THE GEOMETRY OF THE MODULI SPACE OF ODD SPIN CURVES

GAVRIL FARKAS AND ALESSANDRO VERRA

The set of odd theta-characteristics on a general curve C of genus g is in bijection with the set $\theta(C)$ of *theta hyperplanes* $H \in (\mathbf{P}^{g-1})^{\vee}$ everywhere tangent to the canonically embedded curve $C \stackrel{|K_C|}{\hookrightarrow} \mathbf{P}^{g-1}$. Even though the geometry and the intricate combinatorics of $\theta(C)$ have been studied classically, see [Dol], [DK] for a modern account, it was only recently proved in [CS] that one can reconstruct a general curve $[C] \in \mathcal{M}_g$ from the hyperplane configuration $\theta(C)$.

Odd theta-characteristics form a moduli space $\pi : S_g^- \to \mathcal{M}_g$ which is an étale cover of degree $2^{g-1}(2^g-1)$. The normalization of $\overline{\mathcal{M}}_g$ in the function field of S_g^- gives rise to a finite covering $\pi : \overline{\mathcal{S}}_g^- \to \overline{\mathcal{M}}_g$. Furthermore, $\overline{\mathcal{S}}_g^-$ has a modular meaning being isomorphic to the coarse moduli space of the Deligne-Mumford stack of odd stable spin curves, cf. [C], [CCC], [AJ]. The map π is branched along the boundary of $\overline{\mathcal{M}}_g$ and one expects $K_{\overline{\mathcal{S}}^-}$ to enjoy better positivity properties than $K_{\overline{\mathcal{M}}_g}$.

The aim of this paper is to describe the birational geometry of \overline{S}_g^- for all g. Our goals are (1) to understand the transition from rationality to maximal Kodaira dimension for \overline{S}_g^- as g increases, and (2) to use the existence of *Mukai models* of $\overline{\mathcal{M}}_g$ in order to construct explicit unirational parameterizations of \overline{S}_g^- for small genus. Remarkably, we end up having no gaps in the classification of \overline{S}_g^- . First, we show that in the range where the general curve $[C] \in \mathcal{M}_g$ lies on a K3 surface, the existence of special *theta pencils* on K3 surfaces, provides an *explicit* uniruled parameterization of \overline{S}_g^- :

Theorem 0.1. The odd spin moduli space $\overline{\mathcal{S}}_g^-$ is uniruled for $g \leq 11$.

When $g \leq 9$ or g = 11, a general spin curve $[C, \eta] \in \overline{\mathcal{S}}_g^-$ appears as a hyperplane section of a K3 surface $X \subset \mathbf{P}^g$, such that if $d := \operatorname{supp}(\eta)$ is the support of the theta-characteristic, then the linear span $\langle d \rangle \subset \mathbf{P}^g$ is a codimension 2 linear subspace. A rational curve $P \subset \overline{\mathcal{S}}_g^-$ is induced by the pencil of hyperplanes $\mathbf{P}H^0(X, \mathcal{I}_{d/X}(C))$ containing $\langle d \rangle$. We show in Section 3 that $P \subset \overline{\mathcal{S}}_g^-$ is a *covering* rational curve, satisfying

$$P \cdot K_{\overline{\mathcal{S}}_a^-} = 2g - 24 < 0$$

Thus $P \cdot K_{\overline{S}_g} < 0$ precisely when $g \le 11$, which highlights the fact that the nature of \overline{S}_g^- is expected to change exactly when $g \ge 12$. This is something we shall achieve in the course of proving Theorem 0.3.

The previous argument no longer works for \overline{S}_{10}^- , when the condition that a curve $[C] \in \overline{\mathcal{M}}_{10}$ lie on a K3 surface is divisorial [FP]. This case is in some sense a specialization of the genus 11 case. We use that a general 1-nodal irreducible curve $[C] \in \Delta_0 \subset \overline{\mathcal{M}}_{11}$ of arithmetic genus 11, lies on a K3 surface $X \subset \mathbf{P}^{11}$. By a degeneration argument,

we show that this construction can be also carried out in such a way, that if $\nu : C' \to C$ denotes the normalization of C, then the points $x, y \in C'$ with $\nu(x) = \nu(y)$ (that is, mapping to the node of C), lie in the support of one of the odd-theta characteristics of $[C'] \in \mathcal{M}_{10}$. Ultimately, this produces a rational curve $P \subset \overline{\mathcal{S}}_{10}$ through a general point, which shows that $\overline{\mathcal{S}}_{10}$ is uniruled as well.

In the range in which a *Mukai model* of $\overline{\mathcal{M}}_a$ exists, our results are more precise:

Theorem 0.2. $\overline{\mathcal{S}}_g^-$ is unirational for $g \leq 8$.

The proof relies on the existence, in this range, of *Mukai varieties* $V_g \subset \mathbf{P}^{n_g+g-2}$, where $n_g = \dim(V_g)$, which have the property that general 1-dimensional linear sections of V_g are canonical curves $[C] \in \mathcal{M}_g$ with general moduli. We fix an integer $1 \leq \delta \leq g - 1$ and consider the correspondence

$$\mathcal{P}_{q,\delta}^{o} := \{ (C, \Gamma, Z) : Z \subset C \cap \Gamma \subset V_{g}, \ |\mathrm{sing}(\Gamma)| = \delta, \ \mathrm{sing}(\Gamma) \subset Z \},\$$

where $Z \subset V_g$ is a 0-dimensional subscheme of V_g of length 2g - 2, supported at g - 1points and such that $\dim \langle Z \rangle = g - 2$ (see Section 4 for a precise definition), $\Gamma \subset V_g$ is an irreducible δ -nodal curve section of V_g whose nodes are among the points in the support of Z, and $C \subset V_g$ is an arbitrary curve linear section of V_g containing Z as a subscheme. Thus if C is smooth, then $Z \subset C$ is a divisor of even degree at each point in its support, and $\mathcal{O}_C(Z/2)$ can be viewed as a theta-characteristic. The variety $\mathcal{P}_{g,\delta}^o$ comes equipped with two projections

$$\overline{\mathcal{S}}_{g}^{-} \xleftarrow{\alpha}{\longrightarrow} \mathcal{P}_{g,\delta}^{o} \xrightarrow{\beta} B_{g,\delta}^{-},$$

where $B_{g,\delta}^- \subset \overline{\mathcal{S}}_g^-$ denotes the moduli space of irreducible δ -nodal curves of arithmetic genus g together with an odd theta- characteristic on the normalization. It is easy to see that $\mathcal{P}_{g,\delta}^o$ is birational to a projective bundle over the irreducible variety $B_{g,\delta}^-$. Thus the unirationality of $\overline{\mathcal{S}}_g^-$ follows once we prove that (i) α is dominant, and (ii) $B_{g,\delta}^-$ itself is unirational. We carry out this program when $g \leq 8$. In the process of proving Theorem 0.2, we establish some facts of independent interest concerning the Mukai models

$$\mathfrak{M}_g := G(g, n_g + g - 1)^{\mathrm{ss}} //\mathrm{Aut}(V_g).$$

These are birational models of $\overline{\mathcal{M}}_g$ having $\operatorname{Pic}(\mathfrak{M}_g) = \mathbb{Z}$ and appearing as GIT quotients of Grassmannians; they can be viewed as log-minimal models of $\overline{\mathcal{M}}_g$ emerging from the constructions carried out in [M1], [M2], [M3].

Theorem 0.1 is sharp and the remaining moduli spaces \overline{S}_q^- are of general type:

Theorem 0.3. The space \overline{S}_q^- is a variety of general type for g > 11.

The border case of \overline{S}_{12}^- is particularly challenging and takes up the entire Section 6. We remark that in the range 11 < g < 17, of the two moduli spaces \overline{S}_g^- and $\overline{\mathcal{M}}_g$, one is of general type whereas the other has negative Kodaira dimension. More strikingly, Theorems 0.3 and 0.1 coupled with results from [F3], show that for $9 \leq g \leq 11$, the space \overline{S}_g^- is uniruled while \overline{S}_g^+ is of general type! Finally, we note that \overline{S}_8^- is unirational whereas \overline{S}_8^+ is of Calabi-Yau type [FV]. We describe the main steps in the proof of Theorem 0.3. First, we use that for all $g \ge 4$ and $l \ge 0$, if $\epsilon : \widehat{S}_g \to \overline{S}_g^-$ denotes a resolution of singularities, then there is an induced isomorphism, see [Lud]

$$\mathfrak{E}^*: H^0(\overline{\mathcal{S}}_{g,\mathrm{reg}}^-, K^{\otimes l}_{\overline{\mathcal{S}}_g^-}) \xrightarrow{\sim} H^0(\widehat{\mathcal{S}}_g, K^{\otimes l}_{\widehat{\mathcal{S}}_g}).$$

Thus to conclude that $\overline{\mathcal{S}}_g^-$ is of general type, it suffices to exhibit an effective divisor D on $\overline{\mathcal{S}}_g^-$ such that for appropriately chosen rational constants $\alpha, \beta > 0$, a relation of the type $K_{\overline{\mathcal{S}}_g^-} \equiv \alpha \ \lambda + \beta \ D + E \in \operatorname{Pic}(\overline{\mathcal{S}}_g^-)$ holds, where $\lambda \in \operatorname{Pic}(\overline{\mathcal{S}}_g^-)$ is the pull-back to $\overline{\mathcal{S}}_g^-$ of the Hodge class, and E is an effective \mathbb{Q} -class which is typically a combination of boundary divisors. It is essential to pick D so that (1) its class can be explicitly computed, that is, points in D have good geometric characterization, and (2) $[D] \in \operatorname{Pic}(\overline{\mathcal{S}}_g^-)$ is in some way an extremal point of the effective cone of divisors so that the coefficients α, β stand a chance of being positive. In the case of $\overline{\mathcal{S}}_g^+$, the role of D is played by the divisor $\overline{\Theta}_{\text{null}}$ of vanishing theta-nulls, see [F3]. In the case of $\overline{\mathcal{S}}_g^-$ we compute the class of *degenerate theta-characteristics*, that is, curves carrying a non-reduced odd theta-characteristic.

Theorem 0.4. We fix $g \ge 3$. The locus consisting of odd spin curves

$$\mathcal{Z}_g := \{ [C, \eta] \in \mathcal{S}_g^- : \eta = \mathcal{O}_C(2x_1 + x_2 + \dots + x_{g-2}) \text{ where } x_i \in C \text{ for } i = 1, \dots, g-2 \}$$

is a divisor on S_q^- . The class of its compactification inside \overline{S}_q^- equals

$$\overline{\mathcal{Z}}_g \equiv (g+8)\lambda - \frac{g+2}{4}\alpha_0 - 2\beta_0 - \sum_{i=1}^{[g/2]} 2(g-i) \alpha_i - \sum_{i=1}^{[g/2]} 2i \beta_i \in \operatorname{Pic}(\overline{\mathcal{S}}_g^-),$$

where $\lambda, \alpha_0, \beta_0, \ldots, \alpha_{[g/2]}, \beta_{[g/2]}$ are the standard generators of $\operatorname{Pic}(\overline{\mathcal{S}}_q^-)$.

For low genus, Z_g specializes to well-known geometric loci. For instance \overline{Z}_3 is the divisor of hyperflexes on plane quartics. In particular, Theorem 0.4 yields the formula

$$\pi_*(\overline{\mathcal{Z}}_3) = 308\lambda - 32\delta_0 - 76\delta_1 \in \operatorname{Pic}(\overline{\mathcal{M}}_3),$$

for the class of quartic curves having a hyperflex. This matches [Cu] formula (5.5). Moreover, one has the following relation in $Pic(\overline{M}_3)$

$$\left[\left\{[C] \in \mathcal{M}_3 : \exists x \in C \text{ with } 4x \equiv K_C\right\}\right]^- \equiv 8 \cdot \overline{\mathcal{M}}_{3,2}^1 + \pi_*(\overline{\mathcal{Z}}_3),$$

where $\overline{\mathcal{M}}_{3,2}^1 \equiv 9\lambda - \delta_0 - 3\delta_1$ is the hyperelliptic class and the multiplicity 8 accounts for the number of hyperelliptic Weierstrass points.

We briefly explain how Theorem 0.4 implies that \overline{S}_g^- is of general type for g > 11. We choose an effective divisor $D \in \text{Eff}(\overline{\mathcal{M}}_g)$ of small slope; for composite g + 1 one can take $D = \overline{\mathcal{M}}_{g,d}^r$ the closure of the Brill-Noether divisor of curves with a \mathfrak{g}_d^r , where $\rho(g, r, d) = -1$; there exists a constant $c_{g,d,r} > 0$ such that [EH2],

$$\overline{\mathcal{M}}_{g,d}^r \equiv c_{g,d,r} \Big((g+3)\lambda - \frac{g+1}{6}\delta_0 - \sum_{i=1}^{\lfloor g/2 \rfloor} i(g-i)\delta_i \Big) \in \operatorname{Pic}(\overline{\mathcal{M}}_g).$$

We form the linear combination of divisors on \overline{S}_{q}^{-}

$$\frac{2}{g-2}\overline{\mathcal{Z}}_g + \frac{3(3g-10)}{c_{g,d,r}(g-2)(g+1)}\pi^*(\overline{\mathcal{M}}_{g,d}^r) = \frac{11g+37}{g+1}\lambda - 2\alpha_0 - 3\beta_0 - \sum_{i=1}^{\lfloor g/2 \rfloor} (a_i \cdot \alpha_i + b_i \cdot \beta_i),$$

where $a_i, b_i \ge 2$ for $i \ne 1$ and $a_1, b_1 > 3$ are explicitly known rational constants. The canonical class of $\overline{S_q}$ is given by the Riemann-Hurwitz formula

$$K_{\overline{\mathcal{S}}_g^-} \equiv \pi^*(K_{\overline{\mathcal{M}}_g}) + \beta_0 \equiv 13\lambda - 2\alpha_0 - 3\beta_0 - 2\sum_{i=1}^{\lfloor g/2 \rfloor} (\alpha_i + \beta_i) - (\alpha_1 + \beta_1),$$

and by comparison, it follows that for g > 12 one can find a constant $\mu_g \in \mathbb{Q}_{>0}$ such that

$$K_{\overline{\mathcal{S}}_g^-} - \mu_g \cdot \lambda \in \mathbb{Q}_{\geq 0} \langle [\overline{\mathcal{Z}}_g], \alpha_1, \beta_1, \dots, \alpha_{[g/2]}, \beta_{[g/2]} \rangle,$$

which shows that $K_{\overline{S}_{a}}$ is big and thus proves Theorem 0.3.

For g = 12, there is no Brill-Noether divisor, and the reasoning above shows that in order to conclude that \overline{S}_{12}^- is of general type, one needs an effective divisor $\overline{\mathfrak{D}}_{12}$ of slope $s(\overline{\mathfrak{D}}_{12}) < 6 + 12/13$, that is, a counterexample to the Slope Conjecture. We define

$$\mathfrak{D}_{12} := \{ [C] \in \mathcal{M}_{12} : \exists L \in W_{14}^4(C) \text{ with } \operatorname{Sym}^2 H^0(C,L) \xrightarrow{\mu_0(L)} H^0(C,L^{\otimes 2}) \text{ not injective} \},$$

that is, points in \mathfrak{D}_{12} correspond to curves that admit an embedding $C \subset \mathbf{P}^4$ with $\deg(C) = 14$, such that $H^0(\mathbf{P}^4, \mathcal{I}_{C/\mathbf{P}^4}(2)) \neq 0$. The computation of the class of $\overline{\mathfrak{D}}_{12} \subset \overline{\mathcal{M}}_{12}$ is carried out in Section 6 and it turns out that $s(\overline{\mathfrak{D}}_{12}) = \frac{4415}{642} < 6 + \frac{12}{13}$. In particular \mathfrak{D}_{12} violates the Slope Conjecture on $\overline{\mathcal{M}}_{12}$, and as such, it contains the locus $\mathcal{K}_{12} := \{[C] \in \mathcal{M}_{12} : C \text{ lies on a } K3 \text{ surface}\}.$

1. FAMILIES OF STABLE SPIN CURVES

We briefly review some relevant facts about the moduli space \overline{S}_g^- that will be used throughout the paper, see also [C], [F3], [Lud] for details. As a matter of notation, we follow the convention set in [FL]; if **M** is a Deligne-Mumford stack, then we denote by \mathcal{M} its associated coarse moduli space.

Following [C], a *spin curve* of genus g consists of a triple (X, η, β) , where X is a genus g quasi-stable curve, $\eta \in \operatorname{Pic}^{g-1}(X)$ is a line bundle of degree g - 1 such that $\eta_E = \mathcal{O}_E(1)$ for every exceptional component $E \subset X$, and $\beta : \eta^{\otimes 2} \to \omega_X$ is a sheaf homomorphism which is generically non-zero along each non-exceptional component of X.

It follows from the definition that if (X, η, β) is a spin curve with exceptional components E_1, \ldots, E_r and $\{p_i, q_i\} = E_i \cap \overline{X - E_i}$ for $i = 1, \ldots, r$, then $\beta_{|E_i|} = 0$. Moreover, if $\tilde{X} := \overline{X - \bigcup_{i=1}^r E_i}$ (viewed as a subcurve of X), then we have an isomorphism of sheaves $\eta_{\tilde{X}}^{\otimes 2} \xrightarrow{\sim} \omega_{\tilde{X}}$.

We denote by $\overline{\mathbf{S}}_g$ the non-singular Deligne-Mumford stack of spin curves of genus g, which obviously splits into two connected components $\overline{\mathbf{S}}_g^+$ and $\overline{\mathbf{S}}_g^-$ of relative degree $2^{g-1}(2^g + 1)$ and $2^{g-1}(2^g - 1)$ respectively. It is proved in [C] that the coarse moduli space of $\overline{\mathbf{S}}_g$ is isomorphic to the normalization of $\overline{\mathcal{M}}_q$ in the function field of \mathcal{S}_q . There

is a proper morphism $\pi : \overline{\mathcal{S}}_g \to \overline{\mathcal{M}}_g$ given by $\pi([X, \eta, \beta]) := [\operatorname{st}(X)]$, where $\operatorname{st}(X)$ denotes the stable model of the nodal curve X.

1.1. **Spin curves of compact type.** We recall the description of the pull-back divisors $\pi^*(\Delta_i)$. We choose a spin curve $[X, \eta, \beta] \in \pi^{-1}([C \cup_y D])$ where $[C, y] \in \mathcal{M}_{i,1}$ and $[D, y] \in \mathcal{M}_{g-i,1}$. Then necessarily $X := C \cup_{y_1} E \cup_{y_2} D$, where E is an exceptional component such that $C \cap E = \{y_1\}$ and $D \cap E = \{y_2\}$. Moreover $\eta = (\eta_C, \eta_D, \eta_E = \mathcal{O}_E(1)) \in \operatorname{Pic}^{g-1}(X)$, and since $\beta_E = 0$, it follows that $\eta_C^{\otimes 2} = K_C, \eta_D^{\otimes 2} = K_D$, that is, η_C and η_D are "honest" theta-characteristics on C and D respectively. The condition $h^0(X, \eta) \equiv 1 \mod 2$ implies that η_C and η_D must have opposite parities. We denote by $A_i \subset \overline{S_q}$ the closure in $\overline{S_q}$ of the locus corresponding to pairs

$$([C, \eta_C, y], [D, \eta_D, y]) \in \mathcal{S}_{i,1}^- \times \mathcal{S}_{q-i,1}^+,$$

and by $B_i \subset \overline{\mathcal{S}}_q^-$ the closure in $\overline{\mathcal{S}}_q^-$ of the locus corresponding to pairs

$$([C,\eta_C,y],[D,\eta_D,y]) \in \mathcal{S}_{i,1}^+ \times \mathcal{S}_{q-i,1}^-.$$

One has the relation $\pi^*(\Delta_i) = A_i + B_i$ and clearly $\deg(A_i/\Delta_i) = 2^{g-2}(2^i - 1)(2^{g-i} + 1)$ and $\deg(B_i/\Delta_i) = 2^{g-2}(2^i + 1)(2^{g-i} - 1)$. One denotes $\alpha_i := [A_i], \beta_i := [B_i] \in \operatorname{Pic}(\overline{\mathcal{S}}_q^-)$.

