THE GEOMETRY OF THE MODULI SPACE OF ODD SPIN CURVES

GAVRIL FARKAS AND ALESSANDRO VERRA

The set of odd theta-characteristics on a general curve C of genus g is in bijection
with the set §(C) of theta hyperplanes H € (P9~1)V everywhere tangent to the canoni-

K,
cally embedded curve C g P9~!. Even though the geometry and the intricate com-

binatorics of #(C') have been studied classically, see [Dol], [DK] for a modern account,
it was only recently proved in [CS] that one can reconstruct a general curve [C] € M,
from the hyperplane configuration 6(C).

Odd theta-characteristics form a moduli space 7 : S — M, which is an étale

cover of degree 297! (29 — 1). The normalization of My in the function field of S gives

rise to a finite covering 7 : S, — M. Furthermore, S, has a modular meaning being
isomorphic to the coarse moduli space of the Deligne-Mumford stack of odd stable spin
curves, cf. [(], [CC], [A]]. The map 7 is branched along the boundary of M, and one
expects K3; to enjoy better positivity properties than Ky,

The aim of this paper is to describe the birational geometry of S, for all g. Our
goals are (1) to understand the transition from rationality to maximal Kodaira dimen-
sion for 3; as g increases, and (2) to use the existence of Mukai models of M in order
to construct explicit unirational parameterizations of S, for small genus. Remarkably,
we end up having no gaps in the classification of S, . First, we show that in the range
where the general curve [C] € M, lies on a K3 surface, the existence of special theta
pencils on K3 surfaces, provides an explicit uniruled parameterization of S, :

Theorem 0.1. The odd spin moduli space S, is uniruled for g < 11.

When g < 9 or g = 11, a general spin curve [C,n] € 3; appears as a hyper-
plane section of a K3 surface X C PY, such that if d := supp(n) is the support of the
theta-characteristic, then the linear span (d) C P? is a codimension 2 linear subspace.

A rational curve P C S, is induced by the pencil of hyperplanes PH®(X,Z,/x(C))

containing (d). We show in Section 3 that P C 39_ is a covering rational curve, satisfying

P Kg =2g-24<0.
g

Thus P- K- < 0 precisely when g < 11, which highlights the fact that the nature of S,
is expected to change exactly when g > 12. This is something we shall achieve in the
course of proving Theorem 1.3

The previous argument no longer works for S, when the condition that a curve
[C] € My lie on a K3 surface is divisorial [FP]. This case is in some sense a specializa-
tion of the genus 11 case. We use that a general 1-nodal irreducible curve [C] € Ay C
M of arithmetic genus 11, lies on a K3 surface X C P'!. By a degeneration argument,
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we show that this construction can be also carried out in such a way, thatif v : ¢’ — C
denotes the normalization of C, then the points z,y € C’ with v(z) = v(y) (that is,
mapping to the node of C), lie in the support of one of the odd-theta characteristics of
[C"] € Myp. Ultimately, this produces a rational curve P C S;, through a general point,
which shows that Sy, is uniruled as well.

In the range in which a Mukai model of Mg exists, our results are more precise:

Theorem 0.2. S, is unirational for g < 8.

The proof relies on the existence, in this range, of Mukai varieties V,, C P92,
where n, = dim(V,), which have the property that general 1-dimensional linear sec-
tions of V; are canonical curves [C] € M, with general moduli. We fix an integer
1 <6 < g — 1 and consider the correspondence

Pos=1{(C,1,2): ZCCNT CV,, [sing(I')] =9, sing(") C Z},

where Z C Vj, is a 0-dimensional subscheme of V; of length 2¢g — 2, supported at g — 1
points and such that dim(Z) = g — 2 (see Section 4 for a precise definition), I' C Vj
is an irreducible §-nodal curve section of V; whose nodes are among the points in the
support of Z, and C' C V} is an arbitrary curve linear section of V; containing Z as a
subscheme. Thus if C'is smooth, then Z C C'is a divisor of even degree at each point
in its support, and O¢(Z/2) can be viewed as a theta-characteristic. The variety Py ;
comes equipped with two projections

5, < Poy LB
where B_ s C S, denotes the moduli space of irreducible J-nodal curves of arithmetic
genus g together with an odd theta- characteristic on the normalization. It is easy to see
that P ; is birational to a projective bundle over the irreducible variety B, ;. Thus the

unirationality of S, follows once we prove that (i) o is dominant, and (i) B ;s itself is
unirational. We carry out this program when g < 8. In the process of proving Theorem
12l we establish some facts of independent interest concerning the Mukai models

M, = G(g,ng +9—1)%//Aut(V).

These are birational models of M, having Pic(9,) = Z and appearing as GIT quotients
of Grassmannians; they can be viewed as log-minimal models of M, emerging from the
constructions carried out in [M1l], [M2], [M3]].

Theorem [LTlis sharp and the remaining moduli spaces S, are of general type:
Theorem 0.3. The space S, is a variety of general type for g > 11.

The border case of S, is particularly challenging and takes up the entire Section

6. We remark that in the range 11 < g < 17, of the two moduli spaces S, and M, one
is of general type whereas the other has negative Kodaira dimension. More strikingly,
Theorems and coupled with results from [E3], show that for 9 < g < 11, the

space S, is uniruled while 3; is of general type! Finally, we note that S5 is unirational
whereas Sy is of Calabi-Yau type [EV].
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We describe the main steps in the proof of Theorem .3l First, we use that for all

g>4and! > 0, if € : 3‘9 — 3; denotes a resolution of singularities, then there is an
induced isomorphism, see [Lud]

HO(Sg reg’ K®l ) :> H0(897 K?gl)

Thus to conclude that S is of general type, it suffices to exhibit an effective divisor D on
S, such that for appropriately chosen rational constants «, 3 > 0, a relation of the type
K_, =a A+ D+ E € Pic(S, ) holds, where X € Pic(S, ) is the pull-back to S, of the

Hodge class, and F is an effective Q-class which is typically a combination of boundary
divisors. It is essential to pick D so that (1) its class can be explicitly computed, that

is, points in D have good geometric characterization, and (2) [D] € Pic(S, ) is in some
way an extremal point of the effective cone of divisors so that the coeff1c1ents a, 3 stand

a chance of being positive. In the case of 3;, the role of D is played by the divisor O,

of vanishing theta-nulls, see [F3]. In the case of S, we compute the class of degenerate
theta-characteristics, that is, curves carrying a non-reduced odd theta-characteristic.

Theorem 0.4. We fix g > 3. The locus consisting of odd spin curves
Zy:={[Cn] €S, :n=0c(2x1 + 32+ + 35 2) Wherex; € Cfori=1,...,9 -2}
is a divisor on ;. The class of its compactification inside S, equals

[9/2] [9/2]

= +2 . . R
Zy=(9+8)A— 94 g — 2060 — 22(9—1) o — 222@- € Pic(S,),
i=1 i=1
where \, g, Bo, - - -, Qg 21, Blg 2] are the standard generators of Pic(gg).

For low genus, Z, specializes to well-known geometric loci. For instance Z3 is the
divisor of hyperflexes on plane quartics. In particular, Theorem .4 yields the formula

m.(Z3) = 308\ — 3280 — 7661 € Pic(Ms),

for the class of quartic curves having a hyperflex. This matches [Cul] formula (5.5).
Moreover, one has the following relation in Pic(M3)

[{[C] € M3 : 3z € Cwithdz = K¢} =8 Méz + m(Z23),

where J\/l3 9 = 9\ — 6o — 361 is the hyperelliptic class and the multiplicity 8 accounts for
the number of hyperelliptic Weierstrass points.

We briefly explain how Theorem l4limplies that S, is of general type for g > 11.

We choose an effective divisor D € Eff(M,) of small slope; for composite g + 1 one

can take D = M, g.d the closure of the Brill-Noether divisor of curves with a gj;, where
plg,r,d) = —1; there exists a constant ¢4 4, > 0 such that [EH2],

l9/2]
S0 — > ilg— i)5i> € Pic(M,).

=1

g-l—l

M;,d = Codyr ((9 +3)A —
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We form the linear combination of divisors on 39_

l9/2]
2 — 3(3g — 10) —— 11g + 37
_* z (M g) = 2N~ 200 — 360 — Y (a5 - + b - ),
9-2""" cgarlg—2)(g+1) My) g+1 0 3 i:l( &)

where a;,b; > 2 for i # 1 and a1,b; > 3 are explicitly known rational constants. The
canonical class of g; is given by the Riemann-Hurwitz formula

l9/2]
KE; = W*(Kﬂg) + By = 13X — 2a9 — 36y — 2 Z(al + 6i) — (a1 + (1),
i=1
and by comparison, it follows that for g > 12 one can find a constant ;1y € Q- such
that

Kg- —hg A€ Qx>0([Z4]; a1, Brs -+ 99: Blga)s
which shows that K- is big and thus proves Theorem (L3
g

For g = 12, there is no Brill-Noether divisor, and the reasoning above shows that

in order to conclude that Sy, is of general type, one needs an effective divisor D12 of
slope s(D12) < 6 + 12/13, that is, a counterexample to the Slope Conjecture. We define

D1y = {[C] € My : 3L € W(C) with Sym?HO(C, L) " HO(C, L#?) not injective},
that is, points in D12 correspond to curves that admit an embedding C' C P* with

deg(C) = 14, such that HO(P4,IC/P4(2)) # 0. The computation of the class of D15 C

M3 is carried out in Section 6 and it turns out that s(D5) = % < 6+ % In par-

ticular ©15 violates the Slope Conjecture on Mo, and as such, it contains the locus
K12 :={[C] € M2 : C lies on a K3 surface}.

1. FAMILIES OF STABLE SPIN CURVES

We briefly review some relevant facts about the moduli space S, that will be used
throughout the paper, see also [C], [E3], [Lud] for details. As a matter of notation, we
follow the convention set in [EL]; if M is a Deligne-Mumford stack, then we denote by
M its associated coarse moduli space.

Following [(J], a spin curve of genus g consists of a triple (X, 7, 3), where X is a
genus g quasi-stable curve, 7 € Pic/"!(X) is a line bundle of degree g — 1 such that
ne = Og(1) for every exceptional component E C X, and 3 : n®2 — wx is a sheaf
homomorphism which is generically non-zero along each non-exceptional component
of X.

It follows from the definition that if (X, n, ) is a spin curve with exceptional com-
ponents Fy, ..., B, and {p;,q;} = E; N X — E;fori =1,...,r, then §/g, = 0. Moreover,
if X = X — Ui, E; (viewed as a subcurve of X), then we have an isomorphism of
sheaves 77?;2 Swy. B

We denote by S, the non-singular Deligne-Mumford stack of spin curves of genus

g, which obviously splits into two connected components §; and §g_ of relative degree
2971(29 + 1) and 2971(29 — 1) respectively. It is proved in [(J] that the coarse moduli
space of S, is isomorphic to the normalization of M in the function field of S,. There
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is a proper morphism 7 : S, — M, given by 7([X,n,8]) := [st(X)], where st(X)
denotes the stable model of the nodal curve X.

