LINEAR SERIES ON GENERAL CURVES WITH PRESCRIBED INCIDENCE CONDITIONS

GAVRIL FARKAS AND CARL LIAN

Abstract. Using degeneration and Schubert calculus, we consider the problem of computing the number of linear series of given degree d and dimension r on a general curve of genus g satisfying prescribed incidence conditions at n points. We determine these numbers completely for linear series of arbitrary dimension when d is sufficiently large, and for d when $r = 1$, and in the case $n = r + 2$. Our formulas generalize and give new proofs of recent results of Tevelev and of Cela-Pandharipande-Schmitt.

1. Introduction

Having fixed positive integers r and s and setting $g = rs + s$ and $d = rs + r$, in a celebrated paper [Cas89], Castelnuovo computed the number of linear series of type g_d on a general curve C of genus g. By degeneration to a g-nodal rational curve, he argued that this number equals the degree of the Grassmannian $Gr(r + 1, d + 1)$ in its Plücker embedding, that is,

$$g! \cdot 1! \cdot 2! \cdots \cdot r! \cdot s! \cdot (s + 1)! \cdots (s + r)!.$$

A rigorous modern presentation of Castelnuovo’s argument\(^1\) was first carried out by Griffiths and Harris [GH80]. More generally, the theory of limit linear series developed by Eisenbud and Harris [EH83, EH86] allows one to compute the number of linear series on a general curve with ramification conditions imposed at fixed marked points, see also [Oss03] for a more recent treatment.

Motivated by two very recent papers of Tevelev [Tev20] and Cela-Pandharipande-Schmitt [CPS21] we consider a variant of this problem, where we impose incidence conditions on the corresponding maps to projective spaces. Let $[C, x_1, \ldots, x_n] \in \mathcal{M}_{g,n}$ be a general n-pointed complex curve of genus g. We denote by $G_d^r(C)$ the variety of linear systems $\ell = (L, V)$ of type g_d^r on C. A general $\ell \in G_d^r(C)$ corresponds to a regular map $\phi_\ell: C \to \mathbb{P}^r$. Evaluation at the points x_1, \ldots, x_n induces a rational map

$$ev_{(x_1, \ldots, x_n)}: G_d^r(C) \dashrightarrow (\mathbb{P}^r)^n // PGL(r + 1) =: P^n_r,$$

to the moduli spaces of n points in \mathbb{P}^r. We study the degree $L_{g,r,d}$ of the map $ev_{(x_1, \ldots, x_n)}$ in the case when this map is generically finite and both spaces have non-negative dimension. Since $G_d^r(C)$ is a smooth variety of dimension $\rho(g, r, d) = g - (r + 1)(g - d + r)$, whereas $\dim(P^n_r) = rn - r^2 - 2r$ as long as $n \geq r + 2$, one expects $ev_{(x_1, \ldots, x_n)}$ to be generically finite precisely when

$$n = \frac{dr + d + r - rg}{r}.$$

If $y_1, \ldots, y_n \in \mathbb{P}^r$ are general points, $L_{g,r,d}$ counts the number of morphisms $f: C \to \mathbb{P}^r$ of degree d satisfying $f(x_i) = y_i$ for $i = 1, \ldots, n$. Since the points y_i are consider up to projective equivalence, these incidence conditions are intrinsic to ℓ. For large d, it turns out there is a very simple formula for this degree:

\(^1\)The fact that Castelnuovo provided a plausibility argument rather than a complete proof has been immediately recognized. We quote from the Zentralblatt MATH review [Lo] of [Cas89]: Das Resultat, welches Herr Castelnuovo bekommen hat, gibt mit grosser Wahrscheinlichkeit den wahren Wert, weil sein Forderungssatz … sehr leicht angenommen werden kann; doch können wir unseren Wunsch nicht unterdrücken, die obige Aufgabe auf einspruchsfreie Weise aufgelöst zu sehen.
Theorem 1.1. Suppose \(d \geq rg + r \), or equivalently \(n \geq d + 2 \). Then
\[
L_{g,r,d} = (r + 1)^9.
\]

We remark that the hypothesis \(n \geq d + 2 \) is automatically satisfied whenever \(g \leq 1 \). Indeed, if instead \(n \leq d + 1 \) and \(g \leq 1 \), then \(d + 1 = n = d + \frac{9}{2} - g \geq d + \frac{5}{2} \), hence \(n \leq d + 1 \leq r + 1 \), a contradiction.

When \(r = 1 \), the special case \(d = g + 1 \) was studied under the guise of scattering amplitudes by Tevelev [Tev20], who found the strikingly simple formula \(L_{g,1,g+1} = 2^g \). This raised the possibility, confirmed by Theorem 1.1, that in the range when \(d \) is relatively large, the degree \(L_{g,r,d} \) has a simple expression. Using Hurwitz space techniques, Cela-Pandharipande-Schmitt [CPS21] obtained general formulas for \(L_{g,1,d} \), which they called Tevelev degrees; in particular, when \(d \geq g + 1 \), they found again \(L_{g,1,d} = 2^g \).

When either \(r = 1 \) or \(n = r + 2 \), or under the hypotheses of Theorem 1.1, we obtain a more general formula in terms of Schubert calculus. For a positive integer \(a \), we recall the notation \(\sigma_a \) for the class of the special Schubert cycle of codimension \(a \) consisting of those \((r + 1) \)-planes \(V \in \Gr(r + 1, d + 1) \) meeting a fixed subspace \(W \subseteq \mathbb{C}^{d+1} \) of dimension \(d - a \). We also recall that \(\sigma_{1^r} \) denotes the class of the special Schubert cycle of codimension \(r \) consisting of those \((r + 1) \)-planes \(V \in \Gr(r + 1, d + 1) \) whose intersection with a fixed codimension 2 linear subspace \(U \subseteq \mathbb{C}^{d+1} \) has dimension at least \(r \). Our main result is as follows:

Theorem 1.2. Suppose that either:

- \(d \geq rg + r \), (i.e., the same hypothesis as in Theorem 1.1),
- \(d = r + \frac{rg}{r+1} \) (in which case \(n = r + 2 \)), or
- \(r = 1 \).

In each of these cases,
\[
L_{g,r,d} = \int_{\Gr(r+1,d+1)} \sigma_{1^r}^g \cdot \left[\sum_{\alpha_0 + \ldots + \alpha_r = (r+1)(d-r) - rg} \left(\prod_{i=0}^r \sigma_{\alpha_i} \right) \right].
\]

In particular, comparing Theorem 1.1 with Theorem 1.2 when \(d \geq rg + r \) yields a non-trivial combinatorial identity that may be of independent interest; see §4 for a discussion.

In the second case, we have \((r + 1)(d - r) = gr\), so the second term is interpreted to be 1, and Theorem 1.2 recovers Castelnuovo’s formula. On the other hand, when \(gr > (r + 1)(d - r) \) (equivalently, \(n < r + 2 \)), the summation is interpreted to be zero, so that \(L_{g,r,d} = 0 \). Indeed, this corresponds to the case \(\dim C_d^r(C) = \dim(P^{n_r}_r) < 0 \), in which we find no such morphisms \(f : C \to \mathbb{P}^r \).

