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Abstract

We show how Haar and Schauder functions and more generally Fourier analysis may
be used to understand basic problems in stochastic analysis at depth. We start by a
Haar-Schauder development of the Brownian motion, revealing its regularity properties.
We prove that this development can be used for a simple and efficient proof of Schilder’s
theorem. Following [GIP15], we then show that it can be used on a pathwise level to ex-
plain Young’s integral. Combined with the concept of controlled paths, it can be extended
to provide the Stratonovich type integral of rough path analysis.

1 Ciesielski’s isomorphism

We start by explaining Ciesielski’s isomorphism between Cα = Cα([0, 1],Rd) and ℓ∞(Rd)
which is at the beginning of our approach. The Haar functions (Hpm, p ≥ 0, 1 ≤ m ≤ 2p) are
defined as H00 ≡ 1,

Hpm(t) :=


√
2p, t ∈

[
m−1
2p , 2m−1

2p+1

)
,

−
√
2p, t ∈

[
2m−1
2p+1 ,

m
2p

)
,

0, otherwise.

The Haar functions are a complete orthonormal system of L2([0, 1],dt). For convenience
of notation, we also define Hp0 ≡ 0 for p ≥ 1. The primitives of the Haar functions are

called Schauder functions. They are given by Gpm(t) :=
∫ t
0 Hpm(s)ds for t ∈ [0, 1], p ≥ 0,

0 ≤ m ≤ 2p. More explicitly, G00(t) = t and for p ≥ 1, 1 ≤ m ≤ 2p

Gpm(t) =


2p/2

(
t− m−1

2p

)
, t ∈

[
m−1
2p , 2m−1

2p+1

)
,

−2p/2
(
t− m

2p

)
, t ∈

[
2m−1
2p+1 ,

m
2p

)
,

0, otherwise.
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Since every Gpm satisfies Gpm(0) = 0, we are only able to expand functions f with f(0) = 0 in
terms of this family (Gpm). Therefore, we complete (Gpm) once more, by defining G−10(t) := 1
for all t ∈ [0, 1]. To abbreviate notation, we define the times tipm, i = 0, 1, 2, as

t0pm :=
m− 1

2p
, t1pm :=

2m− 1

2p+1
, t2pm :=

m

2p
,

for p ≥ 1 and 1 ≤ m ≤ 2p. Further, we set t0−10 := 0, t1−10 := 0, t2−10 := 1, and t000 := 0,
t100 := 1, t200 := 1, as well as tip0 := 0 for p ≥ 1 and i = 0, 1, 2. The definition of ti−10 and ti00
for i ̸= 1 is rather arbitrary, but the definition for i = 1 simplifies for example the statement
of Lemma 1.2 below.

For f ∈ C([0, 1],Rd), p ∈ N, and 1 ≤ m ≤ 2p, we write

⟨Hpm, df⟩ := 2
p
2
[(
f
(
t1pm
)
− f

(
t0pm
))

−
(
f
(
t2pm
)
− f

(
t1pm
))]

=2
p
2
[
2f
(
t1pm
)
− f

(
t0pm
)
− f

(
t2pm
)]

and ⟨H00, df⟩ := f(1)− f(0) as well as ⟨H−10, df⟩ := f(0). Note that we only defined G−10

and not H−10.
The norm ∥·∥α is defined as

∥f∥α := ∥f∥∞ + sup
0≤s<t≤1

|fs,t|
|t− s|α

,

where we introduced the notation

fs,t := f(t)− f(s).

Lemma 1.1 ([Cie60]). Let α ∈ (0, 1). A continuous function f : [0, 1] → Rd is in Cα if and
only if supp,m 2p(α−1/2)|⟨Hpm, df⟩| <∞. In this case

sup
p,m

2p(α−1/2)|⟨Hpm, df⟩| ≃ ∥f∥α and (1)

∥f − fN−1∥∞ =
∥∥∥ ∞∑
p=N

2p∑
m=0

|⟨Hpm, df⟩|Gpm
∥∥∥
∞

. ∥f∥α2−αN .