1.1. Spin curves of compact type. We recall the description of the pull-back divisors
7*(A;). We choose a spin curve [X,n,3] € =~ ([C U, D]) where [C,y] € M;; and
[D,y] € Mgy_i1. Then necessarily X := C Uy, E Uy, D, where E is an exceptional
component such that C N E = {y;} and D N E = {y2}. Moreover n = (770,77D,77E =
(’)E(l)) S Picg_l(X), and since O = 0, it follows that 77?2 = Kc,n%Q = Kp, that is,
nc and np are “honest” theta-characteristics on C' and D respectively. The condition
hY(X,n) = 1 mod 2 implies that n¢ and np must have opposite parities. We denote by

A; C S, the closure in S, of the locus corresponding to pairs
([07 ne, y]v [D7 D, y]) € Szjl X S;—i,la
and by B; C S, the closure in S, of the locus corresponding to pairs

([C7 7707?/]7 [D777D7y]) S S:l X Sg_—i,l'

One has the relation 7*(A;) = A; + B; and clearly deg(A;/A;) = 2972(21 — 1)(297% 4+ 1)
and deg(B;/A;) = 2972(2" 4+ 1)(297" — 1). One denotes o; := [A{], 5; := [Bi] € Pic(S,).

1.2. Spin curves with an irreducible stable model. In order to describe 7*(A() we pick
a point [X, 7, 3] such that st(X) = Cy, := C/y ~ ¢, where [C,y, q] € M,_1 2 is a general
point of Ag. Unlike the case of curves of compact type, here there are two possibilities
depending on whether X possesses an exceptional component or not. If X = C, and
ne := v*(n) where v : C — X denotes the normalization map, then n5* = Ko (y + q).
For each choice of ¢ € Pic?~!(C) as above, there is precisely one choice of gluing the
fibres nc(y) and nc(q) such that h°(X,7) = 1 mod 2. We denote by Ay the closure in
S, of the locus of those points [Cyq,nc € \/Kc(y + )] with ne(y) and ne(q) glued as
above. One has that deg(Ag/Ag) = 22972

If X = C U4 E where E is an exceptional component, then since 35 = 0

it follows that g € H (e wx|c ® ng(_m) must vanish at both y and ¢ and then for

~

degree reasons n¢ = 1 ® O is a theta-characteristic on C. The condition H%(X,w) =
HY(C,wc) = 1 mod 2 implies that [C,n¢] € S, In an étale neighborhood of a point
[X,n, 3], the covering  is given by

(7—177—27 oo 7T3g—3) = (T127T27 oo 77'39_3),

where one identifies C2¢~* with the versal deformation space of (X, 7, 3) and the hy-

perplane (1, = 0) C C397% denotes the locus of spin curves where the exceptional
component E persists. This discussion shows that 7 is simply branched over Ay and

we denote the ramification divisor by By C g;, that is, the closure of the locus of
spin curves [C Uy, o B, (Cine) € Sy 1, ne = Op(1)]. If ag = [Ag] € Pic(S,) and
Bo = [Bo] € Pic(S, ), we then have the relation

(1) 7" (d0) = o + 20o.

We define several test curves in the boundary of S, which will be later used to
compute divisor classes on the moduli space.
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1.3. The family F;. We fix 1 < ¢ < [¢/2] and construct a covering family for the bound-
ary divisor A;. We fix general curves [C] € M; and [D, q] € M,_; 1 as well as an odd
theta-characteristic 77, on C' and an even theta-characteristic 7725 onD. If E~Plisa
fixed exceptional component, we define the family of spin curves

Fy = {[CUyUEU.D,n] : nc =g, ne = Op(1),1p = np, ENC = {y}, END = {q}} (-
One has that F; - 8; = 0 and then F; - o; = —2i + 2; furthermore F; has intersection

number zero with the remaining generators of Pic(S,, ).

1.4. The family G;. As above, we fix 1 < i < [g/2] and curves [C] € M,,[D,q] €
My_;1. This time we choose an even theta-characteristic 7/, on C' and an odd theta-
characteristic 77, on D. The following family covers the divisor B;:

Gi = {[CUyUEU,D, 1] : e = né&,ne = Op(1),1p = np, ENC = {y}, END = {q}} .
ClearlyGZaZ:0,G,52:2—2zandGZ)\:Gla] :Gzﬂj :OfOI'j#Z

1.5. Two elliptic pencils. The boundary divisor A; C M, is covered by a standard
elliptic pencil R obtained by attaching to a fixed general pointed curve [C,y] € My_; 1
a pencil of plane cubic curves {E\ = f~1(\)},.p1 where f : Blg(P?) — P'. The points
of attachment on the elliptic pencil are given by a section o : P! — Blg(P?) given by
one of the base points of the pencil of cubics. We lift this pencil in two possible ways to
the space S, , depending on the parity of the theta-characteristic on the varying elliptic
tail. We fix an even theta-characteristic 1/, € Pic? ~2(C) and E = P! will again denote
an exceptional component. We define the family

Fy:={[CUEU,0 f'(N), me=nd, ne=0gs(1), np-10) =010 : AEP}CS, .
Since FyN By = 0, we find that Fy-ay = m.(Fp)-61 = —1. Similarly, Fy- A\ = m.(Fp)- A =1
and obviously Fy - a; = Fyy - 3; = 0 for 2 < i < [g/2]. For each of the 12 points A, € P!
corresponding to singular fibres of R, the associated 7y € Pic’ (C U E U f~(Ax))

are actual line bundles on CU EU f~1(\y), that is, we do not have to blow-up the extra
node. Thus we obtain that Fy - fy = 0 and then Fy - ag = . (Fp) - 69 = 12.

A second lift of the elliptic pencil to 3; is obtained by choosing an odd theta-

characteristic n; € Pic? ?(C) whereas on E) one takes each of the 3 possible even
theta-characteristics, that is,

Go == {[CUGEU,00 f T (N), ne =ng, ne = Op(1),np-1) €Y W] : AP} C S,
where v : 3;1 — M, 1 is the projection of degree 3. Since m.(Gp) = 3R C A, we
obtain that G - A = 3. Obviously Gy - @; = 0, hence Gy - 81 = 7(Go) - 61 = —3. The
map v : gil — M 1 is simply ramified over the point corresponding to j-invariant occ.

Hence, Go - ag = 12 and Gy - Gy = 12.

1.6. A covering family in By. We start with a general pointed spin curve [C,q,7.] €
S, and as usual £ = P! denotes an exceptional component. We construct a family
of spin curves Hy C By with general member

[CUgqy B, e =g, ne = 0p()] . C S,
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and with special fibre corresponding to y = ¢ being the odd spin curve with support
CUg B Uy B2 Ugy, g3 £

where E’ and E, are both smooth rational curves and y2,92 € E, Eo N E = {y2,¢2},
while Ey N E' = {q¢'}. The stable model of this curve is C' U, (yﬁ?@ ), having an elliptic
tail of j-invariant co. The underlying line bundle € Pic?”'(C U E' U E» U E) satisfies
ne = ng.ner = Opr(1),np = Op(1) and, for degree reasons, g, = Og,(—1). We have
the following relations for the numerical parameters of Hy:

Ho-A=0,Hy-Bo=1—g, Ho-ag=0, Hy- 1 =1, Hp-aq = 0.
(The only non-trivial calculation here uses that Hy- 5y = m.(Hy)-d0/2 = 1 —g, cf. [HM]).

2. THE SCORZA CURVE

Here we study in detail the correspondence 7;, C C' x (' associated to each (non-
vanishing) theta-characteristic [C,7] € S;r — Opun. This correspondence was used
by G. Scorza [Sd] to provide a birational isomorphism between M3 and S (see also
[DKT), and recently in [TZ]] where several conditional statements of Scorza’s have been
rigourously established.

For a fixed theta-characteristic [C, 7] € S; — O,u1, we define the curve

T, :={(z,y) € C x C: H(C,n @ Oc(z —y)) # 0}.

By Riemann-Roch, it follows that T;, is a symmetric correspondence which misses the
diagonal A C C x C. The curve T, has a natural fixed point free involution and we
denote by f : T}, — I, the associated étale double covering. Under the assumption that
T, is a reduced curve, its class is computed in [DK]| Proposition 7.1.5:

T,=(g- DF + (g - )F + A,

Theorem 2.1. For a general theta-characteristic [C,n] € S, the Scorza curve T, is a smooth
curve of genus g(T5) = 3g(g — 1) + 1.

Proof. It is straightforward to show that a point (x,y) € T), is singular if and only if
) H°(C,n© Oc(x —2y)) # 0 and H°(C,n © Oc(y — 2z)) # 0.

By induction on g, we show that for a general even spin curve such a pair (z, y) cannot
exist. We assume the result holds for a general [C,7¢] € S;_l. We fix a general point
g € C, an elliptic curve D together with np € Pic’(D) — {Op} with n5? = Op and
consider the spin curve ¢t := [C U E U D,n¢ = nc, g = Op(1), np = np] € 3;,
obtained from C U, D by inserting an exceptional component E. Since the exceptional
component plays no further role in the proof, we are going to suppress it.

We assume by contradiction that ¢ € 3:; lies in the closure of the locus of spin
curves with singular Scorza curve. Then there exists a nodal curve C' U, D’ semistably
equivalent to C' U, D obtained by inserting a possibly empty chain on P'’s at the node
q (therefore, p,(D’) = 1 and we may regard D as a subcurve of D’), as well as smooth
points x,y € CUD' together with two limit linear series 0 = {o¢,0p/} and 7 = {7¢, 7p/ }
of type 92_2 on C'U D’ such that the underlying line bundles corresponding to o (resp.
7) are uniquely determined twists at the nodes of the line bundle n ® Ocyp/ (z — 2y)
(resp. 1 ® Ocupr(y — 2x)). The precise twists are determined by the limit linear series
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condition that each aspect of a limit 92_2 have degree g — 2. We distinguish three cases
depending on which components of C'U D’ the points = and y specialize.

() z,y € C. Thenoc € H(C,nc ® Oc(z — 2y +q)),7¢ € H°(C,nc @ Oc(y — 2 + q)),
while op,7p € H°(D,np ® Op((g9 — 2)g)). Denoting by {¢'} € DN (CUD’) — D the
point where D meets the rest of the curve, one has the compatibility conditions

ord,(oc) +ordy(op) > g—2 and ordy(7¢) + ordy(7p) > g — 2,

which leads to ord,(cc) > 1 and ord,(r¢) > 1, that is, we have found two points
x,y € C such that H(C, nc(z — 2y)) # 0 and HY(C, ne(y — 2x)) # 0, which contradicts
the inductive assumption on C.

(ii) z,y € D’. This case does not appear if we choose 7¢ such that H(C,n¢) =
Indeed, for degree reason, both non-zero sections o¢, 7c must lie in the space H YCne
(iii) x € C,y € D'. For simplicity, we assume first that y € D. We find that

0.
).

oc € HY(C,nc @ Oc(z — q)), op € H*(D,np ® Op(g- ¢’ —2y)) and

¢ € H(C,nc ® Oc(2q — 2x)), 7p € H*(D,1p ® Oc(y + (9 = 3) - ).
We claim that ord,(c¢) = ord,(r¢) = 0 which can be achieved by a generic choice
of ¢ € C. Then ordy(ocp) > g — 2, which implies that np = Op(2y — 2¢). Similarly,
ord,(7p) > g — 2 which yields that np = Op(¢ — y), that is, 77%3 = Op. Since np was
assumed to be a non-trivial point of order 2 this leads to a contradiction. Finally, the
case y € D' — D, that is, when y lies on an exceptional subcurve E' C D’ is dealt with
similarly: Since ord,(oc¢) = ord,(7¢) = 0, by compatibility, after passing through the
component E’, one obtains that ord (o0p) > g—2. Since op € H*(D,np®0Op((9—2)q’))
and np # Op, we obtain a contradiction O

3. THETA PENCILS ON K3 SURFACES.

In this section we prove Theorem [l As usual, we denote by F, the moduli
space of polarized K3 surfaces [X, H|, where X is a K3 surface and H € Pic(X) is a
(primitive) polarization of degree H2 = 2g — 2. For integers 0 < § < g, we introduce
the universal Severi variety of pairs

Voo :={([X,H],C) : [X,H] € Fyand C € |Ox(H)| is an integral § — nodal curve}.

