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Abstract. We discuss topics related to the geometry of theta characteristics on
algebraic curves. They include the birational classification of the moduli space
Sg of spin curves of genus g, interpretation of theta characteristics as quadrics
in a vector space over the field with two elements as well as the connection with
modular forms and superstring scattering amplitudes. Special attention is paid to
the historical development of the subject.

Theta characteristics appeared for the first time in the context of characteristic
theory of odd and even theta functions in the papers of Göpel [Go] and Rosenhain
[Ro] on Jacobi’s inversion formula for genus 2. They were initially considered in con-
nection with Riemann’s bilinear addition relation between the degree two monomials
in theta functions with characteristics. Later, in order to systematize the relations
between theta constants, Frobenius [Fr1], [Fr2] developed an algebra of character-
istics 1; he distinguished between period and theta characteristics. The distinction,
which in modern terms amounts to the difference between the Prym moduli space
Rg and the spin moduli space Sg, played a crucial role in elucidating the transfor-
mation law for theta functions under a linear transformation of the moduli, and it
ultimately led to a correct definition of the action of symplectic group Sp(F2g

2 ) on
the set of characteristics. An overwiew of the 19th century theory of theta functions
can be found in Krazer’s monumental book [Kr]. It is a very analytic treatise in
character, with most geometric applications either completely absent or relegated to
footnotes.

1Frobenius’ attempts to bring algebra into the theory of theta functions has to be seen in relation

to his famous work on group characters. In 1893, when entering the Berlin Academy of Sciences

he summarized his aims as follows [Fr3]: In the theory of theta functions it is easy to set up an

arbitrarily large number of relations, but the difficulty begins when it comes to finding a way out

of this labyrinth of formulas. Many a distinguished researcher, who through tenacious perseverence,

has advanced the theory of theta functions in two, three, or four variables, has, after an outstanding

demonstration of brilliant talent, grown silent either for a long time of forever. I have attempted to

overcome this paralysis of the mathematical creative powers, by seeking renewal at the fountain of

youth of arithmetic.
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The remarkable book [Cob] by Coble 2 represents a departure from the analytic
view towards a more abstract understanding of theta characteristics using configu-
rations in finite geometry. Coble viewed theta characteristics as quadrics in a vector
space over F2. In this language Frobenius’ earlier concepts (syzygetic and azygetic
triples, fundamental systems of characteristics) have an elegant translation. With
fashions in algebraic geometry drastically changing, the work of Coble was forgotten
for many decades 3.

The modern theory of theta characteristic begins with the works of Atiyah [At]
and Mumford [Mu]; they showed, in the analytic (respectively algebraic) category,
that the parity of a theta characteristic is stable under deformations. In particular,
Mumford’s functorial view of the subject, opened up the way to extending the study
of theta characteristics to singular curves (achieved by Harris [H]), to constructing a
proper Deligne-Mumford moduli space of stable spin curves (carried out by Cornalba
[Cor]), or to reinterpreting Coble’s work in modern terms (see the book [DO]).

The aim of this paper is to survey various developments concerning the geom-
etry of moduli spaces of spin curves. Particular emphasis is placed on the complete
birational classification of both the even and the odd spin moduli spaces, which has
been carried out in the papers [F2], [FV1] and [FV2]. Precisely, we shall explain the
following result:

Theorem 0.1. The birational type of the moduli spaces S+
g and S−g of even and odd

spin curves of genus g can be summarized as follows:

S+
g :

g > 8 general type

g = 8 Calabi-Yau

g ≤ 7 unirational

S−g :
g ≥ 12 general type

g ≤ 8 unirational

9 ≤ g ≤ 11 uniruled

We describe the structure of the paper. In the first two sections we recall the
interpretation of theta characteristics as quadrics in an F2-vector space, then link
this description both with the classical theory of characteristics of theta functions
and modern developments inspired by string theory. In the next three sections we
explain some features of the geometry of the moduli space Sg of stable spin curves
of genus g, discuss ways of constructing effective divisors on Sg and computing their
cohomology classes, then finally present unirational parametrizations of the moduli
space in small genus, by using Mukai models and special K3 surfaces. We close
by surveying a few open problems related to syzygies of theta characteristics and
stratifications of the moduli space.
2An irreverent portrait of Coble in the 1930’s from someone who was not exactly well disposed

towards algebraic geometry (“. . . the only part of mathematics where a counterexample to a theorem

is considered to be a beautiful addition to it”), can be found in Halmos’ autobiography “I want to

be a mathematician”.
3This quote from Mattuck’s [Ma] obituary of Coble reveals the pervasive attitude of the 1960’s:

The book as a whole is a difficult mixture of algebra and analysis, with intricate geometric reasoning

of a type few can follow today. The calculations are formidable; let them serve to our present day

algebraic geometers, dwelling as they do in their Arcadias of abstraction, as a reminder of what

awaits those who dare to ask specific questions about particular varieties.
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1. Theta characteristics: a view using finite geometry

For a smooth algebraic curve C of genus g we denote by

J2(C) := {η ∈ Pic0(C) : η⊗2 = OC}
the space of two-torsion points in the Jacobian of C, viewed as an F2-vector space.
We recall the definition of the Weil pairing 〈·, ·〉 : J2(C) × J2(C) → F2, cf. [Mu]
Lemma 2:

Definition 1.1. Let η, ε ∈ J2(C) and write η = OC(D) and ε = OC(E), for certain
divisors D and E on C, such that supp(D) ∩ supp(E) = ∅. Pick rational functions
f and g on C, such that div(f) = 2D and div(g) = 2E. Then define 〈η, ε〉 ∈ F2 by
the formula

(−1)〈η,ε〉 =
f(E)
g(D)

.

The definition of 〈η, ε〉 is independent of the choice of the divisors D and E and
the rational functions f and g. The Weil pairing is a nondegenerate symplectic form.
The set of theta characteristics of C, defined as Th(C) := {θ ∈ Picg−1(C) : θ⊗2 =
KC}, is an affine space over J2(C). It was Coble’s insight [Cob] to realize that in
order to acquire an abstract understanding of the geometry of Th(C) and clarify the
distinction between the period characteristics and the theta characteristics of C, it
is advantageous to view theta characteristics as quadrics in the vector space J2(C).

Definition 1.2. Let (V, 〈·, ·〉) be a symplectic vector space over F2. The set Q(V ) of
quadratic forms on V with fixed polarity given by the symplectic form 〈·, ·〉, consists
of all functions q : V → F2 satisfying the identity

q(x + y) = q(x) + q(y) + 〈x, y〉, for all x, y ∈ V.

If q ∈ Q(V ) is a quadratic form and v ∈ V , we can define a new quadratic form
q + v ∈ Q(V ) by setting (q + v)(x) := q(x) + 〈v, x〉, for all x ∈ V. Similarly one can
add two quadratic forms. If q, q′ ∈ Q(V ), then there exists a uniquely determined
element v ∈ V such that q′ = q + v, and we set q + q′ := v ∈ V . In this way, the
set Ṽ := V ∪ Q(V ) becomes a (2g + 1)-dimensional vector space over F2. There
is a natural action of the symplectic group Sp(V ) on Q(V ). For a transformation
T ∈ Sp(V ) and a quadratic form q ∈ Q(V ), one defines

(T · q)(x) := q(T−1(x)), for x ∈ V.