1.2. Spin curves with an irreducible stable model. In order to describe $\pi^*(\Delta_0)$ we pick a point $[X, \eta, \beta]$ such that $\operatorname{st}(X) = C_{yq} := C/y \sim q$, where $[C, y, q] \in \mathcal{M}_{g-1,2}$ is a general point of Δ_0 . Unlike the case of curves of compact type, here there are two possibilities depending on whether X possesses an exceptional component or not. If $X = C_{yq}$ and $\eta_C := \nu^*(\eta)$ where $\nu : C \to X$ denotes the normalization map, then $\eta_C^{\otimes 2} = K_C(y+q)$. For each choice of $\eta_C \in \operatorname{Pic}^{g-1}(C)$ as above, there is precisely one choice of gluing the fibres $\eta_C(y)$ and $\eta_C(q)$ such that $h^0(X, \eta) \equiv 1 \mod 2$. We denote by A_0 the closure in $\overline{\mathcal{S}_g}$ of the locus of those points $[C_{yq}, \eta_C \in \sqrt{K_C(y+q)}]$ with $\eta_C(y)$ and $\eta_C(q)$ glued as above. One has that $\operatorname{deg}(A_0/\Delta_0) = 2^{2g-2}$.

If $X = C \cup_{\{y,q\}} E$ where E is an exceptional component, then since $\beta_{|E} = 0$ it follows that $\beta_{|C} \in H^0(C, \omega_{X|C} \otimes \eta_C^{\otimes(-2)})$ must vanish at both y and q and then for degree reasons $\eta_C := \eta \otimes \mathcal{O}_C$ is a theta-characteristic on C. The condition $H^0(X, \omega) \cong$ $H^0(C, \omega_C) \equiv 1 \mod 2$ implies that $[C, \eta_C] \in \mathcal{S}_{g-1}^-$. In an étale neighborhood of a point $[X, \eta, \beta]$, the covering π is given by

$$(\tau_1, \tau_2, \dots, \tau_{3g-3}) \mapsto (\tau_1^2, \tau_2, \dots, \tau_{3g-3}),$$

where one identifies \mathbb{C}_{τ}^{3g-3} with the versal deformation space of (X, η, β) and the hyperplane $(\tau_1 = 0) \subset \mathbb{C}_{\tau}^{3g-3}$ denotes the locus of spin curves where the exceptional component E persists. This discussion shows that π is simply branched over Δ_0 and we denote the ramification divisor by $B_0 \subset \overline{\mathcal{S}}_g^-$, that is, the closure of the locus of spin curves $[C \cup_{\{y,q\}} E, (C,\eta_C) \in \mathcal{S}_{g-1}^-, \eta_E = \mathcal{O}_E(1)]$. If $\alpha_0 = [A_0] \in \operatorname{Pic}(\overline{\mathcal{S}}_g^-)$ and $\beta_0 = [B_0] \in \operatorname{Pic}(\overline{\mathcal{S}}_g^-)$, we then have the relation

(1)
$$\pi^*(\delta_0) = \alpha_0 + 2\beta_0.$$

We define several test curves in the boundary of \overline{S}_g^- which will be later used to compute divisor classes on the moduli space.

1.3. The family F_i . We fix $1 \le i \le \lfloor g/2 \rfloor$ and construct a covering family for the boundary divisor A_i . We fix general curves $[C] \in \mathcal{M}_i$ and $[D,q] \in \mathcal{M}_{g-i,1}$ as well as an odd theta-characteristic η_C^- on C and an even theta-characteristic η_D^+ on D. If $E \cong \mathbf{P}^1$ is a fixed exceptional component, we define the family of spin curves

$$F_i := \left\{ [C \cup_y \cup E \cup_q D, \eta] : \eta_C = \eta_C^-, \eta_E = \mathcal{O}_E(1), \eta_D = \eta_D^+, E \cap C = \{y\}, E \cap D = \{q\} \right\}_{y \in C}.$$

One has that $F_i \cdot \beta_i = 0$ and then $F_i \cdot \alpha_i = -2i + 2$; furthermore F_i has intersection number zero with the remaining generators of $\text{Pic}(\overline{S}_a)$.

1.4. The family G_i . As above, we fix $1 \le i \le \lfloor g/2 \rfloor$ and curves $[C] \in \mathcal{M}_i, [D,q] \in \mathcal{M}_{g-i,1}$. This time we choose an even theta-characteristic η_C^+ on C and an odd theta-characteristic η_D^- on D. The following family covers the divisor B_i :

$$G_i := \left\{ [C \cup_y \cup E \cup_q D, \eta] : \eta_C = \eta_C^+, \eta_E = \mathcal{O}_E(1), \eta_D = \eta_D^-, E \cap C = \{y\}, E \cap D = \{q\} \right\}_{y \in C}.$$

Clearly $G_i \cdot \alpha_i = 0, G_i \cdot \beta_i = 2 - 2i$ and $G_i \cdot \lambda = G_i \cdot \alpha_j = G_i \cdot \beta_j = 0$ for $j \neq i$.

1.5. Two elliptic pencils. The boundary divisor $\Delta_1 \subset \overline{\mathcal{M}}_g$ is covered by a standard elliptic pencil R obtained by attaching to a fixed general pointed curve $[C, y] \in \mathcal{M}_{g-1,1}$ a pencil of plane cubic curves $\{E_{\lambda} = f^{-1}(\lambda)\}_{\lambda \in \mathbf{P}^1}$ where $f : \operatorname{Bl}_9(\mathbf{P}^2) \to \mathbf{P}^1$. The points of attachment on the elliptic pencil are given by a section $\sigma : \mathbf{P}^1 \to \operatorname{Bl}_9(\mathbf{P}^2)$ given by one of the base points of the pencil of cubics. We lift this pencil in two possible ways to the space $\overline{\mathcal{S}}_g^-$, depending on the parity of the theta-characteristic on the varying elliptic tail. We fix an even theta-characteristic $\eta_C^+ \in \operatorname{Pic}^{g-2}(C)$ and $E \cong \mathbf{P}^1$ will again denote an exceptional component. We define the family

$$F_0 := \{ [C \cup_q E \cup_{\sigma(\lambda)} f^{-1}(\lambda), \ \eta_C = \eta_C^+, \ \eta_E = \mathcal{O}_E(1), \ \eta_{f^{-1}(\lambda)} = \mathcal{O}_{f^{-1}(\lambda)}] : \lambda \in \mathbf{P}^1 \} \subset \overline{\mathcal{S}}_g^-.$$

Since $F_0 \cap B_1 = \emptyset$, we find that $F_0 \cdot \alpha_1 = \pi_*(F_0) \cdot \delta_1 = -1$. Similarly, $F_0 \cdot \lambda = \pi_*(F_0) \cdot \lambda = 1$ and obviously $F_0 \cdot \alpha_i = F_0 \cdot \beta_i = 0$ for $2 \le i \le [g/2]$. For each of the 12 points $\lambda_{\infty} \in \mathbf{P}^1$ corresponding to singular fibres of R, the associated $\eta_{\lambda_{\infty}} \in \overline{\operatorname{Pic}}^{g-1}(C \cup E \cup f^{-1}(\lambda_{\infty}))$ are actual line bundles on $C \cup E \cup f^{-1}(\lambda_{\infty})$, that is, we do not have to blow-up the extra node. Thus we obtain that $F_0 \cdot \beta_0 = 0$ and then $F_0 \cdot \alpha_0 = \pi_*(F_0) \cdot \delta_0 = 12$.

A second lift of the elliptic pencil to $\overline{\mathcal{S}}_g^-$ is obtained by choosing an odd thetacharacteristic $\eta_C^- \in \operatorname{Pic}^{g-2}(C)$ whereas on E_{λ} one takes each of the 3 possible even theta-characteristics, that is,

$$G_0 := \left\{ \left[C \cup_q E \cup_{\sigma(\lambda)} f^{-1}(\lambda), \ \eta_C = \eta_C^-, \ \eta_E = \mathcal{O}_E(1), \eta_{f^-1(\lambda)} \in \gamma^{-1}[f^{-1}(\lambda)] \right] : \lambda \in \mathbf{P}^1 \right\} \subset \overline{\mathcal{S}}_g^-,$$

where $\gamma : \overline{\mathcal{S}}_{1,1}^+ \to \overline{\mathcal{M}}_{1,1}$ is the projection of degree 3. Since $\pi_*(G_0) = 3R \subset \Delta_1$, we obtain that $G_0 \cdot \lambda = 3$. Obviously $G_0 \cdot \alpha_1 = 0$, hence $G_0 \cdot \beta_1 = \pi_*(G_0) \cdot \delta_1 = -3$. The map $\gamma : \overline{\mathcal{S}}_{1,1}^+ \to \overline{\mathcal{M}}_{1,1}$ is simply ramified over the point corresponding to *j*-invariant ∞ . Hence, $G_0 \cdot \alpha_0 = 12$ and $G_0 \cdot \beta_0 = 12$.

1.6. A covering family in B_0 . We start with a general pointed spin curve $[C, q, \eta_C^-] \in S_{g-1,1}^-$ and as usual $E \cong \mathbf{P}^1$ denotes an exceptional component. We construct a family of spin curves $H_0 \subset B_0$ with general member

$$\left[C \cup_{\{y,q\}} E, \ \eta_C = \eta_C^-, \ \eta_E = \mathcal{O}_E(1)\right]_{y \in C} \subset \overline{\mathcal{S}}_g^-$$

and with special fibre corresponding to y = q being the odd spin curve with support

$$C \cup_{q} E' \cup_{q'} E_2 \cup_{\{y_2, q_2\}} E_{,q}$$

where E' and E_2 are both smooth rational curves and $y_2, q_2 \in E$, $E_2 \cap E = \{y_2, q_2\}$, while $E_2 \cap E' = \{q'\}$. The stable model of this curve is $C \cup_q \left(\frac{E_2}{y_2 \sim q_2}\right)$, having an elliptic tail of *j*-invariant ∞ . The underlying line bundle $\eta \in \operatorname{Pic}^{g-1}(C \cup E' \cup E_2 \cup E)$ satisfies $\eta_C = \eta_C^-, \eta_{E'} = \mathcal{O}_{E'}(1), \eta_E = \mathcal{O}_E(1)$ and, for degree reasons, $\eta_{E_2} = \mathcal{O}_{E_2}(-1)$. We have the following relations for the numerical parameters of H_0 :

$$H_0 \cdot \lambda = 0, \ H_0 \cdot \beta_0 = 1 - g, \ H_0 \cdot \alpha_0 = 0, \ H_0 \cdot \beta_1 = 1, \ H_0 \cdot \alpha_1 = 0.$$

(The only non-trivial calculation here uses that $H_0 \cdot \beta_0 = \pi_*(H_0) \cdot \delta_0/2 = 1 - g$, cf. [HM]).

2. The Scorza curve

Here we study in detail the correspondence $T_{\eta} \subset C \times C$ associated to each (nonvanishing) theta-characteristic $[C, \eta] \in S_g^+ - \Theta_{\text{null}}$. This correspondence was used by G. Scorza [Sc] to provide a birational isomorphism between \mathcal{M}_3 and \mathcal{S}_3^+ (see also [DK]), and recently in [TZ] where several conditional statements of Scorza's have been rigourously established.

For a fixed theta-characteristic $[C, \eta] \in S_q^+ - \Theta_{\text{null}}$, we define the curve

$$T_{\eta} := \{ (x, y) \in C \times C : H^0(C, \eta \otimes \mathcal{O}_C(x - y)) \neq 0 \}.$$

By Riemann-Roch, it follows that T_{η} is a symmetric correspondence which misses the diagonal $\Delta \subset C \times C$. The curve T_{η} has a natural fixed point free involution and we denote by $f: T_{\eta} \to \Gamma_{\eta}$ the associated étale double covering. Under the assumption that T_{η} is a reduced curve, its class is computed in [DK] Proposition 7.1.5:

$$T_{\eta} \equiv (g-1)F_1 + (g-1)F_2 + \Delta$$

Theorem 2.1. For a general theta-characteristic $[C, \eta] \in S_g^+$, the Scorza curve T_η is a smooth curve of genus $g(T_\eta) = 3g(g-1) + 1$.

Proof. It is straightforward to show that a point $(x, y) \in T_{\eta}$ is singular if and only if

(2)
$$H^0(C, \eta \otimes \mathcal{O}_C(x-2y)) \neq 0$$
 and $H^0(C, \eta \otimes \mathcal{O}_C(y-2x)) \neq 0$.

By induction on g, we show that for a general even spin curve such a pair (x, y) cannot exist. We assume the result holds for a general $[C, \eta_C] \in S_{g-1}^+$. We fix a general point $q \in C$, an elliptic curve D together with $\eta_D \in \operatorname{Pic}^0(D) - \{\mathcal{O}_D\}$ with $\eta_D^{\otimes 2} = \mathcal{O}_D$ and consider the spin curve $t := [C \cup E \cup D, \eta_{|C} = \eta_C, \eta_{|E} = \mathcal{O}_E(1), \eta_{|D} = \eta_D] \in \overline{S}_g^+$, obtained from $C \cup_q D$ by inserting an exceptional component E. Since the exceptional component plays no further role in the proof, we are going to suppress it.

We assume by contradiction that $t \in \overline{S}_g^+$ lies in the closure of the locus of spin curves with singular Scorza curve. Then there exists a nodal curve $C \cup_q D'$ semistably equivalent to $C \cup_q D$ obtained by inserting a possibly empty chain on \mathbf{P}^1 's at the node q (therefore, $p_a(D') = 1$ and we may regard D as a subcurve of D'), as well as smooth points $x, y \in C \cup D'$ together with two limit linear series $\sigma = \{\sigma_C, \sigma_{D'}\}$ and $\tau = \{\tau_C, \tau_{D'}\}$ of type \mathfrak{g}_{g-2}^0 on $C \cup D'$ such that the underlying line bundles corresponding to σ (resp. τ) are uniquely determined twists at the nodes of the line bundle $\eta \otimes \mathcal{O}_{C \cup D'}(x - 2y)$ (resp. $\eta \otimes \mathcal{O}_{C \cup D'}(y - 2x)$). The precise twists are determined by the limit linear series condition that each aspect of a limit \mathfrak{g}_{g-2}^0 have degree g-2. We distinguish three cases depending on which components of $C \cup D'$ the points x and y specialize.

(i) $x, y \in C$. Then $\sigma_C \in H^0(C, \eta_C \otimes \mathcal{O}_C(x - 2y + q)), \tau_C \in H^0(C, \eta_C \otimes \mathcal{O}_C(y - 2x + q)),$ while $\sigma_D, \tau_D \in H^0(D, \eta_D \otimes \mathcal{O}_D((g - 2)q))$. Denoting by $\{q'\} \in D \cap \overline{(C \cup D') - D}$ the point where *D* meets the rest of the curve, one has the compatibility conditions

$$\operatorname{ord}_q(\sigma_C) + \operatorname{ord}_{q'}(\sigma_D) \ge g - 2$$
 and $\operatorname{ord}_q(\tau_C) + \operatorname{ord}_{q'}(\tau_D) \ge g - 2$,

which leads to $\operatorname{ord}_q(\sigma_C) \geq 1$ and $\operatorname{ord}_q(\tau_C) \geq 1$, that is, we have found two points $x, y \in C$ such that $H^0(C, \eta_C(x-2y)) \neq 0$ and $H^0(C, \eta_C(y-2x)) \neq 0$, which contradicts the inductive assumption on C.

(ii) $x, y \in D'$. This case does not appear if we choose η_C such that $H^0(C, \eta_C) = 0$. Indeed, for degree reason, both non-zero sections σ_C, τ_C must lie in the space $H^0(C, \eta_C)$. (iii) $x \in C, y \in D'$. For simplicity, we assume first that $y \in D$. We find that

$$\sigma_C \in H^0(C, \eta_C \otimes \mathcal{O}_C(x-q)), \ \sigma_D \in H^0(D, \eta_D \otimes \mathcal{O}_D(g \cdot q'-2y)) \text{ and}$$

$$\tau_C \in H^0(C, \eta_C \otimes \mathcal{O}_C(2q-2x)), \ \tau_D \in H^0(D, \eta_D \otimes \mathcal{O}_C(y+(g-3) \cdot q')).$$

We claim that $\operatorname{ord}_q(\sigma_C) = \operatorname{ord}_q(\tau_C) = 0$ which can be achieved by a generic choice of $q \in C$. Then $\operatorname{ord}_{q'}(\sigma_D) \geq g - 2$, which implies that $\eta_D = \mathcal{O}_D(2y - 2q)$. Similarly, $\operatorname{ord}_q(\tau_D) \geq g - 2$ which yields that $\eta_D = \mathcal{O}_D(q - y)$, that is, $\eta_D^{\otimes 3} = \mathcal{O}_D$. Since η_D was assumed to be a non-trivial point of order 2 this leads to a contradiction. Finally, the case $y \in D' - D$, that is, when y lies on an exceptional subcurve $E' \subset D'$ is dealt with similarly: Since $\operatorname{ord}_q(\sigma_C) = \operatorname{ord}_q(\tau_C) = 0$, by compatibility, after passing through the component E', one obtains that $\operatorname{ord}_{q'}(\sigma_D) \geq g - 2$. Since $\sigma_D \in H^0(D, \eta_D \otimes \mathcal{O}_D((g-2)q'))$ and $\eta_D \neq \mathcal{O}_D$, we obtain a contradiction \Box

3. THETA PENCILS ON K3 SURFACES.

In this section we prove Theorem 0.1. As usual, we denote by \mathcal{F}_g the moduli space of polarized K3 surfaces [X, H], where X is a K3 surface and $H \in \text{Pic}(X)$ is a (primitive) polarization of degree $H^2 = 2g - 2$. For integers $0 \le \delta \le g$, we introduce the universal *Severi variety* of pairs

$$\mathcal{V}_{g,\delta} := \{ ([X,H],C) : [X,H] \in \mathcal{F}_g \text{ and } C \in |\mathcal{O}_X(H)| \text{ is an integral } \delta - \text{nodal curve} \}.$$

If $\sigma : \mathcal{V}_{g,\delta} \to \mathcal{F}_g$ is the obvious projection, we set $V_{g,\delta}(|H|) := \sigma^{-1}([X, H])$. It is known that every irreducible component of $\mathcal{V}_{g,\delta}$ has dimension $19+g-\delta$ and maps dominantly onto \mathcal{F}_g . It is in general not known whether $\mathcal{V}_{g,\delta}$ is irreducible, see [De] for interesting work in this direction.

For a point $[X, H] \in \mathcal{F}_g$, we consider a pencil of curves $P \subset |H|$, and denote by Z the base locus of P. We assume that a general member $C \in P$ is a nodal integral curve. It follows that C - Z is smooth and that $S := \operatorname{sing}(C)$ is a, possibly empty, subset of Z. Let $\epsilon : X' := \operatorname{Bl}_S(X) \to X$ be the blow-up of X along the locus S of nodes, and denote by E the exceptional divisor of ϵ . Let

$$P' \subset |\epsilon^* H \otimes \mathcal{O}_{X'}(-2E)|$$

be the strict transform of P by ϵ , and Z' its base locus. Since a general member $C \in P$ is nodal precisely along S, a general curve $C' \in P'$ is smooth. We view $h' := Z' + E \cdot C'$ as a divisor on the smooth curve C'. By the adjunction formula, $h' \in |\omega_{C'}|$.