Ifo:V,s — F, is the obvious projection, we set V, 5(|H|) := o~ ([X, H]). It is known
that every irreducible component of V, ; has dimension 19+ g — § and maps dominantly
onto F,. It is in general not known whether V s is irreducible, see [De] for interesting
work in this direction.

For a point [ X, H] € F,, we consider a pencil of curves P C |H|, and denote by Z
the base locus of P. We assume that a general member C' € P is a nodal integral curve.
It follows that C' — Z is smooth and that S := sing(C) is a, possibly empty, subset of Z.
Lete: X' := Blg(X) — X be the blow-up of X along the locus S of nodes, and denote
by E the exceptional divisor of e. Let

P C|e"H © Oxi(—2E)|

be the strict transform of P by ¢, and Z’ its base locus. Since a general member C' € P
is nodal precisely along S, a general curve C’ € P’ is smooth. We view b/ := Z' + E - C'
as a divisor on the smooth curve C’. By the adjunction formula, 7’ € |wcr|.
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Definition 3.1. We say that P is a theta pencil, if ' has even multiplicity at each of its
points, that is, O¢s(31') is an odd theta-characteristic for every smooth curve C’ € P’

The definition implies that the intersection multiplicity of two curves in P is even at
each point p € supp(Z). For every pair [ X, H] € F, we have that:

Proposition 3.2. Every smooth curve C € |H| belongs to a theta pencil.

Proof. Letd € C,_; be the support of a theta-characteristic on C such that h°(C, O¢(d)) =
1. Then PH®(X,Z,,x (H)) is a theta pencil. O

We can reverse the construction of a theta pencil, starting instead with the nor-
malization of a nodal section of a K3 surface. Suppose

t:= [C,,wl,yl, TS, YS, ?7] S Mg_5,25 XM, s Sg__5
is a 20-pointed curve together with an isolated odd theta-characteristic 7, such that:
() 0 (C",n @ Ocr(— S0 (i + i) > 1; we write supp(n) = S0, (z; + y;) + d, where
dc C’;_%_l is the residual divisor.
(ii) There exists a polarized K3 surface (X, H] € F, and amap f : ¢’ — X, such that
f(zi) = f(yi) = piforalli =1,...,6, f.(C') € |H|, and moreover f : C' — C'is the
normalization map of the d-nodal curve C := f(C").

If e : X’ — X is the blow-up of X at the points py,...,ps and E := Zle E, c X'
denotes the exceptional divisor, we may view C’ C X, where C' = ¢*H — 2E. Then

Za/x:(C")| = |Taayx (C)| = |12d+2?:1(:ci+yi)/xf(0/)|

is a theta pencil of §-nodal curves on X.
If Ky _ss5 C Mg—s525 Xm, ;S, 51s the locus of elements [C, (x;, y;)i=1,....5, 7] satis-
tying conditions (i) and (ii), the previous discussion proves the following:

Proposition 3.3. Every irreducible component of K| 5 is uniruled.

This implies the following consequence of Proposition 4l to be established in the
next section:

Theorem 3.4. Weset g < 9and 0 < 0 < (g +1)/3. Then the variety K _; s is non-empty,
uniruled and dominates the spin moduli space S ;.

Definition 3.5. We say that a theta pencil P is §-nodal if |S| = §. We say that P is reqular
if supp(Z) consists of g — 1 distinct points.

If P is a 6-nodal theta pencil, we have an induced map
m': P’ =P — 3;_5,
obtained by sending a general C' € P’ to the moduli point [C",Ocr (3/')] € S, 5.
We note in passing that a theta pencil also induces a map m : P’ — S, defined as
follows. Consider the pencil E + P’ having fixed component E. The general member is

a quasi-stable curve D € (E + P') of arithmetic genus g, with exceptional components
{E;}i=1.. s corresponding to the exceptional divisors of the blow-up € : X’ — X. Then

1 __
m(C) i= [CU(VL1B), n, = Ok, (1), ner = Ocr (5H)] €8,
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These pencils will be used extensively in the proof of Theorem (0.2

Assume that [X, H] € F, is a general point, in particular Pic(X) = Z - H. Then
every smooth curve C' € |H|is Brill-Noether general, [Lal], which implies that h°(C, n) =
1, for every odd theta-characteristic 7 on C. Theta pencils with smooth general member
define a locally closed subset in the Grassmannian G(2, H(S, Og(H)) of lines in |H|.
Let © (X, H) be its Zariski closure in G(2, H°(S, Og(H)).

Proposition 3.6. O~ (X, H) is pure of dimension g — 1.

Proof. Let f : P~(X,H) — |H| be the projection map from the projectivized universal
bundle over ©7 (X, H), and V, o(|H|) C |H| be the open locus of smooth curves. Under
our assumptions f has finite fibres over V, o(|H|). Thus P~ (X, H) has pure dimension
g, and ©~ (X, H) has pure dimension g — 1. O

For a general (thus necessarily regular) theta pencil P € © (X, H), we study in

more detail the map m : P’ — S, . Let A(X, H) C |H| be the discriminant locus. Since
[X, H] € Fg4is general, A(X, H) is an integral hypersurface parameterizing the singular
elements of | H|. It is well-known that deg A(X, H) = 69 + 18.

Proposition 3.7. Let P € ©~ (X, H) be a general theta pencil with base locus Z. Then every
singular curve C' € P is nodal. Furthermore,

P-A(X,H)=2(ay + -+ ag—1)+ b1 + - + bag420,

where a; is the parameter point of a curve A; € P having a point of Z as its only singularity,
and b; is the parameter point of a curve Bj € P such that sing(B;) C X — Z. Accordingly,

P-ag=49g+20 and P -3y =g — 1.

Proof. We set supp(Z) = {p1,...,pg—1}. Since P is regular, fori = 1,...,g — 1, there
exists a unique curve A; € P singular at p;. Moreover, for degree reasons, p; is the
unique double point of A;. Each pencil T' C |H| having p; in its base locus is a tangent
line to A(X, H) at A;. Hence the intersection multiplicity (P - A(X, H)) 4, is at least 2.
It follows that the assertion to prove is open on any family of pairs (P, [X, H]) such that
P € ©7(X, H). Since F, is irreducible, it suffices to produce one polarized K3 surface
(X, H) satisfying this condition.

For this purpose, we use hyperelliptic polarized K3 surfaces (X, H). Consider a
rational normal scroll F := F, C P9, wherea € {0,1} and g = 2n + 1 — a. A general
section R € |Op(1)| is a rational normal curve of degree g — 1. From the exact sequence

0— OF(—2KF — R) — OF(—QKF) — OR(—QKF) — 0,

one finds that there exist a smooth curve B € | — 2KF| and distinct points 01, ...,04—1 €
B such that the pencil Q C |Or(R)| of hyperplane sections through o, ..., 041 cuts out
a pencil with simple ramification on B.

Let p : X — F be the double covering of F branched along B. Then X is a K3
surface and |H| := |Ox(p*R)| is a hyperelliptic linear system on X of genus g. Then
p*(Q) is a regular theta pencil on X with the required properties. a

Since theta pencils cover S, when g < 11 and g # 10, the following consequence

of PropositionB.Zis very suggestive concerning the variation of /{(39_) as g increases, in
particular, in highlighting the significance of the case g = 12.
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Corollary 3.8. With the same notation as above, we have that P- K<- = 29— 24. In particular
g9
general theta pencils of genus g < 12 are K<--negative.
g

Proof. Use that (P-\)5- = (ﬂ'*(P)'/\)mg =g+1, P-ag=4g+20and P-Gy =g—1. O
g9

Proposition 3.9. The locally closed set of nodal theta pencils in ©~ (X, H) is non empty. If P
is a general nodal theta pencil, then a general curve C' € P has one node as its only singularity.

Proof. We keep the notation from the previous proof and construct a smooth curve B €
| — 2Kr| and choose general points 0, 01, ...,04—3 € B, such that the pencil Q C |Or(R)|
of the hyperplane sections through oy + --- + 04_3 + 20 cuts out a pencil with simple
ramification on B. Then p*(Q) is a nodal theta pencil with the required properties. [

Theorem 3.10. Eg_ is uniruled for g < 11.

Proof. By [M1-4], a general curve [C] € M, is embedded in a K3 surface X precisely
when g < 9 or g = 11. By Proposition B.Z1 C belongs to a theta pencil P C |Ox(C)|

(which moreover, is K- -negative). Thus the statement follows for ¢ < 9 and g = 11.
g

To settle the case of S;y, we show that Kj;; is non-empty and irreducible. Indeed,
then by Proposition B3 it follows that Ky ; is uniruled, and since the projection map

K101 — Sio is finite, K1, ; dominates Sy This implies that Sy is uniruled.
The variety Ky, ; is an open subvariety of the irreducible locus

U:= {([07$7y]7n) € M10,2 X Mio 51_0 : h0(0777 ® OC(_:E - y)) > 1}7

hence it is irreducible as well. To establish its non-emptiness, it suffices to produce an
example of an element ([C,z,y],7]) € U, such that the curve C,, can be embedded in a
K3 surface. We specialize to the case when C'is hyperelliptic and =,y € C are distinct
Weierstrass points, in which case one can choose n = O¢(z +y + wy + - - - + wy), where
w; are distinct Weierstrass points in C' — {z,y}. Againweletp: X — F C P! bea
hyperelliptic &3 surface branched along B € | — 2KF|, with polarization H := p*OF(1),
so that [X, H] € F11. We set C := p*(R), where R € |Op(1)| is a rational normal curve
of degree 10. We need to ensure that C' is 1-nodal, with its node p € C such that if
f : C" — C denotes the normalization map, then both points in f~!(p) are Weierstrass
points. This is satisfied once we choose R in such a way that B - R > 2p(p). O]

4. UNIRATIONALITY OF S, FOR g < 8

To prove the claimed unirationality results, we use that a general curve [C] € M,
has a sextic plane model when g < 6, or is a linear section of a Mukai variety, when
7 < g < 9. We start with the easy case of small genus, before moving on to the more
substantial study of Mukai models.

Theorem 4.1. S, is unirational for g < 6.

