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ABSTRACT. We determine the Kodaira dimension of the Deligne-Mumford compactifi-

cation Diffg of the universal difference variety over the moduli space of curves.

For an algebraic curve C of genus g ≥ 2, setting i := ⌊g+1
2 ⌋, the difference map

ϕC : Ci × Ci → Pic0(C) defined by ϕC(D,E) := OC(D − E),

is surjective, that is, Ci − Ci = Pic0(C). For even genus, ϕC is generically finite of

degree
(
2i
i

)
, see [ACGH] Chapter V. For odd genus g = 2i − 1, when the curve C is

non-hyperelliptic, the one degree lower difference variety Ci−1 − Ci−1 is a divisor of

class
(
2i−2
i−1

)
θ, where θ ∈ H2(Pic0(C),Q) is the class of the theta divisor. This divisorial

difference variety has another incarnation via the results of [FMP] as the generalized
theta divisor of the middle exterior power of the normal bundle of C inside its Jacobian
variety Pic0(C). IfQC is the rank g−1 vector bundle onC defined via the exact sequence

(1) 0 −→ Q∨
C −→ H0(C,KC)⊗OC −→ KC −→ 0,

then the following equality of cycles holds for any non-hyperelliptic curveC, see [FMP]:

Ci−1 − Ci−1 = Θ∧i−1 QC
:=

{
ξ ∈ Pic0(C) : h0(C,

i−1∧
QC ⊗ ξ) ≥ 1

}
.

The difference map is thus a canonical resolution of singularities of Θ∧i−1 QC
, in the

same way that the Abel-Jacobi map Cg−1 → Picg−1(C) provides a resolution of sin-
gularities of the classical theta divisor of C. This suggests an alternative approach to
Green’s Conjecture [V] on the syzygies of a canonical curve of odd genus and maximal
Clifford index. Green’s Conjecture holds for such a curve C, if and only if the map

i−1∧
H0(C,KC)

∨ → H0
(
C,

i−1∧
QC

)

induced by taking exterior powers and cohomology in the sequence (1) is an isomor-

phism, that is, h0
(
C,

∧i−1QC) =
(

g
i−1

)
. On the other hand, results from [Lasz] link

h0(C,
∧i−1QC) to the singularities of the theta divisor Θ∧i−1 QC

, which could open the

way towards understanding the syzygies of C in terms of the singularities of ϕC .

Motivated by this speculative connection, our aim is to pose this problem varia-
tionally and describe some of the birational properties of the universal difference vari-
ety Diffg :=Mg,2i/Si×Si; the two copies of the symmetric group Si act by permuting
the first and the last i marked points of each 2i-pointed curve [C, x1, . . . , xi, y1, . . . , yi]
respectively. The difference variety Diffg is equipped with a surjective difference map

diff : Diffg → Pic0g to the universal degree zero Jacobian variety over Mg, as well as

with an Abel-Jacobi map aj : Diffg → Pic2ig . Note than the universal Jacobian Picdg
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being a fibration in abelian varieties overMg, is never of maximal Kodaira dimension,

precisely kod(Picdg) ≤ 3g − 3. Our main result concerns the birational classification of

Deligne-Mumford compactification Diffg :=Mg,2i/Si ×Si:

Theorem 0.1. The universal difference variety Diffg is a variety of general type for g ≥ 13.

The Kodaira dimension of Diff10 is equal to zero and kod(Diff12) ≥ 33.

It is known that the Kodaira dimension of Mg,2i is negative for g ≤ 9, so the

same conclusion holds for Diffg in this range. Theorem 0.1 fits into a pattern of recent
classification results. It is shown in [FV1] that the Kodaira dimension of the degree g
universal Jacobian variety Picgg is equal to 3g − 3 for g ≥ 12, to 19 for g = 11, whereas

kod(Pic1010) = 0. This result was extended to any degree d satisfying the condition
gcd(2g − 2, g + 1 − d) = 1 in [BFV], where it is shown that the Kodaira dimension of

the degree d universal Jacobian Picdg is independent of d. In the paper [FV2], we proved
that the universal theta divisor Thg over the moduli space of curves has general type
for g ≥ 12 and is uniruled for g ≤ 11.

The proof of Theorem 0.1 distinguishes between the cases when g is odd or even,
and uses in an essential way results from [FV1] and [FMP] in order to produce a big,

effective representative of the canonical class KDiffg
. Precisely, if π : Mg,2i → Diffg is

the quotient map, then the Hurwitz formula implies that

(2) π∗(KDiffg
) = KMg,2i

− δ0:xx − δ0:yy ∈ Pic(Mg,2i),

where δ0:xx (respectively δ0:yy) is the boundary divisor class onMg,2i corresponding to
curves having a rational tail containing precisely two marked points, both of the type
xa and xb (respectively ya and yb), where 1 ≤ a < b ≤ i. Since on one hand, at the

level of rational Picard groups, the map π∗ : Pic(Diffg) → Pic(Mg,2i) is injective and,

on the other hand, the sum of cotangent lines
∑2i

j=1 ψj ∈ Pic(Mg,2i) descends to a big

and nef line bundle on Diffg (essentially the same proof like that of Proposition 1.2 in

[FV2]), in order to conclude that Diffg is of general type for a given g, it suffices to find

a Si × Si-invariant effective divisor D onMg,2i such that π∗(KDiffg
) is an effective Q-

combination of the class [D], the Hodge class λ, boundary divisors invariant under the

action of Si × Si and a positive multiple of
∑2i

j=1 ψj . In carrying this out, the choice

of the divisor D is crucial. In odd genus, this role is played by the fibrewise pull-back
of the generalized theta divisor Θ∧i−1 QC

= Ci−1 − Ci−1 considered in the introduction

under the difference map diff : Diffg → Pic0g. Precisely, we define the locus

Ug :=
{
[C, x1, . . . , xi, y1, . . . , yi] ∈Mg,2i : OC

( i∑

j=1

(xj − yj)
)
∈ Ci−1 − Ci−1

}
,

and refer to Section 1 for more details.

