\textbf{Theorem 1.} The moduli space \overline{M}_{16} of stable curves of genus 16 is not of general type.

Note that 16 is the highest genus for which it is known that \overline{M}_{16} is not of general type. We further refer to Tseng’s recent paper [Ts] for further details on the convoluted history of determining the Kodaira dimension of \overline{M}_{16}.

Before explaining our strategy of proving Theorem 1, recall the standard notation $\Delta_0, \ldots, \Delta_{\lfloor g/2 \rfloor}$ for the irreducible boundary divisors on \overline{M}_g, see [HM]. Here Δ_0 denotes the closure in \overline{M}_g of the locus of irreducible 1-nodal curves of arithmetic genus g. Our approach relies on the explicit uniruled parametrization of \overline{M}_{15} found by Bruno and Verra [BV]. Their work establishes that through a general point of \overline{M}_{15} there passes not only a rational curve, but in fact a rational surface. This extra degree of freedom, yields a uniruled parametrization of $\overline{M}_{15,2}$, therefore also a parametrization the boundary divisor Δ_0 inside \overline{M}_{16}. We show the following:

\textbf{Theorem 2.} The boundary divisor Δ_0 of \overline{M}_{16} is uniruled and swept by a family of rational curves, whose general member $\Gamma \subseteq \Delta_0$ satisfies $\Gamma \cdot K_{\overline{M}_{16}} = 0$ and $\Gamma \cdot \Delta_0 > 0$.

Assuming Theorem 2, we conclude that \overline{M}_{16} cannot be of general type, thus establishing Theorem 1. To that end, note first that in any effective representation of the canonical divisor

$$K_{\overline{M}_{16}} \equiv \alpha \cdot \Delta_0 + D,$$

where $\alpha \in \mathbb{Q}_{>0}$ and D is an effective \mathbb{Q}-divisor on \overline{M}_{16} not containing Δ_0 in its support, we must have $\alpha = 0$. Indeed, we can choose the curve Γ such that $\Gamma \not\subseteq D$, then we write

$$0 = \Gamma \cdot K_{\overline{M}_{16}} = \alpha \Gamma \cdot \Delta_0 + \Gamma \cdot D \geq \alpha \Gamma \cdot \Delta_0 \geq 0,$$

hence $\alpha = 0$. Furthermore, since the singularities of \overline{M}_g do not impose adjunction conditions [HM, Theorem 1], \overline{M}_g is a variety of general type for a given $g \geq 4$ if and
only if the canonical class \(K_{\overline{M}_g} \) is a big divisor class, that is, it can be written as

\[
K_{\overline{M}_g} \equiv A + E,
\]

where \(A \) is an ample \(\mathbb{Q} \)-divisor and \(E \) is an effective \(\mathbb{Q} \)-divisor respectively. Assume that \(K_{\overline{M}_{16}} \) can be written like in (1). It has already been observed that \(\Delta_0 \not\subseteq \text{supp}(E) \), in particular \(\Gamma \cdot E \geq 0 \). Using Kleiman’s ampleness criterion, \(\Gamma \cdot A > 0 \), which yields the immediate contradiction \(0 = \Gamma \cdot K_{\overline{M}_{16}} = \Gamma \cdot A + \Gamma \cdot E \geq \Gamma \cdot A > 0 \).

We are left therefore with proving Theorem 2, which is what we do in the rest of the paper. The rational curve \(\Gamma \) constructed in Theorem 2 is the moduli curve corresponding to an appropriate pencil of curves of genus 15 on a certain canonical surface \(S \subseteq \mathbb{P}^6 \). Establishing that this pencil can be chosen in such a way to contain only stable curves will take up most of Section 2.

1. The Bruno-Verra Parametrization of \(\overline{M}_{15} \)

The parametrization of the boundary divisor \(\Delta_0 \) of \(\overline{M}_{15} \) and the proof of Theorem 2 uses several results from [BV], which we now recall. We denote by \(\mathcal{H}_{15,9} \) the Hurwitz space parametrizing degree 9 covers \(C \to \mathbb{P}^1 \) having simple ramification, where \(C \) is a smooth curve of genus 15. Then \(\mathcal{H}_{15,9} \) is birational to the parameter space \(\mathcal{G}_{15,9}^1 \) classifying pairs \((C, A)\), where \([C] \in \mathcal{M}_{15} \) and \(A \in W_9^1(C) \) is a pencil. By residduation, \(\mathcal{G}_{15,9}^1 \) is isomorphic to the parameter space \(\mathcal{G}_{15,19}^0 \) of pairs \([C, L]\), where \(C \) is a smooth curve of genus 15 and \(L \in W_{19}^1(C) \). Note that the general fibre of the forgetful map

\[
\pi: \mathcal{H}_{15,9} \to \mathcal{M}_{15}, \quad [C, A] \mapsto [C]
\]

is 1-dimensional. Clearly, \(\mathcal{H}_{15,9} \) and thus \(\mathcal{G}_{15,19}^0 \) is irreducible.