Proof. A general odd spin curve [C,n] € S, of genus 3 < g < 6, is birational to a pair
(T',n), where I' C P? is an integral nodal sextic. One can assume that d := supp(n)
is a reduced divisor contained in I';c;. Note that there exists a unique plane cubic £
such that /- I' = 2e, where e is an effective divisor of degree 9 on F, supported on
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sing(T') U d. We denote by U C (P?)? the open set parameterizing general 9-tuples
(z,9) == (x1,...,%5,Y1,-..,Yg—1), Where g = 10 — . Over U lies a projective bundle
P whose fibre at (z,7) is the linear system of plane sextics I' which are singular along
z and totally tangent to E3 5 along 5. Here Ez 5 € |Op2(3)| denotes the unique plane
cubic through the points x1, ..., 25,41, ...,y4—1. Then P is a rational variety, and by the

previous remark, it dominates 3;. Thus 3; is unirational. O

We assume now that 7 < g < 10 and denote by V,, C P"s the rational homoge-
neous space V, defined as follows [M1], [M2], [M3]:

- Vio: the 5-dimensional variety Go/P C P'7 corresponding to the Lie group G,
- Viy: the Pliicker embedding of the symplectic Grassmannian SG(3,6) C P'3,

- Vi: the Pliicker embedding of the Grassmannian G(2,6) C P,

- V4! the Pliicker embedding of the orthogonal Grassmannian OG(5,10) C P,

Note that Ny, = g 4+ dim(V,) — 2. Inside the Hilbert scheme Hilb(V}) of curvilinear
sections of V,;, we consider the open set U, classifying curves C' C V, such that

e (' is a nodal integral section of V, by a linear space of dimension g — 1,
o the residue map p : H(C,wc) — H(C,we ® Oging(c)) IS surjective.

A general point [C' — PY~1] € U, is a smooth, canonical curve of genus g. Moreover C
has general moduli if g < 9. For each 0 < § < g — 1, we define the locally closed sets of
d-nodal curvilinear sections of V,

Uy 5 :={[C— P el : |sing(C)| = d}.
Proposition 4.2. U, s is smooth of pure codimension ¢ in U,.

Proof. A general 2-dimensional linear section of V, is a polarized K3 surface (S, H) € F,
with general moduli. It is known [[Ia], that -nodal hyperplane sections of S form a pure
(9 —0)-dimensional family V, s(|H|) C |H|. In particular U, s # () and codim (U, 5,Uy) <
d. We fix a curve [C] € Uy 5, then consider the normal bundle N¢ of C'in V;; and the map
r: HY(C,Ng) — Osing(c) iInduced by the exact sequence

(3) 0— Te — Ty, ® Oc — N - Th — 0,

where T}, = Osing(c) s the Lichtenbaum-Schlessinger sheaf of C'. Using the identifica-
tion Tic1(Uy) = H°(C, N¢), it is known that Ker(r) is isomorphic to Tjc|(Uy,s). We have

that No & wGCB(Ng_gH) and r = p®WNo=9+1) where p : H(C,we) — H(C, Oging(c)) is
the map given by the residues at the nodes. Since p is surjective, Ker(r) has codimension
¢ inside Tic)(U,) and the statement follows. O

The automorphism group Aut(V}) acts in the natural way on Hilb(V}). Since the locus
of singular curvilinear sections [C] € U, is an Aut(Vj)-invariant divisor which misses a
general point of Uy, it follows that /;* := U, N Hilb(V;)* # (). Note that since p(V,) = 1,
the notion of stability is independent of the polarization. The (quasi-projective) GIT-
quotient

M, = U /) Aut(V,)
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is said to be the Mukai model of M. We have the following commutative diagram

U —— U

ugl mgl
My S M,
where u, : USS — 9N, is the quotient map and my : Uy — M, is the moduli map. The

general fibre of m, is an Aut(V})-orbit. Summarizing results from [M1]], [M2], [M3], we
state the following:

Theorem 4.3. For 7 < g < 9, the map ¢4 : M, — Mg is a birational isomorphism. The
inverse map ¢, ' contracts the (unique) Brill-Noether divisor M;d C M, of curves with a g7,
as well as the boundary divisors A; with 1 <1 < [g/2].

Next, let AY € Ag C M be the locus of integral stable curves of arithmetic genus
g with § nodes. Then Ag is irreducible of codimension § in M.

Lemma 4.4. Set g < 9 and let D be any irreducible component of Uy s. Then the restriction
morphism mgyp : D — Ag is dominant. In particular, a general d-nodal curve [C] € Ag lies
on a smooth K3 surface.

Proof. Since U, 5 is smooth, D is a connected component of U4, 5, that is, for [C] € D, the
tangent spaces to D and to U, ;5 coincide. We consider again the sequence (@):

0— T — Ty, ® Oc — Ng — 0,
where N¢ := Im {Ty, ® Oc — Nc} is the equisingular sheaf of C. We have that
HY(C, N/,) = Ker(r). As remarked in the proof of Proposition &2, H°(C, N/,) is the tan-
gent space Tj¢j(Uy,5) and its codimension in H°(C, N¢) equals 6. Consider the cobound-
ary map 9 : HY(C,N},) — H'(C,T¢). Since H'(C,T¢) classifies topologically trivial
deformations of the nodal curve C, the image Im(0) is isomorphic to the image of the
tangent map dmy, , at [C]. On the other hand H 0(C, Ty, ® O¢) is the tangent space to

the orbit of C' under the action of Aut(V}). This is reduced and the stabilizer of C, being
a subgroup of Aut(C), is finite, hence we obtain:

dim Im(9) = h°(C, N¢) — § — dim Aut(V,) = 3g — 3 — 6.

Since Ag has codimension ¢ in Mg, it follows that mg|p is dominant. O

Proposition 4.5. Fix 0 < § < g — 1 and D an irreducible component of Uy 5. Then D # (.

Proof. It suffices to construct an Aut(V,)-invariant divisor which does not contain D.
We carry out the construction when g = 8, the remaining cases being largely similar.
We fix a complex vector space V' = C°, and then Vg := G(2,V) C P(A?V) and
Us C G(8,\?V). For a projective 7-plane A € G(8, \2V'), we denote the set of containing
hyperplanes F) := {H € P(A\?V)Y : H D A}, and define the Aut(V3)-invariant divisor
Z:={Aecls: Fx\NG(2,VY) C P(A?V)" is not a transverse intersection}.
We claim that D ¢ Z. Indeed, let us fix a general point [C' — A] € D, where A = (C),
corresponding to a general curve [C] € AJ. In particular, we may assume that C lies
outside the closure in M, of curves violating the Petri theorem. Thus C' possesses no
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generalized g2’s, that is, W?(C) = (), whereas Wé(C) C Pic(C) consists of locally free
pencils satisfying the Petri condition. We recall from [M2] the construction of ¢ *[C],
which generalizes to irreducible Petri general nodal curves: There exists a unique rank
two vector bundle E on C with det(E) = we and h°(C, E) = 6. This appears as an
extension

0—-A—-FE—wecA -0,

for every A € Wi(C). Then one sets ¢, H([C]) == [C — G(2,H"(C, E)")]. Moreover,
Fy = P(Ker{A\*H°(C,E) — H°(C,wc)}).
In particular, the intersection FANG(2, H°(C, E)) corresponds to the pencils A € Wé (C).
Since C'is Petri general, Wé(C ) is a smooth scheme, thus [C' — A] ¢ Z. O
We consider the quotient 90, 5 := 1% // Aut(V;) and the induced map
g5t My s — AL,
Theorem 4.6. The variety I, s is irreducible and ¢ s is a birational isomorphism.
Proof. By Lemma[4) any irreducible component Y of 901, 5 dominates AJ. On the other

hand, ¢, : M, — M, is a birational morphism and ¢g 5 = @g|an, ;- Since M, is normal,
each fibre of ¢, is connected, thus 91 5 is irreducible and deg(¢, ;) = 1. O

We lift our construction to the space of odd spin curves. Keeping g < 9, we consider the
Hilbert scheme Hilby,_»(V}) of 0-dimensional subschemes of V, having length 2g — 2.

Definition 4.7. Let 3,1 C Hilby,_2(V}) be the parameter space of those 0-dimensional
schemes Z C V, such that:

(1) Z is a hyperplane section of a smooth curve section [C] € U,,
(2) Z has multiplicity two at each point of its support,
(3) supp(Z) consists of g — 1 linearly independent points.

One thinks of 3, as classifying length g — 1 clusters on V. A general point of 3,1
corresponds to a O-cycle z1 + - - + z,_1 € Sym? (V) satisfying
dim (z1,...,2y-1) N T4, (Vy) > 1, for i=1,...,9 — L.
Clearly dim(34—1) = (9—1)(INg—g+1). Then we consider the incidence correspondence
Uy ={(C,Z) €Uy x 34-1:Z CC}.

The first projection map m : U, — Uy is finite of degree 2971 (29 —1); its fibre at a general
point [C] € U, is in bijective correspondence with the set of odd theta-characteristics of
C. In particular, both /; and 3,1 are irreducible varieties. The spin moduli map

my Uy --> S,
is defined by m/ (C, Z) := [C, O¢(Z/2)], for each point (C, Z) € U, corresponding to a
smooth curve C. Later we shall extend the rational map m to a regular map over U, .

It is clear that m; induces amap ¢, : Q, --» S, from the quotient

Qg =71 (Uy) [/ Aut(Vy).
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We may think of Q, as being the Mukai model of S,. If 7= : Q; — M, is the map
induced by 7 at the level of Mukai models, we have a commutative diagram:

% 3

Q
Q@

:‘\
%
3

My —— My

Proposition 4.8. The spin Mukai model Q is irreducible and ¢, : Q; — g; is a birational
isomorphism.

One extends the rational map m (therefore ¢, as well) to a regular morphism
as follows. Let (C,Z) € U, be an arbitrary point, and set supp(Z) := {p1,...,pg-1}-
Assume that sing(C') N supp(Z) = {p1,...,ps}, where § < g — 1. Consider the partial
normalization v : N — C at the points p1,...,ps. In particular, there exists an effective
Cartier divisor e on C of degree g — ¢ — 1, such that 2e = Z N (C' — sing(C')), and set

€ := On(v*e). Then my (C, Z) is the spin curve [X, 5] € S, defined as follows:
Definition 4.9.

(1) X:=NUE U---UFEs;, where E; =Pl fori=1,...,0.

(2) E;N N =v~=Y(p;), for every node p; € sing(C) N supp(2).

B) N0y Zeandn® O, = Op1(1).
We note that N is smooth of genus g — ¢, precisely when sing(C') C supp(Z). In this

case € € Pic9"!7°(N) is a theta characteristic and h°(N,¢) = 1. Since we are specially
interested in this case, for 1 < § < g — 1 we introduce the locally closed sets

U, s :=1{(C,Z) €U, :sing(C) C supp(Z), [sing(C)| = 6}

We denote by B, 5 the closure of mg (U, 5) inside 3; ; this is the closure in 3; of the locus
of -nodal spin curves having ¢ exceptional components. Clearly B_; is an irreducible
component of 7~ (Ag). We set
Qs = Uy Ny (UF) [/ Aut(Vy),
and let u, : U, s --» Q, 5 denote the quotient map. Keeping all previous notation, we
have a further commutative diagram
Ug

Uys — Q5 —— B,

N

where ¢_ 5 is the morphism induced on @ 5 by m, .
Theorem 4.10. We fix 7 < g <9and1 <6 < g— 1. Then bys an — B, s is a birational
isomorphism.

Proof. It suffices to note that ¢, ; is birational, and the vertical arrows of the diagram are
finite morphisms of the same degree, namely the number of odd theta-characteristics
on a curve of genus g — 4. O
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We construct a projective bundle over Bg_ 5» then show that for certain values § < g — 1,
the locus Bg_ 5 itself is unirational, whereas the above mentioned bundle dominates S g
Let Cy s C U, 5 x Vg be the universal curve, endowed with its two projection maps

U;(; P Cg,(g 1, Vg.
We fix an arbitrary point (I', Z) € U, ; and let v : N — I be the normalization map.

