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Theta characteristics appeared for the first time in the context of characteristic the-
ory of odd and even theta functions in the papers of Göpel [Go] and Rosenhain [Ro] on
Jacobi’s inversion formula for genus 2. They were initially considered in connection with
Riemann’s bilinear addition relation between the degree two monomials in theta functions
with characteristics. Later, in order to systematize the relations between theta constants,

Frobenius [Fr1], [Fr2] developed an algebra of characteristics 1; he distinguished between
period and theta characteristics. The distinction, which in modern terms amounts to the
difference between the Prym moduli space Rg and the spin moduli space Sg, played a
crucial role in elucidating the transformation law for theta functions under a linear trans-
formation of the moduli, and it ultimately led to a correct definition of the action of

symplectic group Sp(F2g
2 ) on the set of characteristics. An overwiew of the 19th century

theory of theta functions can be found in Krazer’s monumental book [Kr]. It is a very
analytic treatise in character, with most geometric applications relegated to footnotes.

The remarkable book [Cob] by Coble 2 represents a departure from the analytic
view towards a more abstract understanding of theta characteristics using configurations
in finite geometry. Coble viewed theta characteristics as quadrics in a vector space over
F2. In this language Frobenius’ earlier concepts (syzygetic and azygetic triples, funda-
mental systems of characteristics) have an elegant translation. With fashions in algebraic

geometry drastically changing, the work of Coble was forgotten for many decades 3.

The modern theory of theta characteristic begins with the works of Atiyah [At] and
Mumford [Mu]; they showed, in the analytic (respectively algebraic) category, that the
parity of a theta characteristic is stable under deformations. In particular, Mumford’s
functorial view of the subject, opened up the way to extending the study of theta charac-
teristics to singular curves (which was achieved by Harris [H]), to constructing a proper

1Frobenius’ attempts to bring algebra into the theory of theta functions has to be seen in relation to his
famous work on group characters. In 1893, when entering the Berlin Academy of Sciences he summarized
his aims as follows [Fr3]: In the theory of theta functions it is easy to set up an arbitrarily large number of relations,
but the difficulty begins when it comes to finding a way out of this labyrinth of formulas. Many a distinguished
researcher, who through tenacious perseverence, has advanced the theory of theta functions in two, three, or four
variables, has, after an outstanding demonstration of brilliant talent, grown silent either for a long time of forever. I
have attempted to overcome this paralysis of the mathematical creative powers, by seeking renewal at the fountain of
youth of arithmetic.

2An irreverent portrait of Coble in the 1930’s from someone who was not exactly well disposed towards
algebraic geometry (”... the only part of mathematics where a counterexample to a theorem is considered to be a
beautiful addition to it”), can be found in Halmos’ autobiography ”I want to be a mathematician”.

3This quote from Mattuck’s [Ma] obituary of Coble reveals the pervasive attitude of the 1960’s: The book
as a whole is a difficult mixture of algebra and analysis, with intricate geometric reasoning of a type few can follow
today. The calculations are formidable; let them serve to our present day algebraic geometers, dwelling as they do in
their Arcadias of abstraction, as a reminder of what awaits those who dare to ask specific questions about particular
varieties.
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Deligne-Mumford moduli space of stable spin curves (carried out by Cornalba [Cor]), or
to reinterpreting Coble’s work in modern terms (see the book [DO]).

The aim of this paper is to survey various developments concerning the geometry
of moduli spaces of spin curves. Particular emphasis is placed on the complete birational
classification of both the even and the odd spin moduli spaces, which has been carried
out in the papers [F2], [FV1] and [FV2]. Precisely, we shall explain the following result:

Theorem 0.1. The birational type of the moduli spaces S
+
g and S

−
g of even and odd spin curves

of genus g can be summarized as follows:

S
+
g :

g > 8 general type
g = 8 Calabi-Yau
g ≤ 7 unirational

S
−
g :

g ≥ 12 general type
g ≤ 8 unirational

9 ≤ g ≤ 11 uniruled

We describe the structure of the paper. In the first two sections we recall the in-
terpretation of theta characteristics as quadrics in an F2-vector space, then link this de-
scription both with the classical theory of characteristics of theta functions and modern
developments inspired by string theory. In the next three sections we explain some fea-
tures of the geometry of the moduli space Sg of stable spin curves of genus g, discuss

ways of constructing effective divisors on Sg and computing their cohomology classes,
then finally present unirational parametrizations of the moduli space in small genus, by
using Mukai models and special K3 surfaces. We close by surveying a few open prob-
lems related to syzygies of theta characteristics and stratifications of the moduli space.

1. THETA CHARACTERISTICS: A VIEW USING FINITE GEOMETRY

For a smooth algebraic curve C of genus g we denote by

J2(C) := {η ∈ Pic0(C) : η⊗2 = OC}

the space of two-torsion points in the Jacobian of C, viewed as an F2-vector space. We
recall the definition of the Weil pairing 〈·, ·〉 : J2(C)× J2(C)→ F2, cf. [Mu] Lemma 2:

Definition 1.1. Let η, ǫ ∈ J2(C) and write η = OC(D) and ǫ = OC(E), for certain divisors
D and E on C, such that supp(D) ∩ supp(E) = ∅. Pick rational functions f and g on C,
such that div(f) = 2D and div(g) = 2E. Then define 〈η, ǫ〉 ∈ F2 by the formula

(−1)〈η,ǫ〉 =
f(E)

g(D)
.

The definition of 〈η, ǫ〉 is independent of the choice of the divisors D and E and
the rational functions f and g. The Weil pairing is a nondegenerate symplectic form. The
set of theta characteristics of C, defined as Th(C) := {θ ∈ Picg−1(C) : θ⊗2 = KC}, is an
affine space over J2(C). It was Coble’s insight [Cob] to realize that in order to acquire an
abstract understanding of the geometry of Th(C) and clarify the distinction between the
period characteristics and the theta characteristics of C, it is advantageous to view theta
characteristics as quadrics in the vector space J2(C).

Definition 1.2. Let (V, 〈·, ·〉) be a symplectic vector space over F2. The set Q(V ) of qua-
dratic forms on V with fixed polarity given by the symplectic form 〈·, ·〉, consists of all
functions q : V → F2 satisfying the identity

q(x+ y) = q(x) + q(y) + 〈x, y〉, for all x, y ∈ V.
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If q ∈ Q(V ) is a quadratic form and v ∈ V , we can define a new quadratic form
q + v ∈ Q(V ) by setting (q + v)(x) := q(x) + 〈v, x〉, for all x ∈ V. Similarly one can add
two quadratic forms. If q, q′ ∈ Q(V ), then there exists a uniquely determined element

v ∈ V such that q′ = q+ v, and we set q+ q′ := v ∈ V . In this way, the set Ṽ := V ∪Q(V )
becomes a (2g + 1)-dimensional vector space over F2. There is a natural action of the
symplectic group Sp(V ) on Q(V ). For a transformation T ∈ Sp(V ) and a quadratic form
q ∈ Q(V ), one defines

(T · q)(x) := q(T−1(x)), for x ∈ V.

This action has two orbitsQ(V )+ andQ(V )− respectively, which can de distinguished by
the Arf invariant [Arf] of a quadratic form.