Proof. To estimate the development coefficients, fix p ≥ 1, 1 ≤ m ≤ 2p. We have

|⟨Hpm, df⟩| ≤ 2
p
2
+1||f ||α2−α(p+1),

whereas, by disjointness of the supports of the Schauder functions of one dyadic generation
we have

||
2p∑
m=1

Gpm||∞ ≤ 2−
p
2 .

This implies the estimate for the (absolute) contribution of one generation

|
2p∑
m=0

|⟨Hpm, df⟩|Gpm| . ||f ||α2−α(p+1),

where x . y means x ≤ Cy with a universal constant C. This is summable in p, and yields
that (fN )N∈N is Cauchy. Hence also ∥f − fN∥ → 0 as N → ∞.

The equivalence of norms follows from Theorem 1.3. below.
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Lemma 1.2. For f : [0, 1] → Rd, the function

fk := ⟨H−10, df⟩G−10 + ⟨H00, df⟩G00 +

k∑
p=0

2p∑
m=1

⟨Hpm, df⟩Gpm =

k∑
p=−1

2p∑
m=0

⟨Hpm, df⟩Gpm

is the linear interpolation of f between the points t1−10, t
1
00, t

1
pm, 0 ≤ p ≤ k, 1 ≤ m ≤ 2p. If f

is continuous, then (fk) converges uniformly to f as k → ∞.

Proof. Let gk be the linear interpolation of f between the points t1−10, t
1
00, t

1
pm, 0 ≤ p ≤ k, 1 ≤

m ≤ 2p. Then obviously gk ∈ Cα. Now gk − fk = 0, since by Lemma 1.2 fn → gk as n → ∞,
but by definition of Gpm the contributions of dyadic generations bigger than k have to vanish
at the points t1−10, t

1
00, t

1
pm, 0 ≤ p ≤ k, 1 ≤ m ≤ 2p. The claimed convergence follows from

uniform continuity on [0, 1].

Theorem 1.3 ([Cie60]). Let 0 < α < 1. For p ≥ 0, 1 ≤ m ≤ 2p let

cpm(α) = 2p(α−
1
2
)+α−1, cp0(α) = 1, c−10(α) = 1.

Define

Tα : Cα → l∞(Rd)
f 7→ (c−10(α)⟨H−10,df⟩, c00⟨H00, df⟩, (cpm(α) ⟨Hpm, df⟩)p≥1,1≤m≤2p).

Then

T−1
α : l∞(Rd) → Cα

(η−10, η00, (ηpm)p≥1,1≤m≤2p) 7→ η−10G−10 + η00G00 +

∞∑
p=1

∑
1≤m≤2p

1

cpm(α)
ηpm Gpm.

Tα is an isomorphism, and for the operator norms we have the following inequalities

||Tα|| = 1, ||T−1
α || ≤ 2

(2α − 1)(21−α − 1)
.

Proof. By definition, for p ≥ 1, 1 ≤ m ≤ 2p we have

|⟨Hpm, df⟩| ≤ 2−(p+1)α+ p
2
+1||f ||α =

1

cpm(α)
||f ||α. (2)

Therefore, Tα is well defined, and we have

||Tα|| ≤ 1.

To show the opposite inequality, note that for p ≥ 1, 1 ≤ m ≤ 2p we have ||Gpm||α =

2
p
2 2(−p−1)(1−α) = 2p(α−

1
2
)+α−1, while ⟨Hpm,dGpm⟩ = ⟨Hpm,Hpm⟩ = 1. Hence

||Gpm||α . 2p(α−
1
2
)|⟨Hpm, dGpm⟩|.

Lemma 1.1 also shows that Tα is one-to-one and that T−1
α is its inverse.
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We next prove the inequality for the operator norm of T−1
α .

Let η = (η−10, η00, (ηpm)p≥1,1≤m≤2p) ∈ l∞(Rd) be given, choose 0 ≤ s < t ≤ 1, and write
f = T−1

α (η). Then we have

|f(t)− f(s)| ≤ ||η||∞[|t− s|+
∞∑
p=1

2p∑
m=1

1

cpm(α)
|Gpm(t)−Gpm(s)|]. (3)

Now choose p0 ≥ 1 such that
2−p0−1 < |t− s| ≤ 2−p0 .

