
M16 IS NOT OF GENERAL TYPE
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ABSTRACT. We prove that the moduli space of curves of genus 16 is not of general type.

The problem of determining the nature of the moduli spaceMg of stable curves
of genus g has long been one of the key questions in the field, motivating important
developments in moduli theory. Severi [Sev] observed thatMg is unirational for g ≤ 10,
see [AC] for a modern presentation. Much later, in the celebrated series of papers [HM],
[H], [EH], Harris, Mumford and Eisenbud showed thatMg is of general type for g ≥ 24.
Very recently, it has been showed in [FJP] that bothM22 andM23 are of general type.
On the other hand, due to work of Sernesi [Ser], Chang-Ran [CR1], [CR2] and Verra [Ve]
it is known thatMg is unirational also for 11 ≤ g ≤ 14. Finally, Bruno and Verra [BV]
proved thatM15 is rationally connected. Our result is the following:

Theorem 1. The moduli spaceM16 of stable curves of genus 16 is not of general type.

Note that 16 is the highest genus for which it is known thatM16 is not of general
type. We further refer to Tseng’s recent paper [Ts] for further details on the convoluted
history of determining the Kodaira dimension ofM16.

Before explaining our strategy of proving Theorem 1, recall the standard notation
∆0, . . . ,∆b g

2
c for the irreducible boundary divisors onMg, see [HM]. Here ∆0 denotes

the closure inMg of the locus of irreducible 1-nodal curves of arithmetic genus g. Our
approach relies on the explicit uniruled parametrization ofM15 found by Bruno and Verra
[BV]. Their work establishes that through a general point ofM15 there passes not only
a rational curve, but in fact a rational surface. This extra degree of freedom, yields a unir-
uled parametrization of M15,2, therefore also a parametrization the boundary divisor
∆0 insideM16. We show the following:

Theorem 2. The boundary divisor ∆0 of M16 is uniruled and swept by a family of rational
curves, whose general member Γ ⊆ ∆0 satisfies Γ ·KM16

= 0 and Γ ·∆0 > 0.

Assuming Theorem 2, we conclude thatM16 cannot be of general type, thus es-
tablishing Theorem 1. To that end, note first that in any effective representation of the
canonical divisor

KM16
≡ α ·∆0 +D,

where α ∈ Q>0 andD is an effective Q-divisor onM16 not containing ∆0 in its support,
we must have α = 0. Indeed, we can choose the curve Γ such that Γ * D, then we write

0 = Γ ·KM16
= αΓ ·∆0 + Γ ·D ≥ αΓ ·∆0 ≥ 0,

hence α = 0. Furthermore, since the singularities of Mg do not impose adjunction
conditions [HM, Theorem 1], Mg is a variety of general type for a given g ≥ 4 if and
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only if the canonical class KMg
is a big divisor class, that is, it can be written as

(1) KMg
≡ A+ E,

where A is an ample Q-divisor and E is an effective Q-divisor respectively. Assume
that KM16

can be written like in (1). It has already been observed that ∆0 * supp(E),
in particular Γ ·E ≥ 0. Using Kleiman’s ampleness criterion, Γ ·A > 0, which yields the
immediate contradiction 0 = Γ ·KM16

= Γ ·A+ Γ · E ≥ Γ ·A > 0.
We are left therefore with proving Theorem 2, which is what we do in the rest of

the paper. The rational curve Γ constructed in Theorem 2 is the moduli curve corre-
sponding to an appropriate pencil of curves of genus 15 on a certain canonical surface
S ⊆ P6. Establishing that this pencil can be chosen in such a way to contain only stable
curves will take up most of Section 2.

1. THE BRUNO-VERRA PARAMETRIZATION OFM15

The parametrization of the boundary divisor ∆0 ofM16 and the proof of Theorem
2 uses several results from [BV], which we now recall. We denote byH15,9 the Hurwitz
space parametrizing degree 9 covers C → P1 having simple ramification, where C is a
smooth curve of genus 15. Then H15,9 is birational to the parameter space G1

15,9 classi-
fying pairs (C,A), where [C] ∈ M15 and A ∈ W 1

9 (C) is a pencil. By residuation, G1
15,9 is

isomorphic to the parameter space G6
15,19 of pairs [C,L], where C is a smooth curve of

genus 15 and L ∈W 6
19(C). Note that the general fibre of the forgetful map

(2) π : H15,9 →M15, [C,A] 7→ [C]

is 1-dimensional. Clearly,H15,9 and thus G6
15,19 is irreducible.

