
M22 IS OF GENERAL TYPE
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1. INTRODUCTION

The aim of this paper is to prove the following result:

Theorem: The moduli space of curves of genus 22 is of general type.

We recall that it is a famous result due to Harris, Mumford and Eisenbud that Mg

is of general type for g ≥ 24 (cf. [HM], [H1], [EH]). On the other hand, a classical theo-
rem due to Severi says Mg is unirational for g ≤ 10 (see [AC1] for a modern exposition).

Similar results for higher g were proved in the 1980’s: Sernesi showed that M12 is uni-
rational (cf. [Se]), then Chang and Ran settled the unirationality of M11 and M13 and
gave a different proof of Sernesi’s result in genus 12 (cf. [CR1]). One also knows that
M15 and M16 have negative Kodaira dimension (cf. [CR2]). The case of M14 remained
open for a long time until recently when Verra proved that M14 is also unirational (cf.
[V]). The highest genus not entirely covered by [EH] is g = 23. One knows that the
Kodaira dimension of M23 is ≥ 2 (cf. [F1]).

Closely related to the problem of determining the Kodaira dimension of Mg is
the Harris-Morrison Slope Conjecture which asserts that the slope of every effective

divisor on Mg is ≥ 6 + 12/(g + 1) -this quantity being the slope of every Brill-Noether

divisor M
r
g,d of curves [C] ∈ Mg carrying a gr

d when g − (r + 1)(g − d + r) = −1

(cf. [HMo], [EH]). Recalling that the canonical divisor on Mg is given by the formula
KMg

≡ 13λ − 2δ0 − 3δ1 − 2δ2 − · · · − 2δ[g/2], the Slope Conjecture trivially implies that

κ(Mg) = −∞ for all g ≤ 22. However, the Slope Conjecture fails for a large number
of genera (see [FP], [F2], [F3], [Kh]) in the sense that there are examples of effective
divisors on Mg of slope < 6 + 12/(g + 1). This raised the prospect of constructing an

effective divisor D on Mg for some g ≤ 23, having slope s(D) < 13/2 = s(KMg
). In

[F2] we came very close to succeeding in this when we showed that on M22, the slope
of the closure of the divisor Z22,2 consisting of curves [C] ∈ M22 for which there exists

a linear series L ∈ W 10
30 (C) such that C

|L|
→֒ P10 fails to satisfy the Green-Lazarsfeld

property (N2), is equal to s(Z22,2) = 1665/256 = 6.503 . . . < 6 + 12/23.

In this paper we construct an effective divisor on M22 of slope < 13/2 and prove
the following result:
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Theorem 1.1. The following locus of smooth curves of genus 22

D22 := {[C] ∈ M22 : ∃L ∈ W 6
25(C) with Sym2H0(C,L) → H0(C,L⊗2) not injective}

is a divisor on M22 and the class of its compactification on M22 is given by the formula:

D22 ≡ 132822768
( 17121

2636
λ − δ0 −

14511

2636
δ0 −

11∑

j=2

bjδj

)
,

where bj > 1 for 2 ≤ j ≤ 11. It follows that s(D22) = 17121/2636 = 6.49506 . . ., hence M22

is of general type.

2. THE DIVISOR D22

In this section we construct two tautological vector bundles over the Severi vari-
ety of plane curves of genus 22 and degree 17 and define the divisor D22 as the image
of the first degeneration locus of a natural map between these bundles.

We denote by M0
22 the open substack of M22 consisting of curves [C] ∈ M22 such

that W 6
24(C) = ∅ and W 7

25(C) = ∅. Standard results in Brill-Noether theory guarantee
that codim(M22 − M0

22,M22) ≥ 3. If Pic2522 denotes the Picard stack of degree 25 over
M0

22 (that is, the étale sheafification of the Picard functor), then we consider the substack
G6

25 ⊂ Pic2522 parametrizing pairs [C,L] where [C] ∈ M0
22 and L ∈ W 6

25(C). We denote
by σ : G6

25 → M0
22 the forgetful morphism. Note that if L ∈ W 6

25(C) then KC ⊗ L∨ ∈
W 2

17(C) and since the classical Severi variety of plane curves of given degree and genus
is irreducible (cf. [H2]), it follows that G6

25 is irreducible as well. For a general [C] ∈
M0

22, the fibre σ−1([C]) = W 6
25(C) is a smooth curve and G6

25 is an irreducible stack of
dimension dim(G6

25) = dim(M22) + 1. Moreover, G6
25 is smooth at a point [C,L] if an

only if H1(C,Nf ) = 0, where Nf is normal line bundle of the map f :
|KC⊗L∨|
−→ P2. As

explained in [AC2], Proposition 2.9, the vanishing condition H1(C,Nf ) = 0 is satisfied
outside a subset of G6

25 of dimension ≤ g−8 = 14, hence for the purpose of codimension
≤ 2 calculations we carry out in this paper, we can work with G6

25 as if it was a smooth
stack.

We denote by π : M0
22,1 → M0

22 the universal curve over the moduli stack and

by p2 : M0
22,1 ×M0

22
G6

25 → G6
25 the natural projection. If L is the Poincaré bundle over

M0
22,1 ×M0

22
G6

25, then by Grauert’s Theorem E := (p2)∗(L) and F := (p2)∗(L
⊗2) are

vector bundles over G6
25 with rank(E) = 7 and rank(F) = 29. There is a natural vector

bundle map φ : Sym2(E) → F and we denote by U22 ⊂ G6
25 its first degeneracy locus.

