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ABSTRACT 66	

The last decade has seen the success of stochastic parameterizations in short-term, medium-67	

range and seasonal forecasts: operational weather centers now routinely use stochastic 68	

parameterization schemes to better represent model inadequacy and improve the quantification 69	

of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of 70	

stochastic parameterizations not only provides better estimates of uncertainty, but it is also 71	

extremely promising for reducing longstanding climate biases and is relevant for determining 72	

the climate response to forcing such as an increase of CO2. 73	

This article highlights recent developments from different research groups which show that the 74	

stochastic representation of unresolved processes in the atmosphere, oceans, land surface and 75	

cryosphere of comprehensive weather and climate models (a) gives rise to more reliable 76	

probabilistic forecasts of weather and climate and (b) reduces systematic model bias. 77	

We make a case that the use of mathematically stringent methods for the derivation of stochastic 78	

dynamic equations will lead to substantial improvements in our ability to accurately simulate 79	

weather and climate at all scales. Recent work in mathematics, statistical mechanics and 80	

turbulence is reviewed, its relevance for the climate problem demonstrated, and future research 81	

directions outlined. 82	

  83	
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CAPSULE (20-30 words) 84	

Stochastic parameterizations - empirically derived, or based on rigorous mathematical and 85	

statistical concepts - have great potential to increase the predictive capability of next generation 86	

weather and climate models. 87	

 88	



1 The need for stochastic parameterizations 89	

Numerical weather and climate modeling is based on the discretization of the continuous 90	

equations of motion. Such models can be characterized in terms of their dynamical core, which 91	

describes the resolved scales of motion, and the physical parameterizations, which provide 92	

estimates of the grid-scale effect of processes, that cannot be resolved. This general approach 93	

has been hugely successful in that skillful predictions of weather and climate are now routinely 94	

made (e.g. Bauer et al. 2015). However, it has become apparent through the verification of these 95	

predictions that current state-of the art models still exhibit persistent and systematic 96	

shortcomings due to an inadequate representation of unresolved processes.  97	

Despite the continuing increase of computing power, which allows numerical weather and 98	

climate prediction models to be run with ever higher resolution, the multi-scale nature of 99	

geophysical fluids means that many important physical processes (e.g. tropical convection, 100	

gravity wave drag, micro-physical processes) are still not resolved. Parameterizations of 101	

sub grid-scale processes contain closure assumptions, and related parameters with inherent 102	

uncertainties. Although increasing model resolution gradually pushes these assumptions 103	

further down the spectrum of motions, it is realistic to assume that some form of closure 104	

will be present in simulation models into the foreseeable future.  105	

Moreover, for climate simulations, a decision must be made as to whether computational 106	

resources should be used to increase the representation of sub grid physical processes or to build 107	

a comprehensive Earth-System Model, by including additional climate components such as the 108	

cryosphere, chemistry and biosphere. In addition, the decision must be made about whether 109	

computational resources should go towards increased horizontal, vertical and temporal 110	

resolution or additional ensemble members.  111	
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Additional challenges are posed by intrinsically coupled phenomena like the Madden-Julian 112	

Oscillation (MJO) and tropical cyclones. These tropical multi-scale processes need to resolve 113	

small-scale processes such as convection in addition to capturing the large-scale response and 114	

feedback. Many of the Coupled Model Intercomparison Project phase 5 (CMIP5) climate 115	

models still do not properly simulate the MJO and convectively coupled waves (Hung et al. 116	

2013). 117	

Mathematical approaches to stochastic modeling rely on the assumption that a physical 118	

system can be expressed in terms of variables of interest, and variables which one does not 119	

want to explicitly resolve. In the mathematical literature this is usually referred to as the 120	

operation of coarse graining and performed through the method of homogenization 121	

(Papanicolaou and Kohler 1974, Gardiner 1985, Pavliotis and Stuart 2008). The goal is then 122	

to derive an effective equation for the slow predictable processes and to represent the effect 123	

of the now unresolved variables as random noise terms.  124	

Such a thinking underlies the pioneering study of Hasselmann (1976), who split the coupled 125	

ocean-atmosphere system into a slow ocean and fast weather fluctuation components and 126	

subsequently derived an effective equation for the ocean circulation only. One finds that the 127	

impact of the fast variables on the dynamics of the slow variables boils down to a 128	

deterministic correction – a mean field effect sometimes referred to as noise-induced drift 129	

or rectification – plus a stochastic component, which is a white random noise in the limit of 130	

infinite time scale separation.  131	

Many rigorous methods in subgrid-scale parameterization are based on the assumption of a scale 132	

separation. Without a scale separation one needs to consider memory effects in the 133	

parameterization scheme. Often, it is thought that traditional parameterizations require a gap in 134	
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the power spectrum between small (length) scale and large-scale processes, although this is not 135	

necessary (see e.g. the discussion on scale-separation in Yano 2015).  Many stochastic 136	

parameterizations are based on the assumption of a scale separation between the temporal 137	

decorrelation rates between the rapidly fluctuating processes represented by a white noise and 138	

the slow processes of interest (e.g., Gardiner, 1985; Penland, 2003a). An example for a simple 139	

red noise model that has scale separation in the temporal sense, but not a gap in the power 140	

spectrum is discussed in DelSole (2000).  141	

In geophysical applications, there is often - but not always – a relationship between spatial and 142	

temporal scales of variability, with fast processes associated to small scales and slow processes 143	

associated to large scales.  If this is the case, separating physical processes by timescales can 144	

result in decomposing small scale features from large scale phenomena and spatial and temporal 145	

scale separation become equivalent. 146	

A great challenge to both, the deterministic and stochastic approach, is posed by the 147	

representation of partially resolved processes (either in the time or space domain). For 148	

example, climate models and even many weather models split the fundamental process of 149	

convection into a resolved (large-scale) and parameterized component (e.g. Arakawa 2004).  150	

The equilibrium assumption no longer holds (e.g.Yano and Plant 2012a,b) and the subgrid-151	

scale parameterization takes a prognostic form rather than being diagnostic, as explicitly 152	

shown for the mass-flux formulation by Yano (2014). The range of scales on which a 153	

physical process is only partially resolved is often referred to as the “gray zone” (e.g. 154	

Gerard 2007). As the next generation of numerical models attempts to seamlessly predict 155	

weather as well as climate, there is an increasing need to develop parameterizations that 156	

adapt automatically to different spatial scales (“scale-aware parameterizations”). A big 157	
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advantage of the mathematically rigorous approach is that the subgrid-model is valid for 158	

increasing spatial resolutions within a range of scales that is obtained as part of the 159	

derivation. 160	

Stochastic parameterization schemes are now routinely used by operational weather and climate 161	

centers to make ensemble predictions from short-range to seasonal time scales (e.g., Berner et al. 162	

