instantly using Bott’s theorem.

Next we claim that the ¥, ¢, ;) is injective. By Proposition 3.1, we have to verify that
(1) H'(G,#%(2)) =0 and that (2) H'(G,NY(2) ® #) = 0. We start with (1). From the
exact sequence

0— %2 — J(2) = 2Y(1) ® Oz — 0,

using that Z is projectively normal, (1) is implied by the bijectivity of the map
H°(#(2)) — H°(2Y(1) ® (7). This is a consequence of the isomorphism 2Y(1) ~ 2 and
of the Koszul resolution giving that H%(Z,2¥(1) ® 07) = H(G,2(1)) = H°(G, #(2)),
where for the first isomorphism one uses that H%(G,.# ® 2) = H'(G, .7 ® 2) = 0, which
is straightforward to check via Bott’s theorem.

We turn to (2). The cohomology of .# ® NY(2) is computed from the Koszul complex
of .#, which yields an isomorphism H'(NY ® #(2)) = H'(N¢ ® 2¥(1)) (because we have
H'(Ng(—1)) =0 for i = 1,2—this being checked via the sequence (1)). Next we write the
cohomology sequence associated to the exact sequence

0— NS ®2"(1) = Qpue ® 2(1) — Qg ® 2°(1) — 0.

The map H! ( P ® Qv(l)) — H! (Q@ ® 2Y(1)) is an isomorphism: from the Euler se-
quence one obtalns that H' (Ql g ® 2¥(1)) = H°(2%(1)), while tensoring by QL(1) the
dual of the tautological sequence, one gets that

HY(QL(1) ® 2Y) = H (1" @ QL(1)) = H(2'(1))

(or alternatively, use for this [LP], Corollaire 2). Moreover H°(Qf ® 2%(1)) injects
into H° (QJS(I)) which is zero by Bott’s theorem. Hence H'(NY ® 2¥(1)) = 0 and this
proves that ¥, ¢,y Is injective.

We now take a general codimension 5 linear section of Z which is a curve C = P°

with K¢ = 0c(2). A routine calculation gives that deg(C) = 3deg(G) =42, hence

g(C) =g(9) =43. We claim that Y o) I8 injective. Since ¥, o,y is injective, by

Proposition 3.1 we are left with checking that Z is ACM (this amounts to H’ "(0z(j)) =0

for i+ 0,6 =dim(Z), which easily follows from the Koszul complex) and that

H'(Z, NZV(2 —1i)) =0 for 1 £i<5 (here N; = (F2/57)" is the normal bundle of Z in
P'%). We employ the exact sequence

0= N®Oz— Ny — F).9% =0,
from which it will suffice to show that (a) H'(Z, /%2 —i)) = H'(2Y(1 - i) ® Oz) =0
for 1 i <5 and that (b) H'(NY(2 — i) ® 0z) =0, which in turn is a consequence of
H'(N(2—1i)) = H™(NY(—1 —1i)) =0 and of the vanishing H™'(NY ® 2¥(1 —i)) =0

(for all these use Proposition 3.2).

We are left with (a) which is a consequence of H'(2Y(l1 —1i)) =0 (again, use
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Proposition 3.2), of H"?(2¥(—-2 —i)) = 0, and of H'"!'(2 ® 2(—2 —i)) = 0. For this last
statement use that 2 ® 2 = 522 @ det(2) and each summand being irreducible the van-
ishing can be easily verified via Bott’s theorem. [

We believe that there should be a uniform way of constructing half-canonical curves
C < P’ for any r = 3 of high genus g > r and having injective Gaussian maps (though no
longer as sections of homogeneous varieties). Together with Theorem 1.2 this prompts us to
make the following:

2 .
Conjecture 3.4. Foranyr =3 and g = (r —; >, there exists a component of 7" of
. . 1y . .
codimension <r; > inside .%;.

2
The bound g = (r—; ) is obtained by comparing the expected dimension
1
3g—-3— (Hz_ ) of 7" with the expected dimension of the Hilbert scheme Hilby—; 4, of

curves C = P” of genus g and degree g — 1. We believe that there exists a component of
Hilb,_ 4, consisting entirely of half-canonically embedded curves. To prove the Conjec-
ture it would suffice to construct a smooth half-canonical curve C = P of genus

2 .
g= (r—; ) such that H'(C, N¢spr) = 0, that is, Hilb, 1,4, is smooth at the point [C]

and has expected dimension 4°(C,N¢spr) =4(g —1). Note that for such C, the map
We, 0.1y would be injective, in particular C would not sit on any quadrics. This gives

the necessary inequality g = <r—£ > The main difficulty in proving Conjecture 3.4 lies

in the fact that the degeneration techniques one normally uses to construct “regular”
components of Hilbert schemes of curves, seem to be at odds with the requirement that C
be half-canonical.