We pick a general element [C,L] ∈ G6
15,19, in particular L is very ample and

h0(C,L) = 7. We set A := ωC ⊗ L∨ ∈ W 1
9 (C). We may assume that A is base point

free and the pencil |A| has simple ramification. We consider the multiplication map

φL : Sym2H0(C,L)→ H0(C,L2).

SinceC is Petri general, h1(C,L2) = 0, therefore h0(C,L2) = 2·19+1−15 = 24. Further-
more, via a degeneration argument it is shown in [BV, Theorem 3.11], that for a general
choice of (C,L), the map φL is surjective, hence h0(P6, IC/P6(2)) = dim

(
Ker(φL)

)
= 4,

that is, the degree 19 curve C ⊆ P6 lies on precisely 4 independent quadrics. We let

(3) S := Bs
∣∣IC/P6(2)

∣∣
be the base locus of the system of quadrics containing C. It is further established in
[BV, Theorem 3.11] that under our generality assumptions, S is a smooth surface. From
the adjunction formula it follows that ωS = OS(1), that is, S is a canonical surface. We
write down the exact sequence

(4) 0 −→ OS −→ OS(C) −→ OC(C) −→ 0.

From the adjunction formulaOC(C) ∼= ωC⊗ω∨S|C = ωC⊗L∨ = A ∈W 1
9 (C). Since

S is a regular surface, by taking cohomology in (4), we obtain

h0(S,OS(C)) = h0(S,OS) + h0(C,A) = 3.
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Observe also from the sequence (4) that the linear system
∣∣OS(C)

∣∣ is base point free, for∣∣OC(C)
∣∣ = |A| is so. This brings to an end our summary of the results from [BV].

In what follows, we denote by

(5) f : S → P2 =
∣∣OS(C)

∣∣∨
the induced map. For what we intend to do, it is important to show that f is a finite
map, or equivalently, that OS(C) is ample.

Theorem 3. For a general pair (C,A) ∈ H15,9, the line bundle OS(C) is ample.

In order to prove Theorem 3 it suffices to exhibit a single pair (C,A) ∈ H15,9 for
which the corresponding map f : S → P2 given by (5) is finite. We shall realize the
canonical surface S ⊆ P6 as the double cover of a suitable K3 surface Y ⊆ P5 of genus
5 (that is, of degree 8). It will prove advantageous to consider K3 surfaces having a
certain Picard lattice of rank 3. We first discuss the geometry of such K3 surfaces.

Definition 4. We denote by Λ the even lattice of signature (1, 2) generated by elements
H̄, F̄ and R̄ having the following intersection matrix: H̄2 H̄ · F̄ H̄ · R̄

F̄ · H̄ F̄ 2 F̄ · R̄
R̄ · H̄ R̄ · F̄ R̄2

 =

8 9 1
9 4 2
1 2 −2

 .

We denote byFΛ
5 the moduli space of polarizedK3 surfaces [Y, H̄], where H̄2 = 8,

admitting a primitive embedding Λ ↪→ Pic(Y ), such that the classes H̄, F̄ , R̄ correspond
to curve classes on Y which we denote by the same symbol. Furthermore, H̄ ∈ Pic(Y )
is assumed to be ample.

For details on the construction of the moduli space FΛ
5 we refer to [Do, Section 3].

It follows from loc.cit. that FΛ
5 is an irreducible variety of dimension 17 = 20 − rk(Λ).

Let us now fix a general element [Y, H̄], where Pic(Y ) ∼= Z〈H̄, F̄ , R̄〉 as in Definition 4.
Then OY (H̄) is very ample and we denote by

(6) ϕH̄ : Y ↪→ P5

the embedding induced by this linear system. Observe that h0
(
P5, IY/P5(2)

)
= 3 and

that Y = Bs
∣∣IY/P5(2)

∣∣ is in fact a complete intersection of three quadrics. Note that
F̄ ⊆ Y is a curve of genus 3, whereas R̄ ⊆ Y is a smooth rational curve embedded as a
line under the map ϕH̄ . The class Ē := 2H̄ − F̄ satisfies Ē2 = 0. Since Ē · H̄ = 7 > 0, it
follows that

∣∣Ē∣∣ is an elliptic pencil and furthermore Ē · R̄ = 0. Setting also

D̄ := 2H̄ + R̄− Ē ∈ Pic(Y ),

we compute D̄2 = 6, D̄ · Ē = 14 and D̄ · R̄ = 0. In the basis
(
D̄, Ē, R̄

)
of Pic(Y ), the

intersection form on Y is described by the following simpler matrix:

(7)

 D̄2 D̄ · Ē D̄ · R̄
Ē · D̄ Ē2 Ē · R̄
R̄ · D̄ R̄ · Ē R̄2

 =

 6 14 0
14 0 0
0 0 −2

 .