We set D22 := σ∗(U22) and clearly U22 has expected codimension 2 inside G6
25 hence D22

is a virtual divisor on M22.

We shall extend the vector bundles E and F over a partial compactification of G6
25.

We denote by ∆0
1 ⊂ ∆1 ⊂ M22 the locus of curves [C ∪y E], where E is an arbitrary

elliptic curve, [C] ∈ M21 is a Brill-Noether general curve of genus 21 and y ∈ C is
an arbitrary point. We also denote by ∆0

0 ⊂ ∆0 ⊂ M22 the locus consisting of curves
C/y ∼ q, where [C, q] ∈ M21,1 is Brill-Noether general and y ∈ C is arbitary, as well as
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their degenerations [C ∪q E∞] where E∞ is a rational nodal curve (that is, j(E∞) = ∞).

Once we set M̃22 := M0
22∪∆0

0∪∆0
1, one can extend the map σ : G6

25 → M0
22 to a proper

map σ : G̃6
25 → M̃22 from the variety G̃6

25 of (generalized) limit linear series g6
25 over the

tree-like curves from M̃22.

Like in [F2], [F3], our technique for determining the class of the divisor D22 is

to intersect it with two standard test curves sitting in the boundary of M22: we fix a
general pointed curve [C, q] ∈ M21,1 and a general elliptic curve [E, y] ∈ M1,1. Then
we define the families

C0 := {C/y ∼ q : y ∈ C} ⊂ ∆0 ⊂ M22 and C1 := {C ∪y E : y ∈ C} ⊂ ∆1 ⊂ M22.

These curves intersect the generators of Pic(M22) as follows:

C0 · λ = 0, C0 · δ0 = −42, C0 · δ1 = 1 and C0 · δj = 0 for 2 ≤ j ≤ 11, and

C1 · λ = 0, C1 · δ0 = 0, C1 · δ1 = −40 and C1 · δj = 0 for 2 ≤ j ≤ 11.

Before we state the next results, we recall that if X is a stable curve whose dual
graph is a tree and l is a limit gr

d on X, for an irreducible component Y of X, we denote

by lY = (LY , VY ⊂ H0(LY )) the Y -aspect of l. For y ∈ Y we denote by {alY
s (C)}s=0...r

the vanishing sequence of l at y and by ρ(lY , y) := ρ(g, r, d)−
∑r

i=0(a
lY
i (y)−i) the adjusted

Brill-Noether number with respect to the point y.

Proposition 2.1. Fix general curves [C] ∈ M21 and [E, y] ∈ M1,1 and consider the associated

test curve C1 ⊂ ∆1 ⊂ M22. Then we have the following equality of 2-cycles in G̃6
25:

σ∗(C1) = X + X1 × X2 + Γ0 × Z0 + n1 · Z1 + n2 · Z2 + n3 · Z3,

where
X := {(y, L) ∈ C × W 6

25(C) : h0(L ⊗OC(−2y)) = 6},

X1 := {(y, L) ∈ C × W 6
25(C) : aL(y) = (0, 2, 3, 4, 5, 6, 8)},

X2 := {lE ∈ G6
8(E) : alE

1 (y) ≥ 2, alE
6 (y) = 8} ∼= P

(H0(OE(8y))

H0(OE(6y))

)

Γ0 := {(y,A ⊗OC(y)) : y ∈ C,A ∈ W 6
24(C)}, Z0 = G6

7(E) ∼= E,

Z1 := {lE ∈ G6
9(E) : alE

1 (y) ≥ 3, alE
6 (y) = 9} ∼= P

(H0(OE(9y))

H0(OE(6y))

)
,

Z2 := {lE ∈ G6
8(E) : alE

2 (y) ≥ 3, alE
6 (y) = 8} ∼= P

(H0(OE(8y))

H0(OE(5y))

)
,

Z3 := {lE ∈ G6
8(E) : alE (y) ≥ (0, 2, 3, 4, 5, 6, 7)} ∼=

⋃

z∈E

P

(H0(OE(7y + z))

H0(OE(5y + z))

)
,

where the constants n1, n2 and n3 are explicitly known positive integers.

Remark 2.2. The constants ni, 1 ≤ i ≤ 3 have the following enumerative interpretation.
First n1 is the number of linear series L ∈ W 6

25(C) such that there exists an unspecified
point y ∈ C with aL(y) = (0, 2, 3, 4, 5, 6, 9). Similarly, n2 is the number of those L ∈
W 6

25(C) for which there exists y ∈ C with aL(y) = (0, 2, 3, 4, 5, 7, 8). Finally n3 is the
number of points y ∈ C such that there exists L ∈ W 6

24(C) which is ramified at y. If n0

is the number of g6
24’s on C , then Γ0 consists of n0 disjoint copies of the curve C .
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Proof. By the additivity of the Brill-Noether number, if {lC , lE} is a limit g6
25 on C ∪y E,

we have that 1 = ρ(22, 6, 25) ≥ ρ(lC , y) + ρ(lE , y). Since ρ(lE , y) ≥ 0, we obtain that
ρ(lC , y) ≤ 1. If ρ(lE , y) = 0, then lE = 18y + |OE(7y)|, that is, lE is uniquely determined,
while the C-aspect lC is a complete g6