For \(r = 1 \), Theorem 1.2, via Giambelli’s formula, provides the following explicit formula for \(L_{g,1,d} \), which agrees with the results of [CPS21, Theorem 6], see Proposition 3.6 for details:
\[
L_{g,1,d} = \sum_{\alpha_0 + \alpha_1 = 2d - 2 - g} \int_{\Gr(2,d+1)} \sigma_1^g \cdot \sigma_{\alpha_0} \cdot \sigma_{\alpha_1} = \left(\frac{2d-g-2}{2} \right) \left(\frac{(2d-g-2i-1)^2}{g+1} \right) \left(\frac{g+1}{d-i} \right).
\]

To prove Theorems 1.1 and 1.2, we proceed via a standard degeneration to a flag curve consisting of a rational spine and \(g + 1 \) tails, one of which being rational and on which all the marked points specialize, the remaining \(g \) tails being elliptic curves. We reduce to a concrete problem in genus zero in §2, and then handle this problem via Schubert calculus in §3; care needs to be taken to avoid degenerate solutions, particularly excess contributions from constant maps \(f : \mathbb{P}^1 \to \mathbb{P}^r \) obtained from linear series with base points at some of the points \(x_i \). Because such excess contributions in our setup persist when the hypotheses of Theorem 1.2 are not satisfied (see Remark 3.5), the general computation of \(L_{g,r,d} \) remains open.

With minor modifications, our method in the case \(r = 1 \) also allows us to re-compute the more general counts of Cela-Pandharipande-Schmitt [CPS21], where some points of the source curve are constrained to have the same image. If \(r = 1 \) and \(1 \leq k \leq d, n \), let \(L'_{g,d,k} \) be the number of morphisms \(f : C \to \mathbb{P}^1 \).
as before, but where we take \(y_1 = y_2 = \cdots = y_k \), and the \(y_i \) otherwise general. (Note that our indexing differs from that of [CPS21], where \(d \) is written as \(g + 1 + \ell \) for some \(\ell \in \mathbb{Z} \) and \(k \) is called \(r \), whereas we have reserved the variable \(r \) to denote the dimension of the target projective space.) In §5.1, we find:

Theorem 1.3.

\[
L'_{g,d,k} = \int_{\text{Gr}(2,d+1)} \sigma^g_1 \sigma_{k-1} - \int_{\text{Gr}(2,d)} \sigma^g_1 \sigma_{k-2} \sum_{i+j=2(d-1)-g-(k-1)} \sigma_i \sigma_j - \int_{\text{Gr}(2,d)} \sigma^g_1 \sigma_{k-2} \sum_{i+j=2(d-1)-g-(k-2)} \sigma_i \sigma_j
\]

The second term is taken to be zero when \(k = 1 \). Note that \(L'_{g,d,1} = L_{g,1,d} \), so Theorem 1.3 agrees with Theorem 1.2 in the case \(r = 1 \). From here, the formulas of [CPS21, Theorem 6] can be recovered by recursion, see Corollary 5.1. Finally, we remark that the degeneration technique also allows one to impose ramification conditions at additional fixed points \(p_1, \ldots, p_m \in C \), see §5.2.

Acknowledgments: We are grateful to Rahul Pandharipande for having brought this problem to our attention and for interesting discussions related to this circle of ideas.

Farkas has been supported by the DFG Grant *Syzygien und Moduli* and by the ERC Advanced Grant SYZYGY. This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 834172). Lian was supported by an NSF Postdoctoral Fellowship, grant DMS-2001976.

2. Reduction to genus zero

In this section, we reduce the enumerative problem to genus zero via a standard limit linear series degeneration, see for example [Oss03, L19]. We begin by recalling some notation, while assuming throughout some familiarity with basics of the theory of limit linear series [EH86].

We recall the usual notation for Schubert cycles in the Grassmannian \(\text{Gr}(r+1, d+1) := \text{Gr}(r+1, V) \), where \(V \) is an \((r+1) \)-dimensional vector space. For a nonincreasing sequence \(\mu := (\mu_0 \geq \mu_1 \geq \cdots \geq \mu_r) \) and a flag \(F : V = V_{r+1} \supset V_r \supset \cdots \supset V_1 \supset V_0 = 0 \), we introduce the Schubert cycle

\[
\Sigma_\mu = \Sigma_\mu(F) := \{ \Lambda \in \text{Gr}(r+1, d+1) : \dim (\Lambda \cap V_{d-r+1+i-\mu_i}) \geq i + 1, \text{ for } i = 0, \ldots, r \}.
\]

Note that \(\text{codim}(\sigma_\mu, \text{Gr}(r+1, d+1)) = |\mu| = \mu_0 + \cdots + \mu_r \). If \(\mu = (1, \ldots, 1, 0) := 1^r \), in projective terms \(\Sigma_{1^r} \) consists of \(r \)-dimensional subspaces \(L = \mathbb{P}(\Lambda) \subset \mathbb{P}(V) \cong \mathbb{P}^d \) intersecting a fixed codimension 2 subspace along an \(r \)-dimensional locus. We set \(\sigma_\mu := [\Sigma_\mu] \in CH^{1r}(\text{Gr}(r+1, g+1)) \).

For a smooth curve \(C \) and a linear series \(\ell = (L, V) \in G^r_d(C) \), we denote by

\[
\alpha^\ell(p) := (0 \leq \alpha_0^\ell(p) \leq \alpha_1^\ell(p) \leq \cdots \leq \alpha_r^\ell(p)) \leq d - r
\]

the *ramification sequence* at a point \(p \in C \). Keeping with the tradition of [GH80] or [EH86], we write ramification indices of linear series nondecreasingly, whereas indices indexing Schubert cycles are written nonincreasingly. We formalize this practice as follows:

Definition 2.1. For any partition \(\mu = (\mu_0 \geq \mu_1 \geq \cdots \geq \mu_r) \), denote by \(\overline{\mu} \) the tuple of components of \(\mu \) in reverse (increasing) order, that is, \(\overline{\mu} = (\mu_r, \ldots, \mu_0) \).

We introduce the proper stack of limit linear series of type \(g^r_d \)

\[
\sigma : \widetilde{G}^r_d \to M^\text{ct}_g
\]

over the moduli space \(M^\text{ct}_g \) of curves of compact type. For a curve \(C \) of compact type, we denote by \(\overline{G}^r_d(C) \) the variety of limit linear series on \(C \). For pairwise distinct smooth points \(p_1, \ldots, p_n \in C_{\text{reg}} \) and Schubert indices \(\alpha^i = (0 \leq \alpha_0^i \leq \cdots \leq \alpha_r^i \leq d - r) \), where \(i = 1, \ldots, n \), we set

\[
\overline{G}^r_d(C, (\alpha^1, \ldots, (p_n, \alpha^n)) := \{ \ell \in \overline{G}^r_d : \alpha^\ell(p_i) \geq \alpha^i, \text{ for } i = 1, \ldots, n \},
\]
viewed as a generalized degeneracy locus of expected dimension

\[
\rho(g, r, d, \alpha^1, \ldots, \alpha^n) := g - (r + 1)(g - d + r) - \sum_{i=1}^{n} \sum_{j=0}^{r} \alpha_j^i.
\]

We now consider a degeneration to the following flag curve of genus \(g\), already considered in [EH86]. Let \([C_0, x_1, \ldots, x_n]\) be the \(n\)-pointed genus \(g\) curve of compact type consisting of a rational spine \(R_{sp}\) to which general elliptic tails \(E_1, \ldots, E_g\) are attached at general points \(p_1, \ldots, p_g \in R_{sp}\) respectively, and a further rational component \(R_0\), also attached at a general point \(x_0\) of \(R_{sp}\). The marked points \(x_1, \ldots, x_n\) specialize to general points of \(R_0\).

