
DIFFERENTIABILITY OF QUADRATIC FORWARD-BACKWARD SDES

WITH ROUGH DRIFTS

PETER IMKELLER, RHOSS B. LIKIBI PELLAT, AND OLIVIER MENOUKEU PAMEN

Abstract

In this paper, we consider quadratic forward-backward SDEs (QFBSDEs), when the drift in
the forward equation does not satisfy the standard globally Lipschitz condition and the driver of
the backward system satisfies a nonlinearity of type f(|y|)|z|2, where f is any locally integrable
function. We prove both the Malliavin and classical derivative of the QFBSDE and provide
representations of these processes. We study a numerical approximation of this system in the
sense of [19] in which the authors assumes that the drift is Lipschitz and the driver of the BSDE
is quadratic in the traditional sense (i.e., f is a positive constant). We show that the rate of
convergence is the same as in [19].

1. Introduction

In this paper, we address the problem of the Malliavin and the classical differentiability of a class
of quadratic forward-backward SDEs (FBSDEs) with rough drift. FBSDEs have attracted a lot of
interest in the last four decades due to their applications to optimal control, financial/insurance
mathematics and the theory of PDE via the non-linear Feynman-Kac formula. Of particular
interest is the class of BSDEs whose drivers grow quadratically in the control variable Z. Such
a BSDE appears for example in exponential utility maximisation or in the Epstein-Zin utility
maximisation problems. To the best of our knowledge, the first result on existence and uniqueness
of BSDEs with quadratic drivers and bounded terminal value is due to Kobylansky ([27]). This
result was extended to the case of unbounded terminal value in [9, 10] and in other different ways
authors in [18, 33, 12, 5].

Recently the authors in [3] studied a new class of unbounded quadratic BSDE when the gen-
erator g has the following growth condition |g(t, y, z)| ≤ C(1 + f(y)|z|2), where f is an integrable
function. Their approach is based on an exponential transformation and an Itô-Krylov formula
for BSDEs. This result was extended in [2]to the case of locally integrable function f by using the
so called domination method.

Another question of importance that arises in the study of BSDEs is the characterisation of
the control process Z. When the coefficients of the FBSDEs are smooth enough, Z is given as
the ”derivative”, either in the sense of the non linear Feynman-Kac formula or in the Malliavin
sense via the Clark-Ocone-Hausmann formula. Moreover, (Zt)t∈[0,T ] has a continuous version
given by the Malliavin derivative of the backward equation (DtYt)t∈[0,T ]. The later turns out to
be a crucial concept when one deals with novel discretization of BSDEs implemented with deep
learning regressions (see for instance [34]). When the parameters are not smooth, the existence of
Malliavin and classical differentiable solutions to FBSDEs remain a challenging question.
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Smoothness of solutions of FBSDEs, in both the classical and Malliavin sense when the co-
efficients are smooth enough were established in [36, 24]. In the quadratic case, the first re-
sults were derived in by the authors in [1] assuming that the driver is of the form g(t, x, y, z) =
`(t, x, y, z) +α|z|2 with ` ∈ C1 and Lipschitz continuous in (x, y, z). This work was then extended
to non-linear quadratic generator in [20]. Their method for establishing the classical differentiabil-
ity relies on differences of difference quotient together with the completeness of the vector space.
In order to prove the Malliavin differentiability, they proposed an approximation procedure via a
family of truncated BSDEs and a compactness criterion argument. Using a technique based on
Kunita’s method (solving an abstract BSDE with stochastic Lipschitz conditions), the authors in
[7] proved a differentiability result in the classical sense for solutions to quadratic FBSDEs. Other
related results include the work [22] for differentiability of FBSDE driven by continuous martingale
with quadratic growth and the work [17] for classical differentiability of FBSDEs with polynomial
growth. For instance, the results obtained in the aforementioned papers do not cover the case of
non uniformly Lipschitz drift coefficients. In [37], the authors established a result on Malliavin
derivative solution to coupled FBSDEs with discontinuous coefficients. Their method exploits the
regularization effect of the Brownian motion when the diffusion coefficient is a constant and the
regularity of the weak decoupling field combined with a compactness criterion argument. However,
the authors did provide a representation satisfied by the Malliavin derivatives in terms of BSDEs.
This is mainly due to the very mild assumptions that were considered there.

In this paper, we assume that the driver is of the form f(|y|)|z|2, where f is any increasing and
locally integrable function and the drift is either measurable and bounded or bounded and Hölder
continuous. We then study both the differentiablity in the Malliavin and classical sense of the
solution to the quadratic FBSDE. We follow the method developed in [1, 20] and work under much
weaker conditions. In case of the forward equation, the representation of the Malliavin derivative
is given in terms of local time (case of bounded measurable drift) or in terms of Young’s integral
(case of Hölder drift).

Another motivation of this paper is the numerical approximation and namely the time dis-
cretisation of the solution to decouple FBSDEs. When the drift is Lipschitz, such a question was
studied in [6, 11, 40]. Assuming that the driver is quadratic, [38] investigated numerical approxi-
mation of quadratic FBSDEs. The method is based on a truncation of the quadratic driver. The
rate of convergence is then obtained by using the differentiability of the solution to the FBSDE.
Their results were refined and generalized by in [39]. In this work, we generalized the result in [38]
in two directions. We assume a more general class of driver and allow for bounded and Hölder
continuous drift. One of the main difficulties is to find the bound of the supremum norm of the
inverse of the first variation process of the forward equation. This difficulty is circumvented by
using a Zvonkin transform of the drift. We obtain the same rate of convergence as in [38].

The remaining part of the paper is organized as follows: in Section 2, we provide basic definitions
and results on BSDEs. The existence and uniqueness results as well as the main a priori estimates
are given in Section 3. Section 5 is devoted to the smothness of the solution of the FBSDE whereas
Section NA is concerned with rate of convergence of the numerical approximation of the solution
to the BSDE.

2. General settings and Notations

2.1. Some notation. Throughout this paper a stochastic basis (Ω,F, {Ft}t>0,P, {Bt}t≥0) is
given. Here {Ft}t>0 is the standard filtration generated by the d-dimensional Brownian motion
{Bt}t≥0 augmented by all P-null sets of F. For fixed T > 0, d ∈ N, p ∈ [2,∞), we denote by:

• Lp(Rd) the space of FT -adapted random variables X such that ‖X‖pLp := E|X|p <∞;
• L∞(Rd) the space of bounded random variables with norm ‖X‖L∞ := essupω∈Ω |X|;
• Sp(Rd) the space of all adapted continuous Rd-valued processes X such that ‖X‖pSp(Rd)

:=

E supt∈[0,T ] |Xt|p <∞;

• Hp(Rd) the space of all predictable Rd-valued processes Z such that ‖Z‖pHp(Rd)
:=

E(
∫ T

0
|Zs|2ds)p/2 <∞;
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• S∞(Rd) the space of continuous {Fs}0≤t≤T -adapted processes Y : Ω × [0, T ] → Rd such
that ‖Y ‖∞ := essupω∈Ω supt∈[0,T ] |Yt| <∞;

• BMO(P) the space of square integrable martingales M with M0 = 0 such that

‖M‖BMO(P) = supτ∈[0,T ] ‖E[〈M〉T − 〈M〉τ ]/Fτ‖1/2∞ < ∞, the supremum is taken over

all stopping times τ ∈ [0, T ];
• HBMO the space of Rd- valued Hp-integrable processes (Zt)t∈[0,T ] for all p ≥ 2 such that

Z ∗B =
∫

0
ZsdBs ∈ BMO(P). We define ‖Z‖HBMO

:= ‖
∫
ZdB‖BMO(P);

• L∞([0, T ];Cβb (Rd;Rd)) the space of all vector fields b : [0, T ] × Rd → Rd having all com-

ponents in L∞([0, T ];Cβb (Rd)) and L∞([0, T ];Cβb (Rd)) stands for the set of all bounded

Borel functions b : [0, T ]× Rd → R such that

[b]β,T = sup
t∈[0,T ]

sup
x 6=y∈Rd

|b(t, x)− b(t, y)|
|x− y|β

<∞.

Below, we briefly introduce the spaces of Malliavin differentiable random variables Dk,p. For
more information on Malliavin calculus we refer the reader to [13, 35]. Let S be the space of
random variable ξ of the form

ξ = F
(

(

∫ T

0

h1,i
s dW 1

s )1≤i≤n, · · · , (
∫ T

0

hd,is dW d
s )1≤i≤n

)
,

where F ∈ C∞b (Rn×d), h1, . . . , hn ∈ L2([0, T ];Rd) and n ∈ N. For simplicity, we assume that all
hj are written as row vectors. For ξ ∈ S, we define D = (D1, · · · , Dd) : S → L2(Ω× [0, T ])d by

Di
θξ :=

n∑
j=1

∂F

∂xi,j

(∫ T

0

h1
tdWt, · · · ,

∫ T

0

hnt dWt

)
hi,jθ , 0 ≤ θ ≤ T, 1 ≤ i ≤ d,

and for k ∈ N and θ = (θ1, · · · , θk) ∈ [0, T ]k its k-fold iteration as

D(k) = Di1 · · ·Dik
1≤i1,··· ,ik≤d.

For k ∈ N and p ≥ 1, let Dk,p be the closure of S with respect to the norm

‖ξ‖pk,p = ‖ξ‖pLp +

k∑
i=1

‖|D(i)ξ|‖p(Hp)i .

The operator D(k) is a closed linear operator on the space Dk,p. Observe that if ξ ∈ D1,2 is
Ft-measurable then Dθξ = 0 for θ ∈ (t, T ]. Further denote Dk,∞ = ∩p>1Dk,p.

For k ∈ N, p ≥ 1, denote by Lk,p(Rm) the set of Rm-valued progressively measurable processes
u = (u1, · · · , um) on [0, T ]× Ω such that

(i) For Lebesgue a.a. t ∈ [0, T ], u(t, ·) ∈ (Dk,p)m;
(ii) (t, ω)→ Dk

θu(t, ω) ∈ (L2([0, T ]1+k))d×m admits a progressively measurable version;

(iii) ‖u‖pk,p = ‖|u|‖pHp +
∑k
i=1 ‖|D(i)u|‖p(Hp)1+i <∞.

For example if a process ζ ∈ L2,2(R), we have

‖ζ‖2L1,2
= E

[ ∫ T

0

|ζt|2dt+

∫ T

0

∫ T

0

|Dθζt|2dθdt
]
,

‖ζ‖2L2,2
= ‖ζ‖2L1,2

+ E
[ ∫ T

0

∫ T

0

∫ T

0

|Dθ1Dθ2ζt|2dθ1dθ2dt
]
.

2.2. Some preliminary results. Consider the following BSDE

Yt = ξ +

∫ T

t

g(s, ω, Ys, Zs)ds−
∫ T

t

ZsdBs (2.1)

and recall the ffollowing result on the Malliavin differentiablity of solution to the BSDE (2.1)
in the Lipschitz framework (see for example [25]).
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Theorem 2.1 (Malliavin differentiability). Suppose ξ ∈ D1,2 and g : Ω× [0, T ]× R× Rd → R is
continuously differentiable in (y, z), with uniformly bounded derivatives. Suppose for each (y, z) ∈
R×Rd, the process g(·, y, z) belongs to L1,2(Rd) with Malliavin derivative denoted by Dθg(t, y, z).
Let (Y, Z) be the solution of the associated BSDE (2.1) and suppose in addition

(i) (g(t, 0, 0))t∈[0,T ] ∈ H4(R) and ξ ∈ L4(R),

(ii)
∫ T

0
E[|Dθξ|2]dθ < ∞,

∫ T
0
‖(Dθg)(t, Y, Z)‖2H2dθ < ∞ a.s. and for a.a. θ ∈ [0, T ] and any

t ∈ [0, T ], (y1, z1), (y1, z1) ∈ R× Rd

|Dθg(t, y1, z1)−Dθg(t, y2, z2)| ≤ Kθ(t)(|y1 − y2|+ |z1 − z2|) a.s.,

with {Kθ(t), 0 ≤ θ, t ≤ T} a positive real valued adapted process satisfying
∫ T

0
‖Kθ‖4H4dθ <

∞.
Then (Y,Z) ∈ L2(D1,2× (D1,2)d). Furthermore for each 1 ≤ i ≤ d a version of {(Di

θYt, D
i
θZt); 0 ≤

θ, t ≤ T} is given by

Di
θYt = 0, DθZt = 0, 0 ≤ t < θ ≤ T ;

Di
θYt = Di

θξ +

∫ T

t

[(Di
θg)(s, Ys, Zs) + 〈(∇g)(s, Ys, Zs), (D

i
θYs, D

i
θZs)〉]ds−

∫ T

t

Di
θZsdBs, θ ≤ t ≤ T.

Moreover {DθYt; 0 ≤ t ≤ T} defined by the solution to the above BSDE is a version of {Zt; 0 ≤
t ≤ T}.

We end this section by recalling the following result (see [35, Theorem 1.2.3])

Lemma 2.2. Let (Fn)n≥1 be a sequence of random variables in D1,2 that converges to F in L2(Ω)
and such that

sup
n≥1

E [‖DFn‖L2 ] <∞.

