\overline{M}_{16} IS UNIRULED

GAVRIL FARKAS AND ALESSANDRO VERRA

Abstract. We prove that the moduli space of curves of genus 16 is uniruled.

The problem of determining the nature of the moduli space \overline{M}_g of stable curves of genus g has long been one of the key questions in the field, motivating important developments in moduli theory. Severi [Sev] observed that \overline{M}_g is unirational for $g \leq 10$, see [AC] for a modern presentation. Much later, in the celebrated series of papers [HM], [H], [EH], Harris, Mumford and Eisenbud showed that \overline{M}_g is of general type for $g \geq 24$. Very recently, it has been showed in [FJP] that both \overline{M}_{22} and \overline{M}_{23} are of general type. On the other hand, due to work of Sernesi [Ser], Chang-Ran [CR1], [CR2] and Verra [Ve] it is known that \overline{M}_g is unirational also for $11 \leq g \leq 14$. Finally, Bruno and Verra [BV] proved that \overline{M}_{15} is rationally connected. Our result is the following:

Theorem 1. The moduli space \overline{M}_{16} of stable curves of genus 16 is uniruled.

Note that 16 is the highest genus for which it is known that \overline{M}_{16} is not of general type. We further refer to Tseng’s recent paper [Ts] for further details on the convoluted history of determining the Kodaira dimension of \overline{M}_{16}.

Before explaining our strategy of proving Theorem 1, recall the standard notation $\Delta_0, \ldots, \Delta_{\lfloor \frac{2g}{3} \rfloor}$ for the irreducible boundary divisors on \overline{M}_g, see [HM]. Here Δ_0 denotes the closure in \overline{M}_g of the locus of irreducible 1-nodal curves of arithmetic genus g. Our approach relies on the explicit uniruled parametrization of \overline{M}_{15} found by Bruno and Verra [BV]. Their work establishes that through a general point of \overline{M}_{15} there passes not only a rational curve, but in fact a rational surface. This extra degree of freedom, yields a uniruled parametrization of $\overline{M}_{15,2}$, therefore also a parametrization the boundary divisor Δ_0 inside \overline{M}_{16}. We show the following:

Theorem 2. The boundary divisor Δ_0 of \overline{M}_{16} is uniruled and swept by a family of rational curves, whose general member $\Gamma \subseteq \Delta_0$ satisfies $\Gamma \cdot K_{\overline{M}_{16}} = 0$ and $\Gamma \cdot \Delta_0 > 0$.

Assuming Theorem 2, we conclude that \overline{M}_{16} cannot be of general type, thus establishing Theorem 1. To that end, note first that in any effective representation of the canonical divisor

$$K_{\overline{M}_{16}} \equiv \alpha \cdot \Delta_0 + D,$$

where $\alpha \in \mathbb{Q}_{>0}$ and D is an effective \mathbb{Q}-divisor on \overline{M}_{16} not containing Δ_0 in its support, we must have $\alpha = 0$. Indeed, we can choose the curve Γ such that $\Gamma \not\subseteq D$, then we write

$$0 = \Gamma \cdot K_{\overline{M}_{16}} = \alpha \Gamma \cdot \Delta_0 + \Gamma \cdot D \geq \alpha \Gamma \cdot \Delta_0 \geq 0,$$

hence $\alpha = 0$. Furthermore, since the singularities of \overline{M}_g do not impose adjunction conditions [HM, Theorem 1], \overline{M}_g is a variety of general type for a given $g \geq 4$ if and
only if the canonical class \(K_{\overline{M}_g} \) is a big divisor class, that is, it can be written as
\[
K_{\overline{M}_g} \equiv A + E,
\]
where \(A \) is an ample \(\mathbb{Q} \)-divisor and \(E \) is an effective \(\mathbb{Q} \)-divisor respectively. Assume that \(K_{\overline{M}_{16}} \) can be written like in (1). It has already been observed that \(\Delta_0 \not\in \text{supp}(E) \), in particular \(\Gamma \cdot E \geq 0 \). Using Kleiman’s ampleness criterion, \(\Gamma \cdot A > 0 \), which yields the immediate contradiction \(0 = \Gamma \cdot K_{\overline{M}_{16}} = \Gamma \cdot A + \Gamma \cdot E \geq \Gamma \cdot A > 0 \).

We are left therefore with proving Theorem 2, which is what we do in the rest of the paper. The rational curve \(\Gamma \) constructed in Theorem 2 is the moduli curve corresponding to an appropriate pencil of curves of genus 15 on a certain canonical surface \(S \subseteq \mathbb{P}^6 \). Establishing that this pencil can be chosen in such a way to contain only stable curves will take up most of Section 2.

1. THE BRUNO-VERRA PARAMETRIZATION OF \(\overline{M}_{15} \)

The parametrization of the boundary divisor \(\Delta_0 \) of \(\overline{M}_{16} \) and the proof of Theorem 2 uses several results from [BV], which we now recall. We denote by \(\mathcal{H}_{15,9} \) the Hurwitz space parametrizing degree 9 covers \(C \to \mathbb{P}^1 \) having simple ramification, where \(C \) is a smooth curve of genus 15. Then \(\mathcal{H}_{15,9} \) is birational to the parameter space \(\mathcal{G}_{15,9}^1 \) classifying pairs \((C, A)\), where \([C] \in \overline{M}_{15} \) and \(A \in W_9^1(C) \) is a pencil. By residduation, \(\mathcal{G}_{15,9}^1 \) is isomorphic to the parameter space \(\mathcal{G}_{15,19}^6 \) of pairs \([C, L]\), where \(C \) is a smooth curve of genus 15 and \(L \in W_{19}^6(C) \). Note that the general fibre of the forgetful map
\[
\pi : \mathcal{H}_{15,9} \to \overline{M}_{15}, \quad [C, A] \mapsto [C]
\]
is 1-dimensional. Clearly, \(\mathcal{H}_{15,9} \) and thus \(\mathcal{G}_{15,19}^6 \) is irreducible.