Let \(C \rightarrow (B, b_0)\) be the versal deformation space of \([C_0, x_1, \ldots, x_n]\) and denote by \(\tau_1, \ldots, \tau_n: B \rightarrow C\) the sections corresponding to the \(n\) marked points. We may assume that each point of \(B\) parametrizes an \(n\)-pointed curve of genus \(g\) of compact type. We further consider the induced moduli map \(B \rightarrow \mathcal{M}_g^{ct}\) forgetting the markings and let

\[
\sigma_B: \tilde{G}_d^r/B := \tilde{G}_d^r \times \mathcal{M}_g^{ct} B \rightarrow B
\]

be the corresponding family of limit linear series and consider the evaluation map

\[
ev: \tilde{G}_d^r/B \rightarrow B \times P^n_r, \quad (C_b, \ell) \mapsto \left(b, \left(\phi_{\tau_1}(b), \ldots, \phi_{\tau_n}(b) \right) \right),
\]

where \(\phi_{\ell}\) denotes the rational map to \(\mathbb{P}^r\) corresponding to the aspect of the limit linear series \(\ell\) on the component of \(C_b\) on which all the marked points \(\tau_1(b), \ldots, \tau_n(b)\) lie.

Using [EH87, Theorem 1.1] it follows that \(\tilde{G}_d^r/B\) is smooth of dimension \(3g - 3 + n + \rho(g, r, d)\) over \(B\) and every limit linear series on \(C_0\) smooths to a linear series on a neighboring smooth curve. It follows that \(\deg(ev) = L_{d,g,r}\). We will determine this degree by looking at the scheme-theoretic fibre fibre \(ev^{-1}(b_0, y_1, \ldots, y_n)\), where \(y_1, \ldots, y_n\) are general points in \(\mathbb{P}^r\) considered up to projective equivalence.

To that end, we wish to count limit linear series \(\ell\) on \(C_0\) of degree \(d\) and rank \(r\), subject to the condition that, after twisting down base points on the \(R_0\)-aspect, the points \(x_1, \ldots, x_n\) have prescribed images in \(\mathbb{P}^r\). For a limit linear series \(\ell\) on \(C_0\), we denote by \(\ell_{R_0}, \ell_{R_{sp}}\) and \(\ell_{E_i}\) its corresponding aspects. By the additivity of the Brill-Noether number for \(\ell\) encoded in the very definition of a limit linear series, we have the following inequality

\[
\rho(g, r, d) \geq \rho(\ell_{R_0}, \alpha^{\ell_{R_0}}(x_0)) + \rho(\ell_{R_{sp}}, \alpha^{\ell_{R_{sp}}}(x_0), \alpha^{\ell_{R_{sp}}}(p_1), \ldots, \alpha^{\ell_{R_{sp}}}(p_g)) + \sum_{i=1}^{g} \rho(\ell_{E_i}, \alpha^{\ell_{E_i}}(p_i)).
\]

Since over the curve \([C_0, x_1, \ldots, x_n]\) the map \(ev\) evaluates the \(R_0\)-aspect of each limit linear series, it follows that we must only consider the components of \(G_d^r(C_0)\) in which \(\ell_{R_0}\) varies in a family of dimension \(\rho(g, r, d)\). This happens when the remaining aspects of \(\ell\) satisfy \(\rho(\ell_{E_i}, \alpha^{\ell_{E_i}}(p_i)) = 0\) for \(i = 1, \ldots, g\) and \(\rho(\ell_{R_{sp}}, \alpha^{\ell_{R_{sp}}} (x_0), \alpha^{\ell_{R_{sp}}}(p_1), \ldots, \alpha^{\ell_{R_{sp}}}(p_g)) = 0\). This implies that on each elliptic tail \(E_i\), the ramification sequence at the node \(p_i\) must be equal to \((d - r - 1, \ldots, d - r - 1, d - r)\), yielding a unique choice of the \(E_i\)-aspect, precisely \(\ell_{E_i} = (d - r - 1)p_i + [(r+1)p_i]\), for \(i = 1, \ldots, g\). By compatibility of the aspects of limit linear series, we find that \(\alpha^{\ell_{R_{sp}}}(p_i) = (0, 1, \ldots, 1)\) for \(i = 1, \ldots, g\), that is, \(\ell_{R_{sp}}\) has a simple cusp at each of the points \(p_1, \ldots, p_g\).

From here, on \(R_{sp}\), the ramification sequence of \(\ell\) at the point \(x_0\)

\[
\left(\alpha^{\ell_{R_{sp}}}(x_0), \ldots, \alpha^{\ell_{R_{sp}}}(x_0) \right)
\]

must satisfy the equality

\[
\sum_{j=0}^{r} \alpha_j^{\ell_{R_{sp}}}(x_0) = (r + 1)(d - r) - rg,
\]
whereas the R_0-aspect of ℓ satisfies
\begin{equation}
\sum_{j=0}^{\ell \mathcal{R}_{[p]}(x_0)} = rg.
\end{equation}

Let $\mu = (\mu_0 \geq \cdots \geq \mu_r) := \ell \mathcal{R}_{[p]}(x_0)$, that is, we write the partition $(\alpha_{[\ell \mathcal{R}_{[p]}(x_0)]}, \ldots, \alpha_{[\ell \mathcal{R}_{[p]}(x_0)]})$, where the ramification indices are given in descending order, and let λ be the complement of μ in $(d-r)^{r+1}$, that is, $\lambda_j = d - r - \mu_j$, for $j = 0, 1, \ldots, r$. Summarizing the discussion so far, for each limit linear series ℓ on C_0 contributing towards the degree of the map ev one has
\begin{equation}
\alpha_{[\ell \mathcal{R}_{[p]}(x_0)]} = \lambda
\end{equation}

The number of possible aspects $\ell_{[p]}$ on $R_{[p]}$ with ramification sequence \mathbf{p} at x_0 and cusps at p_1, \ldots, p_g is given by
\begin{equation}
\beta_\lambda := \int_{\text{Gr}(r+1,d+1)} \sigma_\lambda^g \cdot \sigma_\mu.
\end{equation}

The transversality of the intersection follows from [EH83], see also [MTV09], that is, for a general choice of the points p_1, \ldots, p_g and x_0, one has precisely β_λ distinct linear series on $R_{[p]}$ with these property. Since $\sigma_\lambda \cdot \sigma_\mu = 0$, for any Schubert index $\lambda' \neq \lambda$ with $|\lambda'| = rg$, whereas $\sigma_\lambda \cdot \sigma_\mu = 1$, we can write
\begin{equation}
\sigma_\lambda^g = \sum_{|\lambda'| = rg} \beta_\lambda \cdot \sigma_\mu \in CH^g(\text{Gr}(r+1,d+1)).
\end{equation}

Definition 2.2. Given a partition $\lambda = (\lambda_0 \geq \cdots \geq \lambda_r)$ with $|\lambda| = rg$ and general points $y_1, \ldots, y_n \in \mathbb{P}^r$, we define $L_{g,r,d,\lambda}$ to be be the number of maps $f: \mathbb{P}^1 \to \mathbb{P}^r$ of degree $d - \lambda_r$ sending x_i to y_i for $i = 1, \ldots, n$ and with ramification sequence given by λ at x_0.