2009, Weisheimer et al. 2014). Most ensembles suffer from underdispersion, which means that - 163	

on average – the observed state is more often outside the cone of forecasts than can be 164	

statistically justified.  Stochastic perturbations introduce more diversity among the forecasts, 165	

which helps to ameliorate this problem and result in more skillful ensemble forecasts.  166	

A fundamental argument, that has been often overlooked, is that the merit of stochastic 167	

parameterization goes far beyond providing uncertainty estimations for weather and climate 168	

predictions, but is also needed for better representing the mean state (e.g., Sardeshmukh et al. 169	

2001, Palmer 2001) and regime transitions (e.g., Williams et al. 2003, 2004, Birner and 170	

Williams 2008, Christensen et al. 2015a) via inherent non-linear processes. This is especially 171	

relevant for climate predictions, which have long-standing mean state errors, such as e.g., a 172	

double intra-tropical convergence zone (e.g., Lin et al. 2007), and erroneous stratocumulus 173	

cloud covers, which play a crucial role in the climate response to external forcing. 174	

Mechanisms how Gaussian zero-mean fluctuations can change the mean state have been 175	

discussed e.g. in Tompkins and Berner (2008) and Beena and von Storch (2009). The former 176	

study introduces perturbations to the humidity field.  They find that positive perturbations are 177	

more likely to trigger a convective event than negative perturbations suppress convection. Beena 178	

and von Storch (2009) investigate the ocean response to fluctuating air-sea fluxes. They find that 179	

negative buoyancy anomalies are likely to trigger convection which in turn alters the existing 180	



	 5	

stratification, while positive anomalies sustain the existing stratification. Insofar as stochastic 181	

parameterizations can change the mean state, they have the potential to affect the response to 182	

changes in the external forcing (e.g., Seiffert and von Storch 2008). In mathematical terms, this 183	

is the question how a stochastic forcing affects the invariant measure of a deterministic 184	

dynamical system (Lucarini 2012) and how the climate response to such a forcing can be framed 185	

as a problem of non-equilibrium statistical mechanics (Colangeli et al. 2012, 2014, Lucarini and 186	

Sarno 2011, Lucarini et 2014a,).  187	

The essential fact that a white-noise forcing with zero mean can lead to a non-linear or rectified 188	

response and change the mean state is shown in Figure 1. Assume the unforced nonlinear 189	

climate system can be simplified as a double-well potential (a). If the noise is sufficiently small 190	

(denoted by short red arrows) and under appropriate initial conditions, the system will stay in the 191	

deeper potential well and the associated probability density function of states will have a single 192	

maximum (b). As the amplitude of the noise increases (long arrows in c), the system can 193	

undergo a noise-induced transition and reach the secondary potential well. The resulting 194	

probability density function (PDF) will exhibit two local maxima (d), signifying two different 195	

climate regimes, rather than a single maximum, as in the small-noise scenario. Note, that the 196	

stochastic forcing not only changes the variance, but also the mean.  But even a linear system 197	

characterized by a single potential when unforced can change the mean, if forced by 198	

multiplicative or state-dependent white noise (e-h). The noise is called “multiplicative”, if its 199	

amplitude is a function of the state, which is denoted by the red errors of different length in 200	

panel g.  The noise-induced drift changes the single-well potential of the unforced system (e), so 201	

that the effective potential including the effects of the multiplicative noise has multiple wells 202	

(not shown) and the associated PDF becomes bimodal (h). Note, that in this example the shift in 203	
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the mean compared to the unforced PDF (f) is caused by the noise, which is referred to as 204	

“noise-induced drift” (see e.g., Sardeshmukh et al. 2001, Berner 2005, Berner et al. 2005, Sura 205	

et al. 2005). 206	

Here, we argue, that stochastic parameterizations are essential for: 207	

• Estimating uncertainty in weather and climate predictions 208	

• Reducing systematic model errors 209	

• Triggering noise-induced regime transitions 210	

• Capturing the response to changes in the external forcing 211	

and should be applied in a systematic and consistent fashion, not only to weather, but also to 212	

climate simulations. 213	

Several studies have identified the assessment of the benefits of stochastic closure schemes as 214	

key outstanding challenge in the area of mathematics applied to the climate system (Palmer 215	

2001, 2012, Palmer and Williams 2008, Williams et al. 2013). For accessible reviews of 216	

rigorous mathematical approaches applied to weather and climate, we refer to Penland 217	

(2003a,b), Majda et al. (2008) and Franzke et al. (2015). The current study focuses on recent 218	

successful applications of empirical and rigorous approaches to the subgrid-parameterization 219	

problem in weather and climate models. 220	

2 Representing Uncertainty in Comprehensive Climate and Weather Models 221	

2.1 Adding uncertainty a posteriori: the stochastically perturbed parameterization tendency 222	

scheme and the stochastic kinetic-energy backscatter scheme 223	

Stochastic parameterizations are based on the notion that – as spatial resolution increases – the 224	
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method of averaging (Arnold 2001, Monahan and Culina 2011) is no longer valid and the 225	

subgrid-scale variability should be sampled rather than represented by the equilibrium mean. In 226	

addition, unrepresented interactions between unresolved subgrid-scale processes with the large-227	

scale flow might affect the resolved dynamics. 228	

The former is addressed by the stochastically perturbed parameterization tendency (SPPT) 229	

scheme, which perturbs the net tendencies of the physical process parameterizations 230	

(convection, radiation, cloud physics, turbulence and gravity wave drag). One essential feature 231	

for its success is that the noise is correlated in space and time. SPPT has a beneficial impact on 232	

medium range, seasonal and climate forecasts (Buizza et al. 1999, Teixeira and Reynolds 2008, 233	

Palmer et al. 2009, Weisheimer et al. 2014, Berner et al. 2015, Christensen et al. 2015b, Dawson 234	

and Palmer 2015, Batté and Doblas-Reyes 2015) 235	

The stochastic kinetic-energy backscatter scheme (SKEBS) aims to represent model uncertainty 236	

arising from unresolved subgrid-scale processes and their interactions with larger scales by 237	

introducing random perturbations to the streamfunction and potential temperature tendencies. 238	

For this purpose, the scheme re-injects a small fraction of the dissipated energy into the resolved 239	

flow. Originally developed in the context of Large Eddy Simulations (LES; Mason and 240	

Thomson 1992), and applied to models of intermediate complexity (Frederiksen and Davies 241	