We pick a general element \([C, L] \in \mathcal{G}_{15,19}^0 \) in particular \(L \) is very ample and \(h^0(C, L) = 7 \). We set \(A := \omega_C \otimes L^\vee \in W_9^1(C) \). We may assume that \(A \) is base point free and the pencil \([A]\) has simple ramification. We consider the multiplication map

\[
\phi_L:\ Sym^2 H^0(C, L) \to H^0(C, L^2).
\]

Since \(C \) is Petri general, \(h^1(C, L^2) = 0 \), therefore \(h^0(C, L^2) = 2 \cdot 19 + 1 - 15 = 24 \). Furthermore, via a degeneration argument it is shown in [BV, Theorem 3.11], that for a general choice of \((C, L)\), the map \(\phi_L \) is surjective, hence \(h^0(\mathbb{P}^6, \mathcal{I}_C/\mathbb{P}^6(2)) = \dim(\ker(\phi_L)) = 4 \), that is, the degree 19 curve \(C \subseteq \mathbb{P}^6 \) lies on precisely 4 independent quadrics. We let

\[
S := \text{Bs}[\mathcal{I}_{C/\mathbb{P}^6}(2)]
\]

be the base locus of the system of quadrics containing \(C \). It is further established in [BV, Theorem 3.11] that under our generality assumptions, \(S \) is a smooth surface. From the adjunction formula it follows that \(\omega_S = \mathcal{O}_S(1) \), that is, \(S \) is a canonical surface. We write down the exact sequence

\[
0 \to \mathcal{O}_S \to \mathcal{O}_S(C) \to \mathcal{O}_C(C) \to 0.
\]

From the adjunction formula \(\mathcal{O}_C(C) \cong \omega_C \otimes \omega_S^\vee |_C = \omega_C \otimes L^\vee = A \in W_9^1(C) \). Since \(S \) is a regular surface, by taking cohomology in (4), we obtain

\[
h^0(S, \mathcal{O}_S(C)) = h^0(S, \mathcal{O}_S) + h^0(C, A) = 3.
\]
Observe also from the sequence (4) that the linear system $|O_S(C)|$ is base point free, for $|O_C(C)| = |A|$ is so. This brings to an end our summary of the results from [BV].

In what follows, we denote by

$$f : S \to \mathbb{P}^2 = |O_S(C)|^\vee$$

the induced map. For what we intend to do, it is important to show that f is a finite map, or equivalently, that $O_S(C)$ is ample.

Theorem 3. For a general pair $(C, A) \in \mathcal{H}_{15,9}$, the line bundle $O_S(C)$ is ample.

In order to prove Theorem 3 it suffices to exhibit a single pair $(C, A) \in \mathcal{H}_{15,9}$ for which the corresponding map $f : S \to \mathbb{P}^2$ given by (5) is finite. We shall realize the canonical surface $S \subseteq \mathbb{P}^6$ as the double cover of a suitable $K3$ surface $Y \subseteq \mathbb{P}^5$ of genus 5 (that is, of degree 8). It will prove advantageous to consider $K3$ surfaces having a certain Picard lattice of rank 3. We first discuss the geometry of such $K3$ surfaces.

Definition 4. We denote by Λ the even lattice of signature $(1, 2)$ generated by elements H, F and R having the following intersection matrix:

$$
\begin{pmatrix}
H^2 & H \cdot F & H \cdot R \\
F \cdot H & F^2 & F \cdot R \\
R \cdot H & R \cdot F & R^2
\end{pmatrix}
=
\begin{pmatrix}
8 & 9 & 1 \\
9 & 4 & 2 \\
1 & 2 & -2
\end{pmatrix}.
$$

We denote by \mathcal{F}_5^Λ the moduli space of polarized $K3$ surfaces $[Y, H]$, where $H^2 = 8$, admitting a primitive embedding $\Lambda \hookrightarrow \text{Pic}(Y)$, such that the classes H, F, R correspond to curve classes on Y which we denote by the same symbol. Furthermore, $H \in \text{Pic}(Y)$ is assumed to be ample.

For details on the construction of the moduli space \mathcal{F}_5^Λ we refer to [Do, Section 3]. It follows from loc.cit. that \mathcal{F}_5^Λ is an irreducible variety of dimension $17 = 20 - \text{rk}(\Lambda)$. Let us now fix a general element $[Y, H]$, where $\text{Pic}(Y) \cong \mathbb{Z}\langle H, F, R \rangle$ as in Definition 4. Then $O_Y(H)$ is very ample and we denote by

$$\varphi_H : Y \hookrightarrow \mathbb{P}^5$$

the embedding induced by this linear system. Observe that $h^0(\mathbb{P}^5, I_{Y/\mathbb{P}^5}(2)) = 3$ and that $Y = \text{Bs}[I_{Y/\mathbb{P}^5}(2)]$ is in fact a complete intersection of three quadrics. Note that $F \subseteq Y$ is a curve of genus 3, whereas $R \subseteq Y$ is a smooth rational curve embedded as a line under the map φ_H. The class $E := 2H - F$ satisfies $E^2 = 0$. Since $E \cdot H > 0$, it follows that $|E|$ is an elliptic pencil and furthermore $E \cdot R = 0$. Setting also

$$D := 2H + R - E \in \text{Pic}(Y),$$

we compute $D^2 = 6, D \cdot E = 14$ and $D \cdot R = 0$. In the basis (D, E, R) of $\text{Pic}(Y)$, the intersection form on Y is described by the following simpler matrix:

$$
\begin{pmatrix}
D^2 & D \cdot E & D \cdot R \\
E \cdot D & E^2 & E \cdot R \\
R \cdot D & R \cdot E & R^2
\end{pmatrix}
=
\begin{pmatrix}
6 & 14 & 0 \\
14 & 0 & 0 \\
0 & 0 & -2
\end{pmatrix}.
$$

On our way to proving Theorem 3, we establish the following result:

Proposition 5. The line bundle $O_Y(F)$ is very ample.
Proof. We first claim that \bar{F} is nef. Since $\bar{F}^2 = 4 > 0$, it suffices to check that for any smooth rational curve $\tilde{\Gamma} \subseteq Y$, one has $\tilde{\Gamma} \cdot \bar{F} \geq 0$. We write $\tilde{\Gamma} \equiv aD + bE + cR$, where a, b and c are integers. We may assume $\tilde{\Gamma} \neq R$, thus $\tilde{\Gamma} \cdot \bar{R} \geq 0$, implying $c \leq 0$. Furthermore, $\tilde{\Gamma} \cdot E \geq 0$, hence $a \geq 0$. Using (7), one has $\tilde{\Gamma}^2 = 6a^2 - 2c^2 + 28ab = -2$. Assume by contradiction $\tilde{\Gamma} \cdot \bar{F} = \tilde{\Gamma} \cdot (D - \bar{R}) = 6a + 14b + 2c \leq -2$. Multiplying this inequality with $2a \geq 0$ and substituting in the equality $\tilde{\Gamma}^2 = -2$ we obtain that $(a + c)^2 + 2a^2 + 2a - 1 \geq 0$, implying $a = 0$ and $c \in \{-1, 1\}$. If, say $c = 1$, then $\tilde{\Gamma} \equiv \bar{R} + bE$. From the assumption $\tilde{\Gamma} \cdot \bar{F} \leq -2$, we obtain that $b \leq -1$, hence $\tilde{\Gamma} \cdot \bar{H} < 0$, thus $\tilde{\Gamma}$ cannot be effective, a contradiction. The case $c = -1$, implying $b \leq 0$ is ruled out similarly.

Thus \bar{F} is a nef curve. To conclude that \bar{F} is very ample, we invoke [SD]. It suffices to rule out the existence of a divisor class $M \in \text{Pic}(Y)$ such that (i) $M^2 = 0$ and $M \cdot \bar{F} \in \{1, 2\}$, or satisfying (ii) $M^2 = -2$ and $M \cdot \bar{F} = 0$. We discuss only (i), the remaining case being similar. Write $M = aD + bE + c\bar{R}$. Since $M^2 = 0$, from (7) we obtain $3a^2 - c^2 + 14ab = 0$, whereas from $M \cdot \bar{F} = 2$, we obtain that $3a + 7b + c = 1$. Eliminating c, we find $6a^2 + a(28b - 6) + 49b^2 - 14b + 1 = 0$. Since the discriminant of this equation is negative, this case is excluded. We conclude that \bar{F} is very ample.

We fix a general polarized $K3$ surface $[Y, \bar{H}] \in \mathcal{F}_5^A$, while keeping the notation from above. Choose a smooth divisor $\bar{Q} \in |\mathcal{O}_Y(2\bar{H})|$ and consider the double cover

$$\sigma : S \to Y$$

branched along \bar{Q}. We denote by $Q \subseteq S$ the ramification divisor of σ, hence $\sigma^*(\bar{Q}) = 2Q$. We set $H := \sigma^*(\bar{H})$, where $\bar{H} \in |\mathcal{O}_Y(1)|$ is a linear section of Y. Note that $Q \in |\mathcal{O}_S(H)|$.

Proposition 6. The induced morphism $\varphi_H : S \to P^6$ embeds S as a canonical surface which is the complete intersection of 4 quadrics in P^6. More precisely, S is a quadratic section of the cone $\mathcal{C}_Y \subseteq P^6$ over the $K3$ surface $Y \subseteq P^5$.

Proof. From the adjunction formula we find $\omega_S = \mathcal{O}_S(Q) = \mathcal{O}_S(H)$. Furthermore, we have $\sigma^*(\mathcal{O}_S) = \mathcal{O}_Y \oplus \mathcal{O}_Y(-H)$, hence from the projection formula we can write

$$H^0(S, \mathcal{O}_S(H)) \cong H^0(Y, \mathcal{O}_Y(\bar{H})) \oplus H^0(Y, \mathcal{O}_Y) \cong H^0(Y, \mathcal{O}_Y(\bar{H})) \oplus \mathbb{C}(Q),$$

where recall that $Q \in |\mathcal{O}_S(H)|$, as well as

$$H^0(S, \mathcal{O}_S(2H)) \cong H^0(Y, \mathcal{O}_Y(2\bar{H})) \oplus H^0(Y, \mathcal{O}_Y(\bar{H})) \cdot Q.$$

Thus $h^0(S, \mathcal{O}_S(H)) = 6$ and $h^0(S, \mathcal{O}_S(2H)) = h^0(Y, \mathcal{O}_Y(2)) = h^0(Y, \mathcal{O}_Y(1)) = 2 + 2\bar{H}^2 + 6 = 24$. Furthermore, $S \subseteq P^6$ is projectively normal, so $h^0(P^6, \mathcal{I}_{S/P^6}(2)) = 4$. Since clearly $S \subseteq \mathcal{C}_Y$, it follows that S can be viewed as a quadratic section of the cone \mathcal{C}_Y, precisely the intersection of \mathcal{C}_Y with one of the quadrics containing S not lying in the subsystem $|\sigma^*H^0(P^6, \mathcal{I}_{S/P^6}(2))|$. □

We are now in a position to prove Theorem 3. We denote by $\text{Hilb}_{15,19}$ the unique component of the Hilbert scheme of curves $C \subseteq P^6$ of genus 15 and degree 19 dominating \mathcal{M}_{15}. A general point of $\text{Hilb}_{15,19}$ corresponds to a smooth projectively normal curve $C \subseteq P^6$ such that the canonical surface S defined by (3) is smooth.