Such maps are obtained by twisting the R_0-aspect of each limit linear series ℓ on C_0 by the order λ_r of its base point x_0. Our degeneration shows:

Proposition 2.3. For a general n-pointed curve $[C, x_1, \ldots, x_n]$ of genus g, the degree of the map $ev_{(x_1, \ldots, x_n)}$ is given by the formula
\begin{equation}
L_{g,r,d} = \sum_{|\lambda| = rg} \beta_\lambda L_{g,r,d,\lambda}.
\end{equation}

Proof. We have already explained that $L_{g,r,d}$ is the degree of the map $ev: \overline{G}_{d,0}^e/B \to B \times P_r^n$. Having fixed general points $y_1, \ldots, y_n \in \mathbb{P}^r$, the fibre over $(b_0,y_1,\ldots,y_n) \in B \times P_r^n$ of the map ev is then scheme-theoretically isomorphic to the variety of limit linear series $\ell \in \overline{G}_{d}^e(C_0)$, whose R_0-aspect maps the marked points x_i to y_i for $i = 1, \ldots, n$. From the discussion above it follows that $\overline{G}_{d}^e(C_0)$ contains β_λ components all isomorphic to the variety $G_{d}^e(R_0,(x_0,\lambda))$; the remaining components of $\overline{G}_{d}^e(C_0)$ do not contribute to the degree of ev. Finally, observe that $L_{g,r,d,\lambda}$ is precisely the contribution to the degree of the map ev corresponding to the component $G_{d}^e(R_0,(x_0,\lambda))$. \hfill \square

3. Counting linear series with assigned incidences on \mathbb{P}^1

Having reduced both Theorem 1.1 and 1.2 to question on rational curves, we use Schubert calculus to complete their proofs.
3.1. Proof of Theorem 1.1. For a complex polynomial $u = a_0 + \cdots + a_d t^d$ we denote by $c(u)$ the column vector of its coefficients. Let $\mathbb{P}^{(r+1)(d+1)-1}$ be the projective space parametrizing $(r+1)$-tuples (f_0, \ldots, f_r) of polynomials of degree d in one variable viewed as sections of $\mathcal{O}_{\mathbb{P}^1}(d)$, up to simultaneous scaling, and not all zero. When not all polynomials f_i are zero and have no common zeroes, they define a map $f = [f_0, \ldots, f_r]$ of degree d from \mathbb{P}^1 to \mathbb{P}^r.

We introduce the map

$$\pi: \mathbb{P}^{(r+1)(d+1)-1} \rightarrow \text{Gr}(r+1, d+1)$$

remembering the linear series spanned by f_0, \ldots, f_r, whenever they are linearly independent. The indeterminacy locus of this map is irreducible of codimension $d-r+1$, for an $(r+1)$-tuple of polynomials (f_0, \ldots, f_r) lies in the indeterminacy locus of π if an only if the $(r+1) \times (d+1)$-matrix of coefficients $(c(f_0), \ldots, c(f_r))$ has rank at most r.

For a Schubert variety $\Sigma_{\lambda} = \Sigma_{\lambda}(F) \subseteq \text{Gr}(r+1, d+1)$ of codimension at most rg in $\text{Gr}(r+1, d+1)$, let $\Sigma_{\lambda} := \langle \pi_* \lambda \rangle$ be the closure of its pullback under $\mathbb{P}^{(r+1)(d+1)-1}$. Because the codimension of Σ_{λ} is lower that that of the indeterminacy locus of π (by our assumption $d-r+1 > rg$), the cycle Σ_{λ}° gives a well-defined class $\tilde{\sigma}_{\lambda} \in C^r(\mathbb{P}^{(r+1)(d+1)-1})$, and using (7) we have the formula

$$\tilde{\sigma}_{\lambda}^0 = \sum_{|\lambda| = rg} \beta_\lambda \tilde{\sigma}_\lambda.$$

Recall that we have fixed n general points $y_1, \ldots, y_n \in \mathbb{P}^r$. The condition on maps $f: \mathbb{P}^1 \rightarrow \mathbb{P}^r$ that $f(x_i) = y_i$ for $i = 1, \ldots, n$ impose nr linear conditions on the matrix of coefficients $(c(f_0), \ldots, c(f_r))$. Observe that this condition is automatically satisfied for those i for which x_i is a base point of f. The points y_1, \ldots, y_n having been chosen to be general, these linear conditions are independent. Since $(r+1)(d+1) - 1 - nr = rg$, the conditions $f(x_i) = y_i$ give rise to a linear subspace

$$L \cong \mathbb{P}^{rg} \subseteq \mathbb{P}^{(r+1)(d+1)-1}.$$

Now, let $\Sigma_{\lambda}(x_0) = G^r_d(\mathbb{P}^1, (x_0, \lambda))$ be the Schubert variety of $\text{Gr}(r+1, d+1)$ parametrizing linear series on \mathbb{P}^1 with ramification sequence at least λ at x_0. We wish to intersect its pullback $\Sigma_{\lambda}(x_0)$ with L on $\mathbb{P}^{(r+1)(d+1)-1}$. We call a point $[f_0, \ldots, f_r]$ in this intersection generic if $\langle f_0, \ldots, f_r \rangle$ is a linear series of rank r with ramification sequence exactly λ, and which defines a (non-degenerate) morphism $f: \mathbb{P}^1 \rightarrow \mathbb{P}^r$ after twisting down the base points at x_0 with $f(x_i) = y_i$ (in particular, $\langle f_0, \ldots, f_r \rangle$ has no base points away from x_0).

Remark 3.1. We have already seen above that the condition $d \geq rg + r$ ensures that the classes $\tilde{\sigma}_{\lambda}^0$ and $\tilde{\sigma}_\lambda$ live in codimension strictly smaller than that of the indeterminacy locus of π. However, as we will see in Lemma 3.2, the same condition $d \geq rg + r$ also ensures that L contains no points corresponding to degenerate maps $f: \mathbb{P}^1 \rightarrow \mathbb{P}^r$. In fact, this is already evident in the case of constant maps; indeed, suppose instead that $d \geq n - 1$. Then, we may take the non-zero polynomials f_0, \ldots, f_r to vanish at x_1, \ldots, x_{n-1}, and after twisting away all base-points, the resulting map $f: \mathbb{P}^1 \rightarrow \mathbb{P}^r$ to be the constant map with image y_n. Then $f = [f_0, \ldots, f_r]$ lies on the one hand in L, and on the other hand in the indeterminacy locus of π.

Lemma 3.2. The intersection points of $\Sigma_{\lambda}(x_0)$ with L are generic in the previous sense. In particular, the intersection occurs away from the indeterminacy locus of π.

Proof. First, consider an intersection point $f = [f_0, \ldots, f_r]$ away from the indeterminacy locus of π. If there are base points away from x_0, then twisting them away decreases the degree by 1, which decreases the number of moduli by $r+1$. On the other hand, we lose at most r linear conditions if this base-point is among x_1, \ldots, x_n, and none otherwise. Thus, a parameter count shows that, as the x_i, y_i are general, no such linear series can exist. Similarly, a parameter count shows that f cannot have ramification sequence strictly more than λ at x_0.
Suppose \((f, \Lambda) \in \pi_1^*(L) \cdot \pi_2^*\left(\Sigma_\Lambda(x_0)\right)\) is such that \(\dim(f_0, \ldots, f_r) \leq r\). We show again by counting parameters that no such \(f\) can exist. By twisting away base points at \(x_0\) (which decreases the number of moduli and the number of conditions by the same amount), we may assume that \(f\) is base point free at \(x_0\). We may also assume that \(f\) has no base points away from \(x_1, \ldots, x_n\). Suppose now that \(f\) has \(k\) (simple) base points among these \(x_i\), we label them as \(x_{n-k+1}, \ldots, x_n\); we twist down our linear series to have degree \(d-k\), and lose the corresponding \(k\) linear conditions. Note that in this case the ramification condition at \(x_0\) can no longer be imposed in terms of \(f_0, \ldots, f_r\) alone, since by assumption, the resulting map \(f: \mathbb{P}^1 \to \mathbb{P}^r\) is degenerate, that is, the corresponding linear series has dimension \(r' < r\). Note, however, that if the remaining \(y_i\) do not themselves live in a linear subspace of \(\mathbb{P}^r\) of dimension \(r'\), then this is impossible; we therefore need \(n-k \leq r' + 1\).