In [FV2], we constructed Sn-invariant geometric effective divisors on Mg,n for
n ∈ {g − 1, g − 2} which determine an extremal ray of the respective cones of ef-
fective divisors. For instance, on Mg,g−2, the closure of the locus of pointed curves
[C, x1, . . . , xg−2] ∈ Mg,g−2 such that there exists a pencil A ∈ W 1

g−1(C) containing

all the marked points in one of its fibres is an extremal divisor on Mg,g−2, see [FV2]
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Theorem 0.7. We carry out a somewhat similar construction on Mg,g−3. If D ∈ Cg−3

is a general effective divisor of degree g − 3 on a curve [C] ∈ Mg, we observe that

KC(−D) ∈W 2
g+1(C). A natural codimension one condition onMg,g−3 is that this plane

model have a triple point (a similar construction requiring instead that KC(−D) have a
cusp, produces a ”less extremal” divisor):

Theorem 0.2. The closure insideMg,g−3 of the locus

Dg :=
{
[C, x1, . . . , xg−3] ∈Mg,g−3 : ∃L ∈W

2
g (C) with H0

(
C,L(−

g−3∑

j=1

xj)
)
6= 0

}

is an effective divisor. Its class in Pic(Mg,g−3) is equal to

[Dg] = −
2(g − 17)

3

(
g − 3

2

)
λ+

2g − 3

3

(
g − 4

2

) g−3∑

i=1

ψi−

(
g − 3

2

)
δirr−(g

2−5g+5)(g−5)δ0:2−· · · .

One immediate consequence of Theorem 0.2 is that it gives a bound on the effec-
tive cone of the symmetric product Cg−3 of any curve [C] ∈ Mg. Restricting Dg under

the rational map Cg−3 99KMg,g−3/Sg−3 obtained by fixing the moduli of C, we obtain
that the class θ − g

g−3x ∈ H
2(Cg−3,Q) is effective. Here θ and x ∈ H2(Cg−3,Z) denote

the class of the pullback of the theta divisor and that of the locus of effective divisors of
degree g − 3 having a fixed point in their support respectively. We conjecture that this
class spans an extremal ray of the effective cone of Cg−3, see Section 2 for details.

We close by thanking the referee for insightful comments that clearly improved
this paper.

1. EFFECTIVE DIVISORS ON UNIVERSAL DIFFERENCE VARIETIES

The aim of this section is to prove Theorem 0.1 and we begin by reviewing the
notation for boundary divisors and tautological classes onMg,n. All the Picard groups
of moduli spaces of curves considered in this paper are with rational coefficients, in par-
ticular, we identify the Picard group of the moduli stack with that of the corresponding
coarse moduli space. A standard reference is [AC]. For an integer 0 ≤ j ≤ ⌊g2⌋ and a

subset T ⊂ {1, . . . , n}, we denote by ∆j:T the closure inMg,n of the locus of n-pointed
curves [C1 ∪ C2, x1, . . . , xn], where C1 and C2 are smooth curves of genera j and g − j
respectively, meeting transversally in one point, and with the marked points lying on
C1 being exactly those indexed by T . We define δj:T := [∆j:T ]Q ∈ Pic(Mg,n). For
0 ≤ j ≤ ⌊g2⌋ and 0 ≤ s ≤ n, we set

∆j:s :=
∑

|T |=s

δj:T , δj:s := [∆j:s]Q ∈ Pic(Mg,n)
Sn .

By convention, δ0:s := ∅, for s < 2, and δj:s := δg−j:n−s. For j = 1, . . . , n, we denote, as

usual, by ψj ∈ Pic(Mg,n) the cotangent class corresponding to the marked point labeled

by j, then set ψ :=
∑n

j=1 ψj ∈ Pic(Mg,n)
Sn .

If φ :Mg,n →Mg is the morphism forgetting the marked points, we introduce the

Hodge class λ := φ∗(λ) and δirr := φ∗(δirr), where δirr := [∆irr] ∈ Pic(Mg) denotes the
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class of the locus of irreducible nodal curves. The canonical class ofMg,n is computed
via Kodaira-Spencer theory, see [HM] Theorem 2 and [Log] Theorem 2.6 respectively:

(3) KMg,n
= 13λ− 2δirr + ψ − 2

∑

T⊂{1,...,n}
j≥0

δj:T − δ1:∅ ∈ Pic(Mg,n).

Assume from now on that i := ⌊g+1
2 ⌋ and n := 2i. We divide the 2i-marked points

into two equal groups and denote a general element ofMg,2i by [C, x1, . . . , xi, y1, . . . , yi].
The group Si ×Si acts on the marked points as follows

(σ, τ) · (x1, . . . , xi, y1, . . . , yi) = (xσ(1), . . . , xσ(i), yτ(1), . . . , yτ(i)).

With respect to this action, there are invariant cotangent divisor classes

ψx :=

i∑

j=1

ψxj
and ψy :=

i∑

j=1

ψyj ∈ Pic(Mg,2i)
Si×Si .

For non-negative integers 0 ≤ j ≤ i, 0 ≤ s ≤ 2i and 0 ≤ ℓ ≤ s, we define the
Si ×Si-invariant boundary divisor class onMg,2i

δℓ,s−ℓ
j:s :=

∑

T

{
δj:T : |T ∩{x1, . . . , xi}| = ℓ, |T ∩{y1, . . . , yi}| = s−ℓ

}
∈ Pic(Mg,2i)

Si×Si .

