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The Hurwitz space Hkg is the parameter space of covers [f : C → P1, p1, . . . , pb],
whereC is a smooth algebraic curve of genus g and f is a degree kmap simply branched
over b = 2g + 2k − 2 distinct points p1, . . . , pb ∈ P1. Note that we choose an ordering
of the branch points of f . The origins of the interest in Hurwitz spaces go back to
Riemann’s Existence Theorem and they have been used by Clebsch [Cl] and Hurwitz
[Hu], as well as much later in [HM] to derive important information on the moduli
spaceMg of curves of genus g. We denote byHkg the moduli space of admissible covers
constructed by Harris and Mumford [HM], whose study has been further refined in
[ACV] via twisted stable maps. It comes equipped with two maps

Hkg
b

~~

σ

  
M0,b Mg

where b associates to an admissible cover its (ordered) set of branch points, whereas
σ assigns to an admissible cover the stable model of its source curve. The symmetric
group Sb operates onHkg by permuting the branch points of each admissible cover and

we setHg,k := Hkg/Sb. Recall that the Kodaira-Iitaka dimension of a normal Q-factorial
projective variety X is defined as the Iitaka dimension of its canonical bundle. We say
that the Kodaira-Iitaka dimension of X is maximal if it equals dim(X).

Our first result concerns the Kodaira-Iitaka dimension of the stack Hk
g of degree k

admissible covers for which we have optimal results:

Theorem 0.1. The Kodaira-Iitaka dimension of Hk
g is maximal for every g ≥ 2 and k ≥ 3.

Our result, which is uniform in g and k, is sharp. When k = 2 the map b, while
being ramified along the boundary at the level of stacks, induces an isomorphism be-
tween the coarse moduli spaces H2

g andM0,2g+2. In particular, H2
g is a rational variety

for every g and the canonical class of both the stack H
2
g, as well as that of the coarse

moduli spaceH2
g is not effective.

A crucial aspect in the proof of Theorem 0.1 is played by the map

θ : Hkg →Mg,b+b[k−2],

which associates to an admissible cover
[
f : C → R, p1, . . . , pb

]
the pointed curve

[C, x1, . . . , xb, A1, . . . , Ab],
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where xi ∈ f−1(pi) is the unique ramification point of f lying over the branch point pi
and Ai := f−1(pi) − {xi} is the i-th set of antiramification points of f , that is, the set of
residual points in the fibre over the i-th branch point of f . The moduli spaceMg,b+b[k−2]
is defined as a suitable quotient ofMg,b(k−1) by the finite group Sb

k−2, the action being
given by permuting b subsets of k−2 marked points, we refer to Section 2 for details. On
Mg,b+b[k−2] we consider the effective divisor D̃ as being the closure of the locus of those
pointed curves [C, x1, . . . , xb, A1, . . . , Ab] for which there exists a subset S consisting of
g ramification or antiramification points of f such that

h0
(
C,OC

(∑
x∈S

x
))
≥ 2.

The divisor D̃ has two desired features. On the one hand its class has a negative co-
efficient of its Hodge class, on the other hand, the number of marked points being so
large (and this is the point in involving the antiramification points as well) the (posi-
tive) coefficient of the cotangent classes corresponding to the marked points in the class
[D̃] is relatively small. Taking advantage of these features, in Section 3 we prove Theo-
rem 0.1 by finding a positive constant B > 0 such that the class K

H
k
g
−B · θ∗(D̃) can be

expressed as a boundary divisor onHkg , in which the coefficient of each irreducible com-

ponent of ∂Hkg is positive. As we then point out in Remark 1.3 this implies the bigness
of the canonical class K

H
k
g

of the stack of admissible covers.

Next we move to the coarse moduli space Hkg and in this paper we restrict our-
selves to the case of trigonal curves, for which we prove the following result:

Theorem 0.2. The moduli spaceH3
g has maximal Kodaira-Iitaka dimension for all g ≥ 2.

Theorem 0.2 follows the argument used in proving Theorem 0.1, once we observe
that the big boundary representative of the canonical class K

H
3
g

of the stack of trigonal

curves is sufficiently positive to offset the negative coefficient of the ramification divi-
sor of the map H

3
g → H

3
g, therefore it produces a big boundary representative of the

canonical class ofH3
g as well.

We stress that in Theorems 0.1, 0.2 we have results on the Kodaira-Iitaka dimen-
sion of the stack, and respectively, the coarse moduli space of the space of admissible
covers. In the case ofMg where the boundary has an extremely simple structure, the
Kodaira dimension of the stack and that of the coarse moduli space trivially coincide,
but this is no longer necessarily the case for the Hurwitz space which has a complicated
boundary structure. We explain in Proposition 1.4 the relation between the canonical
class of Hk

g and that ofHkg .

Moving to the case of covers of high degree, when k ≥ g+2
2 one has a generically

finite map χ : Hkg →Mg,2k−g−2 obtained by attaching to an admissible cover[
f : C → R, p1, . . . , pb

]
the stabilization of the nodal (2k−g−2)-pointed curve

[
C, q1, . . . , q2k−g−2], where qi ∈ C

is the unique ramification point of f over the branch point pi. It follows that Hkg is of
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general type whenever the Kodaira dimension ofMg,2k−g−2 is maximal. This is the case
for all g ≥ 22 and we refer to Proposition 3.2 for a precise statement.