Then, it must be true that if \(x_1, \ldots, x_{n-k}\) are general points of \(\mathbb{P}^1\), there exists a map \(f: \mathbb{P}^1 \to \mathbb{P}^{r'}\) of degree \(d - k\) with \(f(x_i) = y_i\) for \(i = 1, \ldots, n-k\). Therefore, we have

\[
(d - k + 1)(r' + 1) - 1 \geq r'(n - k).
\]

Rearranging yields

\[
k \leq d - r'(n - d - 1).
\]

On the other hand, because \(n-k \leq r' + 1\), we find

\[
(d - n + 1) \geq r'(n - d - 2).
\]

However, by assumption, we have \(n \geq d + 2\) and \(r' \geq 0\), so we have reached a contradiction. \(\square\)

Lemma 3.3. For a general choice of the points \(x_1, \ldots, x_n \in \mathbb{P}^1\) and \(y_1, \ldots, y_n \in \mathbb{P}^{r'}\), the intersection of \(\Sigma_\Lambda(x_0)\) and \(L\) is transverse.

Proof. Let \(M_{n,d,r}\) be the open substack of the moduli stack of stable maps \(\mathcal{M}_{0,n+1}((\mathbb{P}^r,d))\), corresponding to non-degenerate degree \(d\) morphisms \(f: \mathbb{P}^1 \to \mathbb{P}^r\) with \(n+1\) distinct marked points \(x_0, \ldots, x_n\) on the source. One may construct \(M_{n,d,r}\) as an open subset of a \((\mathbb{P}^1)^{n+1}\)-bundle over \(\mathbb{P}^{(r+1)(d+1)-1}\). We have a smooth, regular map \(\chi: M_{n,d,r} \to Gr(r+1, d+1)\), from which we can pull back the smooth, open Schubert cycle of linear series with ramification exactly \(\chi\) at \(x_0\) to obtain the smooth subscheme \(Y_{n,d,r}\) parametrizing the morphisms we wish to count. Finally, the projection \(\phi: M_{n,d,r} \to (\mathbb{P}^1)^{n+1} \times (\mathbb{P}^{r'})^n\) remembering the marked points and their images on the source is generically unramified of finite degree.

By construction, any non-zero tangent vector to the intersection \(\Sigma_\Lambda(x_0)\) and \(L\) in the generic locus yields a non-zero relative tangent vector of \(\phi\). Thus, when the points \(x_i, y_i\) are general, there are no such tangent vectors, and the intersection is transverse. \(\square\)

We are now in a position to compete the proof of Theorem 1.1.

Proof of Theorem 1.1. By the above discussion summarized in Proposition 2.3, it suffices to intersect \(nr\) linear conditions with \(\sigma_{1r}\) on \(\mathbb{P}^{(r+1)(d+1)-1}\) and compute the degree, that is

\[
L_{g,r,d} = \sum_{|\lambda|=rg} \beta_\lambda L \cdot \sigma_{1r} = L \cdot \sigma_{1r} = \deg(\sigma_{1r}) = \deg(\sigma_{1r}),
\]

where the last two degree are computed on \(Gr(r+1, d+1)\) and on \(\mathbb{P}^{(r+1)(d+1)-1}\) respectively.

Theorem 1.1 then follows from the fact that the degree of \(\sigma_{1r}\) is \(r+1\). To see this, note that on \(Gr(r+1, d+1)\), the Schubert cycle \(\Sigma_{1r}\) is the locus of \((r+1)\)-planes intersecting a fixed codimension 2 subspace \(P \subseteq H^0(\mathbb{P}^1, O(d))\) in a subspace of dimension at least \(r\). Identifying \(\mathbb{P}^{(r+1)(d+1)-1}\) with the space of \((r+1) \times (d+1)\) matrices, whose entries are taken up to simultaneous scaling, the pullback of \(\Sigma_{1r}\) may be identified with the determinantal locus of matrices such that the \((r+1) \times 2\) submatrix formed by the first two columns has rank 1. This, in turn, is the pullback under linear projection from \(\mathbb{P}^{(r+1)(d+1)-1}\) of the Segre embedding \(\mathbb{P}^1 \times \mathbb{P}^{r+1} \to \mathbb{P}^{2r+1}\). Denoting by \(h_1\) and \(h_2\) the pullbacks to \(\mathbb{P}^1 \times \mathbb{P}^{r+1}\) of the hyperplane classes of \(\mathbb{P}^1\) and \(\mathbb{P}^{r+1}\), observe that

\[
\deg(\mathbb{P}^1 \times \mathbb{P}^{r}) = (h_1 + h_2)^{r+1} = \binom{r+1}{1} h_1 h_2^r = r+1.
\]
This completes the proof. \hfill \Box

Remark 3.4. It is interesting to observe that on a smooth curve \(C \) of genus \(g \), a general stable vector bundle \(E \) of rank \(r+1 \) and degree \(d \) has precisely \((r+1)^g\) line subbundles of maximal degree \(d' \), where \(d-(r+1)d'=r(g-1) \), see [OT] or [Ox]. We do not know whether this calculation is related to Theorem 1.1, though a general connection would be quite interesting.

3.2. Proof of Theorem 1.2. We recast the calculation of the previous section in the following light: we consider the incidence correspondence on \(\mathbb{P}^{(r+1)(d+1)-1} \times \text{Gr}(r+1, d+1) \) of \((r+1)\)-tuples of degree \(d \) polynomials, spanning a \(r+1 \)-dimensional subspace of \(H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(d)) \), then pull back Schubert cycle conditions on the Grassmannian side and linear conditions on the projective space side. This incidence correspondence is defined by pulling back the diagonal under the map

\[
(\pi_1, \text{id}) : \mathbb{P}^{(r+1)(d+1)-1} \times \text{Gr}(r+1, d+1) \to \text{Gr}(r+1, d+1) \times \text{Gr}(r+1, d+1),
\]

and the condition \(d \geq rg+r \) is needed in order to prevent the indeterminacy locus from being too large. In this section, we obtain formulas for \(L_{g,r,d} \) in the cases \(r=1 \) and \(g \geq 1 \) by shrinking this base locus.

More precisely, for \(j=0, 1, \ldots, r \), let \(\rho_j : \mathbb{P}^{(r+1)(d+1)-1} \to \mathbb{P}^d \) be the linear projection remembering \(f_j \in H^0(\mathcal{O}_{\mathbb{P}^1}(d)) \), where we recall that \((f_0, \ldots, f_r)\) is the \((r+1)\)-tuple of polynomials whose coefficients are parametrized by \(\mathbb{P}^{(r+1)(d+1)-1} \). We now consider the following incidence correspondence:

\[
Z := \left\{ ([u], \Lambda) \in \mathbb{P}^d \times \text{Gr}(r+1, d+1) : u \in \Lambda \right\}
\]

\[
\begin{array}{c}
\pi_1 \\
\pi_2
\end{array}
\]

\[
\begin{array}{c}
\mathbb{P}^d \\
\text{Gr}(r+1, d+1)
\end{array}
\]

If \(Q \) denotes the rank \(d-r \) tautological quotient bundle on \(\text{Gr}(r+1, d+1) \), then \(Z \) can be realized as the degeneracy locus of the composition

\[
\pi_1^*(\mathcal{O}_{\mathbb{P}^d}(-1)) \to \mathcal{O}_{\mathbb{P}^d \times \text{Gr}(r+1, d+1)}^{d+1} \to \pi_2^*(Q),
\]

and thus has class

\[
\left\{ c(\pi_2^*Q) \cdot c(\pi_1^*\mathcal{O}_{\mathbb{P}^d}(1)) \right\}_{d-r} = \sum_{i+j=d-r} \pi_2^*(\sigma_i) \cdot \pi_1^*(H^j) \in CH^{d-r}(\mathbb{P}^d \times \text{Gr}(r+1, d+1)),
\]

where \(H \) is the hyperplane class on \(\mathbb{P}^d \) and where we have also used that \(c_j(Q) = \sigma_j \).

