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Introduction

0.1 Algebraic curves and their moduli

The subject of this thesis is the geometry of the moduli space M, of algebraic curves of
genus g. This is the universal parameter space for curves (Riemann surfaces) of genus g.
in the sense that its points correspond one to one to isomorphism classes of curves.

Algebraic curves. the objects classified by M. started to appear systematically in
mathematics around the middle of the 19th century. although interest in algebraic curves
can be traced back to Euler's study of abelian integrals in the 18th century. For most of
the 19th century. the curves people were looking at were plane curves. that is. subsets of
P? satisfying an equation F(r.y,z) = 0. where F' is a homogeneous polynomial in three
variables. Two plane curves were said to belong to the same class. if there was a birational
transformation of P? carrving one curve into another. The advantage of such an approach
(which surely appears quite cumbersome and ineffective nowadays} is that given a plane
curve of degree d. by varying the coefficients of the polynomial equation one immediately
obtains the family of all plane curves of degree d, which is itself an algebraic variety, the
projective space PHd+3)/2,

It was Riemann in his famous papers on function theory from 1857 who started the
process of lifting the curves from P? and began to view them as abstract objects. By
realizing curves as branched covers of P'. he even managed to show that for g > 2 curves
of genus ¢ depend on 3g — 3 minimal parameters, which he called moduli.

Ag Brill and Noether pointed out. Riemann himself did not think of a space whose
points would correspond to classes of curves. However. in the late 19th century. the
concept of a moduli space of curves was floating around and the existence of a variety
parametrizing genus ¢ curves was widely assumed. At that time people were already
actively studying properties of M. For instance. in 1882, Klein using topological argu-
nents due to Clebsch showed that the space of n-sheeted coverings of the Riemann sphere
with b = 2¢ + 2n — 2 branch points is irreducible. implicitly proving the irreducibility of
M. Although Severi and B. Segre among others coutinued the investigation of .M, in
the first decades of the 20th century. the first rigorous construction of My (as an analytic
variety) was due to Teichmiiller in 1940. Work by Baily in 1962 showed that .M, was an
algebraic (quasi-projective) variety and the first purely algebraic construction of M, was
carried out by Mumford in 1965 using “Geometric Invariant Theory™ {cf. [Mu2]).

At this point we want 1o make more precise what we understand by M. The moduli



space of curves M, is an algebraic variety satisfving the following properties:

e For an algebraically closed field A the points in M, (k} correspond 1:1 to ixomor-
phisni classes of curves of genus g over & If C is a complex smooth curve of genus
g. we denote by ('] € M, its moduli point.

e For any flat family 7 : ¢ — B of smooth curves of genus g, the moduli map
m o B — M, given by mi(b) := [(%] for b € B. is holomorphic. Moreover. M, isin
sone sense minimal with respect to this universal property.

It turns out that there exists 4 unique variety .M, satisfving these properties and one savs
that M coarselv represents the moduli functor of curves (we refer to \u2] for precise
definitions of these terms).

The space Mg is an irredncible quasi-projective variety of dimension 3g — 3 for g > 2.
We have that M; is a point and M, is the affine line A'. Since smooth curves can
degenerate to singular ones. M, is not a compact variety.  One can compactify M,
by enlarging the class of curves we parametrize and allowing certain singular curves.
called =table curves. These are connected. nodal curves. such that anv smooth rational
component meets the curve in at least 3 points. We get in this way the Deligne-NMumford
moduli space .Vg of stable curves (¢f. [DM]). which is an irreducible projective variety
with only mild singularities (Q-factorial).

The boundary ,Vg — M, corresponding to singular curves is a union of irreducible
divisors A, for 0 <7 < [g/2]. The general point of Ay corresponds to an irreducible curve
with one node. whereas for 1 <7 < [¢/2] the general point of \, corresponds to a curve
€y Uy Coo where Cy and ) are smooth curves of genus 7 and g — i meeting transversally
at q.

0.2 How rational is M,?

For low genus there are explicit descriptions of the variety M,. Any smooth curve of
genus 2 can be realized through the equation

¥ =(r—a;)---(r—ng). where aj.....a5€ C

If we consider the quotient of Sym®(P'y under the action of PGL(2). we realize M, as a
quotient of an open subset of C* by the svuunetric group Sq.

In the case of My, a non-lhvperelliptic curve of genus 3 can be uniquely embedded as
a smooth plane quartic. We thus have a dominant rational map from the P of plane
quartics to Mj. Almost every curve of genus 3 can be realized by varving the coefficients

Z u,Jk.r'yJ:k = 0.

1. jk>00~)~k=1

in the equation

What is essential here. is that the coefficients a4, € € can vary freely. thev do not have to
satisfy any equations. onlv a few polynomial inequalities. so that we have a way of getting
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our hands on (almost) every curve of genus 3. We say that the variety ‘Mj is unirational.

NMore generally. a variety X is called unirational if there exists a rational dominant
map from a projective space P" to X. Unirationality is a very desirable property as
it gives a parametrization of the variety. One savs that X is uniruled if there exists a
rational dominant map from a product variety ¥ x P! to X and which is not constant
on fibres {y} x P'. where y € Y. Equivalently. X is uniruled if through a general point
£+ € X there passes a rational curve. Clearly unirationality implies uniruledness.

An important birational invariant of an algebraic variety is its Nodaira dimension. For
a smooth, projective variety X. the Kodaira dimension x(.X) is defined as follows: let us
consider wy = O(A'y) the canonical sheaf on X and for m > 1 such that [mA x| # 0. we
take the rational map o pr, 0 X —— — PP AT We define

£(X) := max{dim 0 ,x, (X):m € Z, such that m~K . # 0}.

Clearly #(X) € {—2c.0.... .dim(X)}. If #(X) = dim(.X). we sav that X is of general
tvpe. If X is uniruled. then mAy = 0 for all m > 1. hence x(X) = —x. For an
arbitrary projective variety X. we define #{.X) = #(X'). where X is a desingularization
of X.

A famous conjecture in the classification theory of higher dimensional algebraic vari-
eties predicts that X is uniruled if and only if #(X') = —o>c. This is known to be true
when dim(X) < 3.

Severi was the first to study the rationality of Mgy The existence of a rational
parametrization of M, would mean that we can describe most curves of genus g by
equations depending on free parameters. In other words, we can write down more or less
explicitly the general curve of genus g and to paraphrase Mumford (see [Mu]} we would
be able to boast: ~We have seen every curve once”.

On the other hand. the non-uniruledness of M, would have pretty spectacular conse-
quences for the geometry of curves of genus g. For instance. it would imply that if C is
a general curve of genus g and S is a surface containing C such that dim'C’ > 1. then
S must be birational to C x P!. To rephrase it. the general curve of genus g does not
appear in a non-trivial linear system on any non-ruled surface {cf. [HM]). We refer to
the beginning of Chapter 1 for a more detailed history of the problem of unirationality of
M.

0.3 The Brill-Noether Theorem

We view curves as (abstract) 1-dimensional smooth. complete. algebraic varieties. Un-
derstanding the various embeddings of curves in projective spaces will add a great deal
to our knowledge of the geometry of algebraic curves.

Let " be an algebraic curve. A nondegenerate map f : C — P7 is given by a linear
series of dimension r on C. that is, a pair / = (£.V7). where £ is a line bundle on (" and
V' C HY(C. L) is a subspace of dimension r + 1. Assuming that ! is base-point-free (i.e.
for every p € C there is s € 17 such that s(p) # 0). by choosing a base (..., . sp)in VL




we obtain a map f: C — P given by f(p) := [so(p).... . sp(p)]. Tol = (L£.V) we also
associate the r-dimensional svstem of divisors

Vo= {divis) s € VY CPHYC. L))

It deg(L) = d. following classical terminology. we say that 7 = (£.17) is a g}, which
means “a group of d points moving with r degrees of freedom™. We can ask the following
question: What kind of linear series does a curve of genus ¢ have? The answer is the
following famous result (cf. TBN]):

Theorem 0.1 (Brill-Noether, 1874) A general curve of genus g has a g if and only
dfplygrd)=g—(r+1)g—d+r)>0.

To mention a few things about the history of this theorem. we note that in the 1920's after
the result had been taken for granted for 40 vears. Severi realized rhat Brill and Noether
had only proved that any component of the variety of g7's on € has dimension > plg. r.d)
but they failed to prove the existence of such a component {or the nonexistence when
plg.r.d)y < 0). The Brill-Noether Theorem was finally proved in 1920 by Griffiths and
Harvis (cf. 'GH]) nsing an old idea of Castelnuovo of specializing to a general curve of
arithmetic genus g with g nodes.

It 15 worth to outline the parameter count that prompted Brill and Noether to claim
their theorem and which brings into the picture the Brill-Noether number plg.r.d) {see
also [GriffHa] for this count).

Let € be a general curve of genus g > 3. in particular. (' is non-hyperelliptic. Consider
¢ — P97 canonically embedded and let D = Zf:lp, be a divisor of degree d on C.
Assume D is part of a g, i.e. dim D > r. Then by Riemann-Roch it follows that D
spans a (d —r — 1)-plane in P!, Since D moves in an r-dimensional family. we get that
C has a gy if and only if C' has an r-dimensional family of d-secant (¢ — r — 1)-plaues.

Since the variety of (d — r — 1)-planes meeting C' at least once has codimension ¢ —
d+r—1in G{d—r—1.g—1). it is natural to expect that the variety of {(d —r — 1)-planes
that are d-secant to " has codimension d(g — d +r —1}. Therefore we expect this variety
to be of dimension > rif and onlv if dim G(d —r—1.g — 1) —=dig —d +~r —1} > r. and

this is equivalent with plg.r.d) > 0.

0.4 Outline of the results

Chapter 1 deals with the geometry of the moduli space of curves of genus 23. It is known
that M, is of general type for ¢ > 24 and that for low values of ¢ (conjecturally for all
g < 22). the moduli space M, is uniruled. This leaves ‘My; as an interesting transition
case hetween two extremes: uniruledness and being of general type. The main result is
the following:

Theorem The KNodaira dimension of the moduli space of curves of gemis 23 is > 2.



The proof is based on the study of three explicit divisors on .My3 which turn out to
be multicanonical. Evidence is presented which suggests that the Kodaira dimension of
My is actually equal to 2. Degeneration to singular curves and the theory of limit linear
series (reviewed in Section 1.3) as well as deformation theory are the tools we use.

Chapter 2 deals with the geography (relative position} of the Brill-Noether loci

M= {[C] € M, : C carries a g}

We compare different Brill-Noether loci aud show that they are in general relative position
(transversal) inside M,. unless there are some obvious containment relations between
them. In Section 2.4 we prove under certain numerical conditions the existence of regular
(generically smooth. of the expected dimension) components of the Hilbert scheme of
curves (' C P! x P", where r > 3. The main result of Section 2.5 is the following theorem
concerning the gonality of space curves:

Theorem Let ¢ > 5 and d > & be integers with g odd and d even. such that d° > 8g.
4d < 3g 4+ 12. d* — 8 + R is not a square and either d < 18 or g < 4d — 31. Assume that

(d.g)ye{ldg)(d+1.g+1).(d+1.g+2).(d+2.9+3)}.

Then there exists a regular component of the scheme Hilby g 5. with general point a
smooth curve C' C P? of degree d' and genus ¢' and such that the gonality of (' is
min(d’ —4.{(g" + 3)/2]).

As a consequence of results from Chapter 2, we find a new proof for our result x(Myy) > 2.

In Chapter 3 certain aspects of the geometry of the moduli spaces M, ,, of n-pointed
curves of genus g are studied. For an integer ¢ = 1 mod 3 with ¢ > 4 weset d := (2g+7}/3
and we can consider the following divisors:

e On M, . the closure of the locus HF (resp. CU) consisting of l-pointed curves
(C'.p) € M, such that there exists a g5 on C with a hyperflex (resp. cusp) at the
point p.

e On Hg,g. the closure of the locus F'L consisting of those [C'. p. p2] € M, such that
there exists a g2 with flexes at both p; and ps.

We determine the classes [HF].[CU] and [FL] (in the respective Picard groups).

For an integer d > 3 we set g := 2d — 4. We denote by TR the locus of 1-pointed
curves [C.p] € My, such that there exists a degree d map f : C — P' having triple
ramification at p and at some unspecified point r € C — {p}. It turns out that TR is a
divisor on Mg ; and in Section 3.6 we compute the class [TR] in Pieg (Mg).

We close Chapter 3 by proving in Section 3.7 the following:

Theorem For g = 11.12 and 15 the universal curve C, has Kodaira dimension —x.

The first two chapters of this thesis are based on the papers



G. Farkas: The Geometry of the Moduli Space of Curves of Genus 23. to appear in
Marhematische Annalen {also available ax inath. AG /9907013 preprint).
l

G. Farkas: The Geography of Brill-Noether Loct in the Moduli Space of Curves. preliminary
version.



Chapter 1

The geometry of the moduli space of
curves of genus 23

1.1 Introduction

The problem of describing the birational geometry of the moduli space M, of complex
curves of genus g has a long history. Severi already knew in 1915 that .M, is unirational
for ¢ < 10 (cf. [Sev]: see also {AC1] for a modern proof). In the same paper Severi
conjectured that M, is unirational for all genera g. Then for a long period this problem
seemed intractable (Mumford writes in [Mu]. p.51:"Whether more M,’s. g > 11. are
unirational or not is a very interesting problem. but one which looks very hard too.
especially if ¢ is quite large™). The breakthrough came in the eighties when Eisenbud.
Harris and Mumford proved that .M, is of general tyvpe as soon as g > 24 and that the
Kodaira dimension of My, is > 1 (see [HM]. [EH3]). We note that ‘M, is rational for
g < 6 (see [Dol] for problems concerning the rationality of various moduli spaces).

Severi's proof of the unirationality of M, for small g was based on representing a
general curve of genus g as a plane curve of degree  with 4 nodes: this is possible when
d > 2¢/3+2. When the number of nodes is small. i.e. 8 < (d+1)(d + 2)/6. the dominant
map from the variety of plane curves of degree d and genus ¢ to M, yields a rational
parametrization of the moduli space. The two conditions involving d and 6 can be satisfied
only when ¢ < 10. so Severi’s argument cannot be extended for other genera. However.
using much more subtle ideas. Chang. Ran and Sernesi proved the unirationality of .M,
for ¢ = 11.12.13 (see [CR1]. [Sel]). while for g = 15.16 they proved that the Kodaira
dimension is —> (see [CR2.4] ). The remaining cases ¢ = 14 and 17 < g < 23 are still
quite mysterious. Harris and Morrison conjectured in [HMo] that M, is uniruled precisely
when g < 23.

All these facts indicate that Moy is a verv interesting trausition case. Our main result
is the following:

Theorem 1.1 The Kodaira dimension of the moduli spuce of curves of genus 23 s > 2.




We will also present some evidence for the hypothesis that the Kodaira dimension of .My,
is actually equal to 2.

1.2  Multicanonical linear systems and the Kodaira
dimension of M,

We study three multicanonical divisors on Moy, which are {modulo some boundary com-
ponents) of Brill-Noether type. and we conclude by looking at their relative position that
K(Mag) > 2.

We review some notations. We shall denote by .Vg and Eg the moduli spaces of stable
and 1-pointed stable curves of genus ¢ over C. If (' is a smooth algebraic curve of genus
g. we consider for any r and d. the scheme whose points are the gl's on . that is.

GOy ={(LV): L ePicC) .V CHYC L).dim(V) = r =1}
{ef. [ACGH]) and denote the associated Brill-Noether locus in .M, by

My =0T e My GRC) # 0}
. R
and by M, its closure in .M,
The distribution of linear series on algebraic curves is governed (to some extent) by
the Brill-Noether number

plg.r.dy:=g—(r+1)(g—d+r).

The Brill-Noether Theorem asserts that when p(g.r.d) > 0 every curve of genus g pos-
sesses a g, while when p(g.7.d) < 0 the general curve of genus g has no g}’s. hence in
this case the Brill-Noether loci are proper subvarieties of M,. When p(g.r.d) < 0. the
naive expectation that —pl{g.r.d) is the codimension of My, inside M, is in general
way off the mark. since there are plenty of examples of Brill-Noether loci of unexpected
dimension (¢f. [EH2]). However. we have Steffen’s result in one direction (see [St]):

If plg.r.d)y < 0 then each component of My 4 has codimension at most —plg.r.d) in M,

On the other hand. when the Brill-Noether number is not very negative. the Brill-Noether
loci tend to behave nicely. Existence of components of M7 o of the expected dimension
has been proved for a rather wide range. namely for those g.r.d such that p(g.r.d) < 0.
and

—g+7r+3 if  is odd:

olg.r.d) > )
ma = ~rg/(r+2)+r+3 ifriseven.

We have a complete answer only when pl(g.r.d) = —1. Eisenbud and Harris have proved in
'EH2] that in this case M, has aunigue divisorial component. and using the previously
mentioned theorem of Steffen’s. we obtain the following result:



If plg.r.d) = —1. then .V;d is an irreducible divisor of M.

We will also need Edidin’s result (see [Ed2] ) which says that for ¢ > 12 and p(g. 7. d) = =2,
all components of M ; have codimension 2. We can get codimension 1 Brill-Noether
conditions only for the genera g for which g + 1 is composite. In that case we can write

g+l=(r+1)(s—-1) s>3

and set d := rs — 1. Obviously p(g.r.d) = —1 and .V;d is an irreducible divisor. Fur-
thermore. its class has been computed (cf. [EH3] ):

[’ﬂ

'Mg.d] = Cyrd (g +3)

Z ity - 19

where ¢y, 4 is a positive rational number equal to 3y /(2¢g — 4). with g being the num-
ber of g's on a general pointed curve (Cy.¢) of genus g — 2 with ramification sequence
(0.1.2.....2) at ¢q. For g = 23 we have the following possibilities:

(ros.dy = (1.13.12). (11.3.32). (2.9.17). (7.4.24). (3.7.20). (5.5.24).

[t is immediate by Serre duality. that cases (1.13.12) and (11. 3. 32) vield the same divisor
on .Ma3. namely the 12-gonal locus M},: similarly. cases (2.9.17) and (7.4.24) vield the
divisor M3, of curves having a g#;. while cases (3.7.20) and (5.5.24) give rise to .M3,.
the divisor of curves having a g3;. Note that when the genus we are referring to is clear
from the context. we write M} = M7 .

By comparing the classes of the Brill-Noether divisors to the class of the canonical
divisor K,Vgﬂg = 13A—=260— 34, —- -+ =20,». at least in the case when g+1 is composite
we can infer that

a[.V;_,,] + bA + ( positive combination of dy.... . 84/2).

where ¢ is a positive rational number. while b > 0 as long as ¢ > 24 but b = 0 for g = 23.
As it is well-known that A is big on M. it follows that .M, is of general tvpe for ¢ > 24
and that it has non-negative Kodaira dimension when g = 23. Specifically for g = 23. we
get that there are positive integer constants m.my. msy. my such that:
3
mhk =m;[M 12]+E mh = my[ M ]+E mA = m3[ My + E. (1.1)

where F is the same positive combination of 4;.... .4;;.

Proposition 1.2.1 (Eisenbud-Harris, [EH3]) There erists a smooth curve of genus
23 that possesses a giy. but no g-. It follows that k(Mays) > 1.

Harris and Mumford proved (cf. [HM]) that \/I has only canonical singularities for ¢ > 4.
hence H( M, .. nK) = H .\/Iq nk) for each n > 0. with \/1 a desingularization of M.

9



We already know that dim(Imo,,x ) > 1. where o, : M .; —— — P is the multicanonical
map. m being as in (1.1). We will prove that ~({.My3) > 2. Indeed. let us assume that
dim(Imo,,x) = 1. Denote by ' := Imo,x the Kodaira image of Moy, We reach a
contradiction by proving two things:

o o) The Brill-Noether divisors M1,. M3- and M3 are mutually distinet.

e J) There exist smooth curves of gvnus 23 which belong to exactly two of the Brill-
Noether divisors from above. _ ’

This suffices in order to prove Theorem 1.1: since Viz .Vf; and V_io are part of different
multicanouical divisors. thev must be contained in different fibres of the multicanonical
map Omp. Hence there exists different points . y. - € €' such that

Ml,—o‘ (r)n M); .\/!I-—O_ ( )ﬁ \/[»; M’O_ ‘I(C)Q.\AQ;;.
It follows that the set-theoretic intersection of anyv two of them will be contained in the
base locus of mAy,, . In particular:
supp(.Mb,) M supp{.M7.) = suppt.M7) Nsuppl M, = supp{ M) m suppt.ML, ) (1.2)

and this contradicts 7). We complete the proof of o) and 3} is Section 1.5.

1.3 Deformation theory for g/;’s and limit linear series

We recall a few things about the variety parametrising g);'s on the fibres of the universal
curve (cf. [AC2]). and then we recap on the theory of limit linear series {¢f. [EH1]. [Mod]).
which is our main technique for the study of Mays.

Given g.r.d and a point [C'] € M,. there is a connected neighbourhood U of [C]. a
finite ramified covering A : M — U. such that M is a fine moduli space of curves (i.e.
there exists £ : C — M a universal curve}. and a proper variety over ‘M.

TG =M
which parametrizes classes of couples {C.1). with {('] € M and | € G{C). where we have
made the identification C'= ¢ '([("])
Let (C.1) be a point of G corresponding to a curve " and a linear series [ = (£, V7). where
£ e PictCy. v € HYC. L), and dim(V) = » + 1. By choosing a basis in V7. one has a
worphism f: " — P". The normal sheaf of f is defined through the exact sequence
0— T — [Ty — Ny — 0. (1.3)

By dividing out the torsion of Ny one gets to the exact sequence
wh(\re the torsion sheaf Ky (the cuspidal sheaf) is based at those points « € € where
df(r) = 0. and N} is locally free of rank r— 1. The tangent space T, (G]) fits into an
(I\A(T sequence (cf. TAC2]):

— C — Hom(V. V) — HYC. Ny) — T 1Gh) — 0. (1.5)

from which we have that dim 7,0, (G]) = 3g — 3 + plyg. r.d) + BHC. Ny
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Proposition 1.3.1 Let C' be a curve and ! € GL{C') a base point free linear series. Then
the variety G} ts smooth and of dimension 3g — 3+ plg.r.d) at the pomnt (C.l) if and only
if H'(C. Ny =0,

Remark: The condition H'(C. Ny) = 0 is automatically satisfied for r = 1 as Ny is a
sheaf with finite support. Thus G} is smooth of dimension 2g + 2d — 5. It follows that G
is birationally equivalent to the d-gonal locus M} when d < (g + 2)/2.

In Chapter 2 we will be interseted in the differential (d7 )y @ Tion(G)) — Ty My).
Let (C.1) € G} be a point such that H'(C.Ny) = 0 and assume for simplicity that
[ = {L£.V)is a complete. base point free linear series. that is. V' = H%(C. £). By standard
Kodaira-Spencer theory (see [AC2] or [Mod]) one has that

In(dm)ieqy = Im{d : HY(C. Ny) — HYC. Te)}.

where 4 is the coboundary of the cohomologyv sequence associated to {1.3). We thus get
that rk(dw)cyy = 3g — 3 — R (C. f*(Te+)). By pulling back to C the Euler sequence

r+1

00— C)_Lr — O_n(l) — Tyr — 0.

we obtain that H'(C. f*Tpr) > (Ker(po(C'. £)))". where
wo(C. L) HY(C. L) = HYC. Ko = £¥) — HO(C. Ke)

is the Petri map. We obtain thus that the differential (d7 )¢, has the expected rank
min(3g — 3.3¢g — 3 + p(g.r.d)). if and only if the Petri map is of maximal rank (which
means surjective when p(g.r,d) < 0).

It is convenient to have a description of the annihilator (Im(dm)(cy )~ C HO(C 2K ).
where we have made the identification Tjc1(My)Y = H(C.2R¢) via Serre duality. We
introduce the Gaussian map (c¢f. [CGGH])

1 (C. L) Kerpo(C. L) — HY(C. 2K ).
as follows: let us consider the evaluation sequence corresponding to (C'. L)
0— M, — HYC.L):Op — L —0.

We restrict the C-linear map H(C. L) = O¢ = Q¢ = L. s f— df 7 s. to the kernel M,
and get an O¢-linear map My — Q¢ . L. If we tensor this map with Q- = £Y. then take
global sections and finally use that HO(C'. My = Q¢ = LY) ~ Kerug(C. £). we get the map
1 (C. LY Ker pg(C. L) — HY(C.2K ). which we can loosely refer to as the “derivative’
of the Petri map.

The map p(C. £) can be explicitly described: for an element sq “ g+ ---+ 5, 7 n, €
Kerpg(C. L). with s; € HY(C. L) and n; € HYC. Q¢+ L), if we consider the meromorphic
functions f; = s;/s5 on C. we have that

i (C.L)lsg ~ o+ -+ s, = n) = sglmdfy + -+ 1.df, ).

11



An easy calculation shows that

(Im(dm )iy} = Imp {C. L) C HYC. 2K ).

