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The Hurwitz space H’; is the parameter space of covers [f: C' — Pl pi, ..., Do),
where C'is a smooth algebraic curve of genus g and f is a degree k map simply branched
over b = 2g + 2k — 2 distinct points p1,...,p € P!. Note that we choose an ordering
of the branch points of f. The origins of the interest in Hurwitz spaces go back to
Riemann’s Existence Theorem and they have been used by Clebsch [Cl] and Hurwitz
[Hu], as well as much later in [HM] to derive important information on the moduli

space M, of curves of genus g. We denote by ﬁz the moduli space of admissible covers
constructed by Harris and Mumford [HM], whose study has been further refined in
[ACV] via twisted stable maps. It comes equipped with two maps

Tk
H,
SN
Mo My
where b associates to an admissible cover its (ordered) set of branch points, whereas
o assigns to an admissible cover the stable model of its source curve. The symmetric

group &, operates on ﬁl; by permuting the branch points of each admissible cover and

we set ﬁg,k = ﬁ]; /Sp. Recall that the Kodaira-litaka dimension of a normal Q-factorial
projective variety X is defined as the litaka dimension of its canonical bundle. We say
that the Kodaira-litaka dimension of X is maximal if it equals dim(X).

Our first result concerns the Kodaira-litaka dimension of the stack F]; of degree k
admissible covers for which we have optimal results:

Theorem 0.1. The Kodaira-litaka dimension of F]; is maximal for every g > 2 and k > 3.

Our result, which is uniform in g and &, is sharp. When k£ = 2 the map b, while
being ramified along the boundary at the level of stacks, induces an isomorphism be-

tween the coarse moduli spaces ﬂz and Mg 24+2. In par;cicular, ﬁz is a rational variety

for every g and the canonical class of both the stack H g as well as that of the coarse
. 2. .

moduli space H, is not effective.

A crucial aspect in the proof of Theorem 0.1 is played by the map
7k —_
0: Hyg = Mg pyor—2;
which associates to an admissible cover [ f:C—=R,p,..., pb] the pointed curve

[Oaxla"'vxbaAla"'va]v
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where z; € f~1(p;) is the unique ramification point of f lying over the branch point p;
and A; := f~1(p;) — {z;} is the i-th set of antiramification points of f, that is, the set of
residual points in the fibre over the i-th branch point of f. The moduli space mg7b+b[k_2]
is defined as a suitable quotient of M ,(,_1) by the finite group &} _,, the action being
given by permuting b subsets of k—2 marked points, we refer to Section 2 for details. On
/\/lg b+bk—2] We consider the effective divisor D as being the closure of the locus of those
pointed curves [C, x1, ..., xp, A1, ..., Ap] for which there exists a subset S consisting of
g ramification or antiramiﬁcation points of f such that

1(C,00(3 7)) =2

€S

The divisor ® has two desired features. On the one hand its class has a negative co-
efficient of its Hodge class, on the other hand, the number of marked points being so
large (and this is the point in involving the antiramification points as well) the (posi-
tive) coefficient of the cotangent classes corresponding to the marked points in the class
(D] is relatively small. Taking advantage of these features, in Section 3 we prove Theo-

rem 0.1 by finding a positive constant B > 0 such that the class Kox — B - 0*(®) can be
g9

expressed as a boundary divisor on ﬁlgc, in which the coefficient of each irreducible com-

ponent of Gﬁ]; is positive. As we then point out in Remark 1.3 this implies the bigness

of the canonical class Kﬁk of the stack of admissible covers.
g

Next we move to the coarse moduli space ﬁ]; and in this paper we restrict our-
selves to the case of trigonal curves, for which we prove the following result:

Theorem 0.2. The moduli space ﬁz has maximal Kodaira-Iitaka dimension for all g > 2.

Theorem 0.2 follows the argument used in proving Theorem 0.1, once we observe

that the big boundary representative of the canonical class K73 of the stack of trigonal
g

curves is sufficiently positive to offset the negative coefficient of the ramification divi-

sor of the map Fﬁ — ﬂg, therefore it produces a big boundary representative of the

canonical class of ﬁz as well.

We stress that in Theorems 0.1, 0.2 we have results on the Kodaira-litaka dimen-
sion of the stack, and respectively, the coarse moduli space of the space of admissible
covers. In the case of M, where the boundary has an extremely simple structure, the
Kodaira dimension of the stack and that of the coarse moduli space trivially coincide,
but this is no longer necessarily the case for the Hurwitz space which has a complicated
boundary structure. We explain in Proposition 1.4 the relation between the canonical
class of ﬁ’; and that of ﬁ];.