To ease notation, we write suggestively δ0:xx = δ2,00:2 , δ0:yy := δ0,20:2 and δ0:xy := δ1,10,2 ,
indicating how many marked points labeled by either xj or yj lie on a rational tail of
the corresponding stable pointed curve. The classes λ, ψx, ψy, δirr together with all the

boundaries {δℓ,s−ℓ
j:s }j,s,ℓ≥0 generate the group Pic(Mg,2i)

Si×Si . For g ≥ 3, there are no
relations between these classes.

We also introduce the forgetful morphisms

Mg,i
πx←−Mg,2i

πy
−→Mg,i,

where πx drops all the marked points y1, . . . , yi, whereas πy drops the marked points
x1, . . . , xi respectively. We summarize the pullback properties of the generators of
Pic(Mg,i)

Si under the morphisms πx and πy respectively.

Proposition 1.1. For 0 ≤ j ≤ i and 0 ≤ s ≤ 2i, the following relations hold in Pic(Mg,2i)
Si×Si :

π∗x(ψ) = ψx −
i−1∑

s=2

δ1,s−1
0:s , π∗y(ψ) = ψy −

i−1∑

s=2

δs−1,1
0:s ,

π∗x(δj:s) =
∑

ℓ≥0

δs,ℓj:s+ℓ, π∗y(δj:s) =
∑

ℓ≥0

δℓ,sj:s+ℓ, and

π∗x(λ) = π∗y(λ) = λ, π∗x(δirr) = π∗y(δirr) = δirr.

Proof. The morphism πx :Mg,2i →Mg,i can be expressed as a composition of i forgetful
morphisms, by dropping successively the marked points y1, . . . , yi respectively. This
reduces the problem to that of understanding the pull-back of divisor classes under a
forgetful map f :Mg,P∪{y} →Mg,P , where P is an arbitrary set of labels and y /∈ P is
another label. The following formulas hold, cf. [Log] Theorem 2.3:

f∗(λ) = λ, f∗(δirr) = δirr, f
∗(ψx) = ψx − δ0:xy, for each x ∈ P,
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as well as f∗(δj:T ) = δj:T + δj:T∪{y}, for each 0 ≤ j ≤ g and T ⊂ P . Applying these
formulas i times, the conclusion follows. �

As already pointed out, Diffg :=Mg,2i/Si × Si serves as a birational model for

the universal difference variety. Let us denote by π : Mg,2i → Diffg the projection
morphism, which is simply ramified precisely along the divisor ∆0:xx +∆0:yy. Indeed,
by studying the action of Si ×Si at the general point of each of the boundary divisors

∆ℓ,s−ℓ
j:s ⊂Mg,2i, the only fixed divisors are those corresponding to a 1-nodal curve with

a genus 0 tail containing two marked points, both either of type {xa, xb}, or {ya, yb}.
These correspond either to the boundary divisor ∆0:xx or to ∆0:yy.

Proposition 1.2. The singularities of Diffg do not impose adjunction conditions, that is, if

ǫ : D̃iffg → Diffg is a resolution of singularities, then for any ℓ ≥ 0, there is an isomorphism

ǫ∗ : H0
(
(Diffg)reg,KDiff

⊗ℓ

g

) ∼=
→ H0

(
D̃iffg,KD̃iff

⊗ℓ

g

)
.

Proof. Follows entirely along the lines of [FV1] Theorem 1.1. �

As a consequence, just like in the case of a smooth projective variety, the Kodaira

dimension of Diffg is equal to the Kodaira-Iitaka dimension of the canonical classKDiffg
.

In particular, the space Diffg has general type if and only if the Q-divisor class KDiffg
is

a linear combination of an ample and an effective Q-class on Diffg.

In our proof of Theorem 0.1 we consider Si-invariant effective divisors onMg,i,

having, preferably, negative λ-coefficient. If g = 2i, let D2 be the closure inMg,i of the
locusD2 of smooth curves [C, x1, . . . , xi] ∈Mg,i such that h0(C,OC(2x1+· · ·+2xi)) ≥ 2.

It follows from [Log] Theorem 5.4, that D2 is an effective divisor onMg,i and its class is
equal to

(4) [D2] = −λ+ 3ψ − 10δ0:2 −
∑

j,s≥0

(j,s) 6=(0,2)

bj:sδj:s ∈ Pic(Mg,i)
Si ,

where bj:s ≥ 0 for (j, s) 6= (0, 2).

We shall also need an S2i-invariant effective divisor on Mg,2i having, if pos-
sible, negative λ-coefficient. We consider the locus Lg of g-pointed smooth curves
[C, x1, . . . , xg] ∈ Mg,g with the property h0

(
C,OC(x1 + · · · + xg)

)
≥ 2. For the class

of the closure Lg insideMg,g, we refer either to [Log] Theorem 5.4, or, for an alternative
proof, to [F] Theorem 4.6:

(5) [Lg] = −λ+ ψ −
∑

j,s≥0

(
|s− j|+ 1

2

)
δj:s ∈ Pic(Mg,g)

Sg .

The coefficient of δ0:2 in this formula is equal to −3, whereas that of δirr is equal to zero.

We then let Eg+1 be (up to rescaling by the factor 1
g+1 ), the locus of pointed curves

[C, x1, . . . , xg+1] ∈Mg,g+1 such that there exists an index 1 ≤ ℓ ≤ g + 1, with

h0
(
C,OC

(g+1∑

j=1

xj − xℓ
))
≥ 2.
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Denoting for ℓ = 1, . . . , g+1 by πℓ :Mg,g+1 →Mg the map forgetting the marked point

labeled by xℓ, we have the following equality of Q-divisors onMg,g+1

Eg+1 :=
1

g + 1

g+1∑

ℓ=1

π∗ℓ (Lg).