Then for 1 ≤ p < p0, s and t can belong to at most two adjacent dyadic intervals of generation
p. By inspection of the possible cases we get

2p∑
m=1

1

cpm(α)
|Gpm(t)−Gpm(s)| (4)

≤ sup
1≤m≤2p

1

cpm(α)
|Gpm(t)−Gpm(s)|

≤ 2−p(α−
1
2
)−α+1 2

p
2 |t− s|

≤ 2p(1−α)−α+1−p0(1−α) |t− s|α = (21−α)(1+p−p0) |t− s|α,

while for p ≥ p0

2p∑
m=1

1

cpm(α)
|Gpm(t)−Gpm(s)| (5)

≤ 2−p(α−
1
2
)−α+1 2−

p
2
−1

≤ 2−pα−α+(p0+1)α |t− s|α = (2α)(p0−p) |t− s|α.

Combining (3), (4) and (5), we obtain the estimate

|f(t)− f(s)|
|t− s|α

≤ 2

(2α − 1)(21−α − 1)
||η||∞,

and therefore

||T−1
α || ≤ 2

(2α − 1)(21−α − 1)
.

We can extend the isomorphism of Theorem 1.3 to subspaces of Hölder continuous func-
tions which will arise later in the study of the LDP for Brownian motion. For 0 < α ≤ 1 let
Cα0 be the subspace of C([0, 1]) composed of all functions f for which f(0) = 0 and

lim
δ→0

sup
0≤s<t≤1,|t−s|≤δ

|f(t)− f(s)|
|t− s|α

= 0.

The isomorphism of Theorem 1.3 will then be restricted to the subspace C0 of all sequences
η = (ηpm)p≥1,1≤m≤2p in C which converge to 0 as p → ∞ as a target space. The following
Theorem holds, with a slightly, not essentially different proof.
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Theorem 1.4. Let 0 < α < 1. Let c−10, c00, cpm(α), p ≥ 1, 1 ≤ m ≤ 2p, be defined as in
Theorem 1.3. Define

Tα,0 : Cα0 → C0,
f 7→ (c00⟨H00, df⟩, (cpm(α) ⟨Hpm, df⟩)p≥1,1≤m≤2p).

Then

T−1
α,0 : C0 → Cα0 ,

((η00, (ηpm)p≥1,1≤m≤2p) 7→ η00G00 +

∞∑
p=1

∑
1≤m≤2p

1

cpm(α)
ηpm Gpm.

Tα,0 is an isomorphism, and for the operator norms we have the following inequalities

||Tα,0|| = 1, ||T−1
α,0|| ≤

2

(2α − 1)(21−α − 1)
.

2 The Schauder representation of Brownian motion

We shall now present an approach of the study of one-dimensional Brownian motion which
is close to Wiener’s representation of Brownian motion by Fourier series with trigonometric
functions as a basis. So in this section we set d = 1. Our basis will be given by the Haar-
Schauder system of the preceding section. In fact, the trajectories of Brownian motion will be
described just as in the preceding section continuous functions were isomorphically described
by sequences. Given a Brownian motion X indexed by the unit interval, with the same
notation as in the preceding section we write it sample by sample as a series with coefficients
⟨H00, dX⟩, ⟨Hpm, dX⟩, p ≥ 1, 1 ≤ m ≤ 2p. Due to the scaling properties and the structure of
Haar functions, these random coefficients are i.i.d standard normal random variables. This,
in turn, allows us to construct Brownian motion indexed by the unit interval by taking any
sequence of i.i.d. standard normal variables (Z00, (Zpm)p≥1,1≤m≤2p) on a probability space
(Ω,F ,P), and defining the stochastic process

Wt = Z00G00(t) +

∞∑
p=1

∑
1≤m≤2p

ZpmGpm(t), t ∈ [0, 1]. (6)

To get information about the quality of convergence of this Fourier series, we need to control
the size of the random sequence (Zpm)p≥1,1≤m≤2p in the following Lemma.