25 with a cusp at the variable point y ∈ C . This
gives rise to an element from X. In the case when ρ(lC , y) = 0 and ρ(lE , y) = 1, we
obtain that the underlying line bundle LC of lC either has a base point at y and then
(y, LC) ∈ Γ0, or else, LC belongs to the curve X1 and lE(−17y) is a g6

8 on E having
vanishing sequence ≥ (0, 2, 3, 4, 5, 6, 8), that is, lE(−17y) is an element of X2. Finally,
we have to consider the case when ρ(lC , y) = −1 and ρ(lE , y) = 2. There are a finite
number of such points y ∈ C , and running through all the possibilities we obtain the
components Zi for 1 ≤ i ≤ 3. �

Before stating our next result we introduce some notation. We fix a general pointed
curve [C, q] ∈ M21,1 and denote by Y the following surface:

Y := {(y, L) ∈ C × W 6
25(C) : h0(C,L ⊗OC(−y − q)) = 6}

and by π1 : Y → C the first projection. Inside Y we consider two curves corresponding
to g6

25’s with a base point at q:

Γ1 := {(y,A⊗OC(y)) : y ∈ C,A ∈ W 6
24(C)} and Γ2 := {(y,A⊗OC (q)) : y ∈ C,A ∈ W 6

24(C)}

intersecting transversally in n0 = |W 6
24(C)| points (Note that sine [C] ∈ M21 is Brill-

Noether general, W 6
24(C) is a reduced 0-dimensional scheme consisting of n0 very am-

ple (in particular, base point free) g6
24’s). We denote by Y ′ the blow-up of Y at these n0

points and at the points (q,B) ∈ Y where B ∈ W 6
25(C) is a linear series with the prop-

erty that h0(C,B ⊗OC(−8q)) ≥ 1. We denote by EA, EB ⊂ Y ′ the exceptional divisors
corresponding to (q,A ⊗ OC(q)) and (q,B) respectively, by ǫ : Y ′ → Y the projection

and by Γ̃1, Γ̃2 ⊂ Y ′ the strict transforms of Γ1 and Γ2.

Proposition 2.3. Fix a general curve [C, q] ∈ M21,1 and consider the associated test curve

C0 ⊂ ∆0 ⊂ M22. Then we have the following equality of 2-cycles in G̃6
25:

σ∗(C0) = Y ′/Γ̃1
∼= Γ̃2,

that is, σ∗(C0) can be naturally identified with the surface obtained from Y ′ by identifying the

disjoint curves Γ̃1 and Γ̃2 over each pair (y,A) ∈ C × W 6
24(C).

Proof. We fix a point y ∈ C − {q}, denote by [C0
y := C/y ∼ q] ∈ M22, ν : C → Cy

0

the normalization map, and we investigate the variety W
6
25(C

0
y ) ⊂ Pic

25
(C0

y ) of torsion-

free sheaves L on C0
y with deg(L) = 25 and h0(C0

y , L) ≥ 7. If L ∈ W 6
25(C

0
y ), that

is, L is locally free, then L is determined by ν∗(L) ∈ W 6
25(C) which has the property

that h0(C, ν∗L ⊗ OC(−y − q)) = 6. However, the line bundles of type A ⊗ OC(y) or
A ⊗ OC(q) with A ∈ W 6

24(C), do not appear in this association even though they have

this property. In fact they correspond to the situation when L ∈ W
6
25(C

y
0 ) is not locally

free, in which case necessarily L = ν∗(A) for some A ∈ W 6
24(C). Thus Y ∩ π−1

1 (y) is the

partial normalization of W
6
25(C

0
y ) at the n0 points of the form ν∗(A) with A ∈ W 6

24(C).

A special analysis is required when y = q, that is, when C0
y degenerates to C ∪q E∞,

where E∞ is a rational nodal cubic. If {lC , lE∞
} ∈ σ−1([C ∪q E∞]), then an analysis
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along the lines of Theorem 2.1 shows that ρ(lC , q) ≥ 0 and ρ(lE∞
, q) ≤ 1. Then either

lC has a base point at q and then the underlying line bundle of lC is of type A ⊗OC(q)

while lE∞
(−18q) ∈ W

6
7(E∞), or else, alC (q) = (0, 2, 3, 4, 5, 6, 8) and then lE∞

(−17q) ∈
P
(
H0(E∞(8q))/H0(E∞(6q))

)
∼= EB, where B ∈ W 6

25(C) is the underlying line bundle
of lC . �

Throughout the paper we use a few facts about intersection theory on Jacobians
which we briefly recall (see [ACGH] for a general reference). If [C] ∈ Mg is Brill-

Noether general, we denote by P the Poincaré bundle on C × Picd(C) and by π1 : C ×

Picd(C) → C and π2 : C×Picd(C) → Picd(C) the projections. We define the cohomology

class η = π∗
1([point]) ∈ H2(C × Picd(C)), and if δ1, . . . , δ2g ∈ H1(C, Z) ∼= H1(Picd(C), Z)

is a symplectic basis, then we set

γ := −

g∑

α=1

(
π∗

1(δα)π∗
2(δg+α) − π∗

1(δg+α)π∗
2(δα)

)
.