We pick a general element \([C, L] \in \mathcal{G}_{15,19}^6\), in particular \(L \) is very ample and \(h^0(C, L) = 7 \). We set \(A := \omega_C \otimes L^\vee \in W_9^1(C) \). We may assume that \(A \) is base point free and the pencil \([A]\) has simple ramification. We consider the multiplication map
\[
\phi_L : \text{Sym}^2 H^0(C, L) \to H^0(C, L^2).
\]
Since \(C \) is Petri general, \(h^1(C, L^2) = 0 \), therefore \(h^0(C, L^2) = 2 \cdot 19 + 1 - 15 = 24 \). Furthermore, via a degeneration argument it is shown in [BV, Theorem 3.11], that for a general choice of \((C, L)\), the map \(\phi_L \) is surjective, hence \(h^0(\mathbb{P}^6, \mathcal{I}_C/\mathbb{P}^6(2)) = \dim(\ker(\phi_L)) = 4 \), that is, the degree 19 curve \(C \subseteq \mathbb{P}^6 \) lies on precisely 4 independent quadrics. We let
\[
S := \text{Bs}[\mathcal{I}_C/\mathbb{P}^6(2)]
\]
be the base locus of the system of quadrics containing \(C \). It is further established in [BV, Theorem 3.11] that under our generality assumptions, \(S \) is a smooth surface. From the adjunction formula it follows that \(\omega_S = \mathcal{O}_S(1) \), that is, \(S \) is a canonical surface. We write down the exact sequence
\[
0 \to \mathcal{O}_S \to \mathcal{O}_{S}(C) \to \mathcal{O}_{C}(C) \to 0.
\]
From the adjunction formula \(\mathcal{O}_C(C) \cong \omega_C \otimes \omega_S^{\vee} \mid_C = \omega_C \otimes L^\vee = A \in W_9^1(C) \). Since \(S \) is a regular surface, by taking cohomology in (4), we obtain
\[
h^0(S, \mathcal{O}_{S}(C)) = h^0(S, \mathcal{O}_{S}) + h^0(C, A) = 3.
\]
Observe also from the sequence (4) that the linear system \(|O_S(C)| \) is base point free, for \(|O_C(C)| = |A| \) is so. This brings to an end our summary of the results from [BV].

In what follows, we denote by
\[
(5) \\
f: S \to \mathbb{P}^2 = |O_S(C)|^Y
\]
the induced map. For what we intend to do, it is important to show that \(f \) is a finite map, or equivalently, that \(O_S(C) \) is ample.

Theorem 3. For a general pair \((C, A) \in \mathcal{H}_{15,9}\), the line bundle \(O_S(C) \) is ample.

In order to prove Theorem 3 it suffices to exhibit a single pair \((C, A) \in \mathcal{H}_{15,9}\) for which the corresponding map \(f: S \to \mathbb{P}^2 \) given by (5) is finite. We shall realize the canonical surface \(S \subseteq \mathbb{P}^6 \) as the double cover of a suitable \(K3 \) surface \(Y \subseteq \mathbb{P}^5 \) of genus 5 (that is, of degree 8). It will prove advantageous to consider \(K3 \) surfaces having a certain Picard lattice of rank 3. We first discuss the geometry of such \(K3 \) surfaces.

Definition 4. We denote by \(\Lambda \) the even lattice of signature \((1, 2)\) generated by elements \(H, F \) and \(R \) having the following intersection matrix:
\[
\begin{pmatrix}
H^2 & H \cdot F & H \cdot R \\
F \cdot H & F^2 & F \cdot R \\
R \cdot H & R \cdot F & R^2
\end{pmatrix} = \begin{pmatrix}
8 & 9 & 1 \\
9 & 4 & 2 \\
1 & 2 & -2
\end{pmatrix}.
\]

We denote by \(\mathcal{F}_5^\Lambda \) the moduli space of polarized \(K3 \) surfaces \([Y, H]\), where \(H^2 = 8 \), admitting a primitive embedding \(\Lambda \hookrightarrow \text{Pic}(Y) \), such that the classes \(H, F, R \) correspond to curve classes on \(Y \) which we denote by the same symbol. Furthermore, \(H \in \text{Pic}(Y) \) is assumed to be ample.

For details on the construction of the moduli space \(\mathcal{F}_5^\Lambda \) we refer to [Do, Section 3]. It follows from loc.cit. that \(\mathcal{F}_5^\Lambda \) is an irreducible variety of dimension \(17 = 20 - \text{rk}(\Lambda) \). Let us now fix a general element \([Y, H]\), where \(\text{Pic}(Y) \cong \mathbb{Z}(H, F, R) \) as in Definition 4. Then \(O_Y(\bar{H}) \) is very ample and we denote by
\[
(6) \\
\varphi_H: Y \hookrightarrow \mathbb{P}^5
\]
the embedding induced by this linear system. Observe that \(h^0(\mathbb{P}^5, \mathcal{I}_Y(\mathbb{P}^5(2))) = 3 \) and that \(Y = Bs[\mathcal{I}_Y(\mathbb{P}^5(2))] \) is in fact a complete intersection of three quadrics. Note that \(F \subseteq Y \) is a curve of genus 3, whereas \(R \subseteq Y \) is a smooth rational curve embedded as a line under the map \(\varphi_H \). The class \(E := 2\bar{H} - F \) satisfies \(E^2 = 0 \). Since \(E \cdot H = 7 > 0 \), it follows that \(|E| \) is an elliptic pencil and furthermore \(E \cdot R = 0 \). Setting also
\[
\bar{D} := 2\bar{H} + R - E \in \text{Pic}(Y),
\]
we compute \(\bar{D}^2 = 6, \bar{D} \cdot E = 14 \) and \(\bar{D} \cdot R = 0 \). In the basis \((\bar{D}, E, R)\) of \(\text{Pic}(Y) \), the intersection form on \(Y \) is described by the following simpler matrix:
\[
(7) \\
\begin{pmatrix}
\bar{D}^2 & \bar{D} \cdot E & \bar{D} \cdot R \\
E \cdot \bar{D} & E^2 & E \cdot R \\
R \cdot \bar{D} & R \cdot E & R^2
\end{pmatrix} = \begin{pmatrix}
6 & 14 & 0 \\
14 & 0 & 0 \\
0 & 0 & -2
\end{pmatrix}.
\]