On our way to proving Theorem 3, we establish the following result:

Proposition 5. The line bundle OY (F̄ ) is very ample.
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Proof. We first claim that F̄ is nef. Since F̄ 2 = 4 > 0, it suffices to check that for any
smooth rational curve Γ̄ ⊆ Y , one has Γ̄ · F̄ ≥ 0. We write Γ̄ ≡ aD̄+ bĒ+ cR̄, where a, b
and c are integers. We may assume Γ̄ 6= R̄, thus Γ̄ · R̄ ≥ 0, implying c ≤ 0. Furthermore,
Γ̄ · Ē ≥ 0, hence a ≥ 0. Using (7), one has Γ̄2 = 6a2 − 2c2 + 28ab = −2. Assume by
contradiction Γ̄ · F̄ = Γ̄ · (D̄− R̄) = 6a+ 14b+ 2c ≤ −2. Multiplying this inequality with
2a ≥ 0 and substituting in the equality Γ̄2 = −2 we obtain that (a+c)2+2a2+2a−1 ≥ 0,
implying a = 0 and c ∈ {−1, 1}. If, say c = 1, then Γ̄ ≡ R̄ + bĒ. From the assumption
Γ̄ · F̄ ≤ −2, we obtain that b ≤ −1, hence Γ̄ · H̄ < 0, thus Γ̄ cannot be effective, a
contradiction. The case c = −1, implying b ≤ 0 is ruled out similarly

Thus F̄ is a nef curve. To conclude that F̄ is very ample, we invoke [SD]. It
suffices to rule out the existence of a divisor class M̄ ∈ Pic(Y ) such that (i) M̄2 = 0
and M̄ · F̄ ∈ {1, 2}, or satisfying (ii) M̄2 = −2 and M̄ · F̄ = 0. We discuss only (i), the
remaining case being similar. Write M̄ = aD̄ + bĒ + cR̄. Since M̄2 = 0, from (7) we
obtain 3a2 − c2 + 14ab = 0, whereas from M̄ · F̄ = 2, we obtain that 3a + 7b + c = 1.
Eliminating c, we find 6a2 + a(28b − 6) + 49b2 − 14b + 1 = 0. Since the discriminant of
this equation is negative, this case is excluded. We conclude that F̄ is very ample. �

We fix a general polarized K3 surface [Y, H̄] ∈ FΛ
5 , while keeping the notation

from above. Choose a smooth divisor Q̄ ∈
∣∣OY (2H̄)

∣∣ and consider the double cover

(8) σ : S → Y

branched along Q̄. We denote byQ ⊆ S the ramification divisor of σ, hence σ∗(Q̄) = 2Q.
We set H := σ∗(H̄), where H̄ ∈

∣∣OY (1)
∣∣ is a linear section of Y . Note that Q ∈

∣∣OS(H)
∣∣.

Proposition 6. The induced morphism ϕH : S → P6 embeds S as a canonical surface which is
the complete intersection of 4 quadrics in P6. More precisely, S is a quadratic section of the cone
CY ⊆ P6 over the K3 surface Y ⊆ P5.

Proof. From the adjunction formula we find ωS = OS(Q) = OS(H). Furthermore, we
have σ∗(OS) = OY ⊕OY (−H), hence from the projection formula we can write

H0
(
S,OS(H)

) ∼= H0
(
Y,OY (H̄)

)
⊕H0

(
Y,OY

) ∼= H0
(
Y,OY (H̄)

)
⊕ C〈Q〉,

where recall that Q ∈
∣∣OS(H)

∣∣, as well as

H0
(
S,OS(2H)

) ∼= H0
(
Y,OY (2H̄)

)
⊕H0

(
Y,OY (H̄)

)
·Q.

Thus h0
(
S,OS(H)

)
= 6 and h0(S,OS(2H)) = h0(Y,OY (2)) + h0(Y,OY (1)) =

2 + 2H̄2 + 6 = 24. Furthermore, S ⊆ P6 is projectively normal, so h0
(
P6, IS/P6(2)

)
= 4.

Since clearly S ⊆ CY , it follows that S can be viewed as a quadratic section of the cone
CY , precisely the intersection of CY with one of the quadrics containing S not lying in
the subsystem

∣∣σ∗H0
(
P5, IY/P5(2)

)∣∣. �

We are now in a position to prove Theorem 3. We denote by Hilb15,19 the unique
component of the Hilbert scheme of curves C ⊆ P6 of genus 15 and degree 19 domi-
natingM15. A general point of Hilb15,19 corresponds to a smooth projectively normal
curve C ⊆ P6 such that the canonical surface S defined by (3) is smooth.