4. Gieseker-Petri loci

In this section we construct divisorial components of the loci Giz{ «- The method we
use is inductive and close in spirit to the one employed in Section 2 to construct compo-
nents of 7" of expected dimension. We begin by describing a setup that enables us to an-
alyze the following situation: if {Ly},_p. and {My},_p. are two families of line bundles
over a 1-dimensional family of smooth curves { X3}, 5., where B* = B — {by} with by € B,
we want to describe what happens to the multiplication map

1y = ttp(Lo, Mp) - HO(Xp, Ly) ® H (X, My) — H" (X, Ly @ M)
as X, degenerates to a singular curve of compact type Xj.

Suppose first that C is a smooth curve and p € C. We recall that if / = (L, V) is a
linear series of type g/ with L € Pic/(C) and V = HO(L), the vanishing sequence of [ at p

a'(p): 0 < aj(p) < <al(p) <d,
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is obtained by ordering the set {ord,(c)},.,. If L and M are line bundles on C and
pe H(L) ® H°(M) we write that ord,(p) = k, if p lies in the span of elements of the form
o ® 1, where 6 € H(L) and © € H°(M) are such that ord, (o) + ord,(t) = k.

Let y; 5 : H'(L) ® H'(M) — H°(L ® M) be the multiplication map. We shall use
the following observation: suppose {5;} = H°(L) and {t;} = H°(M) are bases of global
sections adapted to the point p € C in the sense that ord, (0;) = ¢/ (p) and ord, (7)) = ¢} (p)
for all i and j. Then if p e Ker(y; ) then there must exist distinct pairs of integers

(i1, 1) =* (i2, j») such that
ord,(p) = ord,(a;,) + ord,(z;,) = ord,(a;,) + ord,(z),).

Suppose now that 7 : X — B is a family of genus g curves over B = Spec(R), with R
being a complete DVR with local parameter ¢, and let 0,7 denote the special and the ge-
neric point of B respectively. Assume furthermore that X, is smooth and that Xj is singular
but of compact type. If L, is a line bundle on X, then, as explained in [EH1], there is a
canonical way to associate to each component Y of X; a line bundle L' on X such that
deg, (L L ¥) = 0 for every component Z of X different from Y. We set Ly := L‘Y which is a
line bundle on the smooth curve Y.

We fix ¢ e n,L, a section on the generic fibre. We denote by o the smallest integer
such that t*c € n, LY, that is, t*0 € n, LY — tn, LY. Then we set

o' :=rcenl’ and oy:=0! eH'(Y,Ly).

For a different component Z of the special fibre X, meeting Y at a point p, we define
similarly L, L, 0% and 6. If we write 6% = t¢¥ € n,LZ for a unique integer 5, we have
the following compatibility relation between oy and o (cf. [EH1], Proposition 2.2):

(3) deg(Ly) —ord,(oy) = f < ord,(oz).
An immediate consequence of this is the inequality
ord,(oy) + ord,(6z) = deg(Ly) = deg(Lz).

Assume from now on that we have two line bundles L, and M, on X, and we choose
an element p € H°(X,, L,) g, H°(X,, My). If Y and Z are components of X, meeting at p
as above, we define p¥ := t'pe HO(X,LY) ®x H°(X, MY), where y is the minimal integer
with this property. We have a similar definition for p? € H(X,L?) ®x H*(X, M?).
Between the sections p¥ and p? there is a relation pZ = t*p? for a uniquely determined
integer o. To determine o we proceed as follows: we choose bases of sections {g; = 7"}
for H(X, LY) and {5 =1"} for H(X,MY) such that ord,(s;y)=a/"(p) and
ord,(z;,v) = a; My (p), for all relevant i and ; (cf. e.g. [EHI], Lemma 2.3, for the fact that
this can be done) Then there are integers «; and f3; defined by 67 = t%g; and rj =1f 7;. To
obtain a formula for the integer o we write p¥ =3 f0; ® 7, where fii € R. We have the
identity hJ

Z( ) (1%01) @ (),

i.j
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from which we easily deduce that o = max; ;{o; + f; — v(fj)}, where v denotes the valua-
tion on R (see also [EH2], Lemma 3.2).

Lemma 4.1. With the above notations, if py := p‘); eH(Y,Ly) @ H'(Y, My) and
Pz = pi € HO(Z7LZ) ® HO(27 MZ); then

ord,(py) + ord,(pz) = deg(Ly) + deg(My).
Proof. By definition, there exists a pair of indices (i1, ji) such that v(f; ;) = 0 and
Ordp(pY) = Ordp (0-[1: Y) + Ordp(o-ju Y)

and clearly o = a; + f8;,. To get an estimate on ord,(p;) we only have to take into account
the pairs of indices (7, j) for which o; + f8; = a + v(f;;) = o; + f;,. For at least one such pair
(i, j) we have that

ord,(p,) = ord,(t*g; z) + ord,,(t/ffrjﬁz) = o+ f;
On the other hand, by applying (3) we can write
ord,(py) = ord,(a;, v) + ordy(z; v) = deg(Ly) + deg(My) — o, — f;,,
whence we finally have that ord,(p,) + ord,(py) = deg(Ly) + deg(My). O

We now fix integers ¢g and k such that g = 4 and (g +2)/2 < k < g — 1 and consider

the locus Glzll, « of curves [C] € ., for which the Gieseker-Petri Theorem fails for a base

point free pencil gi. We denote by G_};1 « the closure of G};1 4 in 4, and we study Glzl & In-
ductively by understanding the intersection GP; L NAL

Definition 4.2. For a smooth curve C of genus g, a Gieseker-Petri (gp),i—relazion
consists of a linear series (L, V) € G}(C), V = H°(L), together with an element

pePKer{uy(V): VR H (Kc® L") — H(K¢)}.