Then, F belongs to D1,2, and the sequence of derivatives (DFn)n≥1 converges to DF in the weak
topology of L2(Ω× [0, T ]).

3. BSDEs with quadratic drivers

3.1. Standing assumptions and solvability. Our main aim in this section is the well posedness
of the BSDE (2.1) when the parameters ξ and g satisfy the following assumptions:

Assumption 3.1. ξ is an FT -measurable uniformly bounded random variable, i.e., ‖ξ‖L∞ <∞;

Assumption 3.2. The function g : [0, T ] × Ω × R × Rd → R is F-predictable and continuous in
its space variables. There exist Λ0,Λy,Λz > 0, and a locally bounded function f : R 7→ R+; f ∈
L1
loc(R+) such that for all (t, ω, y, z), (t, ω, y′, z′) ∈ [0, T ]×Ω×R×Rd, α ∈ [0, 1) ‖g(t, 0, 0)‖L∞ ≤ Λ0

and

|g(t, ·, y, z)−g(t, ·, y′, z′)| ≤ Λy

(
1+|z|α+|z′|α

)
|y−y′|+Λz

(
1+(f(|y|)+f(|y′|))(|z|+|z′|)

)
|z−z′| a.s.

Remark 3.3. It is readily seen that under Assumptions 3.1 and 3.2, the generator g is necessary
of the following form:

|g(t, ·, y, z)| 6 Λ0 + Λy|y|+ Λz(|z|+ f(|y|)|z|2) a.s. (3.1)

Indeed,

|g(t, y, z)| ≤ |g(t, 0, 0)|+ |g(t, y, 0)− g(t, 0, 0)|+ |g(t, y, z)− g(t, y, 0)|
≤ Λ0 + Λy|y|+ Λz|z|+ 2Λzf(|y|)|z|2 a.s.

Unless otherwise stated, in this paper ϕ stand for the smallest continuous and increasing func-
tion such that f(x) ≤ ϕ(x) for all x ∈ R (compare with [2]).

The next result concerns the existence and uniqueness of solution to the BSDE (2.1) under
Assumptions 3.1 and 3.2.

Theorem 3.4 (Existence and uniqueness). Under Assumptions 3.1 and 3.2, the BSDE (2.1) has
a unique strong solution (Y,Z) ∈ S∞(R)×H2(Rd).
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Proof. Existence: Since the generator g is of quadratic type, using [2, Theorem 3.1 and Corollary
3.2], the equation (2.1) has a maximal solution (Y, Z) ∈ S∞ ×HBMO .
Uniqueness: Let t ∈ [0, T ] and let (Y,Z) and (U, V ) ∈ S∞ ×HBMO be two solutions to BSDE
(2.1). The S∞-norms of the processes Y and U are uniformly bounded by the constant Υ(1) that
only depends on ‖ξ‖L∞ , Λy and T (see the Lemma below). Now, set δY = Y − U, δZ = Z − V
then the dynamics of (δY )t is given by

δYt =

∫ T

t

(
g(s, Ys, Zs)− g(s, Us, Zs)

)
ds−

∫ T

t

δZsdBs.

Let Γ̃t, ẽt and Π̃t be defined by

Γ̃t : =
g(t, Yt, Zt)− g(t, Ut, Zt)

Yt − Ut
1{Yt−Ut 6=0}, ẽt := exp

(∫ t

0

Γ̃sds
)
, (3.2)

Π̃t : =
g(t, Ut, Zt)− g(t, Ut, Vt)

|Zt − Vt|2
(Zt − Vt)1{|Zt−Vt|6=0}. (3.3)

From Assumption 3.2, we obtain |Π̃| ≤ Λz(1+2f(|U |)(|Z|+ |V |), from which we have ‖Π̃‖HBMO ≤
Λ̃ := Λz(

√
T + ϕ(‖U‖S∞)(‖Z‖HBMO + ‖V ‖HBMO)), where ϕ(‖U‖S∞) := sup0≤y≤‖U‖S∞ ϕ(y) <∞.

Thus Π̃ ∗ B is a BMO martingale since Z, V ∈ HBMO. Hence the probability measure Q̃ with

Radon-Nykodim density dQ̃/dP = E(
∫ ·

0
Π̃·dB·) is well defined and the process BQ̃

· = B·−
∫ ·

0
Π̃sds

is a Q̃-Brownian motion. Moreover for r > 1, we have E(Π̃) ∈ Lr (see Lemma A.1). On the

other hand, using Assumption 3.2 once more, we deduce that |Γ̃| ≤ Λ(1 + 2|Z|α). This implies

that Γ̃ ∈ HBMO. Thus, the process ẽ is integrable (see (P4) in Lemma A.1) i.e., there is p ≥ 1

and ε ∈ (0, 2) such that E
[

exp
(
p
∫ T

0
|Γ̃t|εdt

)]
< ∞. In addition for all p ≥ 1, ẽ ∈ Sp(R). The

Girsanov theorem and Hölder’s inequality yield: for every r > 1

EQ̃
[ ∫ T

0

|ẽs|2|δZs|2ds
]
≤ E

[
E
(∫ T

0

Π̃sdBs

)
sup

0≤t≤T
|ẽt|2

∫ T

0

|δZs|2ds
]

≤ E
[
E
(∫ T

0

Π̃sdBs

)r] 1
rE
[

sup
0≤t≤T

|ẽt|2q
(∫ T

0

|δZs|2ds
)q] 1

q

<∞,

where q is the Hölder conjugate of r. Thus, the stochastic integral
∫ ·

0
ẽsδZsdB

Q̃
s defines a true

Q̃-martingale. By applying Itô’s formula to the semimartingale (ẽδY )t under Q̃, we obtain that

ẽtδYt +

∫ T

t

ẽsδZsdB
Q̃
s =

∫ T

t

ẽs[−Γ̃sδYs + g(s, Ys, Zs)− g(s, Us, Zs)]ds = 0. (3.4)

It follows that ẽtδYt = 0 Q̃-a.s. for all t ∈ [0, T ]. Thus, ẽtδYt = 0 P-a.s. for all t ∈ [0, T ] (since Q̃
and P are equivalents). Consequently δYt = 0 P-a.s. for all t ∈ [0, T ] provided that ẽt(ω) > 0 for
all ω outside a P-negligible set A. The later is satisfied due to the continuity of the process ẽt for
all t ∈ [0, T ]. Hence, Yt = Ut P-a.s.,∀t ∈ [t, T ]. Using (3.4) and the fact that δY = 0, we deduce

from the Itô’s isometry that EQ̃ ∫ T
0
|ẽs|2|δZs|2ds = 0, the latter implies that Zt = Vt dt⊗P-a.s. �

Below we provide a more precise bounds for both the S∞ and HBMO norms of the processes Y
and Z respectively

Lemma 3.5. Under Assumptions 3.1 and 3.2, the solution (Y, Z) to the BSDE (2.1) satisfies the
following bounds:

‖Y ‖S∞ ≤ Υ(1) := (‖ξ‖L∞ + Λ0T )eΛyT , (3.5)

‖Z ∗B‖BMO ≤ Υ(2) := 2Υ(1)
(

Υ(1) + T (Λ0 + Λz + ΛyΥ(1))
)

exp(4‖(1 + Λzf)‖L1[0,Υ(1)]). (3.6)

Proof. Let Πt be defined by: |Zt|2Πt := (g(t, Yt, Zt) − g(t, Yt, 0))Zt1{Zt 6=0}. By using the same
observations as in the proof of the previous theorem, we have that E(Π∗B) is uniformly integrable
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and the process BQ
· = B· −

∫ ·
0

Πsds is a Q-Brownian motion with the measure Q given by dQ =
E(Π ∗B)dP. Then,

|Yt| ≤ EQ
(
|ξ|+

∫ T

t

|g(s, Ys, 0)|ds/Ft
)
≤ ‖ξ‖L∞ + Λ0T + ΛyEQ(

∫ T

t

|Ys|ds/Ft).

Therefore, the Gronwall’s lemma yields : |Yt| ≤ (‖ξ‖L∞ + Λ0T )eΛyT .
On the other hand for any locally integrable function f1, we define:

K(y) :=

∫ y

0

exp
(
− 2

∫ z

0

f1(u)du
)

dz

v(x) :=

∫ x

0

K(y) exp
(

2

∫ y

0

f1(u)du
)

dy.

It’s readily seen that v ∈ W 1,2
loc (R) and satisfies almost everywhere: 1/2v′′(x) − f1(x)v′(x) = 1/2

(see [2]). Moreover for any R > 0 such that |x| ≤ R, we have |v(x)| ≤ R2 exp(4‖f1‖L1[0,Υ(1)]) and

|v′(x)| ≤ R exp(4‖f1‖L1[0,Υ(1)]). Recall from Remark 3.3 that the driver g satisfies |g(t, y, z)| ≤
Λ+Λy|y|+f1(|y|)|z|2, where Λ = Λ0 +Λz and f1(|y|) := Λz(1+f(|y|)). Then, using the Itô-Krylov
formula for BSDE (see [3, Theorem 2.1]) we obtain that

v(|Yτ |) = v(|YT |) +

∫ T

τ

sgn(Yr)v
′(|Yu|)g(u, Yu, Zu)du− 1

2

∫ T

τ

v′′(|Yu|)|Zu|2du+MT
τ

≤ v(|YT |)−
1

2

∫ T

τ

|Zu|2du+

∫ T

τ

(Λ + Λy|Yu|)v′(|Yu|)du+MT
τ

for any stopping time τ . Here MT
τ represents the martingale part. By taking the conditional

expectation with respect to Fτ , we deduce that

1

2
E
(∫ T

τ

|Zu|2du/Fτ

)
≤ E

(
v(|YT |) +

∫ T

τ

(Λ + Λy|Yu|)v′(|Yu|)du/Fτ
)
.

The result is obtained from the bounds of Y , v and v′. This completes the proof. �

Remark 3.6.

(1) Note that the bound in (3.5) does not depend on α, Λz, thus not on the HBMO-norm of
the control process Z. In addition, if f ≡ 0, i.e., the driver g is Lipschitz in z and still
stochastic Lipschitz in y, the BSDE (2.1) has a unique solution (Y,Z) ∈ S∞(R)×H2(Rd)
such that the bound of Y is given by (3.5).

(2) Assume the driver g is deterministic and Lipschitz in y and z. Assume further the
terminal value ξ is uniformly bounded and Malliavin differentiable with ‖Dξ‖S∞ =
sup0≤t≤T ‖Dtξ‖ <∞ P-a.s. Then, the BSDE (2.1) has a unique solution (Y, Z) ∈ S2×H2

(see [8, Proposition 2.4]) such that:

|Yt| ≤ (‖ξ‖L∞ + Λ0T )eΛyT and |Zt| ≤ eΛyT ‖Dξ‖S∞ .

The above remark leads to the following result which can be seen as an extension of the lemma
2.1 in [8].

Proposition 3.7. Let Assumptions 3.1–3.2 be in force with g deterministic and Lipschitz in
y(α ≡ 0). Assume further that ξ has a bounded Malliavin derivative. Then, the BSDE (2.1) has
a solution (Y,Z) ∈ S∞ × S∞.

Proof. Let us remark that, the key bound for the proof is given by the (3.5). This bound does not
depend on Λz nor on the BMO-norm of the martingale Z ∗ B =

∫ ·
0
ZsdBs. Then we can obtain

the result by applying similar technique as in the proof of [8, Lemma 2.1]. This concludes the
proof. �
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3.2. Comparison theorem and a-priori estimates. In this subsection, we provide a compar-
ison theorem for quadratic BSDEs whose generators satisfy Assumptions 3.1-3.2. The proofs of
the following Lemmatas are deported in Appendix B.

Lemma 3.8 (Comparison theorem). Let (Y i, Zi) ∈ S∞ × HBMO be the solution to the BSDE
(2.1), with terminal value ξi and generator gi for i ∈ {1, 2}. satisfying Assumptions 3.1-3.2 hold.
In addition, suppose

ξ1 ≤ ξ2, and g1(t, Y 2
t , Z

2
t ) ≤ g2(t, Y 2

t , Z
2
t ) dt⊗ dP-a.s..

Then for all t ∈ [0, T ] Y 1
t ≤ Y 2

t P-a.s.. If either ξ1 < ξ2 or g1(t, Y 2
t , Z

2
t ) < g2(t, Y 2

t , Z
2
t ) in a set

of positive dt⊗ dP-measure then, Y 1
0 < Y 2

0 .

The next Lemma provides the main (a-priori) estimates of this paper. These bounds will be
extensively used to establish both the classical and variational differentiability of solution (Y,Z)
to the BSDE (5.2).

Lemma 3.9 (A priori estimates). Let (Y i, Zi) ∈ S∞×HBMO be the solution to BSDE (2.1), with
terminal value ξi and generator gi for i ∈ {1, 2} satisfying Assumptions (3.1) and (3.2). Then for
p > 1, there exists q ∈ (1,∞) only depending on, T , r and the BMO norm of Z ∗B such that

‖Y 1 − Y 2‖2pS2p + ‖Z1 − Z2‖2pH2p ≤ CE
[
|ξ1 − ξ2|2pq +

(∫ T

0

|g1(s, Y 2
s , Z

2
s )− g2(s, Y 2

s , Z
2
s )|ds

)2pq] 1
q

.