1997), it was adapted by Shutts (2005) for Numerical Weather Prediction (NWP). Its beneficial 242	

impact on weather and climate forecasts are reported e.g., in Berner et al. (2008, 2009, 2011, 243	

2012, 2015), Bowler et al. (2008, 2009), Palmer et al. (2009), Doblas- Reyes et al. (2009), 244	

Charron et al. (2010), Hacker et al. (2011), Tennant et al. (2011), Weisheimer et al. (2011, 245	

2014), Romine et al. (2015), Sanchez et al. (2015), albeit Shutts (2013) criticizes the arbitrary 246	

nature of some of the design features. Instead, he proposes a convective SKEBS (Shutts, 2015), 247	
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which introduces a phase relationship between flow and perturbations and adds additional 248	

perturbations to the divergent flow.  249	

While these schemes are motivated by physical reasoning and scheme parameters are 250	

informed in some manner, for example by coarse-graining high-resolution output (Shutts 251	

and Palmer 2007, Shutts and Callado Pallarès 2014) or comparison with observations 252	

(Watson et al. 2015), the perturbations are essentially empirical constructs.  For example, 253	

the amplitude of the perturbations is typically determined as the value that satisfactorily 254	

reduces the ensemble underdispersion.  Obviously such an approach is only possible for 255	

forecast ranges where verification is possible, such as for short-term, medium-range and 256	

seasonal forecasts. A common criticism of this approach is that the improved skill is solely 257	

the result of the increase in spread. However, Berner et al. (2015) found that the merits of 258	

stochastic parameterization go beyond increasing spread and can account for structural 259	

model uncertainty. 260	

In the following examples, we show recent results that demonstrate the potential of 261	

stochastic parameterizations to improve the mean state representation and variability as 262	

well as the skill of seasonal forecasts. 263	

First, we present recent results from the seasonal forecasting system at ECMWF. In the 264	

simulations with stochastic parameterizations, excessively strong convective activity over 265	

the Maritime Continent and the tropical Western Pacific is reduced, leading to smaller 266	

biases in outgoing longwave radiation (Figure 2), cloud cover, precipitation and near-267	

surface winds (Weisheimer et al. 2014). The stochastic schemes also lead to an increase in 268	

the frequency (Figure 3) and amplitude of MJO events. A reduction of excessive amplitudes 269	
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in westward propagating convectively coupled waves in an earlier model version is reported 270	

in Berner et al. 2012.  271	

Another example of the positive impact of stochastic schemes is evident in climate 272	

simulations with the Community Earth System Model (CESM). Compared to observations, 273	

the modeled spectrum of average sea surface temperature in the Nino 3.4 region has three 274	

times more power for periods between 2 and 4 years (Figure 4). SPPT markedly reduces the 275	

temperature variability in this frequency range, leading to a much better agreement with 276	

nature (Christensen et al., 2016). Interestingly, in these examples the benefit of adding 277	

stochasticity consists of reducing excessive variability, which is a non-trivial response. 278	

Along with the improvements of the model climate, stochastic perturbations also benefit 279	

probabilistic forecast performance on seasonal timescales. This has been reported in a 280	

number of studies using earlier versions of ECMWF’s seasonal system (Berner at al.  2008, 281	

Dobles-Reyes et al. 2009, Palmer at al. 2009) and recently been confirmed in the newest 282	

version (Weisheimer et al. 2014) and in the EC-Earth system model (Batté and Doblas-283	

Reyes 2015). Figure 5 shows ensemble mean and spread in forecasts for Nino 3.4 area sea-284	

surface temperatures with the EC-Earth model, run at a standard horizontal resolution (SR, 285	

ca. 60km for the atmospheric and ca. 100km for the ocean component) and a high 286	

resolution (HR, ca. 40km for the atmospheric component and 25km for the ocean.) For both 287	

resolutions, the introduction of SPPT perturbations increases the ensemble spread. 288	

Furthermore, SPPT reduces the mean error in the standard resolution, but not as much as 289	

moving to a higher resolution. 290	

A number of studies have found evidence for stochasticity leading to noise-induced 291	

transitions in mid-latitude circulation regimes, especially over the Pacific-North America 292	
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region (Jung et al. 2005, Berner et al. 2012, Dawson et al. 2015, Weisheimer et al. 2014). 293	

These results suggest that stochastic parameterizations are also relevant for the prediction of 294	

low-frequency features (Berner et al.  2016).  295	

2.2 Adding uncertainty a priori: perturbed parameter approaches for the atmospheric 296	

component 297	

While the performance of the stochastic schemes discussed in the last section is undisputed, 298	

they have been criticized in that they are added a posteriori to models that have been 299	

independently developed and tuned. Ideally, stochastic perturbations should represent 300	

model uncertainty where it occurs. One obvious way to represent uncertainty at its source 301	

rather than a posteriori is the perturbed parameter approach, which perturbs the closure 302	

parameters in the physical process parameterizations. There are two variants: the parameter 303	

can be fixed throughout the integration, but vary for each ensemble member (e.g. Murphy 304	

et al. 2004, Hacker et al. 2011a) or vary randomly with time (e.g. Bowler et al. 2008, 2009). 305	

Strictly, the first variant is not a stochastic parameterization, but an example for a multi-306	

model, since each ensemble member has a different climatology. However, since stochastic 307	

parameter perturbations are routinely compared to fixed-parameter schemes, this section 308	

discusses both.  309	

While perturbed-parameter ensembles typically outperform unperturbed ensemble system 310	

on weather timescales, they typically cannot sufficiently account for all deficiencies in the 311	

spread (Hacker et al. 2011, Reynolds et al. 2011, Christensen et al. 2015b) and do not lead 312	

to the same reliability as the a posteriori schemes discussed above (Berner et al. 2015). 313	

Here, an ensemble system considered statistically reliable when a predicted probability for 314	

a particular event (e.g. temperature exceeding 17°C) compares well with the observed 315	
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frequencies. Another limitation of this approach is that the parameter uncertainty estimates 316	

are subjective, and information about parameter interdependencies is not included.  317	

The following studies are examples for applications of the perturbed-parameter approach to 318	

physical process parameterizations and perturbing the interface between different model 319	

components.  We start with results pertaining to perturbations in the atmospheric 320	

component and move to those of other model components, such as land and ocean models, 321	

which are especially relevant for climate applications. 322	

A number of studies report on improved skill due to parameter perturbations to boundary 323	

layer and convection schemes (Hacker et al. 2011, Reynolds et al. 2011). Recently, a 324	

stochastic "eddy-diffusivity/ mass-flux" parameterization has been developed, (Suselj et al. 325	