> 9+2

Moving to the case of covers of high degree, when k one has a generically

finite map x: ﬁ’; — M 2542 Obtained by attaching to an adm1551ble cover

[f: C_>R7 pla"'vpb]
the stabilization of the nodal (2k—g—2)-pointed curve [C, Q- - qok—g—2|, whereg; € C

is the unique ramification point of f over the branch point p;. It follows that ﬁ’; is of
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general type whenever the Kodaira dimension of Mggk_g_g is maximal. This is the case
for all g > 22 and we refer to Proposition 3.2 for a precise statement.

For the Hurwitz space H, ; where the branch points are unordered one cannot
expect a uniform result in the style of Theorem 0.1. Indeed, it has been classically known
that the (unordered) Hurwitz spaces H,, . are unirational for all g as long as k < 5. These
results have been extended to the case of 6-gonal covers for finitely many cases by Geiss
[G]. Further unirationality results have been obtained in [ST], whereas some isolated
examples of Hurwitz spaces H, j, with effective canonical class in the range when the
Kodaira dimension of M, is unknown have been produced in [F2] and [FR]. Using that
M, is of general type for g > 22 (see [HM], [EH] and [FJP]), it immediately follows that

Hgy.1 (and therefore ﬁ]; as well) is of general type when % < k < g+ 1. On the other

hand, when k£ > g + 2, then ﬂgk is birational to a projective bundle over a universal
Picard variety, therefore it is uniruled.

1. DI1vISORS ON HURWITZ SPACES

The main actor of this paper is the stack Hl; of twisted stable maps into the classify-
ing stack B&, of the symmetric group &;,. Precisely, we set

Hy = Mo, (BSy),

where b := 2g 4+ 2k — 2. We denote by ﬁ]; the associated coarse moduli space. The
stack F’; is the normalization of the stack of admissible covers introduced by Harris and
Mumford in [HM] and which, for lack of better notation, we denote by H M ];. A point

in ﬁ]; corresponds to a twisted stable map [f: C — R,pi,...,p), where C' is a nodal
curve of arithmetic genus g, the target curve R is a tree of smooth rational curves, f is
a finite map of degree £ satisfying f ‘1(Rsing) = Csing, and p1, ..., py € Ryeg denote the
branch points of f. Note that the branch points p1, ..., p, are ordered. Moreover, the
two ramification indices of f on the two branches of C' over each singularity of C co-

incide. The extra information distinguishing [f: C' — R, p1,...,py] from its underlying
admissible cover is the stacky data at each of the points in Csing. The branch morphism
b: ﬁl; — ﬂovb,

assigns to [f: C — R,pi,...,py| the stable b-pointed curve [R,p1,...,py| of genus 0.
Clearly, b is a finite map. Its degree, which has been computed classically by Hurwitz
[Hu] for k£ < 6, has been recently the object of much attention in Gromov-Witten theory.
We also have a regular map

o: ﬁ]; — M,
which assigns to [f: C' — R, p1, ..., py| the stable model of the nodal curve C'.

In what follows, we discuss the geometry of the boundary divisors of ﬂl;. For
1=0,..., g, let B; be the boundary divisor of me defined as the closure of the locus
of unions of two smooth rational curves meeting at one point, such that precisely i of
the marked points lie on one component. A boundary divisor of ﬁ]; is determined by
the following data:

(i) A partition I UJ = {1,...,b}, with |[I| > 2and |J| > 2.
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(ii) Transpositions {w; }ic; and {w;};cs in &, satisfying

Hwi = u, ij =y L

i€l j€J
We denote by o := (my, ..., my) F k be the partition corresponding to the cycle type of
the element u € &, appearing above. Furthermore, we set

1 1 1
(1) m(p) = lcm(m1,...,mg) and = = — ... .
K my my

Definition 1.1. Fori = 2,..., % and a partition y of k, let E;.,, be the boundary divisor

on ﬂs given as the closure of the locus of covers [f: C — R, pi1,...,py] € ﬁ];, where
[R = R Up Ro,p1,...,pp] € B € Mo,b, with f~1(p) having partition type y, and
exactly ¢ of the branch points p1, ..., py lying on the component R;.

The linear independence of the classes [E;.,] € CH 1(?5) has been established in

[P]. Note that it is often the case that F;.,, splits into several irreducible components. All
the Chow groups we consider are with rational coefficients. In particular, we identify
CH l(ﬁ];) and CH! (F];) and the class [E;,] € CH 1(%5) refers to the stacky Q-class of
the corresponding boundary divisor.