For the Hurwitz space Hg,k where the branch points are unordered one cannot
expect a uniform result in the style of Theorem 0.1. Indeed, it has been classically known
that the (unordered) Hurwitz spacesHg,k are unirational for all g as long as k ≤ 5. These
results have been extended to the case of 6-gonal covers for finitely many cases by Geiss
[G]. Further unirationality results have been obtained in [ST], whereas some isolated
examples of Hurwitz spaces Hg,k with effective canonical class in the range when the
Kodaira dimension ofMg is unknown have been produced in [F2] and [FR]. Using that
Mg is of general type for g ≥ 22 (see [HM], [EH] and [FJP]), it immediately follows that
Hg,k (and therefore Hkg as well) is of general type when g+2

2 ≤ k ≤ g + 1. On the other
hand, when k ≥ g + 2, then Hg,k is birational to a projective bundle over a universal
Picard variety, therefore it is uniruled.

1. DIVISORS ON HURWITZ SPACES

The main actor of this paper is the stack Hk
g of twisted stable maps into the classify-

ing stack BSk of the symmetric group Sk. Precisely, we set

H
k
g := M0,b

(
BSk

)
,

where b := 2g + 2k − 2. We denote by Hkg the associated coarse moduli space. The

stack Hk
g is the normalization of the stack of admissible covers introduced by Harris and

Mumford in [HM] and which, for lack of better notation, we denote by HMk
g . A point

in Hkg corresponds to a twisted stable map [f : C → R, p1, . . . , pb], where C is a nodal
curve of arithmetic genus g, the target curve R is a tree of smooth rational curves, f is
a finite map of degree k satisfying f−1(Rsing) = Csing, and p1, . . . , pb ∈ Rreg denote the
branch points of f . Note that the branch points p1, . . . , pb are ordered. Moreover, the
two ramification indices of f on the two branches of C over each singularity of C co-
incide. The extra information distinguishing [f : C → R, p1, . . . , pb] from its underlying
admissible cover is the stacky data at each of the points in Csing. The branch morphism

b : Hkg →M0,b,

assigns to [f : C → R, p1, . . . , pb] the stable b-pointed curve [R, p1, . . . , pb] of genus 0.
Clearly, b is a finite map. Its degree, which has been computed classically by Hurwitz
[Hu] for k ≤ 6, has been recently the object of much attention in Gromov-Witten theory.
We also have a regular map

σ : Hkg →Mg

which assigns to [f : C → R, p1, . . . , pb] the stable model of the nodal curve C.

In what follows, we discuss the geometry of the boundary divisors of Hkg . For
i = 0, . . . , b2 , let Bi be the boundary divisor ofM0,b defined as the closure of the locus
of unions of two smooth rational curves meeting at one point, such that precisely i of
the marked points lie on one component. A boundary divisor of Hkg is determined by
the following data:

(i) A partition I t J = {1, . . . , b}, with |I| ≥ 2 and |J | ≥ 2.
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(ii) Transpositions {wi}i∈I and {wj}j∈J in Sk, satisfying∏
i∈I

wi = u,
∏
j∈J

wj = u−1.

We denote by µ := (m1, . . . ,m`) ` k be the partition corresponding to the cycle type of
the element u ∈ Sk appearing above. Furthermore, we set

(1) m(µ) := lcm
(
m1, . . . ,m`

)
and

1

µ
:=

1

m1
+ · · ·+ 1

m`
.

Definition 1.1. For i = 2, . . . , b2 and a partition µ of k, let Ei:µ be the boundary divisor

on Hkg given as the closure of the locus of covers
[
f : C → R, p1, . . . , pb

]
∈ Hkg , where

[R = R1 ∪p R2, p1, . . . , pb] ∈ B|I| ⊆ M0,b, with f−1(p) having partition type µ, and
exactly i of the branch points p1, . . . , pb lying on the component R1.

The linear independence of the classes [Ei:µ] ∈ CH1(Hkg) has been established in
[P]. Note that it is often the case thatEi:µ splits into several irreducible components. All
the Chow groups we consider are with rational coefficients. In particular, we identify
CH1(Hkg) and CH1(H

k
g) and the class [Ei:µ] ∈ CH1(Hkg) refers to the stacky Q-class of

the corresponding boundary divisor.

1.1. The local structure of Hk
g . Over the stack Hk

g of twisted stable maps we consider
the universal degree k admissible cover f : C → P , where

(2) P := H
k
g ×M0,b

M0,b+1

is the universal degree k orbicurve of genus zero over Hk
g . We fix a general point

t = [f : C → R, p1, . . . , pb]

of a boundary divisor Ei:µ, where µ = (m1, . . . ,m`) is a partition of k. In particular, R
is the union of two smooth rational curves R1 and R2 meeting at a point p. The local
ring at t of the stackHMk

g of Harris-Mumford admissible covers has the following local
description, see [HM, p. 62]:

(3) Ô
t,HM

k
g

∼= C[[t1, . . . , tb−3, s1, . . . , s`]]/s
m1
1 = · · · = sm`` = t1,

where t1 is the local parameter onM0,b corresponding to smoothing the node p ∈ R.
We set f−1(p) = {q1, . . . , q`}, with f being ramified with order mj at qj , for j = 1, . . . , `.
The local ring of C at the point [t, qj ] is Ô

t,HM
k
g
[[xj , yj ]]/xjyj = sj , while the local ring

of P at the point [t, p] is Ô
t,HM

k
g
[[uj , vj ]]/ujvj = t1. The map C → P is given in local

coordinates by
uj = x

mj
j , vj = y

mj
j , for j = 1, . . . , `,

in particular sm1
1 = · · · = sm`` = t1. In order to determine the local ring ofHk

g at the point
t one normalizes the ring (3). We introduce a further parameter τ and choose primitive
mj-th roots of unity ζj for j = 1, . . . , `. These choices correspond to specifying the stack
structure of the cover f : C → R at the points of C lying over p ∈ Rsing. Thus

(4) Ô
[t,ζ1,...,ζ`], H

k
g

= C[[t1, . . . , tb−3, τ ]]
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and sj = ζjτ
m(µ)
mj , for j = 1, . . . , `. Accordingly, the map b : H

k
g → M0,b (at the level of

stacks!), being given locally by t1 = τm(µ), it is branched with order m(µ) at each point
[t, ζ1, . . . , ζ`] ∈ Ei:µ.