We have the formula c1(P) = dη + γ, corresponding to the Hodge decomposition of
c1(P). We also record that γ3 = γη = 0, η2 = 0 and γ2 = −2ηπ∗

2(θ). On W r
d (C) we

have the tautological rank r + 1 vector bundle M := (π2)∗(P|C×W r
d
(C)). The Chern

numbers of M can be computed using the Harris-Tu formula (cf. [HT]): if we write∑r
i=0 ci(M

∨) = (1 + x1) · · · (1 + xr+1), then for every class ζ ∈ H∗(Picd(C), Z) one has
the following formula:

xi1
1 · · · x

ir+1

r+1 ζ = det
( θg+r−d+ij−j+l

(g + r − d + ij − j + l)!

)
1≤j,l≤r+1

ζ.

If we use the expression of the Vandermonde determinant, we get the identity

det
( 1

(aj + l − 1)!

)
1≤j,l≤r+1

=
Πj>l (al − aj)

Πr+1
j=1 (aj + r)!

.

By repeatedly applying this we get all intersection numbers on W r
d (C) which we’ll need:

Lemma 2.4. If [C] ∈ M21 is Brill-Noether general and ci := ci(M
∨) are the Chern classes of

the dual of the tautological bundle on W 2
17(C), we have the following identities in H∗(W 2

17(C), Z):

[W 2
17(C)] =

θ18

73156608000
.

x1 · ξ =
θ19 · ξ

219469824000
, x2 · ξ = x3 · ξ = 0, for any ξ ∈ H4(Pic21(C)).

x1x2 · ξ =
θ20

1755758592000
· ξ, x1x3 · ξ = x2x3 · ξ = 0, for any ξ ∈ H2(Pic21(C)).

x2
1 · ξ =

θ20

1097349120000
· ξ, x2

2 · ξ = −x1x2 · ξ, x2
3 · ξ = 0, for any ξ ∈ H2(Pic21(C)).

x3
1 =

θ21

7242504192000
, x3

2 = −
t21

6584094720000
, x3

3 = x1x2x3 =
θ21

36870930432000
.

x2
1x2 = −x3

2, x1x
2
2 = x2

1x3 = x2x
2
3 = 0, x1x

2
3 = x2

2x3 = −x1x2x3.

We are going to extend the vector bundles E and F over the space G̃6
25 of limit

linear series:



6 G. FARKAS

Proposition 2.5. There exist two vector bundles E and F defined over G̃6
25 with rank(E) = 7

and rank(F) = 29 together with a vector bundle morphism Sym2(E) → F , such that the
following statements hold:

• For (C,L) ∈ G6
25 we have that E(L) = H0(C,L) and F(L) = H0(C,L⊗2).

• For t = (C ∪y E, lC , lE) ∈ σ−1(∆0
1), where g(C) = 21, g(E) = 1 and lC = |LC | is

such that LC ∈ W 6
25(C) has a cusp at y ∈ C , then E(t) = H0(C,LC ) and

F(t) = H0(C,L⊗2
C (−2y)) ⊕ C · u2,

where u ∈ H0(C,LC ) is any section such that ordy(u) = 0. If LC has a base point at
y, then E(t) = H0(C,LC) = H0(C,LC ⊗ OC(−y)) and the image of a natural map
F(t) → H0(C,L⊗2

C ) is the subspace H0(C,L⊗2
C ⊗OC(−2y)).

• Fix t = (C0
y := C/y ∼ q, L) ∈ σ−1(∆0

0), with q, y ∈ C and L ∈ W
6
25(C

0
y ) such that

h0(C, ν∗L ⊗ OC(−y − q)) = 6, where ν : C → C0
y is the normalization map. In the

case when L is locally free we have that

E(t) = H0(C, ν∗L) and F(t) = H0(C, ν∗L⊗2 ⊗OC(−y − q)) ⊕ C · u2,

where u ∈ H0(C, ν∗L) is any section not vanishing at y and q. In the case when L is

not locally free, that is, L ∈ W
6
25(C

y
0 )−W 6

25(C
y
0 ), then L = ν∗(A), where A ∈ W 6

24(C)
and the image of the natural map F(t) → H0(C, ν∗L⊗2) is the subspace H0(C,A⊗2).

We determine the cohomology classes of the surfaces X and Y introduced in
Propositions 2.3 and 2.1.

Proposition 2.6. Let [C] ∈ M21 be a Brill-Noether general curve and q ∈ C a general point.
If M denotes the tautological rank 3 vector bundle over W 2

17(C) and ci := ci(M
∨), then one

has the following relations:

(1) [X] = π∗
2(c2) − 6ηθ + (74η + 2γ)π∗

2(c1) ∈ H4(C × W 2
17(C)).

(2) [Y ] = π∗
2(c2) − 2ηθ + (16η + γ)π∗

2(c1) ∈ H4(C × W 2
17(C)).