We also deduce the following stability result.

Corollary 3.10. Let {ξn}n∈N be a sequence of bounded FT -adapted random variables that con-
verges P-a.s. to ξ. Let (gn)n∈N be a sequence of drivers satisfying Assumption 3.2 with the same
constant Λ and the same function (f) , such that for dt×dP-a.s. (t, ω) ∈ [0, T ]×Ω (gn)n∈N(t, ω, y, z)
converges to (g)(t, ω, y, z) locally uniformly in (y, z) ∈ R × Rd. Let (Y n, Zn) ∈ S∞(R) ×H2(Rd)
be the solution to the BSDE (2.1) with parameters (ξn, gn). Then the BSDE (2.1) has a unique
solution (Y,Z) ∈ S∞(R)×H2(Rd) such that P-a.s. Y nt converges to Yt uniformly in t ∈ [0, T ] and
Zn converges to Z in H2(Rd)

The proof of Corollary 3.10 is straightforward from Lemma 3.9, we will not provide it here.

4. Differentiability of parameterized quadratic BSDEs

In this section we discuss the both the Malliavin and the classical differentiablility of the so-
lutions to the BSDEs (2.1). We provide below, sufficient conditions for these differentiabilities to
hold.

4.1. Malliavin Differentiability. In this sebsection we show under some weak conditions on the
generator that the solution (Y,Z) to the BSDE (2.1) is Malliavin differentiable and the Malliavin
derivatives (DuYt, DuZt)u,t∈[0,T ] are given as solution to a BSDE. In addition to Assumptions
3.1-3.2, we will suppose the following additional assumptions

Assumption 4.1.

(M1) (i) The function g : [0, T ]×Ω×R×Rd 7→ R is adapted, measurable and continuously dif-
ferentiable in (y, z). There exist constants Λy,Λz > 0, and a non-decreasing function
f (the same function as in Assumption 3.2) such that for all (t, y, z) ∈ [0, T ]×R×Rd
and α ∈ (0, 1)

|∇yg(t, y, z)| ≤ Λy(1 + |z|α) a.s.,

|∇zg(t, y, z)| ≤ Λz(1 + f(|y|)|z|) a.s.

(ii) The random variable ξ belongs to D1,∞.
(M2) For each (y, z) ∈ R × Rd, it holds that (g(t, y, z))t∈[0,T ] ∈ L1,2p(R) for all p ≥ 1. Its

Malliavin derivative denoted by (Dug(t, y, z))u,t∈[0,T ] satisfies

|Dug(t, y, z)| ≤ Ku(t)(1 + |y|+ [f(|y|)|z|]α) + K̃u(t)(1 + |z|α + f(|y|)|z|) a.s.
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for any (u, t, y, z) ∈ [0, T ] × [0, T ] × R × Rd, α ∈ (0, 1). Here (Ku(t))u,t∈[0,T ] and

(K̃u(t))u,t∈[0,T ] are two positive adapted processes such that for all p ≥ 1

sup
0≤t≤T

∫ T

0

E|Ku(t)|2pdu+ ‖K̃u(t)‖2pS2p <∞.

Below, we state the main result in this subsection:

Theorem 4.2. Suppose g and ξ satisfy Assumptions 3.1-3.2, and 4.1. Then the solution process
(Y,Z) to the BSDE (2.1) is in L1,2 × (L1,2)d and a version of (DuYt, DuZt)u,t∈[0,T ] is the unique
solution to

DuYt = 0 and DuZt = 0, if t ∈ [0, u),

DuYt = Duξ −
∫ T

t

DuZsdBs

+

∫ T

t

[(Dug)(s,Θs) + 〈(∇g)(s,Θs), DuΘs〉] ds, if t ∈ [u, T ]. (4.1)

Moreover, {DtYt : 0 ≤ t ≤ T} is a version of {Zt : 0 ≤ t ≤ T}.

The strategy to prove the above theorem is also well known and analogous to [1, 19, 20, 38]. It
is performed in two main steps. We first build a family of truncated BSDEs that approximate the
BSDE (2.1) and then, prove some uniform bounds for solutions to the truncated BSDEs. Second
we apply a compactness result (Lemma 2.2) to derive the desired result.

4.1.1. Family of truncated generators. : Let us consider the family (ρ̃n)n∈N of smooth (continu-
ously differentiable) real valued functions, that truncated the identity on the real line. We use
this family of functions to truncate the variables y and z simultaneously in the driver g(·, y, z),
for (y, z) ∈ R × Rd. If the procedure is well known (see for example [1, 20, 38]), it is worth
mentioning that truncating the two variables at the same time is not so common in the literature.
This approach is motivated by the form of the driver which is not uniformly Lipschitz in y.

The family of functions (ρ̃n)n∈N are such that:

(a) (ρ̃n)n∈N converges uniformly to the identity. For all n ∈ N and x ∈ R

ρ̃n(x) =


n+ 1, x > n+ 2,

x, |x| ≤ n,
−(n+ 1), x < −(n+ 2).

(4.2)

In addition |ρ̃n(x)| ≤ |x| and |ρ̃n(x)| ≤ n+ 1.
(b) The derivative ∇ρ̃n is absolutely uniformly bounded by 1, and converges to 1 locally

uniformly.

Let (gn)n∈N be the sequence defined by

gn(t, y, z) := g(t, ρ̃n(y), ρn(z)) for (ω, t, y, z) ∈ Ω× [0, T ]× R× Rd, n ∈ N, (4.3)

where ρn : Rd → Rd, z 7→ ρn(z) = (ρ̃n(z1), . . . , ρ̃n(zd)), n ∈ N.
Let us consider the following sequence (Y n, Zn)n≥1 satisfying the BSDE

Y nt = ξ +

∫ T

t

gn(s, Y ns , Z
n
s )ds−

∫ T

t

Zns dBs, t ∈ [0, T ], n ∈ N. (4.4)

Fix n ∈ N. Using (M1), the family (gn)n∈N satisfies: for (t, y, z) ∈ [0, T ]× R× Rd

|∇ygn(t, y, z)|+ |∇zgn(t, y, z)| ≤ Λy(1 + (n+ 1)α) + Λz(1 + (n+ 1)f(n+ 1)).

In addition, using the mean value theorem, we obtain for all t ∈ [0, T ], y, y′ ∈ R, and z, z′ ∈ Rd
|gn(t, y, z) − gn(t, y′, z′)| ≤ Λn(|y − y′| + |z − z′|). Thus for each n ∈ N, the family of functions
(gn)n∈N is Lipschitz continuous in its spatial variables.

The next Lemma gives the uniform bounds of (Y n, Zn) solution to the BSDE (4.4) in the
Banach space S∞(R)×H2(Rd).
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Lemma 4.3. For each n ∈ N, the BSDE (4.4) admits a unique solution (Y n, Zn) which is
uniformly bounded in S∞(R)×H2(Rd). In addition, the process Zn ∈ HBMO, and supn∈N ‖E(Zn∗
B)‖BMO ≤ Υ(2), where Υ(2) is given in Theorem 3.4. Furthermore, there exists r > 1 independent
of n such that supn∈N ‖E(Zn ∗B)‖Lr <∞.

Proof. The existence and uniqueness of solution to BSDE (4.4) follows directly from standard
results in the theory of BSDEs, since the generator gn satisfies for each n ∈ N a Lipschitz condition
in the space variables. Let us remark that the function gn satisfies (thanks to condition (M1)) a
similar condition to equation (3.1), that is for all (t, y, z) ∈ [0, T ]× R× Rd,

|gn(t, y, z)| ≤ Λ0 + Λy|ρ̃n(y)|+ Λz(|ρn(z)|+ f(|ρ̃n(y)|)|ρn(z)|2)

≤ Λ0 + Λy|y|+ Λz(|z|+ f(|y|)|z|2).

Hence conditions on the existence of a maximal solution to the BSDE (4.4) in Theorem 3.4 are

satisfied. Therefore, supn∈N

[
‖E(Zn ∗B)‖BMO

]
<∞.

The existence of such a constant r for which the bound holds follows directly from (P2) in
Lemma A.1. �

Remark 4.4. As a consequence of Corollary 3.10, the sequence (Y n)n∈N converges to Y uniformly
on [0, T ], the sequence (Zn)n∈N converges to Z in H2(Rd) and (Y,Z) solves the BSDE (2.1).

Recall that L1,2 stands for the set of progressively measurable processes (ηt)0≤t≤T which are
Malliavin differentiable, with (Dsηt)s≤t≤T having a progressively measurable version and such

that ‖η‖21,2 := E
[ ∫ T

0
|ηt|dt+

∫ T
0

∫ T
0
|Dsηt|2dsdt

]
< +∞.

Lemma 4.5. Suppose ξ ∈ D1,∞ and for each n ∈ N, let gn be as in (4.3). Then the solution
Θn = (Y n, Zn)n∈N to the BSDE (4.4) belongs to L1,2× (L1,2)d. A version of {(DuY

n
t , DuZ

n
t ), 0 ≤

u, t ≤ T} is given by

DuY
n
t =0 and DuZ

n
t = 0, if t ∈ [0, u),

DuY
n
t =Duξ −

∫ T

t

DuZ
n
s dBs (4.5)

+

∫ T

t

[(Dugn)(s,Θn
s ) + 〈(∇gn)(s,Θn

s ), DuΘn
s 〉] ds, if t ∈ [u, T ].

Moreover {DtY
n
t , 0 ≤ t ≤ T} defined by the above equation is a version of {Znt , 0 ≤ t ≤ T}.

Furthermore for any p > 1, the following holds:

sup
n∈N

∫ T

0

E
[
‖DuY

n‖2pS2p + ‖DuZ
n‖2pH2p

]
du <∞. (4.6)

Proof. The proof of the first statement concerning the Malliavin derivatives (DY n, DZn) of Θn =
(Y n, Zn)n∈N and the representation (4.5) follows from Theorem 2.1 under Assumptions 4.1.

Let us now focus on the proof of the bound (4.6). Note that, condition (M1) and Lemma 4.3
imply that: ∇zgn∗B :=

∫ ·
0
∇zgn(s,Θs)dBs is a BMO martingale and the measure Qn with density

dQn := E(∇zgn ∗ B)dP defines an equivalent measure to the probability P. Then, Girsanov’s

theorem ensures that the process Bnt = Bt −
∫ t

0
∇zgn(s,Θn

s )ds is a Brownian motion under the
new probability measure Qn. Thus (4.5) can be written is terms of Bn as follows

DuY
n
t = Duξ −

∫ T

t

DuZ
n
s dBns +

∫ T

t

Fn(s,DuY
n
s , DuZ

n
s )ds,

where Fn(s,DuY
n
s , DuZ

n
s ) := (Dugn)(s,Θn

s ) + (∇ygn)(s,Θn
s )DuΘn

s . By using once more a
standard linearisation technique and applying Itô’s formula to the continuous semimartingale
(entDuY

n
t )0≤t≤T , one obtains

entDuY
n
t = enTDuξ −

∫ T

t

ensDuZ
n
s dBns +

∫ T

t

ensDugn(s,Θn
s )ds,
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where ent = exp(
∫ t

0
ans ds) and ant =

Fn(t,DuY
n
t ,DuZ

n
t )−Fn(t,0,DuZ

n
t )

DuY nt
1{DuY nt 6=0}. Therefore, the sub-

sequent bound follows as in Lemma 3.9 i.e. for p > 1, there exists q ∈ (1,∞) such that

E
[

sup
t∈[0,T ]

|DuY
n
t |2p +

(∫ T

0

|DuZ
n
s |2ds

)p]
≤ CE

(
|Duξ|2pq +

{∫ T

0

|(Dugn)(t, Y nt , Z
n
t )|dt

}2pq) 1
q

,

and q only depends on T, p and ‖Zn∗B‖BMO. Hence, the Jensen’s inequality for concave functions
leads to: ∫ T

0

{
E
[

sup
t∈[0,T ]

|DuY
n
t |2p +

(∫ T

0

|DuZ
n
s |2ds

)p]}
du

≤C
(∫ T

0

E
[
|Duξ|2pq +

(∫ T

0

|(Dugn)(t, Y nt , Z
n
t )|dt

)2pq]
du
) 1
q

.