Definition 1.3. Let us choose a symplectic base (e1, . . . , eg, f1, . . . , fg) of V . Then define

arf(q) :=

g∑

i=1

q(ei) · q(fi) ∈ F2.

The invariant arf(q) is independent of the choice of a symplectic basis of V . We
set Q(V )+ := {q ∈ Q(V ) : arf(q) = 0} to be the space of even quadratic form, and
Q(V )− := {q ∈ Q(V ) : arf(q) = 1} that of odd quadratic forms. Note that there are
2g−1(2g + 1) even quadratic forms and 2g−1(2g − 1) odd ones.

Every theta characteristic θ ∈ Th(C) defines a form qθ : J2(C)→ F2, by setting

qθ(η) := h0(C, η ⊗ θ) + h0(C, θ) mod 2.

It follows from the Riemann-Mumford relation [Mu] or [H] Theorem 1.13, that qθ ∈ Q(J2(C)),
that is, the polar of qθ is the Weil form. For η, ǫ ∈ J2(C), the following relation holds:

h0(C, θ ⊗ η ⊗ ǫ) + h0(C, θ ⊗ η) + h0(C, θ ⊗ ǫ) + h0(C, θ) ≡ 〈η, ǫ〉 mod 2.

Thus one has the following identification between theta characteristics and quadrics:

Th(C) = Q
(
J2(C), 〈·, ·〉

)
.

Under this isomorphism, even (respectively odd) theta characteristics correspond to forms
in Q(V )+ (respectively Q(V )−). Furthermore, arf(qθ) = h0(C, θ) mod 2. Using this iden-
tification, one can translate Frobenius’s [Fr1], [Fr2] entire theory of fundamental systems of
theta characteristics into an abstract setting. Of great importance is the following:

Definition 1.4. A system of three theta characteristics θ1, θ2, θ3 ∈ Th(C) is called syzygetic
(respectively azygetic) if arf(qθ1) + arf(qθ2) + arf(qθ3) + arf(qθ1+θ2+θ3) = 0 (respectively 1).

Here the additive notation θ1 + θ2 + θ3 refers to addition in the extended vector

space J̃2(C) = J2(C) ∪ Th(C). In terms of line bundles, θ1 + θ2 + θ3 = θ1 ⊗ θ2 ⊗ θ
∨
3 ∈

Picg−1(C). It is an easy exercise to show that {θ1, θ2, θ3} is a syzygetic triple if and only if
〈θ1+ θ2, θ1+ θ3〉 = 0. If the system {θ1, θ2, θ3} is syzygetic, then any three elements of the
set {θ1, θ2, θ3, θ1 + θ2 + θ3} form a syzygetic triple. In this case we say that the four theta
characteristics form a syzygetic tetrad.

Example 1.5. Four odd theta characteristics θ1, . . . , θ4 ∈ Th(C) corresponding to contact
contact divisorsDi ∈ |θi| such that 2Di ∈ |KC | form a syzygetic tetrad, if and only if there

exists a quadric Q ∈ Sym2H0(C,KC), such that

Q · C = D1 +D2 +D3 +D4.
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For instance, when g = 3, four bitangents to a quartic C ⊂ P2 form a syzygetic tetrad
exactly when the 8 points of tangency are the complete intersection of C with a conic.

To understand the geometry of the configuration Th(C) one defines appropriate
systems of coordinates. Following [Kr] p. 283, one says that 2g + 2 theta characteristics
{θ1, . . . , θ2g+2} form a fundamental system if any triple {θi, θj , θj} where 1 ≤ i < j < k ≤
2g + 2 is azygetic. The sum of the 2g + 2 elements of a fundamental system equals 0, see
[Kr] p. 284, and the number of fundamental systems in Th(C) is known, cf. [Kr] p. 285:

22g
|Sp(F2g

2 )|

(2g + 2)!
= 22g

(22g − 1)(22g−2 − 1) · · · (22 − 1)

(2g + 2)!
2g

2

.

Example 1.6. A smooth plane quartic C ⊂ P2 has precisely 288 fundamental systems

(θ1, . . . , θ8), where the first 7 theta characteristics are odd, and θ8 = −
∑7

i=1 θi is then
necessarily even. All elements in Th(C) can be expressed in the ”coordinate system”
given by (θ1, . . . , θ7): The remaining odd theta characteristics are θi + θj + θk + θl + θm.
The 35 = 36− 1 even theta characteristics are of the form θi + θj + θk.

One can also consider systems of syzygetic theta characteristics, that is subsets,
{θ1, . . . , θr+1} ⊂ Th(C) such that all triples {θi, θj , θk} are syzygetic. Then r ≤ g, see
[Kr] p. 299. Following Frobenius [Fr1], a maximal system of such theta characteristics is
called a Göpel system and corresponds to 2g theta characteristics such any three of them
form a syzygetic triple. These definitions can be immediately extended to cover general
principally polarized abelian varieties not only Jacobians.

2. THETA CHARACTERISTICS: THE CLASSICAL VIEW VIA THETA FUNCTIONS

We now link the realization of theta characteristics in abstract finite geometry, to the
theory of theta functions with characteristics. There are established classical references,
above all [Kr], [Wi], [Ba], [Cob], as well as modern ones, for instance [BL], [SM1]. We fix
an integer g ≥ 1 and denote by

Hg := {τ ∈Mg,g(C) : τ =t τ, Im τ > 0}

the Siegel upper half-space of period matrices for abelian varieties of dimension g; hence
Ag := Hg/Sp2g(Z) is the moduli space of principally polarized abelian varieties of dimen-

sion g. For a vector
[
ǫ
δ

]
=

[
ǫ1 . . . ǫg
δ1 . . . δg

]
∈ F2g

2 one defines the Riemann theta function with

characteristics as the holomorphic function ϑ : Hg × Cg → C given by

ϑ

[
ǫ
δ

]
(τ, z) :=

∑

m∈Zg

exp
(
πi t(m+

ǫ

2
)τ(m+

ǫ

2
) + 2πi t(m+

ǫ

2
)(z +

δ

2
)
)
.

For any period matrix τ ∈ Hg, the pair
[
Aτ :=

Cg

Zg + τ · Zg
, Θτ :=

{
z ∈ Aτ : ϑ

[
0
0

]
(τ, z) = 0

}]

defines a principally polarized abelian variety, that is, [Aτ ,Θτ ] ∈ Ag. There is an identifi-
cation of symplectic vector spaces

V := F2g
2

∼=
−→ Aτ [2], given by

[
ǫ
δ

]
7→

τ · ǫ+ δ

2
∈ Aτ [2].
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This isomorphism being self-understood, points in Aτ [2] were classically called period

characteristics, see [Kr] Section VII.2. The theta function ϑ
[
ǫ
δ

]
(τ, z) is the unique sec-

tion of the translated line bundle OAτ

(
t∗τ ·ǫ+δ

2

(Θτ )
)

. Krazer [Kr] goes to great lengths to

emphasize the difference between the period and the theta characteristics, even though at

first sight, both sets of characteristics can be identified with the vector space F2g
2 . The

reason for this is the transformation formula for theta functions under the action of the
symplectic group, see [BL] Theorem 8.6.1. Under the linear action of Sp2g(Z) on F2g

2 , the

theta constants θ

[
ǫ
δ

]
(τ, 0) do not give rise to modular forms on the Siegel space Hg.

