BMS Algebraic Geometry 2008, Problem Set Nr. 5

1. Suppose that X and Y are varieties over k and $f: Y-->X$ is a rational map. Show that there exists a largest open set $U \subset Y$ on which f can be represented by a morphism $f_{U}: U \rightarrow X$.
2. Show that the projective varieties $X, Y \subset \mathbb{P}^{3}$ defined by the equations $x w=y z$ and $x^{2}+y^{2}+z^{2}=w^{2}$ respectively, are isomorphic.
3. Show that any finite set of points on the twisted cubic curve $X \subset \mathbb{P}^{3}$ are in general linear position, that is, any four of them span the space \mathbb{P}^{3}.
4. We consider the Segre map $\sigma: \mathbb{P}^{2} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{5}$ and denote by $\Sigma_{21}:=\operatorname{Im}(\sigma) \subset \mathbb{P}^{5}$ the Segre 3-fold. Prove that the twisted cubic curve $C \subset \mathbb{P}^{3}$ can be realized as the intesection of Σ_{21} with a suitable 3-plane $\mathbb{P}^{3} \subset \mathbb{P}^{5}$.
5. Let $\rho_{2}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$ be the second Veronese map. Show that the image of a variety $Y \subset \mathbb{P}^{2}$ is a subvariety of \mathbb{P}^{5}. Write down explicitly the ideal of $\rho_{2}(Y)$ where Y is the curve in \mathbb{P}^{2} given by the equation $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}=0$.
6. Show that the image of the diagonal $\Delta \subset \mathbb{P} 6 n \times \mathbb{P}^{n}$ uder the Segre map is isomorphic to the Veronese subvariety $\rho_{2}\left(\mathbb{P}^{n}\right)$ lying in asubspace of $\mathbb{P}^{n^{2}+2 n}$. Deduce from this that the product of any projective variety with itself is a subvariety of that product.
7. Let f be the rational function on \mathbb{P}^{2} defined by $f=x_{0} / x_{1}$. Find the set of points where f is defined and describe the regular function which represents f. If you think of f as being a function from \mathbb{P}^{2} to \mathbb{P}^{1} obtained by embedding the target \mathbb{A}^{1} into \mathbb{P}^{1}, find the points where f is defined and describe the corresponding morphism.
