

Algebraic Geometry 2014, Problem Set

Nr. 3, Prof. G. Farkas, HU Berlin

1. Let H_i and H_j be hyperplanes in \mathbb{P}^n defined by $x_i = 0$ and $x_j = 0$, with $i \neq j$. Show that any regular function on $\mathbb{P}^n - (H_i \cap H_j)$ is constant.
2. Let \mathbb{P}^n be a hyperplane of \mathbb{P}^{n+1} and we fix a point $p \in \mathbb{P}^{n+1} - \mathbb{P}^n$. We define a map $\phi : \mathbb{P}^{n+1} - \{p\} \rightarrow \mathbb{P}^n$ by $\phi(x) :=$ the point of intersection of the line containing p and x with the hyperplane \mathbb{P}^n .
 - Show that ϕ is a morphism of prevarieties.
 - Let $Y \subset \mathbb{P}^3$ be the twisted cubic curve given by points $[x_0, x_1, x_2, x_3] = [s^3, s^2t, st^2, t^3]$, where $[s, t] \in \mathbb{P}^1$. Assume that $p = [0, 0, 1, 0] \in \mathbb{P}^3$ and let \mathbb{P}^2 be the hyperplane $x_2 = 0$. Find the equations in the plane of the curve $\phi(Y)$.
3. Let X be any prevariety and $p \in X$. Show that there is a $1 : 1$ correspondence between the prime ideals of the local ring $\mathcal{O}_{X,p}$ and the closed subvarieties of X containing p .
4. We fix $n, d > 0$ and let M_0, M_1, \dots, M_N be all monomials of degree d in the variables x_0, \dots, x_d , where $N = \binom{n+d}{n} - 1$. We define the map
$$\rho_d : \mathbb{P}^n \rightarrow \mathbb{P}^N$$
obtained by sending a point $p = [a_0, \dots, a_n]$ to the point $\rho_d(p) = [M_0(p), \dots, M_N(p)]$ obtained by evaluating all the monomials M_j at the point (a_0, \dots, a_n) . This is called the d -uple embedding of \mathbb{P}^n in \mathbb{P}^N .
 - Describe this map in the case $n = 1, d = 2$. What is the image of ρ_2 ?
 - Prove that the image $\rho_d(\mathbb{P}^n)$ is always a projective subvariety of \mathbb{P}^N given by some homogeneous ideal $I \subset k[X_0, \dots, x_n]$.
 - Show that the 3-uple embedding of \mathbb{P}^1 into \mathbb{P}^3 has as image the twisted cubic curve in \mathbb{P}^3 .
5. Let $Y \subset \mathbb{P}^5$ be the 2-uple embedding $\rho_2 : \mathbb{P}^2 \rightarrow \mathbb{P}^5$. Describe the homogeneous ideal of Y .