Because the codimension of the base locus of \(\rho_j \) is \(d > d-r \), the closure

\[
Z_j := (\rho_j \times \text{id}_{\text{Gr}(r+1, d+1)})^{-1}(Z)
\]

of the pullback of the correspondence \(Z \) has the same class, that is, \(\sum_{i+j=d-r} \pi_2^*(\sigma_i) \cdot \pi_1^*(H^j) \), where this time \(\pi_2 : \mathbb{P}^{(r+1)(d+1)-1} \times \text{Gr}(r+1, d+1) \to \mathbb{P}^{(r+1)(d+1)-1} \) denotes the second projection.

Proof of Theorem 1.2. We wish to compute the intersection inside \(\mathbb{P}^{(r+1)(d+1)-1} \times \text{Gr}(r+1, d+1) \) of the \(nr \) linear conditions pulled back from \(\mathbb{P}^{(r+1)(d+1)-1} \) given by the equations \(f(x_i) = y_i \) for \(i=1, \ldots, n \), the pullback under \(\pi_2 \) of the Schubert cycles \(\sigma_\lambda \), where \(\lambda \) is a Schubert index with \(|\lambda| = rg \), and the classes of the cycles \(Z_0, \ldots, Z_r \) defined above. We proceed as in Lemmas 3.2 and 3.3.

First we introduce the incidence correspondence:

\[
\mathcal{X} := \left\{ ([f_0, \ldots, f_r], \Lambda) \in \mathbb{P}^{(r+1)(d+1)-1} \times \text{Gr}(r+1, d+1) : f_i \in \Lambda \right\}
\]

\[
\begin{array}{c}
\mathbb{P}^{(r+1)(d+1)-1} \\
\text{Gr}(r+1, d+1)
\end{array}
\]
We first claim that the intersection $\pi_2^*(\sigma_\lambda) \cdot \pi_1^*(L)$ in question is supported away from the locus of $(f, \Lambda) \in X$, where f defines a degenerate map $f : \mathbb{P}^1 \to \mathbb{P}^{r'}$, for some $r' < r$. When $d \geq rg + r$, the same proof as in Lemma 3.2 applies.

Suppose that either $r = 1$ or $n = d + 2$, there is such a $(f, \Lambda) \in Z$ in our intersection, and that k of the points x_1, \ldots, x_n are base-points of the r'-dimensional linear system Λ_f spanned by f_0, \ldots, f_r. As in the proof of Lemmas 3.2, it must be the case that $k \geq n - r' - 1$.

Denote the total ramification of Λ_f at x_0 by t. Then,

$$t \leq \dim \text{Gr}(r' + 1, d - k + 1) \leq \dim \text{Gr}(r' + 1, d - n + r' + 2) = (r' + 1)(d - n + 1).$$

Thus,

$$d \geq \frac{t}{r' + 1} + n - 1 = \frac{t}{r' + 1} + d + \frac{d}{r} - g,$$

whence

$$d \leq rg - \frac{rt}{r' + 1}.$$

On the other hand, we require that $\Lambda \in \sigma_\lambda$, where $|\lambda| = rg$, and $\Lambda_f \subset \Lambda$. Such a Λ can only exist if $t + (r - r')(d - r) \geq rg$, as $\dim(\Lambda_f) = r - r'$, and each dimension can contribute at most $d - r$ to the ramification of Λ at x_0.

Because $r > r'$, we obtain

$$t + (r - r')(d - r) \geq rg,$$

and

$$t \left(1 - \frac{(r - r')r}{r' + 1}\right) + (r - r')(rg - r) \geq rg.$$

When $r = 1$, and thus $r' = 0$, we obtain a contradiction. It remains to consider the case $n = r + 2$, in which case

$$rg = (d - r)(r + 1).$$

Then, comparing the inequalities

$$t \leq (r' + 1)(d - n + 1) = (r' + 1)(d - r - 1)$$

$$t \geq rg - (r - r')(d - r) = (d - r)(r + 1) - (r - r')(d - r)$$

also yields a contradiction.

Therefore, we are back in the situation of Lemma 3.2 in which all intersection points occur where f is non-degenerate, and in particular, (f, Λ) lies away from the indeterminacy of the ρ_j. The same parameter counts show that f indeed defines a map $f : \mathbb{P}^1 \to \mathbb{P}^1$ of degree d with vanishing exactly λ at x_0.

Furthermore, the intersection in question is transverse by exactly the same argument as in Lemma 3.3, so it suffices to compute the degree of the intersection cycle on $\mathbb{P}^{(r+1)(d+1)-1} \times \text{Gr}(r + 1, d + 1)$. This equals

$$\int_{\mathbb{P}^{(r+1)(d+1)-1} \times \text{Gr}(r + 1, d + 1)} \pi_2^*(\sigma_1^r) \cdot \pi_1^*(H^{mr}) \left(\sum_{i+j=d-r} \pi_2^*(\sigma_i) \cdot \pi_1^*(H^j)\right)^{r+1}.$$
with the formula, see e.g. [GH80, p. 269] immediate.

For the degrees

For Proposition 3.6.

Hurwitz spaces of admissible covers.

Proof. We use Giambelli’s formula

\[
\sigma_1^g \cdot \prod_{i=1}^r \sigma_{a_i}
\]

□

as desired.

Remark 3.5. While the proof of Theorem 1.2 shows that our refined incidence correspondence avoids the constant maps of Remark 3.1 when \(r = 1 \) or \(n = r+2 \), this is not the case in general. Indeed, suppose that \(r \geq 2, n \geq r+3, \) and \(d \geq n-1 \). Then, take \(f_0, \ldots, f_r \) to have simple zeroes at \(x_1, \ldots, x_{n-1} \) and an order \(d-(n-1) \) zero at \(x_0 \), such that \(f = [f_0 : \ldots : f_r] \) defines the constant map with image \(y_n \in \mathbb{P}^r \). If \(\lambda \) is a Schubert index with \(|\lambda| = rg \), then the condition that \(f_0, \ldots, f_r \in \Lambda \), where \(\Lambda \in \Sigma(\lambda(x_0) \subset \text{Gr}(r+1, d+1) \), may be satisfied as long as \(rg \leq (d-n+1) + \dim \text{Gr}(r,d) = (d-n+1)+r(d-r) \). Substituting \(rg = dr+r+d-rn \), this is equivalent to \(n \geq \frac{r^2+r-1}{r-1} = r+2+\frac{1}{r-1} \). When \(r \geq 2 \) and \(n \geq r+3 \), this is immediate.

For \(r = 1 \), Theorem 1.2 can be used to recover the explicit formulas in terms of binomial coefficients for the degrees \(L_{g,1,d} \). These numbers are also determined in [CPS21] using excess intersection on Hurwitz spaces of admissible covers.