Definition 3.1. We say that *P* is a *theta pencil*, if h' has even multiplicity at each of its points, that is, $\mathcal{O}_{C'}(\frac{1}{2}h')$ is an odd theta-characteristic for every smooth curve $C' \in P'$.

The definition implies that the intersection multiplicity of two curves in *P* is even at each point $p \in \text{supp}(Z)$. For every pair $[X, H] \in \mathcal{F}_q$ we have that:

Proposition 3.2. *Every smooth curve* $C \in |H|$ *belongs to a theta pencil.*

Proof. Let $d \in C_{g-1}$ be the support of a theta-characteristic on C such that $h^0(C, \mathcal{O}_C(d)) = 1$. Then $\mathbf{P}H^0(X, \mathcal{I}_{d/X}(H))$ is a theta pencil.

We can reverse the construction of a theta pencil, starting instead with the normalization of a nodal section of a K3 surface. Suppose

$$t := [C', x_1, y_1, \dots, x_{\delta}, y_{\delta}, \eta] \in \mathcal{M}_{g-\delta, 2\delta} \times_{\mathcal{M}_{q-\delta}} \mathcal{S}_{q-\delta}^-$$

is a 2δ -pointed curve together with an isolated odd theta-characteristic η , such that: (i) $h^0(C', \eta \otimes \mathcal{O}_{C'}(-\sum_{i=1}^{\delta}(x_i+y_i))) \ge 1$; we write $\operatorname{supp}(\eta) = \sum_{i=1}^{\delta}(x_i+y_i) + d$, where $d \in C'_{q-3\delta-1}$ is the residual divisor.

(ii) There exists a polarized K3 surface $[X, H] \in \mathcal{F}_g$ and a map $f : C' \to X$, such that $f(x_i) = f(y_i) = p_i$ for all $i = 1, ..., \delta$, $f_*(C') \in |H|$, and moreover $f : C' \to C$ is the normalization map of the δ -nodal curve C := f(C').

If $\epsilon : X' \to X$ is the blow-up of X at the points p_1, \ldots, p_{δ} and $E := \sum_{i=1}^{\delta} E_{p_i} \subset X'$ denotes the exceptional divisor, we may view $C' \subset X$, where $C' \equiv \epsilon^* H - 2E$. Then

$$|\mathcal{I}_{d/X'}(C')| = |\mathcal{I}_{2d/X'}(C')| = |\mathcal{I}_{2d+\sum_{i=1}^{\delta}(x_i+y_i)/X'}(C')|$$

is a theta pencil of δ -nodal curves on *X*.

If $\mathcal{K}_{g-\delta,\delta}^- \subset \mathcal{M}_{g-\delta,2\delta} \times_{\mathcal{M}_{g-\delta}} \mathcal{S}_{g-\delta}^-$ is the locus of elements $[C, (x_i, y_i)_{i=1,...,\delta}, \eta]$ satisfying conditions (i) and (ii), the previous discussion proves the following:

Proposition 3.3. Every irreducible component of $\mathcal{K}^{-}_{q-\delta,\delta}$ is uniruled.

This implies the following consequence of Proposition 4.4 to be established in the next section:

Theorem 3.4. We set $g \leq 9$ and $0 \leq \delta \leq (g+1)/3$. Then the variety $\mathcal{K}^{-}_{g-\delta,\delta}$ is non-empty, uniruled and dominates the spin moduli space $\mathcal{S}^{-}_{g-\delta}$.

Definition 3.5. We say that a theta pencil *P* is δ -nodal if $|S| = \delta$. We say that *P* is regular if supp(Z) consists of g - 1 distinct points.

If *P* is a δ -nodal theta pencil, we have an induced map

$$m': P' \cong \mathbf{P}^1 \to \overline{\mathcal{S}}_{g-\delta}^-,$$

obtained by sending a general $C' \in P'$ to the moduli point $[C', \mathcal{O}_{C'}(\frac{1}{2}h')] \in \overline{\mathcal{S}}_{g-\delta}^-$. We note in passing that a theta pencil also induces a map $m : P' \to \overline{\mathcal{S}}_g^-$ defined as follows. Consider the pencil E + P' having fixed component E. The general member is a quasi-stable curve $D \in (E + P')$ of arithmetic genus g, with exceptional components $\{E_i\}_{i=1,...,\delta}$ corresponding to the exceptional divisors of the blow-up $\epsilon : X' \to X$. Then

$$m(C) := \left[C \cup \left(\bigcup_{i=1}^{\delta} E_i \right), \ \eta_{E_i} = \mathcal{O}_{E_i}(1), \ \eta_{C'} = \mathcal{O}_{C'}\left(\frac{1}{2}h'\right) \right] \in \overline{\mathcal{S}}_g^-.$$

These pencils will be used extensively in the proof of Theorem 0.2.

Assume that $[X, H] \in \mathcal{F}_g$ is a general point, in particular $\operatorname{Pic}(X) = \mathbb{Z} \cdot H$. Then every smooth curve $C \in |H|$ is Brill-Noether general, [La], which implies that $h^0(C, \eta) =$ 1, for every odd theta-characteristic η on C. Theta pencils with smooth general member define a locally closed subset in the Grassmannian $G(2, H^0(S, \mathcal{O}_S(H)))$ of lines in |H|. Let $\Theta^-(X, H)$ be its Zariski closure in $G(2, H^0(S, \mathcal{O}_S(H)))$.

Proposition 3.6. $\Theta^{-}(X, H)$ is pure of dimension g - 1.

Proof. Let $f : P^-(X, H) \to |H|$ be the projection map from the projectivized universal bundle over $\Theta^-(X, H)$, and $V_{g,0}(|H|) \subset |H|$ be the open locus of smooth curves. Under our assumptions f has finite fibres over $V_{g,0}(|H|)$. Thus $P^-(X, H)$ has pure dimension g, and $\Theta^-(X, H)$ has pure dimension g - 1.

For a general (thus necessarily regular) theta pencil $P \in \Theta^-(X, H)$, we study in more detail the map $m : P' \to \overline{\mathcal{S}_g}$. Let $\Delta(X, H) \subset |H|$ be the discriminant locus. Since $[X, H] \in \mathcal{F}_g$ is general, $\Delta(X, H)$ is an integral hypersurface parameterizing the singular elements of |H|. It is well-known that deg $\Delta(X, H) = 6g + 18$.

Proposition 3.7. Let $P \in \Theta^{-}(X, H)$ be a general theta pencil with base locus Z. Then every singular curve $C \in P$ is nodal. Furthermore,

$$P \cdot \Delta(X, H) = 2(a_1 + \dots + a_{q-1}) + b_1 + \dots + b_{4q+20},$$

where a_i is the parameter point of a curve $A_i \in P$ having a point of Z as its only singularity, and b_j is the parameter point of a curve $B_j \in P$ such that $sing(B_j) \subset X - Z$. Accordingly,

$$P \cdot \alpha_0 = 4g + 20$$
 and $P \cdot \beta_0 = g - 1$.

Proof. We set $\text{supp}(Z) = \{p_1, \ldots, p_{g-1}\}$. Since P is regular, for $i = 1, \ldots, g-1$, there exists a unique curve $A_i \in P$ singular at p_i . Moreover, for degree reasons, p_i is the unique double point of A_i . Each pencil $T \subset |H|$ having p_i in its base locus is a tangent line to $\Delta(X, H)$ at A_i . Hence the intersection multiplicity $(P \cdot \Delta(X, H))_{A_i}$ is at least 2. It follows that the assertion to prove is open on any family of pairs (P, [X, H]) such that $P \in \Theta^-(X, H)$. Since \mathcal{F}_g is irreducible, it suffices to produce one polarized K3 surface (X, H) satisfying this condition.

For this purpose, we use *hyperelliptic* polarized *K*3 surfaces (X, H). Consider a rational normal scroll $\mathbb{F} := \mathbb{F}_a \subset \mathbf{P}^g$, where $a \in \{0, 1\}$ and g = 2n + 1 - a. A general section $R \in |O_{\mathbb{F}}(1)|$ is a rational normal curve of degree g - 1. From the exact sequence

$$0 \to \mathcal{O}_{\mathbb{F}}(-2K_{\mathbb{F}}-R) \to \mathcal{O}_{\mathbb{F}}(-2K_{\mathbb{F}}) \to \mathcal{O}_{R}(-2K_{\mathbb{F}}) \to 0$$

one finds that there exist a smooth curve $B \in |-2K_{\mathbb{F}}|$ and distinct points $o_1, \ldots, o_{g-1} \in B$ such that the pencil $Q \subset |\mathcal{O}_{\mathbb{F}}(R)|$ of hyperplane sections through o_1, \ldots, o_{g-1} cuts out a pencil with simple ramification on B.

Let $\rho : X \to \mathbb{F}$ be the double covering of \mathbb{F} branched along B. Then X is a K3 surface and $|H| := |\mathcal{O}_X(\rho^* R)|$ is a hyperelliptic linear system on X of genus g. Then $\rho^*(Q)$ is a regular theta pencil on X with the required properties. \Box

Since theta pencils cover $\overline{\mathcal{S}}_g^-$ when $g \leq 11$ and $g \neq 10$, the following consequence of Proposition 3.7 is very suggestive concerning the variation of $\kappa(\overline{\mathcal{S}}_g^-)$ as g increases, in particular, in highlighting the significance of the case g = 12.

Corollary 3.8. With the same notation as above, we have that $P \cdot K_{\overline{S}_g^-} = 2g - 24$. In particular general theta pencils of genus g < 12 are $K_{\overline{S}_g^-}$ -negative.

Proof. Use that $(P \cdot \lambda)_{\overline{\mathcal{S}}_g^-} = (\pi_*(P) \cdot \lambda)_{\overline{\mathcal{M}}_g} = g+1, \ P \cdot \alpha_0 = 4g+20 \text{ and } P \cdot \beta_0 = g-1.$

Proposition 3.9. The locally closed set of nodal theta pencils in $\Theta^-(X, H)$ is non empty. If P is a general nodal theta pencil, then a general curve $C \in P$ has one node as its only singularity.

Proof. We keep the notation from the previous proof and construct a smooth curve $B \in |-2K_{\mathbb{F}}|$ and choose general points $o, o_1, \ldots, o_{g-3} \in B$, such that the pencil $Q \subset |\mathcal{O}_{\mathbb{F}}(R)|$ of the hyperplane sections through $o_1 + \cdots + o_{g-3} + 2o$ cuts out a pencil with simple ramification on B. Then $\rho^*(Q)$ is a nodal theta pencil with the required properties. \Box

Theorem 3.10. $\overline{\mathcal{S}}_q^-$ is uniruled for $g \leq 11$.

Proof. By [M1-4], a general curve $[C] \in \overline{\mathcal{M}}_g$ is embedded in a K3 surface X precisely when $g \leq 9$ or g = 11. By Proposition 3.7, C belongs to a theta pencil $P \subset |\mathcal{O}_X(C)|$ (which moreover, is $K_{\overline{\mathcal{S}}_g^-}$ -negative). Thus the statement follows for $g \leq 9$ and g = 11. To settle the case of $\overline{\mathcal{S}}_{10}^-$, we show that $\mathcal{K}_{10,1}^-$ is non-empty and irreducible. Indeed, then by Proposition 3.3 it follows that $\mathcal{K}_{10,1}^-$ is uniruled, and since the projection map $\mathcal{K}_{10,1}^- \to \mathcal{S}_{10}^-$ is finite, $\mathcal{K}_{10,1}^-$ dominates \mathcal{S}_{10}^- . This implies that $\overline{\mathcal{S}}_{10}^-$ is uniruled.

The variety $\mathcal{K}_{10,1}^{-}$ is an open subvariety of the irreducible locus

$$\mathcal{U} := \big\{ \big([C, x, y], \eta \big) \in \mathcal{M}_{10, 2} \times_{\mathcal{M}_{10}} \mathcal{S}_{10}^- : h^0(C, \eta \otimes \mathcal{O}_C(-x - y)) \ge 1 \big\},$$

hence it is irreducible as well. To establish its non-emptiness, it suffices to produce an example of an element $([C, x, y], \eta]) \in \mathcal{U}$, such that the curve C_{xy} can be embedded in a K3 surface. We specialize to the case when C is hyperelliptic and $x, y \in C$ are distinct Weierstrass points, in which case one can choose $\eta = \mathcal{O}_C(x + y + w_1 + \dots + w_7)$, where w_i are distinct Weierstrass points in $C - \{x, y\}$. Again we let $\rho : X \to \mathbb{F} \subset \mathbb{P}^{11}$ be a hyperelliptic K3 surface branched along $B \in |-2K_{\mathbb{F}}|$, with polarization $H := \rho^*\mathcal{O}_{\mathbb{F}}(1)$, so that $[X, H] \in \mathcal{F}_{11}$. We set $C := \rho^*(R)$, where $R \in |\mathcal{O}_{\mathbb{F}}(1)|$ is a rational normal curve of degree 10. We need to ensure that C is 1-nodal, with its node $p \in C$ such that if $f : C' \to C$ denotes the normalization map, then both points in $f^{-1}(p)$ are Weierstrass points. This is satisfied once we choose R in such a way that $B \cdot R \ge 2\rho(p)$.

4. Unirationality of
$$\overline{\mathcal{S}}_q^-$$
 for $g \leq 8$

To prove the claimed unirationality results, we use that a general curve $[C] \in \overline{\mathcal{M}}_g$ has a sextic plane model when $g \leq 6$, or is a linear section of a Mukai variety, when $7 \leq g \leq 9$. We start with the easy case of small genus, before moving on to the more substantial study of Mukai models.

Theorem 4.1. $\overline{\mathcal{S}}_q^-$ is unirational for $g \leq 6$.

Proof. A general odd spin curve $[C, \eta] \in \overline{S}_g^-$ of genus $3 \le g \le 6$, is birational to a pair (Γ, η) , where $\Gamma \subset \mathbf{P}^2$ is an integral nodal sextic. One can assume that $d := \operatorname{supp}(\eta)$ is a reduced divisor contained in Γ_{reg} . Note that there exists a unique plane cubic E such that $E \cdot \Gamma = 2e$, where e is an effective divisor of degree 9 on E, supported on

 $\operatorname{sing}(\Gamma) \cup d$. We denote by $\mathcal{U} \subset (\mathbf{P}^2)^9$ the open set parameterizing general 9-tuples $(\bar{x}, \bar{y}) := (x_1, \ldots, x_{\delta}, y_1, \ldots, y_{g-1})$, where $g = 10 - \delta$. Over \mathcal{U} lies a projective bundle \mathcal{P} whose fibre at (\bar{x}, \bar{y}) is the linear system of plane sextics Γ which are singular along \bar{x} and totally tangent to $E_{\bar{x},\bar{y}}$ along \bar{y} . Here $E_{\bar{x},\bar{y}} \in |\mathcal{O}_{\mathbf{P}^2}(3)|$ denotes the unique plane cubic through the points $x_1, \ldots, x_{\delta}, y_1, \ldots, y_{g-1}$. Then \mathcal{P} is a rational variety, and by the previous remark, it dominates $\overline{\mathcal{S}}_q^-$. Thus $\overline{\mathcal{S}}_q^-$ is unirational. \Box

We assume now that $7 \le g \le 10$ and denote by $V_g \subset \mathbf{P}^{N_g}$ the rational homogeneous space V_g defined as follows [M1], [M2], [M3]:

- V_{10} : the 5-dimensional variety $G_2/P \subset \mathbf{P}^{17}$ corresponding to the Lie group G_2 ,
- V_9 : the Plücker embedding of the symplectic Grassmannian $SG(3,6) \subset \mathbf{P}^{13}$,
- V_8 : the Plücker embedding of the Grassmannian $G(2,6) \subset \mathbf{P}^{14}$,
- V_7 : the Plücker embedding of the orthogonal Grassmannian $OG(5, 10) \subset \mathbf{P}^{15}$,

Note that $N_g = g + \dim(V_g) - 2$. Inside the Hilbert scheme $\operatorname{Hilb}(V_g)$ of curvilinear sections of V_g , we consider the open set \mathcal{U}_g classifying curves $C \subset V_g$ such that

- *C* is a nodal integral section of V_q by a linear space of dimension g 1,
- the residue map $\rho: H^0(C, \omega_C) \to H^0(C, \omega_C \otimes \mathcal{O}_{\operatorname{sing}(C)})$ is surjective.

A general point $[C \hookrightarrow \mathbf{P}^{g-1}] \in \mathcal{U}_g$ is a smooth, canonical curve of genus g. Moreover C has general moduli if $g \leq 9$. For each $0 \leq \delta \leq g-1$, we define the locally closed sets of δ -nodal curvilinear sections of V_q

$$\mathcal{U}_{q,\delta} := \{ [C \hookrightarrow \mathbf{P}^{g-1}] \in \mathcal{U}_q : |\operatorname{sing}(C)| = \delta \}.$$

Proposition 4.2. $U_{q,\delta}$ is smooth of pure codimension δ in U_q .

Proof. A general 2-dimensional linear section of V_g is a polarized K3 surface $(S, H) \in \mathcal{F}_g$ with general moduli. It is known [Ta], that δ -nodal hyperplane sections of S form a pure $(g-\delta)$ -dimensional family $V_{g,\delta}(|H|) \subset |H|$. In particular $\mathcal{U}_{g,\delta} \neq \emptyset$ and $\operatorname{codim}(\mathcal{U}_{g,\delta}, \mathcal{U}_g) \leq \delta$. We fix a curve $[C] \in \mathcal{U}_{g,\delta}$, then consider the normal bundle N_C of C in V_g and the map $r: H^0(C, N_C) \to \mathcal{O}_{\operatorname{sing}(C)}$ induced by the exact sequence

(3)
$$0 \to T_C \to T_{V_q} \otimes \mathcal{O}_C \to N_C \xrightarrow{r} T_C^1 \to 0,$$

where $T_C^1 = \mathcal{O}_{\operatorname{sing}(C)}$ is the Lichtenbaum-Schlessinger sheaf of C. Using the identification $T_{[C]}(\mathcal{U}_g) = H^0(C, N_C)$, it is known that $\operatorname{Ker}(r)$ is isomorphic to $T_{[C]}(\mathcal{U}_{g,\delta})$. We have that $N_C \cong \omega_C^{\oplus(N_g-g+1)}$ and $r = \rho^{\oplus(N_g-g+1)}$, where $\rho : H^0(C, \omega_C) \to H^0(C, \mathcal{O}_{\operatorname{sing}(C)})$ is the map given by the residues at the nodes. Since ρ is surjective, $\operatorname{Ker}(r)$ has codimension δ inside $T_{[C]}(\mathcal{U}_g)$ and the statement follows. \Box

The automorphism group $\operatorname{Aut}(V_g)$ acts in the natural way on $\operatorname{Hilb}(V_g)$. Since the locus of singular curvilinear sections $[C] \in \mathcal{U}_g$ is an $\operatorname{Aut}(V_g)$ -invariant divisor which misses a general point of \mathcal{U}_g , it follows that $\mathcal{U}_g^{ss} := \mathcal{U}_g \cap \operatorname{Hilb}(V_g)^{ss} \neq \emptyset$. Note that since $\rho(V_g) = 1$, the notion of stability is independent of the polarization. The (quasi-projective) GIT-quotient

$$\mathfrak{M}_g := \mathcal{U}_g^{\mathrm{ss}} / / \mathrm{Aut}(V_g)$$

is said to be the *Mukai model* of $\overline{\mathcal{M}}_{g}$. We have the following commutative diagram

where $u_g : \mathcal{U}_g^{ss} \to \mathfrak{M}_g$ is the quotient map and $m_g : \mathcal{U}_g \to \overline{\mathcal{M}}_g$ is the moduli map. The general fibre of m_g is an Aut(V_g)-orbit. Summarizing results from [M1], [M2], [M3], we state the following:

Theorem 4.3. For $7 \leq g \leq 9$, the map $\phi_g : \mathfrak{M}_g \to \overline{\mathcal{M}}_g$ is a birational isomorphism. The inverse map ϕ_g^{-1} contracts the (unique) Brill-Noether divisor $\overline{\mathcal{M}}_{g,d}^r \subset \overline{\mathcal{M}}_g$ of curves with a \mathfrak{g}_d^r , as well as the boundary divisors Δ_i with $1 \leq i \leq [g/2]$.