2014), which combines an eddy-diffusivity component with a stochastic mass-flux scheme. 326	

The resulting scheme unifies boundary layer and shallow convection and was operationally 327	

implemented in the operational Navy Global Environmental Model. 328	

Christensen et al. (2015b) used an objective covariance estimate of parameter uncertainty 329	

(Järvinen et al. 2012, Ollinaho et al. 2013) for four convection closure parameters and developed 330	

both a fixed-parameter and a stochastically varying perturbation scheme. Both schemes 331	

improved the forecast skill of the ensemble prediction system, with a larger impact observed for 332	

the fixed perturbed parameter scheme (Figure 6, bottom). In addition, for some variables such as 333	

wind at 850hPa, the schemes lead to a reduction in bias (Figure 6, top). 334	

Recently, a body of work proposes stochastic approaches for another atmospheric 335	

parameterization, namely non-orographic gravity waves (Lott et al. 2012, Lott and Guez 2013, 336	

and de la Cámara and Lott 2015). Observational studies indicate that the gravity wave field is 337	

very intermittent and only predictable in a statistical sense. Recently, de la Cámara et al. (2014) 338	
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informed the free parameters of the stochastic gravity-wave scheme using momentum flux 339	

measurements.  340	

2.3 Uncertainty in land surface, ocean and coupled component models 341	

Physical parameters of land surface models are often not well constrained by observations. A 342	

recent study by MacLeod et al. (2015) introduced parameter perturbations to two key soil 343	

parameters, and compared their impact with stochastic perturbations of the soil moisture 344	

tendencies in seasonal forecasts with the ECMWF coupled model. Both the perturbed parameter 345	

approach and the stochastic tendency perturbations improved the forecasts of extreme air 346	

temperature for the European heat wave of 2003, through better representation of negative soil 347	

moisture anomalies and the upward sensible heat flux.  348	

Another source of uncertainty in land models stems from the land surface heterogeneity, which 349	

impacts the surface heat fluxes in coupled models. The effect of representing variability 350	

associated with land surface heterogeneity in vegetation has been investigated by Langan et al. 351	

(2014). This stochastic parameterization retains the subgrid variability among different plant 352	

functional types rather than using constant area weights for the computation of the surface heat 353	

fluxes. First results with a single column model version of CESM reveal an increase in the 354	

variability as well as larger extreme values in convective precipitation (Figure 7). 355	

The coupled atmosphere-ocean system is very sensitive to fluctuations in the fluxes between its 356	

component models. Air-sea fluxes of buoyancy, energy, and momentum vary on a vast range of 357	

space and time scales, including scales that are too small or fast to be explicitly resolved by 358	

global climate models. For example, convective clouds in the atmosphere will cause subgrid 359	

fluctuations at the air-sea interface, in both the downward fresh water flux (through 360	

precipitation) and the downward short-wave solar radiation. The response of the climate to 361	
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stochastic perturbations of the air-sea buoyancy flux is studied by Williams (2012) in a coupled 362	

atmosphere-ocean model. The response is complex and involves changes to the oceanic mixed-363	

layer depth, sea-surface temperature, atmospheric Hadley circulation, and fresh water flux 364	

across the sea surface (Figure 8). These findings suggest that the lack of representation of 365	

stochastic subgrid variability in air-sea fluxes may contribute to some of the biases exhibited by 366	

contemporary coupled climate models. 367	

Since the buoyancy effects in the ocean are different from that in the atmosphere, the length 368	

scale at which rotational effects become as important as gravity wave effects (also called the 369	

Rossby deformation radius) is much smaller. Consequently, mesoscale eddies in state-of-the art 370	

ocean models are still far from being resolved and are usually represented by traditional bulk 371	

parameterizations (Gent and McWilliams 1990, Redi 1982). A recent study by Li and von 372	

Storch (2013) computes the contributions from the mean and fluctuating component of heat flux 373	

divergence in a high-resolution ocean model.  The magnitude of the fluctuations is about one 374	

order of magnitude larger than the mean component (Figure 9) suggesting that classical 375	

parameterization significantly underestimate the total eddy flux. The fluctuating part, even 376	

though having zero mean, can play an important role in generating large-scale low-frequency 377	

variations and in shaping the mean oceanic circulation.  378	

Juricke et al. (2013) and Juricke and Jung (2014) recently investigated the sensitivity of an 379	

ocean-sea ice model to variations in the ice strength parameter. As this parameter is not 380	

observable, large uncertainties remain in the choice of its value, although it is very important for 381	

modeling sea ice drift. Varying this parameter stochastically results in changes to the mean sea 382	

ice distribution as well as sea ice spread. Compared to perturbations of the atmospheric initial 383	

conditions, the incorporation of additional stochastic ice strength perturbations leads to 384	
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considerably more sea ice spread in the central Arctic (Figure 10), which is a better match with 385	

the observed uncertainties (Juricke et al. 2014). 386	

2.4 Data Assimilation and Extreme Events 387	

The purpose of data assimilation is to combine observations with short term model-forecasts to 388	

come up with a gridded and physically consistent estimate of the state of the atmosphere, also 389	

called “analysis”.  One particular approach is to use ensemble forecasts as the first guess fields. 390	

As such, ensemble data assimilation inherits the shortcomings of short-term ensemble 391	

predictions, namely, the underdispersivness in the spread. Recent work has demonstrated that 392	

the stochastic parameterizations that are beneficial for ensemble prediction, can also improve the 393	

mean analysis (Isaksen et al. 2007, Houtekamer et al. 2009,  Mitchell and Gottwald 2012, 394	

Hamill and Whitaker 2011, Ha et al. 2015, Romine at al. 2015). In particular, Ha et al. 2015 395	

showed that the benefits of including a stochastic parameterization go beyond a larger number of 396	

observations passing quality control due to an increased spread. A cutting-edge frontier is the 397	

use of memory effects in Kalman filter data assimilation schemes (O’Kane and Frederiksen 398	

2012). 399	

The impact of stochastic perturbations on extremes has only been considered very recently. 400	

Most works focuses on a description of non-Gaussian subgrid-scale processes (Majda et al. 401	

2009, Sardeshmukh and Sura 2009, Sura 2011, Sardeshmukh et al. 2015). Franzke (2012) 402	

showed that his reduced stochastic model (see next section) captures the extremes of the full 403	

model. Tagle et al. (2015) were the first to study the effect of the stochastic parameterizations in 404	

a comprehensive climate model. They found that the stochastic parameterizations had a big 405	

impact on the surface temperature mean and variability, but hardly changed the tail behavior. 406	