Proof of Theorem 3. We choose a K3 surface [Y,OY (H̄] ∈ FΛ
5 with Pic(Y ) = Z〈H̄, F̄ , R̄〉,

where the intersection matrix is given as in Definition 4. The restriction map

H0
(
Y,OY (2H̄)

)
→ H0

(
R̄,OR̄(2H̄)

)
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being surjective, we can choose a smooth curve Q̄ ∈
∣∣OY (2H̄)

∣∣ which is tangent to R̄,
that is, Q̄ · R̄ = 2y, for a point y ∈ Y . Construct the double cover σ : S → Y defined in
(8). The pull-back σ∗(R̄) is then a double cover of R̄ branched over the single point y,
hence necessarily

σ∗(R̄) = R+R′ ⊆ S,

whereR andR′ are lines on S ⊆ P6 meeting at a single point. Next, we choose a smooth
genus 3 curve F̄ ⊆ Y general in its linear system and set

C ′ := σ∗(F̄ ) ⊆ S.

Since F̄ · Q̄ = 2F̄ · H̄ = 18, we obtain that C ′ is a smooth curve of genus 14 and degree
18 endowed with the double cover C ′ → F̄ . Note that the linear system∣∣OS(C ′)

∣∣ = π∗
∣∣OY (F̄ )

∣∣
is 3-dimensional. Applying Theorem 5, since OY (F̄ ) is ample and σ is finite, we obtain
thatOS(C ′) is ample as well. Observe that C ′ ·R = F̄ · R̄ = 2. Choosing F̄ general in its
linear system, we can arrange the intersection of R and C ′ to be transverse, therefore

(9) C := C ′ +R ⊆ S ⊆ P6

is a nodal curve of genus 15 and degree 19. Note that the linear system
∣∣OS(C)

∣∣ has R
as a fixed component, and

∣∣OS(C)
∣∣ = R+ π∗

∣∣OY (F̄ )
∣∣.

Despite the fact that
∣∣OS(C)

∣∣ is not ample, we can complete the proof of Theorem
3. Indeed, let us pick a general family

{
[Ct ↪→ P6]

}
t∈T ⊆ Hilb15,19 over a pointed base

(T, o), whose fibre over o ∈ T is the curve C described in (9). If St = Bs
∣∣ICt/P6(2)

∣∣, as-
sume the line bundleOSt(Ct) is not ample for each t ∈ T . As we have already observed,
we may assume that OSt(Ct) is nef for all t ∈ T and we denote by ft : St → P2 the map
induced by the linear system

∣∣OSt(Ct)
∣∣ for t ∈ T \ {o}. The limiting map of this family

fo : S → P2,

satisfies then f∗o
(
OP2(1)

)
= OS(R+C ′) and is induced by a subspace of sections σ∗(V ),

where V ⊆ H0
(
Y,OY (F̄ )

)
is 3-dimensional. By assumption, there exists a family of

curves Γt ⊆ St such that Γt · Ct = 0. We denote by Γo ⊆ S the limiting curve of Γt,
therefore Γo · (C ′ +R) = 0. We write Γo = G+mR, where m ≥ 0 and G ⊆ S is a curve
not having R in its support. From the adjunction formula, we find R2 = −3. Since
R · C ′ = 2, it follows that R · (C ′ + R) = 1, thus G 6= 0. Furthermore, the morphism fo
contracts G, which we argue, leads to a contradiction. Indeed, fo admits a factorization

S
σ //

fo

$$
Y

|F̄ | // P3 p // P2

where p : P3 → P2 is the linear projection corresponding to V ⊆ H0
(
Y,OY (F̄ )

)
. Since σ

is finite and |F̄ | is very ample, it follows that σ(G) must be contracted by the projection
p, that is, σ(C) is a line in P3. By inspecting the intersection matrix (7) of Pic(Y ) we
immediately see that no such line can exist on Y , which finishes the proof. �
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2. THE UNIRULEDNESS OF THE BOUNDARY DIVISOR ∆0 INM16

We now lift the construction discussed above fromM15 to the moduli spaceM15,2

of 2-pointed stable curves of genus 15 and eventually to M16. Recall that Hilb15,19 is
the component of the Hilbert scheme of curves C ⊆ P6 of genus 15 and degree 19
dominatingM15. We denote by Hilb2,2,2,2 the Hilbert scheme of complete intersections
of 4 quadrics in P6. Since Hilb15,19//PGL(7) is birational to the Hurwitz spaceH15,9, we
have a rational map

(10) χ : H15,9 99K Hilb2,2,2,2//PGL(7), [C,A] 7→ S := Bs
∣∣IC/P6(2)

∣∣ mod PGL(7),

where the canonical surface S ⊆ P6 is defined by (3). We set

(11) S := χ(H15,9).