Limit linear series try to answer questions of the following kind: what happens to a
family of g}'s when a smooth curve specializes to a reducible curve? Limit linear series
solve such problems for a class of reducible curves. those of compact type. A curve C is
of compact tvpe if its dual graph is a tree. A curve C is tree-like if. after deleting edges
leading from a node to itself. the dual graph becomes a tree.

Let C be a smooth curve of genus g and [ = (£.V7) € GL(C). £ € Pic?(C). V" C
H%C. L), and dim(}) = r+1. Fix p € C a point. By ordering the finite set {ord,(7}} ey
one gets the vanishing sequence of | at p:

a(p):0<ay(p)<...<d(p) <d
The ramification sequence of I at p
alp):0<alip) <. <al(p)<d—r

is defined as o!(p) = a!(p) — I and the weight of [ at p is

w'(p) = allp).
=0

A Schubert index of type (r.d) is a sequence of integers 3:0< < ... 5, <d—r. If o

and 3 are Schubert indices of type (r.d) we write o < 3 <= a; < 3;.i =0.... .r. The
point p is said to be a ramification point of [ if w!(p) > 0. The linear series [ is said to
have a cusp at pif o!(p) > (0.1,....1). For C a tree-like curve, p;,... .p, € C smooth
points and a'.... .a" Schubert indices of type (r.d). we define

GyC.(prat).. (pra™) = {1 € GR(C) s al(pr) Z a'.... al(pa) 2 @™}

This scheme can be realized naturally as a determinantal variety and its expected dimen-
sion is

n T

plg.r.d.a' ... a") = plg.r.d) — Z Z a;

=1 ;=0
If C'is a curve of compact type. a crude limit g, on C' is a collection of ordinary linear
series | = {ly € G}(Y) : Y C C is a component}, satisfving the following compatibility
condition: if ¥ and Z are components of C' with {p} =Y N Z. then

a¥ (p) + a2 (p) >d fori=0....r

r—it

If equality holds everywhere. we say that [ is a refined limit gj. The “honest™ linear series
ly € Gh(Y) is called the Y-aspect of the limit linear series /.

12




We will often use the additivity of the Brill-Noether number: if (" is a curve of compact

type. for each component ¥ C C. let gi.... .q, be the points where ¥ meets the other
components of C'. Then for any limit g}, on C we have the following inequality:
plg.r.d) Z p(l (qr). ... .a'v(gy)). (1.6
Yoo

with equality if and only if [ is a refined limit linear series.

It has been proved in [EH1] that limit linear series arise indeed as limits of ordinary
linear series on smooth curves. Suppose we are given a family 7 : C — B of genus g curves,
where B = Spec(R) with R a complete discrete valuation ring. Assume furthermore that
C is a smooth surface and that if 0. ) denote the special and generic point of B respectively,
the central fibre Cj is reduced and of compact type, while the generic geometric fibre C,
is smooth and irreducible. If [, = (£,.V}) is a g on (. there is a canonical way to
associate a crude limit series [y on Cy which is the limit of [, in a natural way: for each
component Y of Cy. there exists a unique line bundle £* on € such that

E}é,, = L, and degz(ﬁ);) =

for any component Z of Cy with Z # Y. (This implies of course that dogy(ﬁ,‘;) =d).
Define V¥ =V, "N HY(C.LY) C H%(C,. L,). Clearly. VY is a free R-module of rank r + 1.
Moreover, the composite homomorphism

VY(0) = (mLY)(0) = H(Co. L}, ) — HO(Y. )

is injective. hence Iy = (L, V¥(0)) is an ordinary gj on Y. One proves that I = {ly :
Y component of Cp} is a limit linear series.

If C is a reducible curve of compact type, [ a limit g}, on C. we say that [ is smoothable
if there exists 7 : C — B a family of curves with central fibre C' = Cy as above, and (£,, V;)
a g} on the generic fibre C,, whose limit on C (in the sense previously descrlbed) is {.
Remark: If a stable curve of compact type C. has no limit g7's. then [C] ¢ Mgd
there exists a smoothable limit g} on C. then [(] € M, od-

Now we explain a criterion due to Eisenbud and Harris (cf. [EHI1]). which gives a
sufficient condition for a limit gj; to be smoothable. Let [ be a limit g on a curve C of
compact type. Fix ¥ C C a component. and {¢;.... .¢s} =¥ N (C' =Y. Let

7:Y—=B. ¢:B—->)Y

be the versal deformation space of (Y.q;....q;). The base B can be viewed as a small
(3g(Y)—3+s)-dimensional polydisk. Using general theory one constructs a proper scheme
over B.

0: Gy (Y/B: (4.0 (g:))i-) = B
whose fibre over each b € B is 07'(b) = GL(Yy. (G:(b). o (g;))i_,). One says that [ is
dimensionally proper with respect to Y. if the Y-aspect [y is contained in some component
G of G)(Y/B:(G.a" (g;))i-,) of the expected dimension. i.e.

dim G =dim B + p(ly. o (q1).. .. a" (g,)).
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One says that [ is dimensionally proper. if it is dimensionally proper with respect to anv
component Y C €. The ‘Regeneration Theorem™ (¢f. [EH1]) states that every dimension-
ally proper limit linear series is smoothable.

The next result is a “strong Brill-Noether Theoremi™. i.e. it not only asserts a Brill-
Noether type statement. but also singles out the locus where rhe statement fails.

Proposition 1.3.2 (Eisenbud-Harris) Let C be a tree-like curve and for any compo-
nent ¥ C C. denote by qi.... .q, € Y the pomnts where Y meets the other components of
C'. Assume that for each Y the following condittons are satisfied:

a. If g(Y ) =1 then s = 1.
b. If g(Y) =2 then s =1 and q 1s not a Weierstrass point.
c. If g(Y) >3 then (Y.qi.... .q,) 15 a general s-pointed curve.

Then for py....py € C general points. p(l.o'(p)).... . al(ps)) > 0 for any limit linear
sertes on C.

Simple examples involving pointed elliptic curves show that the condition plg.r.d) >
Z’:l w!(p;) does not guarantee the existence of a linear series | € G (C) with prescribed
ramification at general points py. pa. ... . py € C. The appropriate condition in the pointed
case can be given in terms of Schubert cycles. Let a = {ag.....a,) be a Schubert index
of tyvpe (r.d) and

C =WoDW,D... D Wy =0

a decreasing flag of linear subspaces. We consider the Schubert cvcle in the Grassmanian.
To={AEGr+1Ld+ 1) dimANW, ) >2r+1—i i=0.....7}.
For a general t-pointed curve (C.p.....p) of genus g. and o'.... .a' Schubert indices

of tvpe (r.d). the necessary and sufficient condition that € has a g} with ramification o’
at p; is that

(Tu] T ﬂo' ' {7?0.1....1) # 0in H*(Gh +Ld+ I)Z) (17)
In the case t = 1 this condition can be made more explicit (cf. [EH3]): a general pointed
curve (C'.p) of genus g carries a g} with ramification sequence (ag.....a,) at p. if and
ouly if
;
Z(o,-&-g—d#rrp <g. (1.8)
i=0

where ro = max{.r.0}. One can make the following simple but nseful observation:
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Proposition 1.3.3 Let (C.p.q) be a general 2-pointed curve of genus g and (ag.... .«
a Schubert inder of type (r.d). Then C has a g having ramification sequence (ag. ... .,
at p and a cusp at q if and only of

r)
)

r

dlai+g+1-d+r), <g+1.
1=0

Proof: The condition for the existence of the g}, with ramification « at p and a cusp at
g is that o, - U(gotl . # 0 (cf. (1.7)). According to the Littlewood-Richardson rule (see

[F]). this is equivalent with >/ _ (e +g+1—d+r); < g+ 1. a

1.4 A few consequences of limit linear series

We investigate the Brill-Noether theory of a 2-pointed elliptic curve (see also [EH4]), and
we prove that .V;d M Ay is irreducible for p(g.7.d) = —1.

Proposition 1.4.1 Let (E.p,q) be a two-pointed elliptic curve. Consider the sequences
a: aqp<a<...a, <d, b: bg<b <...b < d

1. For any linear series | = (L, V) € GI(E) one has that p(l,o'(p).a'(q)) > —r. Further-
more, if p(l.a'(p). o}(g)) < —1. then p — q € Pic’(E) 4s a torsion class.

2. Assume that the sequences a and b satisfy the inequalities: d —1 < a; +b,_, <d, i =
0.....r. Then there exists at most one linear series | € G5(E) such that a'(p) = a and
a'(q) = b. Moreover, there exists eractly one such linear series | = (Og(D).V) with
D € EY9_ if and only if for each i = 0,... 7 the following is satisfied: if a; + b_; = d,
then D ~a; p+b,_; q, and if (a; +1) p+b,_; ¢ ~ D, then a;1 = a; + 1.

Proof: In order to prove 1. it is enough to notice that for dimensional reasons there must
be sections o; € V such that div(e;) > dal(p) p+ al_,(q) q. therefore. al(p) + al_;(g) < d.
By adding up all these inequalities. we get that p(l.o!(p),a!(q)) > —r. Furthermore,
p(l, ol (p), at(q)) < —1 precisely when for at least two values i < j we have equalities
a; + b.; = d. a; + b,_; = d. which means that there are sections o,.0; € V" such that
div(o;) = a; p+b,-; q. div(o;) = a; p+b,_; g. By subtracting. we see that p—¢q € Pic’(E)
is torsion. The second part of the Proposition is in fact Prop.5.2 from [EH4]. m|

Proposition 1.4.2 Let g.r.d be such that p(g.r.d) = —1. Then the intersection .-V;_d N
Ay 1s irreducible.

Proof: Let Y be an irreducible component of ,V;‘dﬁAl. Either YNIntA; # @, hence Y =
Y NIntA,. or Y € A; — IntA,. The second alternative never occurs. Indeed. if ¥ C
A, — IntA). then since codim (Y. M,) = 2. Y must be one of the irreducible components
of A, — IntA;. The components of A| — IntA; correspond to curves with two nodes. We
list these components (see [Ed1]):



e For 1 < j < g —2. 12y, is the closure of the locus in M, whose general point
corresponds to a chain composed of an elliptic curve. a curve of genus g — j — 1. and
a curve of genus j.

o The component Ay,. whose general point corresponds to the union of a smooth
elliptic curve and an irreducible nodal curve of genus ¢ — 2

e The component Ng,_; whose general point corresponds to the union of a smooth
curve of genus g — 1 and an irreducible rational curve.

As the general point of Ay ;. Ny or A, g—115 a tree-like curve which satisfies the conditions
of Prop.1.3.2 1t follows that sU(h a curve satisfies the strong’ Brill-Noether Theorem.
hence A, ; Q gd Do ;(_ M ga and Ao g & \/l .4~ @ contradiction. So. we are left
with the first possﬂnht}. = } NIntA;. We are going to determine the general point
Cle Y NIntA;. Let X = CUE.g(C) = g— 1. E elliptic. ENC = {p} such that X
carries a limit g}. say /. By the additivity of the Brill-Noetlier number. we have:

=1 =plg.r.d) > p(l.C.p)+ p(l. E. p).
Since p(l. E.p) > 0. it follows that p(l.C.p) < —1. 50 w'<(p) > r. Let us denote by
3 Cg,] x C1 — IIIT.AL

the natural map g,i\en by 3([C.pl. [E.q]) = [X := CUE/p ~ q]. We claim that if we choose
X generically, then Qo (p) =0 Ifnot. pis a ba@e point of /- and after removing the base
point we get that [C] € M]_, , . Note that p(g — 1.r.d — 1) = =2, so dim M=
3y — 8 (cf. [Ed2]). If we denote by 7 : Cg—1 — M,y the morphism which forgot% the
point’. we get that

dim 3(z (. My _14-1) X C) =39 — 6 < dim Y-

a contradiction. Hence. for the generic [X] € ¥ we must have af (p) = 0. so alF(p) = d.
Since am elliptic curve cannot have a meromorphic function with a single pole. it follows
that a 71(11) d — 2 and this implies o/ (p) > (0.1.... . 1). i.e. I~ has a cusp at p. Thus.
if we introduce the notation

Coy 01 )y =H{[C.pleCyy - GUC (p (0. 1. 11)) # 0}

th@n Y C 3(Cr_, 0.1, .1) x ;). Ou the other hand. it is known (¢f. [EH2]} that
g—1.4d

Cooi4l0.1.... 1) is irreducible of dimension 3y — 6 (that is. codimension 1 in Co-r). 50

we must have Y}’ HCy 010000 1) x C). which not only proves that \/I ;AL s

irreducible. hut also detemnne% the intersection. a

1.5 The Kodaira dimension of M
In this section we prove that #(\Myy) > 2 and we investigate closely the multicanonical
linear systems on Myy. We now describe the three multicanonical Brill-Noether divisors

from Section 2.
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o . -1
1.5.1 The divisor M;,
There is a stratification of .My given by gonality:
MyCMpC .. C M, C My

For 2 < d < g/2+ 1 one knows that M} = ,M;‘k is an irreducible variety of dimension
2g + 2d — 5. The general point of ,\/I;.d corresponds to a curve having a unique gb.

1.5.2 The divisor /—\4—?7

The Severi variety Vy, of irreducible plane curves of degree d and geometric genus g.
where 0 < g < (dgl). is an irreducible subscheme of PX+3)/2 of dimension 3d + g — 1
(cf. [H]. [Mod]). Inside V4 we consider the open dense subset U, of irreducible plane
curves of degree d having exactly 4 = (dgl) — ¢ nodes and no other singularities. There
is a global normalization map

m:Ugy — M, m([Y]) = [Y]. Y is the normalization of Y.
Whend-2<g < (dgl).d > 3. Uy has the expected number of moduli, i.e.
dim m(Uy,) = min(3g — 3,39 — 3+ plg. 2.d)).
In our case we can summarize this as follows:

Proposition 1.5.1 There is ezactly one component of G2 mapping dominantly to M3,.
The general element (C.1) € G2 corresponds to a curve C of genus 23, together with a
g%, which provides a plane model for C of degree 17 with 97 nodes.

1.5.3 The divisor My,

Here we combine the result of Eisenbud and Harris (see [EH2]) about the uniqueness of
divisorial components of G when p(g.7.d) = —1. with Sernesi's (see [Se2]) which asserts
the existence of components of the Hilbert scheme H,, parametrizing curves in P* of
degree d and genus g with the expected number of moduli. for d =3 < g < 3d—-18.d > 9.

Proposition 1.5.2 There is exactly one component of G5, mapping dominantly to M3
The general point of this component corresponds to a pair (C.l) where C is a curve of
genus 23 and | is a very ample g3;.

, . a1 . w1 52 —3
We are going to prove that the Brill-Noether divisors M,. M, and My, are mutually
distinct.

Theorem 1.2 There exists a smooth curve of genus 23 having a g%;. but no g3y 's. Equiv-
alently. one has supp(Mi) € supp(M3).


http://com.pon.ent

Proof: It suffices to construct a reducible curve .Y of compact type of genus 23. which
has a smoothable limit g7;. but no limit gi,. If /('] € My is a nearby smoothing of X
which preserves the gi.. then [C'] € M. — M3,. Let us consider the following curve:

1%} P2 E

Cy &

AYI:CHUCQUE.

where (Cy, py) and (Ch. po) are general pointed curves of genus 11. E is an elliptic curve.
and p; — ps is a primitive 9-torsion point in Pic(E)

Step 1) There is no limut g3, on X. Assume that [ is a limit 83, on X. By the additivity
of the Brill-Noether number.

=12 plley.pr) + plle,. pa) + pllg. pr.pa).

Since (C. p;) are general points in Cy;. it follows from Prop.1.3.2 that p(le. p,) > 0. hence
plle.pr.p2) < —1. On the other hand p(lg.pi.p) > —3 from Prop.1.4.1.

Denote by {ag.a;, az.as) the vanishing sequence of I at p;. and by (by, by. ba. bs) that
of [ at py. The condition (1.8) for a general pointed curve [(Ci.p;)] € Cyy to possess a g,
with prescribed ramification at the point p, and the compatibility conditions between [,
and [ at p, give that:

(14 —az) + (13 —an)r + (12— ay)s + (11 —ag)y < 11. (1.9)
and

(14 — bg)y + (13— by), + (12 = b)) + (11 — by), < L1. (1.10)
Ist case:  p(lg.py.pa) = —=3. Then a; + by ; = 20, for 7 = 0.... .3 and it immediately
follows that 20(p; — py) ~ 0 in Pic’(E). a contradiction.
2nd case: p(lg.pr.p2) = —2. We have two distinct possibilities here: i) ag + by =

20.ay + by = 20.ay + by = 20.a3 + by = 19. Then it follows that a'* (p;) = (0.9.18.19)
and a'F(py) = (0.2.11.20). while according to (1.9). a3 < 15. (because plle,.p) £1).a
contradiction. 1i) ag + by = 20,a; + by = 20.ay + by = 19. a3 + by = 20. Again, it follows
that as = ag + 18 > 15. a contradiction.

3rd case: p(lgp.pr.p2) = —1. Then p(lc,. pi) = 0 and [ is a refined limit g3;. From (1.9)
and (1.10) we must have: o'(p;) < (11.12.13.14). i = 1. 2. There arc four possibilities: 1)
to+bs = ay+by = 20.a0+b = ag+by = 19. Then o) = ag+9 < 12. 50 by = 20—y > 17.
a contradiction. 1i) ag+b3 = az+ by = 20.a3+b; = as+ by = 19. Then b3 = 20 — ¢y < 14.
50 az = ag +9 > 15. a contradiction. 1ii) ag + by = az + by = 20.a, + by = a» + by = 19,
Then b3 = 19 —ag < 14. 50 ag > ag + 9 > 15. a contradiction. iv) ag+ by = az + by =
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19.ay + by = @y + by = 20. Then by = 19 — ag < 14. 50 ay > a; + 9 > 15. a contradiction
again. We conclude that .\’ has no limit g3;.

Step 2) There exists a smoothable limit g3, on X. hence [X] € ,VfT. We construct
a limit linear series | of type g2- on X. aspect by aspect: on C; take Ic, € G1;(C}) such
that ' (p;) = (4.9.13). Note that in this case 25:0(0j+g—d+ r)y = g.so (1.8) ensures
the existence of such a g2,. On E we take [ = Vg|. where [Vg! C dp+13ps = idpa+13p |
is a g?- with vanishing sequence (4.8.13) at p;. Prop.1.4.1 ensures the existence of such a
linear series. In this way [ is a refined limit g2, on X with p(lc,.p:) = 0. p(lg. p1.p2) = —1.
We prove that [ is dimensionally proper. Let m, : C; = A, p; : A; — C;. be the versal
deformation of [(C;.p;)] € C1y. and o; : GE(Ci/ A (p,. (4.8, 11))) = A; the projection.

Since being general is an open condition. we have that o; is surjective and dim oM (t) =
plle,.pi) = 0. for each t € A,. therefore

dim G&(C,/A;. (pi. (4.8.11))) = dim A, + p(lc,. p:) = 31.

Next. let 7 : C = A, pi.pr : A — C be the versal deformation of (E.p;.ps). We prove
that
dim GZ(C/A. (pi. (4.7.11))) =dim A + p(lg.p1.p2) = 1.

This follows from Prop.1.4.1, since a 2-pointed elliptic curve (E;. p;(t). p2(t)) has at most
one g7, with ramification (4,7,11) at both p(¢) and po(t), and exactly one when 9(p () —
P2(t)) ~ 0. Hence ImGZ (C/A. (py. (4.7.11))) = {t € A : 9(pa(t) — palt)) ~ 0 in Pic’(Ey}}.
which is a divisor on A, so the claim follows and [ is a dimensionaily proper g,. a

A slight variation of the previous argument gives us:
Proposition 1.5.3 We have supp(.Vf7 NA) # supp(,fvgo NAL).

Proof: We construct a curve [Y] € A} C M3 which has a smoothable limit g2, but no
limit g3,. Let us consider the following curve:
E » P2

E, u
Ch Cy
Y I:C1UC2UE1UE.

where {Cy. po) is a general point of Cy;. (C.py.r) is a general 2-pointed curve of genus
10. (Ey. 1) is general in Cy. E is an elliptic curve. and p; — ps € Pic’(E) is a primitive
9-torsion. In order to prove that ¥ has no limit gj,. one just has to take into account that
according to Prop.1.3.3. the condition for a general 1-pointed curve (C. z) of genus g. to
have a g}, with ramification a at z is the same with the condition for a general 2-pointed
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curve (D.r.y) of genus g — 1 to have a g} with ramification a at r and a cusp at y.
Therefore we can repeat what we did in the proof of Theorem 1.2. Next. we construct /.
a smoothable limit g3- on Y take I, € G2(Co. (po. (4.8.11))).1p = 15 C Ap + 13p,.
with a!F(p,) = (4.7.11). on E| take I, = 14r + 3.1 .. and finally on €'y take I, such that
alci(p)) = (4.8. 11) aler(r) = (0.0.1). Prop.1.3.3 ensures the existence of lc,. Clearly. !
is a refined limit g3, and the proof that it is smoothable is all but identical to the one in
the last part of Theorem 1.2. O
The other cases are settled by the following:

Theorem 1.3 There exists a smooz‘h curve of genus 23 haz'mg a gi, but haumg no gi-
nor g3y Equivalently. supp(M},) € supp(M3;) and supp(ML,) € supp(.M3,).

Proof: We take the curve considered in [EH3]:

P P2 E

4 ',

Y :C1UC2UE

where (C,.p;) are general points of Cy;. E is elliptic and p, — py € Pic®(E) is a primitive
12-torsion. Clearly Y has a (smoothable) limit gl,: on C; take the pencil |12p,!. while on
E take the pencil spanned by 12p; and 12p,. It is proved in [EH3] that ¥ has no limit
gi;’s and similarly one can prove that ¥ has no limit g5, s either. We omit the details.O

Now we are going to prove that equation (1.2)
supp(Mi,) Nsupp(M3;) = supp((MZ)N supp(.M3,) = supp(.M3,) N supp(M1,)

is impossible. and as explained before. this will imply that x{.Ms3) > 2. The main step
in this direction is the following:

Proposition 1.5.4 There exists a stable curve of compact type of genus 23 which has a
smoothable imit g3,. a smoothable limit g3- (therefore also a @3- ). but has generic gonality.
that is. it does not have any limit gl.,.

Intermezzo: Before proceeding with the proof let us discuss a possible way to construct
curves of genus 23 with such special Brill-Noether properties. Since we are looking for
curves C' of genus 23 with a gi;. a possibility is to start with a (smooth) plane curve
I' C P? of degree d < 15 and obtain €' from T by several geometrical operations. We take
[ C P? smooth of degree d and pick general points pr.g, € I, for 1 < i < 6.

Let us denote by C' the curve obtained from I' by identifying p; and ¢; and by v : T — C
the normalization map. hence v(p;) = v(g,) = s, for 1 <i < 4. There exists a generalized
g2, on the integral curve ¢ which corresponds to a torsion-free rank one sheaf on C.
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Note that since C is irreducible the variety of torsion-free rank one sheaves on Cisa
compactification of Pic(C). The generalized g_j; is obtained from the (unique) gionl
by adding the nodes s; as base points. hence we have that v*(g3. ;) = 820+ )
Using results from [Ta] it is not difficult to show that the g5, ; on C' is smoothable.
that is, [C] € \/I |d-5- BY solving the equations d + 4 = 15 and (17') +6 =23 we
get d = 7T and § = 8 so we could start with a smooth plane septic T’ C P? and identify
8 pairs of general points p;.q; € I'. i = 1.....8. The resulting curve C'. of genus 23. will
have a smoothable g2, Letting the points p;. ¢; come together in pairs, we obtain a curve
of genus 23 with 8 cusps. From the point of view of the Stable Reduction Theorem (see
[Mod]) this is the same as attaching & elliptic tails to [" at the cusps.

Proof We shall consider the following stable curve X of genus 23:
r Py P | s

|

E, Ey, = Es

X:=[UE U...UEs.

where the E,'s are elliptic curves, I' C P? is a general smooth plane septic and the points

of attachment {p;} = T'U E; are general points of T'.

Step 1) There is no limit g}, on X. Assume that ! is a limit g}, on X. Since the

elliptic curves E; cannot have meromorphic functions with a single pole. we have that
a'®i(p;) < (10,12), hence o' (p,) > (0.1). that is. Ir has a cusp at p; for i =1,... . 8. We

now prove that T' has no gl,’s with cusps at the points p;.

First, we notice that dim G},(I') = p(15,1,12) = 7. Indeed, if we assume that
dim Gl,(I') > 8, by applying Keem's Theorem (cf. [ACGH], p.200) we would get that
[ possesses a g;. which is impossible since gon(I") = 6. (In general, if Y C P is a smooth
plane curve, deg(Y') = d, then gon (Y) = d — 1. and the g;_, computing the gonality is
cut out by the lines passing through a point p € Y. see [ACGH].) Next. we define the
variety

c={{laq..... gs) € GL(T) x [®:al(g) > (0.1).i=1.... .8}

and denote by 7 : © — Gl,(I') and 7, : & — T'® the two projections. For any [ € G1,(I').
the fibre 7, !(1) is finite. hence dim 3 = dim G1,(T') = 7. which shows that 7, cannot be
surjective and this proves our claim.