Since ξ ∈ D1,∞, it follows that the first term on the right side of the above inequality is finite.
As for the second term is also finite, let us et γ = 2pq and recall that the sequence of functions
(gn)n∈N is given by equation (4.3). From assumption (M2), we deduce

E
(∫ T

0

|(Dugn)(t, Y nt , Z
n
t )|dt

)γ
≤CE

(∫ T

0

Ku(t)(1 + |ϕ̃(Y nt )|+ [f(|ϕ̃(Y nt )|)|ϕ(Znt )|]α)dt

+ sup
t∈[0,T ]

|K̃u(t)|2 +
{∫ T

0

(1 + |ϕ(Znt )|α + f(|ϕ̃(Y nt )|)|ϕ(Znt )|)dt
}2)γ

Using the properties of ϕ̃ and ϕ, the fact that f is increasing, Hölder’s inequality and the inequality
|ab| ≤ a2 + b2, we deduce the following:

E
(∫ T

0

|(Dugn)(t, Y nt , Z
n
t )|dt

)γ
≤CE

(∫ T

0

Ku(t)(1 + |Y nt |+ [f(|Y nt |)|Znt |]α)dt+ sup
t∈[0,T ]

|K̃u(t)|2

+
{∫ T

0

(1 + |Znt |α + f(|Y nt |)|Znt |)dt
}2)γ

≤CE
(∫ T

0

|Ku(t)|2dt+

∫ T

0

(1 + |Y nt |+ [f(|Y nt |)|Znt |]α)2dt

+ sup
t∈[0,T ]

|K̃u(t)|2 +
{∫ T

0

(1 + |Znt |α + f(|Y nt |)|Znt |)dt
}2)γ

<∞.

The proof is completed. �

We are now in position to prove the main theorem of this section.

Proof of Theorem 4.2 . Let us define by µ the measure dµ = dP ⊗ du ⊗ dt. Using Lemmas 4.3
and 4.5, there exists a subsequence (DuY

n
t , DuZ

n
t ) (still indexed by n) that converges weakly to a

limit process denoted by (Uu,t, Vu,t), 0 ≤ u, t ≤ T in the space of random variables with values in
L2(Ω× [0, T ]). Thus, it is readily seen that for almost t ∈ [0, T ], the solution (Yt, Zt) to the BSDE
(2.1) is Malliavin differentiable and (DuYt, DuZt) = (Uu,t, Vu,t) dµ-a.e. in Ω × [0, T ] × [0, T ]. To
conclude, we only need to prove that each term in equation (4.5) converges to its corresponding
counterpart in equation (4.1) when n goes to infinity. The convergence off the stochastic intergal
is well known and we do not reproduce its proof here (see [1] or [38, Theorem 3.2.3]).

Using assumption (M1) and the dominated convergence theorem, one can show that∫ T

0

〈(∇gn)(s,Θn
s ), DuΘn

s 〉ds converges to

∫ T

0

〈(∇g)(s,Θs), DuΘs〉ds

in the weak topology of L1(Ω× [0, T ]). Indeed, let ζ be any bounded FT -adapted random variable.
For n ∈ N and for almost all u ∈ [0, T ], using Hölder inequality, we have

E
[
ζ

∫ T

0

DuY
n
s

(
2 + |Zs|α + |Zns |α

)
ds
]
≤ C essup |ζ|E

[
sup

s∈[0,T ]

|DuY
n
s |2 +

(∫ T

0

(
4 + |Zs|2α + |Zns |2α

)
ds
)]
.
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Using Lemma 4.3 and 4.5 and Theorem 3.4, it follows that the right side of the above inequality is
uniformly bounded in n. In addition, the continuity of∇yg, the uniform convergence of (Y n)n∈N to
Y and the H2 convergence of (Zn)n∈N to Z yield the convergence of (∇ygn)(s,Θn

s ) to (∇yg)(s,Θs)
in H2(Ω × [0, T ]) as n goes to infinity. Since ζ is chosen arbitrarily, the uniform convergence of
the process (DY n)n∈N to DY and the dominated convergence imply that

lim
n→∞

∫ T

0

∇ygn(s,Θn
s )DuY

n
s ds =

∫ T

0

∇yg(s,Θs)DuYsds.

Applying the same reasoning as above, we deduce that

lim
n→∞

∫ T

0

∇zgn(s,Θn
s )DuZ

n
s ds =

∫ T

0

∇zg(s,Θs)DuZsds.

Let us now show that

Dugn(s, Y ns , Z
n
s ) converges to Dug(s, Ys, Zs) in the weak topology of L2(Ω× [0, T ]).

Using (4.3), assumption (M2) and the assumptions on ϕ, ϕ̃ and the function f , we have

E
∫ T

0

∫ T

0

|Dugn(s, Y ns , Z
n
s )|2dsdu ≤E

∫ T

0

∫ T

0

|Ku(s)|2(1 + |ϕ̃(Y ns )|+ [f(|ϕ̃(Y ns )|)|ϕ(Zns )|]α)2dsdu

+ E
∫ T

0

∫ T

0

|K̃u(s)|2(1 + |ϕ(Zns )|α + f(|ϕ̃(Y ns )|)|ϕ(Zns )|)2dsdu

≤E
∫ T

0

∫ T

0

|Ku(s)|2(1 + |Y ns |+ [f(|Y ns |)|Zns |]α)2dsdu

+ E
∫ T

0

∫ T

0

|K̃u(s)|2(1 + |Zns |α + f(|Y ns |)|Zns |)2dsdu ≤ C

where the last inequality follows from Lemma 4.3. Therefore, Lemma 2.2 yields that
Dugn(s, Y ns , Z

n
s ) converges to Dug(s, Ys, Zs) in the weak topology of L2(Ω× [0, T ]). The proof is

completed. �

4.2. Classical differentiability. Throughout this section, we consider the following parame-
terised BSDE

Y xt = ξ(x) +

∫ T

t

g(s, ω, x, Y xs , Z
x
s )ds−

∫ T

t

Zxs dBs, t ∈ [0, T ], x ∈ Rm. (4.7)

We suppose the following assumption:

Assumption 4.6.

(C1) Let m, d ∈ N. Let g : [0, T ] × Ω × Rm × R × Rd → R be an adapted measurable function,
differentiable in the spatial variables with continuous partial derivatives in y and z. There
exist a positive process (Kt(x))t∈[0,T ] depending on x ∈ Rm and a locally bounded and non-

decreasing function f ∈ L1
loc(R,R+) such that for all (t, x, y, z) ∈ ×[0, T ]× Rm × R× Rd,

α ∈ (0, 1)

|g(t, x, y, z)| ≤ Λ0 + Λy|y|+ Λz(|z|+ f(|y|)|z|2) a.s.,

|∇xg(t, x, y, z)| ≤ Kt(x)(1 + |y|+ [f(|y|)|z|]α) a.s.,

|∇yg(t, x, y, z)| ≤ Λy(1 + |z|α) a.s.,

|∇zg(t, x, y, z)| ≤ Λz(1 + f(|y|)|z|) a.s.

Furthermore, the process (Kt(x))t∈[0,T ] satisfies supx∈Rm
∫ T

0
E|Ks(x)|2pds < ∞ for any

p ≥ 1.
(C2) (i) For any x ∈ Rm, the random variable ξ(x) is FT -adapted and supx∈Rm ‖ξ(x)‖L∞(Ω) <

∞ a.s.
(ii) For all p ≥ 1 the mapping x 7→ ξ(x) from Rm to L2p(Ω) is differentiable and

supx∈Rm ‖∇xξ(x)‖L2p(Ω) <∞.
(C3) The function x 7→ ∇xξ(x) is continuous.
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Note that even if the process (Kt(x))t∈[0,T ] does not satisfy one of the standard requirements in
the literature (that is E sup0≤t≤T |Kt(x)|p <∞), we can still use the Hölder and the Minkowski’s
integral type inequalities to prove the desire result.

Lemma 4.7. Suppose Assumptions (C1) and (C2) are valid. For all p > 1 and i ∈ {1, . . . ,m}
there exists C > 0 such that for all x, x′ ∈ Rm and h, h′ ∈ R for which (x + hei) and (x′ + h′ei)
belongs to Rm we have

E
[

sup
t∈[0,T ]

|Y x+hei
t − Y x

′+h′ei
t |2p +

(∫ T

0

|Zx+hei
s − Zx

′+h′ei
s |2ds

)p]
≤ C(|x− x′|2 + |h− h′|2)p,

(4.8)

where (Y r, Zr) is the solution to the BSDE (4.7) with parameter r ∈ {x+ hei, x
′ + h′ei}.

Remark 4.8. It follows rom the Kolmogorov’s continuity criterion,for 0 ≤ t ≤ T the mapping
x 7→ Y xt has a continuous version for which almost all sample paths are β-Hölder continuous in
Rm for any β ∈ (0, 1). For (t, x) ∈ [0, T ]×Rm the mapping t 7→ Y xt (ω) is continuous P-a.s. ω ∈ Ω.
This is a necessary condition to obtain a classical differentiability result for the solution process
(Y x, Zx) to the BSDE (4.7) under Assumption 4.6.

Proof. Set x̄ = x− x′, h̄ = h− h′ and define the following processes: δYt := (Y x+hei
t − Y x

′+h′ei
t ),

δZt := (Zx+hei
t − Zx

′+h′ei
t ) and δξ := (ξ(x+ hei)− ξ(x′ + h′ei)). From assumption (C1) (δY, δZ)

satisfies the equation

δYt = δξ −
∫ T

t

[
Iys (x̄+ h̄ei) + Ixs δYs + Izs δZs

]
ds−

∫ T

t

δZsdBs,

where the processes Ix, Iy and Iz are given by

Ixs =

∫ 1

0

(∇xg)(s, x+ hei + θ(x̄+ h̄ei), Y
x+hei
s , Zx+hei

s )dθ,

Iys =

∫ 1

0

(∇yg)(s, x′ + h′ei, Y
x+hei
s − θδYs, Zx+hei

s )dθ,

Izs =

∫ 1

0

(∇zg)(s, x′ + h′ei, Y
x+hei
s , Zx+hei

s − θδZs)dθ.

Using (C1), the following bounds can be obtained:

|Ixt | ≤
∫ 1

0

[
(1 + |Y x+hei

t |+ [f(|Y x+hei
t |)|Zx+hei

t |]α)Kt(x+ hei + θ(x̄+ h̄ei))
]

dθ,

|Iyt | ≤ Λy(1 + |Zx+hei
t |α),

|Izt | ≤ Λz
(
1 + f(|Y x+hei

t |)(|Zx+hei
t |+ |Zx

′+h′ei
t |)

)
.

Observe that (Iz ∗B) is a BMO martingale and

sup
x∈Rm,h∈R

(‖Iz ∗B‖BMO) ≤ sup
x∈Rm,h∈R

(‖Zx+hei ∗B‖BMO + ‖Zx ∗B‖BMO) <∞.

Moreover, from (C2), δξ is bounded. Thus, Lemma 3.9 (see also [22, Lemma A 1]) yields that for
any p > 1:

‖δY ‖2pS2p + ‖δZ‖2pH2p ≤ CE
[
|δξ|2pq +

(∫ T

0

|Ixs |(|x− x′|+ |h− h′|)ds
)2pq] 1

q

, (4.9)

where q ∈ (1,∞). From (C2) and the mean value theorem, we deduce the existence of a constant
C > 0 such that

E|δξ|2pq ≤ C(|x− x′|2 + |h− h′|2)pq,

We now focus on the second term of (4.9). For simplicity, we will write K x̄,h̄
t (θ) := Kt(x+ hei +

θ(x̄+ h̄ei)). For any γ ≥ 2, using the Hölder inequality and Minkowski’s integral type inequality
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we have(∫ T

0

|Ixt |dt
)γ

≤
(∫ T

0

(1 + |Y x+hei
t |+

[
f(|Y x+hei

t |)|Zx+hei
t |

]α
)

∫ 1

0

K x̄,h̄
t (θ)dθdt

)γ
≤
(∫ T

0

(
1 + |Y x+hei

t |+
[
f(|Y x+hei

t |)|Zx+hei
t |

]α) 1
α dt
)αγ(∫ T

0

(∫ 1

0

K x̄,h̄
t (θ)dθ

) 1
1−α

dt
)γ(1−α)

≤C
(∫ T

0

(
1 + |Y x+hei

t | 1α + sup
0≤y≤2Υ(1)

ϕ(y) + f(|Y x+hei
t |)|Zx+hei

t |2
)
dt
)αγ(∫ 1

0

(∫ T

0

|K x̄,h̄
t (θ)|

1
1−α dt

)(1−α)

dθ
)γ
.

Taking the expectation on both sides of the above inequality and applying the Hölder’s inequality,
we have

E
(∫ T

0

|Ixt |dt
)γ

≤C
[
E
(∫ T

0

(
1 + |Y x+hei

t | 1α + f(|Y x+hei
t |)|Zx+hei

t |2
)
dt
)γ]α[

E
(∫ 1

0

(∫ T

0

|K x̄,h̄
t (θ)|

1
1−α dt

)(1−α)

dθ
) γ

1−α
](1−α)

≤C
[
E
(∫ T

0

(
1 + |Y x+hei

t | 1α + f(|Y x+hei
t |)|Zx+hei

t |2
)
dt
)γ]α[

E
∫ 1

0

(∫ T

0

|K x̄,h̄
t (θ)|

1
1−α dt

)(1−α)· γ
1−α

dθ
](1−α)

≤CT
1

(1−γ)

[
E
(∫ T

0

(
1 + |Y x+hei

t | 1α + f(|Y x+hei
t |)|Zx+hei

t |2
)
dt
)γ]α[ ∫ 1

0

∫ T

0

E|K x̄,h̄
t (θ)|

γ
1−α dtdθ

](1−α)

.