On our way to proving Theorem 3, we establish the following result:

Proposition 5. The line bundle \(O_Y(\bar{F}) \) is very ample.
Proof. We first claim that F is nef. Since $F^2 = 4 > 0$, it suffices to check that for any smooth rational curve $\Gamma \subseteq Y$, one has $\Gamma \cdot F \geq 0$. We write $\Gamma = aD + bE + cR$, where a, b and c are integers. We may assume $\Gamma \neq R$, thus $\Gamma \cdot R \geq 0$, implying $c \leq 0$. Furthermore, $\Gamma \cdot E \geq 0$, hence $a \geq 0$. Using (7), one has $\Gamma^2 = 6a^2 - 2c^2 + 28ab = -2$. Assume by contradiction $\Gamma \cdot F = \Gamma \cdot (D - R) = 6a + 14b + 2c \leq -2$. Multiplying this inequality with $2a \geq 0$ and substituting in the equality $\Gamma^2 = -2$ we obtain that $(a + c)^2 + 2a^2 + 2a - 1 \geq 0$, implying $a = 0$ and $c \in \{-1, 1\}$. If, say $c = 1$, then $\Gamma \equiv R + bE$. From the assumption $\Gamma \cdot F \leq -2$, we obtain that $b \leq -1$, hence $\Gamma \cdot H < 0$, thus Γ cannot be effective, a contradiction. The case $c = -1$, implying $b \leq 0$ is ruled out similarly.

Thus F is a nef curve. To conclude that F is very ample, we invoke [SD]. It suffices to rule out the existence of a divisor class $M \in \text{Pic}(Y)$ such that (i) $M^2 = 0$ and $M \cdot F \in \{1, 2\}$, or satisfying (ii) $M^2 = -2$ and $M \cdot F = 0$. We discuss only (i), the remaining case being similar. Write $M = aD + bE + cR$. Since $M^2 = 0$, from (7) we obtain $3a^2 - c^2 + 14ab = 0$, whereas from $M \cdot F = 2$, we obtain that $3a + 7b + c = 1$. Eliminating c, we find $6a^2 + a(28b - 6) + 49b^2 - 14b + 1 = 0$. Since the discriminant of this equation is negative, this case is excluded. We conclude that F is very ample. □

We fix a general polarized $K3$ surface $[Y, \tilde{H}] \in \mathcal{F}_5^A$, while keeping the notation from above. Choose a smooth divisor $Q \in |O_Y(2\tilde{H})|$ and consider the double cover

$\sigma : S \to Y$

branched along Q. We denote by $Q \subseteq S$ the ramification divisor of σ, hence $\sigma^*(Q) = 2Q$. We set $H := \sigma^*(\tilde{H})$, where $H \in |O_Y(1)|$ is a linear section of Y. Note that $Q \in |O_S(H)|$.

Proposition 6. The induced morphism $\varphi_H : S \to \mathbb{P}^6$ embeds S as a canonical surface which is the complete intersection of 4 quadrics in \mathbb{P}^6. More precisely, S is a quadratic section of the cone $C_Y \subseteq \mathbb{P}^6$ over the $K3$ surface $Y \subseteq \mathbb{P}^5$.

Proof. From the adjunction formula we find $\omega_S = O_S(Q) = O_S(H)$. Furthermore, we have $\sigma_*(\omega_S) = \omega_Y \oplus \omega_Y(-H)$, hence from the projection formula we can write

$$H^0(S, O_S(H)) \cong H^0(Y, O_Y(\tilde{H})) \oplus H^0(Y, \omega_Y) \cong H^0(Y, O_Y(\tilde{H})) \oplus \mathbb{C}(Q),$$

where recall that $Q \in |O_S(H)|$, as well as

$$H^0(S, O_S(2H)) \cong H^0(Y, O_Y(2\tilde{H})) \oplus H^0(Y, O_Y(\tilde{H})) \cdot Q.$$

Thus $h^0(S, O_S(H)) = 6$ and $h^0(S, O_S(2H)) = h^0(Y, O_Y(2)) + h^0(Y, O_Y(1)) = 2 + 2\tilde{H}^2 + 6 = 24$. Furthermore, $S \subseteq \mathbb{P}^6$ is projectively normal, so $h^0(\mathbb{P}^6, \mathcal{I}_{S/\mathbb{P}^6}(2)) = 4$. Since clearly $S \subseteq C_Y$, it follows that S can be viewed as a quadratic section of the cone C_Y, precisely the intersection of C_Y with one of the quadrics containing S not lying in the subsystem $|\sigma^*H^0(\mathbb{P}^5, \mathcal{I}_{Y/\mathbb{P}^5}(2))|$. □

We are now in a position to prove Theorem 3. We denote by $\text{Hilb}_{15,19}$ the unique component of the Hilbert scheme of curves $C \subseteq \mathbb{P}^6$ of genus 15 and degree 19 dominating \mathcal{M}_{15}. A general point of $\text{Hilb}_{15,19}$ corresponds to a smooth projectively normal curve $C \subseteq \mathbb{P}^6$ such that the canonical surface S defined by (3) is smooth.