This action has two orbits Q(V )+ and Q(V )− respectively, which can de distin-
guished by the Arf invariant [Arf] of a quadratic form.

Definition 1.3. Let us choose a symplectic base (e1, . . . , eg, f1, . . . , fg) of V . Then
define

arf(q) :=
g∑

i=1

q(ei) · q(fi) ∈ F2.
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The invariant arf(q) is independent of the choice of a symplectic basis of V . We
set Q(V )+ := {q ∈ Q(V ) : arf(q) = 0} to be the space of even quadratic form, and
Q(V )− := {q ∈ Q(V ) : arf(q) = 1} that of odd quadratic forms. Note that there are
2g−1(2g + 1) even quadratic forms and 2g−1(2g − 1) odd ones.

Every theta characteristic θ ∈ Th(C) defines a form qθ : J2(C) → F2, by setting

qθ(η) := h0(C, η ⊗ θ) + h0(C, θ) mod 2.

It follows from the Riemann-Mumford relation [Mu] or [H] Theorem 1.13, that qθ ∈
Q(J2(C)), that is, the polar of qθ is the Weil form. For η, ε ∈ J2(C), the following
relation holds:

h0(C, θ ⊗ η ⊗ ε) + h0(C, θ ⊗ η) + h0(C, θ ⊗ ε) + h0(C, θ) ≡ 〈η, ε〉 mod 2.

Thus one has the following identification between theta characteristics and quadrics:

Th(C) = Q
(
J2(C), 〈·, ·〉).

Under this isomorphism, even (respectively odd) theta characteristics correspond to
forms in Q(V )+ (respectively Q(V )−). Furthermore, arf(qθ) = h0(C, θ) mod 2. Using
this identification, one can translate Frobenius’s [Fr1], [Fr2] entire theory of funda-
mental systems of theta characteristics into an abstract setting. Of great importance
is the following:

Definition 1.4. A system of three theta characteristics θ1, θ2, θ3 ∈ Th(C) is called
syzygetic (respectively azygetic) if arf(qθ1) + arf(qθ2) + arf(qθ3) + arf(qθ1+θ2+θ3) = 0
(respectively 1).

Here the additive notation θ1 +θ2 +θ3 refers to addition in the extended vector
space J̃2(C) = J2(C)∪Th(C). In terms of line bundles, θ1 + θ2 + θ3 = θ1 ⊗ θ2 ⊗ θ∨3 ∈
Picg−1(C). It is an easy exercise to show that {θ1, θ2, θ3} is a syzygetic triple if and
only if 〈θ1 + θ2, θ1 + θ3〉 = 0. If the system {θ1, θ2, θ3} is syzygetic, then any three
elements of the set {θ1, θ2, θ3, θ1 + θ2 + θ3} form a syzygetic triple. In this case we
say that the four theta characteristics form a syzygetic tetrad.

Example 1.5. Four odd theta characteristics θ1, . . . , θ4 ∈ Th(C) corresponding to
contact contact divisors Di ∈ |θi| such that 2Di ∈ |KC | form a syzygetic tetrad, if
and only if there exists a quadric Q ∈ Sym2H0(C,KC), such that

Q · C = D1 + D2 + D3 + D4.

For instance, when g = 3, four bitangents to a quartic C ⊂ P2 form a syzygetic
tetrad exactly when the 8 points of tangency are the complete intersection of C
with a conic.

To understand the geometry of the configuration Th(C) one defines appropri-
ate systems of coordinates. Following [Kr] p. 283, one says that 2g + 2 theta char-
acteristics {θ1, . . . , θ2g+2} form a fundamental system if any triple {θi, θj , θj} where
1 ≤ i < j < k ≤ 2g+2 is azygetic. The sum of the 2g+2 elements of a fundamental
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system equals 0, see [Kr] p. 284, and the number of fundamental systems in Th(C)
is known, cf. [Kr] p. 285:

22g |Sp(F2g
2 )|

(2g + 2)!
= 22g (22g − 1)(22g−2 − 1) · · · (22 − 1)

(2g + 2)!
2g

2
.

Example 1.6. A smooth plane quartic C ⊂ P2 has precisely 288 fundamental systems
(θ1, . . . , θ8), where the first 7 theta characteristics are odd, and θ8 = −∑7

i=1 θi is
then necessarily even. All elements in Th(C) can be expressed in the “coordinate
system” given by (θ1, . . . , θ7): The remaining odd theta characteristics are θi + θj +
θk + θl + θm. The 35 = 36− 1 even theta characteristics are of the form θi + θj + θk.

One can also consider systems of syzygetic theta characteristics, that is subsets,
{θ1, . . . , θr+1} ⊂ Th(C) such that all triples {θi, θj , θk} are syzygetic. Then r ≤ g, see
[Kr] p. 299. Following Frobenius [Fr1], a maximal system of such theta characteristics
is called a Göpel system and corresponds to 2g theta characteristics such any three
of them form a syzygetic triple. These definitions can be immediately extended to
cover general principally polarized abelian varieties not only Jacobians.

2. Theta characteristics: the classical view via theta functions

We now link the realization of theta characteristics in abstract finite geometry, to
the theory of theta functions with characteristics. There are established classical
references, above all [Kr], [Wi], [Ba], [Cob], as well as modern ones, for instance
[BL], [SM1]. We fix an integer g ≥ 1 and denote by

Hg := {τ ∈ Mg,g(C) : τ =t τ, Im τ > 0}
the Siegel upper half-space of period matrices for abelian varieties of dimension g;
hence Ag := Hg/Sp2g(Z) is the moduli space of principally polarized abelian varieties

of dimension g. For a vector
[ ε
δ

]
=

[
ε1 . . . εg
δ1 . . . δg

]
∈ F2g

2 one defines the Riemann

theta function with characteristics as the holomorphic function ϑ : Hg × Cg → C
given by

ϑ

[
ε
δ

]
(τ, z) :=

∑
m∈Zg

exp
(
πi t(m +

ε

2
)τ(m +

ε

2
) + 2πi t(m +

ε

2
)(z +

δ

2
)
)
.