This discussion summarizes how the boundary divisors onM0,b pull-back under
the finite map b : H

k
g →M0,b, see also [HM, p. 62], or [GK, Lemma 3.1]:

(5) b∗(Bi) =
∑
µ`k

m(µ)Ei:µ.

1.2. The Hodge class on the compactified Hurwitz space. By definition, the Hodge
class on Hkg is pulled back fromMg via the map σ. Its class λ := σ∗(λ) on Hkg has been
determined first in [KKZ] using Bergman kernel methods. An algebro-geometric proof,
using Grothedieck-Riemann-Roch, appeared in [GK, Theorem 1.1]. The Hodge class on
H
k
g has the following expression in terms of boundary classes:

(6) λ =

g+k−1∑
i=2

∑
µ`k

m(µ)

(
i(2g + 2k − 2− i)

8(2g + 2k − 3)
− 1

12

(
k − 1

µ

))
[Ei:µ] ∈ CH1(Hkg).

For a given i, the sum (6) is taken over those partitions µ of k corresponding to
conjugacy classes of permutations that can be written as products of i transpositions.
We pick an admissible cover

[f : C = C1 ∪ C2 → R = R1 ∪p R2, p1, . . . , pb] ∈ b∗(B2),

and set C1 := f−1(R1) and C2 := f−1(R2) respectively. Note that the curves C1 and C2

may well be disconnected.

We record the following well-known facts onM0,b, see for instance [AC2]:

Proposition 1.2. (i) One has the following formulas in CH1(M0,b):

KM0,b
=

b b
2
c∑

i=2

(
i(b− i)
b− 1

− 2

)
[Bi] and κ1 =

b b
2
c∑

i=2

(i− 1)(b− i− 1)

b− 1
[Bi].

(ii) If ψj denotes the cotangent class corresponding to the jth marked point for j = 1, . . . , b,

b∑
j=1

ψj =

b b
2
c∑

i=2

i(b− i)
b− 1

[Bi].

(iii) Let D =
∑b b

2
c

i=2 ci[Bi] be a divisor class with ci > 0 for i = 2, . . . , b b2c. Then D is big.

The third statement follows once we use that κ1 is an ample class onM0,b, thus
there exists a constant α ∈ Q>0 such that D − α · κ1 is effective.

Remark 1.3. A consequence of Proposition 1.2 is that any class onHkg of the form∑
i≥2

∑
µ`k

ci:µ[Ei:µ],

with all coefficients ci:µ > 0 is big.
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1.3. The canonical class of Hkg . We discuss the canonical class on the coarse moduli

spaceHkg , in particular how it changes under the map ε : H
k
g → H

k
g from the stack to its

coarse moduli space.
First, in order to determine the canonical class of the Hurwitz stack one applies

the Riemann-Hurwitz formula to the map b : H
k
g → M0,b. Via (5), the ramification

divisor is given by Ram(b) =
∑

i,µ`k(m(µ) − 1)[Ei:µ], hence we obtain the following

formula for the canonical class of Hk
g :

(7) K
H
k
g

= b∗KM0,b
+ Ram(b) =

∑
i,µ`k

(
m(µ)

(
i(2g + 2k − 2− i)

2g + 2k − 3
− 1

)
− 1

)
[Ei:µ].

Before our next result, we introduce some useful terminology. If µ and µ′ are
partitions, we write µ′ ⊆ µ when each entry of µ′ appears as an entry of µ as well.

Proposition 1.4. Assume k ≥ 3. The canonical class of the coarse moduli spaceHkg is given by

KHkg
=
∑
i,µ`k

(
m(µ)

(
i(2g + 2k − 2− i)

2g + 2k − 3
− 1

)
− 1

)
[Ei:µ]−

∑
i,µ`k

[E′i:µ],

where the second summation is taken over the boundary divisors E′i:µ ⊆ Ei:µ defined as the
components of Ei:µ with a generic point parametrizing an admissible cover whose source has an
irreducible component mapping 2 : 1 onto the base and a branch point at the unique node in the
base.

Proof. We begin by making the following elementary observation. Suppose u : Y → P1

is a finite cover from a smooth curve Y such that at most one of its branch points is not
simple. Assume φ : Y → Y is an automorphism such that u ◦ φ = u. Then necessarily
deg(u) = 2 and φ is the involution of Y changing the sheets of u. Indeed, considering
the covering map π : Y → Y ′ where Y ′ := Y/〈φ〉, for each y ∈ Y the ramification indices
at all points in the fibre π−1(π(y)) are the same, precisely equal to

∣∣Stab〈φ〉(y)
∣∣. Applying

the Hurwitz-Zeuthen formula u must have at least two branch points, one of which is
necessarily simple by assumption. This implies deg(u) = 2.