Recall that sing(T") consists of § linearly independent points and that h°(N, On (v*e)) =
1, where e is the effective divisor on I' characterized by Zr,,, = 2e. Thus the restriction
map HO(T',wr) — H%wr ® Oz) has 1-dimensional kernel. In particular the relative
cotangent sheaf w, admits a global section s inducing an exact sequence

0—0c,; = wp— Ow ®@wp — 0,

which defines a subscheme W' C Cgy 5, whose fibre at the point (I', Z) € U, 5 is Z itself.
We set

A= p(Twye, s @ 4" O, (1)),
which is a vector bundle on U ; of rank Ny — g + 2. The fibre of A(I', Z) is identified
with H%(Vy,Zz,y,(1)). One has a natural identification
PH® (Zzv, (1)) = {1-dimensional linear sections of V, containing Z}.
Definition 4.11. P, s is the projectivized dual of A.

From the definitions and the previous remark it follows:

Proposition 4.12. P, ; is the Zariski closure of the incidence correspondence
Pgs ={(C,(I',2)) €Uy xU,; : Z CC}.

Consider the projection maps

_ o B _
Uy ——— Pgs — Uy

We wish to know when « is a dominant map. For 1 < § < g < 9, we have the following;:
Proposition 4.13. The map o is dominant if and only if § < Ny + 1 — g = dim(V;) — 1.

Proof. By definition, the morphism (3 is surjective. Let (I',Z) € U, ; be an arbitrary
point, and setsing(I") := {p1,...,ps} C Z. We define Py to be the locus of 1-dimensional
linear sections of V;, containing Z. Inside Pz we consider the space

P, ={T" € Pz : sing(I") N Z 2 sing(T") N Z},

First note that for p € sing(T'), the locus H, := {I' € Pz : p € sing(I")} is a hyperplane
in Pyz. Indeed, we identify Pz with the family of linear spaces L € G(g, Ny + 1) such
that (Z) C L. By the definition of the cluster Z, it follows that [ := T, (V) N (Z) is a line.
For L € Pz, the intersection L N Vj is singular at p if and only if dim L N T,(V,) > 2.
This is obviously a codimension 1 condition in Pz. Therefore, if for 1 <1i < § we define
the hyperplane H; := {L = (I") € Pz : dim L N T,,(V,) > 2}, then

PRZ:Hlﬂ---ﬁHg.

This shows that the general point in 371(C, Z) corresponds to a smooth curve C' D Z.
We now fix a general point (I', Z) € U_ 5, corresponding to a general cluster Z € 34_;.
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Claim: Pr z has codimension § in Pyz; its general element is a nodal curve with 6 nodes.
Proof of claim: Indeed Py is a general fibre of the projective bundle U, — 3,-1. The

claim follows since codim(U,, 5, U, ) = 0.

The fibre a1 ((C, Z)) over a general point (C,Z) € U, is the union of (*;') linear
spaces Hy N ---N Hs C Pz as above. By the claim above, when Z € 3,_; is a general
cluster, this is a union of linear spaces P, , as before, having codimension ¢ in Py.

Hence o' ((C, Z)) is not empty if and only if § < dim Pz, thatis, § < N, —g+1. O

Let us fix the following notation:

Definition 4.14.
(1) By = (Pgs)™ // Aut(Vy).
(2) B:Py5 — S, is the morphism induced by (3 at the level of quotients.

Note that 8 : Py s — U, ; is a projective bundle and Aut(V}) acts linearly on its fibres,
therefore 3 descends to a projective bundle on B_ ;. Then it follows from the previous
remark that P, 5 is birationally isomorphic to PN g 9+1 x B ;. To finish the proof of the
unirationality of S;°, we proceed as follows:

Theorem 4.15. Let 7 < g < 9 and assume that (i) Bg_6 is unirational and (ii)) 6 < Ny — g + 1.

Then Eg_ is unirational.

Proof. By assumption (ii), # : Py ; — U, is dominant, Hence the same is true for the
induced morphism §3 : Pys — S, 4+ By (i) and the above remark, P, s is unirational.

Therefore Eg_ is unirational as well. O

Theorem B.T5 has some straightforward applications. The case 6 = g — 1 is par-
ticularly convenient, since B, _, is isomorphic to the moduli space of integral curves
of geometric genus 1 with g — 1 nodes. For § = g — 1, the assumptions of Theorem .13
hold when g < 8. In this range, the unirationality of S, follows from thatof B,

Theorem 4.16. B, _, is unirational for g < 10.

Proof. Let I C P? x (P?)V be the natural incidence correspondence consisting of pairs
(x,1) such that z is a point on the line /. For 6 < 9, we define

s == {(x1,01,... 25,15, E) € I° x PHO(P?, Op2(3)) : z1,...,25 € E}.

Then there exists a rational map f5 : II; --» Bsi1s sending (z1,l1,...,2s, 15, E) to the
moduli point of the J-nodal, integral curve C obtained from the elliptic curve E, by
identifying the pairs of points in E N I; — {z;} for 1 <14 < 4. Itis easy to see that Il is
rational if § < 9. Clearly f5 is dominant, just because every elliptic curve can be realized
as a plane cubic. It follows that BJ—+1, 5 1S unirational when ¢ < 9. O

Unfortunately one cannot apply Theorem E.TA to the case g = 9, since the assumptions
of Theorem B.TH are satisfied only if 6 < 5.
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5. THE STACK OF DEGENERATE ODD THETA-CHARACTERISTICS

In this section we define a Deligne-Mumford stack X, — S; parameterizing limit
linear series 98—1 which appear as limits of degenerate theta-characteristics on smooth

curves. The push-forward of [X,] is going to be precisely our divisor Z,. Having a good
description of X, over the boundary will enable us to determine all the coefficients in
the expression of [Z,] in Pic(S,, ).

We first define a partial compactification My, := M, U Ag U ... U E[g /91 of My,
obtaining by adding to M, the open sub-stack Aq C A of one-nodal irreducible curves
[Cyq = C/y ~ q|, where [C,y,q] € My_15 is a Brill-Noether general curve together
with their degenerations [C' U D] where Do is an elliptic curve with j(Dy) = oo, as
well as the open substacks A; C Aj for 1 < j < [g/2] classifying curves [C' U, D] where
[C] € Mj and [D] € M,_; are Brill-Noether general curves in the respective moduli
spaces. Let p : 1\~/Ig,1 — 1\~/Ig be the universal curve. We denote g; = 77‘1(1\7[9) cS, and
note that for all 0 < j < [g/2] the boundary divisors A := A; N g;, B = B; N 59_

are mutually disjoint inside g; . Finally, we consider Z := §g_ X5, Mg.1 and denote by

p1:Z — §; the projection.
Following the local description of the projection S, — M, carried out in [(], in

order to obtain the universal spin curve over §; one has first to blow-up the codimen-
sion 2 locus V' C Z corresponding to points

v = ([CU{M}E,ngz = K¢,k (ne) = 1mod 2, ng = Op(1)], v(y) = u(q)) € B()XMQI\N/IQJ

(recall that v : C' — Cy, denotes the normalization map, so v corresponds to the marked
point specializing to the node of the curve C,). Suppose that (74, ..., 734_3) are local
coordinates in an étale neighbourhood of [C Uy, v E,nc,mE] € :5‘;]— such that the lo-
cal equation of the divisor B is (71 = 0). Then Z around v admits local coordinates
(z,y,71,...,T3—3) verifying the equation zy = 77, in particular, Z is singular along V.
Next, for 1 < j < [g/2] one blows-up the codimension 2 loci V; C Z consisting of points

([C’ Ugq D,nc,nD], qgeCn D) € (A; U B;) X5, I\N/IQJ.

This corresponds to inserting an exceptional component in each spin curve in 7%(A;).
We denote by

C = Blyuyu..uv,,5(2)

andby f:C — g; the induced family of spin curves. Then for every [X, 7, 8] € gg‘ we
have an isomorphism between f~!([X, 7, 3]) and the quasi-stable curve X.

There exists a spin line bundle P € Pic(C) of relative degree g — 1 as well as a
morphism of Oc-modules B : P®? — w; having the property that P ;1,5 = 7 and
Bis-1(xmp = B : n®? — wy, for all spin curves [X,7,3] € gg_. We note that for the

even moduli space S one has an analogous construction of the universal spin curve.

Next we define the stack 7 : X, — g; classifying limit g) ; which are twists of

degenerate odd-spin curves. For a tree-like curve X we denote by G,;(X) the scheme of
limit linear series g/;. The fibres of the morphism 7 have the following description:
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e 771(S,) parameterizes triples ([C,n],0,x), where [C,n] € S;, « € C is a point and
o € PHY(C,n) is a section such that div(c) > 2z.

e For 1 < j < [g/2] the inverse image T_I(A;» U BY) parameterizes elements of the form
(X,O’ S 62_1(X), HAS Xreg)a

where (X, z) is a 1-pointed quasi-stable curve semistably equivalent to the underlying
curve of a spin curve [C' U, E Uy D, nc,ng,mp| € A;- U B;-, with E denoting the excep-
tional component, g(C) = j, g(D) =g — j,{¢} =CNE,{¢} = END and
oc € PH'(C,nc ®Oc((9-14)a)). op € PHY(D,np @ Op(jq)), 0 € PH(E, Op(g—1))
are aspects of the limit linear series 0 on X. Moreover, we require that ord, (o) > 2.
o 7~ !(B]) parameterizes elements (X, n € Pic!"'(X), ¢ € PH(X,n), 2 € X.),
where (X, ) is a 1-pointed quasi-stable curve equivalent to the curve underlying a
point [C' Uy, oy E,nc, 1E] € By, the line bundle  on X satisfies ¢ = ¢ and np = g
and 7z = Oy for the remaining components of X. Finally, we require ord, (o) > 2.
e 771(4}) corresponds to points (X,n € Pic! *(X),0 € PH(X,n), x € X,o), where
(X,z) is a 1-pointed quasi-stable curve equivalent to the curve underlying a point
[Cyq>n0,,] € Ay, and if pp : X — Cyq is the map contracting all exceptional compo-
nents, then 1*(nc,,) = 7 (in particular 7 is trivial along exceptional components), and
finally ord, (o) > 2.

Using general constructions of stacks of limit linear series cf. [EHT], [[E2], it is
clear that X, is a Deligne-Mumford stack. There exists a proper morphism

T Xy — gg_
that factors through the universal curve and we denote by x : X, — C the induced
morphism, hence 7 = f o x. The push-forward of the coarse moduli space 7.([Xy])
equals scheme-theoretically Z, N S;". It appears possible to extend X, over the entire
§g_ but this is not necessary in order to prove Theorem [I.3 and we skip the details.
We are now in a position to calculate the class of the divisor Z, and we expand
its class in the Picard group of S,

o B ~ l9/2] lg/2 -
4) ZQE)\')\—O?Q'O(()—ﬁO'ﬁo—Z@i'o&i— Zﬁi-ﬁiePic(S‘g),
i=1 i=1
where \,@;, 3; € Qfori = 0,...,[g/2]. We start by determining the coefficients of the
divisors «; and G; for 1 < i < [g/2].