Proof. By Riemann-Roch, if (y, L) ∈ X, then the line bundle M := KC ⊗L∨ ⊗OC(2y) ∈
W 2

17(C) has a cusp at y. We realize X as the degeneracy locus of a vector bundle map
over C × W 2

17(C). For each pair (y,M) ∈ C × W 2
17(C), there is a natural map

H0(C,M ⊗O2y)
∨ → H0(C,M)∨

which globalizes to a vector bundle morphism ζ : J1(P)∨ → π∗
2(M)∨ over C × W 2

17(C)
(Note that W 2

17(C) is a smooth 3-fold). Then we have the identification X = Z1(ζ) and
the Thom-Porteous formula gives that [X] = c2

(
π∗

2(M)−J1(P
∨)

)
. From the usual exact

sequence over C × Pic17(C)

0 −→ π∗
1(KC) ⊗P −→ J1(P) −→ P −→ 0,

we can compute the total Chern class of the jet bundle

ct(J1(P)∨) =
(∑

j≥0

(17η + γ)j
)
·
(∑

j≥0

(57η + γ)j
)

= 1 − 6ηθ + 74η + 2γ,

which quickly leads to the formula for [X]. To compute [Y ] we proceed in a similar
way. We denote by p1, p2 : C × C × Pic17(C) → C × Pic17(C) the two projections, by
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∆ ⊂ C × C × Pic17(C) the diagonal and we set Γq := {q} × Pic17(C). We introduce the
rank 2 vector bundle B := (p1)∗

(
p∗2(P) ⊗ O∆+p∗

2
(Γq)

)
defined over C × W 2

17(C) and we

note that there is a bundle morphism χ : B∨ → (π2)
∗(M)∨ such that Y = Z1(χ). Since

we also have that

ct(B
∨)−1 =

(
1 + (17η + γ) + (17η + γ)2 + · · ·

)
(1 − η),

we immediately obtained the desired expression for [Y ]. �

For future reference we also record the following formulas:

(1) c3(π
∗
2(M)∨ − J1(P)∨) = π∗

2(c3) − 6ηθπ∗
2(c1) + (74η + 2γ)π∗

2(c2) and

(2) c4(π
∗
2(M)∨ − J1(P)∨) = π∗

2(c3)(74η + 2γ) − 6π∗
2(c2)ηθ.

Proposition 2.7. Let [C] ∈ M21 be a Brill-Noether general curve and denote by P the Poincaré

bundle on C × Pic17(C). We have the following identities in H∗(Pic17(C)):

c1

(
R1π2∗(P|C×W 2

17
(C))

)
= θ − c1 and c2

(
R1π2∗(P|C×W 2

17
(C))

)
=

θ2

2
− θc1 + c2.

Proof. We recall that in order to obtain a determinantal structure on W 2
17(C) one fixes a

divisor D ∈ Ce of degree e >> 0 and considers the morphism

(π2)∗
(
P ⊗O(π∗

1D)
)
→ (π2)∗

(
P ⊗O(π∗

1D|π∗

1
D)

)
.

Then W 2
17(C) is the degeneration locus of rank e − 6 of this map and there is an exact

sequence of vector bundles over W 2
17(C):

0 −→ M −→ (π2)∗
(
P⊗O(π∗D)

)
−→ (π2)∗

(
P⊗O(π∗

1D)|π∗

1
D

)
−→ R1π2∗

(
P|C×W 2

17
(C)

)
−→ 0,

from which our claim easily follow once we take into account that (π2)∗
(
P⊗O(π∗

1D)|π∗

1
D

)

is numerically trivial and ct

(
(π2)∗(P ⊗O(π∗

1D))
)

= e−θ. �

Proposition 2.8. Let [C] ∈ M21 and denote by p1, p2 : C × C × Pic17(C) → C × Pic17(C)
the natural projections. We denote by A2 the vector bundle on C × Pic17(C) with fibre at each

point A2(y,M) = H0(C,K⊗2
C ⊗ M⊗(−2) ⊗OC(2y)). We have the following formulas:

c1(A2) = −4θ − 4γ − 28η and c2(A2) = 8θ2 + 104ηθ + 16γθ.

Proof. Recall that if M ∈ W 2
17(C) then by duality L := KC ⊗ OC(2y) ⊗ M∨ ∈ W 6

25(C)
is a linear series with a cusp at y. In this notation, A2 is the vector bundle with fi-
bre A2(y,M) = H0(C,L⊗2 ⊗ OC(−2y)). To compute ci(A2) we apply Grothendieck-
Riemann-Roch to the map p2. If ν1 : C × C × Pic17(C) → C denotes the projection onto
the first coordinate, then one obtains that

ch
(
p2!

(
ν∗
1(K⊗2

C ) ⊗ P⊗(−2) ⊗O(2∆)
))

= ch(A2) =

= (p2)∗

(
ch

(
ν∗
1 (K⊗2

C ) ⊗ p∗1(P
⊗(−2)) ⊗O(2∆)

)
· (1 −

1

2
ν∗
1(KC))

)

and looking at terms of degree 2 and 3 one finds c1(A2) = −4θ−4γ−28η and ch2(A2) =
−8ηθ. �

The next proposition is proved along the lines of Proposition 2.8:
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Proposition 2.9. Let [C, q] ∈ M21,1 be a general pointed curve an we denote by B2 the vector

bundle on C×Pic17(C) having fibre B2(y,M) = H0
(
C,K⊗2

C ⊗M⊗(−2)⊗OC(y + q)
)

at each

point (y,M) ∈ C × Pic17(C). Then we have that:

c1(B2) = −4θ + 7η − 2γ and c2(B2) = 8θ2 − 28ηθ + 8θγ.