For any period matrix τ ∈ Hg, the pair[
Aτ :=

Cg

Zg + τ · Zg
, Θτ :=

{
z ∈ Aτ : ϑ

[
0
0

]
(τ, z) = 0

}]
defines a principally polarized abelian variety, that is, [Aτ ,Θτ ] ∈ Ag. There is an
identification of symplectic vector spaces

V := F2g
2

∼=−→ Aτ [2], given by
[

ε
δ

]
�→ τ · ε + δ

2
∈ Aτ [2].
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This isomorphism being understood, points in Aτ [2] were classically called period

characteristics, see [Kr] Section VII.2. The theta function ϑ
[ ε
δ

]
(τ, z) is the unique

section of the translated line bundle OAτ

(
t∗τ ·ε+δ

2

(Θτ )
)
. Krazer [Kr] goes to great

lengths to emphasize the difference between the period and the theta characteristics,
even though at first sight, both sets of characteristics can be identified with the vector
space F2g

2 . The reason for this is the transformation formula for theta functions under
the action of the symplectic group, see [BL] Theorem 8.6.1. The theta constants with
characteristics are modular forms of weight one half with respect to the subgroup
Γg(4, 8). To define the action of the full symplectic group Sp2g(Z) on F2g

2 , we consider

the quadratic form associated to a characteristic Δ :=
[

ε
δ

]
, that is,

q⎡
⎣ ε
δ

⎤
⎦
(
x, y

)
= x · y + ε · x + δ · y,

with (x, y) = (x1, . . . , xg, y1, . . . , yg) ∈ F2g
2 . We define an action of Sp2g(Z) on the

set of characteristics which factors through the following action of Sp(F2g
2 ): If M ∈

Sp(F2g
2 ), set

qM ·Δ := M · qΔ,

where we recall that we have already defined (M · qΔ)(x, y) := qΔ(M−1(x, y)). It
can be shown that this non-linear action of the symplectic group on the set of
characteristics is compatible with the transformation rule of theta constants, see also

[CDvG], [BL]. In this context, once more, a theta characteristic
[

ε
δ

]
appears as an

element of Q(V ). This interpretation makes the link between the classical definition
of theta characteristics found in [Kr] and the more modern one encountered for
instance in [DO], [GH]. The algebra of period and theta characteristics was developed
by Frobenius [Fr1], [Fr2] in order to derive general identities between theta constants
and describe the structure of the set of such identities.

2.1. Superstring scattering amplitudes and characteristic calculus

Recently, the action of Sp(F2g
2 ) on the set of characteristics and the algebra of charac-

teristic systems has been used by Grushevsky [Gr], Salvati Manni [SM2], Cacciatori,
Dalla Piazza and van Geemen [CDvG] and others, in order to find an explicit formula
for the chiral superstring amplitudes. This is an important foundational question in
string theory and we refer to the cited papers for background and further references.
Loosely speaking, D’Hoker and Phong conjectured that there exists a modular form
Ξ(g) of weight 8 with respect to the group Γg(1, 2) ⊂ Γg = Sp2g(Z), satisfying the
following two constraints:
(1) Factorization: For each integer 1 ≤ k ≤ g−1, the following factorization formula

Ξ(g)
|Hk×Hg−k

= Ξ(k) · Ξ(g−k),
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holds, when passing to the locus Hk ×Hg−k ⊂ Hg of decomposable abelian varieties.
(2) Initial conditions: For g = 1, one must recover the standard chiral measure, that
is,

Ξ(1) = θ

[
0
0

]8

θ

[
0
1

]4

θ

[
1
0

]4

.

A unique solution has been found in [CDvG] when g = 3 and in [SM2] when
g = 4, 5. This was placed in [Gr] in a general framework that works in principle for
arbitrary g.

For a set of theta characteristics W ⊂ F2g
2 , one defines the product of theta

constants
PW (τ) :=

∏
Δ∈W

θ[Δ](τ, 0).

Note that PW vanishes if W contains an odd characteristic. Then for all integers
0 ≤ i ≤ g, we set

P
(g)
i (τ) :=

∑
W⊂F2g

2 , dim(W )=i

PW (τ)2
4−i

.

It is pointed out in [Gr] Proposition 13, that this function is a modular form of
weight 8 with respect to Γg(1, 2). This result can be traced back to Frobenius.
Observe that in the definition of P (g)

i (τ) the only non-zero summands correspond
to totally syzygetic systems of characteristics, for else such a system W contains an
odd characteristic and the corresponding term PW (τ) is identically zero. Then it is
showed that the expression

Ξ(g) :=
1
2g

g∑
i=0

(−1)i2(i
2)P (g)

i

satisfies the factorization rules when g ≤ 5. Note that for higher g the definition of
Ξ(g) leads to a multivalued function due to the impossibility of choosing consistently
the roots of unity for the various summands.

Question 2.1. Can one find the superstring amplitudes for higher g by working
directly with the space S+

g and constructing via algebro-geometric rather than theta
function methods a system of effective divisors of slope (weight) 8 satisfying the
factorization formula?

3. Cornalba’s moduli space of spin curves

We now concern ourselves with describing Cornalba’s [Cor] compactification Sg of
the moduli space Sg of theta characteristics. We recall that Sg is the parameter
space of pairs [C, θ], where C is a smooth curve of genus g and θ ∈ Th(C). Following
Atiyah [At] such a pair is called a spin curve of genus g. Mumford [Mu] by algebraic
means (and Atiyah [At] with analytic methods) showed that the parity of a spin
curve is locally constant in families: If φ : X → S is a flat family of smooth curves of
genus g and L is a line bundle on X together with a morphism β : L⊗2 → ωφ such
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that φs : L⊗2
Xs

→ ωXs is an isomorphism for all s ∈ S, then the map arf(φ) : S → F2
defined as arf(φ)(s) := arf(LXs) is constant on connected components of S. One
can speak of the parity of a family of spin curves and according to the value of
arf(qθ), the moduli space Sg splits into two connected components S+

g and S−g . The
forgetful map π : Sg → Mg, viewed as a morphism of Deligne-Mumford stacks, is
unramified. A compactified moduli space Sg should be the coarse moduli space of a
Deligne-Mumford stack, such that there is a finite morphism π : Sg → Mg fitting
into a commutative diagram:

Sg

π

��

� � �� Sg

π
��

Mg
� � �� Mg

As an algebraic variety, Sg is the normalization of Mg in the function field of Sg.
It is the main result of [Cor] that the points of Sg have a precise modular meaning
in terms of line bundles on curves belonging to a slightly larger class than that of
stable curves.

Definition 3.1. A reduced, connected, nodal curve X is called quasi-stable, if for any
component E ⊂ X that is isomorphic to P1, one has that (i) kE := |E∩(X − E)| ≥ 2,
and (ii) any two rational components E,E′ ⊂ X with kE = kE′ = 2, are disjoint.

Smooth rational components E ⊂ X for which kE = 2 are called exceptional.
The class of quasi-stable curve is a very slight enlargement of the class of stable
curves. To obtain a quasi-stable curve, one takes a stable curve [C] ∈ Mg and a
subset of nodes N ⊂ Sing(C) which one “blows-up”; if ν : C̃ → C denotes the
normalization map and ν−1(n) = {n−, n+}, then we define the nodal curve

X := C̃ ∪
( ⋃
n∈N

En

)
,

where En = P1 for each node n ∈ N and En ∩ (X − En) = {n+, n−}. The stabi-
lization map st : X → C is a partial normalization and contracts all exceptional
components En, that is, st(En) = {n}, for each n ∈ N .

Why extend the class of stable curves, after all Mg is already a projective
variety? One can define compactified moduli spaces of theta characteristics working
with stable curves alone, if one is prepared to allow sheaves that are not locally
free at the nodes of the curves. Allowing semi-stable curves, enables us to view a
degeneration of a theta characteristic as a line bundle on a curve that is (possibly)
more singular. These two philosophies of compactifying a parameter space of line
bundles, namely restricting the class of curves but allowing singularities for the
sheaves, vs. insisting on local freeness of the sheaves but enlarging the class of curves,
can also be seen at work in the two (isomorphic) compactifications of the universal
degree d Jacobian variety Pd,g over Mg constructed in [Ca] and [P]. We now describe
all points of Sg:
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Definition 3.2. A stable spin curve of genus g consists of a triple (X, θ, β), where X
is a quasi-stable curve of arithmetic genus g, θ ∈ Picg−1(X) is a line bundle of total
degree g − 1 such that θE = OE(1) for every exceptional component E ⊂ X, and
β : θ⊗2 → ωX is a sheaf homomorphism which is not zero along each non-exceptional
component of X.