Proof of Theorem 3. We choose a $K3$ surface $[Y, \mathcal{O}_Y(\bar{H})] \in \mathcal{F}_5^A$ with $\text{Pic}(Y) = \mathbb{Z}(\bar{H}, \bar{F}, \bar{R})$, where the intersection matrix is given as in Definition 4. The restriction map

$$H^0(Y, \mathcal{O}_Y(2\bar{H})) \to H^0(\bar{R}, \mathcal{O}_R(2\bar{H}))$$
being surjective, we can choose a smooth curve $Q \subset \mathcal{O}_Y(2H)$ which is tangent to R, that is, $\bar{Q} \cdot \bar{R} = 2y$, for a point $y \in Y$. Construct the double cover $\sigma : S \to Y$ defined in (8). The pull-back $\sigma^*(\bar{R})$ is then a double cover of \bar{R} branched over the single point y, hence necessarily
\[
\sigma^*(\bar{R}) = R + R' \subseteq S,
\]
where R and R' are lines on $S \subseteq \mathbb{P}^6$ meeting at a single point. Next, we choose a smooth genus 3 curve $\bar{F} \subseteq Y$ general in its linear system and set
\[
C' := \sigma^*(\bar{F}) \subseteq S.
\]
Since $\bar{F} \cdot \bar{Q} = 2\bar{F} \cdot \bar{H} = 18$, we obtain that C' is a smooth curve of genus 14 and degree 18 endowed with the double cover $\bar{C}' \to \bar{F}$. Note that the linear system
\[
|\mathcal{O}_S(C')| = \pi^*|\mathcal{O}_Y(\bar{F})|
\]
is 3-dimensional. Applying Theorem 5, since $\mathcal{O}_Y(\bar{F})$ is ample and σ is finite, we obtain that $\mathcal{O}_S(C')$ is ample as well. Observe that $C' \cdot R = \bar{F} \cdot \bar{R} = 2$. Choosing \bar{F} general in its linear system, we can arrange the intersection of R and C' to be transverse, therefore
\[
C := C' + R \subseteq S \subseteq \mathbb{P}^6
\]
is a nodal curve of genus 15 and degree 19. Note that the linear system $|\mathcal{O}_S(C)|$ has R as a fixed component, and $|\mathcal{O}_S(C)| = R + \pi^*|\mathcal{O}_Y(\bar{F})|$.

Despite the fact that $|\mathcal{O}_S(C)|$ is not ample, we can complete the proof of Theorem 3. Indeed, let us pick a general family $\{[C_t \to \mathbb{P}^6]\}_{t \in T}$ over a pointed base (T, o), whose fibre over $o \in T$ is the curve C described in (9). If $S_t = Bs|\mathcal{I}_{C_t/\mathbb{P}^6}(2)|$, assume the line bundle $\mathcal{O}_{S_t}(C_t)$ is not ample for each $t \in T$. As we have already observed, we may assume that $\mathcal{O}_{S_t}(C_t)$ is nef for all $t \in T$ and we denote by $f_t : S_t \to \mathbb{P}^2$ the map induced by the linear system $|\mathcal{O}_{S_t}(C_t)|$ for $t \in T \setminus \{o\}$. The limiting map of this family
\[
f_o : S \to \mathbb{P}^2,
\]
satisfies then $f_o^*(\mathcal{O}_{\mathbb{P}^2}(1)) = \mathcal{O}_S(R + C')$ and is induced by a subspace of sections $\sigma^*(V)$, where $V \subseteq H^0(Y, \mathcal{O}_Y(\bar{F}))$ is 3-dimensional. By assumption, there exists a family of curves $\Gamma_t \subseteq S_t$ such that $\Gamma_t \cdot C_t = 0$. We denote by $\Gamma_o \subseteq S$ the limiting curve of Γ_t, therefore $\Gamma_o \cdot (C' + R) = 0$. We write $\Gamma_o = G + mR$, where $m \geq 0$ and $G \subseteq S$ is a curve not having R in its support. From the adjunction formula, we find $R^2 = -3$. Since $R \cdot C' = 2$, it follows that $R \cdot (C' + R) = 1$, thus $G \neq 0$. Furthermore, the morphism f_o contracts G, which we argue, leads to a contradiction. Indeed, f_o admits a factorization
\[
\xymatrix{ S \ar[r]^\sigma & Y \ar[r]^{\bar{F}} & \mathbb{P}^3 \ar[r]^p & \mathbb{P}^2
}
\]
where $p : \mathbb{P}^3 \to \mathbb{P}^2$ is the linear projection corresponding to $V \subseteq H^0(Y, \mathcal{O}_Y(\bar{F}))$. Since σ is finite and $|\bar{F}|$ is very ample, it follows that $\sigma(G)$ must be contracted by the projection p, that is, $\sigma(C)$ is a line in \mathbb{P}^3. By inspecting the intersection matrix (7) of Pic(Y) we immediately see that no such line can exist on Y, which finishes the proof. \qed
2. The Uniruledness of the Boundary Divisor Δ_0 in \overline{M}_{16}

We now lift the construction discussed above from \overline{M}_{15} to the moduli space $\overline{M}_{15,2}$ of 2-pointed stable curves of genus 15 and eventually to \overline{M}_{16}. Recall that $\text{Hilb}_{15,19}$ is the component of the Hilbert scheme of curves $C \subseteq \mathbb{P}^6$ of genus 15 and degree 19 dominating \mathcal{M}_{15}. We denote by $\text{Hilb}_{2,2,2}$ the Hilbert scheme of complete intersections of 4 quadrics in \mathbb{P}^6. Since $\text{Hilb}_{15,19}/\text{PGL}(7)$ is birational to the Hurwitz space $\mathcal{H}_{15,9}$, we have a rational map

$$\chi: \mathcal{H}_{15,9} \dasharrow \text{Hilb}_{2,2,2}/\text{PGL}(7), \quad [C, A] \mapsto S := Bs|\mathcal{I}_{C, \mathbb{P}^6}(2)| \mod \text{PGL}(7),$$

where the canonical surface $S \subseteq \mathbb{P}^6$ is defined by (3). We set

$$S := \chi(\mathcal{H}_{15,9}).$$

The general fibre of the morphism $\chi: \mathcal{H}_{15,9} \to S$ consists of finitely many linear nonempty open subsets of linear systems $|O_S(C)|$, where $C \subseteq S \subseteq \mathbb{P}^6$ is a smooth curve of genus 15 and degree 19. In particular, S is an irreducible variety of dimension $41 = \dim(\mathcal{H}_{15,9}) - 2$. Recall that $\pi: \mathcal{H}_{15,9} \to \mathcal{M}_{15}$ denotes the forgetful map. The next observation will prove to be useful in several moduli counts.