Hence, we deduce that

sup
x∈Rm,h∈R

E
(∫ T

0

|Ixt |dt
)γ

≤C sup
x∈Rm,h∈R

(
1 + ‖Y x+hei‖γS∞ + ‖

√
f(|Y x+hei |)Zx+hei‖2γαHγ

)
sup
r∈Rm

(∫ T

0

E|Kt(r)|
γ

1−α dt
)(1−α)

<∞.

The proof is completed. �

It is then possible to identify the couple process (∇Y x,∇Zx) as the derivatives of (Y x, Zx)
under Assumption 4.6 such that the following BSDE

∇Y xt = ∇xξ(x)−
∫ T

t

∇xZxs dBs +

∫ T

t

(
∇xg(s,Θx

s ) +∇yg(s,Θx
s )∇Y xs +∇zg(s,Θx

s )∇Zxs
)

ds,

(4.10)

makes sense for all x ∈ Rm, t ∈ [0, T ], where Θx
· = (x, Y x· , Z

x
· ).

We only prove the differentiability of (Y x, Zx) with respect to the natural topological structure
on the Banach space S2p×H2p, p > 1. Under some additional assumptions (for example smooth-
ness of the parameters) the pathwise differentiablity of the maps x 7→ (Y xt (ω), Zxt (ω)) for almost
all (ω, t) ∈ Ω× [0, T ] can be obtained without major difficulties.

The main result of this subsection is the following

Theorem 4.9 (Differentiability). Suppose the coefficients of the BSDE (4.7) satisfy Assumption
4.6. Then for any parameter x ∈ Rn and all p > 1 the solution function: Rm → S2p × H2p,
x 7→ (Y x, Zx) is differentiable in the norm topology and the couple (derivatives) x 7→ (∇Y x,∇Zx)
is solution to the BSDE (4.10). In particular for x, x′ ∈ Rm we have

lim
x→x′

{
‖∇xY xt −∇xY x

′

t ‖
2p
S2p + ‖∇xZxt −∇xZx

′

t ‖
2p
H2p

}
= 0.

The proof of Theorem 4.9 follows from well known techniques related to differentiability of
BSDEs with drivers that grow quadratically in the control variable. We refer the reader for
example to [1, 17, 20, 38]. For the sake of better understanding, we sketch the proof below
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Proof of Theorem 4.9. We start by observing the following: Assumption (H1) guarantees the ex-
istence of a maximal solution (Y x, Zx) to the BSDE (4.7) in S∞ × HBMO such that the norms
of Y x (resp. Zx) in S∞ (resp. HBMO) are uniformly bounded in x. Using Lemma 4.7 we also
deduce that for all p > 1, x ∈ Rm, h, h′ ∈ R and i ∈ {1, · · · ,m}

lim
h→0

{∥∥∥Y x+hei
t − Y xt

∥∥∥
S2p

+
∥∥∥Zx+hei

t − Zxt
∥∥∥
H2p

}
= 0,

Then, for any candidate (∇xiY xt ,∇xiZxt ) for the partial derivatives satisfying BSDE (4.10), the
following can be achieved as in [? , P33]DosReis:

lim
h→0

{∥∥∥Y x+hei
t − Y xt

h
−∇xiY xt

∥∥∥
S2p

+
∥∥∥Zx+hei

t − Zxt
h

−∇xiZxt
∥∥∥
H2p

}
= 0.

The above guarantees the existence of partial derivatives of (Y x, Zx). Using Lemma 4.7 once more,
and the continuity of the derivatives of g, it can be shown that (∇xiY x,∇xiZx) are continuous
with respect to any x ∈ Rm. This concludes the proof. �

5. Differentiability of quadratic FBSDEs with rough drift

In this section, we study the smoothness properties of the solution (Xx, Y x, Zx) of the following
FBSDE

Xx
t =x+

∫ t

0

b(s,Xx
s )ds+Bt, (5.1)

Y xt =φ(Xx
T ) +

∫ T

t

g(s,Xx
s , Y

x
s , Z

x
s )ds−

∫ T

t

Zxs dBs, (5.2)

where the functions b, φ and g are both deterministic explicit functional that are Borel measurables
and satisfying some conditions that will be made precise below.

In the sequel, the driver g and the terminal value φ satisfy the following assumptions:

(AY): The function φ : R → R is continuous, measurable and uniformly bounded; g : [0, T ] ×
Rd × R × Rd → R is a measurable function satisfying: ‖g(t, 0, 0, 0)‖∞ ≤ Λ0 and there
exist positive constants Λx,Λy and Λz such that for all (t, x, y, z) ∈ ×[0, T ]×Rd×R×Rd,
(t, x′, y′, z′) ∈ ×[0, T ]× Rd × R× Rd, α ∈ (0, 1)

|g(t, x, y, z)− g(t, x′, y, z)| ≤ Λx(1 + |y|+ [f(|y|)|z|]α)|x− x′|,
|g(t, x, y, z)− g(t, x, y′, z′)| ≤ Λy(1 + (|z|+ |z′|))|y − y′|+ Λz(1 + (f(|y|) + f(|y′|))(|z|+ |z′|))|z − z′|),

where f ∈ L1
loc(R,R+) is locally bounded and non-decreasing.

(AY1): The functions φ and g are differentiable in x and g is continuously differentiable in (x, y, z).
There exist non negative constants Λx,Λy,Λz and Λφ such that for all (t, x, y, z) ∈ ×[0, T ]×
Rd × R× Rd, α ∈ (0, 1)

|∇xg(t, x, y, z)| ≤ Λx(1 + |y|+ [f(|y|)|z|]α),

|∇yg(t, x, y, z)| ≤ Λy(1 + |z|α),

|∇zg(t, x, y, z)| ≤ Λz(1 + f(|y|)|z|),
|∇xφ| ≤ Λφ.

5.1. The case of SDEs with bounded drift. In this section, we assume that the drfit b in the
forward SDE (5.1) satisfies

(AX): b : [0, T ]× Rd → Rd is uniformly bounded and Borel measurable.

It is well known that under (AX), the SDE (5.1) has a unique strong Malliavin and Sobolev
differentiable solution (see for example [30, 32]). Let us recall the following results whose proofs
can be found in [30, 32].

Theorem 5.1. Suppose (AX) is valid.
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(i) The SDE (5.1) has a unique strong solution Xx
t ∈ L2(Ω;W 1,2

loc (Rd)). Moreover, for all
s, t ∈ [0, T ], x, y ∈ R it holds

E
[
|Xx

t −Xy
s |2
]
≤ C(‖b‖∞)

(
|t− s|+ |x− y|2

)
. (5.3)

(ii) The strong solution Xx is Malliavin difffferentiable and for 0 ≤ s ≤ t ≤ T , the Malliavin
derivative DsX

x
t satisfies

sup
x∈R

sup
s∈[0,t]

E [|DsX
x
t |p] ≤ C (5.4)

for all p ≥ 1, where C is an increasing function off ‖b‖∞. Moreover, the following relation
holds

DsX
x
t (∂xX

x
s ) = ∂xX

x
t P-a.s., (5.5)

where ∂xX
x
t denotes the first variation of the process x 7→ Xx.

The next result pertains with the existence and representation of the Malliavin derivative of
the solution to the FBSDE (5.1)-(5.2).

Theorem 5.2. Suppose Assumptions (AX), (AY) and (AY1) are in force. Then the solution
process (Y x, Zx) belongs to L1,2 × (L1,2)d and a version of (DuY

x
t , DuZ

x
t )u,t∈[0,T ] is the unique

solution to the linear BSDE

DuY
x
t = 0 and DuZ

x
t = 0, if t ∈ [0, u),

DuY
x
t = ∇xφ(Xx

T )DuX
x
T +

∫ T

t

∇xg(s,Xx
s , Y

x
s , Z

x
s )DuX

x
s ds+

∫ T

t

∇yg(s,Xx
s , Y

x
s , Z

x
s )DuY

x
s ds,

+

∫ T

t

∇zg(s,Xx
s , Y

x
s , Z

x
s )DuZ

x
s ds−

∫ T

t

DuZ
x
s dBs, t ∈ [u, T ], (5.6)

where DuX
x is the Malliavin derivative of the process Xx.

Proof. We just need to prove as in [1, 20, 19, 38] that the conditions of the theorem imply that
assumptions (M1) and (M2) in Section 4.1 are satisfied.

Here ξ(x) = φ(Xx
T ) and for u ∈ [0, T ] we have

|Duξ(x)| = |Duφ(Xx
T )| = |(DuX

x
T )∇xφ(Xx

T )| ≤ C|DuX
x
T |.

Using (5.4), it holds that for any p ≥ 1

sup
x∈R

sup
u∈[0,T ]

E [|Duξ(x)|p] ≤ C sup
x∈R

sup
u∈[0,T ]

E [|DuX
x
T |p] <∞.

On the other hand, consider

ḡ : Ω× [0, T ]× R→ R
(ω, t, x, y, z) 7→ g(t,Xx

t (ω), y, z).

From (AY1), it is readily seen that ḡ satisfies (M1) almost surely. Furthermore,

|Duḡ(t, x, y, z)| ≤ Λx|DuX
x
t |(1 + |y|+ [f(|y|)|z|]α).

Using once more (5.4) one has sup0≤t≤T
∫ T

0
E[|DuX

x
t |2p]du < ∞ for any p ≥ 1. Thus (M2) is

satisfied.
�

Remark 5.3. The above result remains true when φ satisfies the polynomial growth condition,
i.e., |∇xφ(x)| ≤ C(1 + |x|n), for n ∈ N. Suppose for example that φ is of linear growth then for
all p ≥ 1

sup
u∈[0,T ]

E
[
(1 + |Xx

T |)2p|DuX
x
T |p
]
≤ C

[
E(1 + |Xx

T |)2p
] 1

2 sup
u∈[0,T ]

[
E(|DuX

x
T |2p)

] 1
2 <∞.
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Remark 5.4. In the one dimensional case, under assumption (AX), the first varaition process
and the Malliavin derivative of the solution to the SDE (5.1) can be represented explicitely (see
for example [4, 31]) with respect to the local tome space-time integral as follows

∂xX
x
t = exp

(
−
∫ t

0

∫
R
b(u, y)LX

x

(du,dy)
)

dt⊗ dP-a.s.,

DsX
x
t = exp

(
−
∫ t

s

∫
R
b(u, y)LX

x

(du,dy)
)
.

See also Appendix C.

Remark 5.5. Theorem 5.2 is still valid when the process (Xt)t∈[0,T ] is the solution of the following
SDE with random coefficients:

Xθ
t (ω) = θ +

∫ t

0

b (s, ω,Xs(ω)) ds+

∫ t

0

σ (s, ω,Xs(ω)) dBs, (5.7)

where θ ∈ L0(F0;P,Rd) and b, σ satisfies the conditions in [21].
Indeed, from [21, Theorem 3.2], the SDE (5.7) has a unique Malliavin differentiable solution

X in Sp. In addition, there exist two adapted processes U and V such that for 0 ≤ s ≤ t ≤ T :

DsXt(ω) = σ(s, ω,Xs(ω)) +

∫ t

s

∇xb (r, ω,Xr(ω))DsXr(ω)dr +

∫ t

s

∇xσ (r, ω,Xr(ω))DsXr(ω)dBr

+

∫ t

s

U(s, r, ω)dr +

∫ t

s

V (s, r, ω)dBr, (5.8)

DsXt(ω) = 0 for s > t.

Here, s 7→ DsX· is not continuous but only square integrable

5.2. The case of SDEs with Cβb drift. In this section, we assume that the drift b of fthe forward
SDE satisfies:

Assumption 5.6. There exists β ∈ (0, 1) such that b ∈ L∞([0, T ];Cβb (Rd;Rd)).

The following result is from [23]

Theorem 5.7. Suppose Assumption 5.6 and fix any β′ ∈ (0, β). Then

(1) (Pathwise uniqueness) For every s ≥ 0, x ∈ Rd the SDE (5.1) has a unique continuous
adapted solution Xs,x = (Xs,x

t (ω), t ≥ s, ω ∈ Ω).
(2) (Differentiable flow) There exists a stochastic flow Xs,x

t = φs,t(x) of diffeomorphisms for

equation (5.1). The flow is also of class C1+β′ and for any p ≥ 1

sup
x∈R

sup
0≤s≤T

E
[

sup
s≤t≤T

‖Dφs,t(x)‖p
]
<∞.