1.1. The local structure of F';. Over the stack F]; of twisted stable maps we consider
the universal degree k£ admissible cover f: C — P, where

7k —_
) P=Hg X5z, , Mopt1

. . . —k . .
is the universal degree k orbicurve of genus zero over H ;. We fix a general point

t=[f:C— R,p1,...,m)

of a boundary divisor E;.,,, where i = (my,...,my) is a partition of k. In particular, R
is the union of two smooth rational curves R; and Ry meeting at a point p. The local

ring at ¢ of the stack H M ]; of Harris-Mumford admissible covers has the following local
description, see [HM, p. 62]:

3) Ot,W'; = Cllt1,- - to—3,51,-- ., 8] /7 = =85, =11,

where ¢; is the local parameter on My corresponding to smoothing the node p € R.
We set f~1(p) = {q1,...,q}, with f being ramified with order m; at ¢;, forj =1,...,¢.
The local ring of C at the point [, g;] is O, =+ [[z;, y;]l/z;jy; = s;, while the local ring
) g
of P at the point [t,p] is O, +[[u;, v;]]/ujv; = t1. The map C — P is given in local
’ g
coordinates by

B O, _
uj =x;7, v =y, ,forj=1,...,4,

in particular s{"* = --- = 5" = t;. In order to determine the local ring of F’; at the point
t one normalizes the ring (3). We introduce a further parameter 7 and choose primitive
m-th roots of unity ¢; for j = 1, ..., ¢. These choices correspond to specifying the stack
structure of the cover f: C' — R at the points of C lying over p € Rgn,. Thus

~

(4) O[ﬁwaQL ﬁ’; = (Cth s th—3, TH
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m(p)

and s; = (7 ™ ,for j = 1,...,{. Accordingly, the map b: F’; — My (at the level of

stacks!), being given locally by t; = 7", it is branched with order m(y) at each point
[ta Clv R 7<€] € E’i:u'
This discussion summarizes how the boundary divisors on My ;, pull-back under
the finite map b: H’; — My, see also [HM, p. 62], or [GK, Lemma 3.1]:
(5) b*(B;) = Y m(u)Ei,
pkk
1.2. The Hodge class on the compactified Hurwitz space. By definition, the Hodge

class on ﬁ’; is pulled back from M, via the map o. Its class A := 0*()\) on ﬁ]; has been
determined first in [KKZ] using Bergman kernel methods. An algebro-geometric proof,
using Grothedieck-Riemann-Roch, appeared in [GK, Theorem 1.1]. The Hodge class on

ﬁ]; has the following expression in terms of boundary classes:

gkl i(2g + 2k — 2 1 1 _
© A= > m( ( 929+2k 3)) m(k-))[EW]GCHl(H’;).

=2 pukk H

For a given i, the sum (6) is taken over those partitions . of k£ corresponding to
conjugacy classes of permutations that can be written as products of i transpositions.
We pick an admissible cover

[f: C=CUCy— R= R U, Ry, pl,...,pb] € b*(Bs),

and set C; := f~1(R;) and Cy := f~!(Ry) respectively. Note that the curves C; and C
may well be disconnected.

We record the following well-known facts on M, ;, see for instance [AC2]:
Proposition 1.2. (i) One has the following formulas in CH (Mo p):
2L i -9 Sl —i-1)
KMOJ):Z< - —2> [Bi] and k=) - [By].

i=2 =2

(ii) If <) denotes the cotangent class corresponding to the jth marked point for j = 1,...,b,

b .
Z Z(bb f) [Bi].

1=2

b
(iii) Let D = Z}jé ¢i[B;) be a divisor class with ¢; > 0 fori =2,...,|5|. Then D is big.

The third statement follows once we use that 1 is an ample class on ﬂgjb, thus
there exists a constant o € Q- such that D — « - k1 is effective.

Remark 1.3. A consequence of Proposition 1.2 is that any class on ﬁ]; of the form
Z Z Ci:u[Ei:,u]y
i>2 ukk

with all coefficients c;.,, > 0 is big.
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1.3. The canonical class of ﬁ];. We discuss the canonical class on the coarse moduli

Tk . . =k 7k .
space H,, in particular how it changes under the map e: H, — H, from the stack to its
coarse moduli space.

First, in order to determine the canonical class of the Hurwitz stack one applies
the Riemann-Hurwitz formula to the map b: ﬁl; — My, Via (5), the ramification
divisor is given by Ram(b) = >_, , ,(m(n) — 1)[E;,], hence we obtain the following

formula for the canonical class of ﬁ’;:

PP B i(29+2k—2—-40) \ A
(7)  Kgr = 0"y, , +Ram(b) = %:k (m(u) ( 2033 1) 1) [Eil-

Before our next result, we introduce some useful terminology. If x and p/ are
partitions, we write 1/ C 1 when each entry of 1/ appears as an entry of 1 as well.

Proposition 1.4. Assume k > 3. The canonical class of the coarse moduli space ﬁ]; is given by

g = 3 (00 ({22 1) 1) - X )

i, ukk i,ukk

where the second summation is taken over the boundary divisors Ej , C Ej, defined as the
components of E;.,, with a generic point parametrizing an admissible cover whose source has an
irreducible component mapping 2 : 1 onto the base and a branch point at the unique node in the
base.