Proof of Theorem 3. We choose a $K3$ surface $[Y, O_Y(\tilde{H})] \in \mathcal{F}_5^A$ with $\text{Pic}(Y) = \mathbb{Z}\langle \tilde{H}, \tilde{F}, \tilde{R} \rangle$, where the intersection matrix is given as in Definition 4. The restriction map

$$H^0(Y, O_Y(2\tilde{H})) \to H^0(\tilde{R}, O_{\tilde{R}}(2\tilde{H}))$$
being surjective, we can choose a smooth curve $Q \in |\mathcal{O}_Y(2H)|$ which is tangent to \bar{R}, that is, $Q \cdot \bar{R} = 2y$, for a point $y \in Y$. Construct the double cover $\sigma : S \to Y$ defined in (8). The pull-back $\sigma^*(\bar{R})$ is then a double cover of \bar{R} branched over the single point y, hence necessarily

$$\sigma^*(\bar{R}) = R + R' \subseteq S,$$

where R and R' are lines on $S \subseteq \mathbb{P}^6$. Next, we choose a smooth genus 3 curve $\bar{F} \subseteq Y$ general in its linear system and set

$$C' := \sigma^*(\bar{F}) \subseteq S.$$

Since $\bar{F} \cdot \bar{Q} = 2\bar{F} \cdot \bar{H} = 18$, we obtain that C' is a smooth curve of genus 14 and degree 18 endowed with the double cover $C' \to \bar{F}$. Note that the linear system

$$|\mathcal{O}_S(C')| = \pi^*|\mathcal{O}_Y(\bar{F})|$$

is 3-dimensional. Applying Theorem 5, since $\mathcal{O}_Y(\bar{F})$ is ample and σ is finite, we obtain that $\mathcal{O}_S(C')$ is ample as well. Observe that $C' \cdot R = \bar{F} \cdot \bar{R} = 2$. Choosing \bar{F} general in its linear system, we can arrange the intersection of R and C' to be transverse, therefore

$$C := C' + R \subseteq S \subseteq \mathbb{P}^6$$

is a nodal curve of genus 15 and degree 19. Note that the linear system $|\mathcal{O}_S(C)|$ has R as a fixed component, and $|\mathcal{O}_S(C)| = R + \pi^*|\mathcal{O}_Y(\bar{F})|$.

Despite the fact that $|\mathcal{O}_S(C)|$ is not ample, we can complete the proof of Theorem 3. Indeed, let us pick a general family $\{[C_t \to \mathbb{P}^6]\}_{t \in T} \subseteq \text{Hilb}_{15,19}$ over a pointed base (T, o), whose fibre over $o \in T$ is the curve C described in (9). If $S_t = Bs|I_{C_t}/\mathbb{P}^6(2)|$, assume the line bundle $\mathcal{O}_{S_t}(C_t)$ is not ample for each $t \in T$. As we have already observed, we may assume that $\mathcal{O}_{S_t}(C_t)$ is nef for all $t \in T$ and we denote by $f_t : S_t \to \mathbb{P}^2$ the map induced by the linear system $|\mathcal{O}_{S_t}(C_t)|$ for $t \in T \setminus \{o\}$. The limiting map of this family

$$f_o : S \to \mathbb{P}^2,$$

satisfies then $f_o^*(\mathcal{O}_{\mathbb{P}^2}(1)) = \mathcal{O}_S(R + C')$ and is induced by a subspace of sections $\sigma^*(V)$, where $V \subseteq H^0(Y, \mathcal{O}_Y(\bar{F}))$ is 3-dimensional. By assumption, there exists a family of curves $\Gamma_t \subseteq S$ such that $\Gamma_t \cdot C_t = 0$. We denote by $\Gamma_o \subseteq S$ the limiting curve of Γ_t, therefore $\Gamma_o \cdot (C' + R) = 0$. We write $\Gamma_o = G + mR$, where $m \geq 0$ and $G \subseteq S$ is a curve not having R in its support. From the adjunction formula, we find $R^2 = -3$. Since $R \cdot C' = 2$, it follows that $R \cdot (C' + R) = 1$, thus $G \neq 0$. Furthermore, the morphism f_o contracts G, which we argue, leads to a contradiction. Indeed, f_o admits a factorization

$$\xymatrix{ S \ar[r]_-{\sigma} & Y \ar[r]^-{\bar{F}} & \mathbb{P}^3 \ar[r]_-p & \mathbb{P}^2 }$$

where $p : \mathbb{P}^3 \to \mathbb{P}^2$ is the linear projection corresponding to $V \subseteq H^0(Y, \mathcal{O}_Y(\bar{F}))$. Since σ is finite and $|\bar{F}|$ is very ample, it follows that $\sigma(G)$ must be contracted by the projection p, that is, $\sigma(C)$ is a line in \mathbb{P}^3. By inspecting the intersection matrix (7) of Pic(Y) we immediately see that no such line can exist on Y, which finishes the proof. \qed
2. The Uniruledness of the Boundary Divisor Δ_0 in \overline{M}_{16}

We now lift the construction discussed above from \overline{M}_{15} to the moduli space $\overline{M}_{15,2}$ of 2-pointed stable curves of genus 15 and eventually to \overline{M}_{16}. Recall that $\text{Hilb}_{15,19}$ is the component of the Hilbert scheme of curves $C \subseteq \mathbb{P}^6$ of genus 15 and degree 19 dominating \mathcal{M}_{15}. We denote by $\text{Hilb}_{2,2,2,2}$ the Hilbert scheme of complete intersections of 4 quadrics in \mathbb{P}^6. Since $\text{Hilb}_{15,19}/\mathbb{PGL}(7)$ is birational to the Hurwitz space $\mathcal{H}_{15,9}$, we have a rational map

$$\chi : \mathcal{H}_{15,9} \dashrightarrow \text{Hilb}_{2,2,2,2}/\mathbb{PGL}(7), \quad [C, A] \mapsto S := \text{Bs}[\mathcal{I}_{C/\mathbb{P}^6}(2)] \mod \mathbb{PGL}(7),$$

where the canonical surface $S \subseteq \mathbb{P}^6$ is defined by (3). We set

$$\mathcal{S} \coloneqq \chi(\mathcal{H}_{15,9}).$$

The general fibre of the morphism $\chi : \mathcal{H}_{15,9} \to S$ consists of finitely many linear nonempty open subsets of linear systems $|\mathcal{O}_S(C)|$, where $C \subseteq S \subseteq \mathbb{P}^6$ is a smooth curve of genus 15 and degree 19. In particular, S is an irreducible variety of dimension $41 = \dim(\mathcal{H}_{15,9}) - 2$. Recall that $\pi : \mathcal{H}_{15,9} \to \mathcal{M}_{15}$ denotes the forgetful map. The next observation will prove to be useful in several moduli counts.