Proposition 7. If S' is an irreducible subvariety of S of dimension $\dim(S') \leq 39$, then $\pi(\chi^{-1}(S'))$ is a proper subvariety of \mathcal{M}_{15}.

Proof. Since $\dim(\chi^{-1}(S')) \leq \dim(S') + 2 \leq 41 = \dim(\mathcal{M}_{15}) - 1$, the claim follows. \qed

Let us now take a general curve C of genus 15 and consider the correspondence

$$\Sigma := \{(A, x, y) \in W^1_0(C) \times C_2 : H^0(C, A(-x - y)) \neq 0\},$$

endowed with the projections $\pi_1: \Sigma \to W^1_0(C)$ and $\pi_2: \Sigma \to C_2$ respectively. Here C_2 is the second symmetric product of C. It follows that Σ is an irreducible surface and that π_2 is generically finite. Indeed, for a general point $2x \in C_2$, we can invoke for instance [EH, Theorem 1.1] to conclude that $\pi_2^{-1}(2x)$ is finite. The fibre $\pi_1^{-1}(A)$ is irreducible whenever A has simple ramification.

We now fix a general element $[C, x, y] \in \overline{M}_{15,2}$. Then there exist finitely many pencils $A \in W^1_0(C)$ containing both points x and y in the same fibre. Each of these pencils A may be assumed to be base point free with simple ramification and general enough such that $L := \omega_C \otimes A^\vee \in W^1_0(C)$ is very ample and in the embedding

$$\varphi_L: C \hookrightarrow \mathbb{P}^6$$

the curve C lies on precisely 4 independent quadrics intersecting in a smooth canonical surface S defined by (3).

Proposition 8. With the notation above, if $h^0(C, A(-x - y)) = 1$, then $\dim|\mathcal{I}_{\{x, y\}}(C)| = 1$.

Proof. It follows from the commutativity of the following diagram, keeping in mind that $h^0(S, \mathcal{O}_S(C)) = 3$ and that the first column is injective.

$$
\begin{array}{ccc}
0 & \longrightarrow & H^0(S, \mathcal{I}_{\{x, y\}}(C)) \\
\downarrow & & \downarrow \text{res} \\
0 & \longrightarrow & H^0(C, A(-x - y))
\end{array}
\begin{array}{ccc}
& & \longrightarrow \ H^0(S, \mathcal{O}_S(C)) \\
\downarrow & & \downarrow \text{res} \\
& & \longrightarrow \ H^0(C, A)
\end{array}
\begin{array}{c}
\longrightarrow \ H^0(\mathcal{O}_{\{x, y\}}(C))
\end{array}
$$

$$
\begin{array}{ccc}
0 & \longrightarrow & H^0(S, \mathcal{I}_{\{x, y\}}(C)) \\
\downarrow & & \downarrow \text{res} \\
0 & \longrightarrow & H^0(C, A(-x - y))
\end{array}
\begin{array}{ccc}
& & \longrightarrow \ H^0(S, \mathcal{O}_S(C)) \\
\downarrow & & \downarrow \text{res} \\
& & \longrightarrow \ H^0(C, A)
\end{array}
\begin{array}{c}
\longrightarrow \ H^0(\mathcal{O}_{\{x, y\}}(C))
\end{array}
$$
We now introduce the moduli map of the pencil introduced in Proposition 8
(12) \[m : P = |I_{(x,y)}(C)| \to \overline{M}_{15,2}, \]
where the marked points of the pencil are the base points \(x \) and \(y \) respectively. Composing \(m \) with the clutching map \(\overline{M}_{15,2} \to \Delta_0 \subseteq \overline{M}_{16} \), we obtain a pencil \(\xi : P \to \Delta_0 \).

We set
(13) \[R := m_*(P) \subseteq \overline{M}_{15,2} \text{ and } \Gamma := \xi_*(P) \subseteq \overline{M}_{16}. \]

Proposition 9. Every curve inside the pencil \(\Gamma \subseteq \overline{M}_{16} \) corresponds to a nodal curve which does not belong to any of the boundary divisors \(\Delta_1, \ldots, \Delta_8 \).

Proof. Keeping the notation above, for a generic choice of \((A, x + y) \in \Sigma\), the pencil
\[P := |I_{(x,y)}(C)| \]
corresponds to a generic line inside \(|O_S(C)| \). As pointed out in Theorem 3, \(|O_S(C)| \) is base point free and ample on the surface \(S \) defined by (3), giving rise to the finite map
\[f : S \to P^2 = |O_S(C)|^\vee \]
considered in (5). We show that the inverse image \(P \) under \(f \) of a general pencil of lines in \(|O_S(C)|^\vee \) consists only of integral curves with at most one node. This is achieved in several steps.

(i) Since \(O_S(C) \) is ample, we can apply [BL, Theorem A] and conclude that each curve \(C' \in |O_S(C)| \) is 2-connected, that is, it cannot be written as a sum of effective divisors \(C' = F + M \), where \(F \cdot M \leq 1 \). This implies that \(|O_S(C)| \) does not contain any tree-like curves, that is, curves for which its irreducible components meet at a single point, which furthermore is a node.

(ii) The essential step in our argument involves proving that \(P \) contains no curves with singularities worse than nodes. Precisely, we show that \(|O_S(C)| \) contains only finitely many non-nodal curves. Note first that the branch curve \(B \subseteq P^2 \) of \(f \) is reduced, else we contradict the assumption that the pencil \(A \in W^1_0(C) \) on \(C \) has simple ramification. We introduce the discriminant curve
\[J := \left\{ C' \in |O_S(C)| : C' \text{ is singular} \right\}. \]

The dual curve \(B^\vee \) is contained in \(J \). Since \(B \) is reduced, the general tangent line to \(B \) is tangent at exactly one point \(p \in B \) and with multiplicity 2. A standard local calculation shows that \(f^*(T_p(B)) \in |O_S(C)| \) is a one-nodal curve, singular at exactly one point \(z \in f^{-1}(p) \) such that the differential \(df_z : T_z(S) \to T_p(P^2) \) is not an isomorphism.