Assume t =
[
f : C = C1 ∪ C2 → R1 ∪ R2, p1, . . . , pb] is a general point of a com-

ponent of a boundary divisor Ei:µ admitting a non-trivial automorphism φ : C → C
with f ◦ φ = f . Since deg(f) ≥ 3, applying the previous observation, there exists one
component of R, say R1, such that φ|C1

= idC1 . Furthermore, C2 splits into connected
components Y1, . . . , Ya and Y ′1 , . . . , Y

′
r , where a ≤ k

2 , such that Yj maps with degree
2 onto R2 for j = 1, . . . , a, whereas each of the components Y ′1 , . . . , Y

′
r map onto R2.

Furthermore φ|Y ′j = idY ′j for j = 1, . . . , r. Note that Aut(t) =
(
Z/2Z)⊕a. The nor-

malization map H
k
g → HM

k
g has 2a−1 sheets over the point corresponding to t, each

of them ramified with order 2. We denote these points by [t, ζ1, . . . , ζa] ∈ H
k
g , where

ζ1, . . . , ζa ∈ {1,−1}. Using the local description provided by (4), we conclude that the
map ε : H

k
g → H

k
g is ramified with order 2 over each such component of a divisor Ei:µ,

where µ ⊇ (2a, 1k−2a). �
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2. DIVISORS ON HURWITZ SPACE VIA RAMIFICATION AND ANTIRAMIFICATION
POINTS

We set [n] := {1, . . . , n} and recall that for an integer i ≥ 0 and a set S ⊆ [n], we
denote by δi:S the divisor class corresponding to the boundary divisor ∆i:S on Mg,n,
whose generic point is a transversal union of two smooth curves of genera i and g − i
respectively, the marked points labeled by S being precisely those lying on the genus i
component. We set as usual δi:s :=

∑
|S|=s δi:S .

An important role in our work is played by (the pullbacks) of the divisor Log on
Mg,g defined as the closure of the locus of smooth pointed curves [C, x1, . . . , xg] ∈Mg,g

for which h0
(
C,OC(x1 + · · · + xg)

)
≥ 2. The class of this divisor was computed by

Logan [Log]:

[Log] = −λ+

g∑
i=1

ψi −
b g
2
c∑

i=0

g∑
s=0

(
|s− i|+ 1

2

)
δi:s.

We obtain an effective divisor Logg,n onMg,n for n ≥ g by averaging the pullback of Log
under the all choices of forgetful morphisms toMg,g and normalising the ψ-coefficient:

Lemma 2.1. The class of the effective divisor Logg,n inMg,n for n ≥ g is given by

Logg,n =

n∑
i=1

ψi −
n

g
λ−

∑
i,s

bi:sδi:s ∈ CH1(Mg,n), for

bi:s =

(
n− 1
g − 1

)−1 s∑
j=0

(
s
j

)(
n− s
g − j

)(
|j − i|+ 1

2

)

where we use the convention that
(
x
y

)
= 0 for y > x.

Proof. This class is obtained as

Logg,n =

(
n− 1
g − 1

)−1 ∑
S ⊆ [n]
|S| = g

π∗S
(
Log

)
,

where πS : Mg,n −→ Mg,g forgets all marked points outside S ⊆ [n] with |S| = g. The
claimed formula now follows by repeatedly applying the formulas [AC2, Lemma 1.2]
concerning the pullbacks of the tautological generators of CH1(Mg,n) under the maps
πS . �

For integers g, k ≥ 2 and b ≥ 1, we introduce the following moduli space

Mg,b+b[k−2] :=Mg,(k−1)b/S
b
k−2,

where the ith copy of the symmetric group Sk−2 acts by permuting the marked points
xj for j ∈ Ai :=

{
b+ (i− 1)(k − 2) + 1, . . . , b+ i(k − 2)

}
. Let

ρ : Mg,b(k−1) −→Mg,b+b[k−2]
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be the natural projection. We refer to the marked points in Ai as the ith antiramification
points. In the case b = 2g + 2k − 2, this terminology is explained by the existence of the
regular map

(8) θ : Hkg −→Mg,b+b[k−2],

that forgets an admissible cover [f : C → R, p1, . . . , pb] and recalls the source curve, the
(unique!) ramification point xi ∈ f−1(bi) and the set Ai of k − 2 unordered residual
points in f−1(pi) \ {xi}, for each i = 1, . . . , b. We refer to the marked points in Ai as
being the i-th antiramification points of f .

Observe that the ramification locus of ρ is the divisor

R =

b∑
i=1

∑
|S| = 2
S ⊆ Ai

δ0:S

and denote the branch divisor by B.

We now discuss the structure of the boundary divisors on Mg,b+b[k−2]. For any
subset T ⊆ [b] and 0 ≤ ji ≤ k−2 for i = 1, . . . , b, we define δi:T,[j1,...,jb] ∈ CH

1(Mg,b+b[k−2])
to be the class of the closure of the locus of stable curves with a separating node such
that one component is of genus i and contains the marked points labeled by T and
precisely ji of the ith antiramification points for i = 1, . . . , b. We denote

δ̃i:s :=
∑

|T |+j1+···+jb=s

δi:T,[j1,...,jb] ∈ CH
1
(
Mg,b+b[k−2]

)
.

Let ψ :=
∑b

i=1 ψi ∈ CH1
(
Mg,b+b[k−2]

)
be the cotangent class corresponding to

the ramification points. Finally, we introduce the cotangent class of the antiramification
points

Ψ :=
b∑
i=1

ψ[i] ∈ CH1(Mg,b+b[k−2]),

whereψ[i] ∈ CH1(Mg,b+b[k−2]) is the class characterized by the fact ρ∗
(
ψ[i]

)
=
∑

j∈Ai ψxj .

