HU Berlin Sommersemester 2015

Prof. Dr. Gavril Farkas

Abgabetermin: 04.05.2015 vor der Vorlesung

Bitte beachten: Jede Aufgabe auf einem neuen Blatt abgeben. Jedes Blatt mit Namen, Matrikelnummer und Übungsgruppe versehen.

Aufgabe 1

(a) (10 Punkte) Bestimmen Sie die Eigenwerte und die zugehörigen geometrischen und algebraischen Vielfachheiten der Matrix

$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 \\ 2 & 1 & 2 & 1 \end{pmatrix}.$$

(b) (10 Punkte) Diagonalisieren Sie die folgenden Matrizen (falls möglich)

$$\begin{pmatrix} -5 & 0 & 7 \\ 6 & 2 & -6 \\ -4 & 0 & 6 \end{pmatrix}, \begin{pmatrix} -3 & 0 & 0 \\ 2a & b & a \\ 10 & 0 & 2 \end{pmatrix}, a, b \in \mathbb{R}.$$

Aufgabe 2

(a) (10 Punkte) Kann \mathbb{C}^3 als direkte Summe der folgenden Unterveräume geschrieben werden?

(i)
$$U_1 = \operatorname{Span}\langle \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\4\\0 \end{pmatrix} \rangle, \ U_2 = \operatorname{Span}\langle \begin{pmatrix} 3\\0\\0 \end{pmatrix} \rangle.$$

(ii)
$$U_1 = \operatorname{Span}\langle \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix} \rangle$$
, $U_2 = \operatorname{Span}\langle \begin{pmatrix} a \\ 2 \\ 0 \end{pmatrix} \rangle$, $U_3 = \operatorname{Span}\langle \begin{pmatrix} 0 \\ 0 \\ a \end{pmatrix} \rangle$, $a \in \mathbb{R}$. (Beachten Sie,

dass das Ergebnis von der Wahl von a abhängig sein kann.)

- (b) (10 Punkte) Für $n \in \mathbb{N}$ mit $n \geq 2$ werde eine reelle $n \times n$ -Matrix A betrachtet, und sei A^T die Transponierte zu A. Beweisen Sie oder widerlegen Sie:
 - (i) Ist $\lambda \in \mathbb{R}$ ein Eigenwert von A, so auch von A^T .
 - (ii) Ist $v \in \mathbb{R}^n$ ein Eigenvektor von A, so auch von A^T .
 - (iii) Ist A diagonalisierbar, so auch A^T . (Hinweis: $(AB)^T = B^T A^T$ und $(A^{-1})^T = (A^T)^{-1}$).