Instead, we consider the quadratic form associated to a characteristic ∆ :=

[
ǫ
δ

]
, that is,

q[ ǫ
δ

]
(
x, y

)
= x · y + ǫ · x+ δ · y,

with (x, y) = (x1, . . . , xg, y1, . . . , yg) ∈ F2g
2 . We define an action of Sp2g(Z) on the set of

characteristics which factors through the following action of Sp(F2g
2 ): If M ∈ Sp(F2g

2 ), set

qM ·∆ :=M · q∆.

It can be shown that with this non-linear action of the symplectic group on the set of
characteristics, the theta constants transform as modular forms. In this context, once

more, a theta characteristic

[
ǫ
δ

]
appears as an element of Q(V ). This interpretation

makes the link between the classical definition of theta characteristics found in [Kr] and
the more modern one encountered for instance in [DO], [GH]. The algebra of period and
theta characteristics was developed by Frobenius [Fr1], [Fr2] in order to derive general
identities between theta constants and describe the structure of the set of such identities.

2.1. Superstring scattering amplitudes and characteristic calculus. Recently, the action

of Sp(F2g
2 ) on the set of characteristics and the algebra of characteristic systems has been

used by Grushevsky [Gr], Salvati Manni [SM2], Cacciatori, Dalla Piazza and van Geemen
[CDvG] and others, in order to find an explicit formula for the chiral superstring ampli-
tudes. This is an important foundational question in string theory and we refer to the
cited papers for background and further references. Loosely speaking, D’Hoker and

Phong conjectured that there exists a modular form Ξ(g) of weight 8 with respect to the
group Γg(1, 2) ⊂ Γg = Sp2g(Z), satisfying the following two constraints:

(1) Factorization: For each integer 1 ≤ k ≤ g − 1, the following factorization formula

Ξ
(g)
|Hk×Hg−k

= Ξ(k) · Ξ(g−k),

holds, when passing to the locus Hk × Hg−k ⊂ Hg of decomposable abelian varieties.
(2) Initial conditions: For g = 1, one must recover the standard chiral measure, that is,

Ξ(1) = θ

[
0
0

]8
θ

[
0
1

]4
θ

[
1
0

]4
.
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A unique solution has been found in [CDvG] when g = 3 and in [SM2] when
g = 4, 5. This was placed in [Gr] in a general framework that works in principle for
arbitrary g.

For a set of theta characteristicsW ⊂ F2g
2 , one defines the product of theta constants

PW (τ) :=
∏

∆∈W

θ[∆](τ, 0).

Note that PW vanishes if W contains an odd characteristic. Then for all 0 ≤ i ≤ g, we set

P
(g)
i (τ) :=

∑

W⊂F2g
2 , dim(W )=i

PW (τ)2
4−i

.

It is pointed out in [Gr] Proposition 13, that this function is a modular form of weight
8 with respect to Γg(1, 2). This result can be traced back to Frobenius. Observe that in

the definition of P
(g)
i (τ) the only non-zero summands correspond to totally syzygetic

systems of characteristics, for else such a system W contains an odd characteristic and
the corresponding term PW (τ) is identically zero. Then it is showed that the expression

Ξ(g) :=
1

2g

g∑

i=0

(−1)i2(
i
2)P

(g)
i

satisfies the factorization rules when g ≤ 5. Note that for higher g the definition of Ξ(g)

leads to a multivalued function due to the impossibility of choosing consistently the roots
of unity for the various summands.

Question 2.1. Can one find the superstring amplitudes for higher g by working directly

with the space S
+
g and constructing via algebro-geometric rather than theta function

methods a system of effective divisors of slope (weight) 8 satisfying the factorization
formula?

3. CORNALBA’S MODULI SPACE OF SPIN CURVES

We now concern ourselves with describing Cornalba’s [Cor] compactification Sg
of the moduli space Sg of theta characteristics. We recall that Sg is the parameter space
of pairs [C, θ], where C is a smooth curve of genus g and θ ∈ Th(C). Following Atiyah
[At] such a pair is called a spin curve of genus g. Mumford [Mu] by algebraic means
(and Atiyah [At] with analytic methods) showed that the parity of a spin curve is locally
constant in families: If φ : X → S is a flat family of smooth curves of genus g and L is a

line bundle on X together with a morphism β : L⊗2 → ωφ such that φs : L
⊗2
Xs
→ ωXs is an

isomorphism for all s ∈ S, then the map arf(φ) : S → F2 defined as arf(φ)(s) := arf(LXs)
is constant on connected components of S. One can speak of the parity of a family of spin
curves and according to the value of arf(qθ), the moduli space Sg splits into two connected
components S+g and S−g . The forgetful map π : Sg → Mg, viewed as a morphism of

Deligne-Mumford stacks, is unramified. A compactified moduli space Sg should be the
coarse moduli space of a Deligne-Mumford stack, such that there is a finite morphism
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π : Sg →Mg fitting into a commutative diagram:

Sg

π

��

�

�

// Sg

π
��

Mg
�

�

//Mg

As an algebraic variety, Sg is the normalization ofMg in the function field of Sg. It is the

main result of [Cor] that the points of Sg have a precise modular meaning in terms of line
bundles on curves belonging to a slightly larger class than that of stable curves.

Definition 3.1. A reduced, connected, nodal curveX is called quasi-stable, if for any com-

ponent E ⊂ X that is isomorphic to P1, one has that (i) kE := |E ∩ (X − E)| ≥ 2, and (ii)
any two rational components E,E′ ⊂ X with kE = kE′ = 2, are disjoint.

Smooth rational components E ⊂ X for which kE = 2 are called exceptional. The
class of quasi-stable curve is a very slight enlargement of the class of stable curves. To
obtain a quasi-stable curve, one takes a stable curve [C] ∈ Mg and a subset of nodes

N ⊂ Sing(C) which one ”blows-up”; if ν : C̃ → C denotes the normalization map and
ν−1(n) = {n−, n+}, then we define the nodal curve

X := C̃ ∪
( ⋃

n∈N

En

)
,

where En = P1 for each node n ∈ N and En∩ (X − En) = {n
+, n−}. The stabilization map

st : X → C is a partial normalization and contracts all exceptional components En, that
is, st(En) = {n}, for each n ∈ N .

Why extend the class of stable curves, after allMg is already a projective variety?
One can define compactified moduli spaces of theta characteristics working with stable
curves alone, if one is prepared to allow sheaves that are not locally free at the nodes of
the curves. Allowing semi-stable curves, enables us to view a degeneration of a theta
characteristic as a line bundle on a curve that is (possibly) more singular. These two
philosophies of compactifying a parameter space of line bundles, namely restricting the
class of curves but allowing singularities for the sheaves, vs. insisting on local freeness
of the sheaves but enlarging the class of curves, can also be seen at work in the two
(isomorphic) compactifications of the universal degree d Jacobian variety Pd,g overMg

constructed in [Ca] and [P]. We now describe all points of Sg:

Definition 3.2. A stable spin curve of genus g consists of a triple (X, θ, β), where X is a
quasi-stable curve of arithmetic genus g, θ ∈ Picg−1(X) is a line bundle of total degree
g−1 such that θE = OE(1) for every exceptional component E ⊂ X , and β : θ⊗2 → ωX is
a sheaf homomorphism which is not zero along each non-exceptional component of X .