Step 2) There exists a smoothable limit g3; on X. hence [X] € \/l10 Ve construct [. a
limit g2, on X as follows: on T there is a (unique) g2. and we consider Ir = g2(pi+- - - +ps).
i.e. the I'— aspect Iy is obtained from the g2 by adding the base points py. ... .ps. Clearly
dt(p;) = (1.2.3) for each i. On E; we take lg, = g2(12p;) for i = 1.... .8. where g} is a
complete linear series of the form 2p; + r;|. with x; € E, — {p,}. Furthermore. a'Fp) =
(12.13.14). so | = {Ir.lg} is a refined limit g%, on X. One sees that p{lg,.a'% (p;)) =
1 for all i. plir.a' (p1).....a'"(pg)) = —15. and p(l) = —7. We now prove that [ is
dimensionally proper.




Let 7; : C; — A 1), : _\ — C; be the versal deformation space of (E,. p;). for

GElC /A (5, (12.12.12))) = G3(C /A, (py. 0)).

If 0, : G3(C;/A;. (5i.0)) — A, is the natural projection. then for each t € A;. the fibre

(7171(1‘) is isomorphic to 7, (#). the isomorphisin being given by

7 M) S g 2Dt +q € G ().

Thus. G5(C;/ A, (5,.0)) is a smooth irreducible surface. which shows that / is dimensionally
proper w.r.t. Ej. Next. let us consider 7 : X — A. ..., .ps © A — X. the versal
deformation of (. py.... .pg). We have to prove that

dim GE (X /A (i (1.1.1))) = dim A + p(lp.a'T(p;)) = 35.
There is an isomorphism over A,
GilX /A (B (L1 1)) = GHLY /A (5,.0)).

If mp : € — M is the versal deformation space of I, then we denote by Gz — M the
scheme parametrizing g#'s on curves of genus 15 mearby’ T' (See Section 1.3 for this
notation). Clearly GZ(A'/A.(5;.0)) =~ GZ x 44 A, 50 it suffices to prove that G2 has the
expected dimension at the point (T, g2). For this we use Prop.1.3.1. We have that Npjpe =
Or(7). Kt = Or(4). hence

HYT.Npjpe) = HYT.Op(=3))Y = 0.
so I is dimensionally proper w.r.t. I' as well. We conclude that 7 is smoothable.

Step 3) There exusts a smoothable limit gy, on X. that s [X] € T/Ijo First we no-
tice that there is an isomorphism I' = GE(T). given hy

'3 p—igs —pl e GyT).

Consequently. there is a 2-dimensional family of gf,’s on T of the form g}, = g} + b =
1292 —p—q . where p.g € F. Pick lo = I +15. with Ij. 1§ € GLHE). a general g, of this type.
We construct /. a limit g3, on X as follows: the -aspect is given by I} = ly(pr+ - pw). and
because of the generality of the chosen Iy we have that p(lr.a/m(p). ... .ol (pg)) = =9.
The Ej-aspect is given by [, = g}(16p;). where g} = 3p, + ;' with x; € E; — {p;}. for
{=1.....8 Itis clear that p(Ig, a5 (p;)) = 1 and that I = {I;.1g,} is a refined limit g3,
on X.

In order to prove that ' is dimensionally proper. we first notice that ' is dimensionally
proper w.r.t. the elliptic tails E,. We now prove that I’ is dimensionally proper w.r.t. I'. As
in the previous step. we consider 7 : 4 =+ A pr.... s 0 A = X the versal deformation
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of (.p1.....pg) and 7y : C — .M. the versal deformation space of I'. There is an
isomorphism over A

Gao (X /A (Pr.al™(pr). ... (Pa.aT(ps))) = GL{C/ M) Xy A

It suffices to prove that G3, = G3,(C/.M) has a component of the expected dimension
passing through (I'.lp). In this way. the genus 23 problem is turned into a deformation
theoretic problem in genus 15. Denote as usual by ¢ : G3, — .M the natural projection.
According to Prop.1.3.1 it will be enough to exhibit an element (C.1) € GJ;. sitting in the
same component as (I'.ly). such that the linear system [ is base point free and simple.
and if 0, : C — P? is the map induced by [, then H'(C.N,,) = 0. Certainly we cannot
take (' to be a smooth plane septic because in this case H'(C, N,,) # 0, as one can easily
see. Instead. we consider the 6-gonal locus in a neighbourhood of the point [I'] € M,
or equivalently, the 6-gonal locus in M, the versal deformation space of I'. One has
the projection G& — M and the scheme G; is smooth (and irreducible) of dimension
37(=2g+2d—5.¢9g=15.d=6). We denote by

tGe xam Gy — M. p([C.1L1)y = [C]
There is a stratification of M given by the number of pencils: for i > 0 we define,

M(i)? = {[C] € M : C possesses i mutually independent, base-point-free gg's }.

and M(i) := M(i)0. The strata M(i)° are constructible subsets of M. the first stra-
tum M(1) = Im (G}) is just the 6-gonal locus: the stratum M(2) is irreducible and
dim M(2) = g +4d — 7 = 32 (cf. [AC1]). We denote by M. = m(Uz15) N M the
closure of the locus of smooth plane septics in M, and by My := m(Us15) N M the
closure of the locus of curves which are normalizations of plane octics with 6 nodes. Since
the Severi varieties U7 1; and Ug 5 are irreducible, so are the loci M., and M. Fur-
thermore dim M., = 27 and dim M, = 30. We prove that M., C M. Indeed, let
us pick Y C P? a smooth plane septic, and L C P? a general line. L -Y = p; +--- + pr.
Denote Z := C UL, deg (Z) = 8.p,(Z) = 21. We consider the node p; unassigned. while
D1.-..pe are assigned. By using [Ta] Theorem 2.13. there exists a flat family of plane
curves 7 : 2 — B and a point 0 € B. such that Z; = #*(0) = Z. while for 0 # b € B.
the fibre Z, is an irreducible octic with nodes p;(b)....ps(b). and such that p,(b) — pi.
when b — 0. fori =1.....6. If 2’ — B is the family resulting bv normalizing the surface
Z.and n: 2" — B is the stable family associated to the semistable family Z" — B. then
we get that n7'(0) = Y. while n7'(b) is the normalization of Z, for b # 0. This proves
our contention.

Since M, is irreducible there is a component A of G} x 44 G¢. such that p(A) D M.
The general point of A corresponds to a curve C' and two base-point-free pencils I'. 1" €
GL(C) such that if f':C —P' and f":C — P! are the corresponding morphisms. then

o=(f. " :C =P xP
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is birational. Since T] € pr(.4) we can assume that [[.70. 7)) € A, As a matter of fact. we

can start the construction of a limit g3y on the genus 23 curve N =T U E| © ... J Ex. by
taking any pair (/). 0§) € G}T') x Gy(T'). such that dim /[, = 17 = 3. the argument does
not change.

We denote by 0 A = G, the map given by n(C. 1" == (C. ' = 1"). The fact that

n maps to G, follows from the base-point-free-pencil-trick.

We are going to show that given a general point €] € M, and (C.1.0") € ' C)).
the condition H'(C'. N,,;) = 0 is satisfied. hence G?, is smooth of the expected dimension
at the point (C./+7"). This will prove the existence of 4 component of G}, passing through
(I'.7y) and having the expected dimension. We take C' C P?. a general point of Uy 5. with
nodes py.....ps € P? in general position. Theorem 3.2 from [AC1] ensures that there
exists a plane octic having 6 prescribed nodes in general position. Let v : ¢ — C be
the normalization map. v 'p;) = ¢/ + ¢ for i = 1.... .6. Choose two nodes. sav p, and
po- and denote by g = [H — ¢} — ¢}l and b} = H — ¢, — ¢ . the linear series obtained
by projecting C from py and p, respectivelv. Here H € 17 Ope(1) is an arbitrary line
section of ("o The morphism induced by (g§. hg) is denoted by o+ ¢ — P x P! and
o =500 : (" = P owith s : P! x P! = P? the Segre embedding. There i an exact
sequence over (7

00— Ny — Ny, — 0" Norgzims — (), {1.11)

We can argue as in [AC2] p.473. that for a general (C.gl. b}) with [C'] € M,.. we have
RYC.N,) = 0. Indeed. let us denote by Ag the open set of A corresponding to points
(XN.L) such that \ @ X — P! x Pl the morphism associated to the pair of pencils
(1.1} is birational. and by ¢ C Ay the variety of those points (X.1.1") € Ay such that
H'(X.N,) # 0. Define

Vis{or = (N FF) (XN U)elU. Fis aframe for I, F'is a frame for I'}.

We may assume that for a generic r € U. the corresponding pencils 1 and / are base-
point-free. Suppose that i has a component of dimension a. For anv € V.

T.(V)C HY(X. N and dim T(V) > o+ 2 dim PGL{2) = a + 6.

If A\ is the cuspidal sheaf of \ and N = N /A then according to {ACT] Lenima 1.4
for a general point . € V one has that.

T.(V) N HY(X.Ky) = 0.

from which it follows that o < g — 6. If not. one would have that A*( X N)Zzg+ 1
and therefore by Clifford’s Theorem. h'(X..N|) = h'(X. N = 0. which contradicts the
definition of I{. Since clearly dim M,y > g — 6. we can assume that A'(C.N,) = 0. for
the general ('] € M, Therefore. by taking cohomology in (1.11}. we get that

HYC. N, ) = HYC.O(2)).
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where O¢-(1) = 070=3(1). By Serre duality.

HYC.0c(2)) =0 <= K¢ —2g5 — 20} =0.

.. . - 6 . .
Since K¢ =5H — > _)_ (¢ + ¢). equation (1.12) becomes

t
How g = dy+ gl — Y )~ ) =0, (113)
1=3

If L =pps C P2 owecan write (L) = ¢l + ¢l +¢h+¢) +r+y+ >+t and (1.13) is

rewritten as
6

2H—.1'—y—:—t—Z(qf+(1:’) = 0.
=3

So. one has to show that there are no conics passing through the nodes ps.py.ps and
pe and also through the points in L - C — 2p; — 2py. Because [C] € Uy5 is general we
may assume that r.y.z and t are distinct. smooth points of C. Indeed. if the divisor
r+y+z+ton C does not consist of distinct points. or one of its points is a node. we
obtain that C has intersection number & with the line L at 5 points or less. But according
to [DH]. the locus in the Severi variety

{[X] € Ugy - X has total intersection number m + 3 with a line at m points }

is a divisor on Ugy, 50 we may assume that (] lies outside this divisor. Now. if x.y.z
and t are distinct and smooth points of C. a conic satisfving (1.13) would necessarily
be a degenerate one. and one gets a contradiction with the assumption that the nodes
P1.....pg of C are in general position. O
Remark: We have a nice geometric characterization of some of the strata M,. First.
by using Zariski's Main Theorem for the birational projection G; — M(1). one sees
that [C] € M(1)4, if and only if either [('] € M(2)". or (" possesses a gy such that
dim 12gt > 3. In the latter case. the g} is a specialization of 2 different gi's in some
family of curves. hence M(2) = M(1)4,, (cf [Co2]). As a matter of fact. Coppens has
proved that for 4 < k < [(g+ 1)/2} and 8 < g < (k — 1)%. there exists a h-gonal curve of
genus g carrving exactly 2 linear series gi. so the general point of M(2) corresponds to a
curve (' of genus 15. having exactly 2 base-point-free gt's. Furthermore. using Coppens’
classification of curves having many pencils computing the gonality (see [Col]). we have
that M(6) = M. and M(i) = M. for each 1 > 7.

Now we are in a position to complete the proof of Theorem 1.1:

Proof of Theorem 1.1 According to (1.2). it will suffice to prove that there exists a smooth
curve 'Y] € My which carries a g3, a g3 but haslo g1,'s Inthe pm”fif,,ljmli“?A we
constructed a stable curve of compact type [X] € Moy such that [X] € M- 1 .M, but
[(X] ¢ V:_) If we prove that [X] € .M?. ~ M3, that is. there are smoothings of X which
preserve hoth the g2- and the gfgo. we are done. One can write ﬂf, ﬁ,Vﬁo =Y ... JY,.
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where Y; are irreducible codimension 2 subvarieties of My;. Assume that Xle V. If
Yi N My # 0. then [X] € Y7 =110 .My C© ME N M3, and the conclusion follows.
So we may assume that ¥; C .M,z — My, Because [X] € A} — Uj¢1 A,. we must have

-2 3 .
Y C A It follows that M- N A, and M,y N AI have }] as a common component.
Accmdinv to Prop. 14 2. both intersections \/1 -MA; and Mzo N A, are irreducible.

hence \/Il, NA = \/(20 M A; = Y. which contradl(ts Prop. 1.5.3. Theorem 1.1 now
follows. |

1.6 The slope conjecture and Mo

In this final section we explain how the slope conjecture in the context of Mss implies
that x(Myps) = 2, and then we present evidence for this.
The slope of M, is defined as s, :=inf {ad € R.¢ : aX — 4 # 0}, where d =6y + 6, +
"+ g A € Pic(My) =R Slme A is big. it follows that s, < >x. If E is the cone of
effe(tlw divisors in Dl\( M,) = R, we define the slope fun(flon 5:E — R by the formula

/2
spi=inf {a/b:a.b > 0such that 3¢; > 0 with [D] = a) - bd — Z(‘,-d,-}.
=0

for an effective divisor D on V Clearly sy < sp forany D € E. When g+11is composite
we obtain the estimate s, < 6+12/(g+ 1) by using the Brill-Noether divisors Mg 4+ With

plg.r.d) =

Conjecture 1 ([HMo]) We have that s, > 6 +12/(g + 1) for each g > 3. with equality
when g + 1 is composite.

Harris and Morrison also stated (in a somewhat vague form) that for composite g+ 1, the
Brill-Noether divisors not only minimize the slope among all effective divisors, but thev
also single out those irreducible D € E with s = s,.

The slope conjecture has been proved for 3 < g < 11.¢ # 10 (cf. [HMo]. [CR3.4].
{Tan]). A strong form of the conjecture holds for g = 3 and ¢ = 3: on Mj the only
irreducible divisor of slope s3 = 9 is the hyperelliptic divisor. while on Mj; the onlv
irreducible divisor of slope s5 = 8 is the trigonal divisor {¢f. [HMo]). Conjecture 1 would
imply that #(M,) = — for all ¢ < 22. For ¢ = 23. we rewrite (1.1) as

. 23— -4y
Hf\:w:(% d[\/t +8nol+z 0 )7?»01' (n>1). (1.14)

(see Section 1.2 for the coefficients ¢,,4). As Harris and Morrison suggest. we can ask
the question whether the class of any D € E with sp = s, is (modulo a sum of boundary
components A, ) proportional to M3, ]. and whether the sections defining (multiples of)

il
M., , form a maximal algebraically independent subset of the canonical ring R({_Maq).
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If so. it would mean that the boundary divisor Snd; + (1/2) Z:izmi(?l} — i) — 14, is
a fixed part of nhg,, . Moreover. using our independence result for the three Brill-

Noether divisors. it would follow that A% M.s. nhy,,) grows quadraticallv in ». for n
sufficiently high and sufficiently divisible, hence #{.Muy) = 2. We would also have that
YN My = ML ML N ML with © the common base Jocus of all the linear systems
Nk g, -

Evidence for these facts is of various sorts: first. one knows (cf. Tan]. {CR3}) that
Ky, has alarge fixed part in the boundary: for each n > 1. every divisor in nh,,
nust contain A, with multiplicity 160 when i = 1. 192 when ¢ = 20 and (21 — /)n for
i = 3.....90r 11. The results for A, and A, are optimal siuce these multiplicities
coincide with those in (1.14). Note that [A] = 24;.

Next. one can show that certain geometric loci in .My which are contained in all
three Brill-Noether divisors, are contained in ¥ as well. The method is based on the
trivial observation that for a family f: X" — B of stable curves of genus 23 with smooth
general member. if B.K,, < 0 {or equivalently. slope{ X/B) = d5/Ap > 13/2). then
olB) C X, where 0 : B — Moy, 0(b) = [\}]. 1s the assoctated moduli map. We have that:
e One can fill up the d-gonal locus ,V}, with families [ : X — B of stable curves of genus
g such that slope(X/B) is 8+ 4/¢ in the hyperelliptic case. > 7+ 6/¢ in the trigonal and
> 6+ 12/(g + 1) in the tetragonal case (¢f. [Sta]). For ¢ = 23 it follows that M| C &,
Note that this result is not optimal if we believe the slope conjecture since we know that
ML C ML, N M0 M3 (The inclusion M} C Mg is a particular case of a result from
[CM])

e We take a pencil of nodal plane curves of degree d with f assigned nodes in general
position such that (d;l) — f = 23. and with & base points. where 4f +b = . After
blowing-up the base points. we have a pencil ¥ — P! with fibre [})] € Vj For this
pencil Azt = \(Oy) + 23 —1 = 23 and d=1 = »(Y) + 883 = 91 + b+ f. The condition
8p1/As1 > 13/2 is satisfied precisely when ¢ < 10. hence taking into account that such
peneils fill up M2 we obtain that M3, C Y. Note that M7, C M. and as mentioned
above. the 8-gonal locus is contained in the intersection of the Brill-Noether divisors.

o [n a similar fashion we can prove that Mays . (2], the locus of curves of genus 23 which
are double coverings of curves of genus ~ is contained in ¥ for ~ < 5.

The fact that the slopes of other divisors on Moy (or on .Vg for arbitrary g) cousisting
of curves with special geometric characterization. arve larger than 6 — 12/(g + 1). lends
further support to the slope hypothesis. In another paper we will compute the class of
other divisors on Mas: the closure in “Myy of the locus

{IC'] € Mz : C possesses a g, with two different triple points}.
and the closure of the locus
{i[C] € Myy: C lias a g2y with a 5-fold point. i.e. =D € % such that gi,(=D) = gy, }.

In each case we will show that the slope extimate holds.







Chapter 2

The geography of Brill-Noether loci
in the moduli space of curves

2.1 Introduction

We start by explaining the meaning of the word ‘geography’ from the title of this chapter.
Many papers have been published where people studied the geography of certain mathe-
matical objects (e.g. surfaces), meaning that they looked at them from the point of view
of a naturalist. Our understanding of the term ‘geography’ is rather different: we study
the position of the Brill-Noether loci Mj , = {[C] € M, : C carries a g3} on the ‘map’
of the moduli space of curves. We compare different Brill-Noether loci. look whether
they meet transversally (or are in general relative position) inside Mg, or describe their
position with respect to other distinguished loci in M, (e.g. loci of curves sitting on
certain surfaces). In most cases we prove that two such loci in M, are as transversal (or
intersect as properly) as possible, unless there are some obvious containment relations.
The general philosophy is that there are no ways (except the obvious ones) to construct
linear series on curves with specific properties.

This chapter consists of relatively independent sections. After Section 2.1 in which
we set up the necessary techniques. we ask in Section 2.3 whether the only constraints
on the possible g}}’s on a general k-gonal curve C' of genus g are related to the gi on C
(as it is the case for hyperelliptic and trigonal curves). We prove that a general k-gonal
curves C of genus g. where k is rather high with respect to g. has no other linear series
with negative Brill-Noether number except g; and |K¢c — gi|. In Section 2.4 we show
that by imposing two distinct conditions on a curve C of genus g (the existence of a
pencil g; and of an embedding C' C P" of degree d. where r > 3 and plg.r.d)=—1), we
bring down accordingly the number of moduli such curves depend on. Section 2.5 deals
with the problem of computing the gonality of space curves: we show that for a wide
range of d and g such that p(g.3.d) < 0 one can find smooth curves C' C P? of degree
d and genus ¢ which fill up a component of the Hilbert scheme Hilb,,; and for which
gon(C') = min([(g+3)/2].d—4): if d—4 < [(g+3)/2]. every pencil computing the gonality
is given by the planes through a 4-secant line to C'. Finally. in Section 2.6 we ask what
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kind of surfaces can contain a Brill-Noether general curve.

2.2 Deformations of maps and smoothing of algebraic
space curves

We review some facts about deformations of maps and smoothing of reducible. nodal
curves in P’ These techniques together with the theory of limit linear series already
discussed in the previous chapter will be our main tools throughout this chapter. We
start by describing the deformation theory of maps hetween (possibly singular) complex
algebraic varieties. Our main reference is [Ran] (certain aspects of the theorv are well
treated in [Mod] as well).

Let f ¢ X — Y be a morphisin between complex projective varieties. We denote
by Def(X. f.}7) the space of first-order deformations of the map f. while the space of
first-order deformations of X (resp. Y} is denoted by Def{ X'} (resp. Def(})). The
standard identification Def(.X') = Ext'(Qy.Oy) is obtained by associating to any first-

order deformation X of X the class of the extension
00— 0y — Q¢ 20y — Oy — 0.
The deformation space Def(X. f.Y) fits in the following exact sequence:
Home, (f*y. Ox) — Del(X. f.Y) — Def(X) = Def(Y) — Ext}(Qy. Ox). (2.1)

The second arrow is given by the natural forgetful maps. the space Home, (f*Qy. Ox) =
HY(X. f*Ty) parametrizes first-order deformations of f : X — Y when both X and Y’
are fixed. while for A. B. respectively Oy and Oy -modules. Ext’s(B. A) denotes the de-
rived functor of Homy(B. A) = Home, (f*B.A) = Home,. (B. f.A). Under reasonable
assumptions {trivially satisfied when f is a finite map between nodal curves) one has that
Ext}(Qy.(.’)X) = Ext'(f*Qy. Oy). Using (2.1) it follows that when X is smooth and
irreducible and Y is rigid (e.g. a product of projective spaces) Def( X, £.Y) = H(X. Ny
with Ny the normal sheaf of the map f (see Chapter 1 for the definition).

Next. we recount some hasic facts about moduli spaces of maps from curves to pro-
Jective varieties. For Y a smooth. projective variety and 3 € H,(}Y.7). one can consider
the Kontsevich moduli space M (Y. 3) of stable maps f : € — Y from reduced. con-
nected. nodal curves of genus g to Y. such that f({C']) = .3 (see [FP] for the construc-
tion of these modull spaces). If f ¢ — Y is a point of M,{}. 3) with C sumootl.
deg(f) = 1 and f has no cusps (i.e. it is an immersion}. then by Riemann-Roch
VCNp) = dim{(Y) (1 - ¢) + 39 =3~ 3 Ay, Because Tip (MY, 5)) = HY(C.Ny).

the number

dm(Y) (1 —¢g)+39g—3—7- Ry
is called the expected dimension of the Kontsevich moduli space. If there exists a point
Sl e MY 3 with € smooth. deg(f) = 1 and H'(C.N;) = 0. then every class in
HO(C.Ny) is unobstructed. fis an immersion (cf. [AC1] Lemma 1.4) and M, (Y. 9) is
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smooth of the expected dimension at the point [f]. An irreducible component of MY 3)
which has the expected dimension and is generically smooth. is said to be regular.

We now describe a few smoothing techniques of algebraic curves in PT.r > 3 (cf.
[HH]. [Se2]). Let X be a nodal curve in P". with p,(X) = g.deg(X) = d. We say that X
is smoothable in P if there exists a flat family of curves {X,} in P" over a smooth and
irreducible base. with the general fibre X, smooth while the special fibre Xg is X. In other
words. if Hilby,, denotes the Hilbert scheme of curves in P" of degree d and (arithmetic)
genus ¢. then X is smoothable in P" if and only if the point [X] belongs to a component
of Hilby g, whose general member corresponds to a smooth curve.

For X C P a nodal curve with normal sheaf Ny = Ny,»-. one has the exact sequence

0— T,\’ — T}:r (9,\ — ‘\’A,\' — T)l& — 0.

where T} is the Lichtenbaum-Schlessinger cotangent sheaf based on Sing(.X) and which
describes deformations of the nodes of X. The basic smoothing criterion is the following
result of Hartshorne and Hirschowitz:

Proposition 2.2.1 Let X C P’ be a nodal curve. Assume H'(X.Nx) = 0 and that
for each p € Sing(X). the map H*(X.Nx) — HO(TJ\»p) is surjective (that is, non-zero).
Then X is smoothable in PT and the Hilbert scheme is smooth of the erpected dimension
VX Ny)=(r+1)d~ (r—3){g—1) at the point [X].

We will be interested in smoothing curves X C P™ which are unions of two curves C and E
meeting quasi-transversally at a finite set A. For such a curve one has the Mayer-Vietoris
sequence

00— Ox — O¢c =0 — Oa — 0. (2~2)

as well as the exact sequences

00— Op(—A) — Ox — Oc — 0. (2.3)
and
00— Qp —wy — Qe(A) — 0. (2.4)
where wy is the dualizing sheaf of X. We will also need the following results:
Proposition 2.2.2 Let C' C P be a smooth curve with H'(C. N¢) = 0.