This might be in part due to the fact that their stochastic schemes use Gaussian perturbations. 407	
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3 Systematic mathematical and statistical physics approaches 408	

This section introduces systematic mathematical and statistical physics approaches to the 409	

parameterization problem and reports on recent work on the application of these rigorous 410	

methods to the weather and climate system. 411	

3.1. Mathematical and Numerical implications of stochasticity 412	

Although the motions of the atmosphere and ocean are described by the Navier-Stokes 413	

equation, large-scale flows can often be modeled under hydrostatic approximation. This 414	

leads to the deterministic primitive equation system. If we want to represent continuous 415	

small-scale fluctuations as stochastic terms, these equations need to be generalized to allow 416	

for stochasticity. A relevant mathematical field is thus the extension of the derivation to the 417	

stochastic primitive equations for two-dimensional (Ewald et al. 2007; Glatt-Holtz and 418	

Ziane 2008; Glatt-Holtz and Temam 2011) and three-dimensional flows (Debussche et al. 419	

2012). 420	

Moreover, stochastic systems require calculi and numerical schemes fundamentally 421	

different from the ones available to solve deterministic systems. The two most commonly 422	

used stochastic integral types are the Itô-integral (Itô 1951) and the Stratonovich-integral 423	

(Stratonovich 1966). When the fast processes of a continuous system are modeled by white 424	

noise – as is common for physical applications - the resulting stochastic model converges to 425	

a Stratonovitch stochastic differential equation (Wong and Zakai 1965, Papanicolaou and 426	

Kohler 1974, Gardiner 1985, Penland 2003a,b). Discrete systems converge to the Itô 427	

stochastic differential equation. Starting in the 1970s a solid framework of numerical 428	

methods for stochastic ordinary differential equations was developed (Rümelin 1982, 429	
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Kloeden and Platen 1992, Milstein 1995, Kloeden 2002). However, this has been extended 430	

to high-order schemes only recently (Jentzen and Kloeden 2009, Weniger 2014). With 431	

stochastic parameterizations becoming more common in weather and climate simulations, a 432	

revision of the deterministic numerical schemes should be undertaken to ensure the 433	

convergence of the numerical solutions.  434	

3.2 Homogenization and stochastic mode reduction 435	

Numerical weather and climate modeling can be seen as a model reduction problem. Because 436	

we cannot numerically solve the full continuous equations, we have to truncate the equations at 437	

some scale and then treat the unresolved processes in some smart way. A systematic approach 438	

for the derivation of reduced order models from first principles is performed through the method 439	

of homogenization or adiabatic elimination (Wong and Zakai 1965, Khas'minskii 1966, Kurtz 440	

1973, Papanicolaou and Kohler 1974, Pavliotis and Stuart 2008). The fundamental idea is to 441	

decompose the state vector into slow and fast components, represent the fast processes by a 442	

stochastic term and derive analytically an effective equation for the slow, predictable modes. 443	

Majda et al. (1999) and Majda et al., 2001 expanded this body of work by making additional 444	

assumptions on the nonlinear self-interaction of the fast modes and coined the term “stochastic 445	

mode reduction”. 446	

The stochastic mode reduction has been demonstrated to successfully model regime-behavior 447	

and low-frequency variability for conceptual models of the atmosphere (Majda et al. 2003), the 448	

barotropic vorticity (Franzke et al. 2005) and a quasi-geostrophic three-layer model on the 449	

sphere with realistic orography (Franzke and Majda 2006). However, due to both, the shear 450	

amount of analytical derivation and the compute-memory requirement in the numerical 451	

implementation of the resulting equations, the stochastic mode reduction cannot be easily 452	
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applied to comprehensive climate models of arbitrary complexity. A possible way forward is to 453	

apply the stochastic mode reduction locally at each gridpoint rather than globally (Dolaptchiev 454	

et al. (2013 a,b). 455	

These mathematical techniques are rigorously valid only in the limit of large time-scale 456	

separation, although some studies report good empirical results, even when this condition is not, 457	

or only partly met (Dozier and Tappert 1978a,b , Majda et al. 2003 2008, Franzke et al. 2005, 458	

Franzke and Majda 2006). When the time scale separation between the fast and slow processes 459	

is not too large, the picture of the parameterization as being constructed as the sum of a suitably 460	

defined deterministic plus random corrections has to be amended to take memory effects into 461	

account (e.g. Zwanzig 2001, Chekroun et al. 2015a,b). Unfortunately, the condition of scale 462	

separation is typically not met in geophysical fluid dynamics applications (Sardeshmukh and 463	

Penland 2015, Yano 2015, Yano et al. 2015) that poses limitations to the application of 464	

homogenization. An alternative, which does not make any assumptions about time scale 465	

separation and provides an explicit expression for the terms responsible for the memory effect is 466	

proposed by Wouters and Lucarini (2012, 2013), who, instead, assume the presence of a weak 467	

dynamical coupling between the fast and the slow scales of motion. 468	

The question of which stochastic process is best suited to describe the nonlinear interactions of 469	

the unresolved processes is an open question. While methods for Gaussian diffusion processes 470	

are well known (Oppenheim 1975) it may be the case that other formulations like Lévy 471	

processes are better suited to describe the underlying physics (Penland and Ewald 2008, Penland 472	

and Sardeshmukh 2012, Hein et al. 2010, Gairing and Imkeller 2012, 2013, Thompson et al. 473	

2015). 474	

3.3 Adaptation of Concepts from Statistical Physics to Weather and Climate 475	



	 18	

The	scale-aware	representation	of	convection	and	clouds	on	high-resolution	grids	(1-50	476	

km)	has	been	a	long-standing	challenge	for	weather	and	climate	models.	Within	a	single	477	

model	column,	convection	is	not	uniquely	determined	by	the	resolved-scale	processes,	478	

and	the	distribution	of	possible	realizations	of	subgrid-scale	convection	highly	depends	on	479	

model	resolution.	Thus,	to	achieve	scale-awareness,	it	is	necessary	to	represent	scale-480	

dependent	convective	fluctuations	about	the	ensemble	average	response.	In	addition,	481	

because	of	the	lack	of	time-scale	separation,	a	correct	representation	of	convection	across	482	

scales	requires	memory	of	subgrid-states	from	previous	time	steps.	 483	

A novel approach to represent the fluctuations in an ensemble of deep convective clouds adapts 484	

concepts from statistical mechanics (Craig and Cohen 2006). Based on this theory, a stochastic 485	

parameterization of deep convection was developed to represent fluctuations of the subgrid 486	