Proposition 5.1. For 1 < i < [g/2] we have that F;- Z, = 4(g —i)(i — 1) and the intersection
is everywhere transverse. It follows that &; = 2(g — i).

Proof. We recall from the definition of F; that we have fixed theta-characteristics of op-
posite parity 7 € Pic’!(C) and 1}, € Pic?”"""!(D). We choose a point t = (X,n,0,z) €
771(F;). It is a simple exercise to show that the “double” point = of ¢ € @2_1(X )
cannot specialize to the exceptional component, therefore one has only two cases to
consider depending on whether z lies on C' or on D. Assume first that € C' and then
oc € PHY(C, ne ®@ Oc((g —i)g)) and op € PHO(D,UB ® Opl(iq)), where {q} = C N D
is a point which moves on C but is fixed on D. Then ord,(cp) < i — 1, therefore
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ordy(oc) > g — i and then oc(—(g9 — i)g) € PH?(C,n;). In particular, if we choose
[C,ne] € Si — Z;, then the section oc(—(g — 7)q) has only simple zeros, which shows
that = cannot lie on C, so this case does not occur.

We are left with the possibility € D — {¢}. One quickly concludes that the only
possibility is ord,(cc) = g — i + 1 and ord,(cp) = i — 2. In particular, ¢ € supp(n.)
which gives i — 1 choices for the moving point ¢ € C. Furthermore op(—(i — 2)q) €
H%(D,n} ® Op(2q — 2z)), that is, z specializes to one of the ramification points of the
pencil n}, ® Op(2q) € ng_i +1(D). We note that because of the generality of [D,n})] €
S;_i as well as that of ¢ € D, the pencil is base point free and complete. From the
Hurwitz-Zeuthen formula one finds 4(g — i) ramification points of |}, ® Op(2q)|, which
leads to the formula F; - Z, = 4(g — i)(i — 1). The fact that 7..(X,) is transverse to F;
follows because the formation of X, commutes with restriction to B, and then one can

easily show in a way similar to [EH2] Lemma 3.4 or by direct calculation that X, X5~ B,
g

is smooth at any of the points in 771 (F}). O

Proposition 5.2. For 1 < i < [g/2] we have that G; - Z, = 4i(i — 1) and the intersection is
transversal. In particular 3; = 2i.

Proof. This time we fix general points [C, 7] € S;" and [D,np] € S, ;and ¢ € CN D
which is a fixed general point on D but an arbitrary point on C. Again, it is easy to see
thatif t = (X,0,7) € 771(G;) then z must lie either on C or on D. Assume first that
x € C — {¢}. Then the aspects of o are described as follows

oc € PHY(C,nt @ Oc((g —i)q)), op € PHY(D,np @ Oplig))
and moreover ord;(cc) > 2. The point ¢ € D can be chosen so that it does not lie in
supp(7np), hence ord,(op) < iand then ord,(o¢) > g—i—1. This leads to the conclusion
H(C,nf ® Oc(y—2x)) # 0, or equivalently (z,y) € C x C is a ramification point of the
degree i covering p; : Tné — C from the associated Scorza curve. We have shown that
Tné is smooth of genus 1 + 3i(i — 1) (cf. TheoremT)) and moreover all the ramification
points of p; are ordinary, therefore we find

deg Ram(p1) = 2(Tt; ,) — 2 — deg(p)(2i — 2) = 4i(i ~ 1)

choices when = € C. Next possibility is € D — {q}. The same reasoning as above
shows that ord,(cc) < g — ¢ — 1, therefore ord,(cp) > i as well as ord, (cp) > 2. Since
op(—iq) € PH(D,np,), this case does not occur if [D,n,] € S, — Zg—i- O

Next we prove that Z,, is disjoint from both elliptic pencils Fy and G:

Proposition 5.3. We_have tflat Fo-Z,=0and Gy-Z4, = 0. The equalities & — 12cp+ a1 = 0
and 3o — 12a9 — 1203y + 361 = 0 follow.

Proof. We first show that Fy N Z, = () and we assume by contradiction that there exists
t = (X,0,2) € 77 Y(Fp). Let us deal first with the case when st(X) = C N E,, with
Ey being a smooth curve of genus 1. The key point is that the point of attachment
g € C N E) being general, we can assume that (z,q) ¢ Ram{p; : Tné — ('}, for all

z € C. This implies that H(C,n/; ® Oc(q — 2x)) = 0 for all z € C, therefore a section
oc € PHY(C,n/, ® Oc(q)) cannot vanish twice anywhere. Thus either z € E\ — {¢}
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or z lies on some exceptional component of X. In the former case, since ord,(o¢) = 0,
it follows that ord,(ocg,) > g — 1, that is, o, has no zeroes other than ¢ (simple or
otherwise). In the latter case, when x € E, with E being an exceptional component,
we denote by ¢’ € E the point of intersection of E with the connected subcurve of X
containing C' as a subcomponent. Since as above, ord,(cc) = 0, by compatibility it
follows that ordy (0g) = g — 1. Butog € PHY(E,Op(g—1)), thatis, o does not vanish
at z, a contradiction. The proof that Gy N Z, = () is similar and we omit the details. [

The trickiest part in the calculation of [Z/] is the computation of the following
intersection number:
Proposition 5.4. If Hy C By is the covering family lying in the ramification divisor of S,
then one has that Hy - Z, = 2(g — 2) and the intersection consists of g — 2 points each counted
with multiplicity 2. Therefore the relation (g — 1)5y — 51 = 2(g — 2) holds.

Proof. We first determine the set-theoretic intersection 7, (X,) N Hy. We recall that we
have fixed [C, ¢,1-] € S,_; ; and start by choosing an arbitrary point ¢ = (X, n,0,z) €
T_I(H()). Assume first that X = C Uyt B/ where y € C, that is, z does not specialize
to one of the nodes of C'U E. Suppose first that x € C' — {y, ¢}. From the Mayer-Vietoris
sequence on X we write

0# 0 € H(X,n®0x (—2x)) = Ker{ H(C,n; ©O0c(—2x))©H (E,0p(1)) =4 Clyar )

we obtain that H°(C,n; ® Oc(—2z)) # 0. This case can be avoided by choosing
[C, 775] S Sg_—l — Zg—l-
Next we consider the possibility + € E — {y,q}. The same Mayer-Vietoris ar-

€Vy,q

gument reads in this case 0 # Ker{H"(C,ng) ® H(E,Op(~1)) =% C}, 1}, thatis,
y + q € supp(n.). This case can be avoided as well by starting with a general point
q € C —supp(n.). Thus the only possibility is that = specializes to one of the nodes y
or q.

We deal first with the case when = and ¢ coalesce and there is no loss of generality
in assuming that X = C'U E U E’, where both E and E’ are copies of P! and C N E =
{y},CNE ={q}, ENE" = {y'} and moreover z € E’ — {y/, q}. The restrictions of the
line bundle 7 € Pic?~!(X) are such that ne =nc,ne = Op(1) and ngr = Opr. We write

0# 0= (0c,0m 08) € Ker{H(C,n5)®H'(E,0p(1))®HY(E',Op (1)) 25" Cyyy},

hence o/ = 0, and then by compatibility oc(q) = 0, that is, ¢ € supp(7) and again
this case can be ruled out by a suitable choice of g. The last possible situation is when z
and the moving point y € C coalesce, in which case X = C' U E U E’, where this time
CNE ={q},CNE' ={y}, ENE' = {y'} and again z € E'—{y/, ¢}. Writing one last time
the Mayer-Vietoris sequence we find that 07 = 0 and then og(y’) = 0 and oc(y) = 0,
that is, y € supp(n.) and then o¢ is uniquely determined up to a constant. Finally
op € HY(E,0p(1)(—y")) is also uniquely specified by the gluing condition oz(q) =
oc(q). Allinall, HyN Z4 = #supp(ng) = g — 2.

This discussion singles out an irreducible component = C x.(X;) C C of the
intersection x(X,) N f~(B}), namely

== {([C U{y,q} E’UC/'?E]?:L') ‘Y e SuPP(WE), T=Yc Xsing},
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where we recall that f : C — §; is the universal spin curve. Since = C Sing(x«(Xy)), it
follows after a simple local analysis that each point in 771 (Hj) should be counted with
multiplicity 2. O
Remark 5.5. An partial independent check of Theorem [1.4] is obtained by computing
using the Porteous formula the coefficient A in the expression of [Z,]. By an abuse of
notation we still denote by f : C — S, the restriction of the universal spin curve to the
locus of smooth curves and 7 € Pic(C) the spin bundle of relative degree g — 1. Then
Z, is the push-forward via f : C — S of the degeneration locus of the sheaf morphism
¢ : fv(n) — Ji(n) (both these sheaves are locally free away a subset of codimension 3 in
S, and throwing away this locus has no influence on divisor class calculations). Since

det(fin) = (f.n)®?, it follows that ¢ (f.(n)) = —A/4, whereas the Chern classes of the
first jet bundle J; (1) are calculated using the standard exact sequence on C

0 —n®wr — Ji(n) — n—0.

Remembering Mumford’s formula f.(c?(wy)) = 12), one finally writes that
3 e
(2] = feea (1) = £-() = £o(Fer(wp)? = 2e1(wp) - ea(£um)) = (9+8) A € Pic(S;).

6. A DIVISOR OF SMALL SLOPE ON Mlz
The aim of this section is to construct an effective divisor D € Eff(M2) of slope
s(D) < 6 + 12/13, that is, violating the Slope Conjecture. As pointed out in the proof of
Theorem I3 this is precisely what is needed to show that S, is of general type.

Theorem 6.1. The following locus consisting of curves of genus 12
D19 :={[C] € M1s : 3L € W}(C) with po(L) : Sym? H(C, L) — H°(C, L®?) not injective}
is a divisor on M. The class of its compactification inside Mo equals

6
D1y = 13245 A — 1926 6y — 9867 61 — » _ b; §; € Pic(Mya),
=2

where b; > by for j > 2. In particular, 5(D12) = % <6+ %
This implies the following upper bound for the slope s(M;2) of the moduli space:

Corollary 6.2.
4415 (_6+§+£)
642 12 3217°

Another immediate application, via [Log], [EIl], concerns the birational type of

My n:
Theorem 6.3. The moduli space of n-pointed curves M ,, is of general type for n > 11.

10 —-— .
6 + T2 < s(Mg) i=inf pepgrg,,)s(D) <

The divisor D13 is constructed as the push-forward of a codimension 3 cycle in
the stack &1, — My classifying linear series g{,. We describe the construction of this
cycle, then extend this determinantal structure over a partial compactification of M.
This will be essential to understand the intersection of D1, with the boundary divisors
Ap and A; of Mjs. We denote by MY, the open substack of M, consisting of curves
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[C] € Mi2 such that W (C) = 0 and W},(C) = 0. Results in Brill-Noether theory guar-
antee that codim(Mig — MY,, My2) > 3. If Picl3 denotes the Picard stack of degree
14 over M¥,, then we consider the smooth Deligne-Mumford substack &1, C Bic{3 pa-
rameterizing pairs [C, L], where [C] € MY, and L € W}, (C) is a (necessarily complete
and base point free) linear series. We denote by o : &1, — MY, the forgetful morphism.
For a general [C] € MY,, the fibre 071 ([C]) = W{,(C) is a smooth surface.