Proof. We begin by making the following elementary observation. Suppose u: ¥ — P!
is a finite cover from a smooth curve Y such that at most one of its branch points is not
simple. Assume ¢: Y — Y is an automorphism such that u o ¢ = u. Then necessarily
deg(u) = 2 and ¢ is the involution of Y changing the sheets of u. Indeed, considering
the coveringmap 7: Y — Y’ where Y’ := Y/(¢), for each y € Y the ramification indices
at all points in the fibre 7= !(7(y)) are the same, precisely equal to }Stab(¢,> (y) ‘ . Applying
the Hurwitz-Zeuthen formula v must have at least two branch points, one of which is
necessarily simple by assumption. This implies deg(u) = 2.

Assume ¢t = [f: C =C1UCy - R URy,pi,...,p is a general point of a com-
ponent of a boundary divisor F;., admitting a non-trivial automorphism ¢: C' — C
with f o ¢ = f. Since deg(f) > 3, applying the previous observation, there exists one
component of R, say Ri, such that P, = id¢,. Furthermore, C splits into connected
components Y7,...,Y, and Y{,..., Y/, where a < k, such that Y; maps with degree
2 onto Ry for j = 1,...,a, whereas each of the components Y/, ...,Y, map onto R.
Furthermore <Z>|yj/ = idyj/ for j = 1,...,r. Note that Aut(t) = (Z/QZ)@G. The nor-

- w5k Tk . .
malization map H, — HM , has 22~1 sheets over the point corresponding to t, each

of them ramified with order 2. We denote these points by [¢,(1,...,(.) € ﬁk where
Ciyerry Ca 6 {1, —1} Using the local description provided by (4), we conclude that the
map e: H — ’H is ramified with order 2 over each such component of a divisor £;.,,
where 1 I_) (29, 1k 2a), O
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2. DIVISORS ON HURWITZ SPACE VIA RAMIFICATION AND ANTIRAMIFICATION
POINTS

We set [n] := {1,...,n} and recall that for an integer i« > 0 and a set S C [n], we
denote by d;.5 the divisor class corresponding to the boundary divisor A;.s on ﬂg,n,
whose generic point is a transversal union of two smooth curves of genera ¢ and g — ¢
respectively, the marked points labeled by S being precisely those lying on the genus ¢
component. We set as usual J;.5 := Z|S|=s 0;:5.

An important role in our work is played by (the pullbacks) of the divisor £og on
M, 4 defined as the closure of the locus of smooth pointed curves [C, z1, ..., 24 € Mg,
for which h°(C,Oc(z1 + -+ 4+ x4)) > 2. The class of this divisor was computed by
Logan [Log]:

g 13 4 :
B . s —i[ + 1\
[SOQ} __)‘+Z¢Z_ZZ ( 2 52:5-
=1 =0 s=0
We obtain an effective divisor £og, , on M, for n > g by averaging the pullback of £og
under the all choices of forgetful morphisms to M, , and normalising the -coefficient:

Lemma 2.1. The class of the effective divisor Log, ,, in Mgy for n > g is given by

’Qogg,n - sz - g)\ - Z bi:s0i:s € CH! (ﬂg,n)y fOT’
i=1 i\

= (320 S0 G (1

where we use the convention that <‘;> =0fory > x.

Proof. This class is obtained as

-1
n—1 %
Log,, = (g B 1) SCZ[ ] m5(Log),
Cln
S| =g

where Tg: My, — M, , forgets all marked points outside S C [n] with |S| = g. The
claimed formula now follows by repeatedly applying the formulas [AC2, Lemma 1.2]
concerning the pullbacks of the tautological generators of CH!(M, ) under the maps
Ts. ]

For integers g,k > 2 and b > 1, we introduce the following moduli space

My pip—2 = Mg (1-1)/Sh

where the ith copy of the symmetric group &;_5 acts by permuting the marked points
ziforje A i={b+(i—1)(k—2)+1,....,b+i(k—2)}. Let

p: Mg pe—1) — Mg pipi—2]
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be the natural projection. We refer to the marked points in A; as the ith antiramification
points. In the case b = 2g + 2k — 2, this terminology is explained by the existence of the
regular map

7k JE—
8) 0: Hyg — My prok—2)

that forgets an admissible cover [f: C' — R, pi,...,py] and recalls the source curve, the
(unique!) ramification point z; € f~1(b;) and the set A; of k — 2 unordered residual
points in f~1(p;) \ {z;}, for each i = 1,...,b. We refer to the marked points in A; as
being the i-th antiramification points of f.

Observe that the ramification locus of p is the divisor

and denote the branch divisor by ‘B.

