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1. Introduction

The purpose of this note is to prove two statements on the slopes of effective
divisors on the moduli space of stable curves Mg: first that the Harris-Morrison Slope
Conjecture fails to hold on M10 and second, that in order to compute the slope of
Mg for g ≤ 23, one only has to look at the coefficients of the classes λ and δ0 in the
expansion of the relevant divisors. The proofs are based on a general result providing
inequalities between the first few coefficients of effective divisors on Mg. We give the
technical statements in what follows.

On Mg we denote by λ the class of the Hodge line bundle, by δ0, . . . , δ[g/2] the
boundary divisor classes corresponding to singular stable curves and by δ := δ0 + · · · +
δ[g/2] the total boundary. If E ⊂ Pic(Mg)⊗R is the effective cone, then following [HMo]
we define the slope function s : E → R ∪ {∞} by the formula

s(D) := inf {
a

b
: a, b > 0 such that aλ − bδ − D ≡

[g/2]
∑

i=0

ciδi, where ci ≥ 0}.

From the definition it follows that s(D) = ∞ unless D ≡ aλ −
∑[g/2]

i=0 biδi with a, bi ≥ 0
for all i (and it is well-known that s(D) < ∞ for any D which is the closure of an

effective divisor on Mg). In the second case one has that s(D) = a/min
[g/2]
i=0 bi. We

denote by sg the slope of the moduli space Mg, defined as sg := inf {s(D) : D ∈ E}.
The Slope Conjecture of Harris and Morrison predicts that sg ≥ 6 + 12/(g + 1) (cf.
[HMo] Conjecture 0.1). This is known to hold for g ≤ 12, g 6= 10 (cf. [HMo] and [Ta]).

Following [CU], we consider the divisor K on M10 consisting of smooth curves
lying on a K3 surface, and we denote by K its closure in M10. For any g ≥ 20, we look
at the locus in Mg of curves obtained by attaching a pointed curve of genus g − 10 to
a curve in K with a marked point. This gives a divisor in ∆10 ⊂ Mg, which we denote
by Z.
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The key point in what follows is that, based on the study of curves lying on K3
surfaces, one can establish inequalities involving a number of coefficients of any effective
divisor coming from Mg in the expansion in terms of the generating classes.

Theorem 1.1. Let D ≡ aλ−
∑[g/2]

i=0 biδi be the closure in Mg of an effective divisor on
Mg.
(a) For 2 ≤ i ≤ 9 and i = 11 we have bi ≥ (6i + 18)b0 − (i + 1)a. The same formula
holds for i = 10 if D does not contain the divisor Z ⊂ ∆10.
(b) (g ≥ 20) If D contains Z, then either b10 ≥ 78b0−11a as above, or b10 ≥ (71.3866...)·
b0 − (10.1980...) · a.
(c) We always have that b1 ≥ 12b0 − a.

Part (a) (and (c)) of this theorem essentially only make more concrete results –
and the technique of intersecting with special Lefschetz pencils– already existing in the
literature mentioned above. Part (b) however is more involved: it requires pull-backs
to M10,1 and the intrinsic use of our partial knowledge about the divisor K, plus some
facts about the Weierstrass divisor on Mg,1. Here we claim more originality.

Corollary 1.2. If a/b0 ≤ 71/10, then bi ≥ b0 for all 1 ≤ i ≤ 9. The same conclusion
holds for i = 10 if a/b0 ≤ 6.906 . . ., and for i = 11 if a/b0 ≤ 83/12.

Based on this we obtain that the divisor K ⊂ M10 provides a counterexample to
the Slope Conjecture. Its class can be written as

K ≡ aλ − b0δ0 − . . . − b5δ5,

and by [CU] Proposition 3.5, we have a = 7 and b0 = 1. In view of Corollary 1.2, this
information is sufficent to show that the slope of K is smaller than the one expected
based on the Slope Conjecture.

Corollary 1.3. The slope of K is equal to a/b0 = 7, so strictly smaller than the bound
78/11 predicted by the Slope Conjecture. In particular s10 = 7 (since by [Ta] s10 ≥ 7).

Theorem 1.1 also allows us to formulate (at least up to genus 23, and conjecturally
beyond that) the following principle: the slope sg of Mg is computed by the quotient
a/b0 of the relevant divisors. We have more generally:

Theorem 1.4. For any g ≤ 23, there exists εg > 0 such that for any effective divisor D
on Mg with sg ≤ s(D) ≤ sg + εg we have s(D) = a/b0, i.e. b0 ≤ bi for all i ≥ 1.