convective mass flux about statistical equilibrium (Plant and Craig 2008).  This is especially 487	

attractive for variable-resolution grids, since the statistics automatically adapt to the grid-488	

resolution. This approach was extended to shallow convective clouds by introducing a memory 489	

effect arising from the correlation between the cloud mass fluxes and cloud lifetimes (Sakradzija 490	

et al. 2015). Figure 11 shows histograms of the subgrid cloud-base mass flux in the stochastic 491	

shallow cumulus cloud scheme and coarse-grained large-eddy simulation at different horizontal 492	

resolutions. The histograms match closely and are scale-aware.  493	

3.4 Modeling convective processes by Markov chains and cellular automata 494	

Another way to introduce temporal memory and nonlocal effects is the use of Markov 495	

chains and cellular automata. A Markov chain is a mathematical system that undergoes 496	

transitions from one discrete state to another and the probabilities associated with the 497	

various state changes are called transition probabilities. If observational data or high-498	
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resolutions simulations are used to inform the transition probabilities, the Markov chains 499	

are called data-driven.  500	

An example for this approach is the “stochastic convective parameterization” which 501	

describes the convective state of the entire model column as a discrete Markov chain. 502	

(Khouider et al. 2010, Dorrestijn et al. 2013a,b, Gottwald et al. 2015). The system can only 503	

reside in a few distinct convective states - clear sky, congestus, deep convection, stratiform 504	

and shallow - and the random transitions from one state to another evolve as a Markov 505	

chain.  The horizontal domain of the numerical model is covered with a high-resolution 506	

lattice (with typical lattice spacing of 100m to 1000m), and on each lattice node lives a 507	

copy of the discrete stochastic process for the convective state  (Figure 12). By averaging 508	

over blocks of lattice nodes, convective area fractions and related quantities can be obtained 509	

for spatial domains of arbitrary size. The resulting patterns and temporal behavior of the 510	

area fractions are quite realistic. Furthermore, the formulation on a high-resolution lattice 511	

(or microlattice) makes it possible to compute convective fractions for varying area sizes, 512	

so that a parameterization based on these fractions is scale-adaptive. 513	

The probabilities for transitions between the convective states can be obtained in different 514	

ways. Khouider et al. (2010) and Frenkel et al. (2012) use physical insight to formulate 515	

transition probabilities for the Markov chain model, Dorrestijn et al. (2013a,b, 2015) and 516	

Gottwald et al. (2015) estimate the transition probabilities from convection-resolving LES, 517	

following a method proposed by Crommelin and Vanden-Eijnden (2008). Peters et al. 518	

(2013) use observations for their estimates, which notably differ from those based on 519	

physical intuition. 520	
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A related approach are cellular automata which are often used as simple mathematical 521	

models to simulate spatial self-organizational behavior such as convective organization A 522	

cellular automaton describes the evolution of discrete states on a lattice grid. The states are 523	

updated according to a set of rules based on the states of neighboring cells at the previous 524	

time step. In addition to memory, cellular automata can allow for lateral communications 525	

between neighboring grid boxes and thus introduce spatial correlations.  526	

The idea of using cellular automata within NWP was first proposed by Palmer (2001) and 527	

first applications used them as a quasi-stochastic pattern generator for SKEBS (Shutts 2005, 528	

Berner et al. 2008). Bengtsson et al. (2013) pioneered the use of a cellular automaton for 529	

the parameterization of convection. In traditional single-column parameterizations there is 530	

no treatment of horizontal transports of heat, moisture or momentum due to convection. To 531	

determine if the inclusion of lateral communication is beneficial, Bengtsson et al. (2013) 532	

considered a two–way interaction between cellular automata and the traditional convection 533	

parameterization. The cellular automaton evolves on a lattice with finer grid spacing than 534	

the parent model and is randomly seeded in regions where CAPE exceeds a threshold. The 535	

rules are linked to the updraft area fraction and large–scale wind.  The scheme has been 536	

shown to enhance the organization of convective squall-lines (Bengtsson et al. 2013) and 537	

improves the skill of accumulated precipitation in a high-resolution ensemble prediction 538	

system (Bengtsson and Körnich 2015). 539	

3.5 Climate Response in the presence of small-scale fluctuations 540	

While there is extensive work focusing on the response of the climate system to changes in 541	

the external forcing, either natural - such as the forcing from a localized tropical heating as 542	

it occurs in Nino - or anthropogenic - such as the forcing from increased greenhouse gases, 543	
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little attention has been given to the fact if and how the representation of the subgrid-scale 544	

can alter that response. In the mathematical community, this is the topic of response theory 545	

and the fluctuation-dissipation theorem (e.g., Marconi et al. 2008, Lacorata and Vulpiani 546	

2007, Colangeli et al. 2011, Lucarini and Colangeli 2012, Colangeli and Lucarini 2014). 547	

Seiffert and von Storch (2008) were the first to investigate the response of a climate model 548	

to CO2-forcing in the presence of subgrid-scale fluctuations in atmospheric temperature, 549	

divergence and vorticity. In their model, the strength of the global warming due to a CO2-550	

doubling is altered by up to 15% near the surface and up to 25% in the upper troposphere 551	

(Figure 13) depending on the exact representation of the small-scale fluctuations.  Applying 552	

a stochastic model to their simulations, they found that the small-scale fluctuations change 553	

the temperature response via a statistical damping that acts as a restoring force. In addition, 554	

the small-scale fluctuations can affect feedback and interaction processes that are directly 555	

coupled to an increase in CO2, thereby altering the CO2-related radiative forcing (Seiffert 556	

and von Storch 2010). 557	

The fluctuation-dissipation theorem (FDT) is concerned with the response of a system to 558	

small changes in the forcing. In particular, it tries to relate the response to the natural 559	

fluctuations in the system (Kubo 1966, Deker and Haake 1975, Hänggi and Thomas 1977, 560	

Leith 1975, Risken 1984). In the atmospheric sciences, the FDT-operator is estimated from 561	

model output, in particular the variances and covariances of the state variables at different 562	

time lags. The so obtained empirical linear model is able to predict the response to chances 563	

in the external forcing, such as signature from localized tropical heat forcing (Gritsun and 564	