1. (Sernesi) Let H C P" be a hyperplane transversal to ¢ and Q@ C H a smooth.
irreducible. rational curve of degree r — 1 meeting C quasi-transversally m <r + 2
points. Then X = C' U Q is stoothable and H'(X. Nx) = 0.
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2. (Ballwo-Ellia) Let py.... . proo € C be r =2 points i general Lnear position and
E C P a smooth rational curve of degree rowhich meets C quasi-transcersally at
Pio-opren. Then X = C L FE 15 smoothable and HY(X. Ny} = 0.

A (Ballico-Ellia) Assume v =3 and let L CP* be a line mecting C quasi-transeersally
at k < 3 points. If k = 3 assume vfrufh(?mn/r that not all tangent lines to C at
the pomts in L OVC lie wn the same plane. Then X = C O L s smoothable and
HY YN . Ny)=0.

2.3 Linear series on k-gonal curves

For a smooth curve € of genus g one defines the gonality sequence (dy.da. ... do. ...
by dyi=min{d €Z., :d < g—1.3ag,onC}. This sequence is strictly increasing and
clearly d, < rd,. The first term o) i just the gonality of C. while obvionsly d, = ¢ + r
for r > g. 50 we will restrict ourselves to the first ¢ — 1 terms of the sequence. The Brill-
Noether Theorem tells us that o, < 'rig—r~2)/(r + 1)} and we have equality when (" is
a general curve of genus g The terms of the gonality sequence can be easily computed for
various classes of curves (hyperelliptic. trigonal. smooth plane curves). In order to find
the d. s for a curve €Ut suffices to look only at the ser of linear series

C)={D :DeDiv(C).deg(D} < g—1.0°D)>2.h'(D)>2}.

This is because any gj with d > 2¢— 1 is non-special. hence r = d — g. while for d < 2¢ -2
by interchanging if necessary g by K¢ — g} . we land eventually in the range d < ¢ — 1.

We would like to determine the sequence (dy.dy.... ) for a general k-gonal curve of
genus g when b < (g +2)/2 (i.e. plg.1.4) < 0). Coppens and Martens (¢f. [CM]) have
investigated how the existence of a g} on a curve C can be used to produce special linear
series on (7 with negative Brill-Noether number (i.e. the ones vou cannot expect to find
on a general curve of genus g). Under certain numerical constraints. a general k-gonal

curve €7 of genus g carries linear series g, = (r — figi + F (which we shall call Segre
linear series. see the motivation below). where 0 < f < F — 2 and F € Div((). E >
(. For r = 2 one recovers a famous resnlt of Benjamino Segre (see (ACL): A general

nonhyperelliptic A-gonal curve €' of genus ¢ has a linear series g5 = gy + £ with £ >0,
when d > (g+k+21/2. and which provides a plane model T of ¢ with an ordinary (f = k)-
fold singularity p and nodes as orher =ingularities. The original g, can be retrieved by
projecting I" from /1 When r = 3 and £ > 4. a general A-gonal curve of genus ¢ has a
linear series g} = g, + £ when d > (2g+£ +6)/3. Thus for a general I('] € \/I‘,1 one has
that dy(C) < (g +h = 3)/2] and d3(C) < (29 + b +%)/3] and we expect to haw equality
in the case when the Segre linear series lave negative Brill-Noether number. This would
certainly he the case if the following two expectations were trie:

o o) Fora general ('] € \/(l i- the Segre linear series are of minimal degree among
those g, = D € S5(C) for \\111(11 D — g} # 0. (This is known to be true at least
when r= 2 and 2k > lig + & + 3)/2|. see [CKM] Proposition 1.1).
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e 3)If g € S(C) and gd —g5i = 0. then p(g.r.d) > 0. (This holds when r = 1 (cf.
[AC1]) and for k < 4 (cf. [CM])).

We are going to prove that these expectations hold in the case when the curve C is of
relatively high gonality (but still non-generic):

Theorem 2.1 Let g and k be positive integers such that —3 < p(g.1.k) < 0. Assume
furhermore that k > 6 when p(g.1. k) = —3. Then a general k-gonal curve of genus g has
no gl 's with negative Brill-Noether number except g and K¢ — g;|. In other words. the
k-gonal locus ,\/I;.k is not contained in any other proper Bridl-Noether locus My ;.

Remark: A general k-gonal curve of genus g with p(g. 1.k) < 0 has a unique pencil g
(cf. [AC1]) so there is no ambiguity when we speak of “the g} of a general k-gonal curve”.

Proof: We will make use of the theory of limit linear series. In each case we construct
k-gonal curves of compact type that do not possess any limit g with » > 2.d < g -1
and p(g.r.d) < 0. Using the fact that the k-gonal locus .M;‘k is irreducible we obtain the
conclusion for a general [C] € M,

The case p(g.1. k) = —1 (v»hen \/11 & Is an irreducible divisor in Mg} is settled using
the curves constructed in the proof of Theorem 1.2. Since the proof goes along the same
lines we skip the details.

Assume now that p(g.1. k) = —2. Because any component of My ; has codimension
> 3 when p(g.r.d) < —3 (cf. [Ed2]). it suffices to construct a k- gonal curve of genus g
having no g's when p(g.r.d) € {—1. -2}

Let us consider the following curve of genus 2k,

E_/, y E;

4 Cs

X IIC1UCQUE1UE2.

where (C1.x) and (Cy. y) are general pointed curves of genus & — 1. E, are elliptic curves
and r—p e Pic?(E}) is a primitive k-torsion as it is p—y € Pic”(Ey). It is straightforward
to construct a limit g, on X: on C} take the pencil [kr . on Cy take the pencil ky|. on
E| the pencil {kr.kp). spanned by kr and kp. while on E, the pencil (kp. ky).

Assume now that there is a limit g} on X. say [. with r > 2.d < 2k —1 and p(g.r.d) <0
From (1.6). we have that

1> pllx) 2 plle,.x) + plley. y) + plle, x.p)+ plle,. p.y).

Because of Prop. 1.3.2 one has p({r..r) > 0 and p(lc,. y) = 0. Moreover. we have that
p(E; r.p) > —1and p(Ey. p.y) > —1. Indeed. if say p(E,.r.p) < —2. then by denoting
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by (ag.... .a,) the vanishing sequence of Ig, at r and by (by.... .b.) that of lg, at p. it
would follow that for at least 3 indices i < j < k there are equalities a;+b, ; = a;+b_; =
ay + b,y =d. from which ki(a; — a;}) and k- (ax — ;). hence d > a; > a; + 2k > 2k. which
is a contradiction since we assumed d < 2k — 1.

This implies that there are essentially two cases to consider:

1 plle,.x) = plle,.y) = 0.p(lg,. r.p) = = 1. p(lEg,.p.y) = 0.
2. plle,.x) =0.plle,. y) = Lopllg, . p) = pllg,.p.y) = —1.

In both cases [ is a refined limit gj,. The other possibilities can either be dismissed right
away (when one of the adjusted Brill-Noether numbers is > 2). or are equivalent to the
cases just mentioned.

Let us first settle case 1. By using (1.8).

r r

ZU\‘ —1- (lﬁh1 (r)+ 1), = Z(k —-1- ai-El (r)+i) =4k —1. hence
i=0 1=0
ai-El (r)<k—1+/ and similarly (1552(1;) <k—=1+i foral i=0.....r. (25)

. . N L, . . .
Since on E; we have inequalities ;"% (p) + a,”%(y) > d — 2, for all i (otherwise once again
we would clash with the assumption d < 2k — 1), we eventually obtain that

af p)<k+i+1 forall i=0,... .7 (2.6)
Since p(lg,.r.p) = —1. there must be indices i < j with aiE‘(;r) + (1,ITE_1i(p) = ai-E‘ (x) +
I ‘
al,E_IJ (p) = d. from where we get that (zfl (r) — afEl (x) = k. Then, because of (2.5) and
(2.6) we can write
d—k—r+i-1<d—a®(p)=a® (1)< j—1.
hence 2r + & > d. Combine this with p(2k.r.d) > =2 to get that k < (2 +r+2)/(r —1).
But we also have that 2k > 77 + 7 + 1 (because p(2k.r.d) > —r and d < 2k — 1). so all
in all. we end up with r? — 2r? — 27 — 5 < 0. which can be possible only for r < 3. When
r € {2.3}. by plugging in one of the previous inequalities we have that 8 < g = 2k < 16.
But these cases can be disposed of easily. First, notice that when g € {10.12. 16}, since
g + 1 is prime. we have no codimension one Brill-Noether condition on M,. To treat
one of the remaining cases when we do have a codimension one Brill-Noether locus. take
for example g = 14 and r = 2. hence d = 11. In this case the inequalities (2.6) can he
improved and this leads to a contradiction: since on E| we have that p(lg,.r.p) = —1.
exactly two of the numbers «,”' (r) + (1.1;‘_‘,»(]';) are equal to 11 while the remaining one is
equal to 10. There are three cases and each can be dismissed swiftly.
We turn to case 2. Use again (1.8) to obtain that alf'z(y) < k + r. Moreover
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(zlrEz(y) + aifz {p) > d — 1. hence (IiEl (p) < k+i+1 forall i = 0.....r. hence we

have obtained again (2.6). while the inequalities aiE‘ (ry<h—i+1fori=0.....rstil
hold. so the previous argument can bhe repeated here as well.

We treat now the case p(g.1.k) = —3. that is g = 2k + 1. with & > 6. Note that
when & = 5. Segre’s Theorem gives a g2 = !gi + E|. with £ > 0. on a general 3-gonal
curve of genus 11. i.e. the 5-gonal locus M|, ; is contained in the Brill-Noether divisor
M2, ,. The idea is the same. but the computations are a bit more cumbersome. We use
the following curve:

E,

4 Cs

.YI:C1UCQUE1UE2UE.

where (C).r) and (Cy.y) are general pointed curves of genus £ — 1. the curves E. ). Ey
are all elliptic. and the differences r — p; € Pi(‘O(El).pl —p2 € PicO(E). and po —y €
Pic’(E;) are all priniitive k-torsions. Just as in the previous case. it is clear that X
possesses a limit g.. Assume now by contradiction that there exists [ a limit gj on X,
with r > 2.d < g — 1 and p(g.r.d) < 0. There are many cases to consider, but it is
clear that in order to maximize the chances for such a limit g} to exist, the adjusted
Brill-Noether numbers must be as evenly distributed and as close to 0 as possible: a very
positive Brill-Noether number on one component, implies by (1.6) very negative Brill-
Noether numbers on other components (2-pointed elliptic curves) and this immediately
yields a contradiction. We will only treat one case the other being similar. Assume
plle,.x) = plle,-y) = pllg,.x.p1) = plle,.p2.y) = 0. and p(lg.pr.p2) = —1. Then by
(1.8) we have that a,® (x) < k+r—1and a? (y) < k+r—1. Since a,"" (r)+aif‘ (p1) > d—2
and alrEz(y) + aéE'z (pa) > d — 2. we get that

aﬁE(pl) <i+k+1 and (155(1)2) <i+k+1 fori=0....,r (2.7)

Asin the case p = —2. we can conlude from (2.7) that 2r+k+2 > d. This we combine with
plg.r.d) > —r to obtain that k < (r2+3r+2)/(r—1). Also 2k > r?+r (just put together
d < 2k and p(g.r.d) > —r). and in the end we get that r* — 272 = 7r ~4 <0 & r < 4.
The case » = 4 can be dismissed though right away. because then all inequalities we
have writen down become equalities. hence ¢ = 21.d = 20. and p(g.r.d) = —4. contra-
diction since we assumed p(g.7.d) = —1. When r < 3 we have that & < 10. In these
particular cases however. we can improve the inequalities (2.7) (which we have watered
down to obtain an argument working for general ). and we easily reach a contradiction. O

Remark: One can try to extend these results for more negative values of p(g. 1. k). The
cases p = —4 (resp. p = —5) could be handled by slightly modifving the curves used for



treating the cases p = =2 (resp. p = —3): require that the points » € €| and y € C, are
ordinary Weierstrass points instead of general points. We have checked that for g < 23
Theorem 2.1 still holds when p € {—4. =5}, For instance we get that the general 10-gonal
curve of genus 23 does not possess any gi's with » > 2. d < 22 and negative Brill-Noether
number. In these cases however. computations become horrendous therefore we think
that limit linear series cannot provide the full answer to problem 3).

2.4 Existence of regular components of moduli spaces
of maps to P! x P

In this section we construct regular components of the moduli space .Vg(]P’l x P (k. d}))
of stable maps f : ' — P! x P of bidegree (k.d). in the case k > r+2.d > r > 3. and
plg.r.d) < 0.

The spaces M (P".d) (or the Hilbert schemes Hilby,, of curves ¢ C P".deg(C) =
d. po(C') = g) have been the subject of much study in the past 20 vears. For instance. in
the case of curves in P* one knows that for each g there is D{(g) € Z such that for any
d > D(g). there exists a curve C' C P? of genus g and degree d. with H' (. Neps(=2)) =0
(so also HY(C. N¢yzs) = 0). The numbers D(g) satisfv the estimate limsup D{g)g~%* <
(9/8)1* (¢f. [ENIIH]). Therefore. when (asymptotically) d > ¢*/3(9/8)"/%. there are regular
components of M, (P?. d) whose general points correspond to embeddings C' < P3. In the
case p(g.r,d) > 0 there is a unique (regular) component of M/(P".d) which dominates
M, and whose general point corresponds to a non-degenerate map to P” (i.e. the image
is not contained in a hyperplane). This follows from the fact that G(C) is irreducible
for general C' when p(g.7.d) > 1 (see [ACGH]): when p(g.r.d) = 0 an extra monodromy
argument is needed.

When the target space is P! x P!, Arbarello and Cornalba proved that any component
of My(P* xP!.(d. h)). when 2 < g.d. h. having general points corresponding to birational
maps C' — P! x P! is regular: as a matter of fact. it is not hard to see that there is exactly
one such component. More generally. the methods from [AC1] can be used succesfully
in order to compute dim Mg(Y.3) when Y is a smooth surface: if M C M, (Y. 3) is a
component of dimension > ¢ + 1 and containing a point [f : ¢ — Y] with deg(f) = 1.
then M is regular. One uses here in an essential way the fact that the normal sheaf N is
of rank 1. hence the Clifford Theorem gives a straightforward condition for the vanishing
of HY(C'. N¢). so this techniques cannot be applied for handling moduli spaces of maps to
higher dimensional target spaces Y.

Although we only treat the case of curves mapping into P! x P" when r > 3. it will
be clear that our methods can be also applied to study regular components of the moduli
space of curves sitting on the Segre threefold P! x P2

We start our study of moduli spaces of maps into P! xP", Fix integers g > 0.d > r > 3
and & > 2. as well as " a smooth curve of genus ¢ with maps f, : C = P fy: ¢ — P,
such that deg(f) = A. deg(fo(C")) = d and f, is generically injective. Let us denote by
fC — P x P othe product map.
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There is a commutative diagram of exact sequences

0

!
Ic

1

0 — Te — f(Ts1,0) — Ny — 0
0 — Te=Te — filTa) = f5(Te) — Njy=Np =0

{
0

By taking cohomology in the last column, we see that the condition H'(C.Ny) = 0is
equivalent with H'(C. N,) =0 (trivial). H(C.Ny,) = 0. and

Im{, : H(C.Ny,) = H(C.Te)} + Im{d, : HYC. Npy) = HYC. Te)} = HY(C. T¢).
(2.8)

where the condition (2.8) is equivalent (¢f. Chapter 1) with

(dmy)ig (Ti) (MG(BLED)) + (dma) i) (Tia)(Mg(P7.d))) = Tiel (M), (2.9)

(we assume that the curve ' has no automorphisms. otherwise we work in the versal de-
formation space of C. it makes no difference). The projections m; : M (P'. k) — M, and
my : My(P", d) — M, are the natural forgetful maps. Slightly abusing the terminology. if
C is a smooth curve and (I1.1y) € GL{C) x G%(C) is a pair of base point free linear series
on C, we say that (C.l;,ly) satisfies (2.9) if (C. f1. fo) satifies (2.9). where f, and f, are
maps associated to /; and /5.

We prove the existence of regular components of M,(P' x P". (k.d)) inductively, using
the following:

Proposition 2.4.1 Fiz positive integers g.r.d and k withd > r > 3.k > r+ 2 and
plg.r.d) < 0. Let us assume that C C P" is a smooth nondegenerate curve of degree d
and genus g. such that h*(C, N¢) = 0. hR%(C. O¢(1)) = r + 1 and the Petri map

110(C) = po(C.Oc(1)) - HY(C.Oc(1)) = HYC. Kco(-1)) — HY(C. K¢)

is surjective. Assume furthermore that C possesses a simple base point free pencil gy say
[. such that |Oc(1)[{=1) =@ and (C.1.°Oc(1)1) satisfies (2.9).

Then there exists a smooth nondegenerate curve Y C P with g(Y) = g +7r + 1.
deg(Y) = d + r and a simple base point free pencil I' € GL(Y'}. so that Y enjoys eractly
the same properties: hY (Y. Ny) = 0. h%(Y. Oy (1)) = 7 + 1. the Petrt map po(Y) is
surjective. 1Oy ()(="y =0 and (Y. U'. Oy (1)) satifies (2.9).
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Proof:  We first construct a reducible k-gonal nodal curve X C P, with p,(X) =
g+r+1. deg(X) =d -+ r. having all the required properties. then we prove that X can
be smoothed in P7 preserving all properties we want.

Let fi : C — P! be the degree k map corresponding to the pencil I. The covering f; is
simple (i.e. over each branch point A € P! there is only one ramification point r € f7 ()
and eI(fl = 2). hence the monodromy of f; is the full <meeni( group. Then since
'Oc(1)!(=1) = 0. we have that for a general A € P' the fibre f{'{A) = py + - + pe
consists of A distinet points in general linear position. Let A = {p;.... . p..»} be a sub-
set of f7'()) and let £ C P" be a rational normal curve (deg(E) = r) passing through
Pi.... preo. (Through any r + 3 points in general linear position in P’. there passes
a unique rational normal curve. so we have picked E out of a 1-dimensional family of
curves through the chosen points py.... . proo). Let X := C U E. with " and E meeting
quasi-transversally at A. Of course p,(X) = g+ r + 1 and deg(X) = d + r. Note that
plg.r.dy=plg+r+Lr.d+r).

We first prove that [X] € \/lqﬂ*u (that is. X is k-gonal). by constructing an ad-
missible covering of degree & having as domain a curve X' stably equivalent to X. Let
X' =XUD,3U...UDg. where D, 2 P' and D, X = {p;}. for i = r +3.... k. Take

Y = (P'); Uy (PY), a union of two lines identified at )\ We construct a degree k admissible
covering f': X' = Y as follows: take f' = f, : C' = (P'). f_ = fo  E = (P} a
map of degree r + 2 sending the points p;.... . p,.» to A. and fmdll\ f’ : D, ~ (P,

isomorphisms sending p; to A. Clearly f’ is an admissible covering. so X which is stably
equivalent to X’ is a k-gonal curve.

Let us consider now the space ﬁwrﬂlk of Harris-Mumford admissible coverings of
degree k (cf. [HM]) and denote by m : ﬂg.‘,r*l\k — M40 the natural projection which
sends a covering to the stable model of its domain. If we assume that Aut(C) = {Id¢}
(which we can safely do). then also Aut(f') = {Idy}. so [f'] is a smooth point of H,q, . k.
We compute the differential of the map m at [f']. We notice that var](ﬁﬁ,.ﬁ_k) =
Def(X'. f.Y) = Def(X. f.Y). where f = f'o X =Y. The differential (dmy)pyr is
just the forgetful map Def(X. f. V) — D(‘f(_\") and from the sequence (2.1) we get that
Im(dmy ) = urHIm uy). where uy @ Def(X) — Ext'(f*Qy. Ox) and ws : Def(Y) —
Ext'(f*Qy.Ox) are the dual maps of vy : HY(X.wy = f*Oy) — HYX.wx = Qy) and
uy o HY N wy & Q) — HO%Y. oy - Q) (the last one induced by the trace map
tr: fowy — wy ). Starting with the exact sequence on X

2

00— T()I“S(W'X B Ql\') —r WX Q\ -— O _f.A] Z () — 0.

we can write the following comniutative diagram of sequences

0 0 0
} 3 1
H (T()I\ wX f Q} —r H“(q.’l\' P f”Q)) — HO 2[\( *R] +A) HO()I\L—Rz-F.A)
| (1) eors uf
HOTors(oy = Qx)) = H%ley © Oy} = HYR2K, ~ )~ HO2K, + A)

38




where R, (resp. FK3) is the ramification divisor of the map f; (resp. f;). Taking into

account that H*(E. 2Ry — Ry + A) = 0 and that HO(Y. oy = Q) = HYTors(wy = Q).
we obtain that

Im{dmy)y (HO(C 2K — Ry + A) = Ker(uj )un) ™ (2.10)

where (43 )uor : H(Tors(wx = f*Qy)) — HO(Tors(wy = Qy)) is the restriction of uy. The
space Ker{uy),,., is just a h} perplane in H%(Tors(wy & f*Qy)) =~ C72

Remark: Since A € C,,» was chosen generically in a fibre of the g} on C. it follows from
Riemann-Roch that h°(C,2K¢ — Ry +A) = g — 2k + 3+ 7 = codim(. M;+r+1 e M)
If C has only finitely many g,'s the fibre of the map m : Hgyri1x — Myi,q1 over the
point [X] is (r + 1)-dimensional: the fibre is basically the space of degree r + 1 maps
fo: E — P! such that fo(p)) = ... = fo(pr42) = A. Moreover. if we assume (in the case
g > 2k — 2) that [C] is a smooth point of the locus -M;,k (which happens precisely when
C has only one g} and dim|2g, = 2). then we have for the tangent cone

TC[X] g»r+1 %) U{Im dm),: z € ﬂfl([\])} = HO(C. 2Re — R+ A)*E.

which shows that [X] is a smooth point of the locus \/lg*rJrl k-

We compute now the differential
(d7r2)[X] : T[X](Hilbd+r‘g+r+l.r) - T[)&] (Hg+r+l)~

which is the same thing as the differential at the point [X < P"] of the projection
mg : Mopri1 (BT d + 1) — My,.y. We start by noticing that X is smoothable in P
and that H1(X, Nx) = 0 (apply Prop.2.2.2). We also have that X is embedded in P"
by a complete linear system, that is h°(X.Ox (1)) = r + 1. Indeed, on one hand. since
X is nondegenerate, h°(X. Ox(1)) > h%(P".Op~1)) = r + 1: on the other hand from the
sequence (2.3) we have that h%(X. Ox (1)) < A% C.Oc(1)) =r + 1.

If X is embedded in P" by a complete linear system, we know (cf. Section 1.3) that

Im(dm)ixy = (Imy (X))*

where 11 (X) - Kerpo(X) — H(X,wx = Qx) is the *derivative’ of the Petri map up(X) :
HYX.0x(1)) = HY(X.wx(=1)) — HO(X.WX). We compute the kernel of pg{X) and
show that uo(X) is surjective in a way that resembles the proof of Prop.2.3 in [Se2].
From the sequence (2.4) we obtain H%(X.wy) = H*(C. K¢ + A). while from (2.3) we
have that HY(X.Ox (1)) = HY(E. Og(1)) (keeping in mind that H°(C. O¢(1)(—A)) = 0.
as pr.... .pra2 are in general linear position). Finally. using (2.4) again. we have that
HYX. wy(—-1)) = HYC. K¢(=1)+A). Therefore we can write the following commutative
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diagram:

HYC.Oc(1)) ~ HOYC Ke(=1)) "5 HYC R

1 :

| o
HOC.Oc(1)) = HYC. Ke(=1)+ \) — HYC.Ke+ A)

~ +

HYX.Ox(1)) = HO(X.wy(~1)) "5 HOX Ly

It follows that Kerpo(C') € Kerpo(X). By using Corollary 1.6 from [CR]. our assumptions
{116(C") surjective and card(A) > 4) enable us to conclude that uo(X) is surjective too.
Then Kerp(C') = Kerpg(.X) for dimension reasons. hence also Imy(X) = Imy () C
HYC.2K) € HY(X. oy 2Qy). We thus get that Im(dmy)y = (Imp (X))~ = (Imp (C))
The assumption that (C. fi. fo) satisfies (2.9) can be rewritten by passing to duals as

HY(C.2K¢ — RS + (I (C)*F = HYC. Te) <= HYC 2Kk — RN T (C)y = 0.

Then it follows that Imu (X) N (HY(C.2Kc — Ry + A) = Ker{ (1} hor)) = 0. which is the
same thing as

(dﬂl)[f/] (T:f']<ﬂg+r+l.k)) + ((17&‘2):)@_,"@*] (r,\'._,pr](.vg+,-1<lpr. d+ r))) = Eth(Q,\'. Ox).
(2.11)

This means that the images of ﬂgﬂﬂk under the map 7, and of .Vgﬂwl(]?r. d~+7) under
the map 7, meet transversally at the point [X] € M, ...