Conjecture 1.5. The statement of the theorem holds in arbitrary genus.

Theorem 1.1 is proved in §2. Theorem 1.4 is proved in §3, where we also remark that
the methods of the present paper give a very quick proof of the fact that the Kodaira
dimension of the universal curve Mg,1 is −∞ for g ≤ 15, g 6= 13, 14.
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2. Inequalities between coefficients of divisors

Let Fg be the moduli space of canonically polarized K3 surfaces (S,H) of genus
g. We consider the Pg-bundle Pg = {(S,C) : C ∈ |H|} over Fg which comes with a
natural rational map φg : Pg −− > Mg. By Mukai’s results [Mu1] and [MM], this map
is dominant if and only if 2 ≤ g ≤ 9 or g = 11. In this range Mg can be covered by
curves corresponding to Lefschetz pencils of curves on K3 surfaces (cf. [Ta]). This is
not true any more when g = 10: in this case Im(φ10) is a divisor K in M10 (cf. [CU]
Proposition 2.2).

Note that any such Lefschetz pencil, considered as a family of curves over P1, has
at least one section, since its base locus is nonempty.

Given 2 ≤ i ≤ 11, consider as above a Lefschetz pencil of curves of genus i lying
on a general K3 surface of degree 2i−2 in Pi. This gives rise to a curve B in the moduli
space Mi.

Lemma 2.1. We have the formulas B · λ = i + 1, B · δ0 = 6i + 18 and B · δj = 0 for
j 6= 0.

Proof. The first two numbers are computed e.g. in [CU] Proposition 3.1, based on the
formulas in [GH] pp. 508–509. The last assertion is obvious since there are no reducible
curves in a Lefschetz pencil. ¤

For each g ≥ i+1, starting with the pencil B in Mi we can construct a new pencil
Bi in Mg in the following way: we fix a general pointed curve (C, p) genus g − i. We
then glue the curves in the pencil B with C at p, along one of the sections corresponding
to the base points of the pencil. We have that all such Bi fill up ∆i ⊂ Mg for i 6= 10,
and the divisor Z ⊂ ∆10 when i = 10.

Lemma 2.2. We have Bi · λ = i + 1, Bi · δ0 = 6i + 18, Bi · δi = −1 and Bi · δj = 0 for
j 6= 0, i.

Proof. This follows immediately from Lemma 2.1 and from general principles, as ex-
plained in [CR] pp.271. ¤

Proof. (of Theorem 1.1 (a), (c)) (a) Let us fix 2 ≤ i ≤ 11, i 6= 10. Since D is the closure
of a divisor coming from Mg, it cannot contain the whole boundary ∆i. Thus we must
have a pencil Bi as above such that Bi · D ≥ 0. The same thing holds true for i = 10 if
we know that Z is not contained in D. But by Lemma 2.2 this is precisely the statement
of this part.

(c) We follow the same procedure, but this time we produce a pencil B1 in ∆1 ⊂ Mg

by gluing a fixed pointed curve (C, p) of genus g − 1 to a generic pencil of plane cubics
along one of its 9 sections. We have the well-known relations:

B1 · λ = 1, B1 · δ0 = 12, B1 · δ1 = −1 and B1 · δj = 0 for j 6= 0, 1.
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The conclusion follows similarly, since we can find a B1 such that B1 · D ≥ 0. ¤

The study of the coefficient b10 is more involved, since in M10 the Lefschetz pencils
of curves on K3 surfaces only fill up a divisor. We need some preliminaries on divisors
on the universal curve Mg,1. Let π : Mg,1 → Mg be the forgetful morphism. The
generators of Pic(Mg,1)⊗Q are the tautological class ψ = c1(ωπ), the boundary δ0, the
Hodge class λ, and for 1 ≤ i ≤ g − 1 the class δi corresponding to the locus of pointed
curves consisting of two components of genus i and g − i respectively with the marked
point being on the genus i component.

Lemma 2.3. (cf. [AC] §1) One has the following relations:

π∗(λ
2) = π∗(λ · δi) = π∗(δ0 · δi) = 0 for all i = 0, . . . , g − 1, π∗(ψ

2) = 12λ − δ,

π∗(λ · ψ) = (2g − 2)λ, π∗(ψ · δ0) = (2g − 2)δ0, π∗(ψ · δi) = (2i − 1)δi for i ≥ 1,

π∗(δ
2
i ) = −δi for 1 ≤ i ≤ g − 1, π∗(δi · δg−i) = δi, for 1 ≤ i < g/2, and

π∗(δi · δj) = 0 for all i, j ≥ 0 with i 6= j, g − j.