If C = Cyy,C; is of compact type with C; and C, smooth of genus i and g — i respec-
tively, a (gp),-relation on C is a collection (/,m, py,p,), where [ = {(L¢,, Ve,), (Le,, Vey)}
is a limit g} on C,

m={(Mc, = K¢, (2(9 — )p) ® L), W), (Mc, = K¢, (2ip) ® Le,, W) }
1s a limit gg;fzik on C, and elements
p1 e PKer{Ve, @ W, — H (K¢, (2(9 —i)p)) },
p, e PKer{ Ve, ® We, — H (K¢, (2ip))}
satisfying the relation ord,(p;) + ord,(p,) = 2g — 2.

For a curve C of compact type, we denote by O, (C) the variety of (gp) ,i-relations on
C together with the scheme structure coming from its natural description as a determi-
nantal variety. The discussion above shows that if [C] € GPy1 . then O}(C) + 0. Our strat-



Farkas, Gaussian maps and theta-characteristics 165

egy is to construct (gp)1 -relations on certain singular curves and prove that they can be
deformed to nearby smooth curves filling up a divisor in .#,. The most 1mportant technical
result of this section is the construction of the moduli space of (gp) -relations over the
versal deformation space of a curve of compact type inside the divisor A;:

Theorem 4.3.  Fix integers g = 4 and k such that (9 +2)/2 <k <g—1. Let C be a
smooth curve of genus g — 1, p e C and Xy := C U, E, where E is an elliptic curve. We de-
note by m: X — B the versal deformation space of Xy, with Xo = n=1(0) and 0 € B. Then
there exists a scheme ,Qk — B, quasz-pm]ectwe over B and compatible with base change, such
that the fibre over b € B parametrizes (gp) -relations over Xj. Furthermore each component
of 2} has dimension = dim(B) — 1 = 3g — 4.

Proof. The scheme 2] is going to be the disjoint union of subschemes Where
the vanishing sequences of the aspects of the two underlying limit linear series of a (gp)
relation are also specified. We will prove the existence for the component corresponding to
vanishing sequences (1,2) and (k — 2,k — 1) for the limit g} and (1,2,...,9 —k +1) and
(g—3,9—2,...,29 — 3 — k) for the limit gj _ o 2 « respectively. The construction is entirely
similar for the other compatible vanishing sequences. In our proof we will use Theorem 3.3
in [EH1] where a moduli space of limit linear series over the versal deformation space of a
curve of compact type is constructed.

We start by setting some notations. We denote by A < B the “boundary” divisor
corresponding to curves in which the node p is not smoothed. We denote by %, and &,
the closures in X of the components of 7~!(A) containing C — {p} and E — {p} respec-
tively. By shrinking B if necessary we can assume that Oy (%, + &,) = Ox. We denote by
npc : P¢ — B the relative Picard variety corresponding to the family X — B such that
for be A and n='(h) = X, = C, U E, with Cj, %, and E, c &,, the fibre of PC€ over b
consists of line bundles L, on X, with degc, (Ly) = k and degg, (L) = 0. Interchanging
the role of C and E we get another Picard variety P — B and tensoring with Oy (k%))
gives an isomorphism P¢ — PE. We denote by P the inverse limit of P¢ and PZ under this
isomorphism. For b € B and any line bundle L on X}, we define two new line bundles L¢
and Lg as follows: if be B—Athen Lc = Lg = L. If be A and X, = Cy, U, Ej, then L is
the restriction to C of the unique line bundle on X; obtained from L by tensoring with a
divisor based at ¢ and whose restriction to Ej, is of degree 0 (and a similar definition for Lg
with C and E reversed). Proceeding in a way identical to [EH1], pp. 356-360, we construct
a space of compatible frames ¢ : # — B factoring through 7p : P — B, and which para-
metrizes objects