(3) (Stability) Let (bn)n∈N ⊂ L∞(0, T ;Cβb (Rd;Rd)) be a sequence of vector fields and φn be

the associate stochastic flows. If bn → b in L∞(0, T ;Cβ
′

b (Rd;Rd)) for some β′ > 0 then
for any p ≥ 1

lim
n→∞

sup
x∈Rd

sup
0≤s≤T

E
[

sup
r∈[s,T ]

|φns,r(x)− φs,r(x)|p
]

= 0, (5.9)

lim
n→∞

sup
x∈Rd

sup
0≤s≤T

E
[

sup
r∈[s,T ]

‖Dφns,r(x)−Dφs,r(x)‖p
]

= 0. (5.10)

Similar to [16], we have

Proposition 5.8. Under Assumption 5.6, the solution (Xx
t , 0 ≤ t ≤ T ) to equation (5.1) is

Malliavin differentiable and for any p ≥ 2

sup
0≤s≤t

E
[

sup
s≤t≤T

|DsX
x
t |p
]
<∞. (5.11)
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Let (bn)n≥1 be a sequence of compactly supported smooth functions approximating b and let
(Xn,x)n≥1 be a sequence of corresponding solution to the SDE (5.1). Then we have the following
stability result: For all p ≥ 2

lim
n→∞

sup
x∈Rd

E
[

sup
0≤s≤t≤T

|DsX
n,x
t −DsX

x
t |p
]

= 0. (5.12)

Proof. Fix λ > 0 and consider the following backward Kolmogorov PDE

∂tuλ + Luλ − λuλ = −b, (t, x) ∈ [0,+∞)× Rd,
where Luλ = 1/2∆uλ + b · Duλ. It can be shown (see [16, Lemma 6]) that uλ ∈
L∞([0,∞);C2+β

b (Rd)). In addition for λ large enough, the map Ψλ(t, x) = x + uλ(t, x) satis-
fies (see [16, Lemma 6]) :

(i) uniformly in t, Ψλ has bounded first and second derivatives and the second (Fréchet)
derivative D2Ψλ is globally β-Hölder continuous.

(ii) For any t ≥ 0, Ψλ : Rd 7→ Rd is non-singular diffeomorphism of class C2.
(iii) Ψ−1

λ has bounded first and second derivatives uniformly in t ∈ [0,∞).

Let us consider the following SDE

X̃t = y +

∫ t

s

b̃(v, X̃v)dv +

∫ t

s

σ̃(v, X̃v)dBv, t ∈ [s, T ], (5.13)

where b̃(t, y) = −λuλ(t,Ψ−1
λ (t, y)) and σ̃(t, y) = DΨλ(t,Ψ−1

λ (t, y)). It is then clear that: b̃ ∈
L∞([0,∞);C2+β

b (Rd)) and σ̃ ∈ L∞([0,∞);C1+β
b (Rd)). Thus, equation (5.13) has a unique strong

Malliavin differentiable solution (see [35, Theorem 2.2.1]) such that for any p ≥ 2

sup
0≤s≤t

E[ sup
s≤t≤T

|DsX̃t|p] <∞.

Let (X̃t, 0 ≤ t ≤ T ) be the solution to the SDE (5.13). Then we deduce that Xt = Ψ−1
λ (t, X̃t)

is solution to SDE (5.1). Using the chain rule for Malliavin calculus and the fact that Ψ−1
λ has

bounded first derivative, we have

E[ sup
s≤t≤T

|DsXt|p] ≤ CE[ sup
s≤t≤T

|DsX̃t|p] <∞.

Thus, (5.11) follows. The proof of (5.12) follows in an anologous way as in [16, Theorem ???]) by
observing that in the smooth case both the equations of DsX

x
t and ∇xXx

t are similar. �

Remark 5.9. By using the same argumen as above, one can show that :

E
[

sup
0≤t≤T

|(∇xXt)|p
]
<∞, ∀p ∈]−∞, 0[∪]0,+∞[1.

Indeed, the solution X̃ to the equation (5.13) (with Lipschitz continuous coefficients b̃

and σ̃) is differentiable with respect to x and (∇xX̃t)
−1 satisfies a linear SDE such that

E
[
sup0≤t≤T |(∇xX̃t)

−1|p
]
< ∞, for any p > 1 (see [28]). Then, by using the fact that Ψ−1

is differentiable with bounded derivative, we obtain the desired result.

Since b is not differentiable, the representation of the Malliavin derivative DsX
x
t in the classical

sense of Lebesgue integrals does not hold. Recently, the representation for the first variation
process ∇xXx

t was given in terms of a system of Young type equations in [29]. The main ingredient

in the proof of this result is to rigorously establish the well posedness of the process V k,jt (b,X) =
AXt [∂kb

j ] for every t ≥ 0 and j, k ∈ {1, . . . , d} via the so called stochastic sewing lemma.

Theorem 5.10 (Theorem 4.1 in [29]). Suppose Assumption 5.6. For any β′ ∈ (0, β), the first
variation process ∇Xx

t satisfies the following system of Young-type equations

∂xiX
j,x
t = δi,j +

d∑
k=1

∫ t

0

∂xiX
j,x
s dV k,js (b,X), ∀i, j ∈ {1, · · · , d} (5.14)

1The case p > 1 was treated in [16]
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where δi,j stands for the Kronecker delta symbol, V k,jt (b,X) = AXt [∂kb
j ] and (At)s≤t≤T is the

unique (up to modifications) stochastic process with values in Rd satisfying conditions of Lemma

D.1 (see [29, Theorem 2.3]). Moreover, the map t → ∇Xx
t is a.s. 1+β′

2 -Hölder continuous for
every β′ ∈ (0, β).

Combining the arguments in Theorem 5.10 and Corollary 5.8, we have

Corollary 5.11. Suppose Assumption 5.6. For any β′ ∈ (0, β), the Malliavin derivative of the
solution Xx

t to SDE (5.1) is given by:

(Di
sX

x
t )j = δi,j +

d∑
k=1

∫ t

s

(Di
sX

x
u)jdV k,js (b,X), ∀i, j ∈ {1, · · · , d}. (5.15)

Moreover, the map s 7→ DsX
x(·) is a.s. 1+β′

2 –Hölder continuous for every β′ ∈ (0, β).

We have the subsequent results as a combination of Theorem 5.7 and Theorem 4.9.

Theorem 5.12. Suppose Assumption 5.6, (AY) and (AY1) hold. Let x ∈ Rd and p > 1. Then
the map x 7→ (Y x, Zx) solution to (5.2) is differentiable in the norm topology and the derivative
process (∇xY x,∇xZx) solves the BSDE

∇Y xt =∇xφ(Xx
T )∇Xx

T +

∫ T

t

∇xg(s,Xx
s , Y

x
s , Z

x
s )∇xXx

s ds+

∫ T

t

∇yg(s,Xx
s , Y

x
s , Z

x
s )∇xY xs ds

+

∫ T

t

∇zg(s,Xx
s , Y

x
s , Z

x
s )∇xZxs ds−

∫ T

t

∇xZxs dBs, (5.16)

where ∇xXx satisfies equation (5.14).

Theorem 5.13. Suppose Assumptions 5.6, (AY) and (AY1) are in force. Then the solution
process (Y x, Zx) belongs to L1,2 × (L1,2)d and a version of (DuY

x
t , DuZ

x
t )u,t∈[0,T ] is the unique

solution to the BSDE

DuY
x
t = 0 and DuZ

x
t = 0, if t ∈ [0, u),

DuY
x
t = ∇xφ(Xx

T )DuX
x
T +

∫ T

t

∇xg(s,Xx
s , Y

x
s , Z

x
s )DuX

x
s ds+

∫ T

t

∇yg(s,Xx
s , Y

x
s , Z

x
s )DuY

x
s ds,

+

∫ T

t

∇zg(s,Xx
s , Y

x
s , Z

x
s )DuZ

x
s ds−

∫ T

t

DuZ
x
s dBs, t ∈ [u, T ], (5.17)

where DuX
x satisfies equation (5.15).

Moreover, {DtY
x
t : 0 ≤ t ≤ T} is continuous a version of {Zxt : 0 ≤ t ≤ T} and

DuY
x
t (∇xXx

u) = ∇xY xt , (5.18)

Zxt (∇xXx
t ) = ∇xY xt , (5.19)

DuZ
x
t (∇xXx

t ) = ∇xZxt (5.20)

Proof. The first part follows from Theorem 5.2
For the second part, it is enough to establish (5.18) under the additional assumption on b. The

relation (5.19) follows from (5.18) for u = t. We also have

DuY
x
t ∇xXx

u = ∇xφ(Xx
T )DuX

x
T∇xXx

u +

∫ T

t

〈∇g(s,Θx
s ), DuΘx

s∇xXx
u〉ds−

∫ T

t

DuZ
x
s∇xXx

udBs,

with terminal value and generator satisfying conditions (C1),(C2) and (C3). Then, from the unique
solvability of BSDE (4.10) we obtain (5.18) and (5.20). Moreover, {DtY

x
t : 0 ≤ t ≤ T} is a version

of {Zxt : 0 ≤ t ≤ T}. We end the proof by observing that the process DY admits a continuous
version, since it is represented in terms of continuous processes t → ∇Yt and t → (∇xXt)

−1

(see Theorem 5.12 and Theorem 5.10). Thus, the existence of a continuous version to t 7→ Zt
follows. �
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6. Path regularity and explicit convergence rate

In this section, we study the path regularity and the rate of convergence of a numerical scheme
to the FBSDE (5.1)-(5.2).

Lemma 6.1. Under Assumptions 5.6, (AY) and (AY1), we obtain for all p > 1

E
[

sup
0≤s≤t≤T

|DsYt|2p
]
<∞, (6.1)

E
[

sup
0≤t≤T

|Zt|2p
]
<∞. (6.2)

In addition for all p ≥ 2, there exists a positive constant Cp > 0, such that for 0 ≤ s ≤ t ≤ T

E
[

sup
s≤r≤t

|Yr − Ys|p
]
≤ Cp|t− s|p/2.

Proof. Under the assumptions of the Lemma, it follows from Lemma 5.13 that the process
{∇xYt(∇xXs)

−1 : 0 ≤ s ≤ t ≤ T} is a version of {DsYt : 0 ≤ s ≤ t ≤ T}. Using Hölder
inequality and Remark 5.9, for any p > 1 we deduce that:

E[ sup
0≤s≤t≤T

|DsYt|2p] ≤ E
[

sup
0≤t≤T

|∇xYt|4p
] 1

2E
[

sup
0≤s≤T

|(∇xXs)
−1|4p

] 1
2

≤ ‖∇xY ‖S2pE
[

sup
0≤s≤T

|(∇xXs)
−1|4p

] 1
2

<∞,

the bound (6.1) follows. In particular, for s = t we obtain the bound (6.2). On the other hand,
we recall that for all s ≤ v ≤ t,

Ys = φ(Xt) +

∫ t

s

g(v,Xv, Yv, Zv)dv −
∫ t

s

ZvdBv.

Then from BDG inequality we deduce that

E
[

sup
s≤r≤t

|Yr − Ys|p
]
≤ C(p)

{
E
(∫ t

s

|g(v,Xv, Yv, Zv)|dv
)p

+ E
(∫ t

s

|Zv|2dv
)p/2}

.

By using the bound: |g(v,Xv.Yv.Zv)| ≤ K(1 + |Yv| + (1 + f(|Yv|))|Zv|2) and the fact that Yv is
bounded we obtain that:

E
[

sup
s≤r≤t

|Yr − Ys|p
]
≤ C(p)

{
|t− s|p + E

[( ∫ t

s

(1 + f(|Yv|))|Zv|2dv
)p

+
(∫ t

s

|Zv|2dv
)p/2]}

.

From to the local boundedness of f and the bound (6.2), we deduce the following

E
[

sup
s≤r≤t

|Yr − Ys|p
]

≤C(p)
{
|t− s|p + |t− s|pE[ sup

s≤v≤t
|Zv|2p] + |t− s|p/2E[ sup

s≤v≤t
|Zv|2p]

}
≤C(p)

{
|t− s|p + |t− s|p/2

}
.

The proof is completed. �

In the sequel, ∆N stands for the collection of all partitions of the interval [0, T ] by finite families
of real numbers. Particular partitions will be denoted by δN = {ti : 0 = t0 < · · · < tN = T} with
N ∈ N. We define the mesh size of partitions as |δN | = max0≤i≤N |ti+1 − ti|

Theorem 6.2 (Path regularity). Suppose Assumption 5.6, (AY) and (AY1). Then for all p ≥ 2,
there exists a positive Cp such that for any partition δN of [0, T ] with (N+1) ∈ N points and mesh
size |δN |, we have

N−1∑
i=0

E
[( ∫ ti+1

ti

|Zt − Zti |2dt
)p/2]

≤ C(p)|δN |p/2.
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Proof. For t ∈ [ti, ti+1], using the representation (5.19), we have

Zt − Zti = ∇Yt(∇xXt)
−1 −∇Yti(∇xXti)

−1

=
(
∇Yt −∇Yti

)
(∇xXti)

−1 +∇Yt
(

(∇xXt)
−1 − (∇xXti)

−1
)

= I1 + I2.

Thus from Hölder’s inequality, we have

E
[( ∫ ti+1

ti

|Zt − Zti |2dt
)p/2]

≤ |δN |p/2−1

∫ ti+1

ti

E
[
|Zt − Zti |p

]
dt

≤ |δN |p/2−1

∫ ti+1

ti

E [|I1|p + |I2|p] dt.