Next, let $\Delta_g^{\delta} \subset \Delta_0 \subset \overline{\mathcal{M}}_g$ be the locus of integral stable curves of arithmetic genus g with δ nodes. Then Δ_g^{δ} is irreducible of codimension δ in $\overline{\mathcal{M}}_g$.

Lemma 4.4. Set $g \leq 9$ and let D be any irreducible component of $\mathcal{U}_{g,\delta}$. Then the restriction morphism $m_{g|D} : D \to \Delta_g^{\delta}$ is dominant. In particular, a general δ -nodal curve $[C] \in \Delta_g^{\delta}$ lies on a smooth K3 surface.

Proof. Since $\mathcal{U}_{g,\delta}$ is smooth, D is a connected component of $\mathcal{U}_{g,\delta}$, that is, for $[C] \in D$, the tangent spaces to D and to $\mathcal{U}_{g,\delta}$ coincide. We consider again the sequence (3):

$$0 \to T_C \to T_{V_q} \otimes \mathcal{O}_C \to N'_C \to 0,$$

where $N'_C := \text{Im} \{T_{V_g} \otimes \mathcal{O}_C \to N_C\}$ is the *equisingular sheaf* of *C*. We have that $H^0(C, N'_C) = \text{Ker}(r)$. As remarked in the proof of Proposition 4.2, $H^0(C, N'_C)$ is the tangent space $T_{[C]}(\mathcal{U}_{g,\delta})$ and its codimension in $H^0(C, N_C)$ equals δ . Consider the coboundary map $\partial : H^0(C, N'_C) \to H^1(C, T_C)$. Since $H^1(C, T_C)$ classifies topologically trivial deformations of the nodal curve *C*, the image $\text{Im}(\partial)$ is isomorphic to the image of the tangent map $dm_{g|\mathcal{U}_{g,\delta}}$ at [C]. On the other hand $H^0(C, T_{V_g} \otimes \mathcal{O}_C)$ is the tangent space to the orbit of *C* under the action of $\text{Aut}(V_g)$. This is reduced and the stabilizer of *C*, being a subgroup of Aut(C), is finite, hence we obtain:

dim Im
$$(\partial) = h^0(C, N_C) - \delta$$
 – dim Aut $(V_q) = 3g - 3 - \delta$.

Since Δ_q^{δ} has codimension δ in $\overline{\mathcal{M}}_g$, it follows that $m_{q|D}$ is dominant.

Proposition 4.5. *Fix* $0 \le \delta \le g - 1$ *and* D *an irreducible component of* $\mathcal{U}_{q,\delta}$ *. Then* $D^{ss} \ne \emptyset$ *.*

Proof. It suffices to construct an $Aut(V_g)$ -invariant divisor which does not contain D. We carry out the construction when g = 8, the remaining cases being largely similar.

We fix a complex vector space $V \cong \mathbb{C}^6$, and then $V_8 := G(2, V) \subset \mathbf{P}(\wedge^2 V)$ and $\mathcal{U}_8 \subset G(8, \wedge^2 V)$. For a projective 7-plane $\Lambda \in G(8, \wedge^2 V)$, we denote the set of containing hyperplanes $F_\Lambda := \{H \in \mathbf{P}(\wedge^2 V)^{\vee} : H \supset \Lambda\}$, and define the Aut(V_8)-invariant divisor

$$Z := \{\Lambda \in \mathcal{U}_8 : F_\Lambda \cap G(2, V^{\vee}) \subset \mathbf{P}(\wedge^2 V)^{\vee} \text{ is not a transverse intersection} \}.$$

We claim that $D \nsubseteq Z$. Indeed, let us fix a general point $[C \hookrightarrow \Lambda] \in D$, where $\Lambda = \langle C \rangle$, corresponding to a general curve $[C] \in \Delta_g^{\delta}$. In particular, we may assume that C lies outside the closure in $\overline{\mathcal{M}}_q$ of curves violating the Petri theorem. Thus C possesses no

generalized \mathfrak{g}_7^2 's, that is, $\overline{W}_7^2(C) = \emptyset$, whereas $\overline{W}_5^1(C) \subset \operatorname{Pic}(C)$ consists of locally free pencils satisfying the Petri condition. We recall from [M2] the construction of $\phi_g^{-1}[C]$, which generalizes to irreducible Petri general nodal curves: There exists a unique rank two vector bundle E on C with $\det(E) = \omega_C$ and $h^0(C, E) = 6$. This appears as an extension

$$0 \to A \to E \to \omega_C \otimes A^{\vee} \to 0,$$

for every $A \in \overline{W}_5^1(C)$. Then one sets $\phi_g^{-1}([C]) := [C \hookrightarrow G(2, H^0(C, E)^{\vee})]$. Moreover,

$$F_{\Lambda} = \mathbf{P} \big(\operatorname{Ker} \{ \wedge^2 H^0(C, E) \to H^0(C, \omega_C) \} \big).$$

In particular, the intersection $F_{\Lambda} \cap G(2, H^0(C, E))$ corresponds to the pencils $A \in \overline{W}_5^1(C)$. Since *C* is Petri general, $\overline{W}_5^1(C)$ is a smooth scheme, thus $[C \hookrightarrow \Lambda] \notin Z$. \Box

We consider the quotient $\mathfrak{M}_{g,\delta} := \mathcal{U}_{g,\delta}^{ss} / / \operatorname{Aut}(V_g)$ and the induced map

$$\phi_{g,\delta}:\mathfrak{M}_{g,\delta}\to\Delta_g^\delta.$$

Theorem 4.6. The variety $\mathfrak{M}_{g,\delta}$ is irreducible and $\phi_{g,\delta}$ is a birational isomorphism.

Proof. By Lemma 4.4, any irreducible component *Y* of $\mathfrak{M}_{g,\delta}$ dominates Δ_g^{δ} . On the other hand, $\phi_g : \mathfrak{M}_g \to \overline{\mathcal{M}}_g$ is a birational morphism and $\phi_{g,\delta} = \phi_{g|\mathfrak{M}_{g,\delta}}$. Since $\overline{\mathcal{M}}_g$ is normal, each fibre of ϕ_g is connected, thus $\mathfrak{M}_{g,\delta}$ is irreducible and $\deg(\phi_{g,\delta}) = 1$.

We lift our construction to the space of odd spin curves. Keeping $g \le 9$, we consider the Hilbert scheme Hilb_{2g-2}(V_g) of 0-dimensional subschemes of V_g having length 2g - 2.

Definition 4.7. Let $\mathfrak{Z}_{g-1} \subset \operatorname{Hilb}_{2g-2}(V_g)$ be the parameter space of those 0-dimensional schemes $Z \subset V_g$ such that:

- (1) *Z* is a hyperplane section of a smooth curve section $[C] \in U_{q}$,
- (2) *Z* has multiplicity two at each point of its support,
- (3) $\operatorname{supp}(Z)$ consists of g-1 linearly independent points.

One thinks of \mathfrak{Z}_{g-1} as classifying length g-1 clusters on V_g . A general point of \mathfrak{Z}_{g-1} corresponds to a 0-cycle $x_1 + \cdots + x_{g-1} \in \text{Sym}^{g-1}(V_g)$ satisfying

dim
$$\langle x_1, \ldots, x_{g-1} \rangle \cap \mathbb{T}_{x_i}(V_g) \ge 1$$
, for $i = 1, \ldots, g-1$.

Clearly dim $(\mathfrak{Z}_{g-1}) = (g-1)(N_g-g+1)$. Then we consider the incidence correspondence

$$\mathcal{U}_q^- := \{ (C, Z) \in \mathcal{U}_g \times \mathfrak{Z}_{g-1} : Z \subset C \}.$$

The first projection map $\pi_1 : \mathcal{U}_g^- \to \mathcal{U}_g$ is finite of degree $2^{g-1}(2^g-1)$; its fibre at a general point $[C] \in \mathcal{U}_g$ is in bijective correspondence with the set of odd theta-characteristics of C. In particular, both \mathcal{U}_q^- and \mathfrak{Z}_{g-1} are irreducible varieties. The spin moduli map

$$m_g^-: \mathcal{U}_g^- \dashrightarrow \overline{\mathcal{S}}_g^-$$

is defined by $m_g^-(C, Z) := [C, \mathcal{O}_C(Z/2)]$, for each point $(C, Z) \in \mathcal{U}_g^-$ corresponding to a smooth curve C. Later we shall extend the rational map m_g^- to a regular map over \mathcal{U}_g^- . It is clear that m_g^- induces a map $\phi_g^- : Q_g^- \dashrightarrow \overline{\mathcal{S}}_g^-$ from the quotient

$$Q_g^- := \pi_1^{-1}(\mathcal{U}_g^{\mathrm{ss}}) // \mathrm{Aut}(V_g).$$

We may think of Q_g^- as being the *Mukai model* of \overline{S}_g^- . If $\pi^- : Q_g^- \to \mathfrak{M}_g$ is the map induced by π at the level of Mukai models, we have a commutative diagram:

$$egin{array}{ccc} Q_g^- & \stackrel{\phi_g^-}{\longrightarrow} & \overline{\mathcal{S}}_g^- \ \pi^- & & \pi & \ \mathfrak{M}_g & \stackrel{\phi_g}{\longrightarrow} & \overline{\mathcal{M}}_g \end{array}$$

Proposition 4.8. The spin Mukai model Q_g^- is irreducible and $\phi_g^- : Q_g^- \to \overline{\mathcal{S}}_g^-$ is a birational isomorphism.

One extends the rational map m_g^- (therefore ϕ_g^- as well) to a regular morphism as follows. Let $(C, Z) \in \mathcal{U}_g^-$ be an arbitrary point, and set $\operatorname{supp}(Z) := \{p_1, \ldots, p_{g-1}\}$. Assume that $\operatorname{sing}(C) \cap \operatorname{supp}(Z) = \{p_1, \ldots, p_{\delta}\}$, where $\delta \leq g - 1$. Consider the partial normalization $\nu : N \to C$ at the points p_1, \ldots, p_{δ} . In particular, there exists an effective Cartier divisor e on C of degree $g - \delta - 1$, such that $2e = Z \cap (C - \operatorname{sing}(C))$, and set $\epsilon := \mathcal{O}_N(\nu^* e)$. Then $m_g^-(C, Z)$ is the spin curve $[X, \eta] \in \overline{\mathcal{S}}_g^-$ defined as follows:

Definition 4.9.

- (1) $X := N \cup E_1 \cup \cdots \cup E_{\delta}$, where $E_i = \mathbf{P}^1$ for $i = 1, \dots, \delta$.
- (2) $E_i \cap N = \nu^{-1}(p_i)$, for every node $p_i \in \operatorname{sing}(C) \cap \operatorname{supp}(Z)$.
- (3) $\eta \otimes \mathcal{O}_N \cong \epsilon$ and $\eta \otimes \mathcal{O}_{E_i} \cong \mathcal{O}_{\mathbf{P}^1}(1)$.

We note that N is smooth of genus $g - \delta$, precisely when $\operatorname{sing}(C) \subset \operatorname{supp}(Z)$. In this case $\epsilon \in \operatorname{Pic}^{g-1-\delta}(N)$ is a theta characteristic and $h^0(N, \epsilon) = 1$. Since we are specially interested in this case, for $1 \leq \delta \leq g - 1$ we introduce the locally closed sets

$$\mathcal{U}_{g,\delta}^- := \{ (C,Z) \in \mathcal{U}_g^- : \operatorname{sing}(C) \subset \operatorname{supp}(Z), \ |\operatorname{sing}(C)| = \delta \}.$$

We denote by $B_{g,\delta}^-$ the closure of $m_g^-(\mathcal{U}_{g,\delta}^-)$ inside $\overline{\mathcal{S}}_g^-$; this is the closure in $\overline{\mathcal{S}}_g^-$ of the locus of δ -nodal spin curves having δ exceptional components. Clearly $B_{g,\delta}^-$ is an irreducible component of $\pi^{-1}(\Delta_g^{\delta})$. We set

$$Q_{g,\delta}^- := \mathcal{U}_{g,\delta}^- \cap \pi_1^{-1}(\mathcal{U}_g^{\mathrm{ss}}) /\!/ \mathrm{Aut}(V_g),$$

and let $u_g^-: \mathcal{U}_{g,\delta}^- \dashrightarrow \mathcal{Q}_{g,\delta}^-$ denote the quotient map. Keeping all previous notation, we have a further commutative diagram

where $\phi^-_{g,\delta}$ is the morphism induced on $Q^-_{g,\delta}$ by $m^-_g.$

Theorem 4.10. We fix $7 \le g \le 9$ and $1 \le \delta \le g - 1$. Then $\phi_{g,\delta}^- : Q_{g,\delta}^- \to B_{g,\delta}^-$ is a birational isomorphism.

Proof. It suffices to note that $\phi_{g,\delta}$ is birational, and the vertical arrows of the diagram are finite morphisms of the same degree, namely the number of odd theta-characteristics on a curve of genus $g - \delta$.

We construct a projective bundle over $B_{g,\delta}^-$, then show that for certain values $\delta \leq g - 1$, the locus $B_{g,\delta}^-$ itself is unirational, whereas the above mentioned bundle dominates S_g^- . Let $C_{g,\delta} \subset U_{a,\delta}^- \times V_g$ be the universal curve, endowed with its two projection maps

$$\mathcal{U}_{g,\delta}^{-} \xleftarrow{p} \mathcal{C}_{g,\delta} \xrightarrow{q} V_{g}$$

We fix an arbitrary point $(\Gamma, Z) \in \mathcal{U}_{g,\delta}^-$ and let $\nu : N \to \Gamma$ be the normalization map. Recall that $\operatorname{sing}(\Gamma)$ consists of δ linearly independent points and that $h^0(N, \mathcal{O}_N(\nu^* e)) = 1$, where e is the effective divisor on Γ characterized by $Z_{|\Gamma_{\operatorname{reg}}} = 2e$. Thus the restriction map $H^0(\Gamma, \omega_{\Gamma}) \to H^0(\omega_{\Gamma} \otimes \mathcal{O}_Z)$ has 1-dimensional kernel. In particular the relative cotangent sheaf ω_p admits a global section s inducing an exact sequence

$$0 \to \mathcal{O}_{\mathcal{C}_{q,\delta}} \to \omega_p \to \mathcal{O}_W \otimes \omega_p \to 0,$$

which defines a subscheme $W \subset C_{g,\delta}$, whose fibre at the point $(\Gamma, Z) \in U_{g,\delta}^-$ is Z itself. We set

$$\mathcal{A} := p_* \big(\mathcal{I}_{W/\mathcal{C}_{q,\delta}} \otimes q^* \mathcal{O}_{V_g}(1) \big),$$

which is a vector bundle on $\mathcal{U}_{g,\delta}^-$ of rank $N_g - g + 2$. The fibre of $\mathcal{A}(\Gamma, Z)$ is identified with $H^0(V_g, \mathcal{I}_{Z/V_g}(1))$. One has a natural identification

 $\mathbf{P}H^0(\mathcal{I}_{Z/V_q}(1))^{\vee} = \{1\text{-dimensional linear sections of } V_g \text{ containing } Z\}.$

Definition 4.11. $\mathcal{P}_{g,\delta}$ is the projectivized dual of \mathcal{A} .

From the definitions and the previous remark it follows:

Proposition 4.12. $\mathcal{P}_{q,\delta}$ is the Zariski closure of the incidence correspondence

$$\mathcal{P}_{g,\delta}^o := \{ (C, (\Gamma, Z)) \in \mathcal{U}_g \times \mathcal{U}_{g,\delta}^- : Z \subset C \}.$$

Consider the projection maps

$$\mathcal{U}_{g}^{-} \xleftarrow{lpha}{\longrightarrow} \mathcal{P}_{g,\delta}^{o} \xrightarrow{\ \beta \ } \mathcal{U}_{g,\delta}^{-}$$

We wish to know when α is a dominant map. For $1 \le \delta < g \le 9$, we have the following:

Proposition 4.13. The map α is dominant if and only if $\delta \leq N_g + 1 - g = \dim(V_g) - 1$.

Proof. By definition, the morphism β is surjective. Let $(\Gamma, Z) \in \mathcal{U}_{g,\delta}^-$ be an arbitrary point, and set $\operatorname{sing}(\Gamma) := \{p_1, \ldots, p_{\delta}\} \subset Z$. We define P_Z to be the locus of 1-dimensional linear sections of V_g containing Z. Inside P_Z we consider the space

$$P_{\Gamma,Z} = \{ \Gamma' \in P_Z : \operatorname{sing}(\Gamma') \cap Z \supseteq \operatorname{sing}(\Gamma) \cap Z \},\$$

First note that for $p \in \operatorname{sing}(\Gamma)$, the locus $H_p := \{\Gamma' \in P_Z : p \in \operatorname{sing}(\Gamma')\}$ is a hyperplane in P_Z . Indeed, we identify P_Z with the family of linear spaces $L \in G(g, N_g + 1)$ such that $\langle Z \rangle \subset L$. By the definition of the cluster Z, it follows that $l := \mathbb{T}_p(V_g) \cap \langle Z \rangle$ is a line. For $L \in P_Z$, the intersection $L \cap V_g$ is singular at p if and only if dim $L \cap \mathbb{T}_p(V_g) \ge 2$. This is obviously a codimension 1 condition in P_Z . Therefore, if for $1 \le i \le \delta$ we define the hyperplane $H_i := \{L = \langle \Gamma' \rangle \in P_Z : \dim L \cap \mathbb{T}_{p_i}(V_g) \ge 2\}$, then

$$P_{\Gamma,Z} = H_1 \cap \cdots \cap H_{\delta}.$$

This shows that the general point in $\beta^{-1}(C, Z)$ corresponds to a smooth curve $C \supset Z$. We now fix a general point $(\Gamma, Z) \in \mathcal{U}_{g,\delta}^-$, corresponding to a general cluster $Z \in \mathfrak{Z}_{g-1}$. Claim: $P_{\Gamma,Z}$ has codimension δ in P_Z ; its general element is a nodal curve with δ nodes. Proof of claim: Indeed P_Z is a general fibre of the projective bundle $\mathcal{U}_g^- \to \mathfrak{Z}_{g-1}$. The claim follows since $\operatorname{codim}(\mathcal{U}_{a,\delta}^-, \mathcal{U}_g^-) = \delta$.

The fibre $\alpha^{-1}((C,Z))$ over a general point $(C,Z) \in \mathcal{U}_g^-$, is the union of $\binom{g-1}{\delta}$ linear spaces $H_1 \cap \cdots \cap H_\delta \subset P_Z$ as above. By the claim above, when $Z \in \mathfrak{Z}_{g-1}$ is a general cluster, this is a union of linear spaces $P_{\Gamma,Z}$ as before, having codimension δ in P_Z . Hence $\alpha^{-1}((C,Z))$ is not empty if and only if $\delta \leq \dim P_Z$, that is, $\delta \leq N_g - g + 1$. \Box

Let us fix the following notation:

Definition 4.14. (1) $\overline{\mathbb{P}}_{g,\delta} := \left(\mathcal{P}_{g,\delta}^o\right)^{\mathrm{ss}} // \mathrm{Aut}(V_g).$ (2) $\overline{\beta} : \overline{\mathbb{P}}_{g,\delta} \to \overline{\mathcal{S}}_g^-$ is the morphism induced by β at the level of quotients.