Proposition 3.6. For \(d \geq \frac{g+2}{2} \) one has the formula

\[
L_{g,1,d} = \sum_{a_0+a_1=2d-2-g} \int_{\text{Gr}(2,d+1)} \sigma_1^2 \cdot \sigma_{a_0} \cdot \sigma_{a_1} = \sum_{i=0}^{2d-g-2} \frac{(2d-g-2i-1)^2}{g+1} \binom{g+1}{d-i}.
\]

Proof. We use Giambelli’s formula \(\sigma_{a,b} = \sigma_a \cdot \sigma_b - \sigma_{a+1} \cdot \sigma_{b-1} \in CH^{a+b}(\text{Gr}(2,g+1)) \) for \(a \geq b \), coupled with the formula, see e.g. [GH80, p. 269]

\[
\int_{\text{Gr}(2,d+1)} \sigma_{a,b} \cdot \sigma_1^q = \frac{a-b+1}{g+1} \binom{g+1}{d-a-1},
\]

for each \(a \geq b \) with \(a+b = 2d-2-g \). Substituting in the formula provided by Theorem 1.2 yields the claimed formula. □

3.3. Degrees of determinantal Schubert cycles. We note here that comparison of the incidence correspondences given above in the proofs of Theorem 1.1 and 1.2 allows one to compute the degrees of pullbacks of Schubert cycles of low codimension on \(\text{Gr}(r+1, d+1) \) to \(\mathbb{P}^{(r+1)(d+1)-1} \).

Proposition 3.7. Let \(\Sigma_\lambda \) be a Schubert cycle of codimension \(|\lambda| \leq d-r \) in \(\text{Gr}(r+1, d+1) \), and let \(\bar{\Sigma_\lambda} \) be the closure of its pullback under the rational map \(\pi : \mathbb{P}^{(r+1)(d+1)-1} --\rightarrow \text{Gr}(r+1, d+1) \). Then, the degree of \(\bar{\Sigma_\lambda} \) is

\[
\int_{\text{Gr}(r+1,d+1)} \sigma_\lambda \cdot \sigma_{a_0} \cdot \sum_{a_0+\ldots+a_r=r+1(d-r)-rg} \prod_{i=0}^r \sigma_{a_i}
\]

Proof. Let \(N = (r+1)(d+1) - 1 - |\lambda| \). Recall that the codimension of \(\Sigma_\lambda \) is strictly smaller that the codimension of the indeterminacy locus of \(\pi \). Accordingly, adopting the notation of the previous two
sections, we have
\[
\text{deg}(\tilde{\Sigma}_\lambda) = \int_{\mathbb{P}((r+1)(d+1)-1)} H^N \cdot \tilde{\Sigma}_\lambda
\]
\[
= \int_{\mathbb{P}((r+1)(d+1)-1)} \pi_1^*(H^N \cdot [\tilde{\Sigma}_\lambda]) \cdot [Z_0] \cdots [Z_r]
\]
\[
= \int_{\mathbb{P}((r+1)(d+1)-1)} \pi_1^*(H^N) \cdot \pi_2^*(\Sigma_\lambda) \cdot [Z_0] \cdots [Z_r]
\]
\[
= \int_{\text{Gr}(r+1,d+1)} \sigma_\lambda \cdot \left(\sum_{i+j=d-r} \pi_2^*(\sigma_i) \cdot \pi_1^*(H^2) \right)^{r+1}
\]
\[
= \int_{\text{Gr}(r+1,d+1)} \sigma_\lambda \cdot \left(\sum_{a_0+\cdots+a_r=(r+1)(d-r)-rg} \left(\prod_{i=0}^r \sigma_{a_i} \right) \right)
\]
where we have used the fact the equality
\[
\pi_1^*(\tilde{\Sigma}_\lambda) \cap Z_0 \cap \cdots \cap Z_r = \pi_2^*(\Sigma_\lambda) \cap Z_0 \cap \cdots \cap Z_r
\]
as subschemes of the incidence correspondence \(\mathcal{X}\).

4. Young Tableaux Interpretation

Comparison of Theorems 1.1 and 1.2 yields the following purely combinatorial statement.

Proposition 4.1. Suppose that \(g \geq 0, r \geq 1, \) and \(d \geq rg + r\). Then,
\[
\int_{\text{Gr}(r+1,d+1)} \sigma_1^r \cdot \left(\sum_{a_0+\cdots+a_r=(r+1)(d-r)-rg} \left(\prod_{i=0}^r \sigma_{a_i} \right) \right) = (r + 1)^g.
\]

Indeed, both sides are equal to \(L_{g,d,r}\), whenever \(n = d - g + 1 + \frac{d}{r}\) is an integer. However, note that it suffices to consider the case \(d = rg + r\) (in which case \(n = d + 2\)), as both sides are independent of \(d\) in the range \(d \geq rg + r\); for the left hand side, this can be seen in terms of Schubert calculus, but will also be made transparent in the combinatorial interpretation that follows. In particular, Proposition 4.1 holds even when \(d\) is not divisible by \(r\).

We give a combinatorial interpretation of the left hand side in terms of Young Tableaux. Consider a filling of the boxes of \((r + 1) \times (d - r)\) grid with:
- \(rg\) red integers among 1, 2, \ldots, \(g\), with each appearing exactly \(r\) times, and
- \((r + 1)(d - r)\) blue integers among 0, 1, \ldots, \(r\), with each appearing any number of times,
subject to the following conditions:
- the red integers are top- and left- justified, i.e., they appear above blue integers in the same column and to the left of blue integers in the same row,
- the red integers form a Standard Young Tableau, i.e., they increase across rows and down columns, and
- the red and blue integers are weakly increasing across rows and strictly increasing down columns.

An example filling is given in the case \((g,d,r) = (6,15,2)\) below.

\[
\begin{array}{ccccccccccc}
1 & 1 & 2 & 3 & 3 & 4 & 6 & 0 & 0 & 0 & 0 \\
2 & 5 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
4 & 6 & 0 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\end{array}
\]

Note that the rightmost \(d - r - rg\) columns must contain blue integers 0, 1, \ldots, \(r\) in order, so a filling is determined by its leftmost \(rg\) columns. We claim that the number of fillings as above is given exactly by the intersection number on the left hand side of Proposition 4.1. Indeed, by the Pieri rule, the term \(\sigma_1^r\) corresponds to the semi-standard Young Tableau given by the red integers, and the broken strips
formed by the blue entries equal to \(i \) correspond to the Schubert cycle \(\sigma_{\alpha_i} \). In particular, this formula is independent of \(d \) as long as \(d \geq rg + r \).

Proposition 4.1 therefore implies:

Proposition 4.2. The number of fillings of a \((r + 1) \times (d - r)\) grid satisfying the above conditions is equal to \((r + 1)^q\).

We are unaware of a combinatorial proof of this fact, though one would be of interest.

5. Variants

5.1. **Linear series with fixed incidences and secancy conditions.** We briefly explain how our methods also recover the more general *Tevelev degrees* of [CPS21], where some of the points \(x_i \) are constrained to lie in the same fiber of \(f \). Recall from §1 that, if \(1 \leq k \leq n \), we defined \(L' g,d,k \) to be the number of morphisms \(f: C \to \mathbb{P}^1 \) of degree \(d \) sending general points \(x_1, \ldots, x_n \in C \) to points \(y_1, \ldots, y_n \in \mathbb{P}^1 \), where \(y_1 = y_2 = \cdots = y_k \) but the \(y_i \) are otherwise general.

More generally, we may fix integers \(0 \leq a \leq k \leq d \), a general \(n \)-pointed curve \((C, x_1, \ldots, x_k, x_{k+1}, \ldots, x_n)\) of genus \(g \), where \(n \) is given by (2), and consider the variety

\[
G_{d,k}^{r,k-a}(C, x_1, \ldots, x_k) := \left\{ \ell \in G_d^r(C) : \dim \ell(-x_1 - \cdots - x_k) \geq r - k + a \right\},
\]

parametrizing linear systems \(\ell \) whose induced map \(\phi_\ell: C \to \mathbb{P}^r \) has the property that

\[
\langle \phi_\ell(x_1), \ldots, \phi_\ell(x_k) \rangle \cong \mathbb{P}^{k-a-1}.
\]

Then \(G_{d,k}^{r,k-a}(C, x_1, \ldots, x_k) \) is a determinantal variety of dimension

\[
\rho(g, r, d) - a(r + 1 - k + a).
\]

Fixing points \(y_1, \ldots, y_n \in \mathbb{P}^r \) general with the property that

\[
\dim \langle y_1, \ldots, y_k \rangle = k - 1 - a,
\]

one can ask for the number of maps \(f: C \to \mathbb{P}^r \) of degree \(d \) such that \(f(x_i) = y_i \) for \(i = 1, \ldots, n \). For any such map, the corresponding linear series \(\ell := f^*|O_{\mathbb{P}^r}(1)| \) lies in \(G_{d,k}^{r,k-a}(C, x_1, \ldots, x_k) \).