We now discuss the structure of the boundary divisors on ﬂgiﬂrb[k_g}. For any
subset 7' C [b]and 0 < j; < k—2fori = 1,...,b, we define d;.7,[;, . ;] € C’Hl(ﬂ%b%[;ﬂ_g])
to be the class of the closure of the locus of stable curves with a separating node such

that one component is of genus ¢ and contains the marked points labeled by 7" and
precisely j; of the ith antiramification points for i = 1,...,b. We denote

Oizs 1= Z 8iT(jr i) € CH (Mg pipp—a])-
[T|+j1++jp=s

Let ¢ :== S0 ¢ € CH! (M, pibk—2)) be the cotangent class corresponding to
the ramification points. Finally, we introduce the cotangent class of the antiramification
points

b

U= Z%‘} € CH (M ppe—2)),

i=1
where ;) € CH' (Mg p1jr—g)) is the class characterized by the fact p* (vy;) = 2" jc 4, Y-
The divisor that is of primary interest to us is the push-forward of Log, ;1)
under p, which (after normalising the ¢ and the W-coefficients) we denote by ®. The

proof of the following fact is a simple application of the discussion above.

Proposition 2.2. The class of ® in CH Y (M ppii—2)) is given by

- bk — 1 ~
’D:l/)—{—\ll—(g))\—Zci;s(si:s—Fa%

1,8

(5 6 () ()

Jj=

and some a > 0.
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Remark 2.3. Regarding the coefficients c.; that will play an important role in our con-
siderations, for all s > 2 the following inequality holds:

_ s g—1
(9) Co.s = S+ (2)()(1(51)1 > S.

For i > 0, we will make use of the following estimate of the coefficient c;.;, which is
obtained by ignoring the absolute values in the summand in its definition in Proposition
2.2

i(i — 1)0?(k —1)% — (i — 1)(2gs +i)b(k — 1) + gs(gs — g+ 2i — s — 1)

In what follows we consider the pull-back of D to the Hurwitz space under the
map 6 considered in (8).

Proposition 2.4. The pullback £ := 6*® is an effective divisor on ﬁ]; forall g > 2and k > 3.

Proof. We identify an admissible cover for each irreducible component of ® that lies
outside of the pullback.

Consider the admissible cover constructed by gluing a genus g hyperelliptic dou-
ble cover h: C — R; = P! at an unramified point p € C to a simply branched degree
k — 1 rational cover u: Cy — Ry = P! at an unramified point which we also denote by
p € Cy, and further attaching the required rational tails mapping isomorphically to R,
at the k — 2 points v~ !(u(q)) \ {¢} and a rational tail mapping isomorphically to R, at
the point conjugate to p under the hyperelliptic involution. The ordering of the branch
points will be specified below.

Recall the class of D is the pushforward of

-1
n—1 *
Log,, = (g B 1) S; ] m5(Log),
Cln
1Sl =g9

where mg: Mg, — M, , forgets all marked points outside S C [n] with |S| = g.

Hence the irreducible components of the divisor © in ﬂgﬁ%[,{,ﬂ are indexed by

partitions [T, j1,...,jp| for T C [pland 0 < j; <k —2fori=1,...,band
T+ 51+ +ds=g.
For such a partition, if A;, C A; is a subset of antiramification points with |A;,| = j; and
S =TUA; U...UAj, C [b(k—1)], then the general point of the corresponding component
of ® corresponds to a pointed curve satisfying h°(C, Oc(>;cq2)) = 2. For each such
partition we specify a labelling of the above constructed admissible cover such that the
admissible cover lies outside of the pullback of the specified irreducible component of
D. Let
Z:={ieb:j;>0andi¢ T}

and let r := |Z| and a := |T|. Label a + r < g of the 2¢ + 2 branch points of points
of h: C — P! as the points 7' U Z and choose a fixed labelling of the remaining branch
points of the admissible cover. Observe that as C'is hyperelliptic, we have

hO(C, Oc(wi + -+ wa + (g —a)p)) =1
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for any choice of a distinct Weierstrass points w; of C. Hence this admissible cover is not

contained in the pullback of the irreducible component of ® specified by the partition
[ijla"'7jb]‘ u

Before stating our next result, we recall the partition [b(k—1)] = [)]UA U...UA,
of the set of labels for the ramification and antiramification points respectively.

Proposition 2.5. At the level of divisors, the map 6: ﬁ]; — ﬂgﬁbﬂ,[,ﬁ_g} behaves as follows:

g+k—1

z(b
Z Z 2(b Ei:u]a
=2 ukk
g+k—1 . b—2 b
(i) 07 (0)=(k—2) > > m(p) e 5 0% (00:5)-
=2 ukk s=21i=1 S C [b(k—1)]
|[SNAi|=s

Proof. We recall that we have introduced in (2) the universal degree k admissible cover
f:C—="P

and we denote by p: P — ﬁz and v := po f: C — ﬁ]; the two universal curves over
the Hurwitz space. We consider the ramification divisors Ry,..., R, C C, as well as
the antiramification divisors Ay, ..., 4y C C. If B4,...,B;, C P denote the correspond-
ing branch divisors of f, then clearly f.([R;]) = [Bi] and f.([4:]) = (k — 2)[B;]. Itis
important to observe that R; - A; =0fori=1,...,b.