When X is a smooth curve, then θ ∈ Th(X) is an ordinary theta characteristics and
β is an isomorphism. Note that in this definition, the morphism β : θ⊗2 → ωX vanishes
with order 2 along each exceptional component E ⊂ X . Cornalba [Cor] proved that sta-
ble spin curves form a projective moduli space Sg endowed with a regular stabilization

morphism π : Sg →Mg, set-theoretically given by π([X, η, β]) := [C]; here C is obtained

from X by contracting all the exceptional components. The space Sg has two connected

components S
−
g and S

+
g depending on the parity h0(X, θ) mod 2 of the spin structure.
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Definition 3.3. For a stable curve [C] ∈ Mg, we denote by Th(C) := π−1([C]) the zero-
dimensional scheme of length 22g classifying stable spin structures on quasi-stable curves
whose stable model is C.

The scheme Th(C) has an interesting combinatorial structure that involves the dual
graph of C. Before describing it for an arbitrary curve [C] ∈ Mg, it is helpful to un-

derstand the boundary structure of Sg, which amounts to describe Th(C) when C is a

1-nodal curve. We shall concentrate on the space S
−
g and leave S

+
g as an exercise (or refer

to [Cor], [F2] for details).
The boundaryMg −Mg of the moduli space of curves decomposes into compo-

nents ∆0, . . . ,∆[ g
2
]. A general point of ∆0 corresponds to a 1-nodal irreducible curve of

arithmetic genus g, and for 1 ≤ i ≤ [ g2 ] the general point of ∆i is the class of the union of
two components of genera i and g − i respectively, meeting transversely at a point.

3.1. Spin curves of compact type. We fix an integer 1 ≤ i ≤ [ g2 ] and a general point
[C ∪y D] ∈ ∆i, where [C, y] ∈ Mi,1 and [D, y] ∈ Mg−i,1 are smooth curves. We describe
all stable spin curve [X, θ, β] ∈ π−1([C ∪y D]). For degree reasons, X 6= C ∪y D, that is,
one must insert an exceptional component E at the node y ∈ C ∩D and then

X := C ∪y+ E ∪y− D,

where C ∩ E = {y+} and D ∩ E = {y−}. Moreover

θ =
(
θC , θD, θE = OE(1)

)
∈ Picg−1(X),

and since β|E = 0, it follows that θC ∈ Th(C) and θD ∈ Th(D), that is, a theta characteris-
tic on a curve of compact type is simply a collection of theta characteristics on each of its
(necessarily smooth) components. The condition that h0(X, θ) be odd implies that θC and
θD have opposite parities. Accordingly, the pull-back divisor π∗(∆i) splits in two com-

ponents depending on the choice of the respective Arf invariants: We denote by Ai ⊂ S
−
g

the closure of the locus corresponding points for which θC = θ−C and θD = θ+D, that is,

arf(θC) = 1 and arf(θD) = 0. We denote by Bi ⊂ S
−
g the closure of the locus of spin

curves for which arf(θC) = 0 and arf(θD) = 1. At the level of divisors, the following
relation holds

π∗(∆i) = Ai +Bi.

Moreover deg(Ai/∆i) = 2g−2(2i−1)(2g−i+1) and deg(Bi/∆i) = 2g−2(2i+1)(2g−i−1).

3.2. Spin curves with an irreducible stable model. We fix a general 2-pointed smooth
curve [C, x, y] ∈ Mg−1,2 and identify the points x and y. The resulting stable curve
ν : C → Cxy, where Cxy := C/x ∼ y, corresponds to a general point of the boundary
divisor ∆0. Unlike in the case of curves of compact type, two possibilities do occur,
depending on whether X possesses an exceptional component or not.

IfX = Cxy, then the locally free sheaf θ is a root of the dualizing sheaf ωCxy . Setting

θC := ν∗(θ) ∈ Picg−1(C), from the condition H0(C, ωC(x + y) ⊗ θ
⊗(−2)
C ) 6= 0 by counting

degrees, we obtain that θ⊗2
C = KC(x + y). For each choice of θC ∈ Picg−1(C) as above,

there is precisely one choice of gluing the fibres θC(x) and θC(y) in a way that if θ denotes
the line bundle on Cxy corresponding to this gluing, then h0(X, θ) is odd. Let A0 denote

the closure in S
−
g of the locus of such points. Then deg(A0/∆0) = 22g−2. Since we expect

the fibre Th(Cxy) to consist of 22g points (counting also multiplicities), we see that one
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cannot recover all stable spin curves having Cxy as their stable model by considering
square roots of the dualizing sheaf of Cxy alone. The remaining spin curves correspond
to sheaves onCxy which are not locally free at the node, or equivalently, to spin structures
on a strictly quasi-stable curve.

Assume now that X = C ∪{x,y} E, where E is an exceptional component. Since

β|E = 0 it follows that β|C ∈ H
0(C, ωX|C ⊗ θ

⊗(−2)
C ) must vanish at both x and y and then

for degree reasons θC ∈ Th(C). For parity reasons, arf(θC) = 1. We denote by B0 the

closure in S
−
g of the locus of such points. A local analysis carried out in [Cor] shows

that π is simply ramified over B0. Since π : S
−
g → Mg is not ramified along any other

divisors of S
−
g , one deduces that B0 is the ramification divisor of the forgetful map and

the following relation holds:

π∗(∆0) = A0 + 2B0.

A general point of B0 is determined by specifying an odd theta characteristic on C, thus
deg(B0/∆0) = 2g−2(2g−1 − 1). By direct calculation one checks that

deg(A0/∆0) + 2deg(B0/∆0) = 2g−1(2g − 1),

which confirms that π is simply ramified along B0.

After this preparation, we are now ready to tackle the case of an arbitrary stable

curve C. We denote by ν : C̃ → C the normalization map and by ΓC the dual graph whose
vertices are in correspondence with components ofC, whereas an edge of ΓC corresponds
to a node which lies at the intersection of two components (note that self-intersections are
allowed). A set of nodes ∆ ⊂ Sing(C) is said to be even, if for any component Y ⊂ C, the
degree |ν−1(Y ∩ ∆)| is an even number. For instance, if C := C1 ∪ C2 is a union of two
smooth curves meeting transversally, a set of nodes ∆ ⊂ C1 ∩ C2 is even if and only if
|∆| ≡ 0 mod 2.

Remark 3.4. Assume [X, θ, β] ∈ Sg and let st : X → C be the stabilization morphism.
If N ⊂ Sing(C) is the set of exceptional nodes of C, that is, nodes n ∈ N having the
property that st−1(n) = En = P1, and we write that Sing(C) = N ∪∆, then the set ∆ of
non-exceptional nodes of C is even, see both [Cor] and [CC].

One has the following description of the scheme Th(C), cf. [CC] Proposition 5:

Proposition 3.5. Let [C] ∈ Mg and b := b1(ΓC) be the Betti number of the dual graph. Then
the number of components of the zero-dimensional scheme Th(C) is equal to

22g−2b ·
( ∑

∆⊂Sing(C),∆ even

2b1(∆)
)
.

A component corresponding to an even set ∆ ⊂ Sing(C) appears with multiplicity 2b−b1(∆).