In the interest of simplicity we deal only with the case

\[
r = 1, \quad a = k - 1,
\]

in which case this number equals \(L'_{g,d,k} \).

Proof of Theorem 1.3. We employ a further degeneration after that of §2, allowing \(x_1, \ldots, x_k \) to coalesce onto a bubbled rational component \(R_k \), attached to \(R_0 \) at \(x \). There is a unique choice of \(R_k \)-aspect of the resulting limit linear series \(V_0 \), with ramification sequence \((d - k, d - 1)\) at \(x \), and sending \(x_1, \ldots, x_k \) to the same point after twisting down the base-points at \(x \).

It now suffices to count linear series on \(R_0 \) with the aggregate ramification condition \(\sigma^q_1 \) at \(x_0 \), the new ramification condition \(\sigma_k \) at \(x \), an additional linear incidence condition at \(x \) (with image \(y_1 = \cdots = y_k \)), and linear incidence conditions at \(x_{k+1}, \ldots, x_n \). The computation of §3.2 yields the count

\[
\int_{Gr(2,d+1)} \sigma^q_1 \sigma_k \cdot \left[\sum_{i+j=2(d-1)-g-(k-1)} \sigma_i \sigma_j \right].
\]

However, we find the following extraneous solutions: if the linear series in question has a base-point at \(x \), then we twist down, so that the new ramification sequence is \((0, k - 2)\), and \(d \) decreases by 1; in addition, we lose linear incidence condition at \(x \). Therefore, we see a (zero-dimensional) excess contribution of

\[
\int_{Gr(2,d)} \sigma^q_1 \sigma_{k-2} \cdot \left[\sum_{i+j=2(d-2)-g-(k-2)} \sigma_i \sigma_j \right].
\]
Subtracting the above yields the formula for $L'_{g,d,k}$. One needs to check that there are no additional degenerate contributions and that the intersections are transverse as before, but we omit the details. □

Applying the Pieri rule to the formula of Theorem 1.3 yields the following recursions, recovering [CPS21, Proposition 7] after the change of coordinates $Tev_g,\ell_r = L'_{g,g+\ell+1,1,r}$. These recursions are then used in [CPS21] to obtain explicit formulas in terms of binomial coefficients.

Corollary 5.1. We have:

\[
L'_{g,d,1} = L'_{g-1,d-1,1} + L'_{g-1,d,2}
\]

and

\[
L'_{g,d,k} = L'_{g-1,d-1,k-1} + L'_{g-1,d,k+1}
\]

for $k > 1$.

Remark 5.2. The proof of Theorem 1.1 may also be employed to show that $L'_{g,d,k} = 2^g$ whenever $n \geq d + k + 1$. For general r, the number of linear series in question is $(r+1)^g$ whenever $n \geq d + a + 2$.

However, even when $r = 1$, the proof of Theorem 1.2 breaks down as soon as $k > 1$, as we will see contributions from constant maps with value $y_1 = \cdots = y_k$ and base-points at $x_{k+1} = \cdots = x_n$. Thus, the additional degeneration as above is needed to obtain the general formula for $L'_{g,d,k}$.

5.2. **Linear series with imposed incidences and prescribed ramification.** We fix a general pointed curve $[C,p_1,\ldots,p_m,x_1,\ldots,x_n] \in M_{g,m+n}$, general points $y_1,\ldots,y_n \in \mathbb{P}^r$, as well as m partitions $\lambda_1,\ldots,\lambda_m$ of length $r+1$. We may consider morphisms $f : C \to \mathbb{P}^r$ of degree d satisfying $f(x_i) = y_i$ for $i = 1,\ldots,n$ and f has ramification sequence at least λ_j at p_j for $j = 1,\ldots,m$. Suppose for simplicity that the $(r+1)$-st part of each λ_j is zero, so that f has no base points. Equivalently, like in (1) we can consider the evaluation map

\[
ev_{(x_1,\ldots,x_n)} : G_d^r(C,(p_1,\bar{\lambda_1}),\ldots,(p_m,\bar{\lambda_m})) \to \mathbb{P}^n,
\]

and ask for its degree when the dimension of the two varieties in question are equal. Using (3), we expect a finite number of such maps when $f : C \to \mathbb{P}^r$ whenever $\rho(g,r,d,\lambda_1,\ldots,\lambda_m) = rn - (r^2 + 2r)$, that is, when

\[
n = \frac{dr + d + r - \lambda_{\text{tot}} - gr}{r},
\]

where $\lambda_{\text{tot}} := |\lambda_1| + \cdots + |\lambda_m|$ is the total size of the partitions λ_j. Let $L_{g,r,d,\lambda}^{\lambda_1,\ldots,\lambda_m}$ be this number, that is, the degree of the map given by (9).

Degenerating the general genus g curve C to a flag curve as in §2 so that the points p_1,\ldots,p_m specialize to general points on the component R_{sp}, whereas x_1,\ldots,x_n specialize, as before, to general points of the rational component R_0, we reduce the computation to the numbers $L_{g,r,d,\lambda}$, as defined in Definition 2.2, where now $|\lambda| = rg + \lambda_{\text{tot}}$. Following the proof of Theorem 1.1 and 1.2, we obtain the following result.

Proposition 5.3. Suppose that $d \geq rg + r + \lambda_{\text{tot}}$, or equivalently $n \geq d + 2$. Then,

\[
L_{g,r,d}^{\lambda_1,\ldots,\lambda_m} = (r+1)^g \cdot \prod_{j=1}^m \deg(\bar{\lambda}_j),
\]

where $\deg(\bar{\lambda}_j)$ is the degree of the cycle $\bar{\lambda}_j$ on $\mathbb{P}^{(r+1)(d+1)-1}$ obtained by taking the closure of the pullback of $\Sigma_{\lambda_j}(x_0) \subseteq \text{Gr}(r+1,d+1)$ under the rational map $\pi : \mathbb{P}^{(r+1)(d+1)-1} \to \text{Gr}(r+1,d+1)$, see Proposition 3.7.

Similarly, closely following the proof of Theorem 1.2, we obtain:

Proposition 5.4. Suppose that:

- $d \geq rg + r + \lambda_{\text{tot}}$,
\(n = r + 2 \), or \(r = 1 \).

Then,

\[
L_{g,r,d}^{\lambda_1, \ldots, \lambda_m} = \int_{\text{Gr}(r+1,d+1)} \sigma_1^r \cdot \prod_{j=1}^m \sigma_{\lambda_j} \cdot \left[\sum_{\alpha_0 + \cdots + \alpha_r = (r+1)(d-r)-rg-\lambda_{\text{tot}}} \left(\prod_{i=0}^r \sigma_{\alpha_i} \right) \right].
\]

Indeed, in both results, the only significant modification is that the total ramification imposed at \(x_0 \) after degeneration is \(rg + \lambda_{\text{tot}} \), instead of \(rg \). However, this number is equal to \(dr + d + r - nr \) in both cases, and from here the proofs go through without change.

REFERENCES