The complement \(J \setminus B^\vee \) is the (possibly empty) union of (some of) the pencils \(P_b \), where \(b \in B_{\text{sing}} \) and \(P_b \) is defined as the pull-back by \(f \) of the pencil of lines in \(P^2 \) through \(b \). In view of the numerical situation at hand (that is, \(C^2 = 9 \)), the geometric possibilities for such a pencil
\[P_b \subseteq J \]
are quite constrained. Since \(f \) is finite, the pencil \(P_b \) has no fixed components. Let \(Z := B_\text{s}\{P_b\} \). Then a general \(C' \in P_b \) is integral and smooth along \(C' \setminus Z \). Moreover, each
$C' \in \mathbb{P}_b$ is singular at a given point $z \in Z$ and a general such C' has multiplicity $m \geq 2$ at z. Necessarily, the differential $df_z : T_z(S) \to T_p(\mathbb{P}^2)$ is zero. Since $m^2 = C^2 = (C')^2 = 9$, we find $m \in \{2, 3\}$. Let

$$\sigma : S' \to S$$

be the blow-up of S at z and denote by $E \subset S'$ the exceptional divisor. The pencil $|O_{S'}(\sigma^*C - mE)|$ is the strict transform of P_b. Observe that the restriction map

$$r : H^0(S', O_{S'}(\sigma^*C - mE)) \to H^0(E, O_E(m))$$

is not zero, hence $\text{Im}(r)$ defines a linear series p_b on $E \cong \mathbb{P}^1$. Either p_b is a pencil or a constant divisor of degree $m \in \{2, 3\}$. We now list the possibilities for the pencil p_b.

(P1) If $m = 3$, then $\text{supp}(Z) = \{z\}$. Every curve $C' \in \mathbb{P}_b$ has a triple point at z.

(P2) If $m = 2$, then either each $C' \in \mathbb{P}_b$ has a node, or else, each $C' \in \mathbb{P}_b$ has a cusp at z. Indeed, if p_b is a pencil on E, then each $C' \in \mathbb{P}_b$ is nodal at z. If $p_b = \{u_1 + u_2\}$ consists of a fixed divisor, then P_b contains a unique curve C_z having multiplicity at least 3 at z. If $u_1 \neq u_2$, all other curves $C' \in \mathbb{P}_b \setminus \{C_z\}$ are nodal at z, whereas if $u_1 = u_2$, then all such C' are cuspidal at z.

Both possibilities (P1) and (P2) can be ruled out by a parameter count that contradicts the generality of the pair $(C, A) \in H_{15,9}$ we started with. We first rule out (P1). Assume $C' \in \mathbb{P}_b$ has a triple point at z and no further singularities and denote by

$$\nu : C \to C'$$

the normalization. Set $\{z_1, z_2, z_3\} = \nu^{-1}(z)$ and $\tilde{A} := \nu^*(O_{C'}(C')) \in W^3_4(C)$.

Since \tilde{A} is induced from a pencil of curves with a triple point at z, it follows that $|\tilde{A}(−3z_1 − 3z_2 − 3z_3)| \neq \emptyset$, therefore for degree reason $\tilde{A} = O_C(z_1 + z_2 + z_3)$. We denote by $H^\text{triple}_{12,9}$ the Hurwitz space classifying degree 9 covers $\tilde{C} \to \mathbb{P}^1$ having a divisor of the form $3(z_1 + z_2 + z_3)$ in a fibre, where \tilde{C} is of genus 12. Then $H^\text{triple}_{12,9}$ is pure of dimension $\dim(\mathcal{M}_{12}) = 32$. Let Y_1 be the parameter space of pairs (C', C'), where $S \subset \mathbb{P}^6$ is a smooth complete intersection of 4 quadrics and $C' \subset S$ is an integral curve of arithmetic genus 15 with a triple point as described by (P1). Let

$$S \xleftarrow{\pi_1} Y_1 \xrightarrow{\pi_2} H^\text{triple}_{12,9}$$

be the projections given by $\pi_1([S, C']) := [S]$ and $\pi_2([S, C']) := [C, \tilde{A}]$ respectively. With the notation above, from the adjunction formula $\nu^*(O_{C'}(1)) = \omega_{\tilde{C}}(−z_1 − z_2 − z_3)$. The fibre $\pi_2^{-1}(\pi_2([S, C']))$ corresponds then to the choice of a 7-dimensional space of sections $V \subset H^0(\tilde{C}, \omega_{\tilde{C}}(−z_1 − z_2 − z_3))$ satisfying

$$\dim \left(V \cap H^0(\omega_{\tilde{C}}(−2z_1 − 2z_2 − 2z_3)) \right) \geq 6.$$

Since $h^0(\omega_{\tilde{C}}(−2z_1 − 2z_2 − 2z_3)) = 6$, it follows that

$$\frac{V}{H^0(\omega_{\tilde{C}}(−2z_1 − 2z_2 − 2z_3))} \in \mathbb{P} \left(\frac{H^0(\omega_{\tilde{C}}(−z_1 − z_2 − z_3))}{H^0(\omega_{\tilde{C}}(−2z_1 − 2z_2 − 2z_3))} \right) \cong \mathbb{P}^2.$$

Therefore $\dim(Y_1) = \dim(H^\text{triple}_{12,9}) + 2 = 34 \leq 39$, so we can invoke Proposition 7 to conclude that $\overline{\pi_1(Y_1)} \neq S$ and rule out possibility (P1).