Lemma 2.1. There exists a real valued random variable C such that for p ≥ 1, 1 ≤ m ≤ 2p

we have
|Zpm| ≤ C

√
p ln 2. (7)

Proof. For x ≥ 1, p ≥ 1, 1 ≤ m ≤ 2p we have

P(|Zpm| ≥ x) =

√
2

π

∫ ∞

x
e−

u2

2 du ≤
√

2

π

∫ ∞

x
ue−

u2

2 du =

√
2

π
e−

x2

2 .

Hence for β > 1

P(|Zpm| ≥
√

2β ln 2p) ≤
√

2

π
e−β ln 2p =

√
2

π
2−βp.
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Therefore, the lemma of Borel-Cantelli yields that |Zpm| ≤
√
4βp ln 2 for almost all p ≥ 1, 1 ≤

m ≤ 2p with probability 1. Hence the random variable C = supp≥1,1≤m≤2p
|Zpm|√
p ln 2

is almost

surely finite, and yields the desired inequality.

The preceding Lemma enables us to state that the convergence in (6) is absolute and
therefore the process continuous. Its law has the characteristics of the law of a Brownian
motion, as the following Theorem shows.

Theorem 2.2. The series in (6) converges absolutely in the uniform norm to a continuous
process W which is a Brownian motion on [0, 1].

Proof. Let us first prove the absolute convergence of the series in the uniform norm. This
will evidently imply that W is continuous. Let p, q ≥ 1 be such that q ≥ p. Then for t ∈ [0, 1]
we have with the random variable C of the preceding Lemma

q∑
n=p

∑
1≤m≤2n

|Znm|Gnm(t) ≤ C

q∑
n=p

∑
1≤m≤2n

√
n ln 2 Gnm(t)

≤ C
∞∑
n=p

∑
1≤m≤2p

√
n Gnm(t)

≤ C

∞∑
n=p

√
n 2−

n
2
−1,

which converges to 0 as p tends to ∞, independently of t ∈ [0, 1].
To prove that W is a Gaussian process with E(Wt) = 0 and cov(Wt,Ws) = s ∧ t, for

0 ≤ s, t ≤ 1, we first note that the series also converges in square norm. In fact, we have for
t ∈ [0, 1], p, q ≥ 1 such that q ≥ p by the law properties of Zpm, p ≥ 1, 1 ≤ m ≤ 2p,

E([
q∑

n=p

∑
1≤m≤2n

ZnmGnm(t)]
2) =

q∑
n=p

∑
1≤m≤2n

Gnm(t)
2 ≤

∞∑
n=p

2−n−2,

which converges to 0 as p→ ∞. Next, let d ∈ N, 0 ≤ t1 < · · · < td ≤ 1, and θ = (θ1, · · · , θd) ∈
Rd be given. We compute the Fourier transform φ(θ) of the vector (Wt1 , · · · ,Wtd) at θ. We
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have by dominated convergence and the law properties of Zpm, p ≥ 1, 1 ≤ m ≤ 2p, again

φ(θ) = E(exp(i
d∑
j=1

θjWtj ))

= E(exp(i
d∑
j=1

θj

∞∑
p=0

∑
0≤m≤2p

ZpmGpm(tj)))

=

∞∏
p=0

∏
0≤m≤2p

E(exp(iZpm
d∑
j=1

θjGpm(tj)))

=
∞∏
p=0

∏
0≤m≤2p

exp(−1

2
(
d∑
j=1

θjGpm(tj))
2)

= exp(−1

2

∞∑
p=0

∑
0≤m≤2p

(

d∑
j=1

θjGpm(tj))
2)

= exp(−1

2

d∑
j,k=1

θjθk

∞∑
p=0

∑
0≤m≤2p

Gpm(tj)Gpm(tk)).