In particular, using the pull-back formulas [Log] Theorem 2.3, we find that

(6) [Eg+1] = −λ+
g

g + 1
ψ −

∑

j,s≥0

(g + 1− s)cj:s + scj:s−1

g + 1
δj:s ∈ Pic(Mg,g+1)

Sg+1 ,

where cj:s :=
(|s−j|+1

2

)
is the coefficient of −δj:s in the expression (5) of the class [Lg].

Furthermore, we use the convention δ0:1 := −ψ, therefore the coefficient of −δ0:2 in the
expansion of [Eg+1] is equal to 3g−1

g+1 .

Essential in the proof of Theorem 0.1 in the odd genus case g = 2i − 1, is the
following effective divisor Ug onMg,g+1 having Si×Si-symmetry. We consider the lo-
cus of pointed curve [C, x1, . . . , xi, y1, . . . , yi] ∈ Mg,g+1 possessing a pencil A ∈ W 1

g (C)

containing all the points {xj}
i
j=1 and {yj}

i
j=1 respectively in two distinct fibres, that is,

H0
(
C,A

(
−

i∑

j=1

xj
))
6= 0 and H0

(
C,A

(
−

i∑

j=1

yj
))
6= 0.

This divisor has already been considered in [FMP] Section 4, where the following alter-
native geometric characterization of its points is shown:

[C, x1, . . . , xi, y1, . . . , yi] ∈ Ug ⇐⇒ h0
(
C,

i−1∧
QC

( i∑

j=1

xj −
i∑

j=1

yj
))
6= 0.

Fibrewise, Ug is the pull-back of the Raynaud theta divisor Θ∧i−1 QC
⊂ Pic0(C) under

the difference map φC : Ci × Ci → Pic0(C) considered in the Introduction.

Before computing the class [Ug], we record the following enumerative fact.

Lemma 1.3. Let C be a general curve of genus 2i − 1 and fix general points x2, . . . , xi,
y1, . . . , yi ∈ C. The number of pencils A ∈W 1

2i−1(C) such that

H0
(
C,A(−

i∑

j=2

xj)
)
6= 0, and H0

(
C,A(−

i∑

j=1

yj)
)
6= 0,

is equal to 1
2

(
2i
i

)
− 1.

Proof. First we observe that the divisors x2 + · · ·+ xi and y1 + · · ·+ yi cannot appear in

the same fibre of A, for else, A = OC

(∑i
j=2 xj +

∑i
j=1 yj

)
, and then the 2i − 1 points

x2, . . . , xi, y2, . . . , yi move in a pencil; this contradicts the generality assumption on the
marked points. We let the points x2, . . . , xi and y1, . . . , yi respectively, come together.
One is led to compute, for a general 2-pointed curve [C, x, y] ∈ M2i−1,2, the number of
pencils A ∈ W 1

2i−1(C), such that H0(C,A(−(i− 1)x)) 6= 0 and H0(C,A(−iy)) 6= 0. By a
standard argument, see [EH1], or [F] Theorem 4.6, or [Log] Theorem 3.2, we degenerate
[C, x, y] to a flag curve consisting of a smooth rational spineR and g elliptic tails meeting
R at general points p1, . . . , p2i−1 ∈ R, such that the marked points x and y specialize to
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general points x, y ∈ R. The number in question equals the number of linear series g12i+1

on P1 with cusps at p1, . . . , p2i−1 and ramification sequence (0, i − 1) at x and (0, i − 2)

at y respectively. This equals the intersection product σ2i−1
(0,1) ·σ(0,i−1) ·σ(0,i−2) of Schubert

cycles in the cohomology ring H∗(G(1, 2i− 1),Q) of the Grassmannian of lines in Pi−1.
Applying the Pieri formula we write

σ(0,i−1) · σ(0,i−2) =
i−2∑

a=0

σa,2i−3−a ∈ H
∗(G(1, 2i− 1),Q),

hence after using [Fu] Example 14.7.11, the sought-after number is equal to

i−2∑

a=0

σ2i−1
(0,1) · σ(a,2i−3−a) =

i−2∑

a=0

(
2i

a+ 1

)
i− a− 1

i
=

1

2

(
2i

i

)
− 1.

�

Theorem 1.4. For i ≥ 2, the following formula holds in Pic(M2i−1,2i)
Si×Si :

[U2i−1] =

(
2i− 3

i− 2

)(6i− 4

2i− 3
λ+ (ψx + ψy)−

i− 1

2i− 3
δirr − 4(δ0:xx + δ0:yy)− · · ·

)
− δ0:xy.

We point out that the remaining coefficients of δj:s that do not appear explicitly
are all non-positive; the coefficient of δ0:xy is equal to −1.