Next we rule out possibility (P2), focusing on the case when each $C' \in \mathbb{P}_b$ is cuspidal at z. Passing to the normalization $\nu : \tilde{C} \to C'$, setting $\tilde{z} := \nu^{-1}(z)$ we obtain that $\tilde{A} := \nu^*(O_{C'}(C')) \in W^3_4(C)$ verifies $h^0(\tilde{C}, \tilde{A}(−4\tilde{z})) = 1$. Let $H^\text{four}_{14,9}$ be the Hurwitz space classifying degree 9 covers $\tilde{C} \to \mathbb{P}^1$ containing a divisor of type $4\tilde{z}$ in one of its fibres.
and where \(\overline{C} \) has genus 14. Then \(\mathcal{H}_{14,9}^{\text{four}} \) is irreducible of dimension 39 = \(\dim(\mathcal{M}_{14}) \). Let \(\mathcal{V}_2 \) be the parameter space of pairs \((S, C') \), where \(S \subseteq \mathbb{P}^6 \) is a smooth complete intersection of 4 quadrics and \(C' \subseteq S \) is an integral curve of arithmetic genus 15 with a cusp at \(z \) as described by \((\text{P}2)\). We consider the projections

\[
S \leftarrow_{\pi_1} \mathcal{V}_2 \rightarrow_{\pi_2} \mathcal{H}_{14,9}^{\text{four}}
\]

given by \(\pi_1([S, C']) := [S] \) and \(\pi_2([S, C']) := [\overline{C}, \overline{A}] \) respectively. Observe that \(\pi_2 \) is birational onto its image. Indeed, given \([\overline{C}, \overline{A}] \in \pi_2(\mathcal{V}_2) \), then we denote by \(C' \) the image of the map \(\overline{\omega}_{\overline{O}}(2y) \otimes \overline{\omega}_V \colon \overline{C} \to \mathbb{P}^6 \), in which case the canonical surface \(S \) is recovered by \((3)\). We conclude by Proposition 7 again that \(\pi_1(\mathcal{V}_2) \) is not dense in \(S \). The final case when all curves \(C' \in \mathbb{P}_b \) are (at least) nodal at \(z \) is ruled out analogously.

Before stating our next result, recall that one sets \(\delta_i := |\Delta_i| \in CH^1(\mathcal{M}_g) \) for \(0 \leq i \leq \left\lfloor \frac{g}{2} \right\rfloor \). We denote as usual by \(\lambda \in CH^1(\mathcal{M}_g) \) the Hodge class. Recall also the formula [HM] for the canonical class of \(\mathcal{M}_g \):

\[
K_{\mathcal{M}_g} = 13\lambda - 2\delta_0 - 3\delta_1 - 2\delta_2 - \cdots - 2\delta_{\left\lfloor \frac{g}{2} \right\rfloor} \in CH^1(\mathcal{M}_g).
\]

Proposition 10. The rational curve \(\Gamma \) is a sweeping pencil for the boundary divisor \(\Delta_0 \). Its intersection numbers with the standard generators of \(CH^1(\mathcal{M}_{16}) \) are as follows:

\[
\Gamma \cdot \lambda = 22, \quad \Gamma \cdot \delta_0 = 143, \quad \Gamma \cdot \delta_j = 0 \quad \text{for} \quad j = 2, \ldots, 8.
\]

Proof. First we construct a fibration whose moduli map is precisely the rational curve \(m \colon \mathbb{P}^1 \to \mathcal{M}_{15,2} \) considered in \((12)\). We consider the curve \(C \subseteq S \) and observe that since \(\mathcal{O}_C(C) \cong A \in W^1_9(C) \), we have that \(C^2 = 9 \), that is, the pencil \(|\mathcal{I}_{x,y}(C)| \) has precisely 9 base points, namely \(x, y \), as well as the 7 further points lying in the same fibre of the pencil \(|A| \) as \(x \) and \(y \). We consider the blow-up surface \(\pi \colon \overline{S} = Bl_y(S) \to S \) at these 9 points. It comes equipped with a fibration

\[
\pi \colon \overline{S} \to \mathbb{P}^1,
\]

as well as with two sections \(E_x, E_y \subseteq \overline{S} \) corresponding to the exceptional divisors at \(x \) and \(y \) respectively.

In order to compute the intersection numbers of \(R = m(\mathbb{P}) \) with the tautological classes on \(\mathcal{M}_{15,2} \), we use for instance [Tan]. The subscript indicates the moduli space on which the intersection number is computed.

\[
(R \cdot \lambda)_{\mathcal{M}_{15,2}} = \chi(\overline{S}, \mathcal{O}_S) + g - 1 = h^2(S, \mathcal{O}_S) + g = h_0(S, \mathcal{O}_S(1)) + 15 = 22.
\]

Here we have used \(H^1(\overline{S}, \mathcal{O}_S) = H^1(S, \mathcal{O}_S) = 0 \), as well as the fact that \(S \) is a canonical surface, hence \(\omega_S = \mathcal{O}_S(1) \), therefore \(h^2(\overline{S}, \mathcal{O}_S) = h^2(S, \mathcal{O}_S) = 7 \). Furthermore, recalling that all curves in the fibres of \(m \) are irreducible, we find via [Tan] that

\[
(R \cdot \delta_0)_{\mathcal{M}_{15,2}} = c_2(\overline{S}) + 4(g - 1) = c_2(\overline{S}) + 56.
\]