x={b,L, (aic)i=0,l’ (UiE)i=0.1a (ch)jzo ..... g—k> (T,'E)j=o ..... g—k}7
where b € B, L is a line bundle of degree k on X, (¢°) (resp (af)) is a projective frame
inside H°(L¢) (resp. H°(Lg)), while (rjc) (resp. (‘L'jE)) is a projective frame inside
H((wy, ® L") (resp. H*((wx, ® L7")g)), subject to the following identiﬁcations
if be B A so X, is smooth and Lg = L¢c = L, then we identify al =gf  fori=0,1
and r —r "y for j=0,....9—k (that is, there are only two frames, one inside
HO(L ) the other inside H O(KX, ®L™). If beA and X, = C, U, E, then we require
that ord,(c¢) =i+ 1, ord,(6f) =2k —2+i for i=0,1, while ord (] )>]+1 and
ordy(zf) 2 g+j—-3. In this latter case / — {(Lc,<a5>)), (Le,{aE, )} is a limit g} and

m= {((a)X ® L), <ch>j), ((a)X ® L, <rjE>j)} is a limit gé’gi@_k on Xp.
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The scheme &% is determinantal and each of its components has
dimension = dim(B) + g+ 2+ (9 — k+ 1)(g — k — 2), which is consistent with the naive
dimension count for the fibre over b€ B— A. We also have tautological line bundles
alc,a,E ,aj and aE over &, with fibres over each point being the 1-dimensional vector
space correspondlng to the frame denoted by the same symbol. For 2 <i<g—k+2,
we consider the rang g vector bundle ¥; := 7, (wy/5 @ Ox(i%),)); hence ¥i(b) = H(Xp, Ly)
for be B— A, while for beA the fibre W;(b) consists of those sections in
H°(K¢,(—(i—1)q)) @ H°(Og, ((i + 1)g)) that are compatible at the node g.

For 1 £i £ g — k we define a subscheme ¥; of % by the equations

(4) 500 : %IC = Ulc %zgl and 5{5 ‘ %gEfkfi = 55 ) fﬁk—m-
Here by (67 -7 )(x) we denote the element in PH’((wx,)) obtained by multiplying
representatives of 6. (x) and of 7, T C(x) for each x € #, b = ¢(x). To make more sense of (4),

for each x € 7 the element ((G5 - 7)(x), (61 - 27, l)(x)) gives rise canomcally to a point
in P((¢*¥;1)(x)) and abusing the notation we can consider (G - TC N l) and
(6{-%<,,685 - 75, _..1) as sections of the P~! bundle P(¢*¥;) — Z. Then &; is the
locus in # where these sections coincide and therefore each component of ¥ has

dimension = dim(%#) — g + 1.

We define ;Q,t as the union of the scheme theoretic images of ¥; for | £i<g—k
under the map

Xi
Yo x— (b, Lm,p, = (%C ® TiC - J1C ® 751)7.02 = (JF ®Tg€k7i - U(gi ® ?qlik—ijtl))’

where we recall that / and m denote the underlying limit g} and g3 i 2 i respectwely From
the base point free pencil trick applied on both C, and Ep, it is easy to see that ,,Qk contains
all (gp) «-relations on the curves X, = C;, U, E}, the points coming from %; corresponding
to those (b, /,m, py, p,) for which ord,(p;) = i+ 2 and ord,(p,) =29 —i — 4.

We are left with estimating dim(2}): having fixed (b,1,m,p,,p,) inside y,(%;),
there are two cases to consider depending on whether X; is smooth or not. In each case
we obtain the same estimate for the fibre dimension of y; but here we only present the
case b e A, when X}, = C, U, E,. We have a one dimensional family of choices for each
of (o§,0{) and (o,01), and after choosing these, (¢,7,) and (¢, 7%, ;) are
uniquely determined (again, use the base point free pencil trick). For choosing the re-
maining t€, o = i,i — 1 we have a (g — k)(g k+1)/2 — (29 — 2k — 2i + 1)-dimensional
family of poss1b111t1es while for rﬁ f+g—k—i,g—k—i+1 we get another
(9 —k)(g—k+1)/2 —2i+ 1 dimensions. Adding these together we get that each compo-
nent of ,@li has dimension = 3g — 4. []

We can now prove Theorem 1.4. More precisely we have the following inductive
result:

Theorem 4.4. Fix integers g,k such that g =4 and (g +2)/2 <k < g — 1. Suppose
GP1 1.k_1 has a divisorial component Z for which a general [C| € Z is such that there exists a
0- dlmenswnal component of Q) _(C) whose general point corresponds to a base point
free gi . Then GPg1 has a divisorial component Z', for which a general curve [C'| € Z' is
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such that Q}(C') has a 0-dimensional component corresponding to a base point free g|.
Moreover, if ¢: /%q 11— My is the Sforgetful morphism, then using the identification
A = M, 9— 1]><,/%11,wehavethatZ ﬂAle(Z)X%L]