Proof. The coefficients of λ, ψx, ψy and δirr in the expression [Ug] are determined in the

course of proving Theorem 4.1 in [FMP]. By the Z2-symmetry in the vectors
∑i

j=1 xj

and
∑i

j=1 yj in the construction of Ug, the coefficients of δ0:xx and δ0:yy are equal. We

first consider the forgetful map πx1
: Mg,g+1 → Mg,g dropping the point x1 and we

claim we have the following equality of effective divisors onMg,g

(7) (πx1
)∗
(
[Ug] · δ0:x1y1

)
= Lg + Zg,

where Lg is Logan’s divisor on Mg,g already considered before, and Zg is the locus
consisting of smooth pointed curves [C, x2, . . . , xi, y1, . . . , yi] ∈ Mg,g for which there
exists a pencil A ∈ W 1

g−1(C) containing the points x2, . . . , xi (respectively y2, . . . , yi) in

two distinct fibres. Granting (7), it follows that the δ0:xy-coefficient in [Ug] is equal to
−1. Indeed, on one hand, one has the identity (πx1

)∗(δ
2
0:x1y1

) = −ψy1 and no other push-

forward class of type (πx1
)∗(ξ · δ0:x1y1), where ξ ∈ Pic(Mg,g+1) is a tautological class,

contains ψy1 . Therefore, the δ0:x1y1-coefficient of [Ug] is equal to the (−ψy1)-coefficient of

[Lg] + [Zg]. The definition of Zg makes no reference to the marked point y1, hence Zg is

the pull-back of an effective divisor fromMg,g−1 under the map πy1 :Mg,g →Mg,g−1

dropping y1. In particular the ψy1-coefficient of [Zg] is equal to zero. The conclusion
now follows from relation (5).

We now prove the equality of divisors (7). We choose a general point in the inter-
section Ug ∩∆0:x1y1 . It corresponds to a stable curve C ∪p P1, where C is a smooth curve
of genus g, and to distinct marked points x1, y1 ∈ P1 − {p} and x2, . . . , xi, y2, . . . , yi ∈
C − {p} respectively. From the definition of Ug it follows that there exists a limit linear
series l := (lC , lP1) of type g1g on C ∪p P1, together with pairs of sections (σC , σP1) and
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(τC , τP1) of l, satisfying the following conditions:

div(σC) ≥ x2 + · · ·+ xi, div(τC) ≥ y2 + · · ·+ yi,

div(σP1) ≥ x1, div(τP1) ≥ y1, and

ordp(σC) + ordp(σP1) ≥ g, ordp(τC) + ordp(τP1) ≥ g.

Note that both sections σP1 and τP1 vanish somewhere else apart from p, hence σC and
τC both vanish at p. Assuming σC 6= τC , it follows that the linear system lC ∈ G

1
g(C) has

a base point at p. Subtracting it, we obtain a pencil l′C ∈ G
1
g−1(C) having the divisors

x2 + · · ·+ xi and y2 + · · ·+ yi appear in two of its fibres. This shows that

[C, x2, . . . , xi, p = y1, y2, . . . , yi] ∈ Zg.

If, on the other hand, σC and τC are equal (up to scalar multiplication), then the

underlying line bundle of lC is OC(p+
∑i

j=2(xj + yj)). In particular, we conclude that

[C, x2, . . . , xi, p = y1, . . . , yi] ∈ Lg. This proves the set-theoretic inclusion

(πx1
)∗
(
[Ug] ·∆0:x1y1

)
⊂ Lg ∪ Zg.

The reverse inclusion, as well as the fact that these points appear with multiplicity one
in the equality (7), are standard exercise in admissible coverings, see also [FMP] Propo-
sition 4.6.

To determine the δ0:xx-coefficient in [Ug], we use a fibral curve of πx1
. We fix a

general curve C of genus g, general points x2, . . . , xi, y1, . . . , yi ∈ C, and denote by
Fx1
⊂Mg,g+1 the fibre π−1

x1
([C, x2, . . . , xi, y1, . . . , yi]) ⊂Mg,g+1. Then one has

Fx1
·ψx1

= 2g−2+2i−1 = 6i−5, Fx1
·ψx2

= · · · = Fx1
·ψxi

= Fx1
·ψy1 = · · · = Fx1

·ψyi = 1.

Furthermore, Fx1
· δ0:xx = i − 1, Fx1

· δ0:xy = 1 and Fx1
· δ0:yy = 0. The intersection of

Fx1
with all other tautological classes in Pic(Mg,g+1) is obviously equal to zero. On the

other hand, Fx1
· Ug is equal to i times the number of pencils A ∈ W 1

2i−1(C) containing
the divisors x2 + · · ·+ xi and y1 + · · ·+ yi respectively, in two different fibres. Applying

Lemma 1.3 this number is equal to 1
2

(
2i
i

)
− 1. In this we obtain a relation determining

the δxx-coefficient of [Ug]. �

The last ingredient in the proof of Theorem 0.1 is the following result:

Proposition 1.5. The divisor class ψ := ψx + ψy ∈ Pic(Mg,2i) descends to a big and nef

divisor class on Diffg.

Proof. The class ψ is S2i-invariant, hence there exists a class Ng,2i ∈ Pic(Mg,2i/S2i),
which pulls back to ψ. It is proved in [FV2] Proposition 1.2 that this class Ng,2i is big

and nef. Consider the sequence of finite maps Mg,2i
π
−→ Diffg

ν
−→ Mg,2i/S2i. Then

ν∗(Ng,2i) ∈ Pic(Diffg) is still big and nef and has the property that π∗(ν∗(Ng,2i)) = ψ,
which finishes the proof. �

We can finally determine the Kodaira dimension of Diffg for g > 13. Theorem 0.1
will follow from the following two, more precise statements given in terms of the slope

s(Mg) := infD∈Eff(Mg)
s(D)

of the moduli space of curves. Recall that the Brill-Noether divisorsM
r

g,d of curves C

with W r
d (C) 6= ∅ for ρ(g, r, d) = −1, yield the upper bound s(Mg) ≤ 6 + 12

g+1 , for any g
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such that g+1 is composite, see [EH1]. For any even genus g = 2k− 2, the Petri divisors

provide the slightly weaker upper bound s(Mg) ≤
6k2+k−6
k(k−1) . Stronger lower bounds are

given for an infinite sequence of genera g in [F] using Koszul divisors, though these will
not be needed in this paper.