Now we prove that the virtual degeneracy locus D22 is an “honest” divisor on

M22, that is, the vector bundle morphism Sym2(E) → F is generically non-degenerate:

Theorem 2.10. If [C] ∈ M22 is a sufficiently general smooth curve, then the multiplication
map Sym2H0(L) → H0(L⊗2) is injective for every L ∈ W 6

25(C). It follows that D22 is a
divisor on M22.

Proof. Throughout this proof we use the set-up described in Section 4 of [FP] for un-
derstanding degenerations of multiplication maps on curves. We consider a degenerate
curve [S := C ∪q D] ∈ ∆8 ⊂ M22 where (C, q) and (D, q) are suitable general pointed

curves of genus 8 and 14 respectively. Suppose by contradiction that [S] ∈ D22. Then
there exists a limit g6

25 on S, say

l = {lC = (LC , VC ⊂ H0(LC)), lD = (LD, VD ⊂ H0(LD)} ∈ σ−1([S]),

together with 6= 0 elements

ρC ∈ Ker{Sym2(VC) → H0(L⊗2
C )} and ρD ∈ Ker{Sym2(VD) → H0(L⊗2

D )},

such that ordq(ρC) + ordq(ρD) ≥ 50 = deg(LC) + deg(LD). Limit linear g6
25’s on S are

indexed by partitions 0 ≤ β0 ≤ β1 ≤ . . . ≤ β6 ≤ 3 such that
∑6

i=0 βi = g(C) = 8. If
we pick such a partition, then lC(−11q) ∈ G6

14(C) is a linear series with ramification
sequence (β0, . . . , β6) at q, while lD(−5q) ∈ G6

20(D) is a linear series with complemen-
tary ramification sequence (3 − β6, . . . , 3 − β0) at q. We claim that by analyzing all the
partitions (βi)0≤i≤6 one can always choose (C, q) and (D, q) general enough such that
either ρC or ρD must be 0. For simplicity, we carry this out only in a single case, the
other being rather similar. Say we choose the partition (βi)0≤i≤6 = (0, 0, 1, 1, 1, 2, 3).
Then if LC ∈ Pic14(C) denotes the underlying line bundle of lC(−11q), we have that
aLC (q) = (0, 1, 3, 4, 5, 7, 9), whereas if LD ∈ Pic20(D) denotes the underlying line bun-
dle of lD(−5q) then aLD(q) = (0, 2, 4, 5, 6, 8, 9). A careful analysis similar to the one in
the proof of Theorem 5.1 in [FP], shows that the only possible situation when ρC and
ρD could satisfy the compatibility condition at q, is when ordq(ρC) = 9(= 0+9 = 4+5).

More precisely, if WC ⊂ Sym2H0(LC) denotes the 13-dimensional space of sections
with order ≥ 13 at q, then

0 6= ρC ∈ Ker{WC → H0(L⊗2
C ⊗OC(−9q))}

(Note that the kernel is indeed 1-dimensional if [C, q] ∈ M8,1 is sufficiently generic). By

compatibility, then ordq(ρD) ≥ 9(= 0 + 9 = 4 + 5). If WD ⊂ Sym2H0(LD) is the space
of those ρD with ordq(ρD) ≥ 9, then dim(WD) = 17 and we have that

0 6= ρD ∈ Ker{WD → H0(L⊗2
D ⊗OD(−9q))},

where the target is 18-dimensional. One has to show that this is indeed a divisorial con-
dition on M14,1 , which can be seen by further degenerating [D, q] to reducible curves
of smaller genus.



M22 IS OF GENERAL TYPE 9

�

As a first step towards computing [D22] we determine the δ1 coefficient in its
expression:

Theorem 2.11. Let [C] ∈ M21 be Brill-Noether general and denote by C1 ⊂ ∆1 the associated
test curve. Then σ∗(C1) · c2(F − Sym2(E)) = 4847375988. It follows that the coefficient of δ1

in the expansion of D22 is equal to b1 = 731180268.

Proof. We intersect the degeneracy locus of the map Sym2(E) → F with the surface
σ∗(C1) and use that the vector bundles E and F were defined by retaining the sections
of the genus 21 aspect of each limit linear series and dropping the information coming

from the elliptic curve. It follows that Zi · c2(F − Sym2(E)) = 0 for 1 ≤ i ≤ 3 (since F
and Sym2(E)) are both trivial along the surfaces Zi), and [X1×X2]·c2(F−Sym2(E)) = 0

(because c2(F−Sym2(E))|X1×X2
is in fact the pull-back of a codimension 2 class from the

1-dimensional cycle X1, therefore the intersection number is 0 for dimensional reasons).
We are left with estimating the contribution coming from X and we write

σ∗(C1) ·c2(F−Sym2(E)) = c2(F|X)−c1(F|X)c1(Sym2E|X)+c2
1(Sym2E|X)−c2(Sym2E|X)

and we are going to compute each term in the right-hand-side of this expression.