We consider the Weierstrass divisor in Mg,1

W := {[C, p] ∈ Mg,1 : p ∈ C is a Weierstrass point},

and denote by W its closure in Mg,1. Its class has been computed by Cukierman [Ck]:

W ≡ −λ +
g(g + 1)

2
ψ −

g−1
∑

i=1

(

g − i + 1

2

)

δi.

Proposition 2.4. If π : Mg,1 → Mg is the forgetful morphism, then π∗(W
2
) is an

effective divisor class on Mg.

Proof. From the previous Lemma we have that

π∗(W
2
) ≡ aλ −

[g/2]
∑

i=0

biδi,

where a = g(g + 1)(3g2 + g + 2), b0 = g2(g + 1)2/4 while for 1 ≤ i < g/2 we have
bi = i(g − i)(g3 + 3g2 + g − 1). When g is even bg/2 = (8g5 + 28g3 + 33g4 + 4g2)/64. On
the other hand we have expressions for the classes of distinguished geometric divisors
on Mg: when g + 1 is composite, by looking at Brill-Noether divisors one sees that the
class

(g + 3)λ −
g + 1

6
δ0 −

[g/2]
∑

i=1

i(g − i)δi

is effective (cf. [EH] Theorem 1). When g + 1 is prime one has to use the class of the
Petri divisor, which gives a slightly worse estimate (cf. [EH] Theorem 2). In either case,
by comparing the coefficients a, bi above with those of these explicit effective classes, one

obtains an effective representative for π∗(W
2
). For instance when g + 1 is composite it
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is enough to check that b0/a ≤ (g + 1)/(6g + 18) and that bi/a ≤ i(g − i)/(g + 3) for
i = 1, . . . , [g/2], which is immediate. ¤

Corollary 2.5. Let D be any effective divisor class on Mg,1. Then π∗(W · D) is an
effective class on Mg.

Proof. Since W is irreducible we can write D = mW +E, where E is an effective divisor
not containing W and m ∈ Z≥0. Then we use the previous Proposition. ¤

Proof. (of Theorem 1.1 (b)) Assume that b10 < 78b0 − 11a. We consider the map

j : M10,1 −→ Mg

obtained by attaching a fixed general pointed curve of genus g−10 to any curve of genus
10 with a marked point. Our assumption says that R · j∗(D) < 0, where R ⊂ M10,1

denotes the curve in the moduli space coming from a Lefschetz pencil of pointed curves
of genus 10 on a general K3 surface. We can write j∗(D) = mπ∗(K) + E, where E is an
effective divisor not containing π∗(K) and m ∈ Z is such that

(1) m ≥ −R · j∗(D) = −11a + 78b0 − b10 > 0.

Note that we have the standard formulas j∗(λ) = λ, j∗(δ0) = δ0 and j∗(δ10) = −ψ (cf.
[AC]), while K ≡ 7λ − δ0 − · · · , hence

E ≡ (a − 7m)λ + b10ψ + (m − b0)δ0 + (other boundaries)

is an effective class on M10,1. By applying Corollary 2.5 it follows that π∗(W · E) is an
effective class on M10. An easy calculation using Lemma 2.3 shows that

π∗(W · E) ≡
(

642b10 + 990(a − 7m)
)

λ − 55
(

b10 + 18(b0 − m)
)

δ0 − · · · .

We now use the fact that for every effective divisor on Mg the coefficient a of λ is
nonnegative 1. From the previous formula we get an inequality which combined with (1)
yields, after a simple computation

b10 ≥ (71.3866...) · b0 − (10.1980...) · a.

¤

Question 2.6. For reasons of uniformity, it is natural to ask the following: does the
second situation in Theorem 1.1(b) actually occur, or do we always have even for b10 the
same inequality as in part (a)?

We conclude with some examples where these inequalities can be checked directly
and are sometimes sharp.