Proposition 7. If S' is an irreducible subvariety of S of dimension $\dim(S') \leq 39$, then $\pi(\chi^{-1}(S'))$ is a proper subvariety of \mathcal{M}_{15}.

Proof. Since $\dim(\chi^{-1}(S')) \leq \dim(S') + 2 \leq 41 = \dim(\mathcal{M}_{15}) - 1$, the claim follows. \qed

Let us now take a general curve C of genus 15 and consider the correspondence

$$\Sigma := \left\{ (A, x + y) \in W^1_9(C) \times C_2 : H^0(C, A(-x - y)) \neq 0 \right\},$$

dowered with the projections $\pi_1 : \Sigma \to W^1_9(C)$ and $\pi_2 : \Sigma \to C_2$ respectively. Here C_2 is the second symmetric product of C. It follows that Σ is an irreducible surface and that π_2 is generically finite. Indeed, for a general point $2x \in C_2$, we can invoke for instance [EH, Theorem 1.1] to conclude that $\pi_2^{-1}(2x)$ is finite. The fibre $\pi_1^{-1}(A)$ is irreducible whenever A has simple ramification.

We now fix a general element $[C, x, y] \in \overline{M}_{15,2}$. Then there exist finitely many pencils $A \in W^1_9(C)$ containing both points x and y in the same fibre. Each of these pencils A may be assumed to be base point free with simple ramification and general enough such that $L := \omega_C \otimes A^\vee \in W^1_{19}(C)$ is very ample and in the embedding

$$\varphi_L : C \hookrightarrow \mathbb{P}^6$$

the curve C lies on precisely 4 independent quadrics intersecting in a smooth canonical surface S defined by (3).

Proposition 8. With the notation above, if $h^0(C, A(-x - y)) = 1$, then $\dim \left| \mathcal{I}_{x,y}(C) \right| = 1$

Proof. It follows from the commutativity of the following diagram, keeping in mind that $h^0(S, \mathcal{O}_S(C)) = 3$ and that the first column is injective.

$$\begin{array}{ccc}
0 & \longrightarrow & H^0(S, \mathcal{I}_{x,y}(C)) \\
\downarrow & & \downarrow \text{res} \\
0 & \longrightarrow & H^0(C, A(-x - y)) \\
\end{array}$$
We now introduce the moduli map of the pencil introduced in Proposition 8

\[m : \mathcal{P} = \mathcal{I}_{\{x,y\}}(C) \to \overline{\mathcal{M}}_{15,2}, \]

where the marked points of the pencil are the base points \(x \) and \(y \) respectively. Composing \(m \) with the clutching map \(\overline{\mathcal{M}}_{15,2} \to \Delta_0 \subseteq \overline{\mathcal{M}}_{16} \), we obtain a pencil \(\xi : \mathcal{P} \to \Delta_0 \).

We set

\[R := m_*(\mathcal{P}) \subseteq \overline{\mathcal{M}}_{15,2} \quad \text{and} \quad \Gamma := \xi_*(\mathcal{P}) \subseteq \overline{\mathcal{M}}_{16}. \]

Proposition 9. Every curve inside the pencil \(\Gamma \subseteq \overline{\mathcal{M}}_{16} \) corresponds to a nodal curve which does not belong to any of the boundary divisors \(\Delta_1, \ldots, \Delta_8 \).

Proof. Keeping the notation above, for a generic choice of \((A, x + y) \in \Sigma \), the pencil

\[\mathcal{P} := \mathcal{I}_{\{x,y\}}(C) \]

corresponds to a generic line inside \(|\mathcal{O}_S(C)| \). As pointed out in Theorem 3, \(|\mathcal{O}_S(C)| \) is base point free and ample on the surface \(S \) defined by (3), giving rise to the finite map

\[f : S \to \mathbb{P}^2 = |\mathcal{O}_S(C)|^\vee \]

considered in (5). We show that the inverse image \(\mathcal{P} \) under \(f \) of a general pencil of lines in \(|\mathcal{O}_S(C)|^\vee \) consists only of integral curves with at most one node. This is achieved in several steps.

i. Since \(\mathcal{O}_S(C) \) is ample, we can apply [BL, Theorem A] and conclude that each curve \(C' \in |\mathcal{O}_S(C)| \) is 2-connected, that is, it cannot be written as a sum of effective divisors \(C' = F + M \), where \(F \cdot M \leq 1 \). This implies that \(|\mathcal{O}_S(C)| \) does not contain any tree-like curves, that is, curves for which its irreducible components meet at a single point, which furthermore is a node.

ii. The essential step in our argument involves proving that \(\mathcal{P} \) contains no curves with singularities worse than nodes. Precisely, we show that \(|\mathcal{O}_S(C)| \) contains only finitely many non-nodal curves. Note first that the branch curve \(B \subseteq \mathbb{P}^2 \) of \(f \) is reduced, else we contradict the assumption that the pencil \(A \in W^1_3(C) \) on \(C \) has simple ramification. We introduce the discriminant curve

\[J := \left\{ C' \in \left| \mathcal{O}_S(C) \right| : C' \text{ is singular} \right\}. \]

The dual curve \(B^\vee \) is contained in \(J \). Since \(B \) is reduced, the general tangent line to \(B \) is tangent at exactly one point \(p \in B \) and with multiplicity 2. A standard local calculation shows that \(f^* (\mathcal{T}_p(B)) \in \left| \mathcal{O}_S(C) \right| \) is a one-nodal curve, singular at exactly one point \(z \in f^{-1}(p) \) such that the differential \(df_z : T_z(S) \to T_p(\mathbb{P}^2) \) is not an isomorphism.