Proof.  We choose a general curve [C] e Z < GRQLL «_1> a general point p € C and
we set Xy := C u, E, where E is an elliptic curve. By assumption, there exists a base point
free (4,V) e G{_,(C) and p e PKer(uy(V)) such that dim4 y , Q}_,(C) = 0. In partic-
ular Ker(zo(V)) is 1-dimensional and h°(4) = 2. Let 7 : X — B be the versal deformation
space of Xy, A = B the boundary divisor correspondlng to singular curves, and we consider
the scheme v: 2] — B parametnzlng (gp) -relations, which was constructed in Theorem
4.3. We construct a (gp) -relation z = (I,m, p,,p,) on X, as follows: the C-aspect of
the limit g; denoted by / is obtained by adding p as a base point to (4, V), while the E-
aspect of / is constructed by adding (kK —2)p as a base locus to |Ug(p+ q)|, where
g€ E— {p} satisfies 2(p — g) = 0. Thus the vanishing sequences alc(p) and a's(p) are

(1,2) and (k — 2,k — 1) respectively. The C-aspect of the limit gzg 2 « Wwe denote by
m, is the complete linear series |Mc¢| = |Kc(p) ® A~!| which by Riemann-Roch has
vanishing sequence (1,2,...,9 —k+ 1) at p. Finally the E-aspect of m is the subseries
of |Og((29 —1—k)p — ¢)| with vanishing (g — 3,9 —2,...,29 — k — 3) at p. From the
base point free pencil trick it follows that we can choose uniquely the relations p.
on C and py on E such that ord,(pc) =3 and ord,(pz) =29 —5 (we use that
h°(C,Kc @ A~%) = dim(Ker(u(V))) = 1 by assumption, hence p. is essentially p up to
subtracting the base locus).

From Theorem 4.3, every component of :2,1 passing through z has
dimension = 3g — 4. On the other hand we claim that every component of v~!(A) passing
through z has dimension < 3g — 5 and that z is an isolated pomt inv 1([X0}) Assuming
this for a moment, we obtain that z is a smoothable (gp) -relation in the sense that
there is a component of 2} through z which meets v='(B — A). From this it follows that
[Xo] € GP « N Aj. Since by construction the curves [Xy] fill up a divisor inside A;, we
conclude that GP(,1 . has a divisorial component Z’ such that Z' n A = &*(Z) x 4 ;.

Furthermore, because the vanishing sequences of the C and E-aspects of / add up
precisely to k, every g} on a smooth curve “near” X, which specializes to /, is base point
free (cf. [EH1], Proposition 2.5). We obtain that a point z’ € v_!(B — A) near z will satisfy
dim,/(2}) = 3g — 4 and will correspond to a smooth curve [C'] GPg1 «» satisfying all the
required conditions.

We return now to the estimate for dim.(v"!(A)): we consider a curve
=G Yy E, with be A, and let (I,m,pc,,pg,) e v~!(h). Hence the underlying limit
hnear series / and m have vanishing sequences a'»(q) = (1,2), a®(q) = (k — 2,k — 1)
and a"%(q) = (1,2,...,9g—k+1),a"(q) = (9 —3,9 —2,...,29 — 3 + k) respectively.
Clearly ord,(p¢,) Z3(=14+2=2+1). We set
(Ab = LCb(_q)’ VCb = VCb(_q)) € Gllfl(cb)

and

(By = L, (—(k —2)q), Vg, :== Vg, (—(k — 2)q)) € G, (Ep).
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We claim that in fact ord,(p,) = 3 and therefore
ord,(pp) =29 —S(=k =2+ (29 =3 —k) =k — 1+ (29 — 4 — k)).

Indeed assuming that ord,(pc,) = 4, from the base point free pencil trick we have that
h°(Cp, K¢, ® A,%(—q)) =2 1. But h°(C,Kc ® A*(—p)) =0 (use the assumption on C
and the fact that pe C is a general point), which implies that we can assume that
h°(Cy, K¢, ® A;*(—q)) = 0 for any point in a component of v~!(A) passing through z.

After subtracting base points p., can be viewed as an element in the projectivization
of the kernel of the map u,(V¢,) : Vo, @ HY(K¢, ® 4;') — H°(K¢,), while pg, 1s in the
projectivized kernel of the map

to(Ve,) : HY(Ey, By) ® H°(Ep, B, ' (4q)) — H°(Eyp, O, (4q)).

In other words [C}] € GP/ 1.k and from the base point free pencil trick we get that
H(E,, O, (4q) ® B,?) * 0, which leaves only finitely many choices for B, and p g, 1t fol-
lows that dim, v~'(A) < dlmc](GP ) t1+1=3g-5 0

Proof of Theorem 1.4. We apply Theorem 4.4 starting with the base case k = 3,

g = 2k — 2. In this situation the locus GPj, _ » & 1s a divisor in .#, which can also be Vlewed
as the branch locus of the map to .7, from the Hurwitz scheme of coverings C A p
having a genus g source curve (cf. [EH3] Section 5). The locus of [C] € .4, having infinitely
many base point free g;’s is of codimension = 2, hence by default the general point of
GPyy_, ;. corresponds to a curve with finitely many (4, V') € G}(C). The fact that for each
of these pencils, dim Ker(u,(V)) < 1, also follows from [EH3]. Applying now Theorem 4.4
repeatedly we construct divisorial components of GP),_, ‘akta forallk = 3and a = 0. It is
easy to check that in this way we fill all the cases claimed in the statement. []