In order to estimate the class 6*(1);), we multiply the relation

(11) [r(Bi) =2R; + A,
with the class of R;, and using that R; and A; are disjoint we write as follows:
0 (1) = —ua(IRI2) = = 5. (£ () Ri) = =50 (B) = 56" (D),

where in the interest of clarity we denote by ¢® € CH'(M,) the cotangent class cor-
responding to the ith branch point. Now (i) follows by applying part (ii) of Proposition

1.2. To estimate 6" (¢}; ), we first introduce the class ¢;; on ﬂg b+blk—2) Characterized by
i = T, (C
(1/}[ ]> [Ciz1,..c,p, Aty Ap] g

foreach [C,x1,...,2p, A1,..., Ay € ﬂg,;ﬂrb[k,m. Then using [FV, (5)], we observe that

b2
(12) PrW) =D ta—> > sdos.

wEA; s=2 |SNA;|=s
Next, we multiply (11) with the class of the antiramification divisor A; and write:
0" (Vi) = —vu([A) = —vu(F*([Ba]) - Ai) = —(k — 2)p. ([Bi]”) = (k — 2)b" ().

The rest follows again via Proposition 1.2 (ii) coupled with formula (5). 0
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a7k
3. THE POSITIVITY OF THE CANONICAL CLASS OF Hg

We are now in a position to complete the proof of both Theorems 0.1 and 0.2.

: . =k | 5 -
Recall that we have introduced in (8) the map 6: H;, — M, 49 retaining from a
cover its source together with ramification and antiramification points.

Proposition 3.1. The following divisor classes are effective on ﬁ’;:
(1) 6% (d02) — (k = 2)[En, 1)) = (k = [ B2 10-4)] = (b = 3)[Bpu3.10-3)] 2 0.
(ii) 0" (00:3) — A[E9;(22 15-4y] > 0.
(iti) 0% (30:4) — [Eoy(3.10-5)] = 0.

Proof. We analyse the image under 6 of a general point ¢ belonging to various boundary

components of ﬂl;. Suppose first thatt = [f: C — R, p1,...,pp] corresponds to the gen-
eral point of a component of Ey, (). The base R is the transverse union of two rational
components R; and Ry meeting at a point p and assume py,...,pp—2 € R; \ {p} and
-1, € Ro \ {p}. Denoting by C; := f~}(R;) and by z;_1, 7, € Cs the ramification
points over p,_1 and p, respectively, we observe that (s contains k£ — 2 smooth ratio-
nal components each intersecting C; at one point and mapping isomorphically onto
Rs. Each of these components contains two antiramification points of f lying over p,_;
and py_ respectively. This implies that the image under 6 of the boundary component

of g;; containing the point ¢ lies in the (k — 2)nd self intersection of the boundary di-
visor Ag.g [o,...0,1,1]- This in turn yields that the pullback 0*(50:2) contains Ej,1x) with
multiplicity at least & — 2.

Similarly, if t = [f: C — R,p1,...,pp] is a general point of a component of
By, 3,153y, with R = RiURy asabove and pi, ..., pp—2 € R1\{p} and py—1,p» € R2\{p},
let C'; denote the component of C' mapping with degree 3 onto Ry. From the Hurwitz-
Zeuthen formula, C5 is necessarily of genus zero. The curve C; will contain two ramifi-
cation points x,_1 and x, as well as two antiramification points lying in the fibres over
pp—1 and p; respectively. Therefore the component of the boundary divisor of ﬁ’; con-
taining ¢ is mapped to the divisor Ag.;5—1 0,...,0,1,1], that is, 6 (do:3) contains Ey, (5 1x-3).
Arguing as above, 0(t) lies in the (k — 3)rd self intersection of Ag.g(0,....0,1,1]-

Finally, let t = [f: C — R,p1,...,p) be a general point of a component of
Ey.(92 15—y, with R = Ry U Ry and the distribution of the ramification points as above.
Then f~!(Rj) contains two smooth rational curves Cy and C} mapping with degree 2
onto Ry and meeting C; := f ~1(Ry) at a ramification point. Assume z,_; € C3 and
xp € C) are the two ramification points over p,_; and p,. Then C5 (respectively C?) con-
tains two further antiramification points lying in f~(p;) (respectively f~!(p,_1)). Note
furthermore that both C5 and €% admit an automorphism of order 2 fixing the two ram-
ification points and permuting the two respective antiramification points. It follows
that both 0*(A¢.44.0,...02,0) and 0*(A¢.—130,....0,21) contain the boundary divisor of

ﬁ’; containing the point ¢ with multiplicity at least 2, hence

Finally, the point 6(¢) lies in the (k — 4)th self intersection of Ay o.....0,1,1]- O
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We are now in a position to complete the proof of Theorem 0.1 and show that for
all g > 2, and k£ > 3 the Kodaira-litaka dimension of the stack ﬁ’; is maximal.