Branstator 2007, Gritsun et al. 2008). 565	
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Achatz et al. (2013) argue that subgrid-scale parameterizations developed for a present day 566	

climate, might no longer be accurate in a changing climate.  They use the FDT to adjust the 567	

subgrid-scale representation of the forced system. Figure 14 shows that a low-order model 568	

with a subgrid-scale parameterization corrected by the FDT yields a better response in the 569	

streamfunction variance than without the correction.  570	

While some success of FDT-techniques to low-frequency climate modeling has been 571	

demonstrated, some of the mathematical assumptions are not strictly met.  Recent work has 572	

expanded the mathematical underpinning by a more general formulation of the response theory 573	

better suited for non-equilibrium systems (Ruelle 2009, Lucarini and Sarno 2011), and is able to 574	

deliver climate projections using GCMs (Lucarini et al. 2014, Ragone et al. 2015). 575	

3.6 Statistical Dynamical Closure Theory 576	

Kraichnan (1959) first illustrated that renormalization of the statistical equations of fluid 577	

motion can been used to produce self-consistent parameterizations of the subgrid turbulent 578	

processes. It is on this basis that Frederiksen and Davies (1997) developed stochastic 579	

parameterisations of subgrid turbulence in barotropic atmospheric simulations on the 580	

sphere. The subgrid parameterisations consist of drain, backscatter and net eddy viscosities, 581	

which are determined from the statistics of higher resolution closure simulations. 582	

Implementation of this approach into an atmospheric GCM resulted in significantly 583	

improved circulation and energy spectra (Frederiksen et al. 2003). These ideas were further 584	

formulated and tested by Frederiksen (1999, 2012a,b), and O’Kane and Frederiksen (2008). 585	

Frederiksen and Kepert (2006) then used the functional form of these closure approaches to 586	

develop a zero-parameter stochastic modeling framework, where the eddy viscosities are 587	

determined from higher resolution reference simulations. This is in contrast to typical 588	
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approaches in which heuristic subgrid parameterizations are developed based on some 589	

physical hypothesis on the behavior of subgrid turbulence. This approach was successfully 590	

applied to baroclinic geophysical simulations in Zidikheri and Frederiksen (2009, 2010a,b). 591	

Recently, Kitsios et al. (2012, 2013) used the approach of Frederiksen and Kepert (2006) to 592	

determine the eddy viscosities from a series of reference atmospheric and oceanic 593	

simulations. The isotropized version of the subgrid eddy viscosities where then 594	

characterized by a set of scaling laws. Large Eddy Simulations with subgrid models defined 595	

by these scaling laws (solid lines in Figure 15) were able to reproduce the statistics of the 596	

high resolution reference simulations (dashed lines in Figure 15) across all resolved scales. 597	

These scaling laws further enable the subgrid parameterizations to be utilized more widely 598	

as they remove the need to generate the subgrid coefficients from a reference simulation. 599	

Concluding Remarks 600	

In this article, we attempt to narrow the gap between the fields of numerical meteorological 601	

models and applied mathematics in the development of stochastic parameterizations: on the one 602	

hand geo-scientists are often unaware of mathematically rigorous results that can aid in the 603	

development of physically relevant parameterizations, on the other hand mathematicians often 604	

do not know about open issues in scientific applications that might be mathematically tractable.  605	

Over the last decade or two, increasing evidence has pointed to the potential of this 606	

approach, albeit applied in an ad hoc manner and tuned to specific applications. This is 607	

apparent in the choices made at operational weather centers, where stochastic 608	

parameterization schemes are now routinely used to represent model inadequacy better and 609	

improve probabilistic forecast skill. Here, we revisit recent work that demonstrates that 610	

stochastic parameterization are not only essential for the estimation of the uncertainty in 611	
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weather forecasts, but are also necessary for accurate climate and climate change 612	

projections. Stochastic parameterizations have the potential to reduce systematic model 613	

errors, trigger noise-induced regime transitions, and modify the response to changes in the 614	

external forcing. 615	

Ideally, stochastic parameterizations should be developed alongside the physical 616	

parameterization and dynamical core development and not tuned to yield a particular model 617	

performance, as is current practice. This approach is hampered by the fact that parameters 618	

in climate and weather are typically adjusted (“tuned”) to yield the best mean state and/or 619	

the best variability. This can result in compensating model errors, which pose a big 620	

challenge to model development in general, and stochastic parameterizations in particular. 621	

A stochastic parameterization might improve the model from a process perspective, but its 622	

decreased systematic error no longer compensates other model errors, resulting in an 623	

overall larger bias (Palmer and Weisheimer 2011, Berner et al. 2012). Clearly, such 624	

structural uncertainties need to be addressed in order to improve the predictive skills of our 625	

models.   626	

Mathematically rigorous approaches decompose the system-at-hand into slow and fast 627	

components. They focus on the accurate simulation of the large, predictable scales, while only 628	

the statistical properties of the small, unpredictable scales need to be captured. One finds that the 629	

impact of the fast variables on the dynamics of the slow variables boils down to a deterministic 630	

correction plus a stochastic component. This immediately points to the fact that the classical 631	

parameterization approach, which is only based upon averaged properties, is insufficient. 632	

Understanding the deterministic correction term in physical terms will shed light on the impact 633	

of stochastic parameterizations on systematic model errors and, hopefully, compensating model 634	
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errors. 635	

Recent findings from such rigorous derivations suggest that when the time scales of the 636	

processes we need to parameterize are not very different from those of the explicitly resolved 637	

dynamics – if we are in a grey zone - memory terms can become important. This is especially 638	

relevant for developing scale-aware parameterizations, where it is difficult to control the time 639	

scale separation as the spatial resolution is altered. 640	

Of course, the stochastic approach is not a panacea for the subgrid-scale parameterization 641	

problem and persistent model biases. Stochastic approaches must complement 642	

developments in the deterministic physical process parameterizations and dynamical core. 643	

Nevertheless, it is our conviction, that basing stochastic parameterizations on sound 644	

mathematical and statistical physics concepts will lead to substantial improvements in our 645	

understanding of the Earth system as well as increased predictive capability in next 646	

generation weather and climate models. 647	
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FIGURES 1202	

 
 

Figure 1: System characterized by a,c) double-potential or e,g) single-potential well and 
their associated probability density functions (PDFs).  If the noise is sufficiently small (a) 
and under appropriate initial conditions, the system will stay in the deeper potential well  
and the associated probability density function of states will have a single maximum (b). 
As the amplitude of the noise increases, the system can undergo a noise-transition and 
reach the secondary minimum in the potential (c) leading to a shifted mean and increased 
variance in the associated probability density function (d). A linear system characterized 
by a single potential well and forced by additive white noise (e) will have a unimodal 
PDF. However, when forced by mutliplicative (state-dependent) white noise (g), the 
noise-induced changes the single-well potential of the unforced system, so that the 
effective potential including the effects of the multiplicative noise has multiple wells and 
the associated PDF becomes bimodal (h). 
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Figure 2: Top of the atmosphere net longwave radiation (outgoing longwave radiation; OLR) in 
W m−2 in DJF. Left: stochphysOFF−ERA-Interim reanalysis, middle: System 4−reanalysis, right: 
System 4 – stochphysOFF. Significant differences at the 95% confidence level based on a two-
sided t-test are hatched. From Weisheimer et al. (2014).  
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Figure 3: Relative frequencies of MJO events in each of the eight MJO phases. From 
Weisheimer et al. (2014). 
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Figure 4: Power spectra of averagesea surface temperature in the Nino 3.4 region in a 135 
year long simulations with the Community Earth System Model.  Compared to HadISST  
observations (blue), the simulation has three times more power for oscillations with periods 
between 2 to 4 years (left). When the simulation is repeated with the stochastic 
parameterization SPPT, the temperature  variability in this range is reduced, leading to a 
better agreement  between the simulated and observed  spectra (right). From Christensen et 
al. (2016). 