Now observe that Parseval’s equation implies for 1 ≤ j, k ≤ d

tj ∧ tk = ⟨1[0,tj ], 1[0,tk]⟩ =
∞∑
p=0

∑
0≤m≤2p

⟨1[0,tj ],Hpm⟩ ⟨1[0,tk],Hpm⟩ =
∞∑
p=0

∑
0≤m≤2p

Gpm(tj)Gpm(tk).

Therefore we finally obtain

φ(θ) = exp(−1

2

d∑
j,k=1

θjθk tj ∧ tk).

But this means that (Wt1 , · · · ,Wtd) is Gaussian with expectation vector 0 and covariance
matrix C with entries cjk = tj ∧ tk, 1 ≤ j, k ≤ d. It is easy to see that these properties imply
that the process W possesses independent increments which are Gaussian with mean 0 and
variance corresponding to the length of the increment intervals. This, however, characterizes
a Brownian motion.

We now use the Schauder representation of Brownian motion to show its Hölder continuity
properties.

Theorem 2.3. The Brownian motion W = (Wt)0≤t≤1 is Hölder continuous of order α < 1/2.
Its trajectories are a.s. nowhere Hölder continuous of order α > 1/2. Moreover we have
(Lévy’s modulus of continuity)

P
(

sup
0≤s<t≤1

|Wt −Ws|
h(|t− s|)

<∞
)
= 1, (8)

where h(u) =
√
u log(1/u), u > 0. In particular, for α < 1

2 , the trajectories of W are P-a.s.
contained in the space Cα.
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Proof. Let first α ∈]0, 1[, (cpm)p≥1,1≤m≤2p be a sequence of real numbers for which there exists
c ∈ R such that for p ≥ 0, 1 ≤ m ≤ 2p we have

|cpm| ≤ c
√
p.

Let

f(t) =

∞∑
p=1

∑
1≤m≤2p

cpmGpm(t), t ∈ [0, 1].

We shall prove that sup0≤s<t≤1
|f(t)−f(s)|
h(|t−s|) <∞. Due to Lemma 2.1, this will imply the claimed

formula. In fact, due to the continuity properties of G00, we may assume that c00 = 0. Then
for 0 ≤ s < t ≤ 1

|f(t)− f(s)| ≤
∞∑
p=1

2p∑
m=1

|cpm| |Gpm(t)−Gpm(s)|. (9)

Now choose p0 ≥ 1 such that
2−p0−1 < |t− s| ≤ 2−p0 .

Then for 1 ≤ p < p0

2p∑
m=1

|cpm| |Gpm(t)−Gpm(s)| (10)

≤ sup
1≤m≤2p

|cpm| |Gpm(t)−Gpm(s)|

≤ c
√
p 2

p
2 |t− s|

≤ c
√
p 2

p−p0
2 |t− s|

1
2

≤ c√
ln 2

√
p

p0
2

p−p0
2

√
|t− s| ln 1

|t− s|
,

while for p ≥ p0

2p∑
m=1

|cpm| |Gpm(t)−Gpm(s)| (11)

≤ c
√
p 2−

p
2

≤ c√
ln 2

√
p

p0
2

p0+1−p
2

√
|t− s| ln 1

|t− s|
.

It is easy to see, for instance by estimating
∫∞
a

√
x2−xdx, and

∫ a
1

√
x2xdx for a ≥ 1 using

integration by parts that the sum in p of the two estimates can be taken and yields a finite
upper bound which does not depend on p0. Hence (9), (10) and (11) imply

|f(t)− f(s)|√
|t− s| ln 1

|t−s|

≤ c′,

for some constant c′ independent of s and t. This implies the desired inequality, and all claims
about Hölder continuity for α < 1

2 .
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Let us next fix α > 1
2 . For c > 0, ϵ > 0 let

Γ(α, c, ϵ) = {ω ∈ Ω : ∃ s ∈ [0, 1] ∀ t ∈ [0, 1], |s− t| ≤ ϵ : |Wt(ω)−Ws(ω)| ≤ c|s− t|α}.