The complement \(J \setminus B^\vee \) is the (possibly empty) union of (some of) the pencils \(\mathcal{P}_b \), where \(b \in B_{\text{sing}} \) and \(\mathcal{P}_b \) is defined as the pull-back by \(f \) of the pencil of lines in \(\mathbb{P}^2 \) through \(b \). In view of the numerical situation at hand (that is, \(C^2 = 9 \)), the geometric possibilities for such a pencil

\[\mathcal{P}_b \subseteq J \]

are quite constrained. Since \(f \) is finite, the pencil \(\mathcal{P}_b \) has no fixed components. Let \(Z := \text{Bs}(\mathcal{P}_b) \). Then a general \(C' \in \mathcal{P}_b \) is integral and smooth along \(C' \setminus Z \). Moreover, each
$C' \in \mathbb{P}_b$ is singular at a given point $z \in Z$ and a general such C' has multiplicity $m \geq 2$ at z. Necessarily, the differential $df_z: T_z(S) \to T_p(\mathbb{P}^2)$ is zero. Since $m^2 \leq C^2 = (C')^2 = 9$, we find $m \in \{2,3\}$. Let

$$\sigma: S' \to S$$

be the blow-up of S at z and denote by $E \subseteq S'$ the exceptional divisor. The pencil $|O_S(\sigma^*C - mE)|$ is the strict transform of \mathbb{P}_b. Observe that the restriction map

$$r: H^0(S', O_S(\sigma^*C - mE)) \to H^0(E, O_E(m))$$

is not zero, hence $\text{Im}(r)$ defines a linear series p_b on $E \cong \mathbb{P}^1$. Either p_b is a pencil or a constant divisor of degree $m \in \{2,3\}$. We now list the possibilities for the pencil p_b.

P1 If $m = 3$, then $\text{supp}(Z) = \{z\}$. Every curve $C' \in \mathbb{P}_b$ has a triple point at z.

P2 If $m = 2$, then either each $C' \in \mathbb{P}_b$ has a node, or else, each $C' \in \mathbb{P}_b$ has a cusp at z. Indeed, if p_b is a pencil on E, then each $C' \in \mathbb{P}_b$ is nodal at z. If $p_b = \{u_1 + u_2\}$ consists of a fixed divisor, then \mathbb{P}_b contains a unique curve C_z having multiplicity at least 3 at z. If $u_1 \neq u_2$, all other curves $C' \in \mathbb{P}_b \setminus \{C_z\}$ are nodal at z, whereas if $u_1 = u_2$, then all such C' are cuspidal at z.

Both possibilities (P1) and (P2) can be ruled out by a parameter count that contradicts the generality of the pair $(C, A) \in H_{15,9}$ we started with. We first rule out (P1). Assume $C' \in \mathbb{P}_b$ has a triple point at z and no further singularities and denote by $\nu: \tilde{C} \to C'$ the normalization. Set $\{z_1, z_2, z_3\} = \nu^{-1}(z)$ and $\tilde{A} := \nu^*(\mathcal{O}_{C'}(C')) \in W^3_3(\tilde{C})$. Since \tilde{A} is induced from a pencil of curves with a triple point at z, it follows that $|\tilde{A}(-3z_1 - 3z_2 - 3z_3)| \neq \emptyset$, therefore for degree reason $\tilde{A} = \mathcal{O}_{\tilde{C}}(3z_1 + 3z_2 + 3z_3)$. We denote by $H^{\text{triple}}_{12,9}$ the Hurwitz space classifying degree 9 covers $\tilde{C} \to \mathbb{P}^1$ having a divisor of the form $3(z_1 + z_2 + z_3)$ in a fibre, where \tilde{C} is of genus 12. Then $H^{\text{triple}}_{12,9}$ is pure of dimension $\dim(\mathcal{M}_{12}) - 1 = 32$. Let Y_1 be the parameter space of pairs (S, C'), where $S \subseteq \mathbb{P}^6$ is a smooth complete intersection of 4 quadrics and $C' \subseteq S$ is an integral curve of arithmetic genus 15 with a triple point as described by (P1). Let

$$\begin{align*}
S & \leftarrow \pi_1^{-1} Y_1 \xrightarrow{\pi_2} H^{\text{triple}}_{12,9} \\
\text{be the projections given by } \pi_1([S, C']):=[S] \text{ and } \pi_2([S, C']):=[C, \tilde{A}] \text{ respectively. With the notation above, from the adjunction formula } \nu^*(\mathcal{O}_{C'}(1)) = \mathcal{O}_{\tilde{C}}(-z_1 - z_2 - z_3). \text{ The fibre } \pi_2^{-1}([S, C']) \text{ corresponds then to the choice of a 7-dimensional space of sections } V \subseteq H^0(\tilde{C}, \mathcal{O}_{\tilde{C}}(-z_1 - z_2 - z_3)) \text{ satisfying } \dim(V \cap H^0(\mathcal{O}_{\tilde{C}}(-2z_1 - 2z_2 - 2z_3))) \geq 6.
\end{align*}$$

Since $h^0(\mathcal{O}_{\tilde{C}}(-2z_1 - 2z_2 - 2z_3)) = 6$, it follows that

$$\frac{V}{H^0(\mathcal{O}_{\tilde{C}}(-2z_1 - 2z_2 - 2z_3))} \subseteq \mathbb{P}^2.$$

Therefore $\dim(Y_1) = \dim(\mathcal{H}^{\text{triple}}_{12,9}) + 2 = 34 \leq 39$, so we can invoke Proposition 7 to conclude that $\overline{\pi_1(Y_1)} \neq S$ and rule out possibility (P1).