Theorem 1.6. Set g := 2i. The universal difference variety Diffg is of general type, whenever

s(Mg) ≤
41
6 .

Proof. Recall that D2 is the effective divisor on Mg,i whose class is computed by (4).
Applying Proposition 1.1, we write the following formula

π∗x([D2])+π
∗
y([D2]) = −2λ+3(ψx+ψy)−6δ0:xy−10(δ0:xx+δ0:yy)−· · · ∈ Pic(Mg,2i)

Si×Si ;

the coefficient of δirr in this formula is equal to zero and all the other boundary classes
appear with non-positive coefficients.

The Sg-invariant class Lg on Mg,g constructed in [Log] and has the following

class [Lg] = −λ+ψx+ψy− 3(δ0:xy + δ0:xx+ δ0:yy)−· · · . We form the following effective

Q-combination in Eff(Mg,2i)
Si×Si

F :=
1

4

(
π∗x([D2])+π

∗
y([D2])

)
+
1

6
[Lg] = −

2

3
λ+

11

12
(ψx+ψy)−2δ0:xy−3(δ0:xx+δ0:yy)−· · · ,

where the coefficient of δirr in this expression is equal to zero and all the other boundary
classes have non-positive coefficients. We now fix an effective divisor D ∈ Eff(Mg) of
slope s(D) = s as small as possible, for instance a Brill-Noether or Petri divisor; after
possibly rescaling by a positive rational number, we write

[D] = sλ− δirr −

⌊ g

2
⌋∑

j=1

bjδj ∈ Pic(Mg).

Using the explicit formulas for [D] from [EH1], we have that bj ≥ 1 for j ≥ 1. Then the
class

(2s− 1)φ∗([D]) + F = (2s−
2

3
)λ+

11

12
(ψx + ψy)− 2δ0:xy − 3(δ0:xx + δ0:yy)− · · ·

is effective. By comparing this class against that of π∗(KDiffg
), from (2), it follows that

whenever 2s− 2
3 ≤ 13, the universal difference variety Diffg has general type. This last

condition is satisfied when s(Mg) ≤
41
6 . �

Theorem 1.6 coupled with the above mentioned upper bounds on s(Mg) implies
Theorem 0.1 for even g ≥ 14. In genus g = 12, we only have partial results, via the

existence of the global Abel-Jacobi generically finite map Diffg 99K Pic
g

g. In particu-

lar, kod(Diffg) ≥ kod(Pic
g

g) and it is shown in [FV1] that the Kodaira dimension of

kod(Pic
12
12) = 33.

Remark 1.7. In view of Tan’s [T] lower bound s(M12) ≥
41
6 for the slope ofM12, the

geometry of Diff12 appears quite intriguing. Note also that g = 12 is the smallest genus
when s(Mg) is not known. It is an interesting open question to construct an effective

divisor onM12 having slope 41
6 . The known effective divisor onM12 of smallest slope

is the one from [FV3], giving the bound s(M12) ≤
4415
642 .
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Theorem 1.8. Set g := 2i + 1. The universal difference variety Diffg is a variety of general
type for g ≥ 13.

Proof. This time we consider the divisor [Ug] and the Sg+1-invariant class [Eg+1] on

Mg,g+1 whose class is computed in (6). We set the positive constants

α :=
i

3i− 2
·
8
(
2i−3
i−2

)
− 3

4
(
2i−3
i−2

)
− 1

and β :=

(
2i−3
i−2

)

4
(
2i−3
i−2

)
− 1

,

then choose an effective divisor D onMg, where [D] = sλ − δirr − · · · ∈ Pic(Mg). We
form the effective Q-linear combination

F :=
(
2− β

i− 1

2i− 3

)
· φ∗([D]) + α · [Eg+1] + β · [Ug] ∈ Eff(Mg,g+1)

Si×Si ,

whose δirr, δ0:xx, δ0:yy and δ0:xy-coefficients respectively are all equal to those of the class

π∗(KDiffg
) = 13λ+ ψx + ψy − 2δ0:xy − 3(δ0:xx + δ0:yy)− · · · ,

whereas the coefficient of ψx+ψy is smaller than 1. It follows that the class π∗(KDiffg
)−F

is big if and only if the following inequality holds

s(Mg) ≤
(2i− 3)(α+ 13)− 2β(3i− 2)

2(2i− 3)− β(i− 1)
.

This inequality is satisfied for i ≥ 7, which shows that Diffg is of general type for odd

g ≥ 13. For i = 6, we obtain the bound s ≤ 6.907..., but since s(M11) ≥ 7, see for
instance [FP], there is no effective divisor onM11 satisfying this condition. �

We make no prediction concerning the Kodaira dimension of Diff11. We complete
the proof of Theorem 0.1 by dealing with the case g = 10.

Theorem 1.9. The Kodaira dimension of Diff10 is equal to zero.

Proof. We consider the divisor K10 onM10 consisting of curves lying on a K3 surface.
It follows from [FP] that s(K10) = 7; furthermore, the Kodaira-Iitaka dimension of the
linear system |K10| is equal to zero. It is shown in [FV1] Theorem 0.1 that the Kodaira
dimension of the universal symmetric productM10,10/S10 is equal to 0. Since there is

a finite map ν : Diff10 → M10,10/S10, one obtains the inequality kod(Diff10) ≥ 0. We

now establish the opposite inequality and show that kod(M10,10, π
∗(KDiff10

)) = 0.