Proof of Theorem 0.1. We consider once more the map 6: ﬂl; — M, pipr—2) and the

divisor £ introduced in Proposition 2.4. We show that there exists a constant B > 0
such that ka ~B-gis big, which implies that K- . itself is big. To that end, via

Proposition 1. 2 (iii), it suffices to show that K Vi B-£ has a representative in terms of

boundary classes in which the coefficient of the class of each irreducible component of
E;.,, is positive.
Observe first that the image of 6 is disjoint from the branch locus B of

p: mg,b(k;—n - mg,b+b[k:_2]-

Indeed, the source of an admissible cover [f: C — R,p1,...,m] € ﬁl; cannot con-
tain a smooth rational component C’ containing precisely two antiramification points
lying over the same branch point, for then deg(f|c/) > 2, which implies that f|c» admits
further ramification at points lying in C" \ C.

We shall find a constant B > 0 such that for all 2 < i < % and all partitions y - k
the following quantity, equaling the coefficient of [E;.,] in KF’; — B - £, is positive:

I e e R )

b—2 b

_ano@kzjlg Bw(qusjs SN Y sins), >0,

s=2 j=1 |SNA;|=s b

where for a boundary divisor a on ﬂgjb%[k_?], we denote by 6*(«a);.,, the coefficient of

[Ei.;] in 0 (o) viewed as a boundary divisor. Observe that the contribution of £ follows
from Proposition 2.2 and Proposition 2.5. Set

2(b — 2) _2> <b(b—2)(k—1) (2k —3)(b—2) +2<k_2)>_1

19 B::(b—l 9b—-1)  b-1

_ 16g
b3 —2b%(g 4+ 1) + 4bg — 1642

We check (13) case by case, starting with the most challenging case i = 2, since
this is when the coefficient of [E;.,] in ka may be negative.

(i) First assume that ;. = (1%), thus = k. Usmg (3.1) we have 6*(80:2) > (k —2)[E,. (s
Furthermore, for any component Z of Es.(1v) we have
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therefore inequality (13) becomes in this case

2(b—2) b(b—2)(k—1) (2k—3)(b—2)
b—1 —2 B< 4g(b—1) bh_1 +00:2(k—2)>>0,

which is clear by our choice of B and the observation that cp.o > 2 by (9).

(ii) Assume now u = (3,1%73), thus % = k — § and m(u) = 3. Using that for any
component Z of Ej, 3 53y one has

and 9*(50;4) > [EQ:(&lk—s)} and Q*(gozg)
implied by the following inequality

AV
—
e
|
w
~
5

w
—
e
|
=
o
~<
—~
W
—_
N
-
=]
[¢°)
e
c
oY)
=
-
~<
—
—_
1Y)
~
-
92}

3(2(:__12) - 1) _1+B(3b(lilg_(§)—(k1)_ U_ % _30 _bQ)_@lk —3) +00:2(k:—3)+co:4> > 0.

Leta :=k — 3 > 0, thus b = 2¢ + 2a + 4. After substituting B by the value provided by
(14) and observing cp.s > s by (9) we obtain that the above value is greater than
2(3ag? + 6a%g + 9ag + 10g + 3a® + 15a> + 24a + 12)

> 0.
3(ag?® +2a%g + Tag + 6g + a3 + 5a? + 8a + 4)

(iii) Suppose p = (22,1%%), thus % = k — 3 and m(p) = 2. In particular, @ > 1. In this

case (3.1) provides that 6% (3o:3) > 4[Ey, (92 15-1)] and 6*(d02) > (k — 4)[Eg.92 15-1)]. On
the other hand, the discussion of the final part of the Proof of Proposition 3.1 shows that

b—2 b
OrdEQZ(QQ’lk—QQ* (ZZ Z SAO;S) =8

5=2 j=1|SNA;|=s

the statement holds along each irreducible component of Ej. (92 1x-4). It follows that (13)
would be implied by the following inequality:

4(b - 2)
b—1

—-3+B (W — % — Q(Qk_bi)(lb_ 2) + coa(k — 4) + 4coiz — 8) > 0.

By substituting the value for B and observing that cp.s > s the above value is
greater than

ag® + 2a%g + 3ag + g + a® + 5a® + 8a + 4
ag?® + 2a%g + 7ag + 6g + a3 + 5a? 4+ 8a + 4

(iv) Assume now that i > 3 and assume first u # (1%), that is, m(u) > 2. We shall show
that the following inequality, which is stronger than (13), holds:

(15)

(g <<i(bb_—1i) - 1) +Bb(k:g— 1) (;Ez:% _ %(k_ D) _B(2k2—(b3?(f)— i))_l > 0.