Next we rule out possibility (P2), focusing on the case when each $C' \in \mathbb{P}_b$ is cuspidal at z. Passing to the normalization $\nu: \tilde{C} \to C'$, setting $\tilde{z} := \nu^{-1}(z)$ we obtain that $\tilde{A} := \nu^*(\mathcal{O}_{C'}(C')) \in W^3_3(\tilde{C})$ verifies $h^0(\mathcal{O}_{\tilde{C}}(\tilde{A}(-4\tilde{z}))) \geq 1$. Let $H^{\text{four}}_{14,9}$ be the Hurwitz space classifying degree 9 covers $\tilde{C} \to \mathbb{P}^1$ containing a divisor of type $4\tilde{z}$ in one of its fibres.
and where C has genus 14. Then $\mathcal{H}_{14,9}^\text{four}$ is irreducible of dimension $39 = \dim(\mathcal{M}_{14})$. Let \mathcal{V}_2 be the parameter space of pairs (S, C'), where $S \subseteq \mathbb{P}^6$ is a smooth complete intersection of 4 quadrics and $C' \subseteq S$ is an integral curve of arithmetic genus 15 with a cusp at z as described by (P2). We consider the projections

$$S \xleftarrow{\pi_1} \mathcal{V}_2 \xrightarrow{\pi_2} \mathcal{H}_{14,9}^\text{four}$$

given by $\pi_1([S, C']) := [S]$ and $\pi_2([S, C']) := [\bar{C}, \bar{A}]$ respectively. Observe that π_2 is birational onto its image. Indeed, given $[\bar{C}, \bar{A}] \in \pi_2(\mathcal{V}_2)$, then we denote by C' the image of the map $\varphi_{\omega_C(2y) \otimes \mathcal{A}^v}: \mathcal{C} \to \mathbb{P}^6$, in which case the canonical surface S is recovered by (3). We conclude by Proposition 7 again that $\pi_1(\mathcal{V}_2)$ is not dense in S. The final case when all curves $C' \in \mathbb{P}_6$ are (at least) nodal at z is ruled out analogously.

Before stating our next result, recall that one sets $\delta_i := [\Delta_i] \in CH^1(\mathcal{M}_g)$ for $0 \leq i \leq \lfloor \frac{g}{2} \rfloor$. We denote as usual by $\lambda \in CH^1(\mathcal{M}_g)$ the Hodge class. Recall also the formula [HM] for the canonical class of \mathcal{M}_g:

$$K_{\mathcal{M}_g} \equiv 13\lambda - 2\delta_0 - 3\delta_1 - 2\delta_2 - \cdots - 2\delta_{\lfloor \frac{g}{2} \rfloor} \in CH^1(\mathcal{M}_g).$$

Proposition 10. The rational curve Γ is a sweeping pencil for the boundary divisor Δ_0. Its intersection numbers with the standard generators of $CH^1(\mathcal{M}_{16})$ are as follows:

$$\Gamma \cdot \lambda = 22, \quad \Gamma \cdot \delta_0 = 143, \quad \Gamma \cdot \delta_j = 0 \text{ for } j = 2, \ldots, 8.$$

Proof. First we construct a fibration whose moduli map is precisely the rational curve $m: \mathbb{P}^1 \to \mathcal{M}_{15,2}$ considered in (12). We consider the curve $C \subseteq S$ and observe that since $\mathcal{O}_C(C) \cong A \subset W_3^1(C)$, we have that $C^2 = 9$, that is, the pencil $|\mathcal{I}_{(x,y)}(C)|$ has precisely 9 base points, namely x, y, as well as the 7 further points lying in the same fibre of the pencil $|A|$ as x and y. We consider the blow-up surface $\epsilon: \tilde{S} = Bl_9(S) \to S$ at these 9 points. It comes equipped with a fibration

$$\pi: \tilde{S} \to \mathbb{P}^1,$$

as well as with two sections $E_x, E_y \subseteq \tilde{S}$ corresponding to the exceptional divisors at x and y respectively.

In order to compute the intersection numbers of $R = m(\mathbb{P})$ with the tautological classes on $\mathcal{M}_{15,2}$, we use for instance [Tan]. The subscript indicates the moduli space on which the intersection number is computed.

$$\Gamma \cdot \lambda |_{\mathcal{M}_{15,2}} = \chi(\tilde{S}, \mathcal{O}_{\tilde{S}}) + g - 1 = h^2(S, \mathcal{O}_S) + g = h^0(S, \mathcal{O}_S(1)) + 15 = 22.$$

Here we have used $H^1(\tilde{S}, \mathcal{O}_{\tilde{S}}) = H^1(S, \mathcal{O}_S) = 0$, as well as the fact that S is a canonical surface, hence $\omega_S = \mathcal{O}_S(1)$, therefore $h^2(\tilde{S}, \mathcal{O}_{\tilde{S}}) = h^2(S, \mathcal{O}_S) = 7$. Furthermore, recalling that all curves in the fibres of m are irreducible, we find via [Tan] that

$$\Gamma \cdot \delta_0 |_{\mathcal{M}_{15,2}} = c_2(\tilde{S}) + 4(g - 1) = c_2(\tilde{S}) + 56.$$

From the Euler formula, $c_2(\tilde{S}) = 12\chi(\tilde{S}, \mathcal{O}_{\tilde{S}}) - K_{\tilde{S}}^2$. We have already computed that $\chi(\tilde{S}, \mathcal{O}_{\tilde{S}}) = 8$, whereas $K_{\tilde{S}}^2 = K_S^2 - 9 - \deg(S) - 9 = 7$, for S is an intersection of 4 quadrics. Thus $c_2(\tilde{S}) = 12 \cdot 8 - 7 = 89$, leading to $(R \cdot \delta_0)_{\mathcal{M}_{15,2}} = 89 + 4 \cdot 14 = 145$.