One can easily verify that the length of the scheme Th(C) is indeed 22g. From
Proposition 3.5 it follows for instance that Th(C) is a reduced scheme if and only if C is
of compact type. In the case we studied above, when C is irreducible with a single node,
Proposition 3.5 gives that Th(C) = Th(C)−∪Th(C)+ has 3·22g−2 irreducible components.

Precisely, |Th(C)−| = 22g−2 + |Th(C̃)−| and |Th(C)+| = 22g−2 + |Th(C̃)+|.
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Remark 3.6. The structure of the schemes Th(C) for special singular curves C has been
used in [Lud] to describe the singularities of Sg and in [CS] to prove that a general curve
[C] ∈Mg is uniquely determined by the set of contact hyperplanes

{
〈D〉 ∈ (Pg−1)∨ : D ∈ |θ|, θ ∈ Th(C)−

}
.

In spite of these important applications, a systematic study of the finite geometry of the
set Th(C) when C is singular (e.g. a theory of fundamental and Göpel systems, syzygetic
tetrads) has not yet been carried out and is of course quite interesting.

3.3. The canonical class of the spin moduli space. It is customary to denote the divisor
classes in the Picard group of the moduli stack by

αi := [Ai], βi := [Bi] ∈ Pic(S
−
g ), i = 0, . . . , [ g2 ].

A result of Putman’s [Pu] shows that for g ≥ 5, the divisor classes λ, α0, β0, . . . , α[ g
2
], β[ g

2
]

freely generate the rational Picard group Pic(S
−
g ). A similar result holds for S

+
g .

The space S
−
g is a normal variety with finite quotient singularities; an étale neigh-

bourhood of an arbitrary point [X, η, β] ∈ Sg is of the form

H0(C, ωC ⊗ ΩC)
∨/Aut(X, η, β) = C3g−3/Aut(X, η, β),

whereH0(C, ωC⊗ΩC) can be identified via deformation theory with the cotangent space
to the moduli stackMg at the point [C] := π([X, η, β]). For a (predictable) definition of
an automorphism of a triple (X, η, β), we refer to [Cor] Section 1.

Using Kodaira-Spencer deformation theory, one describes the cotangent bundle of
the stackMg as the push-forward of a rank 1 sheaf on the universal curve overMg. A
famous and at the time, very innovative use in [HM] of the Grothendieck-Riemann-Roch
theorem for the universal curve, yields the formula

KMg
≡ 13λ− 2δ0 − 3δ1 − 2

[ g
2
]∑

i=2

δi ∈ Pic(Mg).

From the Riemann-Hurwitz theorem applied to the finite branched cover π : S
−
g →Mg,

we find the formula for the canonical class of the spin moduli stack:

K
S
−

g
≡ 13λ− 2δ0 − 3β0 − 3(α1 + β1)− 2

∑[ g
2
]

i=2(αi + βi) ∈ Pic(S
−
g ).

An identical formula holds for S
+
g . Unfortunately both spaces S

+
g and S

−
g have

non-canonical singularities, in particular there exist local obstructions to extending pluri-
canonical forms defined on the smooth part of Sg to a resolution of singularities. How-
ever, an important result of Ludwig [Lud] shows that this obstructions are not of global

nature. The following result holds for both S
+
g and S

−
g :

Theorem 3.7. (Ludwig) Let g ≥ 4 and fix a resolution of singularities ǫ : S̃g → Sg. Then for
any integer ℓ ≥ 0 there exists an isomorphism of vector spaces

ǫ∗ : H0(Sg,K
⊗ℓ
Sg,reg

)
∼=
−→ H0(S̃g,K

⊗ℓ

S̃g
).
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Therefore, in order to conclude that Sg is of general type, it suffices to show that

the canonical class KSg
lies in the interior of the effective cone Eff(Sg) of divisors, or

equivalently, that it can be expressed as a positive linear combination of an ample and an
effective class on Sg. This becomes a question on slopes of the effective cone of Sg, which
can be solved in a spirit similar to [HM] and [EH], where it has been proved with similar
methods that Mg is of general type for g ≥ 24. The standard references for effective
divisors on moduli spaces of stable curves are [HM], [EH], [Log] and [F4].

4. EFFECTIVE DIVISORS ON Sg

In the papers [F2], [F3] and [FV1] we have initiated a study of effective divisors on

Sg. The class of the locus Θnull of vanishing theta-nulls on S
+
g is computed in [F2]; in the

paper [FV1] we study the space S
−
g with the help of the divisor of spin curves with an

everywhere tangent hyperplane in the canonical embedding having higher order contact
than expected. Finally in [F3] we define effective divisors of Brill-Noether type in more

general setting on both spaces S
−
g and S

+
g . We survey these constructions, while referring

to the respective papers for technical details.

We begin with the moduli space S
−
g : An odd theta characteristic θ ∈ Th(C) with

h0(C, θ) = 1 determines a unique effective divisor D ∈ Cg−1 such that η = OC(D). We
write in this case thatD = supp(θ). The assignment (C, θ) 7→

(
C, supp(θ)

)
can be viewed

as a rational map between moduli spaces

S
−
g 99K Cg,g−1 :=Mg,g−1/Sg−1,

and it is natural to use this map and the well-understood divisor theory [Log] on the
universal symmetric product Cg,g−1, in order to obtain promising effective divisors on

S
−
g . In particular, the boundary divisor ∆0:2 on Cg,g−1 with general point being a pair

(C,D) where D ∈ Cg−1 is a divisor with non-reduced support, is known to be extremal.

Its pull-back to S
−
g parametrizes (limits of) odd spin curves [C, θ] ∈ S−g such that there

exists a point x ∈ C with H0(C, η(−2x)) 6= 0. The calculation of the class of the closure of
this locus is one of the main results of [FV1]:

Theorem 4.1. We fix g ≥ 3. The locus consisting of odd spin curves

Zg :=
{
[C, θ] ∈ S−g : θ = OC(2x1 + x2 + · · ·+ xg−2) where xi ∈ C for i = 1, . . . , g − 2

}

is a divisor on S−g . The class of its compactification inside S
−
g equals

[Zg] = (g + 8)λ−
g + 2

4
α0 − 2β0 −

[ g
2
]∑

i=1

2(g − i) αi −

[ g
2
]∑

i=1

2i βi ∈ Pic(S
−
g ).