When X is a smooth curve, then θ ∈ Th(X) is an ordinary theta characteristics
and β is an isomorphism. Note that in this definition, the morphism β : θ⊗2 →
ωX vanishes with order 2 along each exceptional component E ⊂ X. Cornalba
[Cor] proved that stable spin curves form a projective moduli space Sg endowed
with a regular stabilization morphism π : Sg → Mg, set-theoretically given by
π([X, η, β]) := [C]; here C is obtained from X by contracting all the exceptional
components. The space Sg has two connected components S−g and S+

g depending on
the parity h0(X, θ) mod 2 of the spin structure.

Definition 3.3. For a stable curve [C] ∈ Mg, we denote by Th(C) := π−1([C]) the
zero-dimensional scheme of length 22g classifying stable spin structures on quasi-
stable curves whose stable model is C.

The scheme Th(C) has an interesting combinatorial structure that involves the
dual graph of C. Before describing it for an arbitrary curve [C] ∈ Mg, it is helpful to
understand the boundary structure of Sg, which amounts to describe Th(C) when
C is a 1-nodal curve. We shall concentrate on the space S−g and leave S+

g as an
exercise (or refer to [Cor], [F2] for details).

The boundary Mg−Mg of the moduli space of curves decomposes into compo-
nents Δ0, . . . ,Δ[ g

2
]. A general point of Δ0 corresponds to a 1-nodal irreducible curve

of arithmetic genus g, and for 1 ≤ i ≤ [g2 ] the general point of Δi is the class of the
union of two components of genera i and g − i respectively, meeting transversely at
a point.

3.1. Spin curves of compact type

We fix an integer 1 ≤ i ≤ [g2 ] and a general point [C ∪y D] ∈ Δi, where [C, y] ∈
Mi,1 and [D, y] ∈ Mg−i,1 are smooth curves. We describe all stable spin curve
[X, θ, β] ∈ π−1([C ∪y D]). For degree reasons, X �= C ∪y D, that is, one must insert
an exceptional component E at the node y ∈ C ∩D and then

X := C ∪y+ E ∪y− D,

where C ∩ E = {y+} and D ∩ E = {y−}. Moreover

θ =
(
θC , θD, θE = OE(1)

) ∈ Picg−1(X),

and since β|E = 0, it follows that θC ∈ Th(C) and θD ∈ Th(D), that is, a theta
characteristic on a curve of compact type is simply a collection of theta character-
istics on each of its (necessarily smooth) components. The condition that h0(X, θ)
be odd implies that θC and θD have opposite parities. Accordingly, the pull-back
divisor π∗(Δi) splits in two components depending on the choice of the respective
Arf invariants: We denote by Ai ⊂ S−g the closure of the locus corresponding points
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for which θC = θ−C and θD = θ+
D, that is, arf(θC) = 1 and arf(θD) = 0. We de-

note by Bi ⊂ S−g the closure of the locus of spin curves for which arf(θC) = 0 and
arf(θD) = 1. At the level of divisors, the following relation holds

π∗(Δi) = Ai + Bi.

Moreover one has that

deg(Ai/Δi) = 2g−2(2i − 1)(2g−i + 1) and deg(Bi/Δi) = 2g−2(2i + 1)(2g−i − 1).

3.2. Spin curves with an irreducible stable model

We fix a general 2-pointed smooth curve [C, x, y] ∈ Mg−1,2 and identify the points x
and y. The resulting stable curve ν : C → Cxy, where Cxy := C/x ∼ y, corresponds
to a general point of the boundary divisor Δ0. Unlike in the case of curves of compact
type, two possibilities do occur, depending on whether X possesses an exceptional
component or not.

If X = Cxy, then the locally free sheaf θ is a root of the dualizing sheaf ωCxy .
Setting θC := ν∗(θ) ∈ Picg−1(C), from the condition

H0(C, ωC(x + y) ⊗ θ
⊗(−2)
C ) �= 0,

by counting degrees, we obtain that θ⊗2
C = KC(x + y). For each choice of θC ∈

Picg−1(C) as above, there is precisely one choice of gluing the fibres θC(x) and
θC(y) in a way that if θ denotes the line bundle on Cxy corresponding to this gluing,
then h0(X, θ) is odd. Let A0 denote the closure in S−g of the locus of such points.
Then deg(A0/Δ0) = 22g−2. Since we expect the fibre Th(Cxy) to consist of 22g points
(counting also multiplicities), we see that one cannot recover all stable spin curves
having Cxy as their stable model by considering square roots of the dualizing sheaf
of Cxy alone. The remaining spin curves correspond to sheaves on Cxy which are not
locally free at the node, or equivalently, to spin structures on a strictly quasi-stable
curve.

Assume now that X = C ∪{x,y}E, where E is an exceptional component. Since

β|E = 0 it follows that β|C ∈ H0(C, ωX|C ⊗ θ
⊗(−2)
C ) must vanish at both x and y

and then for degree reasons θC ∈ Th(C). For parity reasons, arf(θC) = 1. We denote
by B0 the closure in S−g of the locus of such points. A local analysis carried out in
[Cor] shows that π is simply ramified over B0. Since π : S−g → Mg is not ramified
along any other divisors of S−g , one deduces that B0 is the ramification divisor of
the forgetful map and the following relation holds:

π∗(Δ0) = A0 + 2B0.

A general point of B0 is determined by specifying an odd theta characteristic on C,
thus deg(B0/Δ0) = 2g−2(2g−1 − 1). By direct calculation one checks that

deg(A0/Δ0) + 2deg(B0/Δ0) = 2g−1(2g − 1),

which confirms that π is simply ramified along B0.
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After this preparation, we are now ready to tackle the case of an arbitrary stable
curve C. We denote by ν : C̃ → C the normalization map and by ΓC the dual graph
whose vertices are in correspondence with components of C, whereas an edge of ΓC

corresponds to a node which lies at the intersection of two components (note that
self-intersections are allowed). A set of nodes Δ ⊂ Sing(C) is said to be even, if for
any component Y ⊂ C, the degree |ν−1(Y ∩Δ)| is an even number. For instance, if
C := C1 ∪ C2 is a union of two smooth curves meeting transversally, a set of nodes
Δ ⊂ C1 ∩ C2 is even if and only if |Δ| ≡ 0 mod 2.

Remark 3.4. Assume [X, θ, β] ∈ Sg and let st : X → C be the stabilization mor-
phism. If N ⊂ Sing(C) is the set of exceptional nodes of C, that is, nodes n ∈ N
having the property that st−1(n) = En = P1, and we write that Sing(C) = N ∪ Δ,
then the set Δ of non-exceptional nodes of C is even, see both [Cor] and [CC].