Note that $\beta : \mathcal{P}_{g,\delta} \to \mathcal{U}_{g,\delta}^-$ is a projective bundle and $\operatorname{Aut}(V_g)$ acts linearly on its fibres, therefore β descends to a projective bundle on $B_{g,\delta}^-$. Then it follows from the previous remark that $\mathcal{P}_{g,\delta}$ is birationally isomorphic to $\mathbf{P}^{N_g-g+1} \times B_{g,\delta}^-$. To finish the proof of the unirationality of \mathcal{S}_q^- , we proceed as follows:

Theorem 4.15. Let $7 \le g \le 9$ and assume that (i) $B_{g,\delta}^-$ is unirational and (ii) $\delta \le N_g - g + 1$. Then \overline{S}_g^- is unirational.

Proof. By assumption (ii), $\beta : \mathcal{P}_{g,\delta}^o \to \mathcal{U}_g^-$ is dominant, Hence the same is true for the induced morphism $\overline{\beta} : \overline{\mathbb{P}}_{g,\delta} \to \overline{\mathcal{S}}_g^-$. By (i) and the above remark, $\overline{\mathbb{P}}_{g,\delta}$ is unirational. Therefore $\overline{\mathcal{S}}_g^-$ is unirational as well.

Theorem 4.15 has some straightforward applications. The case $\delta = g - 1$ is particularly convenient, since $B_{g,g-1}^-$ is isomorphic to the moduli space of integral curves of geometric genus 1 with g - 1 nodes. For $\delta = g - 1$, the assumptions of Theorem 4.15 hold when $g \leq 8$. In this range, the unirationality of S_q^- follows from that of $B_{g,g-1}^-$.

Theorem 4.16. $B_{q,q-1}^-$ is unirational for $g \leq 10$.

Proof. Let $I \subset \mathbf{P}^2 \times (\mathbf{P}^2)^{\vee}$ be the natural incidence correspondence consisting of pairs (x, l) such that x is a point on the line l. For $\delta \leq 9$, we define

$$\Pi_{\delta} := \{ (x_1, l_1, \dots, x_{\delta}, l_{\delta}, E) \in I^{\delta} \times \mathbf{P} H^0(\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(3)) : x_1, \dots, x_{\delta} \in E \}.$$

Then there exists a rational map $f_{\delta} : \Pi_{\delta} \dashrightarrow B^-_{\delta+1,\delta}$ sending $(x_1, l_1, \ldots, x_{\delta}, l_{\delta}, E)$ to the moduli point of the δ -nodal, integral curve C obtained from the elliptic curve E, by identifying the pairs of points in $E \cap l_i - \{x_i\}$ for $1 \le i \le \delta$. It is easy to see that Π_{δ} is rational if $\delta \le 9$. Clearly f_{δ} is dominant, just because every elliptic curve can be realized as a plane cubic. It follows that $B^-_{\delta+1,\delta}$ is unirational when $\delta \le 9$.

Unfortunately one cannot apply Theorem 4.16 to the case g = 9, since the assumptions of Theorem 4.15 are satisfied only if $\delta \leq 5$.

5. The stack of degenerate odd theta-characteristics

In this section we define a Deligne-Mumford stack $\mathbf{X}_g \to \overline{\mathbf{S}}_g^-$ parameterizing limit linear series \mathfrak{g}_{g-1}^0 which appear as limits of degenerate theta-characteristics on smooth curves. The push-forward of $[\mathbf{X}_g]$ is going to be precisely our divisor $\overline{\mathcal{Z}}_g$. Having a good description of \mathbf{X}_g over the boundary will enable us to determine all the coefficients in the expression of $[\overline{\mathcal{Z}}_q]$ in $\operatorname{Pic}(\overline{\mathcal{S}}_q^-)$.

We first define a partial compactification $\widetilde{\mathbf{M}}_g := \mathbf{M}_g \cup \widetilde{\Delta}_0 \cup \ldots \cup \widetilde{\Delta}_{[g/2]}$ of $\overline{\mathbf{M}}_g$, obtaining by adding to \mathbf{M}_g the open sub-stack $\widetilde{\Delta}_0 \subset \Delta_0$ of one-nodal irreducible curves $[C_{yq} := C/y \sim q]$, where $[C, y, q] \in \mathcal{M}_{g-1,2}$ is a Brill-Noether general curve together with their degenerations $[C \cup D_\infty]$ where D_∞ is an elliptic curve with $j(D_\infty) = \infty$, as well as the open substacks $\widetilde{\Delta}_j \subset \Delta_j$ for $1 \leq j \leq [g/2]$ classifying curves $[C \cup_y D]$ where $[C] \in \mathcal{M}_j$ and $[D] \in \mathcal{M}_{g-j}$ are Brill-Noether general curves in the respective moduli spaces. Let $p : \widetilde{\mathbf{M}}_{g,1} \to \widetilde{\mathbf{M}}_g$ be the universal curve. We denote $\widetilde{\mathbf{S}}_g^- := \pi^{-1}(\widetilde{\mathbf{M}}_g) \subset \overline{\mathbf{S}}_g^-$ and note that for all $0 \leq j \leq [g/2]$ the boundary divisors $A'_j := A_j \cap \widetilde{\mathcal{S}}_g^-$, $B'_j := B_j \cap \widetilde{\mathcal{S}}_g^$ are mutually disjoint inside $\widetilde{\mathcal{S}}_g^-$. Finally, we consider $\mathcal{Z} := \widetilde{\mathbf{S}}_g^- \times_{\widetilde{\mathbf{M}}_g} \widetilde{\mathbf{M}}_{g,1}$ and denote by $p_1 : \mathcal{Z} \to \widetilde{\mathbf{S}}_g^-$ the projection.

Following the local description of the projection $\overline{\mathbf{S}}_g^- \to \overline{\mathbf{M}}_g$ carried out in [C], in order to obtain the universal spin curve over $\widetilde{\mathbf{S}}_g^-$ one has first to blow-up the codimension 2 locus $V \subset \mathcal{Z}$ corresponding to points

$$v = \left(\left[C \cup_{\{y,q\}} E, \eta_C^{\otimes 2} = K_C, h^0(\eta_C) \equiv 1 \bmod 2, \ \eta_E = \mathcal{O}_E(1) \right], \ \nu(y) = \nu(q) \right) \in B'_0 \times_{\widetilde{\mathbf{M}}_g} \widetilde{\mathbf{M}}_{g,1}$$

(recall that $\nu : C \to C_{yq}$ denotes the normalization map, so v corresponds to the marked point specializing to the node of the curve C_{yq}). Suppose that $(\tau_1, \ldots, \tau_{3g-3})$ are local coordinates in an étale neighbourhood of $[C \cup_{\{y,q\}} E, \eta_C, \eta_E] \in \widetilde{S}_g^-$ such that the local equation of the divisor B'_0 is $(\tau_1 = 0)$. Then \mathcal{Z} around v admits local coordinates $(x, y, \tau_1, \ldots, \tau_{3g-3})$ verifying the equation $xy = \tau_1^2$, in particular, \mathcal{Z} is singular along V. Next, for $1 \leq j \leq [g/2]$ one blows-up the codimension 2 loci $V_j \subset \mathcal{Z}$ consisting of points

$$\left(\left[C \cup_{q} D, \eta_{C}, \eta_{D} \right], q \in C \cap D \right) \in \left(A'_{j} \cup B'_{j} \right) \times_{\widetilde{\mathbf{M}}_{g}} \widetilde{\mathbf{M}}_{g,1}.$$

This corresponds to inserting an exceptional component in each spin curve in $\pi^*(\Delta_j)$. We denote by

$$\mathcal{C} := \mathrm{Bl}_{V \cup V_1 \cup \ldots \cup V_{\lceil q/2 \rceil}}(\mathcal{Z})$$

and by $f : \mathcal{C} \to \widetilde{\mathbf{S}}_g^-$ the induced family of spin curves. Then for every $[X, \eta, \beta] \in \widetilde{\mathcal{S}}_g^-$ we have an isomorphism between $f^{-1}([X, \eta, \beta])$ and the quasi-stable curve X.

There exists a spin line bundle $\mathcal{P} \in \operatorname{Pic}(\mathcal{C})$ of relative degree g-1 as well as a morphism of $\mathcal{O}_{\mathcal{C}}$ -modules $B : \mathcal{P}^{\otimes 2} \to \omega_f$ having the property that $\mathcal{P}_{|f^{-1}([X,\eta,\beta])} = \eta$ and $B_{|f^{-1}([X,\eta,\beta])} = \beta : \eta^{\otimes 2} \to \omega_X$, for all spin curves $[X,\eta,\beta] \in \widetilde{S}_g^-$. We note that for the even moduli space \widetilde{S}_q^+ one has an analogous construction of the universal spin curve.

Next we define the stack $\tau : \mathbf{X}_g \to \mathbf{\tilde{S}}_g^-$ classifying limit \mathfrak{g}_{g-1}^0 which are twists of degenerate odd-spin curves. For a tree-like curve X we denote by $\overline{G}_d^r(X)$ the scheme of limit linear series \mathfrak{g}_d^r . The fibres of the morphism τ have the following description:

• $\tau^{-1}(\mathbf{S}_g^-)$ parameterizes triples $([C,\eta],\sigma,x)$, where $[C,\eta] \in \mathcal{S}_g^-$, $x \in C$ is a point and $\sigma \in \mathbf{P}H^0(C,\eta)$ is a section such that $\operatorname{div}(\sigma) \geq 2x$.

• For $1 \le j \le [g/2]$ the inverse image $\tau^{-1}(A'_j \cup B'_j)$ parameterizes elements of the form

$$\left(X, \sigma \in \overline{G}_{g-1}^0(X), \ x \in X_{\operatorname{reg}}\right),$$

where (X, x) is a 1-pointed quasi-stable curve semistably equivalent to the underlying curve of a spin curve $[C \cup_q E \cup_{q'} D, \eta_C, \eta_E, \eta_D] \in A'_j \cup B'_j$, with *E* denoting the exceptional component, g(C) = j, g(D) = g - j, $\{q\} = C \cap E, \{q'\} = E \cap D$ and

$$\sigma_C \in \mathbf{P}H^0(C, \eta_C \otimes \mathcal{O}_C((g-j)q)), \ \sigma_D \in \mathbf{P}H^0(D, \eta_D \otimes \mathcal{O}_D(jq')), \sigma_E \in \mathbf{P}H^0(E, \mathcal{O}_E(g-1))$$

are aspects of the limit linear series σ on X. Moreover, we require that $\operatorname{ord}_x(\sigma) \ge 2$. • $\tau^{-1}(B'_0)$ parameterizes elements $(X, \eta \in \operatorname{Pic}^{g-1}(X), \sigma \in \mathbf{P}H^0(X, \eta), x \in X_{\operatorname{reg}})$, where (X, x) is a 1-pointed quasi-stable curve equivalent to the curve underlying a

where (X, x) is a 1-pointed quasi-stable curve equivalent to the curve underlying a point $[C \cup_{\{y,q\}} E, \eta_C, \eta_E] \in B'_0$, the line bundle η on X satisfies $\eta_{|C} = \eta_C$ and $\eta_{|E} = \eta_E$ and $\eta_{|Z} = \mathcal{O}_Z$ for the remaining components of X. Finally, we require $\operatorname{ord}_x(\sigma) \ge 2$.

• $\tau^{-1}(A'_0)$ corresponds to points $(X, \eta \in \operatorname{Pic}^{g-1}(X), \sigma \in \mathbf{P}H^0(X, \eta), x \in X_{\operatorname{reg}})$, where (X, x) is a 1-pointed quasi-stable curve equivalent to the curve underlying a point $[C_{yq}, \eta_{C_{yq}}] \in A'_0$, and if $\mu : X \to C_{yq}$ is the map contracting all exceptional components, then $\mu^*(\eta_{C_{yq}}) = \eta$ (in particular η is trivial along exceptional components), and finally $\operatorname{ord}_x(\sigma) \geq 2$.

Using general constructions of stacks of limit linear series cf. [EH1], [F2], it is clear that X_g is a Deligne-Mumford stack. There exists a proper morphism

$$au: \mathbf{X}_g o \widetilde{\mathbf{S}}_g^-$$

that factors through the universal curve and we denote by $\chi : \mathbf{X}_g \to C$ the induced morphism, hence $\tau = f \circ \chi$. The push-forward of the coarse moduli space $\tau_*([\mathcal{X}_g])$ equals scheme-theoretically $\overline{\mathcal{Z}}_g \cap \widetilde{\mathcal{S}}_g^-$. It appears possible to extend \mathbf{X}_g over the entire $\overline{\mathbf{S}}_g^-$ but this is not necessary in order to prove Theorem 0.3 and we skip the details.

We are now in a position to calculate the class of the divisor \overline{Z}_g and we expand its class in the Picard group of \overline{S}_q^-

(4)
$$\overline{\mathcal{Z}}_g \equiv \overline{\lambda} \cdot \lambda - \overline{\alpha_0} \cdot \alpha_0 - \overline{\beta_0} \cdot \beta_0 - \sum_{i=1}^{[g/2]} \overline{\alpha}_i \cdot \alpha_i - \sum_{i=1}^{[g/2]} \overline{\beta}_i \cdot \beta_i \in \operatorname{Pic}(\overline{\mathcal{S}}_g^-),$$

where $\bar{\lambda}, \bar{\alpha}_i, \bar{\beta}_i \in \mathbb{Q}$ for i = 0, ..., [g/2]. We start by determining the coefficients of the divisors α_i and β_i for $1 \le i \le [g/2]$.

Proposition 5.1. For $1 \le i \le \lfloor g/2 \rfloor$ we have that $F_i \cdot \overline{Z}_g = 4(g-i)(i-1)$ and the intersection is everywhere transverse. It follows that $\overline{\alpha}_i = 2(g-i)$.

Proof. We recall from the definition of F_i that we have fixed theta-characteristics of opposite parity $\eta_C^- \in \operatorname{Pic}^{i-1}(C)$ and $\eta_D^+ \in \operatorname{Pic}^{g-i-1}(D)$. We choose a point $t = (X, \eta, \sigma, x) \in \tau^{-1}(F_i)$. It is a simple exercise to show that the "double" point x of $\sigma \in \overline{G}_{g-1}^0(X)$ cannot specialize to the exceptional component, therefore one has only two cases to consider depending on whether x lies on C or on D. Assume first that $x \in C$ and then $\sigma_C \in \mathbf{P}H^0(C, \eta_C^- \otimes \mathcal{O}_C((g-i)q))$ and $\sigma_D \in \mathbf{P}H^0(D, \eta_D^+ \otimes \mathcal{O}_D(iq))$, where $\{q\} = C \cap D$ is a point which moves on C but is fixed on D. Then $\operatorname{ord}_q(\sigma_D) \leq i-1$, therefore

 $\operatorname{ord}_q(\sigma_C) \geq g - i$ and then $\sigma_C(-(g - i)q) \in \mathbf{P}H^0(C, \eta_C^-)$. In particular, if we choose $[C, \eta_C^-] \in S_i - \mathbb{Z}_i$, then the section $\sigma_C(-(g - i)q)$ has only simple zeros, which shows that x cannot lie on C, so this case does not occur.

We are left with the possibility $x \in D - \{q\}$. One quickly concludes that the only possibility is $\operatorname{ord}_q(\sigma_C) = g - i + 1$ and $\operatorname{ord}_q(\sigma_D) = i - 2$. In particular, $q \in \operatorname{supp}(\eta_C^-)$ which gives i - 1 choices for the moving point $q \in C$. Furthermore $\sigma_D(-(i-2)q) \in$ $H^0(D, \eta_D^+ \otimes \mathcal{O}_D(2q - 2x))$, that is, x specializes to one of the ramification points of the pencil $\eta_D^+ \otimes \mathcal{O}_D(2q) \in W^1_{g-i+1}(D)$. We note that because of the generality of $[D, \eta_D^+] \in$ S^+_{g-i} as well as that of $q \in D$, the pencil is base point free and complete. From the Hurwitz-Zeuthen formula one finds 4(g-i) ramification points of $|\eta_D^+ \otimes \mathcal{O}_D(2q)|$, which leads to the formula $F_i \cdot \overline{Z}_g = 4(g-i)(i-1)$. The fact that $\tau_*(\mathbf{X}_g)$ is transverse to F_i follows because the formation of \mathbf{X}_g commutes with restriction to B'_0 and then one can easily show in a way similar to [EH2] Lemma 3.4 or by direct calculation that $\mathbf{X}_g \times_{\widetilde{\mathbf{S}}_g^-} B'_0$ is smooth at any of the points in $\tau^{-1}(F_i)$.

Proposition 5.2. For $1 \le i \le [g/2]$ we have that $G_i \cdot \overline{Z}_g = 4i(i-1)$ and the intersection is transversal. In particular $\overline{\beta}_i = 2i$.

Proof. This time we fix general points $[C, \eta_C^+] \in S_i^+$ and $[D, \eta_D^-] \in S_{g-i}^-$ and $q \in C \cap D$ which is a fixed general point on D but an arbitrary point on C. Again, it is easy to see that if $t = (X, \sigma, x) \in \tau^{-1}(G_i)$ then x must lie either on C or on D. Assume first that $x \in C - \{q\}$. Then the aspects of σ are described as follows

$$\sigma_C \in \mathbf{P}H^0(C, \eta_C^+ \otimes \mathcal{O}_C((g-i)q)), \ \sigma_D \in \mathbf{P}H^0(D, \eta_D^- \otimes \mathcal{O}_D(iq))$$

and moreover $\operatorname{ord}_x(\sigma_C) \geq 2$. The point $q \in D$ can be chosen so that it does not lie in $\operatorname{supp}(\eta_D^-)$, hence $\operatorname{ord}_q(\sigma_D) \leq i$ and then $\operatorname{ord}_q(\sigma_C) \geq g-i-1$. This leads to the conclusion $H^0(C, \eta_C^+ \otimes \mathcal{O}_C(y-2x)) \neq 0$, or equivalently $(x, y) \in C \times C$ is a ramification point of the degree *i* covering $p_1 : T_{\eta_C^+} \to C$ from the associated Scorza curve. We have shown that $T_{\eta_C^+}$ is smooth of genus 1 + 3i(i-1) (cf. Theorem 2.1) and moreover all the ramification points of p_1 are ordinary, therefore we find

$$\deg \operatorname{Ram}(p_1) = 2g(T_{C_{\eta_C^+}}) - 2 - \deg(p_1)(2i-2) = 4i(i-1)$$

choices when $x \in C$. Next possibility is $x \in D - \{q\}$. The same reasoning as above shows that $\operatorname{ord}_q(\sigma_C) \leq g - i - 1$, therefore $\operatorname{ord}_q(\sigma_D) \geq i$ as well as $\operatorname{ord}_x(\sigma_D) \geq 2$. Since $\sigma_D(-iq) \in \mathbf{P}H^0(D, \eta_D^-)$, this case does not occur if $[D, \eta_D^-] \in \mathcal{S}_{q-i}^- - \mathcal{Z}_{g-i}$.

Next we prove that $\overline{\mathcal{Z}}_g$ is disjoint from both elliptic pencils F_0 and G_0 :

Proposition 5.3. We have that $F_0 \cdot \overline{Z}_g = 0$ and $G_0 \cdot \overline{Z}_g = 0$. The equalities $\bar{\alpha} - 12\bar{\alpha}_0 + \bar{\alpha}_1 = 0$ and $3\bar{\alpha} - 12\bar{\alpha}_0 - 12\bar{\beta}_0 + 3\bar{\beta}_1 = 0$ follow.