For low genus, Zg specializes to well-known geometric loci. For instance Z3 is the
divisor of hyperflexes on plane quartics, classifying pairs [C,OC(2p)] ∈ S

−
3 , where p ∈ C

is such that h0(C,OC(4p)) = 3. Then KC = OC(4p) and p ∈ C is a hyperflex point.
The divisor Zg together with pull-backs of effective divisors on Mg can be used

to determine the range in which S
−
g is of general type. This application also comes from

[FV1]:

Theorem 4.2. The moduli space S
−
g is a variety of general type for g ≥ 12.
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The passing from Theorem 4.1 to Theorem 4.2 amounts to simple linear algebra. By
comparing the class [Zg] against that of the canonical divisor, we note that

K
S
−

g
/∈ Q≥0

〈
[Zg], λ, αi, βi, i = 0, . . . ,

[g
2

]〉
,

for the coefficient of β0 in the expression of [Zg] is too small. However one can com-

bine [Zg] with effective classes coming fromMg, and there is an ample supply of such,
see [HM], [EH], [F4]. To avoid technicalities, let us assume that g + 1 is composite and
consider the Brill-Noether divisor Mr

g,d of curves [C] ∈ Mg with a grd, where the Brill-

Noether number ρ(g, r, d) := g− (r+1)(g− d+ r) = −1. The class of the closureM
r
g,d of

Mr
g,d inMg has been computed in [EH] (and in [HM] for r = 1) and plays a crucial role

in the proof by Harris, Mumford, Eisenbud that the moduli spaceMg is of general type
for g ≥ 24. There exists an explicit constant cg,d,r > 0 such that [EH],

[M
r
g,d] = cg,d,r

(
(g + 3)λ−

g + 1

6
δ0 −

[ g
2
]∑

i=1

i(g − i)δi
)
∈ Pic(Mg).

By interpolation, one find a constant c′g,d,r > 0 such that the linear combination

2

g − 2
[Zg] + c′g,d,r[π

∗(M
r
g,d)] =

11g + 37

g + 1
λ− 2α0 − 3β0 −

[g/2]∑

i=1

(ai · αi + bi · βi) ∈ Eff(S
−
g ),

where ai, bi ≥ 2 for i 6= 1 and a1, b1 > 3 are explicitly known rational constants. By
comparison, whenever the inequality

11g + 37

g + 1
< 13⇔ g > 12

is satisfied (and g + 1 is composite), the class K
S
−

g
is big, that is, S

−
g is of general type.

The case g = 12 is rather difficult and we refer to the last section of [FV1].

4.1. The locus of curves with a vanishing theta-null. . On S
+
g we consider the locus of

even spin curves with a vanishing theta characteristic. The following comes from [F2]:

Theorem 4.3. The closure in S
+
g of the divisor Θnull :=

{
[C, η] ∈ S+g : H0(C, η) 6= 0

}
of curves

with an effective even theta characteristics has class equal to

[Θnull] =
1

4
λ−

1

16
α0 −

1

2

[ g
2
]∑

i=1

βi ∈ Pic(S
+
g ).

In the paper [FV2] it is shown that the class [Θnull] ∈ Eff(S
+
g ) is extremal when g ≤ 9. It

is an open question whether this is the case for arbitrary g, certainly there is no known
counterexample to this possibility. Combining [Θnull] with pull-backs of effective classes

fromMg like in the previous case, we find a constant c
′′

g,d,r > 0 such that

8[Θnull] + c
′′

g,d,r[π
∗(M

r
g,d)] =

11g + 29

g + 1
λ− 2α0 − 3β0 −

[ g
2
]∑

i=1

(a′i · αi + b′i · βi) ∈ Eff(S
+
g ),
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where the appearing coefficients satisfy the inequalities a′i, b
′
i ≥ 2 for i ≥ 2 and a′1, b

′
1 > 3.

Restricting ourselves again to the case when g + 1 is composite (while referring to [F2]
for the remaining cases), we obtain that whenever

11g + 29

g + 1
< 13⇔ g > 8,

the space S
+
g has maximal Kodaira dimension. We summarize these facts as follows:

Theorem 4.4. The moduli space S
+
g is a variety of general type for g > 8.

5. UNIRATIONAL PARAMETRIZATIONS OF Sg IN SMALL GENUS

Next we present ways of proving the unirationality of Sg in small genus. The basic
references are the papers [FV1] and [FV2]. We recall that a normal Q-factorial projective
variety X is said to be uniruled if through a very general point x ∈ X there passes a
rational curve R ⊂ X . Uniruled varieties have negative Kodaira dimension. Conversely,
if the canonical class KX is not a limit of effective divisor classes (which implies that the
Kodaira dimension of X is negative), then X is uniruled, see [BDPP].

The classification by Kodaira dimension of both S
−
g and S

+
g is governed by K3

surfaces, in the sense that Sg is uniruled precisely when a general spin curve [C, θ] ∈ Sg
can be represented as a section of a special K3 surface S. By varying C in a pencil on S,
we induce a rational curve in the moduli space Sg passing through a general point. The
K3 surface must have special properties that will allow us to assign a theta characteristic
to each curve in the pencil. In the case of even spin curves, the K3 surface in question
must be of Nikulin type. We refer to [vGS] for an introduction to Nikulin surfaces.

Definition 5.1. A polarized Nikulin surface of genus g ≥ 2 consists of a triple (S, e,OS(C)),
where S is a smooth K3 surface, e ∈ Pic(S) is a non-trivial line bundle with the property
that e⊗2 = OS(N1 + · · · + N8), where N1, . . . , N8 are pairwise disjoint (−2) curves on S,
and C ⊂ S is a numerically effective curve class such that C2 = 2g− 2 and C ·Ni = 0, for
i = 1, . . . , 8.

Since the line bundle OS(N1 + . . . + N8) is divisible by two, there exists a double

cover f : S̃ → S branched exactly along the smooth rational curvesN1, . . . , N8. The curve
C ⊂ S does not meet the branch locus of f , hence the restriction f|f−1(C) : f

−1(C) → C
is an unramified double covering which induces a non-trivial half-period on C. Each
curve in the linear system |OS(C)| acquires a half-period in its Jacobian in this way. The
following result is quoted from [FV2]:

Theorem 5.2. The even spin moduli space S
+
g is uniruled for g ≤ 7.

Proof. Let us choose a general spin curve [C, θ] ∈ S+g and a non-trivial point of order two

η ∈ Pic0(C)[2], such that h0(C, θ⊗η) ≥ 1. Because of the generality assumption it follows
that h0(C, θ⊗ η) = 1 and the support of θ⊗ η consists of g− 1 distinct points p1, . . . , pg−1.
To simplify matters assume that g 6= 6. Then it is proved in [FV2] that the general Prym
curve [C, η] ∈ Rg is a section of a genus g polarized Nikulin surface (S, e), that is, C ⊂ S
and η = e⊗OC . We consider the map induced by the linear system

ϕ|OS(C)| : S → Pg.
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The points ϕ(p1), . . . , ϕ(pg−1) span a codimension 2 linear subspace. Let P ⊂ |OS(C)| be
the pencil of curves on S induced by the hyperplanes in Pg through ϕ(p1), . . . , ϕ(pg−1).
Each curve C ′ ∈ P contains the divisor p1 + · · ·+ pg−1 as an odd theta characteristic. The
line bundle OC′(p1 + · · ·+ pg−1)⊗ eC′ ∈ Picg−1(C ′) is an even theta characteristic on each
curve C ′, because as already discussed, the Arf invariant remains constant in a family of
spin curves. This procedure induces a rational curve in moduli

m : P→ S
+
g , m(C ′) := [C ′, e⊗OC′(p1 + · · ·+ pg−1)],

which passes through the general point [C, θ] ∈ S
+
g and finishes the proof. �

Observe that in this proof, if instead of being a Nikulin surface, S is an arbitraryK3

surface containing C, the same reasoning can be used to construct a rational curve in S
−
g

that passes through a general point, provided the curve C we started with, has general
moduli. A general curve of genus g lies on a K3 surface if an only if g ≤ 9 or g = 11,
see [M1]. The case g = 10 can be handled via a slightly different idea, see [FV1] Theorem
3.10. Thus one also has the following result:

Theorem 5.3. The odd spin moduli space S
−
g is uniruled for g ≤ 11.