 1206	



	 45	

 

Figure 5: Niño 3.4 SST root mean square error (lines) and ensemble spread (dots) 
according to forecast time in EC-Earth 3 seasonal re-forecast experiments initialized in 
May 1993-2009 with standard (SR) or high resolution (HR) atmosphere and ocean 
components, with and without activating a 3-scale SPPT perturbation method in the 
atmosphere. 

 



	 46	

 1207	
Figure 6: Forecast diagnostics as a function of time for the operational (black), fixed 1208	
perturbed parameter (blue) and stochastically varying perturbed parameter (red) ensemble 1209	
forecasts. Top: Forecast bias for (a) T850 and (b) U850 shown as a fraction of the bias for 1210	
the operational system: BIAS /BIASoper. Bottom: Root mean square ensemble spread 1211	
(dashed lines) and root mean square error (solid lines) for (c) T850 and (d) U850. 1212	
Diagnostics are averaged over the region 10S-20N, 60-180E. Figure adapted from 1213	
Christensen et al. (2015b). 1214	
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Figure 7:  The right tail of the probability density function of summer season hourly 
precipitation from a 50-member ensemble of one year single column model simulations 
with stochastic (blue) and conventional parameterizations (black) and fifteen years of 
observations (green) over a model grid box encompassing the US Department of 
Energy’s (DOE) Atmospheric Radiation Measurement (ARM) program’s site in Lamont, 
Oklahoma. The large-scale forcing for the single column model simulations are 
generated from a present day CESM simulation at a spatial resolution of about 2.8°x2.8°. 
From Langan et al. (2014). 
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values, and � = 4 has the lowest relative error. Thus, the stochastic parameterization with
noise value given by � = 4, provides the best model for latent heat flux variability.
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5 Conclusion

For the foreseeable future–as long as grid-size is greatly limited by computational complexity–
climate models will require innovative parameterizations to capture features of the climate
system. Parameterizations based on averaging techniques dampen variability and as a result,
models underpredict extreme events. This research addresses model deficiency in the case of
extreme precipitation with a novel stochastic approach to sub-grid parameterization. We show
that our method, which statistically represents PFT’s, improves the representation of latent heat
flux variability and this boosts the frequency of simulated rare precipitation. Consequentially,
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Figure 8: Maps of the century-mean net upward water flux (mm/day) at the sea 
surface in (a) a control integration of a coupled climate model. (b) Difference 
from the control for an experiment in which the net fresh water flux across the air–
sea interface is stochastically perturbed before being passsed to the ocean. c) 
Difference from the control for an experiment in which the net heat flux across the 
air–sea interface is stochastically perturbed before being passsed to the ocean. 
From Williams (2012). 
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Figure 9: Top: Amplitude of fluctuations of the eddy forcing as measured by the standard 
deviation of divergence of eddy flux in a 1/10 degree OGCM. Bottom: Mean eddy forcing 
measured by the magnitude of the mean divergence of eddy heat flux in the same  
heatCM.The amplitude of the fluctuations is about one order of magnitude larger than the 
mean eddy forcing. From Li and von Storch (2013). 



	 50	

 
Figure 10: Difference in mean standard deviation of sea ice thickness forecasts (meters) 
between ensembles generated by stochastic ice strength as well as atmospheric initial 
perturbations (STOINI) and ensembles generated solely by atmospheric initial perturbations 
(INI), averaged for days (left) 1 to 10, (middle) 11 to 30, and (right) 31 to 90 after 
initialization at 00 UTC on 1 January. Stippled areas indicate differences statistically 
significant at the 5% level, using a two-tailed F test. Note the different contour intervals. 
From Juricke et al. (2014). 
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Figure 11: Histograms of the subgrid cloud-base mass flux, resulting from the 
stochastic shallow cumulus cloud scheme (STOCH) and coarse-grained large-eddy 
simulation (LES), are compared for three horizontal grid resolutions of 1.6 km, 3.2 
km and 12.8 km. From Sakradzija et al. (2015). 
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Figure 12: Snapshot of the spatial field of convective states obtained from Large Eddy 
Simulation data. The distinction between the various convective states was based on cloud 
top height and rainwater content. From Dorrestijn et al. (2013a).  
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Figure 13: Climate responses of global mean temperature to a CO2 doubling (2x CO2 
minus 1x CO2) obtained from the ECHAM5/MPIOM-experiments with different 
representations of small-scale fluctuations: 'diffus' refers to experiments in which the 
strength of horizontal diffusion is varied; 'noise' refers to experiments in which white noise 
is added to small scales of the atmospheric model ECHAM5. From Seiffert and von Storch 
(2008). 
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Figure 14:  (Left) The response in mean streamfunction variance of a barotropic-
vorticity-equationto an anomalous vorticity forcing at latitude 45N and longitude 
210E projected onto 90 EOFs (left),)  the simulation of this response by a  
(middle) 90-EOF climate model with unmodified SGS parameterization (relative 
error 0.527), and by a (right) climate model with SGS parameterization corrected 
by FDT (relative error 0.342) 
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Figure 15: Top: Comparison of the upper level kinetic energy spectra of a two level 
benchmark simulation (dashed line) with associated LES (solid line) at various resolutions 
for: atmospheric isotropic stochastic (isoS) LES (top spectra); atmospheric isotropic 
deterministic (isoD) LES (second spectra); atmospheric deterministic scaling law (lawD) 
LES (third spectra); oceanic stochastic scaling law (lawS) LES (forth spectra); and oceanic 
deterministic scaling law LES (bottoms spectra).Top spectra has the correct kinetic energy, 
with the others shifted down for clarity. From Kitsios et al. (2014). 
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