From the Euler formula, \(c_2(\overline{S}) = 12\chi(\overline{S}, \mathcal{O}_S) - K_S^2 \). We have already computed that \(\chi(\overline{S}, \mathcal{O}_S) = 8 \), whereas \(K_S^2 = K_{\overline{S}}^2 - 9 = \deg(S) - 9 = 7 \), for \(S \) is an intersection of 4 quadrics. Thus \(c_2(\overline{S}) = 12 \cdot 8 - 7 = 89 \), leading to \((R \cdot \delta_0)_{\mathcal{M}_{15,2}} = 89 + 4 \cdot 14 = 145 \).
If we denote by $\psi_x, \psi_y \in CH^1(\overline{M}_{15,2})$ the cotangent classes corresponding to the marked points labelled by x and y respectively, we compute furthermore
\[
R \cdot \psi_x = -E_x^2 = 1 \text{ and } R \cdot \psi_y = -E_y^2 = 1.
\]
We now pass to the pencil $\xi : \mathbb{P}^1 \to \overline{M}_{16}$ obtained from m by identifying pointwise the disjoint sections E_x and E_y on the surface \tilde{S}. First, using (15) we observe that
\[
\Gamma \cdot \lambda = \xi(P) \cdot \lambda = (R \cdot \lambda)_{\overline{M}_{15,2}} = 22.
\]
Furthermore, using Proposition 9 we conclude that $\Gamma \cdot \delta_i = 0$ for $i = 1, \ldots, 8$. Finally, invoking for instance [CR3, page 271], we find that
\[
\Gamma \cdot \delta_0 = (R \cdot \delta_0)_{\overline{M}_{15,2}} - (R \cdot \psi_x)_{\overline{M}_{15,2}} - (R \cdot \psi_y)_{\overline{M}_{15,2}} = 145 - 2 = 143.
\]

\[\square\]

Proof of Theorem 2. Since the image of m passes through a general point of $\overline{M}_{15,2}$, the rational curve $\Gamma \subseteq \overline{M}_{16}$ constructed in Proposition 10 is a sweeping curve for the boundary divisor Δ_0. Using the expression (14) for the canonical divisor of \overline{M}_{16}, we compute
\[
\Gamma \cdot K_{\overline{M}_{16}} = 13 \Gamma \cdot \lambda - 2 \Gamma \cdot \delta_0 = 13 \cdot 22 - 2 \cdot 143 = 0. \text{ Also } \Gamma \cdot \Delta_0 = 143 > 0. \quad \square
\]

3. The slope of \overline{M}_{16}.

The slope of an effective divisor D on the moduli space \overline{M}_g not containing any boundary divisor Δ_i in its support is defined as the quantity $s(D) := \frac{a}{\min_i b_i}$, where $[D] = a\lambda - \sum_{i=0}^{15} b_i\delta_i \in CH^1(\overline{M}_g)$, with $a, b_i \geq 0$. Then the slope $s(\overline{M}_g)$ of the moduli space \overline{M}_g is defined as the infimum of the slopes $s(D)$ over such effective divisors D.

Corollary 11. We have that $s(\overline{M}_{16}) \geq \frac{13}{2}$.

Proof. For any effective divisor D on \overline{M}_{16} containing no boundary divisor in its support, we may assume that the curve Γ constructed in Proposition 10 does not lie inside D, hence $\Gamma \cdot D \geq 0$. Writing $[D] = a\lambda - \sum_{i=0}^{15} b_i\delta_i$, using Theorem 2 we obtain $\frac{a}{\min_i b_i} \geq \frac{13\delta_0}{\overline{M}_{16}} = \frac{13}{2}$. Furthermore, using [FP, Theorem 1.4], we conclude that for this divisor D we have $b_i \geq b_0$ for $i = 1, \ldots, 8$, that is, $s(D) = \frac{a}{b_0}$. \[\square\]

Final remarks: Our results establish that \overline{M}_{16} is not of general type. Showing that the Kodaira dimension of \overline{M}_{16} is non-negative amounts to constructing an effective divisor D on \overline{M}_{16} havind slope $s(D) \leq s(K_{\overline{M}_{16}}) = \frac{13}{2}$. Currently the known effective divisor on \overline{M}_{16} of smallest slope is the closure in \overline{M}_{16} of the *Koszul divisor* \mathcal{Z}_{16} consisting of curves C having a linear system $L \in W^2_2(C)$ such that the image curve $\varphi_L : C \to \mathbb{P}^6$ is ideal-theoretically not cut out by quadrics. It is shown in [F1, Theorem 1.1] that \mathcal{Z}_{16} is an effective divisor on \overline{M}_{16} and $s(\mathcal{Z}_{16}) = \frac{407}{18} = 6.70516$. In a related direction, it is shown in [F2] that the canonical class of the space of admissible covers $\overline{H}_{16,9}$ is effective. Note that one has a generically finite cover $\overline{H}_{16,9} \to \overline{M}_{16}$.

Soon after the appearance of the first version of this paper, it has been pointed out by Agostini and Barros [AB] that our proof of Theorem 2 yields in fact the bound
\[
\kappa(\overline{M}_{16}) \leq \dim(\overline{M}_{16}) - 2.
\]
Indeed, consider the parameter space \mathcal{Z} of elements $[C, A, x, y]$, where C is a genus 15 irreducible nodal curve, $A \in W^1_C$ and $x, y \in C$ are points such
that $|A(-x-y)| \neq 0$. As we explain in this paper, Z has the structure of a \mathbb{P}^1-bundle and one has a dominant morphism $v: Z \to \Delta_0$ given by $[C, A, x, y] \mapsto [C/x \sim y]$. In Proposition 10 we establish that the restriction of $v^*(K_{\overline{M}_{16}})$ to the general fibre of this fibration is trivial. Accordingly, $\kappa(\overline{M}_{16}) \leq \dim(Z) - 1 = \dim(\overline{M}_{16}) - 2$.

References

[FP] G. Farkas and M. Popa, Effective divisors on \overline{M}_g, curves on $K3$ surfaces and the Slope Conjecture, Journal of Algebraic Geometry 14 (2005), 151–174.