Claim: The curve X can be smoothed in such a way that the gi and the verv ample
g, are preserved (while (2.11) is an open condition on Hy.ri1x X My (P7.d + 7).

Indeed. the tangent directions that fail to smooth at least one node of X are those in
U::f H°(Tors,, (wx = Qx))*. whereas the tangent directions that preserve both the g;
and the gl, . are those in

((Impy (C)+ HY(C.2K e~ Ry + A)) = Ker(u;)mrs)l‘

Since obviously HY(Tors, (wy 7 Qx)) € Ker(u3 ). for i = 1.....r + 2. by moving in
a suitable direction in the tangent space at [f'] of 77 m (M., (P".d + 1)), we finally
obtain a curve Y C P" with g(Y) = g +r + 1.deg(Y) = d + r and satisfving all the
required properties. O

In order to use Prop.2.4.1 as the inductive step (g.d) — (¢ +r + 1.d + r) in the
construction of regular components of M (P! x P*. (k.d)). we need curves C' C P" with
all the properties listed in the statement of the Proposition (so that we can start the
induction}. We are able to construct such curves when plg.r.d) = —1. Le. when M[ , is
a divisor in .M.
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Theorem 2.2 Letr > 3.5 > (2r+1)/(r— 1) and k > 3 be infegers such that

{(re+s—1)/2<hk<rs—r—1

Then for any integers d. g such that p(g.r.d) = =1 and g > (r+1){s—1)— 1 there exists
a regular component of the moduli space of maps M, (P' x P". (k. d)).

Remarks: 1. Theorem 2.2 actually provides regular components of the Hilbert scheme
of curves of bidegree (k.d) in P! x P", where k and d are as above.

2. In the case g = 23 (extensively treated in Chapter 1). the theorem provides regular
components of Maz(P! x P3. (k.20)) when & > &.

Proof: Weset go = (r+1)}(s—1) —1 and dy = rs — 1. One checks that p{gp.r.dg) = —1
and any solution (g.d) of the equation p(g.r.d) = —1 with g > gg. can be obtained from
{go. dp) by applying several times the transformation (g, d) — (g+r+1.d+r). According
to Prop.2.4.1 it suffices to construct a smooth curve C' C P" of genus gy and degree d.
with A1 (C. N¢) = 0.h%(C. O¢(1)) = r + 1. having the Petri map po(C) surjective. and
also carrying a simple base point free pencil g, = |Z| such that 2g} is non-special and
[Oc(1)(~g;) = 0.

For such a triple (C. gi. O¢(1) ). condition (2.9) also required in Prop.2.4.1 is imme-
diately satisfied: if f; : C -» P* is the map corresponding to gi, we know (cf. Section
1.3) that {dmy)i;; (Ti50 (Mg (P k) = HYC. K¢ — 22)+ = HYC. T¢). because [2Z] is
non-special. so (2.9) follows at once.

It is more convenient to replace the projection M, (P'. k) — Mg, by the surjective
proper map 7 : GE — M., given by 7(C.1) = [C]. where [ € GL(C). Of course 7 does
not exist quite as it stands. instead one should replace M, by a finite cover over which
the universal curve has a section. but we can safely ignore this minor nuisance. The map
7 is surjective (and with connected fibres) because p(go.1.£) > r — 1. Theorem 6.1 from
[Se2] ensures the existence of an irreducible, smooth. open subset U7 of M (P7. dg). of the
expected dimension. such that all points of U correspond to embeddings of smooth curves
C — Pr. with RH(C. N¢) = 0. h%(C.O¢(1)) = r + 1 and p(C) surjective. Since M 4o
is irreducible (cf. Chapter 1). it follows that the natural projection m : " — Mp s
dominant.

We now find a curve " having the properties listed above. For a start. we notice that it
is enough to find one curve [Cy] € .\/I;g.do possessing a simple. complete. base point free gi
such that 2g; is non-special. because then. by semicontinuity we get the same properties
for a general point of L. To find one particular such curve we proceed as follows: take
'y a general (r + 1)-gonal curve of genus gg. These curves will have rather few moduli
(r+1 < [(g+3)/2]) but we still have that [Co] € M] , . Indeed. according to [CM] p.
348. we can construct a complete. birationally very ample g; = gl + F on (j. where
F is an effective divisor on Cy with h%(Cq. F) = 1. Using Corollary 2.2.3 from [CKM] we
find that Cy also possesses a complete. simple. base-point-free g} which is not composed
with the gl ., computing gon(Cy). and such that 2g} is non-special. Since these are open
conditions they will hold generically along a component of GL(Cy). Applying semiconti-
nuity. for a general element [C] € M, (hence also for a general element [C'] € ') the
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variety G}(C') will contain a component -1 with general point I € 4 being simple. base
point free and with 2/ non-special.

We claim that there exists a pencil I € A4 having the properties listed above and more-
over O¢(1)(—1) = 0. Suppose not. Then if we denote by 1774 ( Oc(1),) the variety of
effective divisors of degree dy — k on C imposing <r — 1 (ondltlons on O¢(1)i. we have
that

dim l;ir()ilk(iC’)('~(l) J>dim A > plge.1.k) > r—1.

the last inequality being the only point where we need the assumption k& > (rs+s—1)/2.
Therefore ¢ C " has at least "~ ! (dy — k)-secant (r — 2)-planes. hence also at least
" rsecant (r — 2)-planes (because dy — & > r). This last statement clearly contradicts
the Uniform Position Theorem (see [ACGH]. p. 112). Allin all. the general point [C] € U
enjoys all properties required to make Prop.2.4.1 work. a

Remarks: 1. We could apply Prop.2.4.1 and get regular components of the moduli space
M(P' x P (k.d)) for lower values of p(g.r.d) (and not only when p(g.r.d) = —1). if
we knew that the (r + 1)-gonal locus \/lq r.1 18 contained in every component of M ,; (or
at least in a component of M7, with the expected number of moduli). No such quult
appears to be known at the momvnt {except in the case plg.r.d) = —1).

2. Let us fix g. k such that p(g.1.k) > 0. One knows (cf. [ACGH]) that if | € G{(C) is a
complete. base point free pencil. then dim T(GL(C)) = p{g. 1. k) + K (C.21). Therefore
if A is a component of GL(C) such that dim A = p(g.1.k) and the general [ € A is base
point free such that 2/ is special. then A is nonreduced. We ask the following question:
what is the dimension of the locus

M = {|C] € M, : every component of G(C') is nonreduced }?

A result of Coppens (cf. [Cod]) says that for a curve C. if the scheme W} (C') is reduced
and of dimension p(g.1. k). then the scheme W, ,(C') is reduced too and of dimension
plg.1.k+1). Therefore it would make sense to determine dim{ M) when p(g. 1. k) € {0.1}
{(depending on the parity of g). We suspect that M depends on very few moduli. A suitable
upper bound for dim(M) would rule out the possibility of a component of Mg 4 being
contained in M (we have the lower bound 3g — 3 + p(g. r.d) for all components of Mg )
and we conld apply Prop.2.4.1 without having to resort to Corollary 2.2.3 from [C I\\l]

2.5 The gonality of space curves

2.5.1 Preliminaries

The gonality of a curve is perhaps the second most natural invariant of a curve: it gives
an indication of how far from being rational a curve is. in a wayv different from what the
genus does. For g > 3 we consider the stratification of .M, given by gonality:

ML, C Ml C. CM,CCM,
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where M|, = M, for k& > (g +3)/2]. The number [(g + 3)/2] is thus the generic
gonality for curves of genus g. We want to study the relative position of the Brill-Noether
loci ,M;_d (with r > 3.p(g.r.d) < 0) and the k-gonal loci ,M;\k (where k < (g +2)/2).
More precisely. we would like to know the gonality of a general point of M Since
the geometry of the loci My, is. as we already pointed out in Section 1.2, very messy
(existence of many components. some unreduced and/or of unexpected dimension). we
will content ourselves with computing gon(C’) when [(] is a general point of a "genuine’
component of Mg, (i.e. a component which is generically smooth. with general point
corresponding to a curve with a verv ample g7).
The same problem for r = 2 has already been solved by M. Coppens (cf. {Cod]):

Proposition 2.5.1 Let v : C' — T be the normalization of a general. irreducible plane
curve of degree d with 6 = g — (d;) nodes. Assume that 0 < ¢ < (d* — 7d +18)/2. Then
gon(C) =d — 2.

Remarks: 1. The result says that there are no g ,’s on C'. On the other hand a g} _,
is given by the lines through a node of T'.

2. The condition ¢ < (d* — 7d + 18)/2 is equivalent with p{g.1.d — 3) < 0. This is the
range in which the problem is non-trivial: if p(g.1.d —3) > 0. the Brill-Noether Theorem
provides g}_;’s on C.

For r > 3 we could expect a similar result. Let C' C P" be a suitably general smooth
curve of genus ¢ and degree d. with p(g.r.d) < 0. We can always assume that d < g — 1
(by duality g} — K¢ — gy we can always land in this range). One can expect that a g}
computing gon(C') is of the form g,(-D) = {F — D : E € gj. E > D} for some effective
divisor D on C'. Since the expected dimension of the variety of e-secant (r — 2}-plane
divisors

VI Hgy) = {D € C.: dim gj(-D) > 1}

is 2r — 2 — e (c¢f. [ACGH]). we may ask whether C' has finitely many (2r — 2)-secant
(r — 2)-planes (and no (2r — 1)-secant (r — 2)-planes at all). This is known to be true
for curves with general moduli. that is. when p(g.r.d) > 0 (c¢f. [Hirsch]): for instance a
smooth curve ¢ C P? with general moduli has only finitely many 4-secant lines and no
d-secant lines. However. no such principle appears to be known for curves with special
moduli.

Definition: We call the number min{d — 2r + 2. [(g + 3)/2]) the expected gonality of a
smooth nondegenerate curve C' C P of degree d and genus g.

The main result of this section is the following:

Theorem Let g > 5 andd > 8 be integers. g odd. d even. such that d*> > 8q.4d < 3g+12.
d* — 8g + 8 is not a square and either d < 18 or g < 4d — 31. If

(d.g)ye{ldg)d+lg+1)(d+1l.g+2}(d+2.g+3)}

then there exists a regular component of Hilby 3 whose general point [C'] is a smooth
curve such that gon(C”) =min(d' — 4. [(g' + 3)/2]).
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One can approach this problem from a different angle: find recipes to compute the
conality of various classes of curves ¢ C P Our knowledge in this respect is very scaut:
we know how to compute the gonality of extremal cirves ¢ C P7 (that is. curves attaining
the Castelnnovo bound. see ' ACGH] | and the gonality of complete intersections in P* (¢f.
Ba]): If ¢ C P? is a smooth complete intersection of tvpe (a.b) then gon(C') = ab — 1.
where [ ix the degree of a maximal linear divisor on (. Hence an effective divisor D C 7
computing gon(C’) (that is deg(D) = gon(C) and K. D) > 2). is residual to a linear
divisor of degree 7 in a plane section of (. Of course. we know gon(C) in a few other
cases: It s a classical result that the gonality of a smooth plane C curve of degree d is
d — 1 and every gh_, on C is of the form O (1) (—p). where p € C. If €' is a smooth
curve of tyvpe {a.b) on a smooth quadric surface in P2, then gon(C) = min(a. b). i.e.
the gonality is computed by a ruling. One gets a similar result for a curve sitting on
a Hirzebruch surface. Finally. in [Pa] there is a rather surprising lower hound for the
gonality of a smooth curve ¢ C P in terms of the Seshadri constant of (. which ix an
invariant measuring the positivity of Q= (1) in a neighibourhood of C.

2.5.2 Linear systems on smooth quartic surfaces in P*

We recall a few basic facts about linear syvstems on A3 surfaces (¢f. [SD]). Let S be a
suooth A3 surface. For an effective divisor D € S. we have RY(S. D) = h(D.0O,) — 1.
If C C S isan irreducible curve then HYS. ) = 0. and by Riemann-Roch we have that

dimiCl =1+ %2 = p,(C).
In particular €2 > —2 for every irreducible curve C.
Proposition 2.5.2 Let S be a N3 surface. We have the following equivalences:
1. ("= =2c=dimC =0<= C s asmooth. rational curve.
2 (P=0e=dim(C =1+ p,i() =1

For a K3 surface one also has a “strong Bertini® Theorem:

Proposition 2.5.3 Let £ be o line bundlc on o K3 surfoce S, Then L has no base
points outside its fired components. Morcover. if hs L =0 then either

o L2350, h'(S.L) =0 and the general member of L] is a smooth. rreducible curve
of genus £2/2+ 1. or

o L% =0 and L = Og(KE). where bk € Z.\. E C S is an wrreducible curve unth
Pl EY=1. We have that R(S. L)y =k + 1. h'(S. L)y =k —1 and all divisors in L
are of the form Ey 4+ -+ -+ Ep with E, ~ E.
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We are interested in space curves sitting on A3 surfaces and the starting point is Mori's
Theorem (¢f. [Mo]): if d > 0. ¢ > 0. there ix a smooth curve C C P of degree d and genus
¢. lving on a smooth quartic surface S. if and only if (1) g = d?/8+ 1. or (2) g < 4*/8 and
(d.g) # (5.3). Moreover. we can choose S such that Pic(S) = ZH = Z{4/d)C in case (1)
and such that Pic(S)=ZH + ZC. with H>=4.C? =2g -2 and H - = d. in case (2).
I each case H denotes a plane section of 5. Note that fromn the Hodge Index Theorem
one has the necessary condition

(C-HP—H (' =d*>-8(y—1)>0.
We will repeatedly use the following observation:

Proposition 2.5.4 Let S C P? be a smooth quartic surface with a smooth curve C C S
such that Pic(S) = ZH ~ZC and assume that S has no (=2) curves. For a divisor D C S
we have that:

1. D is effective <= D* >0 and D- H > 2.

2. IfD*=0and D-H > 2. then D = kE. where E (s an irreducible curve of genus 1
and h9(S.Dy=k+1. h"(S.D) =k — 1.

3. If D? > 0 and D - H > 2. then the general elernent of D is smooth and irreducible.

Remarks: a) The first part of Proposition 2.5.4 is based on the fact that if D C Sis a
curve with deg(D) = D - H < 2. then h%(S. D) = 1. i.e. D is isolated. But every isolated
curve is a (—2) curve and we have assumed that there are no such curves on S.

b) If S € P? is a smooth quartic surface with Picard number 2 as above. S has no {=2)
curves when the equation

22 + mnd + (g — 1)n? = —1. (2.12)

has no solutions m. n € Z. This is the case for instance when d is even and g is odd.

2.5.3 Brill-Noether special linear series on curves on K3 surfaces

The study of special linear series on curves lving on A3 surfaces began with Lazarsfeld’s
proof of the Brill-Noether-Petri Theorem (¢f. 'La]). He noticed that there is no Brill-
Nocther type obstruction to embed a curve in a A3 surface: if Cy C 5 is a smooth curve
of genus ¢ > 2 on a A3 surface such that Pic(S) = ZCy. then the general curve C € Cy
satisfies the Brill-Noether-Petri Theorem. that is. for any line bundle 4 on C'. the Petri
map jo(C.A) - HY(C. ) - HY(C. K¢ - A7) — HYC. K¢ is injective. We mention that
Petri’s Theorem implies (trivially) the Brill-Noether Theorem.

The general philosophy when studving linear series on a A3-section € C S of genus
g > 2. is that the type of a Brill-Noether special g often does not depend on € but
only on its linear equivalence class in S, e a g on O with plg.r.d) < 0 is expected to
propagate 1o all smooth curves (7 € €. Thix expectation. in such generality. is perhaps
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a bit too optimistic. but it was proved to be true for the Clifford index of a curve (see
GL)): for C € S a smooth A3-zection of genus g > 2. one has that CLffi(") = Cliff( ()
for every smooth curve ¢ € . Furthenmore. if Clith €'y < 19— 1)/2] (the generic value
of the Clifford index). then there exists a line bundle £ on S such that for all smooth
(" e (' therestriction £ ¢ computes CHf{C7). Recall that the Cliffored index of a curve
(" of genus ¢ ix defined ax

CHfC) = min{CUF(D) : D € DiviC1LA(D) > 2.1 (D) > 2}.

where for a divisor D on (. we have Cliffi D) = deg(D) — 2(h% D) — 1). Note that in
the definition of CLfftC") the condition A D) > 2 can be replaced with deg(D) < g — 1.
Another invariant of a curve is the Clifford dimension of C' defined as

Cliff-dim(C") == min{r > 1 : 3g} ou (" with d < g — 1. such that d = 2r = CLff((")}.

Curves with Clifford dimension > 2 ave vare: smooth plane curves are precisely the curves
of Clifford dimension 2. while curves of Clifford dimension 3 occur only in genus 10 as
complete intersections of two cubic surfaces in PY.

Harris and Mumford during their work in 'HM] conjectured that the gonality of a
K3-section should stay constant in a linear svstenr if ¢ C 9 carries an exceptional gl
then every smooth €7 € (7 carries an equally exceptional gl. This conjecture was later
disproved by Donagi and Morrison (¢f. [DMo]) who showed that the gonality can vary
in a linear svstem: Consider the following situation: let 7 © S — P? be a A3 surface.
double cover of P? branched along a smooth sextic and let £ = 7*(=>(3). The genus of a
smooth €' € £, is 10. The general (' € (£, carries a very ample g2. hence gon{C') = 5.
On the other hand. any curve in the codimension 1 linear system 7 HO(P2. 05:(3))
is bielliptic. therefore has gonality 4. Under reasonable assumptions this turns out to
be the only connterexample to the Harris-Mumford conjecture. Ciliberto and Pareschi
proved (in [C1lP]) that if (" C S is such that (' is base-point-free and ample. then either
gon(C") = gon((") for all smooth C" € (| or (S. (") are as in the previous counterexample.
Although gon((") can drop as ¢ varies in a linear svstem. base point free gli's on A3-
sections do propagate:

Proposition 2.5.5 (Donagi-Morrison) Let S be a K3 surface, C C S a smooth, non-
hyperelliptic curce and 7 a complete. base pomt free gl on O such that ply. 1.d) < (.
Then there is an effective divisor D Z S such that:

o W(S.Dy>2 K(S.C-D)>

[V

degeDe) < g -1
o CIHf(C". D¢y < CHH(C. Z). for any smooth (' € 'C .

o There s Zy € Z . consisting of distinct points such that Zy C D0 (.

46




2.5.4 The gonality of curves on quartic surfaces

For a wide range of d and g we construct curves C C P? of degree d and genus g having
the expected gonality. We start with the case when g is odd and d is even when we can
realize our curves as sections of smooth quartic surfaces.

Theorem 2.3 Let g > 5.d > 8 be integers. g odd. d even. such that d* > 8g. 4d < 3g+12
and d* — 8¢ + 8 is not a square. Then there erists a smooth curve C C P of degree d
and genus g such that gon(C) = min(d — 4.[(g + 3)/2]). If gon(C) =d —4 < [(g + 3)/2].
every gy, computing the gonality is given by the planes through a 4-secant line to C.
Moreover. C has only finitely many 4-secant lines, finitely many tangential trisecants and
no 5-secant lines.

Proof: By Mori's Theorem, for such d and g. there exists a smooth quartic surface
S C P? and C' € S asmooth curve of degree d and genus g such that Pic(S) = ZH S ZC,
where H is a plane section. The conditions d and g are subject to. ensure that S does
not contain (—2) curves or genus 1 curves (the existence of a curve with self-intersection
0 would imply that d®> — 8¢ + 8 is a square).

We prove first that Cliff-dim(C’) = 1. It suffices to show that C' C S'is an ample divisor,
because then by using Prop.3.3 from [CilP] we obtain that either Cliff-dim(C') = 1 or C
is a smooth plane sextic, g = 10 and (S, C) are as in Donagi-Morrison's example (then
Cliff-dim(C) = 2). The latter case obviously does not happen.

We prove that C' - D > 0 for any effective divisor D C S. Let D ~ mH + nC. with
m.,n € Z. such a divisor. Then D? = 4m?+2mnd+n?(2g—2) > O0and D-H = dm+dn > 2.
The case m < 0,n < 0 is impossible, while the case m > 0,n > 0 is trivial. Let us assume
m>0,n<0. Then D-C = md+ n(2g — 2) > —2n(d?/8 — g+ 1) + d/2 > 0, because
d?/8 > g. In the remaining case m < 0.n > 0 we have that nD -C > -mD - H > 0, so
C' is ample by Nakai-Moishezon.

Our assumptions imply that d < g —1. so O¢(1) is among the line bundles from which
Cliff(C) is computed. We get thus the following estimate on the gonality of C

gon(C) = Cff(C') + 2 < Cff(C. He) + 2 =d — 4.

which vields gon(C) < min(d — 4.[(g + 3)/2]).

Assume now that gon(C) < [(g + 3)/2]. We will then show that gon{C) = d - 4.
Let |Z| be a complete. base point free pencil computing gon(C). By applying Prop.2.5.5.
there exists an effective divisor D C § satisfving

RY(S.D) > 2.h%(S.C—D) > 2.deg(D ¢) < g—1. gon(C) = Cliff(D ¢)+2 and Z € DNC.
We consider the exact cohomology sequence:
0— HYS.D-C)— H*S.D) = HC.D¢) — H'(S.D-C).

Since C'— D is effective and ~ 0. one sees that D—C cannot be effective. so H*(S. D—C) =
0. The surface S does not contain (—2) curves. so 'C' — D| has no fixed components: the

47




equation (C'— D)? = 0 has no solutions. therefore (€'~ D)? > 0 and the general element of
C'—=D issmooth and irreducible. Then it follows that HY(S. D—(') = H'(S.C—=D)" = 0.
Thus H%S. D) = H%C. D () and

gon(C)=24+Clifl(D)=2+D-C-2dim D =D-C — D?,
We consider the following family of effective divisors

A={D e Div(S): h'(S.D) > 2.h%S.C-D)>2. C-D<g-1}.
and since we already know that d—4 > gon(C'} > a. where o = min{D-C'-C?: D e A}.
we are done if we prove that a > d—4. Take D € A. such that D ~ mH +nC.m.n € Z.
The conditions D* > 0.D-C <g—-land2< D -H <d -2 {use Prop.2.5.4 for the last
inequality) can be rewritten as

2m* + mnd + " g—1) >0 (). 2<dm+nd <d—=2(ii). md + (2n — 1){g — 1} < 0 (iii).
We have to prove that for any D € A the following inequality holds
floeny=D-C~D* = —4n> + mid = 2nd) + (n — )2 =21 > f(1.0) =d — 4.

We solve this standard calculus problem. Denote by « = (d + \/d? — 8y + 8 )/4 and
bi={d - /d*—8g+8 /4 We dispose first of the case n < 0. Assuming n < 0. from
(i) we have that either m < —bn or m > —an. If m < —bn from (ii) we obtain that
2 < n(d —4b) < 0. because n < 0 and d — 4b = \/d? — 8¢ = 8 > 0. 50 we have reached a
contradiction,

We assume now that n < 0 and m > —an. From (iii) we get that m < (g—1)(1—-2n)/d.
If —an > (g—1)(1 = 2n)/d we are done because there is no m € Z satisfving (i). (ii) and
(ii). while in the other case for any D € A with D ~ mH + nC. one has the inequalities

(> —8g +8)+d\/d> — 8¢+ 8
flon) > fl—an.n) = (2g — 2 —ad) = ¢ i )-:( g (

—n) > d— 4.

unless 1= =1 and d® — 8¢ < 8 (which forces d*> — 8y = 1). In this last case we obtain
mz{(d+4)/4s0 flim.=1)> f((d+4)/4.=1) >d — 1.

The case n > 0 can be treated rather similarly. From (i) we get that either m < —an
or me > —bn. The first case can be dismissed immediately. When m > —bn we use that
for any D€ A with D ~ mH <~ n(.

Slen) Zmin{ f(=(g = 1)(2n = 1)/d.n). max{ f(—bn.n). f{{2 — nd)/4.n)}}.
Elementary manipulations give that
fl=lg=1)2n = 1)/d.n) = (g = 1)/2 [(20n = 1)*(d* — Bg + 8)/d* + >d—1

(use that d? > 8y and ¢ < g—1). Note that we have equality if and only if n = 1.m = -1
and d = g — 1. This possibility is compatible with the other conditions only for g €
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{11.13.15}.

Furthermore f{—bn.n) = n(2g —2—5bd) >2g—2—-bdand2¢g—2—-bd > d -4 &
4 < Jd?—8g+8 < d— 4. When this does not happen we proceed as follows: if
Vd? —8g+8 > d — 4 then if n = 1 we have that m > —b > —1. that is m > 0. but
this contradicts (ii). When n > 2. we have f((2 — nd)/4.n) = [(d*> — 8g + 8)(n? — n) +
(2d — 4)]/4 > d — 4. Finally. the remaining possibility 4 > \/d? — 8¢ + 8 can be disposed
of easily by an ad-hoc argument (our assumptions force in this case d* — 8g = 4).