The divisor that is of primary interest to us is the push-forward of Logg,b(k−1)

under ρ, which (after normalising the ψ and the Ψ-coefficients) we denote by D̃. The
proof of the following fact is a simple application of the discussion above.

Proposition 2.2. The class of D̃ in CH1(Mg,b+b[k−2]) is given by

D̃ = ψ + Ψ− b(k − 1)

g
λ−

∑
i,s

ci:sδ̃i:s + aB

for

ci:s =

(
b(k − 1)− 1

g − 1

)−1 s∑
j=0

(
s
j

)(
b(k − 1)− s

g − j

)(
|j − i|+ 1

2

)
and some a > 0.
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Remark 2.3. Regarding the coefficients c0:s that will play an important role in our con-
siderations, for all s ≥ 2 the following inequality holds:

(9) c0:s = s+

(
s

2

)
g − 1

b(k − 1)− 1
> s.

For i > 0, we will make use of the following estimate of the coefficient ci:s, which is
obtained by ignoring the absolute values in the summand in its definition in Proposition
2.2:

(10) ci:s ≥
i(i− 1)b2(k − 1)2 − (i− 1)(2gs+ i)b(k − 1) + gs(gs− g + 2i− s− 1)

2g(b(k − 1)− 1)
.

In what follows we consider the pull-back of D̃ to the Hurwitz space under the
map θ considered in (8).

Proposition 2.4. The pullback L̃ := θ∗D̃ is an effective divisor onHkg for all g ≥ 2 and k ≥ 3.

Proof. We identify an admissible cover for each irreducible component of D̃ that lies
outside of the pullback.

Consider the admissible cover constructed by gluing a genus g hyperelliptic dou-
ble cover h : C → R1

∼= P1 at an unramified point p ∈ C to a simply branched degree
k − 1 rational cover u : C2 → R2

∼= P1 at an unramified point which we also denote by
p ∈ C2, and further attaching the required rational tails mapping isomorphically to R1

at the k − 2 points u−1(u(q)) \ {q} and a rational tail mapping isomorphically to R2 at
the point conjugate to p under the hyperelliptic involution. The ordering of the branch
points will be specified below.

Recall the class of D̃ is the pushforward of

Logg,n =

(
n− 1
g − 1

)−1 ∑
S ⊆ [n]
|S| = g

π∗S
(
Log

)
,

where πS : Mg,n −→Mg,g forgets all marked points outside S ⊆ [n] with |S| = g.
Hence the irreducible components of the divisor D̃ inMg,b+b[k−2] are indexed by

partitions [T, j1, . . . , jb] for T ⊆ [b] and 0 ≤ ji ≤ k − 2 for i = 1, . . . , b and

|T |+ j1 + · · ·+ jb = g.

For such a partition, if Aji ⊆ Ai is a subset of antiramification points with |Aji | = ji and
S = T∪Aj1∪. . .∪Ajb ⊆ [b(k−1)], then the general point of the corresponding component
of D̃ corresponds to a pointed curve satisfying h0

(
C,OC(

∑
i∈S xi)

)
= 2. For each such

partition we specify a labelling of the above constructed admissible cover such that the
admissible cover lies outside of the pullback of the specified irreducible component of
D̃. Let

Z :=
{
i ∈ [b] : ji > 0 and i /∈ T

}
and let r := |Z| and a := |T |. Label a + r ≤ g of the 2g + 2 branch points of points
of h : C → P1 as the points T ∪ Z and choose a fixed labelling of the remaining branch
points of the admissible cover. Observe that as C is hyperelliptic, we have

h0
(
C,OC(w1 + · · ·+ wa + (g − a)p)

)
= 1
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for any choice of a distinct Weierstrass pointswi ofC. Hence this admissible cover is not
contained in the pullback of the irreducible component of D̃ specified by the partition
[T, j1, . . . , jb]. �

Before stating our next result, we recall the partition [b(k−1)] = [b]∪A1∪ . . .∪Ab
of the set of labels for the ramification and antiramification points respectively.

Proposition 2.5. At the level of divisors, the map θ : Hkg →Mg,b+b[k−2] behaves as follows:

(i) θ∗(ψ) =

g+k−1∑
i=2

∑
µ`k

m(µ)
i(b− i)
2(b− 1)

[Ei:µ],

(ii) θ∗(Ψ) = (k − 2)

g+k−1∑
i=2

∑
µ`k

m(µ)
i(b− i)
b− 1

[Ei:µ] +
b−2∑
s=2

b∑
i=1

∑
S ⊆ [b(k − 1)]
|S ∩ Ai| = s

s θ∗
(
δ0:S

)
.

Proof. We recall that we have introduced in (2) the universal degree k admissible cover

f : C → P

and we denote by ϕ : P → Hkg and v := ϕ ◦ f : C → Hkg the two universal curves over
the Hurwitz space. We consider the ramification divisors R1, . . . , Rb ⊆ C, as well as
the antiramification divisors A1, . . . , Ab ⊆ C. If B1, . . . ,Bb ⊆ P denote the correspond-
ing branch divisors of f , then clearly f∗([Ri]) = [Bi] and f∗([Ai]) = (k − 2)[Bi]. It is
important to observe that Ri ·Ai = 0 for i = 1, . . . , b.