Proof. We first show that $F_0 \cap \overline{\mathbb{Z}}_g = \emptyset$ and we assume by contradiction that there exists $t = (X, \sigma, x) \in \tau^{-1}(F_0)$. Let us deal first with the case when $st(X) = C \cap E_\lambda$, with E_λ being a smooth curve of genus 1. The key point is that the point of attachment $q \in C \cap E_\lambda$ being general, we can assume that $(x, q) \notin \operatorname{Ram}\{p_1 : T_{\eta_C^+} \to C\}$, for all $x \in C$. This implies that $H^0(C, \eta_C^+ \otimes \mathcal{O}_C(q - 2x)) = 0$ for all $x \in C$, therefore a section $\sigma_C \in \mathbf{P}H^0(C, \eta_C^+ \otimes \mathcal{O}_C(q))$ cannot vanish twice anywhere. Thus either $x \in E_\lambda - \{q\}$

or x lies on some exceptional component of X. In the former case, since $\operatorname{ord}_q(\sigma_C) = 0$, it follows that $\operatorname{ord}_q(\sigma_{E_\lambda}) \ge g - 1$, that is, σ_{E_λ} has no zeroes other than q (simple or otherwise). In the latter case, when $x \in E$, with E being an exceptional component, we denote by $q' \in E$ the point of intersection of E with the connected subcurve of X containing C as a subcomponent. Since as above, $\operatorname{ord}_q(\sigma_C) = 0$, by compatibility it follows that $\operatorname{ord}_{q'}(\sigma_E) = g - 1$. But $\sigma_E \in \mathbf{P}H^0(E, \mathcal{O}_E(g-1))$, that is, σ_E does not vanish at x, a contradiction. The proof that $G_0 \cap \overline{Z}_g = \emptyset$ is similar and we omit the details. \Box

The trickiest part in the calculation of $[\overline{Z}_f]$ is the computation of the following intersection number:

Proposition 5.4. If $H_0 \subset B_0$ is the covering family lying in the ramification divisor of \overline{S}_g^- , then one has that $H_0 \cdot \overline{Z}_g = 2(g-2)$ and the intersection consists of g-2 points each counted with multiplicity 2. Therefore the relation $(g-1)\overline{\beta}_0 - \overline{\beta}_1 = 2(g-2)$ holds.

Proof. We first determine the set-theoretic intersection $\tau_*(\mathcal{X}_g) \cap H_0$. We recall that we have fixed $[C, q, \eta_C^-] \in \mathcal{S}_{g-1,1}^-$ and start by choosing an arbitrary point $t = (X, \eta, \sigma, x) \in \tau^{-1}(H_0)$. Assume first that $X = C \cup_{\{y,q\}} E$, where $y \in C$, that is, x does not specialize to one of the nodes of $C \cup E$. Suppose first that $x \in C - \{y,q\}$. From the Mayer-Vietoris sequence on X we write

$$0 \neq \sigma \in H^0(X, \eta \otimes \mathcal{O}_X(-2x)) = \operatorname{Ker} \left\{ H^0(C, \eta_C^- \otimes \mathcal{O}_C(-2x)) \oplus H^0(E, \mathcal{O}_E(1)) \xrightarrow{ev_{y,q}} \mathbb{C}^2_{\{y,q\}} \right\},$$

we obtain that $H^0(C, \eta_C^- \otimes \mathcal{O}_C(-2x)) \neq 0$. This case can be avoided by choosing $[C, \eta_C^-] \in \mathcal{S}_{q-1}^- - \mathcal{Z}_{g-1}$.

Next we consider the possibility $x \in E - \{y, q\}$. The same Mayer-Vietoris argument reads in this case $0 \neq \text{Ker}\{H^0(C, \eta_C^-) \oplus H^0(E, \mathcal{O}_E(-1)) \xrightarrow{ev_{y,q}} \mathbb{C}^2_{\{y,q\}}\}$, that is, $y + q \in \text{supp}(\eta_C^-)$. This case can be avoided as well by starting with a general point $q \in C - \text{supp}(\eta_C^-)$. Thus the only possibility is that x specializes to one of the nodes yor q.

We deal first with the case when x and q coalesce and there is no loss of generality in assuming that $X = C \cup E \cup E'$, where both E and E' are copies of \mathbf{P}^1 and $C \cap E = \{y\}, C \cap E' = \{q\}, E \cap E' = \{y'\}$ and moreover $x \in E' - \{y', q\}$. The restrictions of the line bundle $\eta \in \operatorname{Pic}^{g-1}(X)$ are such that $\eta_{|C} = \eta_{C}^-, \eta_E = \mathcal{O}_E(1)$ and $\eta_{E'} = \mathcal{O}_{E'}$. We write

$$0 \neq \sigma = (\sigma_C, \sigma_E, \sigma_{E'}) \in \operatorname{Ker} \{ H^0(C, \eta_C^-) \oplus H^0(E, \mathcal{O}_E(1)) \oplus H^0(E', \mathcal{O}_{E'}(1)) \xrightarrow{ev_{y,y',q}} \mathbb{C}_{y,y',q} \},$$

hence $\sigma_{E'} = 0$, and then by compatibility $\sigma_C(q) = 0$, that is, $q \in \operatorname{supp}(\eta_C^-)$ and again this case can be ruled out by a suitable choice of q. The last possible situation is when xand the moving point $y \in C$ coalesce, in which case $X = C \cup E \cup E'$, where this time $C \cap E = \{q\}, C \cap E' = \{y\}, E \cap E' = \{y'\}$ and again $x \in E' - \{y', q\}$. Writing one last time the Mayer-Vietoris sequence we find that $\sigma_{E'} = 0$ and then $\sigma_E(y') = 0$ and $\sigma_C(y) = 0$, that is, $y \in \operatorname{supp}(\eta_C^-)$ and then σ_C is uniquely determined up to a constant. Finally $\sigma_E \in H^0(E, \mathcal{O}_E(1)(-y'))$ is also uniquely specified by the gluing condition $\sigma_E(q) = \sigma_C(q)$. All in all, $H_0 \cap \overline{Z}_g = \# \operatorname{supp}(\eta_C^-) = g - 2$.

This discussion singles out an irreducible component $\Xi \subset \chi_*(\mathcal{X}_g) \subset \mathcal{C}$ of the intersection $\chi(\mathcal{X}_g) \cap f^{-1}(B'_0)$, namely

$$\Xi = \{ ([C \cup_{\{y,q\}} E, \eta_C, \eta_E], x) : y \in \operatorname{supp}(\eta_C^-), \ x = y \in X_{\operatorname{sing}} \},$$

where we recall that $f : \mathcal{C} \to \widetilde{\mathbf{S}}_g^-$ is the universal spin curve. Since $\Xi \subset \operatorname{Sing}(\chi_*(\mathcal{X}_g))$, it follows after a simple local analysis that each point in $\tau^{-1}(H_0)$ should be counted with multiplicity 2.

Remark 5.5. An partial independent check of Theorem 0.4 is obtained by computing using the Porteous formula the coefficient $\overline{\lambda}$ in the expression of $[\overline{Z}_g]$. By an abuse of notation we still denote by $f : \mathcal{C} \to \mathbf{S}_g^-$ the restriction of the universal spin curve to the locus of smooth curves and $\eta \in \operatorname{Pic}(\mathcal{C})$ the spin bundle of relative degree g - 1. Then Z_g is the push-forward via $f : \mathcal{C} \to \mathbf{S}_g^-$ of the degeneration locus of the sheaf morphism $\phi : f_*(\eta) \to J_1(\eta)$ (both these sheaves are locally free away a subset of codimension 3 in \mathbf{S}_g^- and throwing away this locus has no influence on divisor class calculations). Since $\det(f_*\eta) = (f_*\eta)^{\otimes 2}$, it follows that $c_1(f_*(\eta)) = -\lambda/4$, whereas the Chern classes of the first jet bundle $J_1(\eta)$ are calculated using the standard exact sequence on \mathcal{C}

$$0 \longrightarrow \eta \otimes \omega_f \longrightarrow J_1(\eta) \longrightarrow \eta \longrightarrow 0$$

Remembering Mumford's formula $f_*(c_1^2(\omega_f)) = 12\lambda$, one finally writes that

$$[\mathcal{Z}_g] = f_* c_2 \Big(J_1(\eta) - f_*(\eta) \Big) = f_* \Big(\frac{3}{4} c_1(\omega_f)^2 - 2c_1(\omega_f) \cdot c_1(f_*(\eta)) \Big) = (g+8) \ \lambda \in \operatorname{Pic}(\mathbf{S}_g^-).$$

6. A divisor of small slope on
$$\mathcal{M}_{12}$$

The aim of this section is to construct an effective divisor $D \in \text{Eff}(\overline{M}_{12})$ of slope s(D) < 6 + 12/13, that is, violating the Slope Conjecture. As pointed out in the proof of Theorem 0.3, this is precisely what is needed to show that \overline{S}_{12} is of general type.

Theorem 6.1. The following locus consisting of curves of genus 12 $\mathfrak{D}_{12} := \{ [C] \in \mathcal{M}_{12} : \exists L \in W_{14}^4(C) \text{ with } \mu_0(L) : \operatorname{Sym}^2 H^0(C,L) \to H^0(C,L^{\otimes 2}) \text{ not injective} \}$ is a divisor on \mathcal{M}_{12} . The class of its compactification inside $\overline{\mathcal{M}}_{12}$ equals

$$\overline{\mathfrak{D}}_{12} \equiv 13245 \ \lambda - 1926 \ \delta_0 - 9867 \ \delta_1 - \sum_{j=2}^6 b_j \ \delta_j \in \operatorname{Pic}(\overline{\mathcal{M}}_{12}),$$

where $b_j \ge b_1$ for $j \ge 2$. In particular, $s(\overline{\mathfrak{D}}_{12}) = \frac{4415}{642} < 6 + \frac{12}{13}$.

This implies the following upper bound for the slope $s(\overline{\mathcal{M}}_{12})$ of the moduli space:

Corollary 6.2.

$$6 + \frac{10}{12} \le s(\overline{\mathcal{M}}_{12}) := \inf_{D \in \text{Eff}(\overline{\mathcal{M}}_{12})} s(D) \le \frac{4415}{642} \left(= 6 + \frac{10}{12} + \frac{14}{321} \right).$$

Another immediate application, via [Log], [F1], concerns the birational type of $\overline{\mathcal{M}}_{g,n}$:

Theorem 6.3. The moduli space of *n*-pointed curves $\overline{\mathcal{M}}_{12,n}$ is of general type for $n \ge 11$.

The divisor \mathfrak{D}_{12} is constructed as the push-forward of a codimension 3 cycle in the stack $\mathfrak{G}_{14}^4 \to \mathbf{M}_{12}$ classifying linear series \mathfrak{g}_{14}^4 . We describe the construction of this cycle, then extend this determinantal structure over a partial compactification of \mathcal{M}_{12} . This will be essential to understand the intersection of $\overline{\mathfrak{D}}_{12}$ with the boundary divisors Δ_0 and Δ_1 of $\overline{\mathcal{M}}_{12}$. We denote by \mathbf{M}_{12}^p the open substack of \mathbf{M}_{12} consisting of curves $[C] \in \mathcal{M}_{12}$ such that $W_{13}^4(C) = \emptyset$ and $W_{14}^5(C) = \emptyset$. Results in Brill-Noether theory guarantee that $\operatorname{codim}(\mathcal{M}_{12} - \mathcal{M}_{12}^p, \mathcal{M}_{12}) \geq 3$. If $\operatorname{\mathfrak{Pic}}_{12}^{14}$ denotes the Picard stack of degree 14 over \mathbf{M}_{12}^p , then we consider the smooth Deligne-Mumford substack $\mathfrak{G}_{14}^4 \subset \operatorname{\mathfrak{Pic}}_{12}^{14}$ parameterizing pairs [C, L], where $[C] \in \mathcal{M}_{12}^p$ and $L \in W_{14}^4(C)$ is a (necessarily complete and base point free) linear series. We denote by $\sigma : \mathfrak{G}_{14}^4 \to \mathbf{M}_{12}^p$ the forgetful morphism. For a general $[C] \in \mathcal{M}_{12}^p$, the fibre $\sigma^{-1}([C]) = W_{14}^4(C)$ is a smooth surface.

Let $\pi : \mathbf{M}_{12,1}^p \to \mathbf{M}_{12}^p$ be the universal curve and then $p_2 : \mathbf{M}_{12,1}^p \times_{\mathbf{M}_{12}^p} \mathfrak{G}_{14}^4 \to \mathfrak{G}_{14}^4$ denotes the natural projection. If \mathcal{L} is a Poincaré bundle over $\mathbf{M}_{12,1}^p \times_{\mathbf{M}_{12}^p} \mathfrak{G}_{14}^4$ (or over an étale cover), then by Grauert's Theorem, both $\mathcal{E} := (p_2)_*(\mathcal{L})$ and $\mathcal{F} := (p_2)_*(\mathcal{L}^{\otimes 2})$ are vector bundles over \mathfrak{G}_{14}^4 , with rank $(\mathcal{E}) = 5$ and rank $(\mathcal{F}) = h^0(C, L^{\otimes 2}) = 17$ respectively. There is a natural vector bundle morphism over \mathfrak{G}_{14}^4 given by multiplication of sections,

$$\phi: \operatorname{Sym}^2(\mathcal{E}) \to \mathcal{F},$$

and we denote by $\mathcal{U}_{12} \subset \mathfrak{G}_{14}^4$ its first degeneracy locus. We set $\mathfrak{D}_{12} := \sigma_*(\mathcal{U}_{12})$. Since the degeneracy locus \mathcal{U}_{12} has expected codimension 3 inside \mathfrak{G}_{14}^4 , the locus \mathfrak{D}_{12} is a virtual divisor on \mathcal{M}_{12}^p .

We extend the vector bundles \mathcal{E} and \mathcal{F} over a partial compactification of \mathfrak{G}_{14}^4 given by limit \mathfrak{g}_{14}^4 . We denote by $\Delta_1^p \subset \Delta_1 \subset \overline{\mathcal{M}}_{12}$ the locus of curves $[C \cup_y E]$, where E is an arbitrary elliptic curve, $[C] \in \mathcal{M}_{11}$ is a Brill-Noether general curve and $y \in C$ is an arbitrary point. We then denote by $\Delta_0^p \subset \Delta_0 \subset \overline{\mathcal{M}}_{12}$ the locus consisting of curves $[C_{yq}] \in \Delta_0$, where $[C, q] \in \mathcal{M}_{11,1}$ is Brill-Noether general and $y \in C$ is arbitrary, as well as their degenerations $[C \cup_q E_\infty]$ where E_∞ is a rational nodal curve. Once we set

$$\overline{\mathbf{M}}_{12}^p := \mathbf{M}_{12}^p \cup \Delta_0^p \cup \Delta_1^p \subset \overline{\mathbf{M}}_{12},$$

we can extend the morphism σ to a proper morphism

$$\sigma: \widetilde{\mathfrak{G}}_{14}^4 \to \overline{\mathbf{M}}_{12}^p$$

from the stack $\widetilde{\mathfrak{G}}_{14}^4$ of limit linear series \mathfrak{g}_{14}^4 over the partial compactification $\overline{\mathbf{M}}_{12}^p$ of \mathbf{M}_{12} .

We extend the vector bundles \mathcal{E} and \mathcal{F} over the stack $\widetilde{\mathfrak{G}}_{14}^4$. The proof of the following result proceeds along the lines of the proof of Proposition 3.9 in [F1]:

Proposition 6.4. There exist two vector bundles \mathcal{E} and \mathcal{F} defined over \mathfrak{G}_{14}^4 with rank $(\mathcal{E}) = 5$ and rank $(\mathcal{F}) = 17$, together with a vector bundle morphism $\phi : \text{Sym}^2(\mathcal{E}) \to \mathcal{F}$, such that the following statements hold:

• For $[C, L] \in \mathfrak{G}_{14}^4$, with $[C] \in \mathcal{M}_{12}^p$, we have that

$$\mathcal{E}(C,L) = H^0(C,L)$$
 and $\mathcal{F}(C,L) = H^0(C,L^{\otimes 2}).$

• For $t = (C \cup_y E, l_C, l_E) \in \sigma^{-1}(\Delta_1^p)$, where g(C) = 11, g(E) = 1 and $l_C = |L_C|$ is such that $L_C \in W_{14}^4(C)$ has a cusp at $y \in C$, then $\mathcal{E}(t) = H^0(C, L_C)$ and

$$\mathcal{F}(t) = H^0(C, L_C^{\otimes 2}(-2y)) \oplus \mathbb{C} \cdot u^2,$$

where $u \in H^0(C, L_C)$ is any section such that $\operatorname{ord}_y(u) = 0$. If L_C has a base point at y, then $\mathcal{E}(t) = H^0(C, L_C) = H^0(C, L_C \otimes \mathcal{O}_C(-y))$ and the image of a natural map $\mathcal{F}(t) \to H^0(C, L_C^{\otimes 2})$ is the subspace $H^0(C, L_C^{\otimes 2} \otimes \mathcal{O}_C(-2y))$.

• Fix $t = [C_{yq} := C/y \sim q, L] \in \sigma^{-1}(\Delta_0^p)$, with $q, y \in C$ and $L \in \overline{W}_{14}^4(C_{yq})$ such that $h^0(C, \nu^*L \otimes \mathcal{O}_C(-y-q)) = 4$, where $\nu : C \to C_{yq}$ is the normalization map. In the case when L is locally free we have that

$$\mathcal{E}(t) = H^0(C, \nu^*L)$$
 and $\mathcal{F}(t) = H^0(C, \nu^*L^{\otimes 2} \otimes \mathcal{O}_C(-y-q)) \oplus \mathbb{C} \cdot u^2$,

where $u \in H^0(C, \nu^*L)$ is any section not vanishing at y and q. In the case when L is not locally free, that is, $L \in \overline{W}_{14}^4(C_{yq}) - W_{14}^4(C_{yq})$, then $L = \nu_*(A)$, where $A \in W_{13}^4(C)$ and the image of the natural map $\mathcal{F}(t) \to H^0(C, \nu^*L^{\otimes 2})$ is the subspace $H^0(C, A^{\otimes 2})$.

