BMS Algebraic Geometry 2008, Problem Set Nr. 4

1. Let H_{i} and H_{j} be hyperplanes in \mathbb{P}^{n} defined by $x_{i}=0$ and $x_{j}=0$, with $i \neq j$. Show that any regular function on $\mathbb{P}^{n}-\left(H_{i} \cap H_{j}\right)$ is constant.
2. Let \mathbb{P}^{n} be a hyperplane of \mathbb{P}^{n+1} and we fix a point $p \in \mathbb{P}^{n+1}-\mathbb{P}^{n}$. We define a $\operatorname{map} \phi: \mathbb{P}^{n+1}-\{p\} \rightarrow \mathbb{P}^{n}$ by $\phi(x):=$ the point of intersection of the line containing p and x with the hyperplane \mathbb{P}^{n}.

- Show that ϕ is a morphism of prevarieties.
- Let $Y \subset \mathbb{P}^{3}$ be the twisted cubic curve given by points $\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right]$, where $[s, t] \in \mathbb{P}^{1}$. Assume that $p=[0,0,1,0] \in \mathbb{P}^{3}$ and let \mathbb{P}^{2} be the hyperplane $x_{2}=0$. Find the equations in the plane of the curve $\phi(Y)$.

3. Let X be any prevariety and $p \in X$. Show that there is a $1: 1$ correspondence between the prime ideals of the local ring $\mathcal{O}_{X, p}$ and the closed subvarieties of X containing p.
4. We fix $n, d>0$ and let $M_{0}, M_{1}, \ldots, M_{N}$ be all monomials of degree d in the variables x_{0}, \ldots, x_{d}, where $N=\binom{n+d}{n}-1$. We define the map

$$
\rho_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}
$$

obtained by sending a point $p=\left[a_{0}, \ldots, a_{n}\right]$ to the point $\rho_{d}(p)=\left[M_{0}(p), \ldots, M_{N}(p)\right]$ obtained by evaluating all the monomials M_{j} at the point $\left(a_{0}, \ldots, a_{n}\right)$. This is called the d-uple embedding of \mathbb{P}^{n} in \mathbb{P}^{N}.

- Describe this map in the case $n=1, d=2$. What is the image of ρ_{2} ?
- Prove that the image $\rho_{d}\left(\mathbb{P}^{n}\right)$ is always a projective subvariety of \mathbb{P}^{N} given by some homogeneous ideal $I \subset k\left[X_{0}, \ldots, x_{n}\right]$.
- Show that the 3 -uple embedding of \mathbb{P}^{1} into \mathbb{P}^{3} has as image the twisted cubic curve in \mathbb{P}^{3}.

5. Let $Y \subset \mathbb{P}^{5}$ be the 2-uple embedding $\rho_{2} ; \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$. Describe the homogeneous ideal of Y.