One could also define the loci GPg1 . for k =< (g+1)/2. In this case GP1 & coincides
with the locus of k-gonal curves, which is irreducible of dimension 2g + 2k — 5 When g¢ is
odd, GP! 2 (g+1))2 is the well-known Brill-Noether divisor on .#, introduced by Harris and
Mumford (see [EH3]). The Gieseker-Petri divisors GP1 g w1th k = (g+2)/2 that we in-
troduced, share certain properties with the Brlll-Noether divisor. For instance the following
holds (compare with [EH3], Proposition 4.1):

Proposition 4.5.  We denote by j : 4>,y — M, the map obtained by attaching a fixed
general pointed curve (Cy, p) of genus g — 2. Then for (9+1)/2 <k < g— 1 we have the
relation ]*(G_quk) =g, where ¢ Z 0 and W is the divisor of Weierstrass points on M. ;.

Sketch of proof. We can degenerate (Co,p) to a string of elliptic curves
(Eyv---UE,; ,, p), where p lies on the last component E, ,. We assume that for all
2 <i<g-—2, the points of attachment between F; ; and E; are general. Fix now
(B, p| € M» and assume that [Xo := Cyp U, B € G}yk We denote by (/g,mp, pp) the B-
aspect of a (gp) c-Telation on Xj. Then using the setup described at the beginning of Section
4 we obtain that ord,(p,) = 2g — 4. Since /z is a g} and mp is a g5, 2 > the only way this
could happen is if a’*(p) = (k —2,k) and a”*(p) = (...,29 — 4 — k,2g — 2 — k), which
implies that 2°(0p(2p)) = 2, that is, [B,p]e #". [
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Remark 4.6. Using methods developed in this section we can also prove the
following result useful for the computation of the class [Gqu o) € Pic(4,): if
& %g 11— ./%q 1 is the forgetful morphism and ¢ : %g 11— ,/% denotes the map at-
taching an elliptic tail at the marked point, then ¢* (GP1 ) is set- theoretlcally the union
of two divisors: & (G Sy 1), and the closure D in /%Q 1,1 of the locus of curves
(C,pl € My, for Wthh there exists a base point free 4e Wk(C) such that
hO(C,A(—2p)) = 1 and the multiplication map

H'(C,4) @ H*(Kc ® A¥(2p)) — H°(Kc(2p))
is not injective. It is natural to view D as a “pointed” Gieseker-Petri divisor on ./, ;.

We consider now the moduli space .7 , of n-pointed spin curves of genus g and its
subvariety %", consisting of elements (C, p1,..., ps, L), where [C, p1,..., p,] € My, and
L € Pic"(C) is a line bundle such that L2 ® O¢(p; + - - - + pn) = K¢ and h°(L) = r + 1.
Of course we assume that 2k +n = 2g — 2. The base point free pencil trick relates these
loci to the loci GP’ '« We 1ntroduced before. Precisely, if f:% , — .4, is given by

[C JATRRE >pn7L] [C] thenf( ) Gquk

We now look at the divisor Z < GP1 '« constructed in Theorem 4.4. The condition
that for a general [C] € Z, the scheme Qk(C ) has a 0-dimensional component w1th general
point corresponding to a base point free gf, can be translated into saying that /~![C] has
a zero -dimensional component. We obtain in this way that there exists a component Y of

q , of dimension 3g — 4 such that f(Y) = Z. This proves Corollary 1.5.

5. Injectivity of Gaussian maps

We are going to prove Theorem 1.3 by degeneration. Our proof is inspired by the
work of Eisenbud and Harris on the Gieseker-Petri Theorem (cf. [EH2]). Suppose we have
a family of genus ¢ curves 7 : X — B over a base B = Spec(R) with R being a complete
DVR with local parameter ¢ and let 0 and # respectively, denote the special and the generic
point of R. Assume furthermore that X, is smooth and that Xj is a curve of compact type
consisting of a string of components of which g of them, E,..., E,, are elliptic curves,
while the rest are rational curves, glued in such a way that the stable model of Xj is the
curve Ey Uy, Ex Uy, E3 U - U By Uy, Ey. Slightly abusing the notation, for2 <i < g —1
we will consider p;_; and pi € E; to be the points of attachment of E to Xo — E; and we will
choose Xj in such a way that p; — p;_; is not a torsion class in Pic’ (E)).