Let us first focus on the term I2. We first assume that b is a bounded and compactly supported
smooth function. Indeed, if b is not differentiable, then, by denseness of the set of compactly
supported and differentiable functions in the set of bounded functions, there exists a sequence
(bn)n≥1 of compactly supported and smooth functions converging to b a.e. on [0, T ]×Rd and the
desired result is obtained from the Vitali’s convergence theorem. Then, the map t 7→ (∇xXt)

−1

satisfies the following linear equation :
d(∇xXt)

−1

dt
= −(∇xXt)

−1b′(t,Xt),

(∇xX0)−1 = Id.

Iterating the above equation gives for all 0 ≤ s ≤ t

|(∇xXt)
−1 − (∇xXs)

−1| =
∣∣∣ ∞∑
k=1

∫
s<s1<...<sn<t

b′(s1, X
x
s1) : · · · : b′(sk, Xx

sk
)ds1 · · · dsk

∣∣∣,
where the symbol ” : ” stands for the matrix multiplication.

For any p ≥ 2, the Girsanov’s theorem and Hölder’s inequality yield

E|(∇xXt)
−1 − (∇xXs)

−1|p

= E
[∣∣∣ ∞∑
k=1

∫
s<s1<...<sn<t

b′(s1, B
x
s1) : · · · : b′(sk, Bsk)ds1 · · · dsk

∣∣∣p × E(∫ t

0

b(v,Bv)dv
)]

≤ C(‖b‖∞)E
[∣∣∣ ∞∑
k=1

∫
s<s1<...<sn<t

b′(s1, B
x
s1) : · · · : b′(sk, Bsk)ds1 · · · dsk

∣∣∣2p]1/2.
Using [30, Proposition 3.7],we have

E|(∇xXt)
−1 − (∇xXs)

−1|p ≤ C(‖b‖∞)|t− s|p/2

for all p ≥ 2, where C : [0,∞)→ [0,∞) is an increasing,continuous function, ‖ · ‖ is a matrix-norm
on Rd×d and ‖ · ‖∞ the supremum norm. Thus, the bound remains valid for only bounded and
measurable drift b. Therefore,

E [|I2|p] ≤ C
(
E
[

sup
0≤t≤T

|∇xYt|2p
]) 1

2 ×
(
E
[
|(∇xXt)

−1 − (∇xXti)
−1|2p

]) 1
2

≤ C|δN |p/2.

Let us turn now on I1. We also claim:

δ
p/2−1
N

N−1∑
i=0

∫ ti+1

ti

E [|I1|pdt] ≤ C|δN |p/2.

Indeed, noticing that (∇xXti)
−1 is Fti-adapted and using the tower property

E[|(∇xYt −∇xYti)(∇xXx
ti)
−1|p] = E

[
E[|∇xYt −∇xYti |p/Fti ]|(∇xXti)

−1|p
]
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By writing the equation satisfied by the difference ∇Yt −∇Yti for all ti ≤ t ≤ ti+1 and using the
conditional BDG’s inequality, we obtain

E
[
|∇xYt −∇xYti |2p/Fti

]
≤CE

[∣∣∣ ∫ t

ti

〈∇g(s,Θs),∇Θs〉ds
∣∣∣2p +

∣∣∣ ∫ t

ti

∇ZsdBs
∣∣∣2p/Fti]

≤CE
[( ∫ ti+1

ti

|∇g(s,Θs)||∇Θs|ds
)2p

+
(∫ ti+1

ti

|∇Zs|2ds
)p/

Fti

]
:= CX[ti,ti+1].

Thus,

δ
p/2−1
N

N−1∑
i=0

∫ ti+1

ti

E [|I1|p] dt ≤ C|δN |p/2
N−1∑
i=0

E
[
X[ti,ti+1]|(∇xXti)

−1|p
]

≤ C|δN |p/2E
[

sup
0≤t≤T

|(∇xXt)
−1|p

N−1∑
i=0

X[ti,ti+1]

]
≤ C|δN |p/2E

[
sup

0≤t≤T
|(∇xXt)

−1|pX[0,T ]

]
,

which is finite, thanks to Remark 5.9. This conclude the proof. �

Corollary 6.3 (Zhang’s path regularity theorem). Under the assumptions of Theorem 6.2 , we
deduce the following:

N−1∑
i=0

E
[ ∫ ti+1

ti

|Zt − Z̃δNti |
2dt
]
≤ C|δN |,

where

Z̃δNti =
1

ti+1 − ti
E
[ ∫ ti+1

ti

Zsds
/
Fti

]
, (6.3)

is a family of random variables defined for all partition points ti of δN and Z is the control process
in the solution of FBSDE (5.1)-(5.2).

Proof. It is well known that the random variable Z̃δNti is the best Fti-adapted H2([ti, ti+1]) ap-
proximation of Z, i.e.,

E
[ ∫ ti+1

ti

|Zs − Z̃δNti |
2ds
]

= inf
Zi∈L2(Ω,Fti )

E
[ ∫ ti+1

ti

|Zs − Zi|2ds
]
.

In particular,

E
[ ∫ ti+1

ti

|Zs − Z̃δNti |
2ds
]
≤ E

[ ∫ ti+1

ti

|Zs − Zti |2ds
]
.

The result then follows from the Theorem 6.2 by taking p = 2. �

Let us introduce the following family of truncated FBSDE

Y nt = φ(XT ) +

∫ T

t

gn(s,Xs, Y
n
s , Z

n
s )ds−

∫ T

t

Zns dBs, (6.4)

where

gn(t, x, y, z) = g(t, x, ρ̃n(y), ρn(z)) for (t, x, y, z) ∈ [0, T ]× Rd × R× Rd, n ∈ N,
with ρ̃n given by (4.2), ρn : Rd → Rd, z 7→ ρn(z) = (ρ̃n(z1), · · · , ρ̃n(zd)) and X stands for the
solution to the SDE (5.1). It is clear that (6.4) satisfies assumptions of Theorem 5.2 provided (5.1)
and (5.2) do satisfy them. Using similar arguments as in the proof of Theorem 3.4 and Lemma
4.3, we have

max
{

sup
n∈N
‖Zn ∗B‖BMO, ‖Z ∗B‖BMO

}
≤ Υ(2). (6.5)
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Thus for all n ∈ N the sequence (Zn ∗ B)n∈N satisfies the properties (P2) of Lemma A.1
i.e. there is a universal constant r > 1 such that E(Zn ∗ B) ∈ Lr. Then, we deduce that
(Y n, Zn) is differentiable in the sense of Theorem 5.12 and the following uniform bounds hold:

supn∈N

(
‖∇Y n‖S2p + ‖∇Zn‖H2p

)
<∞. Moreover, we can show as in (6.2) that

sup
n∈N

E
[

sup
t∈[0,T ]

|Znt |2p
]
<∞. (6.6)

Furthermore, the properties of ρ̃ yield(
|ρ̃(Y ns )− Y ns |+ |ρ(Zns )− Zns |

)2

≤ 8((Υ(1))2I{|Y ns |>n} + |Zns |2I{|Zns |>n}), (6.7)

where supn∈N |Y ns | ≤ Υ(1)( see Theorem 3.4). Indeed, from definition of the function ρ̃ we deduce
the following:

|ρ̃(Y ns )− Y ns | = 1{|Y ns |>n}|ρ̃(Y ns )− Y ns |+ 1{|Y ns |≤n}|ρ̃(Y ns )− Y ns |
= 1{|Y ns |>n}|ρ̃(Y ns )− Y ns |
≤ 2|Y ns |1{|Y ns |>n}

Using the same reasoning as above we deduce that |ρ(Zns )− Zns | ≤ 2|Zns |1{|Zns |>n}.
Below we provide the convergence error of the truncation

Theorem 6.4. Let assumptions of Theorem 5.2 be in force. Let (X,Y, Z) be the solution to
equation (5.1)-(5.2) and (X,Y n, Zn) be the solution of (5.1)-(6.4), n ≥ 1. Then for any p > 1
and κ ≥ 1 there exist a positive finite constant C(p, k) depending on p, κ,, (6.6), the bound in
Lemma 4.3 and Υ(1) such that for n ∈ N

E
[

sup
t∈[0,T ]

|Y nt − Yt|2p +
(∫ T

0

|Zns − Zs|2ds
)p]
≤ C(p, κ)(n)

−κ
4q

Proof. Let ζn be given by

ζnt :=
g(t,Xt, Y

n
t , Z

n
t )− g(t,Xt, Y

n
t , Zt)

|Znt − Zt|2
(Znt − Zt)1{Znt −Zt 6=0}.

Then thanks to the assumptions of the theorem, ζnt ∗B ∈ BMO(P). In addition for some constant
r > 1, independent of n we have E(ζn ∗ B)−1 ∈ Lr(Qn). Let Π be define by Π := max{‖E(ζn ∗
B)‖Lr(P), ‖E(ζn ∗B)−1‖Lr(Qn)}. Then, from the Bayes’ rule and Hölder’s inequality, we obtain for
all p > 1 that

E
[

sup
t∈[0,T ]

|Y nt − Yt|2p +
(∫ T

0

|Znt − Zt|2dt
)p]

≤Π
[
EQn

(
sup
t∈[0,T ]

|Y nt − Yt|2pq +
(∫ T

0

|Znt − Zt|2dt
)pq)] 1

q

, (6.8)

where dQn := E(ζn ∗B)dP. Using Lemma 3.9, we have(
EQn

[
sup
t∈[0,T ]

|Y nt − Yt|2pq +
(∫ T

0

|Znt − Zt|2dt
)pq]) 1

q

≤C
(
EQn

[ ∫ T

0

|g(s,Xs, Y
n
s , Z

n
s )− g(s,Xs, ρ̃(Y ns ), ρ(Zns ))|ds

]2pq) 1
q

.

In addition for K = max(Λy,Λz)

|g(s,Xs, Y
n
s , Z

n
s )− g(s,Xs, ρ̃(Y ns ), ρ(Zns ))|

≤Λy(1 + |ρ(Zns )|α + |Zns |α)|ρ̃(Y ns )− Y ns |+ Λz(1 + (f(|ρ̃(Y ns )|) + f(|Y ns |))|ρ(Zns )− Zns |
≤K(1 + 2|Zns |α + 4 sup

0≤y≤2Υ(1)

ϕ(y)|Zns |)
(
|ρ̃(Y ns )− Y ns |+ |ρ(Zns )− Zns |

)
.
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By using the above bound and applying the Hölder’s inequality, we deduce that(
EQn

[
sup
t∈[0,T ]

|Y nt − Yt|2pq +
(∫ T

0

|Znt − Zt|2dt
)pq]) 1

q

≤ C(q, p)
(
EQn

[ ∫ T

0

∣∣∣K(1 + 2|Zns |α + 4 sup
0≤y≤2Υ(1)

ϕ(y)|Zns |)
∣∣∣2ds

]2pq) 1
2q

×
(
EQn

[ ∫ T

0

(
|ρ̃(Y ns )− Y ns |+ |ρ(Zns )− Zns |

)2

ds
]2pq) 1

2q

Since Zn belongs to H2p and the function ϕ is continuous, we deduce that the first term in the
above inequality is uniformly bounded in n. It then remains to prove that the second term is also
uniformly bounded. Since, P and Qn are equivalent, using (6.6) and (6.7), the Hölder and the
Markov’s inequalities give

(
EQn

[ ∫ T

0

(
|ρ̃(Y ns )− Y ns |+ |ρ(Zns )− Zns |

)2

ds
]2pq) 1

2q

≤C
(
EQn

[ ∫ T

0

((Υ(1))2I{|Y ns |>n} + |Zns |2I{|Zns |>n})ds
]2pq) 1

2q

≤C
(
EQn

∫ T

0

I{|Y ns |>n}ds
) 1

2q

+ C
(
EQn

∫ T

0

|Zns |4pqI{|Zns |>n}ds
) 1

2q

≤C
(∫ T

0

Qn{|Y ns | > n}ds
) 1

2q

+ C
(
EQn

∫ T

0

|Zns |8pqds
) 1

4q
(∫ T

0

Qn{|Zns | > n}ds
) 1

4q

≤C(n)
−κ
2q

(∫ T

0

EQn[|Y ns |2κ]ds) 1
2q

+ C(n)
−κ
4q

(∫ T

0

EQn |Zns |8pq
)
ds
) 1

4q
(∫ T

0

EQn[|Zns |2κ]ds) 1
4q

,

Using once more the uniform bounndedness of Y n, the Bayes’ rule and the Hölder’s inequality, we
derive the existence of a constant C that does not depend on κ and n such that:(

EQn
[ ∫ T

0

(
|ρ̃(Y ns )− Ys|+ |ρ(Zns )− Zns |

)2

ds
]2pq) 1

2q

≤ C(n)
−κ
2q + C(n)

−κ
4q

(∫ T

0

E
[
E(Πn ∗B) sup

0≤s≤T
|Zns |2κ

]
ds
) 1

4q

≤ C(n)
−κ
2q + CΠ(n)

−κ
4q

(∫ T

0

E
[
|Zns |2κq

]
ds
) 1

4q2

≤ C(n)
−κ
2q + CΠ(n)

−κ
4q

(
E
[

sup
0≤s≤T

|Zns |2κq
]) 1

4q2

.

