BMS Algebraic Geometry 2008, Problem Set Nr. 2

1. Prove that the curve (affine variety) given by the equation $x y=1$ in \mathbb{A}^{2} is not isomorphic to \mathbb{A}^{1}.
2. Show that the set X of points $\left\{\left(t, t^{2}, t^{3}\right): t \in k\right\} \subset \mathbb{A}^{3}$ is an irreducible affine variety and compute the ideal $I(X) \subset k[x, y, z]$ by describing its generators. Is X isomorphic to \mathbb{A}^{1} ?
3. Let X be the algebraic set in \mathbb{A}^{3} defined by the polynomials $x^{2}-y z$ and $x z-x$. Show that X is the union of three irreducible components. Describe them and find their prime ideals.
4. Show that a k-algebra R is isomorphic to the affine coordinate ring of some algebraic set $X \subset \mathbb{A}^{n}$ if and only if R is finitely generated as a k-algebra and has no nilpotent elements.
5. Show that any open subset of an irreducible topological space is dense and irreducible.
6. Suppose that $\phi: \mathcal{F} \rightarrow \mathcal{G}$ is a morphism of sheaves of abelian groups. If \mathcal{H} is defined by the collection of data $\mathcal{H}(U):=\mathcal{G}(U) / \phi(\mathcal{F}(U))$ for all open sets $U \subset X$, show that \mathcal{H} is a presheaf. What are the stalks of its sheafification?
7. We fix $X:=\mathbb{C}$ and denote by exp : $\mathcal{O}_{X} \rightarrow \mathcal{O}_{X}^{*}$ the exponential map $f \mapsto e^{2 \pi i f}$. Prove that when $U \subset X$ is simply connected then $\exp _{U}$ is surjective. Give an example ofan open subset $U \subset X$ when this is no longer true. Describe the image sheaf of the morhism exp.
8. Let $\phi: \mathcal{F} \rightarrow \mathcal{G}$ be any morphism of presheaves. Prove that there exists an induced morphisms between the sheafifications $\phi^{s h}: \mathcal{F}^{s h} \rightarrow \mathcal{G}^{s h}$.