All this leaves us with the case n = 0. when f(m.0) = —4m?+md. Clearly f(m.0) >
f£(1.0) for all m complying with (i).(ii) and (iii).

Thus we proved that gon(C) = d—4. We have equality D-C'—D* = d—4 where D € A.
if and only if D = H orin the case d = g—1. g € {11.13.15} also when D =C — H. It is
easy to show that if d = g — 1 then K¢ = 2H (. therefore we can always assume that the
divisor on S cutting a g}, on C is the plane section of S. Since Z C HNC. if we denote
by A the residual divisor of Z in H N C. we have that h°(C. H e — A) = 2. 50 A spans a
line and ,Z" is given by the planes through the 4-secant line (A). This shows that every
pencil computing gon(C') is given by the planes through a 4-secant line.

There are a few ways to see that C has only finitely many 4-secant lines. The shortest
is to invoke Theorem 3.1 from [CilP]: since gon(C’) = d — 4 is constant as C” varies in
|C'|. for the general smooth curve ¢’ € |C' one has dim W,_,(C") = 0. Thus C has
only finitely many 4-secant lines and no 5-secant lines. Note that the last part of this
assertion can also be seen directly using Bezout's Theorem: if L C P® were a 5-secant line
to C, then L C S, but S contains no lines. Finally, C' has only finitely many tangential
trisecants because C is nondegenerate and we can apply a result from [Kaji]. O

Remarks: 1. One can find quartic surfaces S C P? containing a smooth curve C of
degree d and genus g in the case ¢ = d?/8 + 1 (which is outside the range Theorem 2.3
deals with). Then d = 4m.g = 2m? + 1 with m > 1 and C is a complete intersection of
tvpe (4.m). For such a curve, gon(C') = d — I. where [ is the degree of a maximal linear
divisor on C' (cf. [Baj). If S is picked sufficiently general so that it contains no lines. by
Bezout. €' cannot have 3-secant lines so gon(C') = d — 4 in this case too.

2. Mori's Theorem can be extended to curves sitting on A3 surfaces which are embedded
in higher dimensional projective spaces: for r > 3.d > 0.¢ > 0 such that g < d*/(4r — 4)
and (d.g) # (2r — 1.r). there exists a A3 surface S C P of degree 2r — 2 containing
a smooth curve (' of degree d and genus ¢ and such that Pic(S) = ZH = ZC'. where
H is a hyperplane section of S (see [ln]). Tt seems very likely {although I have only
checked several particular cases) that under the same conditions (i.e. S contains no
genus 0 or genus 1 curves) the analogue of Theorem 2.3 still holds. that is gon(C) =
min([(g +3)/2].d — 2r + 2).

We want to find out when the curves constructed in Theorem 2.3 correspond to *good
points’ of Hilby, 3. We have the following:

Proposition 2.5.6 Let €' C S C P3 be a smooth curve sitting on a quartic surface such
that Pic(S) = ZH = ZC with H being a plane section and assume furthermore that S
contains no (=2) curves. Then HY(C. N¢jz2) = 0 of and only if d < 18 or g < 4d — 31.
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Proof: We use the exact sequence
0 — A\v(l‘,'b' — ‘\'(v/;:.Z — A\.S,:.:.S / C)( — 0 [213)

where Ngizs 0 Oc = Oc(4) and Neig = K. We claimi that there is an isomorphism
HY(C. N¢jps) = HYC.Op(4)). Suppose this is not the case. Then the injective map
HYC.K¢) — H'YC.Ngjs) provides a splitting of the sequence {2.13) and by using
Proposition 3.25 from [Mod] we obtain that C is a complete intersection with S. This is
clearly a contradiction.

We have isomorphisms H'(C.4H ¢) = H}(S.4H-C) = HY(S.C—1H)". According to
Prop.2.5.4 the divisor C'—4H is effective if and only if (C—4H)? > 0 and (C—4H)-H > 2.
from which the conclusion follows. O

We need to determine the gonality of nodal curves not of compact tvpe and which
consist of two components (like those appearing in Prop.2.2.2). The following result is
intuitively clear if one uses admissible coverings:

Proposition 2.5.7 Let C' = C,Us Cy be a quasi-transversal union of two smooth curves
Cy and Cy meeting at a finite set A. Denote by g1 = g(C1). g2 = g(Cy). 0 = card(A). Let
us assume that Cy has only finitely many pencils gl where & < d and that the points of
A do not occur in the same fibre of one of these pencils. Then gon{(C) > d+1. Moreover
if gon(C') = d + 1 then either (1) Cy is rational and there is a degree d map f, : C; — P!
and a degree 1 map fy : Cy — P' such that fi s = fo a. or (2) there is a gk, on C,
contatning A in a fibre.

Proof: For the proof we use Section 2 of [EH1] (the one which works for nodal curves not
necessarily of compact type). We briefly reviewed this in Chapter 1 (see also [Est] for a
clear account on limit linear series on (general) reducible nodal curves). Let us assume
that (' is k-gonal, that is. a limit of smooth k-gonal curves. Then there exists a family
of curves 7 : C — B. with B = Spec(R). R being a discrete valuation ring, such that the
central fibre Cy is C'. the generic fibre C;, is smooth (1 € B is the generic point) and there
is a g, on C,. which as in Chapter 1 we denote by Iy = (L£,;.15). where V, C 7w, L, is a
vector bundle of rank 2. To the family of pencils [, we can associate a limit linear series
on C as follows (cf. [Est]): there are unique line bundles £; and £5 on € such that:

1. £, and L are extensions of £,: L, ¢, =Ly for i =1.2.

2. 6V, = Vyna, Ly © m Ly then the map Vi, (0) — HY(C1, £,(0) ¢, ) is injective and
the map Vz, (0) — H(Cy, £1(0) ¢,) is # 0. Similarly. V2,(0) = H%(C,. £,(0) c,) is
injective and Vi, (0) — HY(C\. £5(0) ¢,) is # 0.

Note that in the case of curves of compact tvpe. it was possible to get for each component
of the special fibre one extension of £, whose restriction had degree & on the chosen
component and degree 0 on all the other components of the special fibre; obviously we
cannot expect something like this for arbitrary nodal curves. We also point out that
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even in the case when C is of compact tvpe the extensions £; and £, may differ from
Eisenbud-Harris extensions: this happens when there is some ramification at the nodes

of C.

Let us denote by [ > 0 the unique integer such that £, = £,({C3) and by d; =
dege (L1 ) da = dege, (Ly ¢,). Then d, +dy =k + 15.

We show first that & > d + 1. Suppose & = d. Then d; = d.d» = {6 > 1 (because
hY(Cy. £2(0) ¢,) > 2). and then (£,(0) ¢,. V%, (0)) is one of the finitely many gl's on Cy.
From 2. we have that 1 < h%(Cy. £2(0) ¢,) < h%C1. £1(0) ¢, — A). that is. A is contained
in a fibre of a g}i on (. a contradiction.

Assume now k& = d+ 1. There are two cases to consider: (i). d, = d.dy = [d +1 which
forces | = 0 (if I > 1 once again A would be entirely contained in a fibre of a gj on ;).
hence £> = L. so we have only one line bundle on C which gives a degree d + 1 map
CUACs — P! which is case (1) of Prop.2.5.7 (ii). di = d+1.dy = [4. Again, the condition
RO(Cy. L(0) ¢,) > 2 gives I > 1. hence 1 < h%(C1. L5(0) ¢,) < h*(C1. £,(0) ¢, = A). which
vields case (2) of Prop.2.5.7. a

Theorem 2.3 provides space curves of expected gonality when d is even and g is odd.
Naturally. we would like to have such curves when d and g have other parities as well. We
will achieve this by attaching to a *good’ curve of expected gonality, either a 2 or 3-secant
line or a 4-secant conic.

Theorem 2.4 Let g > 5.d > 8 be integers with g odd and d even, such that d* > 8g.4d <
3g +12. d*> — 8¢9 + 8 is not a square and either d <18 or g < 4d — 31. If

(d.g)e{(d.g)(d+1.g+1).(d+1.g+2).{d+2.9+3)}.

then there exists a reqular component of Hilby o 5 with general point [C'] a smooth curve
such that gon(C') = min(d' — 4. [(g' + 3)/2]).

Proof- For d and g as in the statement we know by Theorem 2.3 and Prop.2.5.6 that there
exists a smooth. nondegenerate curve €' C P? of degree d and genus g. with gon(C) =
min(d —4.[(g+3)/2)) and HY(C. N¢/z3) = 0. We can also assume that C sits on a smooth
quartic surface S and Pic(S) = ZH = ZC. Moreover. in the case d — 4 < [(g + 3)/2] the
curve C has only finitely many g}_,’s. all given by planes through a 4-secant line.

i) Let us settle first the case (d'.¢') = (d + 1.9+ 1). Take p.q € C general points.
L =793 CP and X := CUL. By Prop.2.22 X is smoothable and H'(X. Nx) = 0.
If d ~4 < [(g +3)/2]. then since ' has only finitely many gj_;’s. by applying Prop.
2.5.7 we get that gon(X) = d — 3. In the case d —4 > [(g + 3)/2] we just notice that
gon(X) > gon(C) = [(g' + 3)/2].

ii) Next. we tackle the case (d'.¢') = (d + 1.g + 2). Assume first that d — 4 <
[(g+3)/2) <> d'—4 < [(¢’+3)/2]. Let p € C be ageneral point. The image of the projection
m, : C — P? from pis a plane curve of degree d—1 having only nodes as singularities. which
means that C' has no stationarv trisecants through p (i.e. trisecants pgq’ such that T,(C')
and T, (C') meet). because a stationary trisecant would correspond to a tacnode of w,(C).
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Pick L one of the (djz) — g trisecauts through p and consider X := C'C L. The conditions
required by Prop.?.fi (part 3) being satisfied. X is smoothable and HY{X. Ny} = 0. To
conclude that gon(.Y) = d — 3. we have to show that there is no g} , on €' containing
LNC in a fibre. A line in P* (hence also a d-secant line to C') can meet only finitely many
trisecants. Indeed. assuming that m C P is a line meeting infinitely many trisecants. by
considering the correspondence

T ={(p.t)€ C »xm:3latrisecant to C passing through p and t}.

the projection mp : T — m vields a g} on 7. hence C is trigonal as well. a contradiction.
Since p and L have been chosen generally we may assume that L does not meet any of
the 4-secant lines.

In the remaining case d—4 > [(g+3)/2] we apply Theorem 2.3 to obtain a smooth curve
', C P? of degree d and genus ¢ + 2 such that gon(() = (g + 5)/2 and HYC,. N¢,) = 0.
We take X, := (", UL, with L, being a general 1-secant line to Cy. Then X is stnoothable
and gon(Xy) = gon{C) = (g + 5)/2.

iii) Finally. we turn to the case (d'.¢') = (d + 2.9+ 3). Take H C P* a general
plane meeting ¢ in d distinet points in general linear position and pick 4 of them:
prp2.psops € CNH. Choose Q € H a general conic such that Q N C = {p1. pa.p3on )
Prop.2.2.2 ensures that X := C'UQ is smoothable and H'{X. Ny} = 0.

Assume first that d'—4 < [{g'+3)/2]. We claim that gon(X) > gon(C'}+2. According
to Prop. 2.5.7 the opposite could happen only in 2 cases: a) there exists a gj_; on C. say
|Z .such that |Z (—p; = py—ps —psg) # 0. b) there exists a degree d —4d map f: C — P!
and a degree 1 map f': Q — P' such that f(p;) = f'(p;). for i=1.... 4.

Assume that a) does happen. We denote by U = {D € 'y : :\O¢(1) (=D} # 0} the
irreducible 3-fold of divisors of degree 4 spanning a plane and also consider the correspon-
dence

C={(l.D)e G 4(Cyx U :l{=D) +# }.

with the projection 7, : © — G} _,(C). We have that dimm ¥ > 3. There are two
possibilities: «y) There is I € 7(X) such that \O¢(1)|(=!) = @ Then rfl(/) is finite
hence dim G} _4(C") > 3. By using the theory of excess linear series (cf. [ACGH]) we get
that dim G}_,(C) > 1. a contradiction. a,) Forall / € 7 () we have that 'O¢(1)i(=1) # 0
and then (" has >? trisecants. But a nondegenerate curve in PP can have at most !
trisecants. so by picking the plane section H 7 (" generally we can assume that as) does
not happen either.

We now rule out case b). Suppose that b) does happen and denote by L C P? the 4-
secant line corresponding to f. Let {p} = LN H. and pick / C H a general line. As Q was

a general conic through py.... . py we may assume that p ¢ Q. The map f': Q — l'is (up
to a projective isomorphism of /) the projection from a point g € Q. while f(p;) = p;pM 1.
for 7 = 1.... .4, By Steiner’s Theorem from classical projective geometry. the condition

(S ) f () fps)flpa)) = (') [ (o) f/pa) f(p3)) 1% equivalent with pi.ps. ps. py. p and
g being on a conic. a contradiction since p ¢ Q.
Finally. when ¢ — 4 > [{4 + 3)/2]. we have to show that gon{ X'} > gon((") + 1. We
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As an application of all these results we give a totallv different proof of the most
difficult part of Chapter 1. namely Prop. 1.5.4:

Theorem 2.5 The Kodaira dimension of Maz s > 2.

Proof: We apply Theorem 2.4 when (d.g) = (18.23). There exists a curve (' € P of
degree 18 and genus 23 such that gon(C') = 13 (generic). Hence [C] € M3, 1 M3
but [('] ¢ M, 5. which basically proves 3) of Chapter 1. |

2.6 Miscellany

In this section we gather several facts about the relative position of certain loci in M.
The Brill-Noether Theorem asserts that the general curve of genus g has no linear series
with negative p. However. it is notoriously difficult to find smooth Brill-Noether general
curves. We discuss whether various geometrically defined subvarieties of M, (e.g. loci of
curves which lie on certain surfaces, or admit irrational involutions) might possess Brill-
Noether general curves.

Let us look first what kind of surfaces can a Brill-Noether general curve lie on. Lazars-
feld proved that a general A3 surface (with Picard number 1) contains Brill-Noether-Petri
general curves. It seems pretty hard to obtain such results for other classes of surfaces.
We have the following observation:

Proposition 2.6.1 1. A general surface S C P* of degree d > 5 does not contain non-
degenerate Brill-Noether general curves.

2. A smooth curve of genus g > 29 with generic gonality {(g + 3)/2] cannot lie on an
FEnriques surface.

Proof: By the Noether-Lefschetz Theorem. if S is a general surface of degree d > 5.
Pic(S) = ZH. with H being a plane section. Hence any curve " € S is a complete
intersection. For ' ~ mH with m > 2. we have that 2¢(C") — 2 = md(m + d — 4). from
which clearly p(g.3.md) < 0. so C is not Brill-Noether general.

Suppose now that C' C S is a smooth curve of genus g. sitting on an Enriques surface.
There exists .2E| an elliptic pencil on S such that C'- E < y/2g — 2 (cf. [CD] Corollary
2.7.1). In the exact sequence

0 — H%S.2E — C) — HY(S.2E) — H°(C.2E )

we have that A%(S.2E) > 2 and H°(S.2E — () = 0 (because (2E —C')- E < 0). Therefore
(' carries a gip . Since for g > 29 we have that 2/2¢g — 2 < {g+1)/2. the curve C does
not have generic gonality. a




We would like to know whether curves having an irrational invelution can be Brill-
Noether general. We will restrict ourselves to double covers. although these considerations
can be carried out for coverings of arbitrary degree. We have the following results:

Proposition 2.6.2 1. Forg > 1. the gencral point of the locus {Cl € My, oy 220 C —
Nodegloy =2, gtX) = g} s Brill-Noether general.
2o Forodd g > 1. the general point of the locus { C1 € My, 30 : C— X Ctale. with
deg(a) = 2. glX) =g} 15 of generic gonality g + 1.

Proof: 1. Using limit linear series we find a Brill-Noether general curve ¢ of compact
O o
type and genus 2¢g. haviug a map of degree 2 onto a curve X of compact tvpe and genus g.
Take (4. p). a general pointed curve of genus ¢. and R a smooth rational curve. Consider
X = AU, R,. which is of genus g. Let (Cy.py) and (Cs. ) he two copies of (4. p) and
p 11 24 q -4 2. 2 )
(E..r.y) a 2-pointed elliptic curve such that + — y € PicY(E) is not torsion. We construct

a curve of compact type of genus 2g = 1. by taking " = ) Uy, E Uy, Con Tt s
straightforward to construet a degree 2 map 7 : ¢ — X: take o(C,opy) = 14 p) and

ap £ — R the double covering given by the linear svstemr o+ y on £, This shows
that (" is a it of smooth curves of genus 2g — 1 having « donble cover with 4 branch
point=. The claim that (" is Brill-Noether general (i.e. it does not adnmit any limit linear
series with negative Brill-Noether numnber) is a hyproduct of Propositions 1.3.2 and 1.4.1.

2. The idea is the same. to construct an unramified double cover o @ (" — X with
X and C of compact type. g(C') = 2g — 1.9(\') = g and " having no g;'s. This time
we take X = AU, E. with (4. p) a general curve of genus ¢ — 1 and E an elliptic curve.
and C:= C' U, E'U,, Co where (Crpy) are just coples of (ALp) o E' s a copy of E and
P~ p2 €2 Pic?( E'). We obtain an étale donble cover o : €' — X. by mapping C; and Cs
to A. E' to E.such that a(p,) = o{py) = p. The proof that € lLas no limit g;'s is similar
to a few other such proofs in this thesis. so we omit it. Note that this construction in the
unramified case can also he found in 'Ber]. O

In the previous proposition. the restriction to odd ¢ in the unramified case seems to
be rather artificial.  Although we believe that for a sufficiently large even g. there are
Brill-Noether general curves of genus 29 — 1 mapping 2:1 to a curve of genus g. for g = 6
we have the rather surprising result which we regard as a one-off:

Proposition 2.6.3 [fo: (' — C s an étale double cover with G Cr=11.9(Cy = G. then

C s G-gonal (whereas the generie gonality an My, s 7).

Proof: Let us consider the moduli space Rg of pairs (C.n). where ¢ is a smooth curve of
genus 6 and 1 €, Pic’(C'). We denote by o 1 Ry — M, the map given by o(C. ) 1= [C]
where o : (' = C'is the étale double cover corresponding to . ie. a,0qn = O ).

The key observation is the following result of Verra (¢f. [Ve]): for a general point
(C". 1) € Ry. there exists an Enriques surface S such that ¢ C 5.C% = 10 (henee dim (" =
3). C s very ample and = Ky . Moreover. if (Coy) € Ry, is general. the Enrignes
surface .S can he chosen generallv too in the 10-dimensional nioduli space of Eurigues
surfaces. By general theory (ef. [CD]) S contains 10 curves of genus 1.0 Fyo..  Fg. such
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that £;- E; =1 —¢;; and O ~ 1/3(Eyv+ -+ Eyg). Let m: X' — 5 be the A3 cover of 5.
=7 YC)and F; = 7 YE;). with 3C ~ F, + -+« + Fip. For some 1 </ < 10. consider
the exact sequence

0 — HYX.F, - C) — HYX.F) — HYC.F, &).

Certainly H°(X.F, — C) = 0 and although E; might be isolated on S. when we pass
to the K3 surface X. we get that RO(X,F)) = 2. so F; gives a pencil on C of degree
6(=F,- C = 2E, - C). This shows that o(Rg) C M, 4. O

Remark: In a similar way. we can show that any smooth curve lying on the A 3-cover of
a general Enriques surface cannot have maximal gonality. so it is Brill-Noether special.

(1)
(S]]







Chapter 3

Divisors on moduli spaces of pointed
curves

3.1 Introduction

For integers g > 3 and n > 1 we denote by .M, , the moduli space of complex n-pointed
curves of genus g and by M, its compactification. the moduli space of n-pointed stable
curves. When n = 1 we will sometimes use the notation C, = M, for the universal
(stable) curve of genus g.

The loci M7, C M, consisting of curves having a g; turned out to be extremely
useful for understanding the birational geometry of M, One can consider analogous
Brill-Noether loci in M, ,, defined as follows: if a'...., a™" are Schubert indices of type
(r.d) (thatis0 <o} <...<al <d—r fori=1.....n), we consider the subvariety

Mt e = A{[Copr . pa] € M, 1 3L € GR(C) with o' (p;) > o for all i}.

The “strong Brill-Noether Theorem™ of Eisenbud and Harris (cf. Section 1.3) asserts that
for a general n-pointed curve (C.p;.....p,) of genus g. the dimension of the variety

GHC (p.a').... (pna™) ={l€GHC):al(p) > a fori=1.....n}

is the adjusted Brill-Noether mumber p(g.r.d.a’.....a™) = plg.r.d) =3 37 _jal.
When this number is —1 one expects to find divisors on M, ,. We will try to understand
the geometry of such divisors when r = 2 and n € {1.2}. that is. we will look at loci of
1 or 2-pointed curves having a g3 with prescribed ramification at the marked points. We
mention that the case r = n = 1 has already been treated in [Lo]. but as it will turn out.
computations are significantly more involved in the case of 2-dimensional linear series.
Experience shows that on M, the most interesting divisors defined in terms of linear
series are those consisting of curves with certain gj's having ramification as ordinary as
possible: in general the more ramification one imposes on a linear series. the higher the
slope of the resulting divisor on M, will be. hence it will be less relevant for understanding
the birational geometry of M. It is natural to expect the same for Brill-Noether divisors

{
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on H,,_,I. which means that we will be mainly interested in the case when the a’s are
minimal.

For an integer ¢ = 1 mod 3 and > 4. we set d = (2g — 7)/3. 50 that pig.2.d) = 1.
There are two ways to get Brill-Noether divisors with minimal ramification on .M, .
Either we take a = (0.1.1) and then we consider the divisor of curves with a marked

point that is a cusp. i.e.
CU =M s 0.1.1)) = {[C.p] € M, 1 3g; on C with a cusp at p}.

or we take a = (0.0.2) and then we get the divisor of curves with a marked point that is
a hvperflex. i.e.

HF = M, 1 4l(0.0.2)) = {{C.p] € M, : 3g5 on C with a hyperflex at p}.

We are going to compute the classes of the closures C'U and HF in .M, .
On M, there is only one way to get a Brill-Noether divisor by imposing minimal

ramification. and that is by taking o' = % = (0. 0. 1) 10 obtain the divisor of curves with

2-marked points that arve both flexes:
FL:={[C.p1.ps] € M, 3g; on C having flexes at py and p.}.

We shall also compute the class [FL] € Pic (M)

Although I think that computations of divisor classes on ,»Vg‘n are interesting in them-
selves because they enhance our understanding of families of (pointed) curves. the original
motivation for studying the divisor F'L C M., was an attempt to prove that the moduli
space My, is of general type. It is proved in [Lo] that My, is of general type for
n > & since Moy, s of general type for n > 1 and M., is of non-negative Kodaira
dimension for n = 5 and of general tvpe for n > 6. it is natural to expect that the
hound for genus 22 is some way off from being optimal. The divisor FZ. or some of its
pullbacks to ,Vy_n via the maps Vg_,l — M, forgetting some marked points. seemed
the most likely candidate for being part of a multicanouical linear svstem. i.e. to have
Ky, , ~a FL + (effective divisor }. for some « > 0. Unfortunately our caleulation
<hows thix not to be the case.

In Section 3.6 we compute the class of vet another divisor on the universal curve
,v_,,‘p This time we consider a divisor which although is defined by a geometric condition
in terms of linear series on curves. is different from the Brill-Noether divisors from Sec-
tion 3.4, in the sense that it appears as the push-forward of a codimension 2 Brill-Noether
locus in .Vy‘z under the map m, : M,, — ,V!,_l forgetting the second point.

For an integer d > 3 we set g := 2d — 4. We define the following codimension 1 locus
in the universal curve

TR:={C.ple M, 3 eGyC). Zr e~ {p}such that @\ (p) > 3 and o (r) > 3}.

that is. TR s the locus of T-pointed curves (. p) for which there exists a degree d map
f ¢ — P! having triple ramification at the marked point p and at some nnmarked point

o
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r € C.r # p. Clearlv. TR = TTf_)(,\/l;..z.d(((). 2).(0.2))). Since p(g.1.4.(0.2).{0.2})) = =2
the expected codimension of .M;‘M((UA 2).(0.2)) inside Mo is 2 and it is easy to see that
this is also the actual codimension. hence TR is a divisor on M, . We shall compute the
class [TR] € Picz(M,1) of the closure of TR in M.,.

We close this chapter by proving in Section 3.7 the following

Theorem 3.1 For g = 11.12.15 the Kodaira dimension of the universal curve Cg is —>.