Recall that we have constructed in Proposition 2.6 a vector bundle morphism
ζ : J1(P)∨ → π∗

2(M)∨ and we denote by U := Ker(ζ). In other words, U is a line bundle
on X with fibre

U(y,M) =
H1(C,M ⊗OC(−2y))∨

H1(C,M)∨
=

H0(C,L)

H0(C,L ⊗OC(−2y))

over a point (y,M) ∈ X. The Chern class of U can be computed from the Harris-Tu
formula and we find that (cf. (1)):

c1(U)·ξ|X = −c3(π
∗
2(M)∨−J1(P)∨)·ξ|X = −(π∗

2(c3)−6ηθπ∗
2(c1)+(74η+2γ)π∗

2(c2))·ξ|X ,

for any class ξ ∈ H2(C × W 2
17(C)), and

c2
1(U) = c4(π

∗
2(M)∨ − J1(P)∨) = π∗

2(c3)(74η + 2γ) − 6π∗
2(c2)ηθ.

If A3 denotes the rank 30 vector bundle on X having fibres

A3(y,M) = H0(C,L⊗2) = H0(C,K⊗2
C ⊗ M⊗(−2) ⊗OC(4y)),

then there is an injective bundle morphism U⊗2 →֒ A3/A2 and we consider the quotient
sheaf

G :=
A3/A2

U⊗2

We note that since the morphism U⊗2 → A3/A2 vanishes along the curve Γ0 corre-
sponding to pairs (y,M) where M has a base point, G has torsion along Γ0. A straight-
forward local analysis now shows that F|X can be identified as a subsheaf of A3 with
the kernel of the map A3 → G. Therefore, there is an exact sequence of vector bundles
on X

0 −→ A2|X −→ F|X −→ U⊗2 −→ 0,



10 G. FARKAS

which over a generic point of X corresponds to the decomposition

F(y,M) = H0(C,L⊗2 ⊗OC(−2y)) ⊕ C · u2,

where u ∈ H0(C,L) is such that ordy(u) = 1 (The analysis above, shows that the se-
quence stays exact over Γ0 as well). Hence c1(F|X) = c1(A2|X) + 2c1(U) and c2(F|X) =

c2(A2|X). Furthermore, we note that the vector bundle π∗
2

(
R1π2∗(P)

)∨
|X

is a subbundle

of E|X and we have an exact sequence

0 −→ π∗
2

(
R1π2∗(P)

)∨
|X

−→ E|X −→ U −→ 0

from which we find that c1(E|X) = −θ + π∗
2(c1) + c1(U). Similarly, we have that

(3) c2(E|X) =
θ2

2
+ π∗

2(c2) − θπ∗
2(c1) − c1(U)π∗

2(c1) − θc1(U).

It is elementary to check that c1(Sym2E|X) = 8 c1(E|X) and that c2(Sym2E|X) = 27 c2
1(E|X)+

9 c2(E|X), therefore we obtain that

σ∗(C1) · c2(F − Sym2(E)) = c2(A2|X) + c1(A2|X)c1(U
⊗2)−

−8c1(A2|X)c1(E|X) − 8c1(E|X)c1(U
⊗2) + 37c2

1(E|X) − 9c2(E|X) =

=
(
−120 ηθ +

17

2
θ2 − 16 θγ − 9 π∗

2(c2) + (224 η + 32 γ − 33 θ)π∗
2(c1) + 37π∗

2(c2
1)

)
· [X]+

+(168 η + 24 γ − 25 θ + 49 π∗
2(c1)) · c1(U) + 21c2

1(U) =

= 1754 ηθπ∗
2(c2) + 1386 ηπ∗

2(c3) − 2498 ηθπ∗
2(c

2
1) + 741 ηθ2π∗

2(c1) − 4068 ηπ∗
2(c1)π

∗
2(c2)−

−51 ηθ3 + 2738 ηπ∗
2(c

3
1),

where the last expression lives inside H4(C ×W 2
17(C)). Using Lemma 2.4 we can evalu-

ate each term in this sum to find that σ∗(C1)·c2(F−Sym2(E)) = 691 θ21/1207084032000,
which implies the stated formula for b1. �

Theorem 2.12. Let [C, q] ∈ M21,1 be a suitably general pointed curve and L ∈ W 6
25(C) a

linear series with a cusp at q. Then the multiplication map Sym2H0(C,L) → H0(C,L⊗2) is
injective. It follows that we have the relation a − 12b0 + b1 = 0.

Proof. We consider the pencil R ⊂ Mg obtained by attaching to C at the point q a pencil
of plane cubics. It is well-known that R · λ = 1, R · δ0 = 12 and R · δ1 = −1, thus

the relation a − 12b0 + b1 = 0 would be immediate once we show that R ∩ D22 =
∅. Assume by contradiction that R ∩ D22 6= ∅ and then according to Proposition 2.1
there exists MC ∈ W 6

25(C) with h0(MC ⊗ OC(−2q)) = 6 such that the multiplication

map Sym2H0(MC) → H0(M⊗2
C ) is not injective. There are two cases to consider. If

q ∈ Bs|MC |, then N := MC ⊗ OC(−q) ∈ W 6
24(C) is such that the map Sym2H0(N) →

H0(N⊗2) is not an isomorphism. This is a divisorial condition on [C] ∈ M21 (cf. [Kh] or
[F3]) and therefore it does not occur if we choose [C] ∈ M21 sufficiently generically. We
are left with the case when MC has a cusp at q, hence (q,MC) ∈ X. This case is covered
by Theorem 2.10 which finishes the proof.