In order to estimate the class θ∗(ψi), we multiply the relation

(11) f∗(Bi) = 2Ri +Ai

with the class of Ri, and using that Ri and Ai are disjoint we write as follows:

θ∗(ψi) = −v∗
(
[Ri]

2
)

= −1

2
v∗
(
f∗(Bi) ·Ri

)
= −1

2
ϕ∗
(
[Bi]

2
)

=
1

2
b∗
(
ψb
i

)
,

where in the interest of clarity we denote by ψb
i ∈ CH1(M0,b) the cotangent class cor-

responding to the ith branch point. Now (i) follows by applying part (ii) of Proposition
1.2. To estimate θ∗(ψ[i]), we first introduce the class ψ̃[i] onMg,b+b[k−2] characterized by(

ψ̃[i]

)
[C,x1,...,xb,A1,...,Ab]

=
⊗
x∈Ai

T∨x (C),

for each [C, x1, . . . , xb, A1, . . . , Ab] ∈Mg,b+b[k−2]. Then using [FV, (5)], we observe that

(12) ρ∗
(
ψ̃[i]

)
=
∑
x∈Ai

ψx −
b−2∑
s=2

∑
|S∩Ai|=s

sδ0:S .

Next, we multiply (11) with the class of the antiramification divisor Ai and write:

θ∗
(
ψ̃[i]

)
= −v∗

(
[Ai]

2
)

= −v∗
(
f∗([Bi]) ·Ai

)
= −(k − 2)ϕ∗

(
[Bi]

2
)

= (k − 2)b∗
(
ψb
i

)
.

The rest follows again via Proposition 1.2 (ii) coupled with formula (5). �
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3. THE POSITIVITY OF THE CANONICAL CLASS OF Hkg
We are now in a position to complete the proof of both Theorems 0.1 and 0.2.

Recall that we have introduced in (8) the map θ : Hkg → Mg,b+b[k−2] retaining from a
cover its source together with ramification and antiramification points.

Proposition 3.1. The following divisor classes are effective onHkg :
(i) θ∗(δ̃0:2)− (k − 2)[E2:(1k)]− (k − 4)[E2:(22,1k−4)]− (k − 3)[E2:(3,1k−3)] ≥ 0.
(ii) θ∗(δ̃0:3)− 4[E2:(22,1k−4)] ≥ 0.
(iii) θ∗(δ̃0:4)− [E2:(3,1k−3)] ≥ 0.

Proof. We analyse the image under θ of a general point t belonging to various boundary
components ofHkg . Suppose first that t = [f : C → R, p1, . . . , pb] corresponds to the gen-
eral point of a component of E2:(1k). The base R is the transverse union of two rational
components R1 and R2 meeting at a point p and assume p1, . . . , pb−2 ∈ R1 \ {p} and
pb−1, pb ∈ R2 \ {p}. Denoting by Ci := f−1(Ri) and by xb−1, xb ∈ C2 the ramification
points over pb−1 and pb respectively, we observe that C2 contains k − 2 smooth ratio-
nal components each intersecting C1 at one point and mapping isomorphically onto
R2. Each of these components contains two antiramification points of f lying over pb−1
and pb−2 respectively. This implies that the image under θ of the boundary component
of Hkg containing the point t lies in the (k − 2)nd self intersection of the boundary di-
visor ∆0:∅,[0,...,0,1,1]. This in turn yields that the pullback θ∗(δ̃0:2) contains E2:(1k) with
multiplicity at least k − 2.

Similarly, if t = [f : C → R, p1, . . . , pb] is a general point of a component of
E2:(3,1k−3), withR = R1∪R2 as above and p1, . . . , pb−2 ∈ R1\{p} and pb−1, pb ∈ R2\{p},
let C2 denote the component of C mapping with degree 3 onto R2. From the Hurwitz-
Zeuthen formula, C2 is necessarily of genus zero. The curve C2 will contain two ramifi-
cation points xb−1 and xb, as well as two antiramification points lying in the fibres over
pb−1 and pb respectively. Therefore the component of the boundary divisor of Hkg con-
taining t is mapped to the divisor ∆0:{b−1,b},[0,...,0,1,1], that is, θ∗(δ̃0:3) contains E2:(3,1k−3).
Arguing as above, θ(t) lies in the (k − 3)rd self intersection of ∆0:∅,[0,...,0,1,1].

Finally, let t = [f : C → R, p1, . . . , pb] be a general point of a component of
E2:(22,1k−4), with R = R1 ∪ R2 and the distribution of the ramification points as above.
Then f−1(R2) contains two smooth rational curves C2 and C ′2 mapping with degree 2
onto R2 and meeting C1 := f−1(R1) at a ramification point. Assume xb−1 ∈ C2 and
xb ∈ C ′2 are the two ramification points over pb−1 and pb. Then C2 (respectively C ′2) con-
tains two further antiramification points lying in f−1(pb) (respectively f−1(pb−1)). Note
furthermore that both C2 and C ′2 admit an automorphism of order 2 fixing the two ram-
ification points and permuting the two respective antiramification points. It follows
that both θ∗

(
∆0:{b},[0,...,0,2,0]

)
and θ∗

(
∆0:{b−1},[0,...,0,2]

)
contain the boundary divisor of

Hkg containing the point t with multiplicity at least 2, hence

θ∗(δ̃0:3) ≥ θ∗
(
∆0:{b},[0,...,0,2,0]

)
+ θ∗

(
∆0:{b−1},[0,...,0,2]

)
≥ 4[E2:(22,1k−4)].

Finally, the point θ(t) lies in the (k − 4)th self intersection of ∆0:∅,[0,...,0,1,1]. �
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We are now in a position to complete the proof of Theorem 0.1 and show that for
all g ≥ 2, and k ≥ 3 the Kodaira-Iitaka dimension of the stack Hk

g is maximal.