One has the following description of the scheme Th(C), cf. [CC] Proposition 5:

Proposition 3.5. Let [C] ∈ Mg and b := b1(ΓC) be the Betti number of the dual
graph. Then the number of components of the zero-dimensional scheme Th(C) is
equal to

22g−2b ·
( ∑

Δ⊂Sing(C),Δ even

2b1(Δ)
)
.

A component corresponding to an even set Δ ⊂ Sing(C) appears with multiplicity

2b−b1(Δ).

One can easily verify that the length of the scheme Th(C) is indeed 22g. From
Proposition 3.5 it follows for instance that Th(C) is a reduced scheme if and only
if C is of compact type. In the case we studied above, when C is irreducible with
a single node, Proposition 3.5 gives that Th(C) = Th(C)− ∪ Th(C)+ has 3 · 22g−2

irreducible components. Precisely, |Th(C)−| = 22g−2 + |Th(C̃)−| and |Th(C)+| =
22g−2 + |Th(C̃)+|.
Remark 3.6. The structure of the schemes Th(C) for special singular curves C has
been used in [Lud] to describe the singularities of Sg and in [CS] to prove that a
general curve [C] ∈ Mg is uniquely determined by the set of contact hyperplanes{〈D〉 ∈ (Pg−1)∨ : D ∈ |θ|, θ ∈ Th(C)−

}
.

In spite of these important applications, a systematic study of the finite geometry of
the set Th(C) when C is singular (e.g. a theory of fundamental and Göpel systems,
syzygetic tetrads) has not yet been carried out and is of course quite interesting.

3.3. The canonical class of the spin moduli space

It is customary to denote the divisor classes in the Picard group of the moduli stack
by

αi := [Ai], βi := [Bi] ∈ Pic(S−g ), i = 0, . . . , [g2 ].
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A result of Putman’s [Pu] shows that for g ≥ 5, the divisor classes λ, α0, β0, . . . , α[ g
2
],

β[ g
2
] freely generate the rational Picard group Pic(S−g ). A similar result holds for S+

g .

The space S−g is a normal variety with finite quotient singularities; an étale
neighbourhood of an arbitrary point [X, η, β] ∈ Sg is of the form

H0(C, ωC ⊗ ΩC)∨/Aut(X, η, β) = C3g−3/Aut(X, η, β),

where H0(C, ωC ⊗ΩC) can be identified via deformation theory with the cotangent
space to the moduli stack Mg at the point [C] := π([X, η, β]). For a (predictable)
definition of an automorphism of a triple (X, η, β), we refer to [Cor] Section 1.

Using Kodaira-Spencer deformation theory, one describes the cotangent bundle
of the stack Mg as the push-forward of a rank 1 sheaf on the universal curve over
Mg. A famous and at the time, very innovative use in [HM] of the Grothendieck-
Riemann-Roch theorem for the universal curve, yields the formula

KMg
≡ 13λ− 2δ0 − 3δ1 − 2

[ g
2
]∑

i=2

δi ∈ Pic(Mg).

From the Riemann-Hurwitz theorem applied to the finite branched cover π : S−g →
Mg, we find the formula for the canonical class of the spin moduli stack:

KS−
g
≡ 13λ− 2δ0 − 3β0 − 3(α1 + β1) − 2

∑[ g
2
]

i=2(αi + βi) ∈ Pic(S−g ).

An identical formula holds for S+
g . Unfortunately both spaces S+

g and S−g have
non-canonical singularities, in particular there exist local obstructions to extending
pluri-canonical forms defined on the smooth part of Sg to a resolution of singularities.
However, an important result of Ludwig [Lud] shows that this obstructions are not
of global nature. The following result holds for both S+

g and S−g :

Theorem 3.7 (Ludwig). For g ≥ 4 fix a resolution of singularities ε : S̃g → Sg. Then
for any integer � ≥ 0 there exists an isomorphism of vector spaces

ε∗ : H0(Sg,K
⊗�
Sg,reg

)
∼=−→ H0(S̃g,K

⊗�
S̃g ).

Therefore, in order to conclude that Sg is of general type, it suffices to show that
the canonical class KSg

lies in the interior of the effective cone Eff(Sg) of divisors, or
equivalently, that it can be expressed as a positive linear combination of an ample
and an effective class on Sg. This becomes a question on slopes of the effective cone
of Sg, which can be solved in a spirit similar to [HM] and [EH], where it has been
proved with similar methods that Mg is of general type for g ≥ 24. The standard
references for effective divisors on moduli spaces of stable curves are [HM], [EH],
[Log] and [F4].
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4. Effective divisors on Sg

In the papers [F2], [F3] and [FV1] we have initiated a study of effective divisors
on Sg. The class of the locus Θnull of vanishing theta-nulls on S+

g is computed in
[F2]; in the paper [FV1] we study the space S−g with the help of the divisor of spin
curves with an everywhere tangent hyperplane in the canonical embedding having
higher order contact than expected. Finally in [F3] we define effective divisors of
Brill-Noether type in more general setting on both spaces S−g and S+

g . We survey
these constructions, while referring to the respective papers for technical details.

We begin with the moduli space S−g : An odd theta characteristic θ ∈ Th(C) with
h0(C, θ) = 1 determines a unique effective divisor D ∈ Cg−1 such that θ = OC(D).
We write in this case that D = supp(θ). The assignment (C, θ) �→ (

C, supp(θ)
)

can
be viewed as a rational map between moduli spaces

S−g ��� Cg,g−1 := Mg,g−1/Sg−1,

and it is natural to use this map and the well-understood divisor theory [Log] on the
universal symmetric product Cg,g−1, in order to obtain promising effective divisors
on S−g . In particular, the boundary divisor Δ0:2 on Cg,g−1 with general point being
a pair (C,D) where D ∈ Cg−1 is a divisor with non-reduced support, is known to be
extremal. Its pull-back to S−g parametrizes (limits of) odd spin curves [C, θ] ∈ S−g
such that there exists a point x ∈ C with H0(C, θ(−2x)) �= 0. The calculation of the
class of the closure of this locus is one of the main results of [FV1]:

Theorem 4.1. We fix g ≥ 3. The locus consisting of odd spin curves

Zg :=
{
[C, θ] ∈ S−g : θ = OC

(
2x1 +

g−2∑
i=2

xi
)
, with xi ∈ C for i = 1, . . . , g − 2

}

is a divisor on S−g . The class of its compactification inside S−g equals

[Zg] = (g + 8)λ− g + 2
4

α0 − 2β0 −
[ g
2
]∑

i=1

2(g − i) αi −
[ g
2
]∑

i=1

2i βi ∈ Pic(S−g ).

For low genus, Zg specializes to well-known geometric loci. For instance Z3
is the divisor of hyperflexes on plane quartics, classifying pairs [C,OC(2p)] ∈ S−3 ,
where p ∈ C is such that h0(C,OC(4p)) = 3. Then KC = OC(4p) and p ∈ C is a
hyperflex point.