5.1. Odd theta characteristics and Mukai models of S−g . We explain the strategy pur-
sued in [FV1] to construct alternative models of moduli spaces of odd spin curves which
can then be used to establish unirationality of the moduli space:

Theorem 5.4. S
−
g is unirational for g ≤ 8.

The main idea is to construct a dominant map over S
−
g from the total space of

a projective bundle over a space parametrizing spin curves on nodal curves of smaller
genus. We begin by recalling that Mukai, in a series of well-known papers [M1], [M2],
[M3], [M4], has found ways of representing a general canonical curve of genus g ≤ 9 as
a linear section of a certain ng-dimensional rational homogeneous variety Vg ⊂ Png+g−2,
which we shall call the Mukai variety of genus g. One has the following list:

- V9: the Plücker embedding of the symplectic Grassmannian SG(3, 6) ⊂ P
13,

- V8: the Plücker embedding of the Grassmannian G(2, 6) ⊂ P
14,

- V7: the Plücker embedding of the orthogonal Grassmannian OG(5, 10) ⊂ P
15.

Inside the Hilbert scheme of curvilinear sections of Vg, we denote by Ug the open subset
classifying nodal sectionsC ⊂ Vg by a linear space of dimension g−1. The automorphism
group Aut(Vg) acts on Ug and we call the GIT quotient

Mg := Ug//Aut(Vg)

the Mukai model of the moduli space of curves of genus g. Note that with our definition,
the variety Mg is only quasi-projective and the Picard number of Mg is equal to 1. The

moduli map Ug →Mg being Aut(Vg)-invariant, it induces a regular map φg : Mg →Mg.

We can paraphrase Mukai’s results as stating that the map φg : Mg →Mg is a birational
isomorphism, or equivalently, the general 1-dimensional linear section of Vg is a curve
with general moduli. The map φg deserves more study and in principle it can be used

to answer various questions concerning the cohomology of Mg or the minimal model
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program of the moduli space of curves (see [Fed] for a case in point when g = 4). The

following concept is key to our parametrization of S
−
g using Mukai models.

Definition 5.5. Let Zg−1 be the parameter space of clusters, that is, 0-dimensional schemes
Z ⊂ Vg of length 2g − 2 with the following properties:

(1) Z is a hyperplane section of a smooth curve section [C] ∈ Ug,
(2) Z has multiplicity two at each point of its support,
(3) supp(Z) consists of g − 1 linearly independent points.

A general point of Zg−1 corresponds to a 0-cycle p1 + · · ·+ pg−1 ∈ Symg−1(Vg) satisfying

dim 〈p1, . . . , pg−1〉 ∩ Tpi(Vg) ≥ 1, for i = 1, . . . , g − 1.

Furthermore, Zg−1 is birational to the subvariety of the GrassmannianG(g−1, ng+g−1)

parametrizing (g−2)-dimensional planes Λ ⊂ Png+g−2 such that Λ·Vg = 2p1+· · ·+2pg−1,
where p1, . . . , pg−1 ∈ Vg. Then we consider the incidence correspondence:

U−
g :=

{
(C,Z) ∈ Ug × Zg−1 : Z ⊂ C

}
.

The first projection map U−
g → Ug is finite of degree 2g−1(2g−1); its fibre at a general

point [C] ∈ Ug corresponding to a smooth curve classifies odd theta characteristics of C.

The spin moduli map U−
g 99K S

−
g induces a birational isomorphism

φ−g : U−
g //Aut(Vg)→ S

−
g .

Let us fix now an integer 0 ≤ δ ≤ g − 1. We define the locally closed set of pairs
consisting of clusters and δ-nodal curvilinear sections of Vg, that is,

U−
g,δ :=

{
(Γ, Z) ∈ U−

g : sing(Γ) ⊂ supp(Z) and |sing(Γ)| = δ
}
.

The quotient of U−
g,δ under the action of the automorphism group of Vg is birational to

the locus B−
g,δ ⊂ S

−
g with general point given by an odd spin structure on a curve whose

stable model is an irreducible δ-nodal curve where each of the nodes is ”blown-up” and
an exceptional component is inserted. Let us fix a general point (Γ, Z) ∈ U−

g,δ and suppose

that Sing(Γ) = {p1, . . . , pδ} and denote the pδ+1, . . . , pg−1 ∈ Γreg the remaining points in
the support of Z. If ν : N → Γ is the normalization map, then ON (pδ+1 + · · · + pg−1) ∈
Th(N)−, which gives rise to a point in the locus B−

g,δ.

The important point now is that over U−
g,δ one can consider an incidence correspon-

dence that takes into account not only a δ-nodal curve together with a cluster, but also all
linear sections of Vg that admit the same cluster. Precisely:

Pg,δ :=
{(
C, (Γ, Z)

)
∈ Ug × U

−
g,δ : Z ⊂ C

}
.

The variety Pg,δ comes equipped with projection maps

U−
g

α
←−−−− Pg,δ

β
−−−−→ U−

g,δ.

It is shown in [FV1] that Pg,δ is birational to a projective bundle over U−
g,δ and further-

more, the quotient P−
g,δ := Pg,δ//Aut(Vg) is a projective bundle over B−

g,δ. Moreover, it is

proved that the projection map α is dominant if and only if

δ ≤ ng − 1.
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To summarize these considerations, we have reduced the unirationality of S
−
g to two

conditions. One is numerical and depends solely on the Mukai variety Vg, the other
has to do with the geometry of the spin moduli space B−

g,δ of nodal curves of smaller
geometric genus:

Theorem 5.6. For g ≤ 9, if ng denotes the dimension of the corresponding Mukai variety Vg, the

moduli space S
−
g is unirational provided there exists an integer 1 ≤ δ ≤ g − 1 such that

(i) δ ≤ ng − 1,
(ii) B−

g,δ is unirational.

It turns out that the locus B−
g,g−1 is unirational for g ≤ 10 (see [FV1] Theorem

4.16). However condition (i) is only satisfied when g ≤ 8, and this is the range for which
Theorem 5.4 is known at the moment.

6. GEOMETRIC ASPECTS OF MODULI SPACES OF THETA CHARACTERISTICS

In this section we discuss a few major themes related to aspects of the geometry of
Sg other than birational classification.

6.1. The Brill-Noether stratification of Sg. One can stratify theta characteristics by their
number of global sections. For an integer r ≥ −1 let us denote by

Srg :=
{
[C, θ] ∈ Sg : h

0(C, θ) ≥ r + 1, h0(C, θ) ≡ r + 1 mod 2
}
.

The variety Srg has a Lagrangian determinantal structure discussed in [H] Theorem 1.10,

from which it follows that each component of Srg has codimension at most
(
r+1
2

)
inside

Sg. This bound also follows from Nagaraj’s [Na] interpretation of the tangent space to
the stack Srg which we briefly explain. Fix a point [C, θ] ∈ Srg and form the Gaussian map

ψθ : ∧
2H0(C, θ)→ H0(C,K⊗2

C ), s ∧ t 7→ s · dt− t · ds.