The general fibre of the morphism χ : H15,9 → S consists of finitely many linear
nonempty open subsets of linear systems

∣∣OS(C)
∣∣, where C ⊆ S ⊆ P6 is a smooth

curve of genus 15 and degree 19. In particular, S is an irreducible variety of dimension
41 = dim(H15,9) − 2. Recall that π : H15,9 → M15 denotes the forgetful map. The next
observation will prove to be useful in several moduli counts.

Proposition 7. If S ′ is an irreducible subvariety of S of dimension dim(S ′) ≤ 39, then
π
(
χ−1(S ′)

)
is a proper subvariety ofM15.

Proof. Since dim
(
χ−1(S ′)

)
≤ dim(S ′) + 2 ≤ 41 = dim(M15)− 1, the claim follows. �

Let us now take a general curve C of genus 15 and consider the correspondence

Σ :=
{

(A, x+ y) ∈W 1
9 (C)× C2 : H0(C,A(−x− y)) 6= 0

}
,

endowed with the projections π1 : Σ→W 1
9 (C) and π2 : Σ→ C2 respectively. Here C2 is

the second symmetric product of C. It follows that Σ is an irreducible surface and that
π2 is generically finite. Indeed, for a general point 2x ∈ C2, we can invoke for instance
[EH, Theorem 1.1] to conclude that π−1

2 (2x) is finite. The fibre π−1
1 (A) is irreducible

whenever A has simple ramification.

We now fix a general element [C, x, y] ∈ M15,2. Then there exist finitely many
pencils A ∈ W 1

9 (C) containing both points x and y in the same fibre. Each of these
pencils A may be assumed to be base point free with simple ramification and general
enough such that L := ωC ⊗A∨ ∈W 6

19(C) is very ample and in the embedding

ϕL : C ↪→ P6

the curve C lies on precisely 4 independent quadrics intersecting in a smooth canonical
surface S defined by (3).

Proposition 8. With the notation above, if h0
(
C,A(−x− y)

)
= 1, then dim

∣∣I{x,y}(C)
∣∣ = 1.

Proof. It follows from the commutativity of the following diagram, keeping in mind
that h0(S,OS(C)) = 3 and that the first column is injective.

0 // H0
(
S, I{x,y}(C)

)
//

��

H0
(
S,OS(C)

)
res

��

// H0
(
O{x,y}(C)

)
=

��
0 // H0

(
C,A(−x− y)

)
// H0(C,A) // H0

(
O{x,y}(C)

)
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�

We now introduce the moduli map of the pencil introduced in Proposition 8

(12) m : P =
∣∣I{x,y}(C)

∣∣→M15,2,

where the marked points of the pencil are the base points x and y respectively. Com-
posing m with the clutching mapM15,2 � ∆0 ⊆ M16, we obtain a pencil ξ : P → ∆0.
We set

(13) R := m∗(P) ⊆M15,2 and Γ := ξ∗(P) ⊆M16.

Proposition 9. Every curve inside the pencil Γ ⊆ M16 corresponds to a nodal curve which
does not belong to any of the boundary divisors ∆1, . . . ,∆8 .

Proof. Keeping the notation above, for a generic choice of (A, x+ y) ∈ Σ, the pencil

P :=
∣∣I{x,y}(C)

∣∣
corresponds to a generic line inside

∣∣OS(C))
∣∣. As pointed out in Theorem 3,

∣∣OS(C)
∣∣ is

base point free and ample on the surface S defined by (3), giving rise to the finite map

f : S → P2 =
∣∣OS(C)

∣∣∨
considered in (5). We show that the inverse image P under f of a general pencil of lines
in
∣∣OS(C)

∣∣∨ consists only of integral curves with at most one node. This is achieved in
several steps.

(i) Since OS(C) is ample, we can apply [BL, Theorem A] and conclude that each curve
C ′ ∈

∣∣OS(C)
∣∣ is 2-connected, that is, it cannot be written as a sum of effective divisors

C ′ = F + M , where F ·M ≤ 1. This implies that
∣∣OS(C)

∣∣ does not contain any tree-
like curves, that is, curves for which its irreducible components meet at a single point,
which furthermore is a node.

(ii) The essential step in our argument involves proving that P contains no curves with
singularities worse than nodes. Precisely, we show that

∣∣OS(C)
∣∣ contains only finitely

many non-nodal curves. Note first that the branch curve B ⊆ P2 of f is reduced, else we
contradict the assumption that the pencil A ∈W 1

9 (C) on C has simple ramification. We
introduce the discriminant curve

J :=
{
C ′ ∈

∣∣OS(C)
∣∣ : C ′ is singular

}
.