If we denote by $\psi_x, \psi_y \in CH^1(\overline{M}_{15,2})$ the cotangent classes corresponding to the marked points labelled by x and y respectively, we compute furthermore

$$R \cdot \psi_x = -E_x^2 = 1 \quad \text{and} \quad R \cdot \psi_y = -E_y^2 = 1.$$

We now pass to the pencil $\xi : \mathbb{P}^1 \rightarrow \overline{M}_{16}$ obtained from m by identifying pointwise the disjoint sections E_x and E_y on the surface \overline{S}. First, using (15) we observe that

$$\Gamma \cdot \lambda = \xi(P) \cdot \lambda = (R \cdot \lambda)_{\overline{M}_{15,2}} = 22.$$

Furthermore, using Proposition 9 we conclude that $\Gamma \cdot \delta_i = 0$ for $i = 1, \ldots, 8$. Finally, invoking for instance [CR3, page 271], we find that

$$\Gamma \cdot \delta_0 = (R \cdot \delta_0)_{\overline{M}_{15,2}} = (R \cdot \psi_x)_{\overline{M}_{15,2}} = (R \cdot \psi_y)_{\overline{M}_{15,2}} = 145 - 2 = 143.$$

Proof of Theorem 2. Since the image of m passes through a general point of $\overline{M}_{15,2}$, the rational curve $\Gamma \subseteq \overline{M}_{16}$ constructed in Proposition 10 is a sweeping curve for the boundary divisor Δ_0. Using the expression (14) for the canonical divisor of \overline{M}_{16}, we compute $\Gamma : K_{\overline{M}_{16}} = 13 \Gamma : \lambda - 2 \Gamma : \delta_0 = 13 \cdot 22 - 2 \cdot 143 = 0$. Also $\Gamma : \Delta_0 = 143 > 0$.

3. The slope of \overline{M}_{16}.

The slope of an effective divisor D on the moduli space \overline{M}_g not containing any boundary divisor Δ_i in its support is defined as the quantity $s(D) := \frac{a}{\min_{i} \lambda_i}$, where $[D] = a \lambda - \sum_{i=0}^{m} b_i \delta_i \in CH^1(\overline{M}_g)$, with $a, b_i \geq 0$. Then the slope $s(\overline{M}_g)$ of the moduli space \overline{M}_g is defined as the infimum of the slopes $s(D)$ over such effective divisors D.

Corollary 11. We have that $s(\overline{M}_{16}) \geq \frac{13}{2}$.

Proof. For any effective divisor D on \overline{M}_{16} containing no boundary divisor in its support, we may assume that the curve Γ constructed in Proposition 10 does not lie inside D, hence $\Gamma : D \geq 0$. Writing $[D] = a \lambda - \sum_{i=0}^{m} b_i \delta_i$, using Theorem 2 we obtain $\frac{a}{b_i} \geq \frac{13}{15 \lambda_1} = \frac{13}{2}$. Furthermore, using [FP, Theorem 1.4], we conclude that for this divisor D we have $b_i \geq b_0$ for $i = 1, \ldots, 8$, that is, $s(D) = \frac{a}{b_0}$.

Final remarks: Our results establish that \overline{M}_{16} is not of general type. Showing that the Kodaira dimension of \overline{M}_{16} is non-negative amounts to constructing an effective divisor D on \overline{M}_{16} having slope $s(D) \leq s(K_{\overline{M}_{16}}) = \frac{13}{2}$. Currently the known effective divisor on \overline{M}_{16} of smallest slope is the closure in \overline{M}_{16} of the Kaszul divisor Z_{16} consisting of curves C having a linear system $L \in W_2^1(C)$ such that the image curve $\varphi_L : C \hookrightarrow \mathbb{P}^6$ is ideal-theoretically not cut out by quadrics. It is shown in [F1, Theorem 1.1] that Z_{16} is an effective divisor on \overline{M}_{16} and $s(Z_{16}) = \frac{407}{11} = 6.705$. In a related direction, it is shown in [F2] that the canonical class of the space of admissible covers $\overline{H}_{16,9}$ is effective. Note that one has a generically finite cover $\overline{H}_{16,9} \rightarrow \overline{M}_{16}$.

Soon after the appearance of the first version of this paper, it has been pointed out by Agostini and Barros [AB] that our proof of Theorem 2 yields in fact the bound $\kappa(\overline{M}_{16}) \leq \dim(\overline{M}_{16}) - 2$. Indeed, consider the parameter space \mathcal{Z} of elements $[C, A, x, y]$, where C is a genus 15 irreducible nodal curve, $A \in W_9^1(C)$ and $x, y \in C$ are points such
that $|A(-x - y)| \neq 0$. As we explain in this paper, Z has the structure of a \mathbb{P}^1-bundle and one has a dominant morphism $v: Z \to \Delta_0$ given by $[C, A, x, y] \mapsto [C/x \sim y]$. In Proposition 10 we establish that the restriction of $v^* (K_{\overline{M}_{16}})$ to the general fibre of this fibration is trivial. Accordingly, $\kappa(\overline{M}_{16}) \leq \dim(Z) - 1 = \dim(\overline{M}_{16}) - 2$.

REFERENCES

[FP] G. Farkas and M. Popa, Effective divisors on \overline{M}_g, curves on K3 surfaces and the Slope Conjecture, Journal of Algebraic Geometry 14 (2005), 151–174.

HUMBOLDT-UNIVERSITÄT ZU BERLIN, INSTITUT FÜR MATHEMATIK, UNTER DEN LINDEN 6 10099 BERLIN, GERMANY
Email address: farkas@math.hu-berlin.de

UNIVERSITÀ ROMA TRE, DIPARTIMENTO DI MATEMATICA, LARGO SAN LEONARDO MURIALDO 1-00146 ROMA, ITALY
Email address: verra@mat.uniroma3.it