We proceed by contradiction and assume that there exists a line bundle L, on X, of
degree d, together with a non-zero element

p, € Ker{y,, : N H(X,,L,) — H"(X,, Q) ® L))}

(Note that because the shape of X does not change if we blow-up the surface X, we can
assume that we have a bundle L, on X, rather than on the geometric generic fibre Xj.) As
in Section 4, for each component Y of X, we have the line bundle L' on X extending L,7
and having degree 0 restriction to all components Z+Y of Xo and we set Ly := L‘
Starting with p, € A\*7.(L,) we obtain elements p = t°‘p,7 e N (LY) —t N 7. (LY) for
uniquely determined integers «, and we define py := p‘Y € /\ H°(Y,Ly).
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Lemma 5.1. For each component Y of Xy we have that
py € Ker{yy, : /\2 H(Y,Ly) — HO(Y7Q; ® Ly)}-
Proof. 'We use the commutative diagram

N H' (X, L)  —— N H(Y,Ly)

Js, [%

HOXo, QY @ L)~ HO(v,Q} ® L})

and keep in mind that the upper restriction map is injective. []

We will use the following observation (similar to the one for ordinary multipli-
cation maps): let C be a smooth curve, pe C and M a line bundle on C. If
peXKer(y,) and {o;} is a basis of H'(M) such that ord,(s;) = aM(p) = a;, then
there are distinct pairs of integers (i, j1) & (i2, o) With ij & j; and i # j», such that
ord,(p) = ord,(a;) + ord,(g;,) = ord,(g;,) + ord,(a;,). This follows from a local calcu-
lation: if ¢ is a local parameter for C at p, then

lpM(G,' AN O'j) = ((Cl[ — aj)laﬁLa"il + h.O.t.) dl,
and since ;,(p) = 0, the number ord,(p) must be attained for at least two pairs (7, /).

Proposition 5.2. Suppose Y and Z are two components of Xy meeting at a point q and
let p be a general point on Y. We have the following inequalities:

(1) ord, (p) = ord,(py).
(2) If Y is one of the elliptic components of Xy, then ord,(p,) = ord,(py) + 2.

Proof.  Although (1) is essentially Proposition 3.1 from [EH2] we will briefly go
through the proof and in doing so we will also prove (2). We pick a basis {5; = g,Y } of
(L) such that ord,(o;y) = a}(p) and for which there are integers o; with the property
that {¢Z = t*g;} form a basis for H°(X,L?) (see [EH1], Lemma 2.3 for the fact that

such a basis can be chosen). We then write p¥ =3 f;0, A 0;, with f; € R, and we can
i+]
express pZ = t/pY, where y = mf_x{oc,- +o; — v(fj)}. Here v denotes the valuation on the
i%+]

ring R. From the definition of y it follows that there exists a pair (i, ), i +j, with
y = o; + o; — v(fj), such that we have a string of inequalities

(5) ord,(p,) = ordq(aﬂzz) + ordq(aﬁz) > o405 =y,

(see also Section 4). On the other hand there exists a pair (i,;’), i’ # j such that
v(firj) = 0, for which we can write the inequalities

(6) ord,(py) = ord,(gyy) + ord,(g;y)
< (d — ordy(aiy)) + (d — ordy(gyy)) < o + 040 < 7.
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Combining (5) and (6) we get the first part of the proposition. When moreover the curve Y
is elliptic, since Y, (py) = 0, there must exist at least two pairs (i1, ji) and (i, j») for which
(6) holds. On the other hand p — ¢ € Pic’(Y) can be assumed not to be a torsion class, and
we obtain that ord,(g;y) + ord,(g;y) < d — 1 for all indices i except at most one. This and
the fact that the vanishing orders ord,(g;y) are all distinct, quickly lead to the inequality
ord,(py) =y =ord,(py)+2. O

A repeated application of Proposition 5.2 gives the following result:

Proposition 5.3. Let Xy be the curve described in the degeneration above and
g

which has the stable model | ) E;, where E; are elliptic curves. We denote by p;,_; and
i=1

pi the points of attachment of E; to the rest of Xo. If lﬁL”(p,?):O, then
ord,, ,(py,) Z ordy, (pg) +29 — 4.

We are now in a position to prove Theorem 1.3. In fact we have a more general
result:

Theorem 5.4. For a general genus g curve C and for any line bundle L on C of
degree d < a+ g+ 2, where a = 0, we have that dimKer(y,) < a(a+ 1). In particular, if
d < g+ 2 then \y; is injective.

Proof. We apply Proposition 5.3 and degenerate C to Xo=E;u---UE, We
assume that Ker(y ;) is at least 1 + a(a + 1)-dimensional. Then

dimKer(leo,L‘f%) >1+4ala+1)
and since the restriction map /\2 H O(XO,LfXZO) — /\2 HC(E,, Lg,) is injective we obtain
that Ker(y, LE2) is at least 1 + a(a + 1)-dimensional as well. For simplicity let us denote
E, =E, Lg, = L and p; = p € E (recall that p, € E; N Ey).

If we choose a basis {g;} of H°(L) adapted to the point p, then as we noticed before
for each p € Ker(y, ) there will be at least two distinct pairs of integers (iy, j1) * (i, j2)
where i; % ji, i #+ j» such that

ord,(p) = ord,(a;,) + ord,(ag;,) = ord,(a;,) + ord,(a,).