�
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Theorem 2.13. Let [C, q] ∈ M21,1 be a Brill-Noether general pointed curve and denote by
C0 ⊂ ∆0 the associated test curve. Then σ∗(C0)·c2(F−Sym2(E)) = 42b0−b1 = 4847375988.
It follows that b0 = 132822768.

Proof. This time we look at the virtual degeneracy locus of the morphism Sym2(E) → F
along the surface σ∗(C0). The first thing to note is that the vector bundles E|σ∗(C0) and
F|σ∗(C0) are both pull-backs of vector bundles on Y . For convenience we denote this
vector bundles also by E and F , hence to use the notation of Proposition 2.3, E|σ∗(C0)) =
ǫ∗(E|Y ) and F|σ∗(C0) = ǫ∗(F|Y ). We find that

σ∗(C0) · c2(F − Sym2(E)) = c2(F|Y ) − c1(F|Y ) · c1(E|Y ) + c2
1(E|Y ) − c2(E|Y )

and like in the proof of Theorem 2.11, we are going to compute each term in this ex-
pression. We denote by V := Ker(χ), where χ : B∨ → π∗

2(M)∨ is the bundle morphism
coming from Proposition 2.6. Thus V is a line bundle on Y with fibre

V (y,M) =
H0(C,L)

H0(C,L ⊗OC(−y − q))
,

over each point (y,M) ∈ Y , and where L := KC ⊗M∨⊗OC(y + q) ∈ W 6
25(C). By using

again the Harris-Tu Theorem, we find the following formulas for the Chern numbers of
V :

c1(V ) · ξ|Y = −(c3(π
∗
2(M)∨ −B∨) · ξ|Y ) = (π∗

2(c3) + π∗
2(c2)(16η + γ) − 2π∗

2(c1)ηθ) · ξ|Y ,

for any class ξ ∈ H2(C × W 2
17(C)), and

c2
1(V ) = c4(π

∗
2(M)∨ − B∨) = π∗

2(c3)(16η + γ) − 2π∗
2(c2)ηθ.

Recall that we introduced the rank 28 vector bundle B2 over C × W 2
17(C) with fibre

B2(y,M) = H0(C,L⊗2 ⊗ OC(−y − q)). We claim that one has an exact sequence of
bundles over Y

(4) 0 −→ B2|Y −→ F|Y −→ V ⊗2 −→ 0.

If B3 is the rank 30 vector bundle on Y with fibres

B3(y,M) = H0(C,L⊗2) = H0
(
C,K⊗2

C ⊗ M⊗(−2) ⊗OC(2y + 2q)
)
,

we have an injective morphism of sheaves V ⊗2 →֒ B3/B2 locally given by

v⊗2 7→ v2 mod H0(C,L⊗2 ⊗OC(−y − q)),

where v ∈ H0(C,L) is any section not vanishing at q and y. Then F|Y is canonically
identified with the kernel of the projection morphism

B3 →
B3/B2

V ⊗2

and the exact sequence (4) now becomes clear. Therefore c1(F|Y ) = c1(B2|Y ) + 2c1(V )
and c2(F|Y ) = c2(B2|Y ). Reasoning along the lines of Theorem 2.11, we also have an
exact sequence

0 −→ π∗
2

(
R1π2∗(P)

)∨
|Y

−→ E|Y −→ V −→ 0

and from this we obtain that

c1(E|Y ) = −θ+π∗
2(c1)+c1(V ) and c2(E|Y ) =

θ2

2
+π∗

2(c2)−θπ∗
2(c1)−θc1(V )+c1(V )π∗

2(c1).
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All in all, we can write the following expression for the total intersection number

σ∗(C0) · c2(F − Sym2(E)) = c2(B2|Y ) + c1(B2|Y )c1(V
⊗2)−

−8c1(B2|Y )c1(E|Y ) − 8c1(E|Y )c1(V
⊗2) + 37c2

1(E|Y ) − 9c2(E|Y ) =

=
(17

2
θ2 + 28ηθ − 8θγ − 9π∗

2(c2) + (16γ − 33θ − 56η)π∗
2(c1) + 37π∗

2(c2
1)

)
· [Y ]+

+(49 π∗
2(c1) − 25 θ − 42 η + 12 γ)c1(V ) + 21c2

1(V ) =

= 428 ηθπ∗
2(c2) − 536 ηθπ∗

2(c
2
1) + 168 ηθ2π∗

2(c1) − 984 ηπ∗
2(c1)π

∗
2(c2)+

+378ηπ∗
2(c3) − 17 ηθ3 + 592ηπ∗

2(c3
1),

and using once more Lemma 2.4, we get that 42b0 − b1 = 509θ21/5364817920000. Since
we already know the value of b1 and a− 12b0 + b1 = 0, this allows us to calculate a and
b0. �

End of the proof of Theorem 1.1. We write D22 ≡ aλ −
∑11

j=0 bjδj . Since a/b0 =

17121/2636 ≤ 71/10, we are in a position to apply Corollary 1.2 from [FP] which gives

the inequalities bj ≥ b0 for 1 ≤ j ≤ 11, hence s(D22) = a/b0 < 13/2. �
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