Applying (2) and (5), we write the following equality in Pic(M10,10)
S5×S5

(8) π∗(KDiff10
) = 2[φ∗(K10)] + [L10] + δ0:xy +

∑

j,s≥0

dj:sδj:s,

where the coefficients dj:s are all non-negative and d0:2 = 0. For each pair of indices

1 ≤ i < j ≤ 5, a covering family Γij for the divisor L10 on M10,10 was constructed
in [FV1] Proposition 1.4; starting with a general curve [C, x1, . . . , x5, y1, . . . , y5] ∈ L10,
the 1-nodal curve of genus 11 obtained from C by identifying xi and xj lies on a K3
surface S. Moving this curve in a pencil of 1-nodal curves on S, desingularizing the
entire family and finally making a base change of order 2 to distinguish between the
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sections corresponding to the nodes, one obtains a sweeping curve Γij ⊂ L10, having
the following numerical features (recall that g = 10):

Γij · λ = 2(g + 1), Γij · δirr = 2(6g + 17), Γij · ψz = 2 for z ∈ {xi, xj}
c,

Γij ·ψxi
= Γij ·ψxj

= 5, Γij ·δ0:{xi,xj} = 2, Γij ·δℓ:T = 0 for 0 ≤ ℓ ≤ 10, and T ⊂ {xi, xj}
c.

We find that Γij ·δ0:xx = 4 and Γ·δ0:xy = Γij ·δ0:yy = 0. We further calculate Γ·φ∗(K10) = 0

and Γij · L10 = −2 < 0.

Since Γij fills-up the divisor L10, this coupled with relation (8) implies that for all

integers n ≥ 0, one has an equality of linear series onM10,10

|nπ∗(KDiff10
)| = |nπ∗(KDiff10

)− nL10|.

To show that the remaining linear system has Kodaira dimension 0 one follows the last
lines of the proof of Theorem 0.1 in [FV1], using the extremality of the divisor K10 on
M10. �

2. AN EFFECTIVE DIVISOR ONMg,g−3

The aim of this section is to prove Theorem 0.2. We begin by solving the following
enumerative question which comes up repeatedly in the process of computing [Dg].

Theorem 2.1. Let [C, p] ∈ Mg,1 be a general pointed curve of genus g and a fixed integer
0 ≤ γ ≤ g − 3. Then there exist a finite number of pairs (L, x) ∈W 2

g (C)× C such that

H0
(
C,L(−γ x− (g − 3− γ) p)

)
≥ 1.

Their number is computed by the formula

N(g, γ) :=
g(g − 1)(g − 5)

3
γ(γg − 3γ − 1).

Proof. We introduce auxiliary maps χ : C × C3 → Cγ+3 and ι : Cγ+3 → Cg given by,

χ(x,D) := γ · x+D, and ι(E) := E + (g − 3− γ) · p.

The number we evaluate is N(g, γ) := χ∗ι∗
(
[C2

g ]
)
, where C2

g := {D ∈ Cg : dim|D| ≥ 3}.
The cohomology class of this variety of special divisors is computed in [ACGH] p.326:

[C2
g ] =

θ4

12
−
xθ3

3
+
x2θ2

6
∈ H8(Cg−3,Q).

Noting that ι∗(θ) = θ and ι∗(x) = x, one needs to estimate the pull-backs of the tauto-
logical monomials xαθ4−α. For this purpose, we use [ACGH] p.358:

χ∗(xαθ4−α) =
g!

(g − 4 + α)!

[(
1 + γt1 + t2

)α
·
(
1 + γ2t1 + t2

)4−α]
t1t

3
2

,

where the last symbol indicates the coefficient of the monomial t1t
3
2 in the polynomial

appearing on the right side of the formula. The rest follows after a routine evaluation.
�

The second enumerative ingredient in the proof of Theorem 0.2 is the following
result, which can be proved by degeneration using Schubert calculus. We skip details
and refer instead to [EH1], [F], or to the proof of Lemma 1.3 in this paper:
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Proposition 2.2. For a general curve [C] ∈Mg−1, there exist a finite number of pairs (L, x) ∈
W 2

g (C)× C satisfying the conditions

h0
(
C,L(−2x)

)
≥ 2, and h0

(
C,L(−(g − 2)x)

)
≥ 1.

Each pair corresponds to a complete linear series L. The number of such pairs is equal to

n(g − 1) := (g − 1)(g − 2)(g − 3)(g − 4)2.

Proof of Theorem 0.2. We expand [Dg] ∈ Pic(Mg,g−3), and begin the calculation by deter-

mining the coefficients of λ, δirr and ψ :=
∑g−3

i=1 ψi respectively. It is useful to observe

that if πn : Mg,n → Mg,n−1 is the map forgetting the marked point labeled by n for

some n ≥ 1 and D is any divisor class on Mg,n, then for distinct labels i, j 6= n, the

λ, δirr and ψj coefficients of the divisors D onMg,n and (πn)∗(D · δ0:in) onMg,n−1 re-
spectively, coincide. The divisor (πn)∗(D · δ0:in) can be thought of as the locus of points
[C, x1, . . . , xn] ∈ D where the points xi and xn are allowed to come together. By itera-

tion, the divisor D
g−3
g onMg,1 obtained by letting all points x1, . . . , xg−3 coalesce, has

the same λ and δirr coefficients as Dg. But obviously

D
g−3
g =

{
[C, x] ∈Mg,1 : ∃L ∈W

2
g (C) such that h0

(
C,L(−(g − 3)x)

)
≥ 1

}
,

and note that this is a ”pointed Brill-Noether divisor” in the sense of Eisenbud-Harris.
The cone of Brill-Noether divisors on Mg,1 is 2-dimensional, see [EH2] Theorem 4.1,

and there exist constants µ, ν ∈ Q, such that [D
g−3
g ] = µ ·BN+ ν · [W], where

BN := (g + 3)λ−
g + 1

6
δirr −

g−1∑

j=1

j(g − j)δj:1 ∈ Pic(Mg,1)

is the pull-back fromMg of the Brill-Noether divisor class andW is the divisor of Weier-

strass points inMg,1 with class given by the formula

[W] = −λ+ ψ −

g−1∑

j=1

(
g − j + 1

2

)
δj:1 ∈ Pic(Mg,1).