Proof of Theorem 0.1. We consider once more the map θ : Hkg → Mg,b+b[k−2] and the
divisor L̃ introduced in Proposition 2.4. We show that there exists a constant B > 0

such that K
H
k
g
− B · L̃ is big, which implies that K

H
k
g

itself is big. To that end, via

Proposition 1.2 (iii), it suffices to show that K
H
k
g
−B · L̃ has a representative in terms of

boundary classes in which the coefficient of the class of each irreducible component of
Ei:µ is positive.

Observe first that the image of θ is disjoint from the branch locus B of

ρ : Mg,b(k−1) →Mg,b+b[k−2].

Indeed, the source of an admissible cover [f : C → R, p1, . . . , pb] ∈ H
k
g cannot con-

tain a smooth rational component C ′ containing precisely two antiramification points
lying over the same branch point, for then deg(f|C′) ≥ 2, which implies that f|C′ admits
further ramification at points lying in C ′ \ C.

We shall find a constant B > 0 such that for all 2 ≤ i ≤ b
2 and all partitions µ ` k

the following quantity, equaling the coefficient of [Ei:µ] in K
H
k
g
−B · L̃, is positive:

(13) m(µ)
( i(b− i)
b− 1

− 1
)
− 1 +Bm(µ)

b(k − 1)

g

( i(b− i)
8(b− 1)

− 1

12

(
k − 1

µ

))
−

−Bm(µ)
(2k − 3)i(b− i)

2(b− 1)
+Bθ∗

(∑
j,s

cj:sδ̃j:s −
b−2∑
s=2

b∑
j=1

∑
|S∩Aj |=s

sδ0:S

)
i:µ
> 0,

where for a boundary divisor α onMg,b+b[k−2], we denote by θ∗(α)i:µ the coefficient of
[Ei:µ] in θ∗(α) viewed as a boundary divisor. Observe that the contribution of L̃ follows
from Proposition 2.2 and Proposition 2.5. Set

(14) B :=

(
2(b− 2)

b− 1
− 2

)(
b(b− 2)(k − 1)

4g(b− 1)
− (2k − 3)(b− 2)

b− 1
+ 2(k − 2)

)−1
=

16g

b3 − 2b2(g + 1) + 4bg − 16g2
> 0.

We check (13) case by case, starting with the most challenging case i = 2, since
this is when the coefficient of [Ei:µ] in KHkg

may be negative.

(i) First assume that µ = (1k), thus 1
µ = k. Using (3.1) we have θ∗(δ̃0:2) ≥ (k−2)[E2:(1k)].

Furthermore, for any component Z of E2:(1k) we have

θ(Z) *
b−2∑
s=2

b∑
j=1

∑
|S∩Aj |=s

∆0:S ,
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therefore inequality (13) becomes in this case

2(b− 2)

b− 1
− 2 +B

(
b(b− 2)(k − 1)

4g(b− 1)
− (2k − 3)(b− 2)

b− 1
+ c0:2(k − 2)

)
> 0,

which is clear by our choice of B and the observation that c0:2 > 2 by (9).

(ii) Assume now µ = (3, 1k−3), thus 1
µ = k − 8

3 and m(µ) = 3. Using that for any
component Z of E2:(3,1k−3) one has

θ(Z) *
b−2∑
s=2

b∑
j=1

∑
|S∩Aj |=s

∆0:S ,

and θ∗(δ̃0:4) ≥ [E2:(3,1k−3)] and θ∗(δ̃0:2) ≥ (k − 3)[E2:(3,1k−3)] by (3.1), inequality (13) is
implied by the following inequality

3
(2(b− 2)

b− 1
−1
)
−1+B

(3b(b− 2)(k − 1)

4g(b− 1)
− 2

3
− 3(b− 2)(2k − 3)

b− 1
+c0:2(k−3)+c0:4

)
> 0.

Let a := k − 3 ≥ 0, thus b = 2g + 2a+ 4. After substituting B by the value provided by
(14) and observing c0:s > s by (9) we obtain that the above value is greater than

2(3ag2 + 6a2g + 9ag + 10g + 3a3 + 15a3 + 24a+ 12)

3(ag2 + 2a2g + 7ag + 6g + a3 + 5a2 + 8a+ 4)
> 0.

(iii) Suppose µ = (22, 1k−4), thus 1
µ = k − 3 and m(µ) = 2. In particular, a ≥ 1. In this

case (3.1) provides that θ∗(δ̃0:3) ≥ 4[E2:(22,1k−4)] and θ∗(δ̃0:2) ≥ (k − 4)[E2:(22,1k−4)]. On
the other hand, the discussion of the final part of the Proof of Proposition 3.1 shows that

ordE
2:(22,1k−4)

θ∗

b−2∑
s=2

b∑
j=1

∑
|S∩Aj |=s

s∆0:S

 = 8

the statement holds along each irreducible component ofE2:(22,1k−4). It follows that (13)
would be implied by the following inequality:

4(b− 2)

b− 1
−3+B

(
b(b− 2)(k − 1)

2(b− 1)g
− 1

2
− 2(2k − 3)(b− 2)

b− 1
+ c0:2(k − 4) + 4c0:3 − 8

)
> 0.