The dual curve B∨ is contained in J . Since B is reduced, the general tangent line
to B is tangent at exactly one point p ∈ B and with multiplicity 2. A standard local cal-
culation shows that f∗

(
Tp(B)

)
∈ |OS(C)| is a one-nodal curve, singular at exactly one

point z ∈ f−1(p) such that the differential dfz : Tz(S)→ Tp(P2) is not an isomorphism.

The complement J \ B∨ is the (possibly empty) union of (some of) the pencils
Pb, where b ∈ Bsing and Pb is defined as the pull-back by f of the pencil of lines in P2

through b. In view of the numerical situation at hand (that is, C2 = 9), the geometric
possibilities for such a pencil

Pb ⊆ J
are quite constrained. Since f is finite, the pencil Pb has no fixed components. Let
Z := Bs(Pb). Then a generalC ′ ∈ Pb is integral and smooth alongC ′\Z. Moreover, each
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C ′ ∈ Pb is singular at a given point z ∈ Z and a general suchC ′ has multiplicitym ≥ 2 at
z. Necessarily, the differential dfz : Tz(S)→ Tp(P2) is zero. Since m2 ≤ C2 = (C ′)2 = 9,
we find m ∈ {2, 3}. Let

σ : S′ → S

be the blow-up of S at z and denote by E ⊆ S′ the exceptional divisor. The pencil∣∣OS′(σ∗C −mE)
∣∣ is the strict transform of Pb. Observe that the restriction map

r : H0
(
S′,OS′(σ∗C −mE)

)
→ H0

(
E,OE(m)

)
is not zero, hence Im(r) defines a linear series pb on E ∼= P1. Either pb is a pencil or a
constant divisor of degree m ∈ {2, 3}. We now list the possibilities for the pencil Pb.

(P1) If m = 3, then supp(Z) = {z}. Every curve C ′ ∈ Pb has a triple point at z.
(P2) If m = 2, then either each C ′ ∈ Pb has a node, or else, each C ′ ∈ Pb has a cusp at z.
Indeed, if pb is a pencil on E, then each C ′ ∈ Pb is nodal at z. If pb = {u1 + u2} consists
of a fixed divisor, then Pb contains a unique curve Cz having multiplicity at least 3 at z.
If u1 6= u2, all other curves C ′ ∈ Pb \ {Cz} are nodal at z, whereas if u1 = u2, then all
such C ′ are cuspidal at z.

Both possibilities (P1) and (P2) can be ruled out by a parameter count that con-
tradicts the generality of the pair (C,A) ∈ H15,9 we started with. We first rule out
(P1). Assume C ′ ∈ Pb has a triple point at z and no further singularities and denote by
ν : C̄ → C ′ the normalization. Set {z1, z2, z3} = ν−1(z) and Ā := ν∗

(
OC′(C ′)) ∈ W 1

9 (C̄).
Since Ā is induced from a pencil of curves with a triple point at z, it follows that∣∣Ā(−3z1 − 3z2 − 3z3)

∣∣ 6= ∅, therefore for degree reason Ā = OC̄(3z1 + 3z2 + 3z3). We
denote by Htriple

12,9 the Hurwitz space classifying degree 9 covers C̄ → P1 having a divi-
sor of the form 3(z1 + z2 + z3) in a fibre, where C̄ is of genus 12. Then Htriple

12,9 is pure of
dimension dim(M12) − 1 = 32. Let Y1 be the parameter space of pairs (S,C ′), where
S ⊆ P6 is a smooth complete intersection of 4 quadrics and C ′ ⊆ S is an integral curve
of arithmetic genus 15 with a triple point as described by (P1). Let

S π1←−−−− Y1
π2−−−−→ Htriple

12,9

be the projections given by π1

(
[S,C ′]

)
:= [S] and π2

(
[S,C ′]) := [C̄, Ā] respectively. With

the notation above, from the adjunction formula ν∗(OC′(1)) = ωC̄(−z1 − z2 − z3). The
fibre π−1

2

(
π2([S,C ′])

)
corresponds then to the choice of a 7-dimensional space of sections

V ⊆ H0
(
C̄, ωC̄(−z1 − z2 − z3)

)
satisfying dim

(
V ∩ H0

(
ωC̄(−2z1 − 2z2 − 2z3)

))
≥ 6.

Since h0
(
ωC̄(−2z1 − 2z2 − 2z3)

)
= 6, it follows that

V

H0
(
ωC̄(−2z1 − 2z2 − 2z3)

) ∈ P
( H0

(
ωC̄(−z1 − z2 − z3)

)
H0
(
ωC̄(−2z1 − 2z2 − 2z3)

)) ∼= P2.