More intrinsically, the projectivization of the map ψθ assigns to a pencil 〈s, t〉 ⊂ |θ| its
ramification divisor. Recalling the identification provided by Kodaira-Spencer theory

T[C,θ](Sg) = H0(C,K⊗2
C )∨,

it is shown in [Na] that the following isomorphism holds:

T[C,θ](S
r
g ) =

{
ϕ ∈ H0(C,K⊗2

C )∨ : ϕ|Im ψθ
= 0

}
.

This description is consistent with the bound codim(Srg ,Sg) ≤
(
r+1
2

)
from [H]. We now

ask what is the actual dimension of the strata Srg? Using hyperelliptic curves one can

observe that S
[ g−1

2
]

g 6= ∅ even though the expected dimension of this locus as a determi-
nantal variety is very negative. Moreover, the locus Sr3r is non-empty and consists of
(theta characteristics on) curves C ⊂ Pr which are extremal from the point of view of
Castelnuovo’s bound. Therefore one cannot hope that the dimension of Srg be always

3g − 3 −
(
r+1
2

)
. However this should be the case, and the locus Srg should enjoy certain

regularity properties, when r is relatively small with respect to g. We recall the following
precise prediction from [F1]:

Conjecture 6.1. For r ≥ 1 and g ≥
(
r+2
2

)
, there exists a component of the locus Srg having

codimension
(
r+1
2

)
inside Sg.
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The conjecture is proved in [F1] for all integers 1 ≤ r ≤ 9 and r = 11. We point out
that S1g coincides with the divisor Θnull studied in [T2] and [F2]. To prove Conjecture 6.1
it suffices to exhibit a single spin curve [C, θ] ∈ Srg with an injective Gaussian map ψθ. As
further evidence, we mention the following result, see [F1] Proposition 2.4:

Theorem 6.2. We fix g, r ≥ 1. If Srg−1 has a component of codimension
(
r+1
2

)
inside Sg−1 then

Srg has a component of codimension
(
r+1
2

)
inside Sg.

One could ask whether in the range g ≥
(
r+2
2

)
, the locus Srg is pure-dimensional,

or even irreducible. Not much evidence in favor of this speculation exists, but there are
no counterexamples either. We mention however that S2g is pure of codimension 3 in S−g ,

and when the locus S3g has pure codimension 6 in S+g for g ≥ 8, see [T1].

6.2. Syzygies of theta characteristics and canonical rings of surfaces. For a spin curve
[C, θ] ∈ Sg one can form the graded ring of global sections

R(C, θ) :=
∞⊕

n=0

H0(C, θ⊗n).

Note that the canonical ring R(C,KC) appears as a graded subring of R(C, θ).

Question 6.3. For a general [C, θ] ∈ Sg (or in Srg ), describe the syzygies of R(C, θ).

Some tentative steps in this direction appear in [R], where it is shown that with
a few exceptions, R(C, θ) is generated in degree at most 3. The interest in this ques-
tion comes to a large extent from the study of surfaces of general type. Let S ⊂ Pr+1 be a
canonically embedded surface of general type and assume for simplicity thatH1(S,OS) =
0 and r = pg(S) − 1 ≥ 3. Then a general hyperplane section C ∈ |KS | comes equipped
with an r-dimensional theta characteristics, that is, [C, θ := OC(1)] ∈ S

r
g . By restriction

there is a surjective morphism of graded rings R(S,KS) → R(C, θ) and the syzygies of
the two rings are identical, that is,

Kp,q(S,KS) ∼= Kp,q(C, θ), for all p, q ≥ 0.

It is worth mentioning that using Green’s duality theory [G], one finds the isomorphism

Kp−1,2(C, θ)
∨ ∼= Kr−2,2(C, θ) and Kp−2,3(C, θ)

∨ ∼= Kr−p+1,1(C, θ)

between the various Koszul cohomology groups. In a departure from the much studied
case of syzygies of canonical curves, the graded Betti diagram of a theta characteristic has
three non-trivial rows. For two-torsion points η ∈ J2(C) a precise Prym-Green conjecture
concerning the groups Kp,q(C,KC ⊗ η) has been formulated (and proven for bounded
genus) in [FL]. There is no clear prediction yet for the vanishing of Kp,q(C, θ).

6.3. The Scorza correspondence on the moduli space of even spin curves. To a non-
effective even theta characteristic [C, θ] ∈ S+g one can associate the Scorza correspondence

Rθ :=
{
(x, y) ∈ C × C : H0(C, θ(x− y)) 6= 0

}
.

Denoting by π1, π2 : C ×C → C the two projections and by ∆ ⊂ C ×C the diagonal, the
cohomology class of the Scorza curve can be computed:

OC×C(Rθ) = π∗1(θ)⊗ π
∗
2(θ)⊗OC×C(∆).
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By the adjunction formula, pa(Rθ) = 1 + 3g(g − 1). The curve Rθ, first considered by
Scorza [Sc], reappears in the modern literature in the beautiful paper [DK], where it plays
an important role in the construction of an explicit birational isomorphism betweenM3

and S+3 . It is shown in [FV1] that Rθ is smooth for a general even spin curve, hence one
can consider the Scorza map at the level of moduli space, that is,

Sc : S
+
g 99KM1+3g(g−1), Sc[C, θ] := [Rθ].

Since S
+
g is a normal variety, the rational map Sc extends to a regular morphism outside

a closed set of S
+
g of codimension at least two. It is of interest to study this map, in

particular to answer the following questions:
(1) What happens to the map Sc over the general point of the boundary divisor Θnull,
when the determinantal definition of Rθ breaks down?
(2) What are the degenerate Scorza curves corresponding to general points of the bound-

ary divisors Ai, Bi ⊂ S
+
g for i = 0, . . . , [ g2 ]?

(3) Understand the Scorza map at the level of divisors, that is, find a complete description
of the homomorphism

Sc∗ : Pic(M1+3g(g−1))→ Pic(S
+
g ).

Answers to all these questions are provided in the forthcoming paper [FI].

To give one example, we explain one of the results proved. For a general point
[C, θ] ∈ Θnull, we denote by Σθ the trace curve induced by the pencil θ ∈W 1

g−1(C), that is,

Σθ := {(x, y) ∈ C × C : H0(C, θ(−x− y)) 6= 0}.

We set δ := Σθ ∩∆ and it is easy to see that for a generic choice of [C, θ] ∈ Θnull, the set δ
consists of 4g − 4 distinct points.

We consider a family {(Ct, θt)}t∈T of even theta characteristics over a 1-dimensional
base, such that for a point t0 ∈ T we have that [Ct0 , θt0 ] = [C, θ] ∈ Θnull and h0(Ct, θy) = 0
for t ∈ T0 := T − {t0}. In particular, the cycle Rθt ⊂ Ct × Ct is defined for t ∈ T0. We
prove the following result:

Theorem 6.4. The flat limit of the family of Scorza curves {Rθt}t∈T0 corresponding to t = t0, is
the non-reduced cycle

Σθ + 2∆ ⊂ C × C.

The associated stable curve Sc[C, θ] ∈ M1+3g(g−1) can be described as the transverse union

Σθ ∪δ ∆̃, where ∆̃ is the double cover of ∆ branched over δ.

A proof of this result for g = 3 using theta functions is given in [GSM].
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