14 G. FARKAS AND S. MULLANE

The coefficient of i(b — ¢) in this expression being positive, its smallest value is

attained when i = 3. Furthermore, using the means inequality we find that 1 > llw
whereas m(p) > 2 for any partition p of k. Substituting ¢ = 3, m(p) = 2 and i = 1 in

(15), we obtain the inequality which implies (15), which in turn implies inequality (13):

3(ag® + 2a%g + 2ag + 29 + a® + 4a® + 4a)

> 0.
ag? + 2a%g + Tag + 69 + a3 + 5a2 + 8a + 4

(v) Assume now thati > 3 and p = (1’“), in which case as p is the cycle class of
an even permutation, ¢ is even and hence ¢ > 4. In this case (15) can be reduced to the
following, obtained by substituting i = 4:

2(ag? + 2a%g + ag + 29 + a® + 3a® — 4)
ag? + 2a2g + Tag + 69 + a® + 5a? + 8a + 4

> 0,

which holds in all cases outside of g = 2 and k& = a + 3 = 3 where the left hand side is
equal to zero. However, in this case as all other inequalities hold, the choice of

5 169 1
= —E = - —£
b3 —20%(g+ 1) + 4bg — 1642 4
for € > 0 small enough completes the proof. O

We are now in a position to prove Theorem 0.2 and show that all coarse moduli
spaces ﬁz of trigonal curves of genus g > 2 have maximal Kodaira-litaka dimension.

Proof of Theorem 0.2. We use the constant B introduced in (14), which in the case &k = 3
takes the form

_ 9
39+ 2
and we show that Koz — B - £ admits a boundary representative in which all boundary

g9
components of ﬂg appear with positive coefficients. Using Proposition 1.4, we have

-3
2h+1:(2,1) 1

h=1

Q

where the general point of each component of EY 1) parametrize an admissible

2h+1 (2,
covert = [f: C = R = Ri1U, Ra,p1,...,p2g+4], where C := f~1(Ry) is a smooth curve
of genus g — h mapping with degree 3 over Ry and f~!(R2) = Cy U C}, where Cs is a
smooth hyperelliptic curve of genus h mapping with degree 2 onto Rz and meeting C
and precisely one point ¢ € f~*(p), which is a ramification point for both C; and Cs.
The component (5 is a smooth rational curve mapping isomorphically onto R.
hyp

(5 h w (7
Observe that 6* (dp.2n11) > [EZZ&( )] as well as 6* (0p.2n41) > [E22+1:(2,1)]' Us-
ing the estimate (10), the coefficient of [EW}EI @1 )] in the expression of Kys — B - £is at

g
least equal to

4g%h? 4+ 38g%h — 20gh? — 28¢> + T7gh — 28h? — 659 + 28h — 28
(49 +7)(3g + 2)

>0,
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which can be checked in a straightforward manner. Since the other boundary coeffi-
cients of K and K coincide, we can invoke the proof of Theorem 0.1 to conclude.
g g

0

As described in the introduction, when &k > %, one has a natural map
7k -
X: 7'[g — Mg,2kfg72a

which assigns to an admissible cover [f: C' — R, pi,...,py] the stabilization of the
pointed curve [C, qi;--->Q2k—g—2], Where ¢; € C is the unique ramification point of f
lying in f~1(p;), fori =1,...,2k — g — 2.

Proposition 3.2. The map : ﬁl; — M ok—g—2 is generically finite. It follows that ﬁ]; isa
variety of general type when k > g + 1 and g > 12. Similarly, ﬁl; is of general type when
k> % and g > 22.

Proof. The generic finiteness of the map x follows essentially from results in [EH]. We
set n := 2k — g — 2 > 0 and consider the stable curve [X,q1,...,q,] € Mg,n, where

X consists of a smooth rational component R and g elliptic tails Ey, ..., Ey, each E;
meeting R at a single point x;. The marked points q1, ..., g, lieon R\ {z1,...,z4}. Then
the fibre x ' ([X, q1, . . ., ¢»)) is isomorphic to the variety of limit linear series of type g

on X having simple ramification at each of the points ¢;. Applying [EH, Theorem 1.1],
we obtain that this variety is pure of dimension

plg,Lk)—n=9g—-2(g—k+1)—(2k—g—2)=0.

Therefore x is generically finite, in particular x(H,) > x(M,,). When g > 12 and

k> g+1,thenn > g+ 1and it follows from [Log] that M, , is of general type in this
range, which finishes the proof. O

Remark 3.3. Note that in the range £ > g + 1, one has an &;-cover ﬁ]; — H,x whose

ok . T
source variety 1 is of general type, whereas its base H,  is uniruled. Observe also that

the degree of x: ﬁ]gc — M 95— 4—p is the Catalan number %, therefore independent

of g!
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