Therefore dim(Y1) = dim(Htriple
12,9 ) + 2 = 34 ≤ 39, so we can invoke Proposition 7 to

conclude that π1(Y1) 6= S and rule out possibility (P1).

Next we rule out possibility (P2), focusing on the case when each C ′ ∈ Pb is cus-
pidal at z. Passing to the normalization ν : C̄ → C ′, setting z̄ := ν−1(z) we obtain that
Ā := ν∗(OC′(C ′) ∈ W 1

9 (C̄) verifies h0
(
C̄, Ā(−4z̄)

)
≥ 1. Let Hfour

14,9 be the Hurwitz space
classifying degree 9 covers C̄ → P1 containing a divisor of type 4z̄ in one of its fibres
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and where C̄ has genus 14. Then Hfour
14,9 is irreducible of dimension 39 = dim(M14). Let

Y2 be the parameter space of pairs (S,C ′), where S ⊆ P6 is a smooth complete intersec-
tion of 4 quadrics and C ′ ⊆ S is an integral curve of arithmetic genus 15 with a cusp at
z as described by (P2). We consider the projections

S π1←−−−− Y2
π2−−−−→ Hfour

14,9

given by π1

(
[S,C ′]

)
:= [S] and π2

(
[S,C ′]) := [C̄, Ā] respectively. Observe that π2 is

birational onto its image. Indeed, given [C̄, Ā] ∈ π2(Y2), then we denote byC ′ the image
of the map ϕωC̄(2y)⊗Ā∨ : C̄ → P6, in which case the canonical surface S is recovered by
(3). We conclude by Proposition 7 again that π1(Y2) is not dense in S. The final case
when all curves C ′ ∈ Pb are (at least) nodal at z is ruled out analogously. �

Before stating our next result, recall that one sets δi := [∆i] ∈ CH1(Mg) for
0 ≤ i ≤ bg2c. We denote as usual by λ ∈ CH1(Mg) the Hodge class. Recall also the
formula [HM] for the canonical class ofMg:

(14) KMg
≡ 13λ− 2δ0 − 3δ1 − 2δ2 − · · · − 2δb g

2
c ∈ CH1(Mg).

Proposition 10. The rational curve Γ is a sweeping pencil for the boundary divisor ∆0. Its
intersection numbers with the standard generators of CH1(M16) are as follows:

Γ · λ = 22, Γ · δ0 = 143, Γ · δj = 0 for j = 2, . . . , 8.

Proof. First we construct a fibration whose moduli map is precisely the rational curve
m : P1 →M15,2 considered in (12). We consider the curve C ⊆ S and observe that since
OC(C) ∼= A ∈ W 1

9 (C), we have that C2 = 9, that is, the pencil
∣∣I{x,y}(C)

∣∣ has precisely
9 base points, namely x, y, as well as the 7 further points lying in the same fibre of the
pencil |A| as x and y. We consider the blow-up surface ε : S̃ = Bl9(S) → S at these 9
points. It comes equipped with a fibration

π : S̃ → P1,

as well as with two sections Ex, Ey ⊆ S̃ corresponding to the exceptional divisors at x
and y respectively.

In order to compute the intersection numbers of R = m(P) with the tautological
classes on M15,2, we use for instance [Tan]. The subscript indicates the moduli space
on which the intersection number is computed.

(15)
(
R · λ

)
M15,2

= χ(S̃,O
S̃

) + g − 1 = h2(S,OS) + g = h0(S,OS(1)) + 15 = 22.

Here we have used H1(S̃,O
S̃

) = H1(S,OS) = 0, as well as the fact that S is a canonical
surface, hence ωS = OS(1), therefore h2(S̃,O

S̃
) = h2(S,OS) = 7. Furthermore, recalling

that all curves in the fibres of m are irreducible, we find via [Tan] that(
R · δ0

)
M15,2

= c2(S̃) + 4(g − 1) = c2(S̃) + 56.

From the Euler formula, c2(S̃) = 12χ(S̃,O
S̃

) − K2
S̃

. We have already computed

that χ(S̃,O
S̃

) = 8, whereas K2
S̃

= K2
S − 9 = deg(S)− 9 = 7, for S is an intersection of 4

quadrics. Thus c2(S̃) = 12 · 8− 7 = 89, leading to
(
R · δ0

)
M15,2

= 89 + 4 · 14 = 145.
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If we denote by ψx, ψy ∈ CH1(M15,2) the cotangent classes corresponding to the
marked points labelled by x and y respectively, we compute furthermore

R · ψx = −E2
x = 1 and R · ψy = −E2

y = 1.

