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Aufgabe I (15 Punkte)

(a) Sei (A, V) ein reeller affiner Raum und A € R\ {£1}. Falls A,B € A Punkte sind,
betrachtet man die Punkte in A
1 A 1 A

= A B D= A B.
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Wenn EF = %C’ + %D, beweisen Sie, dass ﬂ =\ Eﬁ
(b) Seien A, B,C € Aund M, N, P € A Punkte, so dass
AP—=X-PB, BM=X-MC und CN = X-NA

wobei A € R. Zeigen Sie, dass
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Aufgabe IT (15 Punkte)
Sei (A, V) ein affiner Raum und V' C V. Auf A definiert man die Relation:

P~Q o POEV.
(a) Zeigen Sie, dass ~ eine Aquivalenzrelation ist.

(b) Zeigen Sie, dass die Faktormenge A/ ~, mit zugehorigen Vektorraum V/V’, die Struktur
eienes affinen Raumes besitzt.

Aufgabe III (10 Punkte) Zeigen Sie, dass die folgenden quadratische Formen auf R3
hi(z,y,2) = 4ay, ho(w,y,2) = y° + 2% + 2zy + 202 + 2y2

dquivalent sind. Bestimmen Sie die Signatur von hy und he.