To determine the push-forward $[\overline{\mathfrak{D}}_{12}]^{virt} = \sigma_* (c_3(\mathcal{F} - \operatorname{Sym}^2(\mathcal{E})) \in A^1(\mathcal{M}_{12}^p)$, we study the restriction of the morphism ϕ along the pull-backs of two curves sitting in the boundary of $\overline{\mathcal{M}}_{12}$ and which are defined as follows: We fix a general pointed curve $[C, q] \in \mathcal{M}_{11,1}$ and a general elliptic curve $[E, y] \in \mathcal{M}_{1,1}$. Then we consider the families

$$C_0 := \{C/y \sim q : y \in C\} \subset \Delta_0^p \subset \overline{\mathcal{M}}_{12} \text{ and } C_1 := \{C \cup_y E : y \in C\} \subset \Delta_1^p \subset \overline{\mathcal{M}}_{12}.$$

These curves intersect the generators of $Pic(\overline{M}_{12})$ as follows:

$$C_0 \cdot \lambda = 0, \ C_0 \cdot \delta_0 = \deg(\omega_{C_{yq}}) = -22, \ C_0 \cdot \delta_1 = 1 \text{ and } C_0 \cdot \delta_j = 0 \text{ for } 2 \le j \le 6, \text{ and}$$

$$C_1 \cdot \lambda = 0, \ C_1 \cdot \delta_0 = 0, \ C_1 \cdot \delta_1 = -\deg(K_C) = -20 \text{ and } C_1 \cdot \delta_j = 0 \text{ for } 2 \le j \le 6.$$

Next, we fix a general pointed curve $[C,q] \in \mathcal{M}_{11,1}$ and describe the geometry of the pull-back $\sigma^*(C_0) \subset \widetilde{\mathfrak{G}}_{14}^4$. We consider the determinantal 3-fold

$$Y := \{ (y,L) \in C \times W_{14}^4(C) : h^0(C,L \otimes \mathcal{O}_C(-y-q)) = 4 \}$$

together with the projection $\pi_1: Y \to C$. Inside *Y* we consider the following divisors

$$\Gamma_1 := \{ (y, A \otimes \mathcal{O}_C(y)) : y \in C, \ A \in W^4_{13}(C) \} \text{ and} \\ \Gamma_2 := \{ (y, A \otimes \mathcal{O}_C(q)) : y \in C, \ A \in W^4_{13}(C) \}$$

intersecting transversally along the curve $\Gamma := \{(q, A \otimes \mathcal{O}_C(q)) : A \in W_{13}^4(C)\} \cong W_{13}^4(C)$. We introduce the blow-up $Y' \to Y$ of Y along Γ and denote by $E_{\Gamma} \subset Y'$ the exceptional divisor and by $\widetilde{\Gamma}_1, \widetilde{\Gamma}_2 \subset Y'$ the strict transforms of Γ_1 and Γ_2 respectively. We then define $\widetilde{Y} := Y'/\widetilde{\Gamma}_1 \cong \widetilde{\Gamma}_2$, to be the variety obtained from Y' by identifying the divisors $\widetilde{\Gamma}_1$ and $\widetilde{\Gamma}_2$ over each $(y, A) \in C \times W_{13}^4(C)$. Let $\epsilon : \widetilde{Y} \to Y$ be the projection map.

Proposition 6.5. With notation as above, one has a birational morphism of 3-folds

$$f: \sigma^*(C_0) \to \tilde{Y}$$

which is an isomorphism outside a curve contained in $\epsilon^{-1}(\pi_1^{-1}(q))$. The map $f_{|(\pi_1 \epsilon f)^{-1}(q)}$ corresponds to forgetting the E_{∞} -aspect of each limit linear series. Accordingly, the vector bundles $\mathcal{E}_{|\sigma^*(C_0)}$ and $\mathcal{F}_{|\sigma^*(C_0)}$ are pull-backs under $\epsilon \circ f$ of vector bundles on Y.

Proof. We fix a point $y \in C - \{q\}$ and denote by $\nu : C \to C_{yq}$ the normalization map, with $\nu(y) = \nu(q)$. We investigate the variety $\overline{W}_{14}^4(C_{yq}) \subset \overline{\operatorname{Pic}}^{14}(C_{yq})$ of torsion-free sheaves L on C_{yq} with deg(L) = 14 and $h^0(C_{yq}, L) \geq 5$. A locally free $L \in \overline{W}_{14}^4(C_{yq})$ is determined by $\nu^*(L) \in W_{14}^4(C)$, which has the property $h^0(C, \nu^*L \otimes \mathcal{O}_C(-y-q)) = 4$ (use that since $W_{12}^4(C) = \emptyset$, there exists a section of L that does not vanish simultaneously at both y and q). However, the line bundles of type $A \otimes \mathcal{O}_C(y)$ or $A \otimes \mathcal{O}_C(q)$ with $A \in W_{13}^4(C)$, do not appear in this association, though $(y, A \otimes \mathcal{O}_C(y)), (y, A \otimes \mathcal{O}_C(q)) \in$ *Y*. In fact, they correspond to the situation when $L \in \overline{W}_{14}^4(C_{yq})$ is not locally free, in which case necessarily $L = \nu_*(A)$ for some $A \in W_{13}^4(C)$. Thus, for a point $y \in C - \{q\}$, there is a birational morphism $\pi_1^{-1}(y) \to \overline{W}_{14}^4(C_{yq})$ which is an isomorphism over the locus of locally free sheaves. More precisely, $\overline{W}_{14}^4(C_{yq})$ is obtained from $\pi_1^{-1}(y)$ by identifying the disjoint divisors $\Gamma_1 \cap \pi_1^{-1}(y)$ and $\Gamma_2 \cap \pi_1^{-1}(y)$.

A special analysis is required when y = q, when C_{yq} degenerates to $C \cup_q E_{\infty}$, where E_{∞} is a rational nodal cubic. If $\{l_C, l_{E_{\infty}}\} \in \sigma^{-1}([C \cup_q E_{\infty}])$, then the corresponding Brill-Noether numbers with respect to q satisfy $\rho(l_C, q) \ge 0$ and $\rho(l_{E_{\infty}}, q) \le 2$. The statement about the restrictions $\mathcal{E}_{|\sigma^*(C_0)}$ and $\mathcal{F}_{|\sigma^*(C_0)}$ follows, because both restrictions are defined by dropping the information coming from the elliptic tail. \Box

To describe $\sigma^*(C_1) \subset \widetilde{\mathfrak{G}}_{14}^4$, where $[C] \in \mathcal{M}_{11}$, we define the determinantal 3-fold

$$X := \{ (y, L) \in C \times W_{14}^4(C) : h^0(L \otimes \mathcal{O}_C(-2y)) = 4 \}.$$

In what follows we use notation from [EH1], to denote vanishing sequences of limit linear series:

Proposition 6.6. With notation as above, the 3-fold X is an irreducible component of $\sigma^*(C_1)$. Moreover one has that $c_3((\mathcal{F} - \operatorname{Sym}^2 \mathcal{E})_{|\sigma^*(C_1)}) = c_3((\mathcal{F} - \operatorname{Sym}^2 \mathcal{E})_{|X})$.

Proof. By the additivity of the Brill-Noether number, if $\{l_C, l_E\} \in \sigma^{-1}([C \cup_y E])$, we have that $2 = \rho(12, 4, 14) \ge \rho(l_C, y) + \rho(l_E, y)$. Since $\rho(l_E, y) \ge 0$, we obtain that $\rho(l_C, y) \le 2$. If $\rho(l_E, y) = 0$, then $l_E = 9y + |\mathcal{O}_E(5y)|$, that is, l_E is uniquely determined, while the aspect $l_C \in G_{14}^4(C)$ is a complete \mathfrak{g}_{14}^4 with a cusp at the variable point $y \in C$. This gives rise to an element from X. The remaining components of $\sigma^*(C_1)$ are indexed by Schubert indices $\bar{\alpha} := (0 \le \alpha_0 \le \cdots \le \alpha_4 \le 10)$ such that $\bar{\alpha} > (0, 1, 1, 1, 1)$ and $5 \le \sum_{j=0}^4 \alpha_j \le 7$. For such $\bar{\alpha}$, we set $\bar{\alpha}^c := (10 - \alpha_4, \dots, 10 - \alpha_0)$ to be the complementary Schubert index, then define

$$X_{\bar{\alpha}} := \{ (y, l_C) \in C \times G_{14}^4(C) : \alpha^{l_C}(y) \ge \bar{\alpha} \} \text{ and } Z_{\bar{\alpha}} := \{ l_E \in G_{14}^4(E) : \alpha^{l_E}(y) \ge \bar{\alpha}^c \}.$$

Then $\sigma^*(C_1) = X + \sum_{\bar{\alpha}} X_{\bar{\alpha}} \times Z_{\bar{\alpha}}$. The last claim follows by dimension reasons. Since dim $X_{\bar{\alpha}} = 1 + \rho(11, 4, 14) - \sum_{j=0}^{4} \alpha_j < 3$, for every $\bar{\alpha} > (0, 1, 1, 1, 1)$ and the restrictions of both \mathcal{E} and \mathcal{F} are pulled-back from $X_{\bar{\alpha}}$, one obtains that $c_3(\mathcal{F} - \operatorname{Sym}^2 \mathcal{E})_{|X_{\bar{\alpha}} \times Z_{\bar{\alpha}}} = 0$. \Box

We also recall standard facts about intersection theory on Jacobians. For a Brill-Noether general curve $[C] \in \mathcal{M}_g$, we denote by \mathcal{P} a Poincaré bundle on $C \times \operatorname{Pic}^d(C)$ and by $\pi_1 : C \times \operatorname{Pic}^d(C) \to C$ and $\pi_2 : C \times \operatorname{Pic}^d(C) \to \operatorname{Pic}^d(C)$ the projections. We define the cohomology class $\eta = \pi_1^*([\operatorname{point}]) \in H^2(C \times \operatorname{Pic}^d(C))$, and if $\delta_1, \ldots, \delta_{2g} \in H^1(C, \mathbb{Z}) \cong$ $H^1(\operatorname{Pic}^d(C), \mathbb{Z})$ is a symplectic basis, then we set

$$\gamma := -\sum_{\alpha=1}^{g} \left(\pi_1^*(\delta_\alpha) \pi_2^*(\delta_{g+\alpha}) - \pi_1^*(\delta_{g+\alpha}) \pi_2^*(\delta_\alpha) \right) \in H^2(C \times \operatorname{Pic}^d(C)).$$

One has the formula $c_1(\mathcal{P}) = d\eta + \gamma$, corresponding to the Hodge decomposition of $c_1(\mathcal{P})$, as well as the relations $\gamma^3 = 0$, $\gamma \eta = 0$, $\eta^2 = 0$ and $\gamma^2 = -2\eta \pi_2^*(\theta)$. On $W_d^r(C)$ there is a tautological rank r + 1 vector bundle $\mathcal{M} := (\pi_2)_*(\mathcal{P}_{|C \times W_d^r(C)})$. To compute the Chern numbers of \mathcal{M} we employ the Harris-Tu formula [HT]. We write $\sum_{i=0}^r c_i(\mathcal{M}^{\vee}) =$

 $(1+x_1)\cdots(1+x_{r+1})$, and then for every class $\zeta \in H^*(\operatorname{Pic}^d(C),\mathbb{Z})$ one has the following formula:

(5)
$$x_1^{i_1} \cdots x_{r+1}^{i_{r+1}} \zeta = \det\left(\frac{\theta^{g+r-d+i_j-j+l}}{(g+r-d+i_j-j+l)!}\right)_{1 \le j,l \le r+1} \zeta.$$

We compute the classes of the 3-folds that appear in Propositions 6.5 and 6.6:

Proposition 6.7. Let $[C,q] \in \mathcal{M}_{11,1}$ be a Brill-Noether general pointed curve. If \mathcal{M} denotes the tautological rank 5 vector bundle over $W_{14}^4(C)$ and $c_i := c_i(\mathcal{M}^{\vee}) \in H^{2i}(W_{14}^4(C), \mathbb{C})$, then one has the following relations:

- (i) $[X] = \pi_2^*(c_4) 6\eta\theta\pi_2^*(c_2) + (48\eta + 2\gamma)\pi_2^*(c_3) \in H^8(C \times W_{14}^4(C), \mathbb{C}).$ (ii) $[Y] = \pi_2^*(c_4) 2\eta\theta\pi_2^*(c_2) + (13\eta + \gamma)\pi_2^*(c_3) \in H^8(C \times W_{14}^4(C), \mathbb{C}).$

Proof. We start by noting that $W_{14}^4(C)$ is a smooth 6-fold isomorphic to the symmetric product C_6 . We realize X as the degeneracy locus of a vector bundle morphism defined over $C \times W_{14}^4(C)$. For each pair $(y, L) \in C \times W_{14}^4(C)$, there is a natural map

$$H^0(C, L \otimes \mathcal{O}_{2y})^{\vee} \to H^0(C, L)^{\vee}$$

which globalizes to a vector bundle morphism $\zeta : J_1(\mathcal{P})^{\vee} \to \pi_2^*(\mathcal{M})^{\vee}$ over $C \times W_{14}^4(C)$. Then we have the identification $X = Z_1(\zeta)$ and the Thom-Porteous formula gives that $[X] = c_4(\pi_2^*(\mathcal{M}) - J_1(\mathcal{P}^{\vee}))$. From the usual exact sequence over $C \times \operatorname{Pic}^{14}(C)$

$$0 \longrightarrow \pi_1^*(K_C) \otimes \mathcal{P} \longrightarrow J_1(\mathcal{P}) \longrightarrow \mathcal{P} \longrightarrow 0,$$

we can compute the total Chern class of the jet bundle

$$c_t (J_1(\mathcal{P})^{\vee})^{-1} = \left(\sum_{j\geq 0} (d(L)\eta + \gamma)^j\right) \cdot \left(\sum_{j\geq 0} \left((2g(C) - 2 + d(L))\eta + \gamma\right)^j\right) = 1 - 6\eta\theta + 48\eta + 2\gamma,$$

which quickly leads to the formula for [X]. To compute [Y] we proceed in a similar way. We denote by $\mu, \nu : C \times C \times \operatorname{Pic}^{14}(C) \to C \times \operatorname{Pic}^{14}(C)$ the two projections, by $\Delta \subset C \times C \times \operatorname{Pic}^{14}(C)$ the diagonal and we set $\Gamma_q := \{q\} \times \operatorname{Pic}^{14}(C)$. We introduce the rank 2 vector bundle $\mathcal{B} := (\mu)_* (\nu^*(\mathcal{P}) \otimes \mathcal{O}_{\Delta + \nu^*(\Gamma_q)})$ defined over $C \times W_{14}^4(C)$. We note that there is a bundle morphism $\chi: \mathcal{B}^{\vee} \to (\pi_2)^*(\mathcal{M})^{\vee}$, such that $Y = Z_1(\chi)$. Since we also have that

$$c_t(\mathcal{B}^{\vee})^{-1} = (1 + (d(L)\eta + \gamma) + (d(L)\eta + \gamma)^2 + \cdots)(1 - \eta),$$

we immediately obtained the stated expression for [Y].

Proposition 6.8. Let $[C] \in \mathcal{M}_{11}$ and denote by $\mu, \nu : C \times C \times \operatorname{Pic}^{14}(C) \to C \times \operatorname{Pic}^{14}(C)$ the natural projections. We define the vector bundles \mathcal{A}_2 and \mathcal{B}_2 on $C \times \operatorname{Pic}^{14}(C)$ having fibres

$$\mathcal{A}_2(y,L) = H^0(C, L^{\otimes 2} \otimes \mathcal{O}_C(-2y)) \text{ and } \mathcal{B}_2(y,L) = H^0(C, L^{\otimes 2} \otimes \mathcal{O}_C(-y-q)),$$

respectively. One has the following formulas:

$$c_{1}(\mathcal{A}_{2}) = -4\theta - 4\gamma - 76\eta \quad c_{1}(\mathcal{B}_{2}) = -4\theta - 2\gamma - 27\eta,$$

$$c_{2}(\mathcal{A}_{2}) = 8\theta^{2} + 280\eta\theta + 16\gamma\theta, \quad c_{2}(\mathcal{B}_{2}) = 8\theta^{2} + 100\eta\theta + 8\theta\gamma,$$

$$c_{3}(\mathcal{A}_{2}) = -\frac{32}{3}\theta^{3} - 512\eta\theta^{2} - 32\theta^{2}\gamma \text{ and } c_{3}(\mathcal{B}_{2}) = -\frac{32}{3}\theta^{3} - 184\eta\theta^{2} - 16\theta^{2}\gamma.$$

Proof. Immediate application of Grothendieck-Riemann-Roch with respect to ν .

26

Before our next result, we recall that if \mathcal{V} is a vector bundle of rank r + 1 on a variety *X*, we have the formulas:

- (i) $c_1(\operatorname{Sym}^2(\mathcal{V})) = (r+2)c_1(\mathcal{V}).$ (ii) $c_2(\operatorname{Sym}^2(\mathcal{V})) = \frac{r(r+3)}{2}c_1^2(\mathcal{V}) + (r+3)c_2(\mathcal{V}).$ (iii) $c_3(\operatorname{Sym}^2(\mathcal{V})) = \frac{r(r+4)(r-1)}{6}c_1^3(\mathcal{V}) + (r+5)c_3(\mathcal{V}) + (r^2+4r-1)c_1(\mathcal{V})c_2(\mathcal{V}).$

We expand $\sigma_*(c_3(\mathcal{F} - \text{Sym}^2 \mathcal{E})) \equiv a\lambda - b_0\delta_0 - b_1\delta_1 \in A^1(\mathcal{M}_{12}^p)$ and determine the coefficients a, b_0 and b_1 . This will suffice in order to compute $s(\overline{\mathfrak{D}}_{12})$.

Theorem 6.9. Let $[C] \in \mathcal{M}_{11}$ be a Brill-Noether general curve and denote by $C_1 \subset \Delta_1 \subset \overline{\mathcal{M}}_{12}$ the associated test curve. Then the coefficient of δ_1 in the expansion of $\overline{\mathfrak{D}}_{22}$ is equal to

$$b_1 = \frac{1}{2g(C) - 2} \sigma^*(C_1) \cdot c_3 \left(\mathcal{F} - \text{Sym}^2 \mathcal{E} \right) = 9867.$$

Proof. We intersect the degeneracy locus of the map ϕ : Sym²(\mathcal{E}) $\rightarrow \mathcal{F}$ with the 3-fold $\sigma^*(C_1) = X + \sum_{\bar{\alpha}} X_{\bar{\alpha}} \times Z_{\bar{\alpha}}$. As already explained in Proposition 6.6, it is enough to estimate the contribution coming from X and we can write

$$\sigma^*(C_1) \cdot c_3(\mathcal{F} - \operatorname{Sym}^2 \mathcal{E}) = c_3(\mathcal{F}_{|X}) - c_3(\operatorname{Sym}^2 \mathcal{E}_{|X}) - c_1(\mathcal{F}_{|X})c_2(\operatorname{Sym}^2 \mathcal{E}_{|X}) + c_2(\operatorname{Sym}^2 \mathcal{E}_{|X})$$

 $+2c_1(\operatorname{Sym}^2\mathcal{E}_{|X})c_2(\operatorname{Sym}^2\mathcal{E}_{|X})-c_1(\operatorname{Sym}^2\mathcal{E}_{|X})c_2(\mathcal{F}_{|X})+c_1^2(\operatorname{Sym}^2\mathcal{E}_{|X})c_1(\mathcal{F}_{|X})-c_1^3(\operatorname{Sym}^2\mathcal{E}_{|X}).$ We are going to compute each term in the right-hand-side of this expression.

Recall that we have constructed in Proposition 6.7 a vector bundle morphism $\zeta : J_1(\mathcal{P})^{\vee} \to \pi_2^*(\mathcal{M})^{\vee}$. We consider the kernel line bundle $\operatorname{Ker}(\zeta)$. If U is the line bundle on X with fibre

$$U(y,L) = \frac{H^0(C,L)}{H^0(C,L\otimes\mathcal{O}_C(-2y))} \hookrightarrow H^0(C,L\otimes\mathcal{O}_{2y})$$

over a point $(y, L) \in X$, then one has an exact sequence over X

$$0 \to U \to J_1(\mathcal{P}) \to \operatorname{Ker}(\zeta)^{\vee} \to 0$$

In particular, $c_1(U) = 2\gamma + 48\eta - c_1(\text{Ker}(\zeta))^{\vee}$. The products of the Chern class of $\text{Ker}(\zeta)^{\vee}$ with other classes on $C \times W_{14}^4(C)$ can be computed from the Harris-Tu formula [HT]: (6)

$$c_1(\operatorname{Ker}(\zeta)^{\vee}) \cdot \xi_{|X} = -c_5(\pi_2^*(\mathcal{M})^{\vee} - J_1(\mathcal{P})^{\vee}) \cdot \xi_{|X} = -(\pi_2^*(c_5) - 6\eta\theta\pi_2^*(c_3) + (48\eta + 2\gamma)\pi_2^*(c_4)) \cdot \xi_{|X}$$

for any class $\xi \in H^2(C \times W^4(C) \mathbb{C})$

for any class $\xi \in H^2(C \times W^4_{14}(C), \mathbb{C})$.