3.2 The Picard group of the moduli space of pointed
curves

We review a few facts about the Picard groups of the moduli spaces M, ,,. when g > 3 and
n > 1. The main references are [AC3] and [Lo] (but also [Mod]. for a very comprehensible
discussion on divisor classes on moduli stacks). All Picard groups we consider are with
rational coefficients: in particular we have isomorphisms Pi(:f“n(,vg‘”) ~ Pic;(.T’[-g_n) ~
AE(.\Ag,n). Here by Picyy, we understand the Picard group of the moduli stack (functor).

From now on we denote Picy (M, ) by Pic((M ).
For 1 <4 < n let us denote by 7 : M,, — M,,_, the morphism which forgets the
i-th point. We denote by v; € Pic(M, ) the class on the moduli stack which associates

to every n-pointed family of curves (f : C — B.oy.... .0, : B — () the class of the line
bundle o7 (w;) on B. where wy; = wc, g is the relative dualizing sheaf of f.
For 0 </ < [g/2] and A C {1.2.... .n}. we denote by A,.4 the irreducible divisor

on M,, whose general point is a reducible curve of two conponents, one of genus i. the
other of genus g — 1, meeting transversally at a point and such that the genus ¢ component
contains precisely the marked points corresponding to 4. The index set A is subject to
the obvious conditions card(A) > 2 if i = 0 and 1 € A for i = ¢/2. We denote by ;.4
the class on the moduli stack associated to the divisor A; 4. We also write 4.4 = dg_j.4r.
where A" := {1.... .n} — A. as well as §; = §,_;.9. The key result is the following:

Proposition 3.2.1 (Harer, Arbarello-Cornalba) For g > 3 and n > 1 the group
Pic(M, ) s freely generated by the class of the Hodge line bundle X and by the classes v,
for 1 < i< n and the boundary classes 6; 4. where 0 < i< [g/2] and A C {1.... .n}.

We briefly discuss now the cases that are of interest to us. i.e. when n € {1.2}. If n =1

we denote by 7 : .My — .M, the natural projection. Clearly v = w = ¢;{wy): also

(N =X 7'(d) =6 and 7*(,) = & + 0,y for 1 < i< [g/2].
If i = [g/2] we have that 77 (00 ) = 0y
When 1 = 2 we look at the maps 7; : My, — Mg, forgetting one of the points. Oune

has that v, = ¢1{wr,) + dp.125. As for the pullbacks. we will need the formulas (cf. ‘Lol

mAy = A0 w3dg) = dy. male) = wp = g2y and T3, 0) = 64 + g g2y
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3.3 Counting linear series on curves via Schubert
calculus

In order 1o compute the class of Brill-Noether divisors on .M, .. one has to figure ont the
intersection mumbers of such divisors with varions curves in Mg, Typieally. we have to
answer guestions like:

Given g.r.dand o' o Schuibert indices of tvpe (e d )y such that prgorod.a' oo oa®)
0. how manyv g}'s with prescribed ramification at the s marked points does a general s-
pointed curve of genus g have? In other instances one has to compute the number of gi's
having prescribed ramification at unprescribed points.

In cach case we will solve such problems using Schubert calculus: we let our curves de-
generate to curves of compact tvpe that are unions of P and have elliptic tails aud no
other components. Computing the number of limit g)'s with special properties on such
curves boils down to computations in the coliwmology rings of certain Grassmannians.

We now outline the method. We use as references 'GH| and 'EH5]. while 'F] ix a ref-
erence for general properties of Schubert eveles in Grassmanuians. Let (7 he an algebraic
curve of genus g. let p € C be a point and I = (L£.17) € (). To this data we associate
the following strictly decreasing flag in H(C. L/L(—(d + 1jp)) =T

Fip): H“(('. L/C—td+=1p))y=HyD>H 1 D>... 201, > H,u, =0.

where Wy = HY(C. L(—ip)/Li~id+ L)p)). Ha = (ag.....a,) is a Schmbert index of
type (r.d). the condition a'(p) > a is equivalent with 17 belonging to the Schubert cvele
o, € G(r. HYC.L/L(—{d+ 1)) = Glr.d) defined w.r.t. the flag F(p) (see Section 1.3
for our wayv of denoting Schubert cveles which basically coinctdes with that from [GriffHa)
except that we write the indices in reversed order}. For instance. pis a ramification point
of Hif andonly if V€ o 01,

Let us now consider the special case ¢ = P!, There is only one line bundle of de-
aree d on PLonamely £ = Oxi(d). Making once and for all the identification C' =
HY(P'. Oz:4d)). the variety GLIP') is just the Grassmannian Gir.d) of projective r-planes
in PY = P(HY(P'.O.itd))). For cach point p € P! we have the flag Fip) with respect to
which we can define Schubert eveles in G(r. d).

Let pro.oo . pe € PUbe distinet general points and ', a® Schubert indices of type
(r.d). For each 1 </ < s we consider the Schubert ovele a0 € Gir.d) defined in terms
of Fipyy. Tt = proved in EH3) that o, .0 cogm are dimensionally transverse: every
compouent of () 7, has codimension

m i

Z codim(a,..Glr.d)) = Znﬂ

[ [

and in particnlar (" o, = 0 if and onlv if 70 . oge = 0in H(G(r.d). Z). This shows
that there exists a g on P! having ramification > a’ at p,. for 7= 1.0 s if and only if
Tt (T # 0.




Proposition 3.3.1 Let al.... . &% be Schubert indices of type (r.d) such that

§

Z al+rg={(r+1{d=r).
J=0

=1

and pro..o Py Tioo .. .. r, € P distinct general points. Then. the variety of gi's on P!
having cusps at the points py.....p, and ramification > o' at x; for i = 1.... .. 5 s
reduced. O-dimensional and consists of 0[5'01 1al - Tas potnts.

Proof:  This has been basically settled in [EH3]. To be precise. Eisenbud and Harris
proved a similar statement for the Schubert cyeles of the form o . g rather than
0(0.1....1)- but by duality we obtain the claimed statement from theirs. Just use that the
dual of the cvele oo 1y in G(r.d) is the cycle o o in Gld —r — 1.d). O
We will repeatedly use the following formula (cf. [GH. page 269]): if @ = (ag.... .a.)
is a Schubert index of type (r.d) such that >°7_,a, 4+ rg = (r + 1)(d — r) we have that

’ [l e, =i+ =10}

a T =4 - —.
(eo-ar) T ) T I [Tisolg—d+i+a;,+r)

(3.1}

Another formula that we will find quite useful is the classical Pliicker formula (see
[Mod. page 257]): If C' is a smooth curve of genus g and [ a gj on C. then

le‘l([))2(7‘+1)d+(r+1)r(g—l). (3.2)

peC

where «!(p) is the weight of p in [ (c¢f. Chapter 1).

3.4 Divisors on M,

In this section we compute the classes of the divisors CU and HF of curves with a marked
points that is either a cusp or a hyperflex. We will use Theorem 4.1 from [EH2] which
gives informations about the subspace of Pic(.M ) generated by the classes of the Brill-
Noether divisors.

Fix ¢ > 3 and let us denote by 7 : M, — M, the natural projection. Inside
Pic(.M, 1) one can look at the subspace generated by the classes of all divisors T/I;_d(a).
where o = (ag.... .a,) is a Schubert index of type (r.d) such that p(g.7. d} — S =

—1. We note that the Brill-Noether loci we consider on .M ; will have exactly one
divisorial component (cf. [EH2] Theorem 1.2) and possibly some other lower dimensional
components. It is not known whether the Brill-Noether divisors on M, with n > 2 are
irreducible or not.

One distinguished Brill-Noether divisor on .M, is the locus of Weierstrass polnts

W= {[C.p] € My pis a Welerstrass point of C'}.
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Clearly W = .\/i_,'l_ln,,((().g = 1)) that s the locus of those (C.p) for which there is a g,

with total ramification at p. The ¢lass of the closure W in .Vg_x has been computed (¢f.
Cuk]):

g 1

— glg+1) (g—illy—i+1)._
V] — ) o 2 D - - ,
W] = -\ S > 5 4.
r=1
Another divizor class we consider on .V,,»l is
+1. &
. ( . . -
BN = (.(/—~3)/\—'/ - %—Z;lg—l)()lu
=1

Here. BN is (modulo multiplication by a positive rational constant) the class of the
pullback of anyv Brill-Noether divisor .V;,, ol Vt, when plg.r.d) = —1. The class BN
is effective when there are Brill-Noether divisors on .VU and this happens precisely when
g + 1 ix composite. When g+ 1 is prime. it is not clear whether BN is effective (as a
matter of fact. the slope conjecture (see end of Chapter 1) predicts it is not}. For g + 1
prime (in particular we can then write g = 2k — 2). the effective divisor on vﬂ having
the largest slope known to this date. is the ¢losure of the locus

El = {C] € .M, :3g; on C such that 2g, is special }.

The slope of Fi. i (64 + & — 6)/k(k = 1) (¢f. [EH3]). A general curve of genus 2k — 2
has (25 —2)! /(M (k — 1)1) linear svstems g;.. and E} is the locus of curves  for which the
scheme GL{C) is nonreduced. This happens when two g)'s come together. so that we get
a g, with dim 2g; > 3. or equivalently by Riemann-Roch. 2g} is special.

We have the following remarkable result of Eisenbud and Harris (¢f. [EH2]):

Proposition 3.4.1 The Brll-Noecther subspace in Pic(M, 1) is two-dimensional, gener-
ated by the classes Y] and BN

Remark: More generally. Logan has proved in Lo] that for n > 1 the subspace of

I’i('(_-\/-i,/_”) generated by the classes of the Brill-Noether divisors on ‘M, ,, has dimension
1= (n +’1) ’
5 )

We now compnte the classes of the divisors HF and C'U.

Theorem 3.2 Let g =1 mod 3 be an miteqer > 4 and sef o := (2 +7)/3. We have the

following relateons m Pic((M, ):
LHF) =c(aA=bur—c,dy—39 ¢, 4).
where

a =20 +T4 =109 —166). b= glg=20g—d+6). ey = (¢°+9g+23)(g—d+1).

2
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e; = (g —1)(5g% +2ig* + 3ig + 459 — 110 —= 74 — i) and

c=8¢g-3)"/(lg—d+6)!{g—d+3) (g—d+1)!).

2 L']:H((g+4u+g v — 82 G = S i g - ) o)

i=1

where ¢ =24(g—2)"/((g—d+5)! (g—d+3)! (y—d+1)!).

Remark: Let us try to understand the meaning of our formulas in the simplest case.
g = 1.d = 5. By substitution we get

[HF] = —2A + 20v — 126, — 66, — 24.

On the other hand. on a curve C of genus 4 every g2 is of the form |K¢ — r.. for some
r € C. The marked point p € C is a hyperflex of |K'¢- — | if and only if RO(C dp+1) >3
This implies that p is a Weierstrass point of C' and & is one of the 2 points in the effective
divisor K¢ — 4p. Therefore HF = 2 W. and this can also be seen by comparing our
formula to Cukierman’s {cf. [Cuk]):

Wl = —X+ 100 + —66; — 36, — d3.
As for the other divisor. when g = 4, one finds that
CU = {(C.p) € C4 : there exists + € C such that RY(C.2p + 1) > 2}.

Our formula gives in this case [W] = 8\ + 4y — 68, — 66, — 403. Note that the class
of the divisor CU on (4 already appears in [Fa] page 423 (that is the {A. v’} part in our
formula).

Proof: 1) We start by computing [HF) which is technically a bit more difficult than
computing [CT].

Since HF = ,V;_l_d((OA 0.2)) is a Brill-Noether divisor. by applving Prop. 4.1 it follows
that there are rational constants v. i such that

[HF] =y BN +v [W]. (3.3)

and we just have to determine the coefficients ¢ and v. We use the method of test curves.
i.e. we intersects both sides of (3) with curves in .M, ;: we write down l-dimensional
families of 1-pointed curves of genus g and compute the degrees of A v and the 4's on
that curve as well as the degree of HF. We need two test curves in M, which will
provide two linear equations in y and v. Since it is pretty difficult to write down explicit
families of curves of genus g with smooth general member. most of the test curves we use.
will be entirely contained in the boundary ,Vg.l - Mg

We obtain the first test curve as follows: Take a general curve B of genus g — 1 and
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a general 2-pointed elliptic curve (£.0.p). We get a 1-dimensional family in A; C '\/1
by identifying the fixed point 0 € £ with a variable point g € B. the marked point bemv
the fixed point p € E. Let us denote by {\q = E <, B.p€ E},ep the resulting family.

The degrees of the generators of Pic(. M,1) on the family we have just constructed.
are as follows:

deg(A) = 0. deg(c) = 0. deg(dy) = —deg(hg) =1 — 2¢.

while dq and 4; for 2 </ < g —1. all vanish. Next we evaluate deg(H F). that is the degree
of the divisor HF on the curve in \/lgl we have written down.

Let us take (X, = E U, B.p € E) a member of our family. Then X,.pl € HF if and
only if there exists a (smoothable) limit g3 on Xg. say 1. with vanishing > (0.1.4) at p.
Using the additivity of the Brill-Noether number we have that:

—1> p(l.allq)) > pllg. a'2(q)) + plleg. o' (g1 a'(p)).

Since p(lg. o' (g). o't (p)) > 0 (if we assume p—q € Pic®( E) not to be a torsion class) and
also p(lp.a'B(q)) > —1 (because (B] € M, is general). it follows that p(lg. a'#(q)) =
—1. that p(lg. (1’*‘((1) (1“"(1))) =0 and a'#(p) = (0.1.4). By using Prop. 1.4.1 we have
that d -1 < (1 E(p) + (12 Jg) < dfori=0.1.2 and there are two cases two consider:

Ist case: a'f(q) = (d—4.d—2.d—1) from which a'?{q) = (1.2.4). By "The Regeneration
Theorem’ (¢f. Chapter 1). all these linear series are smoothable. Tn (JIdel to compute the
contribution to deff(HF) in this case. we have to count how many points ¢ € B there are
such that there is a g3, on B with ordinary ramification at q.

At this point. one might worry about the multiplicities with which we count such
linear series. It turns out that all multiplicities we encounter during this proof are equal
to 1. The reason is that if we denote by (f: X — B.p: B — X) the versal deformation
space of (X,.p). then in a similar way to the proof of Lemma 3.4 from [EH2]. one can
show that the variety G2(X'/B. (p.(0.0.2))) of g5's with hyperflexes on 1-pointed curves
nearby (X;.p). is transversal to our test curve.

By standard Brill-Noether theory. B possesses 2(g—1)! /(( —d+2)g—d+3){g—d+4)"
linear series g3 ;. By Pliicker’s formula (3.2) each such g5, has 3d +6g — 15 ramification
points (all ordinary. since B iz general). We thus get a contribution of

23d + 6g — 15)(g — 1)!

, 3.1
(g—d+! (g—d+3) (g—d=2) (34)

2nd case: a'®(g)=(d —5.d — 2. d). hence a'2(¢g) = (0.2.5). Once again. all these linear
series are smoothable and the contribution to deg(H F) we get in this case. is the number
of g3's on a general curve of genus g — 1 with vanishing sequence (0.2.5) at an unspecified
point. We now determine this number.

Let the curve B degenerate in a l-dimensional family {B;} having smooth generic
fibre and as special fibre. a curve of compact type By =P UE, L ... U E, ;. where E;
are general elliptic curves. {p;} = E; P! and p,. ... Py-1 € P are general points. We
count the number of limit g3's on By with ramification (0.1.3) at some unspecified point
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I e BO.

Note that in principle we could have r = p, for some /. that is. there exists 1, € By
and and a family of 2-dimensional linear series Iy € G3(B;. (4¢.(0.1.3))) for t # 0. such
that liny,_qr, = p;. (i.e. the hyperflexes r; specialize to a node of the central fibre). In
this case however. by making a finite base-change. blowing-up sufficiently often the nodes
of By and resolving the resulting singularities. we obtain a new generically smooth family
(By.r}) and linear series I} € G2(B;.(r}.(0.1.3))) for t # 0. such that no ramification
point of /] specializes to a node of Bj. The central fibre Bj is derived from By by inserting
chains of P''s at the nodes of By. Since this operation (explained in [EH1]) does not
change the Brill-Noether theory of the central fibre. we may assume from the beginning
that all ramification has been swerved away from the nodes.

Conversely. using semicontinuity of fibre dimension for the space of (limit) g3's with
hyperflexes on curves nearby By. we find that all limit g5 on By with vanishing > (0.1.4)
at an unmarked point. are smoothable to every nearby curve in a way that maintains the
hyperflex. This shows that the number of limit gfl's on By having a hyperflex. is the same
as the number of (honest) g2's with a hyperflex on a general curve of genus g — 1.

Let { be a limit g3 on By with ramification > (0.1.3) at a smooth point r. In general.
from the Pliicker formula it follows that for any linear series g} on P' and for any number
of points y.... .ym € Pl the inequality p(g}.a(y1).... . a(yn)) > 0 holds. Using this
observation and that on By we have p(l. a'(r)) = —1. by additivity it follows that 2 must
be on one of the elliptic tails. say r € E;. Then we must have p(lg,.a't1 (1), o'1 (py)) =
—1. p(lg,. ' (p)) =0 for 2 < i < g—1and p(l=:.a%*{p).... .a% (py_1)) = 0. This
means that the aspect [z has cusps at the points py, ... .p,_1. As for the Ej-aspect of [
there are three possibilities:

o a'vi(p) = (d—5.d—2.d—1). so ' (p,) = (1.2.5). Then clearly 3p; + 21 ~
5r. s0o 3x ~ 3p, on E;. On P! we have (after subtracting the base point p)
a gj_, with ramification (0.0.2) at p; and cusps at pa.....pg_2. According to
Section 3.3 the number of such linear series is U(O‘O_Q)Jf’&f_l) (the product is taken in
H'""(G(2.d — 1).Z)). Since there are 8 choices for r € E} and r can liec on any of
the g — 1 elliptic tails. using formula (3.1). we get a total contribution of

) . 96(g — 1)!
) 9-2 !
Mo =1 T00x Mo = g e g—dr 2 g—de

)

ot

o a'=1(p))=(d—6.d—2.d). 50 a'(p;) = (0.2.6). Then 2r ~ 2p, on E;. and in this
case we obtain a contribution of

= 144(g — 1)!
3(g—1 92— : : . 3.6
(9—1) o) 0fy1y, = dT6) (g—d=2 (g—d) (3.6)




o a'fi(p;) = (d—5.d —3.d). hence a'*'(p;) = (0.3.5). Then 51 ~ 3p; on E; and the

contribution to deg(H ') is

T20(g — 1)!
(g—d+5{g—d+3)! (g—d)

24(g — 1) 01023 U(go_.l.z_l\, = (3.7)

By adding (3.4).(3.5).(3.6) and (3.7). we obtain that

— 16(g — 1)! (Tg® + 48¢g — 184)
degl F)‘(g—d+6)! (g—d+3) (g—d+2)! (38)

Since from (3.3) we have that deg(HF) = 2(g—1)(g—2}u+g(g—1)(g—2)v. the equation
(3.8) provides one linear relation between p and v.

In order to obtain a second relation. we use as test curve a general fibre of the map
7 Mgy = M, We fix C. a general curve of genus ¢ and let p € C vary. For this family
of course deg(v) = 2g — 2. while A and all the 4’s vanish. We also need deg(HF) which is
just the number of g5's on a general curve of genus ¢ having a hyperflex at an unspecified

point.

To compute this number we let (" degenerate to Cy :=P' UE,U...UE,. where E; are
general elliptic curves, {p;} = E; N P" and p,.... Dy € P! are general points. We count
limit gfi's on Cy with vanishing > (0, 1.4) at some point r € Cy. As before. it turns out
that all these g3's are smoothable and no two g4 on smooth curves nearby C, coalesce.
Pliicker's formula forces the point r to sit on an elliptic tail.

Take [ a limit g2 on Cy with a hyperflex at a point z and assume that r € E;. It is
straightforward to see that a'®1 (z) = (0.2.4) and a'® (p) = (d - 4.d — 2.d). from which
4p1 ~ 4x. which gives 15 choices for r € E;. On the spine P! we have to count g3's with

vanishing sequence (0,2.4) at p; and cusps at py.... . p,. The number of such linear series
is 01012 0(90711.1)' the product being computed in H*?(G(2,d).Z). Since x can sit on any
of the tails Ey.... . E,. we get that
— _ 2404!
deg(HF) = 15g 00,12, 0¥y, = J : (3.9)

Doy —d+3) (g—d+3) (g—d + 1)
which immediately gives

240(g — 2)'
(g+1) (g—d+5) (g—d+3) (g—d+ 1)1~

By plugging in we obtain i as well. hence [H F] too.
2) In order to compute [CU] we could use exactly the same test curves emploved for the
computation of [HF]. but there is a shorter way of doing things in this case. Thankfully.
our results do not depend on which method we choose.

We fix a general elliptic curve E and consider the map j : My — M, given by
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Jj{[B.p]) := [B U, E] (attaching an elliptic tail). Then U = j*(ﬂjﬂ_dy As already

pointed out in Chap.1. we have

' g+1)/2
Mo =g+ D A= (g+2)/68— > ilg+1—1) ),

=1

where f = 3a/(2g — 2). with a being the number of g3's on a l-pointed curve of genus
g—1 and having ramification (0, 1. 2) at the marked point. By degenerating the 1-pointed
curve of genus g—1to (PLUE,U...UE, .p € P'). where the E; are elliptic. {p,} = P'NE;
for i=1.....gand p.pi.... .py, € P' are general points, we see that a = 012 U(gofll_l)
(e H'9P(G(2.d).Z)). from which we obtain

24(g — 2)!

= T dTa g—d<a g—d=1)

The pullback j* acts on the generators of Pic(Mg.) as follows:
\]'*<(So) = (50. j*</\) = A ]*(61) = —L'+(5941 (by adjunction), ‘}*((51) = (59,,;—’:—(5,,5_1 for i > 2.

We get immediately the stated formula for [CU). a

3.5 A divisor on M,

Using results from the previous section we compute the class of the divisor of curves with
2 marked points that are flexes of a 2-dimensional linear series on the curve:

Theorem 3.3 Let g =1 mod 3 be an integer > 4 and set d := (2g + 7}/3. We have the
following formula in Pic(Mgs):

g—1 g—1
[—L] = C”(A A+ B (v + 1) —C 6 — D doqr2y — Z(lé 8iq1y — sz 51‘:{1.2})-
=1 i=1
where
A=6(g*+9¢°—2g—140), B=6(g+1)(g+11)(g—2). C=g"+7g°—10g— T76.

D =12¢(g—2)(g+11). b =6(g—i)((g>+4g)(i + 2) — (32i + 44)).

a, = 6(g%(i +1) — ¢?(i* — 41 — 10) — g(4i* + 321 + 13) + (32" — 22)) and

M =4g-3)/((g—d+6) (g—d+3)! (g—d+1)}).

Remark: When g = 4.d = 5 we have that

FL={[C.pi.ps] € My, there exists r € (' such that RY(C. 2+ 3p;) > 2 for i = 1.2}.
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Our formula gives in this case

ﬁ] = 6/\“‘1;(L']*l,'g)—fs()—24f5(){1_2}*]3(/51v‘ 3 (>)“‘,"'f’; l‘l\f’ . }71—)0.’{1.’}*6'”{1_’}

Proof of Theorem 3.3: We determine the coeflicients in the expression of FL] in three

steps. First. we consider the map 7+ M, » — M, which forgets the second point. We

claim that

(mo ) ([FL] - dpuy) = HF] = 1CUT . (3.10]
This ix almost obvious: It ' X = C ., P - ol with props € PUois a general point in
FLn P Agiq1.2)y- then there exists 1. a limit g5 on X having flexes at p, and py. Using the
dddm\lt) of the Brill-Noether number on X' we have that such a linear series is 1‘oﬁnw1

that p(ls. ol {(pr). allp). « ’((1)) = 0 and /)(/('.(11('(([)) = —1. It follows that wic{g) =
and this lmp vens if either ' (g) = (0. 1.4) (and then [C.q] € HF). or o'y = (0. Z.I
(fand then 'C.q] € CUY. Ou P oon the other lmn(l. there is precisely one g3 with flexes at

both p (md po and vanishing (d — 4od — 1.d) (resp. (d = 3.d = 2.d)) at the point ¢. =0
indeed (mp) ([FL] - 6gq10y) = [HF] + CUJL We use (3.10) together with Theorem 3.2 to
determine a fo\\ coe fh(wnh in the expression of (£L].
Let us write [FL] = AAN+B (¢ 4+ey)—C dy—D Bo:q1 20— Z?—:]I ai by —> 40

Since (7). (A dpqy01) = A (7-_7)*((53{ o) = e (dg - dgq1.2y) = do.
(m2)al i 0gqry) =0 1011—1 (7m2)e {31y 0012y ) = Oand (F2). 00,40 2y 00q12y) = 6y
for 1 </ <g¢g—1.from (3.10) and Th(*m«m 3.2 we obtain the coeflicients A.C. D and b,
for1</<gy-1.