We now pass to the pencil ξ : P1 →M16 obtained from m by identifying pointwise the
disjoint sections Ex and Ey on the surface S̃. First, using (15) we observe that

Γ · λ = ξ(P) · λ =
(
R · λ

)
M15,2

= 22.

Furthermore, using Proposition 9 we conclude that Γ · δi = 0 for i = 1, . . . , 8. Finally,
invoking for instance [CR3, page 271], we find that

Γ · δ0 =
(
R · δ0

)
M15,2

−
(
R · ψx

)
M15,2

−
(
R · ψy

)
M15,2

= 145− 2 = 143.

�

Proof of Theorem 2. Since the image of m passes through a general point ofM15,2, the ra-
tional curve Γ ⊆M16 constructed in Proposition 10 is a sweeping curve for the bound-
ary divisor ∆0. Using the expression (14) for the canonical divisor ofM16, we compute
Γ ·KM16

= 13 Γ · λ− 2 Γ · δ0 = 13 · 22− 2 · 143 = 0. Also Γ ·∆0 = 143 > 0. �

3. THE SLOPE OFM16.

The slope of an effective divisor D on the moduli space Mg not containing any
boundary divisor ∆i in its support is defined as the quantity s(D) := a

mini≥0bi
, where

[D] = aλ −
∑b g

2
c

i=0 biδi ∈ CH1(Mg), with a, bi ≥ 0. Then the slope s(Mg) of the moduli
spaceMg is defined as the infimum of the slopes s(D) over such effective divisors D.

Corollary 11. We have that s(M16) ≥ 13
2 .

Proof. For any effective divisorD onM16 containing no boundary divisor in its support,
we may assume that the curve Γ constructed in Proposition 10 does not lie inside D,
hence Γ·D ≥ 0. Writing [D] = aλ−

∑8
i=0 biδi, using Theorem 2 we obtain a

b0
≥ Γ·δ0

Γ·λ = 13
2 .

Furthermore, using [FP, Theorem 1.4], we conclude that for this divisor D we have
bi ≥ b0 for i = 1, . . . , 8, that is, s(D) = a

b0
. �

Final remarks: Our results establish thatM16 is not of general type. Showing that the
Kodaira dimension ofM16 is non-negative amounts to constructing an effective divisor
D onM16 havind slope s(D) ≤ s(KM16

) = 13
2 . Currently the known effective divisor

on M16 of smallest slope is the closure in M16 of the Koszul divisor Z16 consisting of
curves C having a linear system L ∈ W 7

21(C) such that the image curve ϕL : C ↪→ P6

is ideal-theoretically not cut out by quadrics. It is shown in [F1, Theorem 1.1] that Z16

is an effective divisor onM16 and s(Z16) = 407
61 = 6.705.... In a related direction, it is

shown in [F2] that the canonical class of the space of admissible coversH16,9 is effective.
Note that one has a generically finite coverH16,9 →M16.

Soon after the appearance of the first version of this paper, it has been pointed
out by Agostini and Barros [AB] that our proof of Theorem 2 yields in fact the bound
κ(M16) ≤ dim(M16)−2. Indeed, consider the parameter spaceZ of elements [C,A, x, y],
where C is a genus 15 irreducible nodal curve, A ∈W 1

9 (C) and x, y ∈ C are points such
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that
∣∣A(−x − y)

∣∣ 6= 0. As we explain in this paper, Z has the structure of a P1-bundle
and one has a dominant morphism v : Z → ∆0 given by [C,A, x, y] 7→ [C/x ∼ y]. In
Proposition 10 we establish that the restriction of v∗(KM16

) to the general fibre of this
fibration is trivial. Accordingly, κ(M16) ≤ dim(Z)− 1 = dim(M16)− 2.
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[Ser] E. Sernesi, L’unirazionalitá della varietá dei moduli delle curve di genere 12, Annali della Scuola Nor-

male Superiore di Pisa 8 (1981), 405–439.
[Sev] F. Severi, Sulla classificazione delle curve algebriche e sul teorema d’esistenza di Riemann, Rendiconti

della Reale Accademia Naz. Lincei 24 (1915), 877–888.
[Tan] S.-L. Tan, On the slopes of the moduli space of curves, International Journal of Mathematics 9 (1998),

119–127.
[Ts] D. Tseng, On the slope of the moduli space of genus 15 and 16 curves, arXiv:1905.00449.
[Ve] A. Verra, The unirationality of the moduli space of curves of genus≤ 14, Compositio Mathematica 141

(2005), 1425–1444.
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