The vanishing sequence a’# (p) is (...,d — 3,d — 2,d), hence the vanishing sequence of
L=Lg at pis 2(0,2,3,4,5,...), which yields that ord,(p) = 5(=0+5=2+3) for
every p € Ker(y; ). Since dim Ker(y; ) = 1 + a(a + 1), there is a subspace W, < Ker(y; ) of
dimension = a(a + 1) such that ord,(p) = 6(= 0+ 6 =2+ 4) for each p € W.

Repeating this reasoning for W instead of Ker(y;) we obtain a subspace W, < W)
with dim(W>) = dim(W;) — 1 such that ord,(p) =2 7(=0+7 =2+ 5=3+4) for every
p € Wa, and then a subspace W3 < W, with dim(W3) = dim(W,) — 2 with the property
that ord,(p) Z28(=0+8=2+6=3+5) for all p e W3. At the end of this argument we
find at least one element p = pg, € Ker(y);) such that ord,(p) = 2a+ 5. Since this
reasoning works if we replace Ker(y,) with any of its subspaces having
dimension = 1 +a(a+ 1), we can assume that pg, is the restriction to E; of an ele-
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ment p, in the kernel of the corresponding Gaussian map on the general curve
X,, which according to the procedure described before Lemma 5.1 will produce
elements pp € Ker(y; ) for 1=<i=<g. Applying Proposition 5.3 we have that
ord,, ,(pg,) = ord,(p) £2g—4=2(a+g)+ 1. The vanishing sequence of Lg, at pg is
<(. o d—=3,d-2, d) from which we obtain that on the other hand A

ordy, ,(pg,) S2d —5(=d+(d—5) = (d—2)+ (d - 3)),

which combined with the previous inequality yields d = a+ g + 3 which is a contra-
diction. [

Note that Theorem 5.4 is valid for an arbitrary line bundle on a general genus g curve.
It is clear that Proposition 5.3 would give better sufficient conditions for the injectivity of
Y, if we restricted ourselves to line bundles on C having a prescribed ramification sequence
at a given point p € C. In this case we degenerate (C, p) to (Xo = Ey U --- U E,, p), where
X is as in Theorem 5.4 and p € E| is such that p — p; € Pic’(E)) is not a torsion class. We
leave it to the interested reader to work out the numerical details. We can also improve on
Theorem 5.4 if we look only at a suitably general line bundle L on C:

Proposition 5.5. Fix integers g, d and r=2 such that d=<g+r,
P Then if C is a

2(r—=1)°
general curve of genus g and L € W) (C) is general, the Gaussian map \; is injective.

p=g—(r+1)g—d+r)=0 and moreover d < g+3+

Proof We degenerate C to X,, fix a general point peE; and set
a:=[p/(r—1)]+2. Our numerical assumptions imply that p—(a—2)(r—1)=0.
From the general theory of limit linear series in [EHI1| reducing the Brill-Noether
theory of X, to Schubert calculus, we know that there exists a smoothable limit
linear series of type g on Xo, say / = {Lg, € Wj(E:)},_, , having vanishing sequence
= (0,1,a,a+1,a+2,...,a+r—2) at the point p.

Assume by contradiction that there are elements pj, € Ker(szEl_) coming from an
element p + 0 in the kernel of the corresponding Gaussian on the general curve.
Then ord,(pg,)Za+1(=1+a=0+(a+1)) and from Proposition 5.2 we get that
ord, ,(pg,) 2 ordy(pg ) +2g —2=2g+a—1. On the other hand, as we noticed before
ordy, ,(pg,) < 2d — 5 which gives a contradiction. []

Remark 5.6. The techniques from this section also allow us to study the kernel
S (L) of the multiplication map x, : Sym> H(L) — H°(L?). In a way similar to the proof
of Theorem 5.4 we can show that if L is an arbitrary line bundle of degree d < g+ a+ 1 on
a general curve C of genus g then dim S>(L) < a(a+ 1). The a = 0 case of this result has
been established by Teixidor (cf. [T2]). We also note that this result as well as Theorem 5.4,
are meaningful when the bundle L is special. On the other hand the case when L is non-
special (when, under suitable assumptions, we expect surjectivity for both y; and g, ), has
been extensively covered in the literature (see e.g. [Pa]).

Theorem 1.3 answers Question 5.8.1 from Wahl’s survey [W1], where the problem is
raised in terms of self-correspondences on a curve. Suppose that C is a smooth curve and
we consider the diagonal A < C x C and the projections p; : C x C — Cfori=1,2. Fora



Farkas, Gaussian maps and theta-characteristics 173

line bundle L on C we denote L; := p;L for i =1,2. We can rephrase Theorem 1.3 as
follows:

Proposition 5.7. If L is a line bundle of degree d < g+ 1 on a general curve C of
genus g, then H°(C x C, Ly + Ly — 2A) = 0.

Proof:  We use that H°(C x C,L; + L, — 2A) = Ker(®;) = Sy(L) ® Ker(y), ). We
have proved that Ker(y; ) = 0 while S>(L) = 0 follows from [T2]. [J
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