Let 7 : MY, ; — MY, be the universal curve and then py : Mf, ; xyp_ 81y — &y
denotes the natural projection. If £ is a Poincaré bundle over M7, , XM, ®1, (or over
an étale cover), then by Grauert’s Theorem, both € := (p2).(£) and F := (p2)«(L®?) are
vector bundles over 1,, with rank(£) = 5 and rank(F) = h%(C, L®?) = 17 respectively.
There is a natural vector bundle morphism over &7, given by multiplication of sections,

¢ : Sym*(€) — F,

and we denote by U2 C @‘114 its first degeneracy locus. We set 19 := 0. (U12). Since the
degeneracy locus U2 has expected codimension 3 inside &1, the locus D5 is a virtual
divisor on MY,

We extend the vector bundles £ and F over a partial compactification of &1, given
by limit g},. We denote by A} C Ay C Mz the locus of curves [C U, E], where E is
an arbitrary elliptic curve, [C] € My, is a Brill-Noether general curve and y € C' is
an arbitrary point. We then denote by A C Ay C M2 the locus consisting of curves
[Cyq) € Ao, where [C, g] € My is Brill-Noether general and y € C'is arbitrary, as well
as their degenerations [C' U, E] where E is a rational nodal curve. Once we set

— —
M12 = Mlljz U Ag U All) C M12,
we can extend the morphism o to a proper morphism
0 By — M,

from the stack &, of limit linear series g%, over the partial compactification M, of Mj5.

We extend the vector bundles € and F over the stack %,. The proof of the fol-
lowing result proceeds along the lines of the proof of Proposition 3.9 in [ET]:

Proposition 6.4. There exist two vector bundles € and F defined over &%, with rank(€) = 5
and rank(F) = 17, together with a vector bundle morphism ¢ : Sym?(E) — F, such that the
following statements hold:

e For [C, L] € &1, with [C] € MY, we have that
E(C,L)=HC,L) and F(C,L) = H°(C, L%?).
e Fort = (CUy E,lc,lg) € o 1 (AY), where g(C) = 11,9(F) = land lc = |L¢| is
such that Lo € W,(C) has a cusp at y € C, then £(t) = H°(C, L¢) and
F(t)=H(C,LE*(-2y)) & C - u?,

where uw € H°(C, L¢) is any section such that ord,(u) = 0. If L has a base point at
y, then E(t) = H°(C, L¢) = H°(C, Lc ® Oc(—y)) and the image of a natural map
F(t) — HO(C, LE?) is the subspace H(C, LE?* @ Oc(—2y)).
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e Fixt=[Cy, :=CJy ~q,L| € oA, withq,y € Cand L € Wil(qu) such that
R (C,v*L ® Oc(—y — q)) = 4, where v : C — C,, is the normalization map. In the
case when L is locally free we have that

E(t)=H(C,v*L) and F(t) = H(C,v*L®? @ Oc(—y — q)) ® C - u?,
where w € H°(C,v*L) is any section not vanishing at y and q. In the case when

L is not locally free, that is, L € Wéllgt(cyq) — W (Cyq), then L = v,(A), where
A € WL(C) and the image of the natural map F(t) — H°(C,v*L®?) is the subspace
HO(C, A®?).

To determine the push-forward [D12]""* = o, (c3(F — Sym?*(€)) € AY(MF,), we
study the restriction of the morphism ¢ along the pull-backs of two curves sitting in
the boundary of M, and which are defined as follows: We fix a general pointed curve
[C,q] € Mi1,1 and a general elliptic curve [E, y] € M; ;. Then we consider the families

Co:={Cly~q:yeCtCAFC Mpzand C; :={C U, E:y € C} C A} C M.
These curves intersect the generators of Pic(M2) as follows:
Co-A=0, Cp-0p = deg(we,,) = —22, Cp-61 =1and Cp-d; =0 for2 < j <6, and
01')\:0, 01'50:0, 01'51 :—deg(Kc) :—20and01-5j :OfOI'QSj < 6.

Next, we fix a general pointed curve [C, q] € M;;; and describe the geometry of

the pull-back o*(Cj) C &7,. We consider the determinantal 3-fold

Y = {(y7L) €eCx W144(C) : hO(C>L ® OC(_y - Q)) = 4}
together with the projection 711 : Y — C. Inside Y we consider the following divisors
I = {(y,A® Oc(y)) :y € C, A€ W{5(C)} and

Iy :={(y,A® Oc(q) 1y € C, A€ Wi(C)}
intersecting transversally along the curve I' := {(¢,4 ® Oc(q)) : A € W(O)} =
W(C). We introduce the blow-up Y’ — Y of Y along I and denote by Er C Y’ the
exceptional divisor and by T';,Ty C Y’ the strict transforms of I'; and I respectively.
We then define Y := Y’/T'; 2 T'y, to be the variety obtained from Y’ by identifying the
divisors T'; and Ty over each (y, A) € C' x W}4(C). Lete : Y — Y be the projection map.

Proposition 6.5. With notation as above, one has a birational morphism of 3-folds
f:o"(Cy) =Y,
which is an isomorphism outside a curve contained in ¢~ (n7'(q)). The map J\(rief)-1(q) COT-

responds to forgetting the En.-aspect of each limit linear series. Accordingly, the vector bundles
E\o+(Cy) and Fo= (¢, are pull-backs under € o f of vector bundles on Y.

Proof. We fix a point y € C — {¢} and denote by v : C — Cy, the normalization map,
with v(y) = v(q). We investigate the variety Wil(qu) C EM(qu) of torsion-free
sheaves L on C,, with deg(L) = 14 and h°(Cy,, L) > 5. A locally free L € W;Z(C’yq) is
determined by v*(L) € Wi(C), which has the property h°(C,v*L @ Oc(—y — q)) = 4
(use that since W, (C) = 0, there exists a section of L that does not vanish simultane-
ously at both y and ¢). However, the line bundles of type A ® O¢(y) or A ® Oc(q) with
A € W(0), do not appear in this association, though (y, A ® Oc(y)), (v, A ® Oc(q)) €
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Y. In fact, they correspond to the situation when L € Wﬁ(qu) is not locally free, in
which case necessarily L = v, (A) for some A € W5(C). Thus, for a pointy € C — {q},
there is a birational morphism 7; *(y) — W;l4(0yq) which is an isomorphism over the
locus of locally free sheaves. More precisely, W;Z(C’yq) is obtained from 7, ! (y) by iden-
tifying the disjoint divisors 'y N7, ' (y) and Ty N 7y (y).

A special analysis is required when y = ¢, when Cy, degenerates to C U, F,
where E is a rational nodal cubic. If {Ii¢, g, } € 071 ([C U, Ex]), then the correspond-
ing Brill-Noether numbers with respect to ¢ satisfy p(lc,q) > 0 and p(lg_,q) < 2. The
statement about the restrictions £,+(¢c,) and Fi,+(¢,) follows, because both restrictions
are defined by dropping the information coming from the elliptic tail. O

To describe o*(C4) C @5‘114, where [C] € M1, we define the determinantal 3-fold
X = {(y, L) € C x Wiy(C) : h°(L ® Oc(~2y)) = 4}.

In what follows we use notation from [EHI], to denote vanishing sequences of limit
linear series:

Proposition 6.6. With notation as above, the 3-fold X is an irreducible component of o*(C).
Moreover one has that c3((F — Sym*E)|,=(cy)) = ¢3((F — Sym*E)|x).

Proof. By the additivity of the Brill-Noether number, if {ic, g} € o~ ([CU, E]), we have
that2 = p(12,4,14) > p(lc,y)+p(lg,y). Since p(lg,y) > 0, we obtain that p(l¢,y) < 2. If
p(lg,y) =0, thenlp = 9y+|Og(5y)|, thatis, [ is uniquely determined, while the aspect
lc € G14(0) is a complete g}, with a cusp at the variable point y € C. This gives rise
to an element from X. The remaining components of ¢*(C) are indexed by Schubert
indices @ := (0 < ag < -+ < ay < 10) such thata > (0,1,1,1,1) and 5 < }°7_ga; < 7.
For such @, we set a° := (10 — au, .. ., 10 — ) to be the complementary Schubert index,
then define

Xa:={(y,lc) € C x GH(C) : &/ (y) > a} and Zs := {lp € G1,(E) : o!E(y) > a°}.

Then o*(C1) = X + >, Xa X Zs. The last claim follows by dimension reasons. Since
dim X5 = 1+p(11,4, 14)—2?:0 a; < 3,forevery a > (0,1,1,1,1) and the restrictions of
both £ and F are pulled-back from X, one obtains that c3(F — Sym*& N Xaxzs = 0. O

We also recall standard facts about intersection theory on Jacobians. For a Brill-
Noether general curve [C] € M,, we denote by P a Poincaré bundle on C x Pic?(C') and
by 71 : C x Pic?(C) — C and 7y : C x Pic?(C') — Pic?(C) the projections. We define the
cohomology class 7 = 7 ([point]) € H?(C x Pic*(C)), and if 61, ...,89, € H(C,Z) =
H'(Pic(C), 7Z) is a symplectic basis, then we set

7 i= = 0 (F102)m5 0y ra) = T (Bg+a)T3(0a) ) € HA(C x Pich(C)),
a=1

One has the formula ¢;(P) = dn + +, corresponding to the Hodge decomposition of
c1(P), as well as the relations v = 0, ynp = 0, n* = 0 and * = —2n73(0). On W} (O)
there is a tautological rank r + 1 vector bundle M := (m2).(Picxw7y (o)) To compute the
Chern numbers of M we employ the Harris-Tu formula [HT]. We write >, ¢;(MY) =
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(1+a1)---(1+x,,1), and then for every class ¢ € H*(Pic?(C),Z) one has the following
formula:
99+T—d+ij—j+l
(g+r—d+i;—j+ l)!>1§j,l§r+1 ¢
We compute the classes of the 3-folds that appear in Propositions k.5 and

5) il ¢ = det(

Proposition 6.7. Let [C,q] € M1, be a Brill-Noether general pointed curve. If M denotes
the tautological rank 5 vector bundle over Wi (C) and ¢; := ¢;(MY) € HE(W{,(C), C), then
one has the following relations:

() [X] = 75(ca) — 6mO7s(c2) + (481 + 27)m3(c3) € HS(C x W(C),C).
(i) [Y] = 75(ca) — 2n0m3(c2) + (130 4+ ~)m3(c3) € HY(C x Wiy(C), C).