The coefficients µ and ν are computed by intersecting both sides of the previous identity
with explicit curves insideMg,1. First we fix a genus g curveC and let the marked point

vary along C. If Cx := φ−1([C]) ⊂ Mg,1 denotes the induced curve in moduli, then the

only generator of Pic(Mg,1) which has non-zero intersection number with Cx is ψ, and

Cx · ψ = 2g − 2. On the other hand one has Cx · D
g−3
g = N(g, g − 3), that is,

ν =
N(g, g − 3)

g(g − 1)(g + 1)
.

To compute µ, we construct a curve inside ∆1:1 as follows: Fix a 2-pointed elliptic
curve [E, x, y] ∈ M1,2 such that the class x − y ∈ Pic0(E) is not torsion, and a general
curve [C] ∈ Mg−1. We define the family C̄1 := {[C ∪y E, x]}y∈C , obtained by varying
the point of attachment along C, while keeping the marked point fixed on E. The
only generator of Pic(Mg,1) meeting C̄1 non-trivially is δ1:1 = δg−1:∅, in which case

C̄1 · δ1:1 = −2g + 4. On the other hand, C̄1 · D
g−3
g is equal to the number of limit

linear series g2g on curves of type C ∪y E, having vanishing sequence at least (0, 1, g− 3)
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at x ∈ E. This can happen only if this linear series is refined and its C-aspect has
vanishing sequence at the point of attachment y ∈ C equal to either (i) (1, 2, g − 3), or
(ii) (0, 2, g − 2). In both cases, the E-aspect being uniquely determined, we obtain that

C̄1 · D
g−3
g = N(g − 1, g − 4) + n(g − 1). This leads to µ = 3(g − 3)(g − 4)/(g + 1).

Next, let D
g−4
g be the divisor on Mg,2 obtained from Dg by letting all marked

points except one, come together. Precisely, D
g−4
g is the closure of the locus of curves

[C, x, y] ∈Mg,2 such that there exists L ∈W 2
g (C) with h0

(
C,L(−x− (g−4)y)

))
≥ 1. We

express [D
g−4
g ] = cxψx + cyψy − eδ0:xy − · · · ∈ Pic(Mg,2), and observe that cx equals the

ψ-coefficient of Dg, whereas the coefficient e = ν
(
g+1
2

)
has already been calculated. We

fix a general curve [C] ∈Mg and define test curvesCx := {[C, x, y] : x ∈ C} ⊂ Mg,2 and

Cy := {[C, x, y] : y ∈ C} ⊂ Mg,2, by fixing one general marked point on C and letting

the other vary freely. By intersecting D
g−4
g with these curves we obtain the formulas:

(2g−1)cx+cy−e = Cx ·D
g−4
g = N(g, 1) and cx+(2g−1)cy−e = Cy ·D

g−4
g = N(g, g−4).

Solving this system, determines cx. Finally, the δ0:2-coefficient of Dg is computed by

intersecting Dg with the test curve φ−1
g−3([C, x1, . . . , xg−4]) ⊂Mg,g−3, obtained by fixing

g − 4 marked points on a general curve, and letting the remaining point vary. �

As an application, we bound the effective cone of the symmetric product of de-
gree g − 3 on a general curve [C] ∈ Mg. Let u : Cg−3 99K Mg,g−3/Sg−3 the (rational)

fibre map and D̃g the effective divisor onMg,g−3/Sg,g−3 to which Dg descends. Then

Dg[C] := u∗(D̃g) is an effective divisor on Cg−3:

Theorem 2.3. The cohomology class of the codimension one locus inside Cg−3

Dg[C] := {D ∈ Cg−3 : ∃L ∈W
2
g (C) with h0

(
C,L(−D)

)
≥ 1} equals

[Dg(C)] =
(g − 5)(g − 3)(g − 1)

3

(
θ −

g

g − 3
x
)
.

It is natural to wonder whether the class θ − g
g−3x is extremal in Eff(Cg−3). If so,

Dg[C] together with the diagonal class δC ≡ −θ+(2g−4)xwould generate the effective
cone inside the 2-dimensional space N1(Cg−3)Q. We refer to [K] Theorem 3, for a proof
that δC spans an extremal ray, which shows that in order to compute Eff(Cg−3), one
only has to determine the slope of Eff(Cg−3) in the fourth quadrant of the (θ, x)-plane.
A similar description of the effective cone ofCg−2 was given in [Mus]. We have a partial
result in this direction, showing that all effective divisors of slope higher than g

g−3 (if

any), must contain a geometric codimension one subvariety of Dg[C].

Proposition 2.4. Any irreducible effective divisor on Cg−3 with class proportional to θ−αx ∈
H2(Cg−3,Q), where α > g

g−3 , contains the codimension two locus inside Cg−3

Zg−3[C] := {D ∈ Cg−3 : ∃A ∈W
1
g−2(C) with H0(C,A(−D)) 6= 0}.

Proof. For a pencil A ∈W 1
g−2(C), we denote by V 1

g−3(A) the 1-cycle of effective divisors

D ∈ Cg−3 that appear in a fibre of the pencil. The class [V 1
g−3(A)] is computed in [ACGH]

page 342. By direct calculation, we find that the inequality [V 1
g−3(A)]·(θ−αx) < 0 holds,

whereas [V 1
g−3(A)] · Dg[C] = 0. �
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