In order to get the coefficients of ¢ and vy, we use the following test curve: fix ¢
a general curve of genus g, let p; € ' be a general fixed point and p, € (" a variable
point. When ps hits py. by blowing-up we insert a P! at p; € C. therefore degidgq; 2,) = 1
for this family. Moreover. deg(cy) = 1 (the restriction of ¢ to this family is Oc-(p)).
deg(tw) = 2¢ — 1 (because the restriction of ¢, to this family is the line bundle Q- (p))

b, r\ 21

and finally A and all the other §'s vanish.

We now compute deg(£L). By the Schubert caleulus we have already emploved a
of . (€ HMG2.d). Zy) linear series g
with o flex at a fixed poinr pp. By Plitcker. each of these linear series has 3d — 6 — 7
ramification points different from py. thus we get that

number of times. we see that C has o4,

- , . _ . (3d -+ 6(,‘ -7 }'
AentP LY = 3 =6 = Thmonn T 0 = (S a8y (g d =31

We have in this way the relation 298 — D = deg(FL). which allows us to determine f3.

Weare left with the task of determining the coefficients a, of 8,1y, when 1 < i < g—1.
For this purpose. we use a new test curve. Take (B.¢) a general 1-pointed curve of genus i
and (C.g. ps) & general 2-pointed curve of genus g — 0 We take X := BU, (" and consider
as marked points a moving point py € B and the fixed point ps € €. For this family we
have that

degiog) =27 = 1o degteny =00 degtd, ;0,00 = 1. degtd, gyl =—1L

O




while A and the remaining ¢'s vanish. Thus we have the equation

a; = —(21 = 1)B 4+ by_; + deg(FL). (3.11)

where the only unknown in the left-hand side is deg(FL) which we now determine.

We have to solve the following problem: let (Y p) a general 1-pointed curve of genus ¢
degenerating to (X = BU, C.py). There are oo, (01 . linear series g2 on ¥~ having a
flex at p. Fix one of them. How many of its ramification pomts will end up on the genus
i component B as Y specializes to X7

To answer this we let X further degenerate to X' := E, U...UE,. a string of g elliptic
curves, the marked point. call it ry being on F;. We assume that the component C of X
degenerates to Ug_lE] whereas B degenerates to Ul_ ;.\ E;. If {r;} = E,NE,.,. assume
ri —ri_, € Pic® (E;) is not a torsion class. Pick [ one of the limit g3's on X’ that have
a flex at ry. Because of our assumptions. p(lEl.a'b'z(r,-_l).a’ﬁ‘f(r,)) =0 for1 <i<y.
By Pliicker. the aspect /g, has 8 flexes which are smooth points of X', which means that
there will be 8i flexes on the components E,_;.;.... , Eg. hence finally.

_ ] 48ig!
deg(FL) = 8i0won) o) = (T 5 (g=d+ 3 (g dT ) |

Substituting in (3.11) we have the coefficients ¢; as well. We have determined all terms
in the expression of [FL]. a

Remark: We discuss now the case g = 22.d = 17, which as we already pointed out, was
the initial motivation for computing [FL].
One tries to show that the Kodaira dimension of the moduli space Maggo is > 0 by
exhibiting an explicit effe(tl\e multicanonical divisor. Recall (cf. Chap. 1) that on Mas
the Brill-Noether divisor \/123 17 of curves with a g2, is multicanonical (modulo a positive
combination of the classes ;. for i > 1). Therefore, it seemed possible that on Mas,. the
divisor FL of 2-pointed curves with a g2, having flexes at both marked points. would be
multicanonical as well.

The canonical class K’Vw can be computed easily (see also [Lo]): if m : _Vg_z — .Vg.l

and 7 : M,, — .Vg are the natural maps. then ]\"ﬁg_2 = 7r§(1{Mg_l) + ¢1(wq,) and
Ky, = ﬂ*(]\'.vg) + v which gives.

5
v

[\]
o

I{Eg =13+ v — 2(50 - 3((51 + ONg‘l) - and

[|
(¥

1"—“9,2 =13\ + Uy Uy — 2(50 — 2(50;{1.2} — -2 Z 6, 1

i>2.A

o
o

To make computations easier to handle. we introduce the following notation: for D; and
D, divisor classes on .M, ,. we write

Dy >5; D) <= D; — D, is a non-negative combination of the classes 4,.4. where i > 1.
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Our Theorem 3.3 shows that in the case g = 22, we have that

247 233 o 229
B /\+T (L'|+l_'2)—2~12 ()0'{1'2)—600 Zﬂ 0.

ithe left-hand xide ix modulo boundary classes a rational multiple of FL]). Other known
effective divisor classes on M., are the following:

o The class of the Welerstrass divisor Wei := 770V} = 7300V). that is the closure of
the locus of those [ py.pu] for which either py or py is a Weierstrass point of '
One has that [Wei] <; =2 A + 233 (v + ty) — 506 4.

e The pullback of the divisor F:z from M.,. that is. the closure of the locus of those
[C.p1.po] for which C has a gly such that dim 2gl, > 3. One has that that
[E,,] <5 870 A — 132 4.

e The closure of the locus D = {[C.py.pa] € Moy

pa t WUC 1 g = Ty > 2} One
has (¢f. [Lo]) that [D] <5 —=A +66 (v + 1) — 25

2
3 8y 12y

One can then show that [FL] is not expressible as a positive linear combination of
[Wei]. [F;z] and [D]. so by knowing FL] we really extend the knowledge of the effec-
tive cone on Pic( .My, ).

On the other hand. one sees that Ay, , cannot be expressed as a positive combination
of the four effective classes mentioned hefore. Although our computation of [F L] provides
a new effective divisor class on .My, . this enlargement is not big enough to include the
canonical class. In the spirit of the slope conjecture that predicts that on _V_,, the effec-
tive divisors of lowest slope are the Brill-Noether divisors. since Ay, | lies outside the

)

Brill-Noether subspace in Pic(.M,,,). we make the following:

Conjecture 2 The Koduaira dimension of Mayay (and hence that of My, } is —x.

3.6 The divisor of curves with two triple ramification
points

In this section we compute the class of the divisor TR of 1-pointed curves that admit a
map to P! having both the marked point and some unspecified point as triple ramification
points.

Let us fix an integer d > 3 and we set g := 2d — 4. For a general 1-pointed curve
(C.p) of genus g the variety of pencils GL(C) is an irredncible smooth surface. Among
the oc? pencils of degree d there are finitely many /€ GL(C) for which p is a triple
ramification point. that is. @} (p) > 3. Moreover. all linear series [ satisfving this condition

are complete. base point free and all ramification apart from p is ordinary. Imposing
the condition that there exists a degree d map [ : ¢ — P! with two triple ramification

points. one of which is marked. we obtain a codimension 1 condition on M, ;. We have
the following:



file:///C.p/.pf/

Theorem 3.4 Let d > 3 be an integer and set g .= 2d—4. We have the following relation

e Pie(Mg):

g—1
TRl =m (¢ A+b L'—Z('z 8;)-
1=0

where
a = 2(18d* — 39d? — 120d + 290). b = 8(6d* — 28d + 35)(2d — 4).
o = 6d° — 24d* 4 13d + 30.
;= 202d — 4 — D)(24d® + 9id® — 112d — 42id + 140 + 50¢) for i > 1 und
m=6(2d —6)!/(d" (d —3)!) .
Remark: In the simplest case d = 3. g = 2 our formula gives the relation

[TR] = 80u + 106y — 120 (3.12)

where A is a boundary class on .M. namely A = d,/10 + 6,/5 (¢f. [EH3]). For genus 2
one has the following interpretation for our divisor

TR={[C.p] € My, :3r € C.x# p. such that 3p ~ 3x }.

During the proof of Theorem 3.4 we will need the result for the particular case g = 2.
hence we will settle this case independently.

3.6.1 Counting pencils with two triple points

In order to determine the intersection multiplicities of TR and various test curves in Mg,
we will need certain enumerative results contained in the following result:

Proposition 3.6.1 1) Let (C.p.q) be a general 2-pointed curve of genus 2d — 6 unth
d > 3. The number of pencils g} on C having triple points at both p and q is

| 1
Fld) = (2d - 6} (((1— 32 ((1—6)!)'

2) Let C be a general curve of genus 2d — 4 with d > 3. The number of pencils g} on C
haveng triple ramufication at some distinct pownts r.y € C is

48(6d2 — 28d + 35) (2d — 4)!

Nd) = dl (d—3)!

Remarks: 1. In the expression of F(d) we make the convention 1/n! = 0 for n < 0.

2. For d = 3 our formula gives N(3) = 80. that is. for a general curve C' of genus
2 there are 160 = 2 - 80 pairs of points (wr.y) € C x C. r # y. such that 30 ~ 3y.
This can also be seen directly by considering the map v : C x ¢ — Pic%((") given by
vir.y) = Oc¢(3r = 3y). Then v*{0) = %j(/( Cle Aw) =2-32.32 = 162, where & is a

2
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differential form representing #. To get the answer to our enumerative guestion we have
to subtract from 162 the contribution of the diagonal A C (" x (". Thix excess intersection
contribution ix equal to 2 (¢f. 'Dij). so in the end we get 160 = 162 — 2 pairs of distinet
poiuts (roy) € C x C with 30 ~ 3y.

Proof: 1) We let (. p.g) degenerate to the following 2-pointed curve of compact type
(Co:=P ' UE L ... UEs ¢ 1. qo). where E, are general elliptic curves. {p;} = FE ~P
and pr.... o pag 6. po.qo € PUoare general points. We have to count the number of limit
g) s on Cy having triple ramification at pg and gy, This is the same as the number of ghs
on P! having cusps (L.e. ordinary ramification) at pi.. .. . pag_g and triple ramification at
o and qg. By Prop.3.3.1 this number is 0’;')03_” rrfg;h (in H'?(G(1.d).Z)). This product
can he computed uxing formula (v) at the bottom of page 273 in [F] and one has that

. - 1 1
2 206 ¢
e \:ud—m!< — )
1021 7.1 CNd =3 d (d—6)!
2) Once more. we let O degenerate to Cy = P' U E) U ... U Eyy_y. where E, are general
elliptic curves. {p,} = PP Y E, and pr.. .. . pugey € PLare general points. We count limir
g5 on Cy with vanishing > (0. 3) at two distinet points r.y € Cy. Let [ be such a limit g)-

By a standard argument we have already outlined before. we can assnme that both o and
y are smooth points of Cy and by the additivity of the Brill-Noether number we obtain
that .y must lie on the tails £,. Since E; are general. we can assume that j{E,} £ 0
{that is. none of the E;’s is the Fermat cubic). hence there can be no g} on E; with three
triple points. There are two cases:

a) There are 1 </ < j < 2d — 4 such that r € E; and y € E;. Then a'# (p;) = ' (pj) =

(d — 3.d). hence 30 ~ 3p; on E, and 3y ~ 3p; on E;. There are 8 choices for » € E,. &
choices for y € E, and (2‘1_;4) choices for the tails E; and E; containing the triple points.
On P! we count gi's with cusps at {p;.... . poy_y} — {pi.p;} and triple points at p, and

- . . v 2d—6 - . . .
p;- This number is again 02, , 0277 s0 we get in this case a contribution of

(0.2) 0.1

20 — 4\ ot 1 1 )
64 2 o ':322/4!( - ) (3.13
< 9 >0@wﬂ&h (2¢ ) d =302 ' d -6y )

b) There is 1 <7 < 2d — 4 such that r.y € E,. We distinguish between two cases here:
b aipd = (d=3.d=1). On P we connt g} s with cusps at pi.... . pag 4 and
this mumber is 0‘}(311 Yin H"(G(1.d — 1).Z1). On E, we have to compute the number of
g3 s having triple ramitication at some unspecitied points r.y € E, — {p.} and which also
have stimple ramification at p,. Let us denote (E;.p;) = (E.p). If we regard p € E as the
origin of E. then the translation (r.y) — (y — r. —r) establishes a bijection between the
set of pairs (r.y) € E x E— N, o # p# y.such that there is a g} in which . y. p appear
with multiplicities 3.3 and 2 respectively. and the set of pairs (v. ) € F x £ — A, with
n # p # rsuch that there is a gl in which w. v, p appear with mmltiplicities 3.2 and 3
respectively. The Tatter set has obviously cardinality 16, henee the number of pencils gj




we are counting is 8 = 16/2. All in all we have a contribution of

_ ais_ 8(2d—1) (2d - 1)!
8(2d —4) ot = @2 T

(3.14)

by) a‘Ei (p;) = (d—4.d). This time. on P! we look at pys with cusps at {p1.... .pag_s}—
{p;} and a 4-fold point at p;. Their number is o3 O’?:_I; (in HP(G(1.d).Z)). On E,
we shall compute the number of gj’s for which there are distinct points r.y € E; — {p;}
such that p.x.y appear with multiplicities 4.3 and 3 respectively. Again. for simplicity
we denote (E;. p;) = (E. p) and we proceed as follows: We cousider T the closure in £ x E
of the locus

u.v) € Ex E—A:3l € Gy(E) such that a!(p) = 4.d\(u) > 3.a\(v) > 2}.
1 1 1 1

The class of the curve ¥ can be computed readily. If F; denotes the numerical equivalence
class of a fibre of the projection 7;: E x £ — E, for i = 1.2, then

Y~ 10F +5F, - 2A. (3.15)

The coefficients in this expression are determined by intersecting ¥ with A and the fibres
of ;. One has that ENA = {(r.x) e EXE : 2 # p.4Ap ~4r} and SNyt (p) = {(y.p) €
E X E :y#p 3p~ 3y} It is easy to check that these intersections are transversal, hence
A =15Y- F, = 8 whereas obviously £ - F; = 3 and these relations yield (3.15).

The number of pencils { C |4p| having two extra triple points will then be equal to
1/2 #(ramification points of 7y : & — E) = ©2/2 = 20. We have obtained in this case a
contribution of

2d-5 _ gn (24 —4)!
Adding together (3.13).(3.14) and (3.16). we obtain the stated number N(d). a

3.6.2 A divisor class on M,;
Here we compute the class of TR when g = 2. We have the following:
Proposition 3.6.2 Let us consider the divisor

TR={[C.p| € My, :3x € C—{p}. such that 3z ~ 3p}.
Then [TR] = 80v + 104, — 120).

Proof: There are a few ways to compute [T R]. One is to consider the map j : My, — M,
given by j([B.p]) := [B U, Cy]. where (Cy. p) is a general 1-pointed curve of genus 2. On
My we have the divisor of curves with an abnormal Weierstrass point. that is.

D :={[C] € My : 3z € C such that K°(C.3z) > 2}.
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One knows (¢f. [Di]) that

(D] = 264\ — 30d5 — 960, — 1280, (3.17)

We claim that j*(D) = TR+ 16 A" Indeed. let [B.p] € M, be such that j{[B.p]) € D.
Then there is a limit g} on X' = B U, Cy. say /. which has a point of total ramification at
some r € X. There are two cases depending on whether x lies on (% or on B.

If » € B. then a'“o(p) = (0.3). hence I, = 3p' (and there is a single choice for I¢).
while on B we have the linear equivalence 3p ~ 3x. hence [B.p] € TR.

If v € Cy. then o'B(p) = (1.3). i.e. p € B is a Welerstrass point and I = p + [2pl.
On Cy we have a'o(p) = (0.2) and «/“ (r) = (0.3). so there exists y € Cy — {p..r} such
that 3x ~ 2p + y. To compute the number of such points r € (g = €. we intersect the
curves f1{C) and f,(C) inside Pic*(C'). where f, - ¢ — Pic*(C') are given by fi(t) =
Oc(3t) and fo(t) = Oc(2p + t) respectively. Clearly [f1{C)] = 99 and [f2(C)] = 8. hence
FI(C) - fo{C) = 18, However. we have to discard from this intersection the point O¢(3p)
at which the condition r # p is no longer satisfied. At this point the curves f,(C') have a
common tangent line and using Lemma 6.2 or 6.4 from [Di] one gets that the intersection
multiplicity at Q¢ (3p) is actually 2. The answer to our enwmerative problem is thus
16 = 18 — 2.

We have proved that j*(D) = TR + 16 Y. From this and from: {3.17) we get the
expression for [TR] if we take into account that j*(dy) = dp. J*(6,) = &, j*(ds) = —v
and j*(A) = A = 04/10 4+ 6, /5. a

3.6.3 The class of the divisor TR

We now compute the class of the divisor TR in Pic(,vgvl):
Proof of Theorem 3.4: By Prop. 3.2.1 there are rational constants 4. B.Ch.... . Cy_;
such that the following relation holds:

g—1
TRl =AX+Buv-> (6.

=0

We first consider the map o : ﬂg_g,l — .Vg‘l obtained by associating to a (g+ 1)-pointed
curve (R.pg.... . pg) of genus 0 the T-pointed curve (C.pg). with = RUE U.. UK,
and {p;} = E; NP for 1 < < g. where E; are general clliptic curves. We show that
o(Mygr1) 0 TR = . Then by using Lemma 4.2 from [EH2| we obtain relations between
the coefficients of TR: for i > 1.

g — 1,
g-1-

(g—lg—i—1) B
glyg—1) g—1

¢, =

Note that Lemma 4.2 as stated in [EH2] is not applicable to the divisor TR. but a brief
inspection of its proof shows that its conclusions are valid for any divisor on .M, whose
support is disjoint from Im(o). hence for TR too.

B!




The proof that In(o) " TR = @ is an immediate application of Prop.1.4.1 together
with Pliicker’s formula (3.2).

Next. we take the map j : My, — .Vg_l sending a l-pointed curve (B.g) of genus

o (X = BuU, Cy.p). where (Co.p.q) is a general 2-pointed curve of genus ¢ — 2. The
pull-back j* acts on the generators of the Picard group as follows: j*(A) = A, j*(v) =
0. j*(d) = dg. j*(dg—2) = —v. j*(8,_y) = d; and j*(8,) = 0 for 1 < ¢ < g — 3. Since on
Mo we also have the relation 4, = 5\ — dp/2. we obtain

TR] = 4—)C g 1/)— ()0+Cq~)L (3.18)

We now compute j*(TR). Let us take [B.¢] € j*(TR). Then there exists . a limit g on
X =B,y and a point » € X such that a{(x) > 3 and }(p) > 3.

If r € Cy. then p(lp.a'B(g)) = —1 and we get that ¢ € B is a Weierstrass point. The
multiplicity with which WA appears in j*(TR) is the number of gl’s on Cy in which p.g
and an unspecified point r # p.g appear with multiplicities 3.2 and 3 respectively. By
Schubert calculus this number is

o . : o ) 1
0y = 8(2d - 6) 02, %0 = 8(2d — 6)(2d — 6)! ((d_ TE (([76)!) .

If ¥ € B. then we have the linear equivalence 3¢ ~ 3x on B. that is. [B.gq] € TRs.
where we have denoted by TR, the divisor TR when g = 2. The multiplicity with which
TR, appears in j*(TR) is just the number of g,’s on Cy with triple ramification at the
fixed points p and ¢. According to Prop.3.6.1 this number is ny = F(d).

We have thus obtained that j*([TR]) = n; [W] + ny [TR,). which according to {3.18)
provides three new relations between A and the C;’s.

Finally we determine the coefficient B. It is enough to intersect TR with a general
fibre of the map 7 : My, — M, and to divide the intersection number by 2¢g — 2. The
intersection number is twice the number of gi's on a general curve €' of genus 2d — 4
having two poiuts of triple ramification. By Prop.3.6.1 this number is 2N(d). hence we
obtain that B = N(d)/(2d — 3). |

3.7 The Kodaira dimension of the universal curve

At the beginning of Chapter 1 we recounted attempts by various people to understand
the birational geometry of .M. in particular to compute its Kodaira dimension. Similar
questions can he asked about the moduli spaces Mg ,. Obviously the problem is non-
trivial only for ¢ < 23: since for g > 24 the moduli space M, is of general tyvpe. the
spaces M. with n > 1 will be of general tyvpe too.

The case y = 23 turns out to be quite easy too: since the relative dualizing sheaf of
the map 7 : Mayy; — Moy iIs big one only needs the effectiveness of ""Hm to conclude

that 1\';231 = v+ ﬁ*('[\';\;ll_g) is big too. hence M,y ,, 1s of general type for all n > 1.
In the case 4 < g < 22, Logan computed a number f(g) such that for all n > f(g) the




moduli space M, , is of general type (see [Lo]).

We shall content ourselves with the case n = 1 which we approach from a different
angle: it is known that for ¢ < 16. g # 14. the Kodaira dimension of M, is —oc. Is there
a similar result for the universal curve C, = Mg, in this range?

The problen is almost trivial for ¢ < 10: the universal curve is unirational for these
genera. To see this. one can easily adapt Severi’s argument about the unirationality of
M. This s also remarked in [L()}. For most remaining cases we have the following:

Theorem 1 For g = 11.12.15 the Kodaira dimension of the universal curve Cy Is —.
Proof: We assume that #(Cy) > 0. ie. some multiple of the canonical divisor Az is
effective. We are going to reach a contradiction with some estimates for the slope s, of
,Vg (see end of Cl 1apter 1 for the definition of s,).

We denote as usual by 7 : €, — .M, the natural projection and we have seen that
Ko, = 130+ v =39 +(>q 1) - ZZI,> ‘,

‘Assume there exists m > 0 such that m[\'(,y is effective. We consider the divisor of

Weierstrass points W C C,. whose class. we recall. is

g—1

W= =A+glg+11/20 =Y (g=ilg—i+1)/2

i=1

Clearly ’”Ac cannot contain W with arbitrarily high mutiplicity. In fact. it suffices to
choose a € Z>1 such that ag(g + 1)/2 > m and then aW Q mhs . Indeed. otherwise the
“HC). where [C] € My is

—a

divisor mhz, — aW would have negative degree on the fibres 7
arbitrary and this is impossible.

After choosing such an a. we consider the push-forward D := m(ml\'gg -aW). which is
an effective divisor on .—\/_!g. In particular. we have that sp > s,. where by sp we denote
the slope of D. Since

‘D] = ma T hg, - DA >5 (13¢° +6g° — 99+ 2)A — 1/2 glg + 1)(4g — 3} )

we obtain that . .
2(13g° + 69* — 9y + 2)

glg+1){4g —3)
Ou the other hand. it is known that s, = 7(= 6 + 12/{g + 1)). s12 > 41/6 = 6.63... (cf.
[Tan]) and si; > 6.667 (¢f. [CR4}). The values of sp are 6.62... for ¢ = 11. 6.61... for
= 12 and 6.59... for ¢ = 15. hence in each of these cases we have found an effective
divisor on .\/t having slope > s,. which is a contradiction.
We note rhar there is also a hound si5 > 6.56 {c¢f. [CR4]). but for this genus we have
sp = 6.58.... s0 we cannot conclude that #(Ci) = —x. O

Sp =
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Samenvatting

In dit proefschrift bestuderen we de meetkunde van de moduliruimte M, van algebraische
krommen van geslacht g. Deze ruimte Mg is de universele parameterruimte van krommen
van geslacht g in die zin. dat ieder punt van .M, correspondeert met een isomorfieklasse
van krommnien.

Een belangrijk probleem in de algebraische meetkunde is de natuur van M, als alge-
braische variéteit. Het is een klassiek resultaat dat voor g < 10 the moduliruimte M,
unirationaal is. terwijl .M, van algemeen type is voor g > 24. zoals Harris. Mumford
en Eisenbud hebben bewezen. Men vermoedt dat alle moduliruimten M, met g < 22
gedomineerd worden door regelvariéteiten. en dit laat één geval over. nanielijk de moduli-
ruimte My, dat dan een overgangsgeval is tussen twee uitersten: gedomineerd door een
regelvariéteit tegenover van algemeen type.

In Hoofdstuk 1 bewijzen we dat de Kodairadimensie van Mo,y minstens 2 is. We
dragen verder feiten aan die suggereren. dat de Kodairadimensie van Moy gelijk is aan 2.
Ons bewijs is gebaseerd op de expliciete studie van drie Brill-Noetherdivisoren op May
die multikanoniek blijken te zijn.

In Hoofdstuk 2 bestuderen we de geografie (relatieve positie) van verschillende Brill-
Noetherloci (dat wil zeggen, van loci van krommen die zekere g}j's bezitten). In paragraaf
2.4 tonen we het bestaan aan van een reguliere component van het Hilbertschema van
krommen van bigraad (k.d) in P' x P" voor bepaalde k en d en r > 3. In paragraaf
2.5 construeren we gladde krommen C' C P? van graad d en geslacht g die de verwachte
gonaliteit min(d — 4,[(g + 3)/2]) bezitten. Als gevolg hiervan verkrijgen we een nieuw
bewijs van ons resultaat «{Ma3) > 2.

In Hoofdstuk 3 berekenen we de klasse van verschillende divisoren op de moduliruimten
Mg voor n = 1,2. Deze divisoren worden gedefinicerd door meetkundige voorwaarden
voor het bestaan van lineaire reeksen op krommen. In paragraaf 3.6 berekenen we de
Kodairadimensie van de universele kromme C, voor g gelijk aan 11. 12 en 15.
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