This completes the proof. �

Appendix A. Some Properties of BMO-Martingales

The following result give some properties of BMO-martingales which will be extensively used
in this work. We refer the reader to [26] for more details on the subject.

Lemma A.1.

(P1) Let M be a BMO martingale with quadratic variation 〈M〉. Let (E(M)t)0≤t≤T be the
process defined by

E(M)t := exp{MT − 1/2〈M〉t}.
Then E[E(M)T ] = 1 and the measure Q given by dQ := E(M)TdP defines a probability
measure.

(P2) For a given BMO martingale M, there exists r > 1 such that E(M) ∈ Lr. Moreover, for
any stopping time τ ∈ [0, T ] it holds that

E[E(M)rT |Fτ ] ≤ C(r)(E(M)τ )r,
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(P3) If ‖M‖BMO < 1, then for every stopping time τ ∈ [0, T ]

E [exp{〈M〉T − 〈M〉τ}/Fτ ] <
1

1− ‖M‖2BMO

.

(P4) If
∫

0
ZsdBs ∈ BMO, then for every p ≥ 1 it holds that Z ∈ H2p(Rd) i.e

E
[( ∫ T

0

|Zs|2ds
)p]
≤ p!

∥∥∥∫ ZdB
∥∥∥2p

BMO
.

Moreover for any p ≥ 1 and any ε ∈ (0, 2)

E
[

exp
(
p

∫ T

0

|Zs|εds
)]
≤ C,

where C depends on p, ε and ‖
∫
ZdB‖2BMO.

Appendix B. Proofs of some Lemmas

proof of Lemma 3.8. Set{
δY = Y 1 − Y 2, δZ = Z1 − Z2

δξ = ξ1 − ξ2, δg = g1(·, Y 2, Z2)− g2(·, Y 2, Z2),

and define the processes

Γt : =
g1(t, Y 1

t , Z
1
t )− g1(t, Y 2

t , Z
1
t )

Y 1
t − Y 2

t

1{Y 1
t −Y 2

t 6=0}, et := exp
(∫ t

0

|Γs|ds
)
, (B.1)

Πt : =
g1(t, Y 2

t , Z
1
t )− g1(t, Y 2

t , Z
2
t )

|Z1
t − Z2

t |2
(Z1

t − Z2
t )1{|Z1

t−Z2
t |6=0}. (B.2)

By following the same arguments developed in the proof of Theorem 3.4, we deduce the well
posedness of the probability measure Q with density dQ/dP = E(

∫ ·
0

Π·dB·) and the following

process BQ
· = B· −

∫ ·
0

Πsds is a Q-Brownian motion. We also have Γ ∈ HBMO, thus Γ ∈ H2p, for

every p ≥ 1. Since |Γt| ≤ Λy(1 + 2|Z1
t |α). The dynamics of (δYt) is given by:

δYt = δξ +

∫ T

t

δgsds+

∫ T

t

(
g1(s, Y 1

s , Z
1
s )− g1(s, Y 2

s , Z
2
s )
)

ds−
∫ T

t

δZsdBs. (B.3)

The Itô’s formula yields

etδYt = etδξ +

∫ T

t

esδgsds−
∫ T

t

esδZsdB
Q
s , (B.4)

where
∫ ·

0
esδZsdB

Q
s is a true Q-martingale. Taking the conditional expectation on both sides of

(B) gives

etδYt = EQ
[
etδξ +

∫ T

t

esδgsds|Ft
]
. (B.5)

We conclude that etδYt ≤ 0 and hence for all t ∈ [0, T ] we have Y 1
t ≤ Y 2

t Q-a.s. and P-a.s. In
particular set t = 0 and suppose δ < 0 or δg < 0 in a set of positive dt ⊗ dP-measure. Then we
obtain Y 1

0 < Y 2
0 . �

Proof of Lemma 3.9. The proof follows as in [22, Lemma A.1]. For the sake of completeness,
we briefly reproduce it here. We keep the same notations as in the proof of Lemma 3.8 at the

exception of the process (et)t∈[0,T ] defined as follows: et := exp(2
∫ t

0
|Γs|ds). Using Itô’s formula,

and the Girsanov transform, the dynamics of the continuous semimartingale (etδY
2
t )t≥0 is given

by

d[et(δYt)
2] =2(δYt)

2|Γt|etdt+ 2etδYtdδYt + et|δZt|2

=(δYt)
2|Γt|etdt+ 2etδYt

{
−δgtdt− (g1(t, Y 1

t , Z
1
t )− g1(t, Y 2

t , Z
2
t ))dt+ δZtdBt

}
+ et|δZt|2

=− 2etδYtδgt + et|δZt|2 + δZtdB
Q
t .
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Observe that (et)t∈[0,T ] is strictly increasing and bounded from below by 1, and for any 0 ≤ t ≤
s ≤ T

es(et)
−1 = exp

{
2

∫ s

t

|Γr|dr
}
≤ AT := exp

{
2

∫ T

0

K(1 + |Z1
s |α)ds

}
.

Moreover since Z1 ∈ HBMO, (et)t∈[0,T ] ∈ Sp for all p ≥ 1. Then, we deduce that

et(δYt)
2 +

∫ T

t

|δZs|2ds ≤ eT δξ2 + 2

∫ T

t

esδYsδgsds− 2

∫ T

t

esδYsδZsdB
Q
s . (B.6)

Let us first provide an estimate of the norm of δYt under the measure Q. Dividing both sides
of (B.6) by et, taking the conditional expectation on both sides and using the basic inequality
ab ≤ 1

εa
2 + εb2 for ε > 0, we obtain

δY 2
t ≤EQ

[eT
et
δξ2 + 2

∫ T

0

es
et
δYs|δgs|ds

∣∣∣Ft]
≤EQ

[1

ε
sup

0≤t≤T
|δYt|2 +A2

TX
∣∣∣Ft], (B.7)

where X is defined by X := |δξ|2 + ε
( ∫ T

0
|δgs|ds

)2

. Notice that EQ
[

1
ε sup0≤t≤T |δYt|2

∣∣∣Ft] (respec-

tively E[A2
TX|Ft]) is a right continuous martingale on [0, T ] with terminal random value given by

1
ε sup0≤t≤T |δYt|2 (respectively A2

TX ). Then by the Doob’s martingale inequality we have that for
all p > 1

EQ
[

sup
t∈[0,T ]

EQ
[1

ε
sup

0≤t≤T
|δYt|2

∣∣∣Ft]]p ≤( p

p− 1

)p
EQ
[ 1

εp
sup

0≤t≤T
|δYt|2p

]
, (B.8)

EQ
[

sup
t∈[0,T ]

EQ[A2
TX|Ft]

]p
≤
( p

p− 1

)p
EQ[A2p

T X
p]. (B.9)

Taking successively the absolute value, the p power, the supremum and the expectation on both
sides of (B.7) and using (B.8) and (B.9), we obtain

EQ[ sup
t∈[0,T ]

|δYt|2p] ≤EQ
[

sup
t∈[0,T ]

(
EQ
[1

ε
sup

0≤t≤T
|δYt|2 +A2

TX
∣∣∣Ft])p]

≤C(p)
(
EQ
[ 1

εp
sup

0≤t≤T
|δYt|2p

]
+ EQ[A2p

T X
p]
)
.

Choosing ε such that C(p)
εp < 1 and using the Hölder’s inequality for ν ≥ 1, we have

EQ[ sup
t∈[0,T ]

|δYt|2p] ≤C(p)EQ
[
A2p
T X

p
]

≤C(p)EQ[A
2pν
ν−1

T ]
ν−1
ν EQ

[
|δξ|2pν +

(∫ T

0

|δgs|ds
)2pν] 1

ν

.

The first term on the right side of the above bound is finite (see Lemma A.1).
Since Π ∗ B is a BMO(P) martingale it follows that −Π ∗ BQ and Π ∗ BQ are BMO(Q)

martingales. Then from Lemma A.1 there exists r, r1 > 1 such that E(Π∗B) ∈ Lr and E(−Π∗BQ) ∈
Lr
′
. In addition, since E(Π ∗B)−1 = E(−Π ∗BQ), we have dP = E(−Π ∗BQ)dQ. Let r′ and r′1 be
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the Hölder conjugates of r and r1, respectively. Then using Girsanov theorem, we have

E[ sup
t∈[0,T ]

|δYt|2p] = EQ[E(−Π ∗BQ)T sup
t∈[0,T ]

|δYt|2p]

≤ EQ[E(−Π ∗BQ)r1T ]
1
r1 EQ[ sup

t∈[0,T ]

|δYt|2pr
′
1 ]

1
r′1

≤ CEQ
[
|δξ|2pr

′
1ν +

(∫ T

0

|δgs|ds
)2pr′1ν

] 1
r′1ν

≤ CE[E(Π ∗B)r]
1
rE
[
|δξ|2pr

′
1νr
′
+
(∫ T

0

|δgs|ds
)2pr′1νr

′] 1
r′1νr

′

We obtain the desired estimate for δY by taking q = r′1νr
′. Similar techniques can be used to

provide the bound for δZ. This conclude the proof. �

Appendix C. Integration with respect to local time

Here we give some elements of calculus with respect to local time. For a ∈ R and X = {Xt, t ≥
0} a continuous semimartingale, the local time LX(t, a) of X at level a can be defined by the
following Tanaka-Meyer formula

|Xt − a| = |X0 − a|+
∫ t

0

sgn(X(s)− a)dXs + LX(t, a), (C.1)

where sgn(x) = −1(−∞,0](x) + 1(0,+∞)(x). The local time-space integral is defined for functions in
the space (Hx, ‖ · ‖x) (see e.g. [14]) where (Hx, ‖ · ‖x) is the space of Borel measurable functions
f : [0, T ]× R→ R with the norm

‖f‖px := 2E
[( ∫ t

0

f2(s,Bs)ds
)p/2]

+ 2E
[∣∣∣ ∫ t

0

f(s,Bs)
Bs
s

ds
∣∣∣p],

for any p ∈ [1,∞). Let f ∈ Hx. Then using [4, Lemma 2.11] we have the following representation∫ t

0

∂xf(s,Xx
s )ds = −

∫ t

0

∫
R
f(s, z)LX

x

(ds,dz) (C.2)

for all t ∈ [0, T ]. In addition for f ∈ H0, we have (see for example [15, Theorem 2.1])∫ t

0

∫
R
f(s, z)LB

x

(ds,dz) =

∫ t

0

f(s,Bxs )dBs +

∫ T

T−t
f(T − s, B̂xs )dWs

−
∫ T

T−t
f(T − s, B̂x(s))

B̂s
T − s

ds, 0 ≤ t ≤ T a.s., (C.3)

where LB
x

(ds,dz) denotes integration with respect to the local time of the Brownian motion Bx in

both time and space, Bx is the Brownian motion started at x and B̂ is the time-reversed Brownian
motion defined by

B̂t := BT−t, 0 ≤ t ≤ T. (C.4)

The process W = {Wt, 0 ≤ t ≤ T} stands for an independent Brownian motion with respect to

the filtration F B̂t generated by B̂t, and satisfies:

Wt = B̂t −BT +

∫ T

t

B̂s
T − s

ds. (C.5)
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Appendix D. Stochastic sewing lemma

In this section we recall the following lemma corresponding to [29, Theorem 2.1]

Lemma D.1 (Stochastic sewing lemma). Let (Ω,F, {Ft}t∈[0,T ],P) be a complete probability space.
Fix p ≥ 2 and define

∆T
n := {(t1, · · · , tn) ∈ [0, T ]n, 0 ≤ t1 ≤ · · · ,≤ tn ≤ T}, (D.1)

and let A : ∆T
2 → R be a stochastic process satisfying: As,s = 0, As,t is Fs-measurable, and (s, t) 7→

As,t is right-continuous from ∆T
2 into Lp(Ω). Set δvAs,t := As,t − As,v − Av,t for (s, v, t) ∈ ∆T

3

and assume that there exists constants θ > 1, κ > 1
2 , and c1, c2 > 0 such that

‖E[δvAs,t|Fs]‖Lp(Ω) ≤ c1|t− s|θ, (D.2)

‖δvAs,t‖Lp(Ω) ≤ c2|t− s|κ. (D.3)

Then, there exists a unique (up to modifications) {Ft}t≥0-adapted stochastic process A satisfying
the following properties:

(1) A : [0, T ]→ Lp(Ω) is right continuous, and A0 = 0.
(2) There exists constants C1, C2 > 0 such that for As,t = At −As

‖E[As,t −As,t|Fs]‖Lp(Ω) ≤ c1C1|t− s|θ, (D.4)

‖As,t −As,t‖Lp(Ω) ≤ c1C1|t− s|θ + c2C2|t− s|κ. (D.5)

Furthermore for all (s, t) ∈ ∆T
2 and for any partition P of the interval [s, t], define

APs,t :=
∑

[u,v]∈P

Au,v. (D.6)

Then APs,t converge to As,t in Lp(Ω) as the mesh size |P| → 0.
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