BMS Algebraic Geometry 2008, Problem Set Nr. 5

1. Suppose that X and Y are varieties over k and f: Y - - > X is a rational map. Show that there exists a largest open set $U \subset Y$ on which f can be represented by a morphism $f_U: U \to X$.

2. Show that the projective varieties $X, Y \subset \mathbb{P}^3$ defined by the equations xw = yzand $x^2 + y^2 + z^2 = w^2$ respectively, are isomorphic.

3. Show that any finite set of points on the twisted cubic curve $X \subset \mathbb{P}^3$ are in general linear position, that is, any four of them span the space \mathbb{P}^3 .

4. We consider the Segre map $\sigma : \mathbb{P}^2 \times \mathbb{P}^1 \to \mathbb{P}^5$ and denote by $\Sigma_{21} := \operatorname{Im}(\sigma) \subset \mathbb{P}^5$ the Segre 3-fold. Prove that the twisted cubic curve $C \subset \mathbb{P}^3$ can be realized as the intesection of Σ_{21} with a suitable 3-plane $\mathbb{P}^3 \subset \mathbb{P}^5$.

5. Let $\rho_2 : \mathbb{P}^2 \to \mathbb{P}^5$ be the second Veronese map. Show that the image of a variety $Y \subset \mathbb{P}^2$ is a subvariety of \mathbb{P}^5 . Write down explicitly the ideal of $\rho_2(Y)$ where Y is the curve in \mathbb{P}^2 given by the equation $x_0^3 + x_1^3 + x_2^3 = 0$.

6. Show that the image of the diagonal $\Delta \subset \mathbb{P}6n \times \mathbb{P}^n$ uder the Segre map is isomorphic to the Veronese subvariety $\rho_2(\mathbb{P}^n)$ lying in a subspace of \mathbb{P}^{n^2+2n} . Deduce from this that the product of any projective variety with itself is a subvariety of that product.

7. Let f be the rational function on \mathbb{P}^2 defined by $f = x_0/x_1$. Find the set of points where f is defined and describe the regular function which represents f. If you think of f as being a function from \mathbb{P}^2 to \mathbb{P}^1 obtained by embedding the target \mathbb{A}^1 into \mathbb{P}^1 , find the points where f is defined and describe the corresponding morphism.