BMS Algebraic Geometry 2008, Problem Set Nr. 6

1. Show that the intersection of two varieties need not be an (irreducible) variety: Let $Q_{1}, Q_{2} \subset \mathbb{P}^{3}$ be quadric surfaces given by the equations $x^{2}-y w=0$ and $x y-z w=0$. Show that $Q_{1} \cap Q_{2}$ consists of the union of a line and a twisted cubic.
2. A variety X is said to be rational if it is birationally equivalent to \mathbb{P}^{n}. Show that any conic in \mathbb{P}^{2} is rational. Show that the cuspidal cubic $y^{2}=x^{3}$ is a rational curve. Finally, let $Y \subset \mathbb{P}^{2}$ be the nodal cubic curve $y^{2} z=x^{2}(x+z)$. Find the explicit equation for the projection ϕ of Y from the point $p=[0,0,1]$ to the line $z=0$ and show that ϕ induces a birational isomorphism from Y to \mathbb{P}^{1}. Conclude that Y is rational.
3. Let X and Y be algebraic varieties and denote by $X \times Y$ their product in the category of algebraic varieties. Prove that

$$
\operatorname{dim}(X \times Y)=\operatorname{dim}(X)+\operatorname{dim}(Y)
$$

4. Let $X, Y \subset \mathbb{A}^{n}$ be irreducible affine varieties such that $X \cap Y \neq \emptyset$. Show that for any irreducible component Z of $X \cap Y$ one has that

$$
\operatorname{dim}(X \cap Y) \geq \operatorname{dim}(X)+\operatorname{dim}(Y)-n
$$

5. Prove that any variety X of dimension r is birational to a hypersurface $Y \subset \mathbb{P}^{r+1}$.
6. Prove that through any $r+2$ points in \mathbb{P}^{r} in general linear position, there passes a unique rational normal (Veronese) curve $Y \subset \mathbb{P}^{r}$.
7. Let $Q \subset \mathbb{P}^{3}$ be a quadric surface, e.g. the surface $x w-y z=0$ and let $p \in Q$ be any point, e.g. $p=[0,0,0,1]$.

- Write down the formula for the projection from p

$$
\pi_{p}: Q-\{p\} \rightarrow \mathbb{P}^{2} .
$$

- Prove that π_{p} is a birational isomorphism and write down explicitly its inverse rational map.

8. Let $C \subset \mathbb{P}^{3}$ be the twisted cubic curve. Show that any point $p \in \mathbb{P}^{3}-C$ lies on a unique line secant line L to C, that is, of the form $L=\overline{x y}$ with $x, y \in C$.