The divisor Zg together with pull-backs of effective divisors on Mg can be used
to determine the range in which S−g is of general type. This application also comes
from [FV1]:

Theorem 4.2. The moduli space S−g is a variety of general type for g ≥ 12.
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The passing from Theorem 4.1 to Theorem 4.2 amounts to simple linear algebra.
By comparing the class [Zg] against that of the canonical divisor, we note that

KS−
g

/∈ Q≥0

〈
[Zg], λ, αi, βi, i = 0, . . . ,

[g
2
]〉

,

for the coefficient of β0 in the expression of [Zg] is too small. However one can
combine [Zg] with effective classes coming from Mg, and there is an ample supply
of such, see [HM], [EH], [F4]. To avoid technicalities, let us assume that g + 1 is
composite and consider the Brill-Noether divisor Mr

g,d of curves [C] ∈ Mg with a
grd, where the Brill-Noether number ρ(g, r, d) := g − (r + 1)(g − d + r) = −1. The
class of the closure Mr

g,d of Mr
g,d in Mg has been computed in [EH] (and in [HM]

for r = 1) and plays a crucial role in the proof by Harris, Mumford, Eisenbud that
the moduli space Mg is of general type for g ≥ 24. There exists an explicit constant
cg,d,r > 0 such that the following relation holds [EH],

[Mr
g,d] = cg,d,r

(
(g + 3)λ− g + 1

6
δ0 −

[ g
2
]∑

i=1

i(g − i)δi
)
∈ Pic(Mg).

By interpolation, one find a constant c′g,d,r > 0 such that the effective linear combi-
nation

2
g − 2

[Zg] + c′g,d,r[π
∗(Mr

g,d)] =
11g + 37
g + 1

λ− 2α0 − 3β0 −
[g/2]∑
i=1

(ai · αi + bi),

where ai, bi ≥ 2 for i �= 1 and a1, b1 > 3 are explicitly known rational constants. By
comparison, whenever the inequality

11g + 37
g + 1

< 13 ⇔ g > 12

is satisfied (and g + 1 is composite), the class KS−
g

is big, that is, S−g is of general

type. The case g = 12 is rather difficult and we refer to the last section of [FV1].

4.1. The locus of curves with a vanishing theta-null

On S+
g we consider the locus of even spin curves with a vanishing theta characteristic.

The following comes from [F2]:

Theorem 4.3. The closure in S+
g of the divisor

Θnull :=
{
[C, η] ∈ S+

g : H0(C, η) �= 0
}

of curves with an effective even theta characteristics has class equal to

[Θnull] =
1
4
λ− 1

16
α0 − 1

2

[ g
2
]∑

i=1

βi ∈ Pic(S+
g ).
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In the paper [FV2] it is shown that the class [Θnull] ∈ Eff(S+
g ) is extremal when

g ≤ 9. It is an open question whether this is the case for arbitrary g, certainly there
is no known counterexample to this possibility. Combining [Θnull] with pull-backs of
effective classes from Mg like in the previous case, we find a constant c

′′
g,d,r > 0 such

that

8[Θnull] + c
′′
g,d,r[π

∗(Mr
g,d)] =

11g + 29
g + 1

λ− 2α0 − 3β0 −
[ g
2
]∑

i=1

(a′i ·αi + b′i · βi) ∈ Eff(S+
g ),

where the appearing coefficients satisfy the inequalities a′i, b
′
i ≥ 2 for i ≥ 2 and

a′1, b′1 > 3. Restricting ourselves again to the case when g + 1 is composite (while
referring to [F2] for the remaining cases), we obtain that whenever

11g + 29
g + 1

< 13 ⇔ g > 8,

the space S+
g has maximal Kodaira dimension. We summarize these facts as follows:

Theorem 4.4. The moduli space S+
g is a variety of general type for g > 8.

5. Unirational parametrizations of Sg in small genus

Next we present ways of proving the unirationality of Sg in small genus. The basic
references are the papers [FV1] and [FV2]. We recall that a normal Q-factorial
projective variety X is said to be uniruled if through a very general point x ∈ X
there passes a rational curve R ⊂ X. Uniruled varieties have negative Kodaira
dimension. Conversely, if the canonical class KX is not a limit of effective divisor
classes (which implies that the Kodaira dimension of X is negative), then X is
uniruled, see [BDPP].

The classification by Kodaira dimension of both S−g and S+
g is governed by

K3 surfaces, in the sense that Sg is uniruled precisely when a general spin curve
[C, θ] ∈ Sg can be represented as a section of a special K3 surface S. By varying C

in a pencil on S, we induce a rational curve in the moduli space Sg passing through
a general point. The K3 surface must have special properties that will allow us to
assign a theta characteristic to each curve in the pencil. In the case of even spin
curves, the K3 surface in question must be of Nikulin type. We refer to [vGS] for
an introduction to Nikulin surfaces.

Definition 5.1. A polarized Nikulin surface of genus g ≥ 2 consists of a triple
(S, e,OS(C)), where S is a smooth K3 surface, e ∈ Pic(S) is a non-trivial line
bundle with the property that e⊗2 = OS(N1 + · · ·+N8), where N1, . . . , N8 are pair-
wise disjoint (−2) curves on S, and C ⊂ S is a numerically effective curve class such
that C2 = 2g − 2 and C ·Ni = 0, for i = 1, . . . , 8.

Since the line bundle OS(N1+ . . .+N8) is divisible by two, there exists a double
cover f : S̃ → S branched exactly along the smooth rational curves N1, . . . , N8. The
curve C ⊂ S does not meet the branch locus of f , hence the restriction f|f−1(C) :
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f−1(C) → C is an unramified double covering which induces a non-trivial half-period
on C. Each curve in the linear system |OS(C)| acquires a half-period in its Jacobian
in this way. The following result is quoted from [FV2]:

Theorem 5.2. The even spin moduli space S+
g is uniruled for g ≤ 7.

Proof. Let us choose a general spin curve [C, θ] ∈ S+
g and a non-trivial point of order

two η ∈ Pic0(C)[2], such that h0(C, θ⊗η) ≥ 1. Because of the generality assumption
it follows that h0(C, θ ⊗ η) = 1 and the support of θ ⊗ η consists of g − 1 distinct
points p1, . . . , pg−1. To simplify matters assume that g �= 6. Then it is proved in
[FV2] that the general Prym curve [C, η] ∈ Rg is a section of a genus g polarized
Nikulin surface (S, e), that is, C ⊂ S and η = e⊗OC . We consider the map induced
by the linear system

ϕ|OS(C)| : S → Pg.

The points ϕ(p1), . . . , ϕ(pg−1) span a codimension 2 linear subspace. Let P ⊂
|OS(C)| be the pencil of curves on S induced by the hyperplanes in Pg through
ϕ(p1), . . . , ϕ(pg−1). Each curve C ′ ∈ P contains the divisor p1 + · · · + pg−1 as an
odd theta characteristic. The line bundle OC′(p1 + · · · + pg−1) ⊗ eC′ ∈ Picg−1(C ′)
is an even theta characteristic on each curve C ′, because as already discussed, the
Arf invariant remains constant in a family of spin curves. This procedure induces a
rational curve in moduli

m : P → S+
g , m(C ′) := [C ′, e⊗OC′(p1 + · · · + pg−1)],

which passes through the general point [C, θ] ∈ S+
g and finishes the proof. �

Observe that in this proof, if instead of being a Nikulin surface, S is an arbitrary
K3 surface containing C, the same reasoning can be used to construct a rational
curve in S−g that passes through a general point, provided the curve C we started
with, has general moduli. A general curve of genus g lies on a K3 surface if an only
if g ≤ 9 or g = 11, see [M1]. The case g = 10 can be handled via a slightly different
idea, see [FV1] Theorem 3.10. Thus one also has the following result:

Theorem 5.3. The odd spin moduli space S−g is uniruled for g ≤ 11.