If \mathcal{A}_3 denotes the rank 18 vector bundle on X having fibres $\mathcal{A}_3(y,L) = H^0(C, L^{\otimes 2})$, then there is an injective morphism $U^{\otimes 2} \hookrightarrow \mathcal{A}_3/\mathcal{A}_2$, and we consider the quotient sheaf

$$\mathcal{G} := rac{\mathcal{A}_3/\mathcal{A}_2}{U^{\otimes 2}}$$

Since the morphism $U^{\otimes 2} \to \mathcal{A}_3/\mathcal{A}_2$ vanishes along the locus of pairs (y, L) where L has a base point, \mathcal{G} has torsion along $\Gamma \subset X$. A straightforward local analysis now shows that $\mathcal{F}_{|X}$ can be identified as a subsheaf of \mathcal{A}_3 with the kernel of the map $\mathcal{A}_3 \to \mathcal{G}$. Therefore, there is an exact sequence of vector bundles on X

$$0 \to \mathcal{A}_{2|X} \to \mathcal{F}_{|X} \to U^{\otimes 2} \to 0,$$

which over a general point of *X* corresponds to the decomposition

$$\mathcal{F}(y,L) = H^0(C, L^{\otimes 2} \otimes \mathcal{O}_C(-2y)) \oplus \mathbb{C} \cdot u^2,$$

where $u \in H^0(C,L)$ is such that $\operatorname{ord}_y(u) = 1$. The analysis above, shows that the sequence stays exact over the curve Γ as well. Hence

$$c_1(\mathcal{F}_{|X}) = c_1(\mathcal{A}_{2|X}) + 2c_1(U), \ c_2(\mathcal{F}_{|X}) = c_2(\mathcal{A}_{2|X}) + 2c_1(\mathcal{A}_{2|X})c_1(U) \text{ and } c_3(\mathcal{F}_{|X}) = c_3(\mathcal{A}_2) + 2c_2(\mathcal{A}_{2|X})c_1(U).$$

Furthermore, since $\mathcal{E}_{|X} = \pi_2^*(\mathcal{M})_{|X}$, we obtain that:

$$\begin{aligned} \sigma^*(C_1) \cdot c_3 \left(\mathcal{F} - \operatorname{Sym}^2 \mathcal{E} \right) &= c_3(\mathcal{A}_{2|X}) + c_2(\mathcal{A}_{2|X})c_1(U^{\otimes 2}) - c_3(\operatorname{Sym}^2 \pi_2^* \mathcal{M}_{|X}) - \\ &- \left(\frac{r(r+3)}{2} c_1(\pi_2^* \mathcal{M}_{|X}) + (r+3)c_2(\pi_2^* \mathcal{M}_{|X}) \right) \cdot \left(c_1(\mathcal{A}_{2|X}) + c_1(U^{\otimes 2}) - 2(r+2)c_1(\pi_2^* \mathcal{M}_{|X}) \right) - \\ &- (r+2)c_1(\pi_2^* \mathcal{M}_{|X})c_2(\mathcal{A}_{2|X}) - (r+2)c_1(\pi_2^* \mathcal{M}_{|X})c_1(\mathcal{A}_{2|X})c_1(U^{\otimes 2}) + \\ &+ (r+2)^2 c_1^2(\pi_2^* \mathcal{M}_{|X})c_1(\mathcal{A}_{2|X}) + (r+2)^2 c_1^2(\pi_2^* \mathcal{M}_{|X})c_1(U^{\otimes 2}) - (r+2)^3 c_1^3(\pi_2^* \mathcal{M}_{|X}). \end{aligned}$$

As before, $c_i(\pi_2^*\mathcal{M}_{|X}^{\vee}) = \pi_2^*(c_i) \in H^{2i}(X, \mathbb{C})$. The coefficient of $c_1(\operatorname{Ker}(\zeta)^{\vee})$ in the product $\sigma^*(C_1) \cdot c_3(\mathcal{F} - \operatorname{Sym}^2\mathcal{E})$ is evaluated via (6). The part of this product that does not contain $c_1(\operatorname{Ker}(\zeta)^{\vee})$ equals

$$28\pi_{2}^{*}(c_{2})\theta - 88\pi_{2}^{*}(c_{1}^{2})\theta + 440\eta\pi_{2}^{*}(c_{1}^{2}) - 53\pi_{2}^{*}(c_{1}c_{2}) - \frac{32}{3}\theta^{3} + 128\eta\theta^{2} - 432\eta\theta\pi_{2}^{*}(c_{1}) + 64\pi_{2}^{*}(c_{1}^{3}) - 140\eta\pi_{2}^{*}(c_{2}) + 48\theta^{2}\pi_{2}^{*}(c_{1}) + 9\pi_{2}^{*}(c_{3}) \in H^{6}(C \times W_{14}^{4}(C), \mathbb{C}).$$

Multiplying this quantity by the class [X] obtained in Proposition 6.7 and then adding to it the contribution coming from $c_1(\text{Ker}(\zeta)^{\vee})$, one obtains a homogeneous polynomial of degree 7 in η , θ and $\pi_2^*(c_i)$ for $1 \le i \le 4$. The only non-zero monomials are those containing η . After retaining only these monomials, the resulting degree 6 polynomial in θ , $c_i \in H^*(W_{14}^4(C), \mathbb{Z})$ can be brought to a manageable form, by noting that, since $h^1(C, L) = 1$, the classes c_i are not independent. Precisely, if one fixes a divisor $D \in C_e$ of large degree, there is an exact sequence

$$0 \to \mathcal{M} \to (\pi_2)_* \left(\mathcal{P} \otimes \mathcal{O}(\pi^* D) \right) \to (\pi_2)_* \left(\mathcal{P} \otimes \mathcal{O}(\pi_1^* D)_{|\pi_1^* D} \right) \to R^1 \pi_{2*} \left(\mathcal{P}_{|C \times W_{14}^4(C)} \right) \to 0,$$

from which, via the well-known fact $c_t((\pi_2)_*(\mathcal{P} \otimes \mathcal{O}(\pi_1^*D))) = e^{-\theta}$, it follows that

$$c_t R^1 \pi_{2*} \left(\mathcal{P}_{|C \times W_{14}^4(C)} \right) \cdot e^{-\theta} = \sum_{i=0}^4 (-1)^i c_i.$$

Hence $c_{i+1} = \theta^i c_i / i! - i\theta^{i+1} / (i+1)!$, for all $i \ge 2$. After routine manipulations, one finds that $b_1 = \sigma^*(C_1) \cdot c_3(\mathcal{F} - \operatorname{Sym}^2(\mathcal{E}))/20 = 9867$.

Theorem 6.10. Let $[C, q] \in \mathcal{M}_{11,1}$ be a Brill-Noether general pointed curve and we denote by $C_0 \subset \Delta_0 \subset \overline{\mathcal{M}}_{12}$ the associated test curve. Then $\sigma^*(C_0) \cdot c_3(\mathcal{F} - \operatorname{Sym}^2 \mathcal{E}) = 22b_0 - b_1 = 32505$. It follows that $b_0 = 1926$.

Proof. As already noted in Proposition 6.5, the vector bundles $\mathcal{E}_{|\sigma^*(C_0)}$ and $\mathcal{F}_{|\sigma^*(C_0)}$ are both pull-backs of vector bundles on Y and we denote these vector bundles \mathcal{E} and \mathcal{F} as well, that is, $\mathcal{E}_{|\sigma^*(C^0)} = (\epsilon \circ f)^*(\mathcal{E}_{|Y})$ and $\mathcal{F}_{|\sigma^*(C_0)} = (\epsilon \circ f)^*(\mathcal{F}_{|Y})$. Like in the proof of Theorem 6.9, we evaluate each term appearing in $\sigma^*(C_0) \cdot c_3(\mathcal{F} - \text{Sym}^2(\mathcal{E}))$.

Let *V* be the line bundle on *Y* with fibre

$$V(y,L) = \frac{H^0(C,L)}{H^0(C,L\otimes\mathcal{O}_C(-y-q))} \hookrightarrow H^0(C,L\otimes\mathcal{O}_{y+q})$$

over a point $(y, L) \in Y$. There is an exact sequence of vector bundles over Y

$$0 \longrightarrow V \longrightarrow \mathcal{B} \longrightarrow \operatorname{Ker}(\chi)^{\vee} \longrightarrow 0,$$

where $\chi : \mathcal{B}^{\vee} \to \pi_2^*(\mathcal{M})^{\vee}$ is the bundle morphism defined in the second part of Proposition 6.7. In particular, $c_1(V) = 13\eta + \gamma - c_1(\operatorname{Ker}(\chi^{\vee}))$. By using again [HT], we find the following formulas for the Chern numbers of $\operatorname{Ker}(\chi)^{\vee}$:

$$c_1(\operatorname{Ker}(\chi)^{\vee}) \cdot \xi_{|Y} = -c_5(\pi_2^*(\mathcal{M})^{\vee} - \mathcal{B}^{\vee}) \cdot \xi_{|Y} = -(\pi_2^*(c_5) + \pi_2^*(c_4)(13\eta + \gamma) - 2\pi_2^*(c_3)\eta\theta) \cdot \xi_{|Y},$$

for any class $\xi \in H^2(C \times W_{14}^4(C), \mathbb{C})$. Recall that we introduced the vector bundle \mathcal{B}_2 over $C \times W_{14}^4(C)$ with fibre $\mathcal{B}_2(y, L) = H^0(C, L^{\otimes 2} \otimes \mathcal{O}_C(-y-q))$. We claim that one has an exact sequence of bundles over Y

(7)
$$0 \longrightarrow \mathcal{B}_{2|Y} \longrightarrow \mathcal{F}_{|Y} \longrightarrow V^{\otimes 2} \longrightarrow 0.$$

If \mathcal{B}_3 is the vector bundle on Y with fibres $\mathcal{B}_3(y,L) = H^0(C, L^{\otimes 2})$, we have an injective morphism of sheaves $V^{\otimes 2} \hookrightarrow \mathcal{B}_3/\mathcal{B}_2$ locally given by

$$v^{\otimes 2} \mapsto v^2 \mod H^0(C, L^{\otimes 2} \otimes \mathcal{O}_C(-y-q)),$$

where $v \in H^0(C, L)$ is any section not vanishing at q and y. Then $\mathcal{F}_{|Y}$ is canonically identified with the kernel of the projection morphism

$$\mathcal{B}_3
ightarrow rac{\mathcal{B}_3/\mathcal{B}_2}{V^{\otimes 2}}$$

and the exact sequence (7) now becomes clear. Therefore $c_1(\mathcal{F}_{|Y}) = c_1(\mathcal{B}_{2|Y}) + 2c_1(V)$, $c_2(\mathcal{F}_{|Y}) = c_2(\mathcal{B}_{2|Y}) + 2c_1(\mathcal{B}_{2|Y})c_1(V)$ and $c_3(\mathcal{F}_{|Y}) = c_3(\mathcal{B}_{2|Y}) + 2c_2(\mathcal{B}_{2|Y})c_1(V)$. The part of the total intersection number $\sigma^*(C_0) \cdot c_3(\mathcal{F} - \operatorname{Sym}^2(\mathcal{E}))$ that does not contain $c_1(\operatorname{Ker}(\chi^{\vee}))$ equals

$$28\pi_2^*(c_2)\theta - 88\pi_2^*(c_1^2)\theta - 22\eta\pi_2^*(c_1^2) - 53\pi_2^*(c_1c_2) - \frac{32}{3}\theta^3 + \frac{32}{3}\theta^3 +$$

 $-8\eta\theta^2 + 24\eta\theta\pi_2^*(c_1) + 64\pi_2^*(c_1^3) + 7\eta\pi_2^*(c_2) + 48\theta^2\pi_2^*(c_1) + 9\pi_2^*(c_3) \in H^6(C \times W_{14}^4(C), \mathbb{C})$ and this gets multiplied with the class [Y] from Proposition 6.7. The coefficient of $c_1(\operatorname{Ker}(\zeta)^{\vee})$ in $\sigma^*(C_0) \cdot c_3(\mathcal{F} - \operatorname{Sym}^2\mathcal{E})$ equals

$$-2c_2(\mathcal{B}_{2|Y}) - 2(r+2)^2 \pi_2^*(c_1^2) - 2(r+2)c_1(\mathcal{B}_{2|Y})\pi_2^*(c_1) + r(r+3)\pi_2^*(c_1^2) + 2(r+3)\pi_2^*(c_2).$$

All in all, $22b_0 - b_1 = \sigma^*(C_0) \cdot c_3(\mathcal{F} - \operatorname{Sym}^2 \mathcal{E})$ and we evaluate this using (6).

The following result follows from the definition of the vector bundles \mathcal{E} and \mathcal{F} given in Proposition 6.4:

Theorem 6.11. Let $[C,q] \in \mathcal{M}_{11,1}$ be a Brill-Noether general pointed curve and $R \subset \overline{\mathcal{M}}_{12}$ the pencil obtained by attaching at the fixed point $q \in C$ a pencil of plane cubics. Then

$$a - 12b_0 + b_1 = \sigma_* c_3 (\mathcal{F} - \mathrm{Sym}^2 \mathcal{E}) \cdot R = 0.$$

End of the proof of Theorem 6.1. The fact that the virtual divisor \mathfrak{D}_{12} is a genuine divisor on \mathcal{M}_{12} follows from [T]. Assuming by contradiction that for every curve $[C] \in \mathcal{M}_{12}$, there exists $L \in W_{14}^4(C)$ such that $\mu_0(L)$ is not-injective, one can construct a stable vector bundle E of rank 2 sitting in an extension

$$0 \longrightarrow K_C \otimes L^{\vee} \longrightarrow E \longrightarrow L \longrightarrow 0,$$

G. FARKAS AND A. VERRA

such that $h^0(C, E) = h^0(C, L) + h^1(C, L) = 7$, and for which the Mukai-Petri map $\operatorname{Sym}^2 H^0(C, E) \to H^0(C, \operatorname{Sym}^2 E)$ is not injective. This is a contradiction. To determine the slope of the divisor $\overline{\mathcal{D}}_{12}$, we write $\overline{\mathfrak{D}}_{12} \equiv a\lambda - \sum_{j=0}^6 b_j \delta_j \in \operatorname{Pic}(\overline{\mathcal{M}}_{12})$. Since $a/b_0 = 4415/642 \leq 71/10$, we are in a position to apply Corollary 1.2 from [FP], which gives the inequalities $b_j \geq b_0$ for $1 \leq j \leq 6$. Therefore $s(\overline{\mathfrak{D}}_{12}) = a/b_0 < 13/2$.

References

- [AJ] D. Abramovich and T. Jarvis, Moduli of twisted spin curves, Proceedings American Math. Society, 131 (2003), 685-699.
- [CCC] L. Caporaso, C. Casagrande and M. Cornalba, Moduli of roots of line bundles on curves, Transactions American Matematical Society 359 (2007), 3733–3768.
- [C] M. Cornalba, Moduli of curves and theta-characteristics, in: Lectures on Riemann surfaces (Trieste, 1987), 560-589.
- [Cu] F. Cukierman, Families of Weierstrass points, Duke Math. Journal 58 (1989), 317-346.
- [CS] L. Caporaso and E. Sernesi, Characterizing curves by their theta-characteristics, J. reine angew. Mathematik 562 (2003), 101-135.
- [De] T. Dedieu, Severi varieties and self rational maps of K3 surfaces, arXiv:0704.3163.
- [Dol] I. Dolgachev, *Topics in classical algebraic geometry I*, book in preparation, available at http://www.math.lsa.umich.edu/~idolga/.
- [DK] I. Dolgachev and V. Kanev, *Polar covariants of plane cubics and quartics*, Advances in Mathematics **98** (1993), 216-301.
- [EH1] D. Eisenbud and J. Harris, Limit linear series: Basic theory, Inventiones Math. 85 (1986), 337-371.
- [EH2] D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus 23 Inventiones Math. 90 (1987), 359–387.
- [EH3] D. Eisenbud and J. Harris, Irreducibility of some families of linear series with Brill-Noether number −1, Annales Scientifique École Normale Supérieure 22 (1989), 33-53.
- [F1] G. Farkas, Syzygies of curves and the effective cone of $\overline{\mathcal{M}}_{q}$, Duke Math. Journal 135 (2006), 53-98.
- [F2] G. Farkas, Koszul divisors on moduli spaces of curves, American Journal of Mathematics 131 (2009), 819-869.
- [F3] G. Farkas, The birational type of the moduli space of even spin curves, Advances in Mathematics 223 (2010), 433-443.
- [FV] G. Farkas and A. Verra, The intermediate type of certain moduli spaces of curves, arXiv:0910.3095.
- [FL] G. Farkas and K. Ludwig, *The Kodaira dimension of the moduli space of Prym varieties*, arXiv:0804.461, Journal of the European Mathematical Society (2010), to appear.
- [FP] G. Farkas and M. Popa, *Effective divisors on* $\overline{\mathcal{M}}_g$, *curves on* K3 *surfaces and the Slope Conjecture*, Journal of Algebraic Geometry 14 (2005), 151-174.
- [FKPS] F. Flamini, A. Knutsen, G. Pacienza and E. Sernesi, Nodal curves with general moduli on K3 surfaces, Comm. Algebra 36 (2008), 3955–3971.
- [HM] J. Harris and D. Mumford, On the Kodaira dimension of $\overline{\mathcal{M}}_g$, Inventiones Math. 67 (1982), 23-88.
- [HT] J. Harris and L. Tu, Chern numbers of kernel and cokernel bundles, Inventiones Math. 75 (1984), 467-475.
- [La] R. Lazarsfeld, *Brill-Noether-Petri without degenerations*, Journal of Differential Geometry **23** (1986), 299-307.
- [Log] A. Logan, The Kodaira dimension of moduli spaces of curves with marked points, American Journal of Math. 125 (2003), 105-138.
- [Lud] K. Ludwig, On the geometry of the moduli space of spin curves, Journal of Algebraic Geometry 19 (2010), 133-171.
- [M1] S. Mukai, Curves and Grassmannians, in: Algebraic Geometry and Related Topics (1992), eds. J.-H. Yang, Y. Namikawa, K. Ueno, 19-40.
- [M2] S. Mukai, Curves and symmetric spaces I, American Journal of Mathematics 117 (1995), 1627-1644.
- [M3] S. Mukai, *Curves and symmetric spaces II*, preprint.
- [M4] S. Mukai, Curves and K3 surfaces of genus eleven, in: Moduli of vector bundles, Lecture Notes in Pure and Appl. Math. 179, Dekker (1996), 189-197.
- [Sc] G. Scorza, Sopra le curve canoniche di uno spazio lineaire quelunque e sopra certi loro covarianti quartici, Atti Accad. Reale Sci. Torino 35 (1900), 765-773.

- [T] M. Teixidor i Bigas, *Petri map for rank two bundles with canonical determinant*, Compositio Mathematica **144** (2008), 705-720.
- [Ta] A. Tannenbaum, *Families of curves with nodes on K3 surfaces*, Math. Annalen **260** (1982), 239-253.
- [TZ] H. Takagi and F. Zucconi, Scorza quartics of trigonal spin curves and their varieties of power sums, arXiv:0801.1760.
- [V] A. Verra, *The unirationality of the moduli space of curves of genus 14 or lower*, Compositio Mathematica **141** (2005), 1425-1444.

HUMBOLDT-UNIVERSITÄT ZU BERLIN, INSTITUT FÜR MATHEMATIK, UNTER DEN LINDEN 6 10099 BERLIN, GERMANY *E-mail address*: farkas@math.hu-berlin.de

UNIVERSITÁ ROMA TRE, DIPARTIMENTI DI MATEMATICA, LARGO SAN LEONARDO MURIALDO 1-00146 ROMA, ITALY *E-mail address*: verra@mat.unirom3.it