1For the reader’s convenience we recall that this follows immediately from the fact that B · λ > 0
for any curve B ⊂ Mg such that B ∩Mg 6= ∅, while there is always a complete curve in Mg passing
through a general point.
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Example 2.7. When g+1 is composite, if r, d > 0 are such that g+1 = (r+1)(g−d+r),
then the locus of curves of genus g carrying a g

r
d is a divisor with class (cf. [EH], Theorem

1):

M
d

g,r ≡ c
(

(g + 3)λ −
g + 1

6
δ0 −

[g/2]
∑

i=1

i(g − i)δi

)

,

where c is a positive constant depending on g, r and d. A simple calculation shows that
the inequalities in Theorem 1.1 are satisfied. Moreover, they are sharp for i = 1 and
i = 2, for any genus g.

Example 2.8. A similar behavior is exhibited by the divisor of curves on K3 surfaces
K ⊂ M10, where we have b1 = 5 and b2 = 9 which again gives equality in the first two
inequalities in Theorem 1.1. Note that this follows by the method of [EH] §2 if we show
that the pull-back of K to M2,1 is supported on the Weierstrass divisor. We will obtain
this in the forthcoming paper [FP], based on results of Voisin [V], and as a special case
of a more general study of degenerations of spaces of sections of rank two vector bundles
on curves. The same study will show a striking difference between the geometry of K
and that of the Brill-Noether divisors, namely that the image of the natural map from
M0,g to Mg is contained in the K3-locus for any g. Thus one cannot use the method
of [EH] §3 in order to determine more coefficents of K.

3. Slopes of divisors and further remarks

The inequalities established in Theorem 1.1 allow us to show that, at least up to
genus 23, if the slope of an effective divisor is sufficiently small, then it is computed by
the ratio a/b0.

Proof. (of Theorem 1.4) When g is such that g + 1 is composite, we have that sg ≤
6 + 12/(g + 1) (this being the slope of any Brill-Noether divisor). When g is even, one

has the estimate sg ≤ 2(3g2+13g+2)
g(g+2)

(this being the slope of the Petri divisor, cf. [EH]

Theorem 2). It follows that for any g ≤ 23 there exists a positive number εg such that

sg + εg ≤ 6 +
11

i + 1
for all i ≤ [g/2](≤ 11).

Assume first that 2 ≤ i ≤ 9 or i = 11. Then by Theorem 1.1(a) we know that
bi ≥ (6i + 18)b0 − (i + 1)a, and so certainly bi ≥ b0 if s(D) ≤ 6 + 11

i+1
. For i = 10 we

apply 1.1(b): if the inequality b10 ≥ 78b0 − 11a holds, then the argument is identical. If
not, we have the inequality b10 ≥ (71.3866...) · b0 − (10.1980...) · a. Thus b10 ≥ b0 as soon
as the inequality a/b0 ≤ 6.9 is satisfied. But for g ≥ 20 the inequality sg < 6.9 holds,
based on the same estimates as above.

For i = 1, the condition is even weaker because of the formula b1 ≥ 12b0 − a in
1.1(c). Thus the slope of D is computed by a/b0. ¤
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Remark 3.1. Let us consider again the curve B ⊂ Mg corresponding to a Lefschetz
pencil of curves of genus g on a general K3 surface (cf. Lemma 2.1). Since B ·δ0/B ·λ =
6 + 12/(g + 1) which is the conjectured value of sg, it follows that the nefness 2 of B
would be a sufficient condition for the Slope Conjecture to hold in genus g. Moreover,
Theorem 1.4 and Corollary 1.2 imply that for g ≤ 23 the Slope Conjecture in genus g is
equivalent to B being a nef curve. The conjecture fails for g = 10 because B · K = −1.

Remark 3.2. An amusing consequence of Proposition 2.5 is that the Kodaira dimension
of the universal curve Mg,1 is −∞ for all g ≤ 15, with g 6= 13, 14 ( of course this
can be proved directly when g ≤ 11). Indeed, if we assume that the canonical class
KMg,1

≡ 13λ+ψ− 3(δ1 + δg−1)− 2
∑g−2

i=2 δi is effective on Mg,1, then by Proposition 2.5

the class D := π∗(KMg,1
·W) is effective on Mg. It turns out that s(D) = 2(13g3+6g2−9g+2)

g(g+1)(4g+3)
,

and from the definition of the slope of Mg we have that s(D) ≥ sg. But this contradicts
the estimates on sg from [Ta] and [CR].
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2Recall that, slightly abusively, a curve B on a projective variety X is called nef if B · D ≥ 0 for
every efective divisor D on X.