5.1. Odd theta characteristics and Mukai models of S−g
We explain the strategy pursued in [FV1] to construct alternative models of moduli
spaces of odd spin curves which can then be used to establish unirationality of the
moduli space:

Theorem 5.4. S−g is unirational for g ≤ 8.

The main idea is to construct a dominant map over S−g from the total space
of a projective bundle over a space parametrizing spin curves on nodal curves of
smaller genus. We begin by recalling that Mukai, in a series of well-known papers
[M1], [M2], [M3], [M4], has found ways of representing a general canonical curve of
genus g ≤ 9 as a linear section of a certain ng-dimensional rational homogeneous
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variety Vg ⊂ Png+g−2, which we shall call the Mukai variety of genus g. One has the
following list:

– V9: the Plücker embedding of the symplectic Grassmannian SG(3, 6) ⊂ P13,
– V8: the Plücker embedding of the Grassmannian G(2, 6) ⊂ P14,
– V7: the Plücker embedding of the orthogonal Grassmannian OG(5, 10) ⊂ P15.

Inside the Hilbert scheme of curvilinear sections of Vg, we denote by Ug the open
subset classifying nodal sections C ⊂ Vg by a linear space of dimension g − 1. The
automorphism group Aut(Vg) acts on Ug and we call the GIT quotient

Mg := Ug//Aut(Vg)

the Mukai model of the moduli space of curves of genus g. Note that with our
definition, the variety Mg is only quasi-projective and the Picard number of Mg

is equal to 1. The moduli map Ug → Mg being Aut(Vg)-invariant, it induces a
regular map φg : Mg → Mg. We can paraphrase Mukai’s results as stating that
the map φg : Mg → Mg is a birational isomorphism, or equivalently, the general 1-
dimensional linear section of Vg is a curve with general moduli. The map φg deserves
more study and in principle it can be used to answer various questions concerning
the cohomology of Mg or the minimal model program of the moduli space of curves
(see [Fed] for a case in point when g = 4). The following concept is key to our
parametrization of S−g using Mukai models.

Definition 5.5. Let Zg−1 be the space of clusters, that is, 0-dimensional schemes
Z ⊂ Vg of length 2g − 2 with the following properties:
(1) Z is a hyperplane section of a smooth curve section [C] ∈ Ug,
(2) Z has multiplicity two at each point of its support,
(3) supp(Z) consists of g − 1 linearly independent points.

A general point of Zg−1 corresponds to a 0-cycle p1 + · · · + pg−1 ∈ Symg−1(Vg)
satisfying

dim 〈p1, . . . , pg−1〉 ∩ Tpi(Vg) ≥ 1, for i = 1, . . . , g − 1.
Furthermore, Zg−1 is birational to the subvariety of the Grassmannian G(g−1, ng +
g−1) parametrizing (g−2)-dimensional planes Λ ⊂ Png+g−2 such that Λ·Vg = 2p1+
· · ·+2pg−1, where p1, . . . , pg−1 ∈ Vg. Then we consider the incidence correspondence:

U−g :=
{
(C,Z) ∈ Ug × Zg−1 : Z ⊂ C

}
.

The first projection map U−g → Ug is finite of degree 2g−1(2g − 1); its fibre at a
general point [C] ∈ Ug corresponding to a smooth curve classifies odd theta charac-
teristics of C. The spin moduli map U−g ��� S−g induces a birational isomorphism

φ−g : U−g //Aut(Vg) → S−g .
Let us fix now an integer 0 ≤ δ ≤ g−1. We define the locally closed set of pairs

consisting of clusters and δ-nodal curvilinear sections of Vg, that is,

U−g,δ :=
{
(Γ, Z) ∈ U−g : sing(Γ) ⊂ supp(Z) and |sing(Γ)| = δ

}
.
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The quotient of U−g,δ under the action of the automorphism group of Vg is birational

to the locus B−g,δ ⊂ S−g with general point given by an odd spin structure on a curve
whose stable model is an irreducible δ-nodal curve where each of the nodes is “blown-
up” and an exceptional component is inserted. Let us fix a general point (Γ, Z) ∈ U−g,δ
and suppose that Sing(Γ) = {p1, . . . , pδ} and denote the pδ+1, . . . , pg−1 ∈ Γreg the
remaining points in the support of Z. If ν : N → Γ is the normalization map, then
ON (pδ+1 + · · · + pg−1) ∈ Th(N)−, which gives rise to a point in the locus B−g,δ.

The important point now is that over U−g,δ one can consider an incidence corre-
spondence that takes into account not only a δ-nodal curve together with a cluster,
but also all linear sections of Vg that admit the same cluster. Precisely:

Pg,δ :=
{(

C, (Γ, Z)
) ∈ Ug × U−g,δ : Z ⊂ C

}
.

The variety Pg,δ comes equipped with projection maps

U−g α←−−−− Pg,δ
β−−−−→ U−g,δ.

It is shown in [FV1] that Pg,δ is birational to a projective bundle over U−g,δ and
furthermore, the quotient P−g,δ := Pg,δ//Aut(Vg) is a projective bundle over B−g,δ.
Moreover, it is proved that the projection map α is dominant if and only if

δ ≤ ng − 1.

To summarize these considerations, we have reduced the unirationality of S−g to two
conditions. One is numerical and depends solely on the Mukai variety Vg, the other
has to do with the geometry of the spin moduli space B−g,δ of nodal curves of smaller
geometric genus:

Theorem 5.6. For g ≤ 9, if ng denotes the dimension of the corresponding Mukai

variety Vg, the moduli space S−g is unirational provided there exists an integer 1 ≤
δ ≤ g − 1 such that

(i) δ ≤ ng − 1,
(ii) B−g,δ is unirational.

It turns out that the locus B−g,g−1 is unirational for g ≤ 10 (see [FV1] Theorem
4.16). However condition (i) is only satisfied when g ≤ 8, and this is the range for
which Theorem 5.4 is known at the moment.

6. Geometric aspects of moduli spaces of theta characteristics

In this section we discuss a few major themes related to aspects of the geometry of
Sg other than birational classification.
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6.1. The Brill-Noether stratification of Sg

One can stratify theta characteristics by their number of global sections. For an
integer r ≥ −1 let us denote by

Sr
g :=

{
[C, θ] ∈ Sg : h0(C, θ) ≥ r + 1, h0(C, θ) ≡ r + 1 mod 2

}
.

The variety Sr
g has a Lagrangian determinantal structure discussed in [H] Theorem

1.10, from which it follows that each component of Sr
g has codimension at most

(
r+1
2

)
inside Sg. This bound also follows from Nagaraj’s [Na] interpretation of the tangent
space to the stack Sr

g which we briefly explain. Fix a point [C, θ] ∈ Sr
g and form the

Gaussian map

ψθ : ∧2H0(C, θ) → H0(C,K⊗2
C ), s ∧ t �→ s · dt− t · ds.

