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Aufgabe I (15 Punkte)

(a) Sei (A, V ) ein reeller affiner Raum und λ ∈ R \ {±1}. Falls A,B ∈ A Punkte sind,
betrachtet man die Punkte in A
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2D, beweisen Sie, dass
−→
EA = λ2 ·

−−→
EB.

(b) Seien A,B,C ∈ A und M,N,P ∈ A Punkte, so dass
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wobei λ ∈ R. Zeigen Sie, dass
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Aufgabe II (15 Punkte)

Sei (A, V ) ein affiner Raum und V ′ ⊂ V . Auf A definiert man die Relation:

P ∼ Q ⇔
−−→
PQ ∈ V ′.

(a) Zeigen Sie, dass ∼ eine Äquivalenzrelation ist.

(b) Zeigen Sie, dass die Faktormenge A/ ∼, mit zugehörigen Vektorraum V/V ′, die Struktur
eienes affinen Raumes besitzt.

Aufgabe III (10 Punkte) Zeigen Sie, dass die folgenden quadratische Formen auf R3

h1(x, y, z) = 4xy, h2(x, y, z) = y2 + z2 + 2xy + 2xz + 2yz

äquivalent sind. Bestimmen Sie die Signatur von h1 und h2.