Proof. We start by noting that W, (C) is a smooth 6-fold isomorphic to the symmetric
product Cs. We realize X as the degeneracy locus of a vector bundle morphism defined
over C' x W{,(C). For each pair (y, L) € C x W} (C), there is a natural map

H°(C,L ® 0y,)" — H(C,L)Y

which globalizes to a vector bundle morphism ¢ : J;(P)Y — 75(M)Y over C x W (C).
Then we have the identification X = Z;({) and the Thom-Porteous formula gives that
[X] = ca(m3(M) — J1(PY)). From the usual exact sequence over C' x Pict4(C)

0 — 7 (Kc)®P — Ji(P) — P — 0,
we can compute the total Chern class of the jet bundle
alh(P))™ = (Yo @Lm+2) ) (Do (20(C) 2+ d(L)n+7)") = 1-6n0+48y+21,
j=0 320

which quickly leads to the formula for [X]. To compute [Y] we proceed in a similar
way. We denote by y,v : C' x C x Pic'*(C) — C x Pic'*(C) the two projections, by
A C C x C x Pic"*(C) the diagonal and we set T, := {¢} x Pic!*(C). We introduce the
rank 2 vector bundle B := (1), (v*(P) ® Opty+(r,)) defined over C x W(C). We note
that there is a bundle morphism x : BY — (m2)*(M)Y, such that Y = Z;(x). Since we
also have that

a(BY)™ = (1+ (d(L)n + ) + (L) +7)* + ) (1 =),
we immediately obtained the stated expression for [Y]. O

Proposition 6.8. Let [C] € M and denote by p,v : C x C x Pict*(C) — C x Pic'4(C) the
natural projections. We define the vector bundles Ay and By on C' x Pic'*(C) having fibres

As(y, L) = HY(C,L®? © Oc(~2y)) and By(y,L) = H*(C,L%* ® Oc(~y — q)),
respectively. One has the following formulas:
c1(Ag) = —40 — 4y —T6n c1(Bg) = —40 — 2y — 27n,
co(Az) = 802 + 28010 + 1676, co(Bz) = 86% + 100m6 + 86+,
c3(Az) = —%93 — 512n0% — 320y and c3(Bs) = —%93 — 18416% — 166%.

Proof. Immediate application of Grothendieck-Riemann-Roch with respect to v. O
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Before our next result, we recall that if V is a vector bundle of rank » + 1 on a
variety X, we have the formulas:

(i) c1(Sym*(V)) = (r + 2)er (V).
(if) c2(Sym?(V)) = L2 V) + (r + 3)ea(V).
(iii) e3(Sym2(V)) = LN B0y 4 (4 4 5)e3 (V) + (12 + 4r — 1)er(V)ea (V).
We expand o, (c3(F — Sym?€)) = aX — bydy — b16; € A} (MY,) and determine the
coefficients a, by and b;. This will suffice in order to compute s(D12).

Theorem 6.9. Let [C] € M be a Brill-Noether general curve and denote by C; C Ay C Mo
the associated test curve. Then the coefficient of &y in the expansion of Do is equal to
1

b= 29(C) —2°

*(Ch) - c3(F — Sym?€E) = 9867.

Proof. We intersect the degeneracy locus of the map ¢ : Sym?(€) — F with the 3-fold
d*(C1) = X + >, Xa X Zs. As already explained in Proposition it is enough to
estimate the contribution coming from X and we can write

o*(C1) - c3(F — Sym?€) = e3(Fx) — e3(Sym*Ex) — e1(Fix )2 (Sym*E x )+

+2¢1 (Sym®E|x )2 (Sym>E|x) —c1 (Sym?E x ) ea(F x ) +¢i (Sym*E x )er (Fix ) — i (Sym?E| x).
We are going to compute each term in the right-hand-side of this expression.

Recall that we have constructed in Proposition b7 a vector bundle morphism
¢ : J1(P)Y — w5(M)Y. We consider the kernel line bundle Ker(¢). If U is the line
bundle on X with fibre

_ HY(C. L)

- HY(C,L® Oc(—2y))
over a point (y, L) € X, then one has an exact sequence over X
0— U — Ji(P) — Ker(¢)" — 0.

In particular, ¢ (U) = 2y+48n—c1(Ker(¢))". The products of the Chern class of Ker(¢)"
with other classes on C' x W, (C) can be computed from the Harris-Tu formula [HT]:

(6)

c1(Ker(¢)")§x = —es(n3(M)Y=J1(P)")§x = —(m3(c5) —6n0m3 (c3)+(48n+27)m5 (ca)) € x,
for any class ¢ € H?(C x W{(C),C).

If A3 denotes the rank 18 vector bundle on X having fibres A3 (y, L) = HY(C, L®?),
then there is an injective morphism U®? — A3/A,, and we consider the quotient sheaf
Asz/As

e
Since the morphism U®2 — A3/ A5 vanishes along the locus of pairs (y, L) where L has
a base point, G has torsion along I' C X. A straightforward local analysis now shows
that F|x can be identified as a subsheaf of A3 with the kernel of the map A3 — G.
Therefore, there is an exact sequence of vector bundles on X

0— Ay x — Fix — U®* =0,
which over a general point of X corresponds to the decomposition
Fly, L) = HY(C, L & Oc(=2y)) & C - w2,

Uy, L) — H(C,L ® O)

g:=
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where u € HY(C, L) is such that ord,(u) = 1. The analysis above, shows that the
sequence stays exact over the curve I' as well. Hence
a(Fix) = a(Agx) +2c1(U), ca(Fix) = c2(Agx) + 2c1(Agx)er(U) and
c3(Fix) = c3(Az) + 2c2(Ag x )1 (U).
Furthermore, since £y = m3(M),x, we obtain that:
O'*(Cl) : 03(.7: - Syng) = Cg(AQ‘X) + CQ(AQ‘X)C:[(U®2) - 03(Sym27T§M|X)—

B (r(r;— 3)

Cl(ﬂékM\X)+(7"+3)02(7T§M\X)) ’ (01 (Agx)+c1(UP?)=2(r+2)cy (W§M|X)) -
(4 Der (M x)ea(Aapx) — ( -+ 2)en (3 MxJer (Agpx)er (UF2) +
i+ 2DREMx)er (Asyx) + (r + 2PE(mEMx)er (UF2) — (r -+ 26 (m M),
As before, ¢;(m3 M) = m3(c;) € H*(X, C). The coefficient of ¢; (Ker(¢)") in the prod-

uct 0*(C1) - e3(F — Sym*¢) is evaluated via @). The part of this product that does not
contain ¢; (Ker(¢)") equals

32
2873 (c2)0 — 88735 (c3)0 + 440ns (c3) — 5315 (cie) — 393 + 128n0% — 4320073 (c1)

+6473(c}) — 140n75 (o) + 480%75(c1) + 973 (c3) € HO(C x Wiy (C), C).
Multiplying this quantity by the class [X] obtained in Propositionb.Z and then adding
to it the contribution coming from ¢; (Ker(¢)"), one obtains a homogeneous polynomial
of degree 7 in 7,0 and 73(c;) for 1 < i < 4. The only non-zero monomials are those
containing 7. After retaining only these monomials, the resulting degree 6 polynomial
in 0,c; € H*(W}4(C),Z) can be brought to a manageable form, by noting that, since
hY(C, L) = 1, the classes ¢; are not independent. Precisely, if one fixes a divisor D € C.
of large degree, there is an exact sequence

0— M — (7T2)* (P &® O(TF*D)) — (7T2)* (P &® O(TFTD)‘W{D) — Rlﬂ'g* (,P\C'XWﬁ(C)) — 0,

from which, via the well-known fact ¢; ((m2).(P ® O(r;D))) = e~?, it follows that
4
iR Tou (Ploswa o)) €0 =D (1)
i=0
Hence ¢; 1 = 0'c; /i — i1 /(i +1)!, for all i > 2. After routine manipulations, one finds
that b; = 0*(C}) - c3(F — Sym?(£))/20 = 9867. O

Theorem 6.10. Let [C, q] € My be a Brill-Noether general pointed curve and we denote by
Coy C Ao C Mo the associated test curve. Then a*(CO)-C3(f—Sym2€) = 22by —by = 32505.
It follows that by = 1926.

Proof. As already noted in Proposition .5, the vector bundles &,-(c,) and Fj,+(c,) are
both pull-backs of vector bundles on Y and we denote these vector bundles £ and F as
well, that is, £, (coy = (€0 f)*(Ely) and Figx(cy) = (€ o f)*(FJy). Like in the proof of
Theorem B9, we evaluate each term appearing in o*(Cp) - c3(F — Sym?(€)).

Let V be the line bundle on Y with fibre
_ H'(C, L)
~ HO(C,.L®Oc(~y —q))

V(y,L) — HY(C,L ® Oyyy)
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over a point (y, L) € Y. There is an exact sequence of vector bundles over Y
0—V — B— Ker(x)" — 0,

where x : BY — 75(M)V is the bundle morphism defined in the second part of Propo-
sitioneZ In particular, ¢; (V') = 13n+ v — ¢; (Ker(x"). By using again [HT], we find the
following formulas for the Chern numbers of Ker(x)":

c1(Ker(x)") gy = —c5(m5(M)Y =BY) &y = —(m3(cs) +m5 (ca) (13n+7) =275 (c3)nf) €y

for any class ¢ € H?(C x W{,(C),C). Recall that we introduced the vector bundle 3,
over C x Wi, (C) with fibre By(y, L) = H*(C, L®? @ Oc(—y — q)). We claim that one has
an exact sequence of bundles over Y’

(7) 0— Byy — Fy — V¥ —0.

If Bj is the vector bundle on Y with fibres B3(y, L) = H°(C, L®?), we have an injective
morphism of sheaves V&2 — B3/B; locally given by

v®? — v2 mod H°(C, L®? @ Oc(—y — q)),

where v € H°(C, L) is any section not vanishing at ¢ and y. Then F}y is canonically
identified with the kernel of the projection morphism

B3 /B>

y®2
and the exact sequence () now becomes clear. Therefore c1(Fjy) = c1(Bay) + 2¢1(V),
Cg(.ﬂy) = 02(82|y) + 261(82|y)01(V) and Cg(.ﬂy) = Cg(Bg|y) + 262(82|y)01(V). The
part of the total intersection number *(Cp) - c3(F — Sym?(€)) that does not contain
c1(Ker(x")) equals

B3y —

32
2873 (c2)0 — 8875 (c3)0 — 22075 (c3) — 5375 (c1ca) — 393+

— 8102 4 241073 (1) + 6475 (ch) + Ty (c2) + 4805 (c1) + 973 (c3) € HO(C' x Wiy (C), C)

and this gets multiplied with the class [Y| from Proposition The coefficient of

c1(Ker(¢)Y) in 0*(Cp) - c3(F — Sym?€) equals

—2c2(Byy) —2(r + 2)271’2k (c%) = 2(r +2)e1 (Byy )ms(c1) + r(r+3)m; (c%) +2(r 4 3)m5 (c2).

Allin all, 22bg — by = 0*(Cy) - c3(F — Sym?€) and we evaluate this using (@). O
The following result follows from the definition of the vector bundles £ and F

given in Proposition b.2t

Theorem 6.11. Let [C,q] € M1,1 be a Brill-Noether general pointed curve and R C M5 the
pencil obtained by attaching at the fixed point ¢ € C' a pencil of plane cubics. Then

a —12by + by = o,c3(F — Sym®€) - R = 0.

End of the proof of Theorem The fact that the virtual divisor D17 is a genuine divisor
on M follows from [[I]. Assuming by contradiction that for every curve [C] € M3,
there exists L € W{,(C) such that y10(L) is not-injective, one can construct a stable vector
bundle E of rank 2 sitting in an extension

0—Kc®L' —E—L—0,
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such that h°(C,E) = h°(C,L) + h'(C,L) = 7, and for which the Mukai-Petri map
Sym?H(C, E) — H°(C,Sym?E) is not injective. This is a contradiction. To determine
the slope of the divisor D12, we write D12 = a) — 2]6':0 b;d; € Pic(My2). Since a/by =
4415/642 < 71/10, we are in a position to apply Corollary 1.2 from [EP], which gives

the inequalities b; > by for 1 < j < 6. Therefore s(D12) = a/by < 13/2. O
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