More intrinsically, the projectivization of the map ψθ assigns to a pencil 〈s, t〉 ⊂ |θ|
its ramification divisor. Recalling the identification provided by Kodaira-Spencer
theory

T[C,θ](Sg) = H0(C,K⊗2
C )∨,

it is shown in [Na] that the following isomorphism holds:

T[C,θ](Sr
g ) =

{
ϕ ∈ H0(C,K⊗2

C )∨ : ϕ|Im ψθ
= 0

}
.

This description is consistent with the bound codim(Sr
g ,Sg) ≤ (

r+1
2

)
from [H]. We

now ask what is the actual dimension of the strata Sr
g? Using hyperelliptic curves

one can observe that S [ g−1
2

]
g �= ∅ even though the expected dimension of this locus as

a determinantal variety is very negative. Moreover, the locus Sr
3r is non-empty and

consists of (theta characteristics on) curves C ⊂ Pr which are extremal from the
point of view of Castelnuovo’s bound. Therefore one cannot hope that the dimension
of Sr

g be always 3g − 3 − (
r+1
2

)
. However this should be the case, and the locus Sr

g

should enjoy certain regularity properties, when r is relatively small with respect to
g. We recall the following precise prediction from [F1]:

Conjecture 6.1. For r ≥ 1 and g ≥ (
r+2
2

)
, there exists a component of the locus Sr

g

having codimension
(
r+1
2

)
inside Sg.

The conjecture is proved in [F1] for all integers 1 ≤ r ≤ 9 and r = 11. We
point out that S1

g coincides with the divisor Θnull studied in [T2] and [F2]. To prove
Conjecture 6.1 it suffices to exhibit a single spin curve [C, θ] ∈ Sr

g with an injective
Gaussian map ψθ. As further evidence, we mention the following result, see [F1]
Proposition 2.4:

Theorem 6.2. We fix g, r ≥ 1. If Sr
g−1 has a component of codimension

(
r+1
2

)
inside

Sg−1 then Sr
g has a component of codimension

(
r+1
2

)
inside Sg.

One could ask whether in the range g ≥ (
r+2
2

)
, the locus Sr

g is pure-dimensional,
or even irreducible. Not much evidence in favor of this speculation exists, but there
are no counterexamples either. We mention however that S2

g is pure of codimension
3 in S−g , and when the locus S3

g has pure codimension 6 in S+
g for g ≥ 8, see [T1].
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6.2. Syzygies of theta characteristics and canonical rings of surfaces

For a spin curve [C, θ] ∈ Sg one can form the graded ring of global sections

R(C, θ) :=
∞⊕
n=0

H0(C, θ⊗n).

Note that the canonical ring R(C,KC) appears as a graded subring of R(C, θ).

Question 6.3. For a general [C, θ] ∈ Sg (or in Sr
g ), describe the syzygies of R(C, θ).

Some tentative steps in this direction appear in [R], where it is shown that
with a few exceptions, R(C, θ) is generated in degree at most 3. The interest in
this question comes to a large extent from the study of surfaces of general type.
Let S ⊂ Pr+1 be a canonically embedded surface of general type and assume for
simplicity that H1(S,OS) = 0 and r = pg(S) − 1 ≥ 3. Then a general hyperplane
section C ∈ |KS | comes equipped with an r-dimensional theta characteristics, that
is, [C, θ := OC(1)] ∈ Sr

g . By restriction there is a surjective morphism of graded
rings R(S,KS) → R(C, θ) and the syzygies of the two rings are identical, that is,

Kp,q(S,KS) ∼= Kp,q(C, θ), for all p, q ≥ 0.

It is worth mentioning that using Green’s duality theory [G], one finds the isomor-
phism

Kp−1,2(C, θ)∨ ∼= Kr−2,2(C, θ) and Kp−2,3(C, θ)∨ ∼= Kr−p+1,1(C, θ)

between the various Koszul cohomology groups. In a departure from the much stud-
ied case of syzygies of canonical curves, the graded Betti diagram of a theta char-
acteristic has three non-trivial rows. For two-torsion points η ∈ J2(C) a precise
Prym-Green conjecture concerning the groups Kp,q(C,KC ⊗ η) has been formulated
(and proven for bounded genus) in [FL]. There is no clear prediction yet for the
vanishing of Kp,q(C, θ).

6.3. The Scorza correspondence on the moduli space of even spin curves

To a non-effective even theta characteristic [C, θ] ∈ S+
g one can associate the Scorza

correspondence

Rθ :=
{
(x, y) ∈ C × C : H0(C, θ(x− y)) �= 0

}
.

Denoting by π1, π2 : C×C → C the two projections and by Δ ⊂ C×C the diagonal,
the cohomology class of the Scorza curve can be computed:

OC×C(Rθ) = π∗1(θ) ⊗ π∗2(θ) ⊗OC×C(Δ).

By the adjunction formula, pa(Rθ) = 1+3g(g−1). The curve Rθ, first considered by
Scorza [Sc], reappears in the modern literature in the beautiful paper [DK], where
it plays an important role in the construction of an explicit birational isomorphism
between M3 and S+

3 . It is shown in [FV1] that Rθ is smooth for a general even spin
curve, hence one can consider the Scorza map at the level of moduli space, that is,

Sc : S+
g ��� M1+3g(g−1), Sc[C, θ] := [Rθ].
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Since S+
g is a normal variety, the rational map Sc extends to a regular morphism

outside a closed set of S+
g of codimension at least two. It is of interest to study this

map, in particular to answer the following questions:
(1) What happens to the map Sc over the general point of the boundary divisor
Θnull, when the determinantal definition of Rθ breaks down?
(2) What are the degenerate Scorza curves corresponding to general points of the
boundary divisors Ai, Bi ⊂ S+

g for i = 0, . . . , [g2 ]?
(3) Understand the Scorza map at the level of divisors, that is, find a complete
description of the homomorphism

Sc∗ : Pic(M1+3g(g−1)) → Pic(S+
g ).

Answers to all these questions are provided in the forthcoming paper [FI].

To give one example, we explain one of the results proved. For a general point
[C, θ] ∈ Θnull, we denote by Σθ the trace curve induced by the pencil θ ∈ W 1

g−1(C),
that is,

Σθ := {(x, y) ∈ C × C : H0(C, θ(−x− y)) �= 0}.
We set δ := Σθ ∩ Δ and it is easy to see that for a generic choice of [C, θ] ∈ Θnull,
the set δ consists of 4g − 4 distinct points.

We consider a family {(Ct, θt)}t∈T of even theta characteristics over a 1-dimen-
sional base, such that for a point t0 ∈ T we have that [Ct0 , θt0 ] = [C, θ] ∈ Θnull and
h0(Ct, θy) = 0 for t ∈ T0 := T −{t0}. In particular, the cycle Rθt ⊂ Ct×Ct is defined
for t ∈ T0. We prove the following result:

Theorem 6.4. The flat limit of the family of Scorza curves {Rθt}t∈T0 corresponding
to t = t0, is the non-reduced cycle

Σθ + 2Δ ⊂ C × C.

The associated stable curve Sc[C, θ] ∈ M1+3g(g−1) can be described as the transverse

union Σθ ∪δ Δ̃, where Δ̃ is the double cover of Δ branched over δ.

A proof of this result for g = 3 using theta functions is given in [GSM].
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