By substituting the value for B and observing that c0:s > s the above value is
greater than

ag2 + 2a2g + 3ag + g + a3 + 5a2 + 8a+ 4

ag2 + 2a2g + 7ag + 6g + a3 + 5a2 + 8a+ 4
> 0

(iv) Assume now that i ≥ 3 and assume first µ 6= (1k), that is, m(µ) ≥ 2. We shall show
that the following inequality, which is stronger than (13), holds:

(15)

m(µ)

(( i(b− i)
b− 1

− 1
)

+B
b(k − 1)

g

( i(b− i)
8(b− 1)

− 1

12

(
k − 1

µ

))
−B (2k − 3)i(b− i)

2(b− 1)

)
−1 > 0.
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The coefficient of i(b − i) in this expression being positive, its smallest value is
attained when i = 3. Furthermore, using the means inequality we find that 1

µ ≥
1
k ,

whereas m(µ) ≥ 2 for any partition µ of k. Substituting i = 3, m(µ) = 2 and 1
µ = 1

k in
(15), we obtain the inequality which implies (15), which in turn implies inequality (13):

3(ag2 + 2a2g + 2ag + 2g + a3 + 4a2 + 4a)

ag2 + 2a2g + 7ag + 6g + a3 + 5a2 + 8a+ 4
> 0.

(v) Assume now that i ≥ 3 and µ = (1k), in which case as µ is the cycle class of
an even permutation, i is even and hence i ≥ 4. In this case (15) can be reduced to the
following, obtained by substituting i = 4:

2(ag2 + 2a2g + ag + 2g + a3 + 3a2 − 4)

ag2 + 2a2g + 7ag + 6g + a3 + 5a2 + 8a+ 4
> 0,

which holds in all cases outside of g = 2 and k = a + 3 = 3 where the left hand side is
equal to zero. However, in this case as all other inequalities hold, the choice of

B =
16g

b3 − 2b2(g + 1) + 4bg − 16g2
− ε =

1

4
− ε

for ε > 0 small enough completes the proof. �

We are now in a position to prove Theorem 0.2 and show that all coarse moduli
spacesH3

g of trigonal curves of genus g ≥ 2 have maximal Kodaira-Iitaka dimension.

Proof of Theorem 0.2. We use the constant B introduced in (14), which in the case k = 3
takes the form

B =
g

3g + 2

and we show that KH3
g
−B · L̃ admits a boundary representative in which all boundary

components ofH3
g appear with positive coefficients. Using Proposition 1.4, we have

KH3
g

= K
H

3
g
−

g∑
h=1

[E
hyp
2h+1:(2,1)],

where the general point of each component of Ehyp
2h+1:(2,1) parametrize an admissible

cover t = [f : C → R = R1 ∪p R2, p1, . . . , p2g+4], where C1 := f−1(R1) is a smooth curve
of genus g − h mapping with degree 3 over R1 and f−1(R2) = C2 ∪ C ′2, where C2 is a
smooth hyperelliptic curve of genus h mapping with degree 2 onto R2 and meeting C1

and precisely one point q ∈ f−1(p), which is a ramification point for both C1 and C2.
The component C ′2 is a smooth rational curve mapping isomorphically onto R2.

Observe that θ∗
(
δ̃0:2h+1

)
≥ [E

hyp
2h+1:(2,1)], as well as θ∗

(
δ̃h:2h+1

)
≥ [E

hyp
2h+1:(2,1)]. Us-

ing the estimate (10), the coefficient of [E
hyp
2h+1:(2,1)] in the expression of KH3

g
−B · L̃ is at

least equal to

4g2h2 + 38g2h− 20gh2 − 28g2 + 77gh− 28h2 − 65g + 28h− 28

(4g + 7)(3g + 2)
> 0,
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which can be checked in a straightforward manner. Since the other boundary coeffi-
cients of KH3

g
and K

H
3
g

coincide, we can invoke the proof of Theorem 0.1 to conclude.
�

As described in the introduction, when k ≥ g+2
2 , one has a natural map

χ : Hkg →Mg,2k−g−2,

which assigns to an admissible cover
[
f : C → R, p1, . . . , pb

]
the stabilization of the

pointed curve
[
C, q1, . . . , q2k−g−2], where qi ∈ C is the unique ramification point of f

lying in f−1(pi), for i = 1, . . . , 2k − g − 2.

Proposition 3.2. The map χ : Hkg → Mg,2k−g−2 is generically finite. It follows that Hkg is a

variety of general type when k ≥ g + 1 and g ≥ 12. Similarly, Hkg is of general type when
k ≥ g+2

2 and g ≥ 22.

Proof. The generic finiteness of the map χ follows essentially from results in [EH]. We
set n := 2k − g − 2 ≥ 0 and consider the stable curve [X, q1, . . . , qn] ∈ Mg,n, where
X consists of a smooth rational component R and g elliptic tails E1, . . . , Eg, each Ei
meetingR at a single point xi. The marked points q1, . . . , qn lie onR\{x1, . . . , xg}. Then
the fibre χ−1

(
[X, q1, . . . , qn]

)
is isomorphic to the variety of limit linear series of type g1k

on X having simple ramification at each of the points qi. Applying [EH, Theorem 1.1],
we obtain that this variety is pure of dimension

ρ(g, 1, k)− n = g − 2(g − k + 1)− (2k − g − 2) = 0.

Therefore χ is generically finite, in particular κ(Hkg) ≥ κ(Mg,n). When g ≥ 12 and
k ≥ g + 1, then n ≥ g + 1 and it follows from [Log] thatMg,n is of general type in this
range, which finishes the proof. �

Remark 3.3. Note that in the range k ≥ g + 1, one has an Sb-cover Hkg → Hg,k whose

source varietyHkg is of general type, whereas its baseHg,k is uniruled. Observe also that

the degree of χ : Hkg →Mg,2k−g−b is the Catalan number (2k−2)!
k!·(k−1)! , therefore independent

of g!
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60325 FRANKFURT AM MAIN, GERMANY
Email address: mullane@math.uni-frankfurt.de