We will show that P(Γ(α, c, ϵ)) = 0 for all c, ϵ > 0, and thus that W is a. s. nowhere Hölder
continuous of order α. To this end, for all m,n ∈ N,m ≤ n, and 0 ≤ k < n let

Xm,k = max{|W j
n
−W j+1

n
| : k ≤ j < m+ k}.

Let ω ∈ Γ(α, c, ϵ). Choose n ∈ N so that m
n ≤ ϵ. Let s ∈ [0, 1] be given such that for all

t ∈ [0, 1] satisfying |s − t| ≤ ϵ we have |Wt(ω) −Ws(ω)| ≤ c|s − t|α. Choose 0 ≤ k ≤ n −m
such that k

n ≤ s < k+m
n . Then for k ≤ j < k +m

|W j
n
(ω)−W j+1

n
(ω)| ≤ |W j

n
(ω)−Ws(ω)|+ |Ws(ω)−W j+1

n
(ω)|

≤ c| j
n
− s|α + c|s− j + 1

n
|α ≤ 2c(

m

n
)α.

This proves that

Γ(α, c, ϵ) ⊂ { min
0≤k≤n−m

Xm,k ≤ 2c(
m

n
)α}. (12)

Let us now estimate the probability of the latter set. Indeed, we have using independence
and stationarity of the laws of the increments of W , and its scaling properties

P( min
0≤k≤n−m

Xm,k ≤ 2c(
m

n
)α) ≤ nP(Xm,1 ≤ 2c(

m

n
)α)

≤ nP(|W 1
n
| ≤ 2c(

m

n
)α)m

= nP(|W1| ≤ 2c
√
n(
m

n
)α)m

≤ n[

√
2

π
2c
√
n(
m

n
)α]m = n1+( 1

2
−α)m[

√
2

π
2cmα]m.

Now choose m so that 1 + (12 − α)m < 0. Then let n→ ∞ to obtain that

P(Γ(α, c, ϵ)) = 0,

as desired.

3 Large deviations for Brownian motion

In this section, we shall apply the Haar-Schauder expansion of Brownian motion derived in
the preceding section to show that it gives easy access to the LDP for Brownian motion,
usually comprised in Schilder’s theorem. In fact we will establish how the expansion allows to
reduce the calculation of the rate functions to the ones for simple one-dimensional Gaussian
variables.
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3.1 Large deviations for one-dimensional Gaussian random variables

The large deviation rate for a one-dimensional Gaussian unit random variable can be directly
calculated. Consider a random variable Z with standard normal law, and let µϵ be the law
of

√
ϵZ. Then the following statement holds.

Theorem 3.1. Let

I(x) =
x2

2
, x ∈ R.

Then for any open set G ⊂ R and any closed set F ⊂ R we have

− inf
x∈G

I(x) ≤ lim inf
ϵ→0

ϵ logµϵ(G),

− inf
x∈F

I(x) ≥ lim sup
ϵ→0

ϵ logµϵ(F ).

Proof. We argue for a closed set F ⊂ R. Let a = inf{|x| : x ∈ F}. Note that the case a = 0
is trivial. We may therefore assume that a > 0. By symmetry we may further assume that
there exists b ≥ a such that F ⊂]−∞,−b] ∪ [a,∞[. Hence for ϵ > 0

µϵ(F ) ≤ µϵ([a,∞[) + µϵ(]−∞,−b]) ≤ 2√
2π

∫ ∞

a√
ϵ

exp(−x
2

2
)dx.

For u > 1 we have ∫ ∞

u
exp(−x

2

2
)dx ≤

∫ ∞

u
x exp(−x

2

2
)dx = exp(−1

2
u2).

Hence for ϵ < a2

ϵ lnµϵ(F ) ≤ ϵ[ln(
2√
2π

)− a2

2ϵ
],

and therefore

lim sup
ϵ→0

ϵ logµϵ(F ) ≤ −a
2

2
= − inf

x∈F
I(x).

For open sets we need a different inequality. In fact, integration by parts gives for u > 1∫ ∞

u
exp(−x

2

2
)dx =

1

u
exp(−1

2
u2)−

∫ ∞

u

1

x2
exp(−x

2

2
)dx,

hence
1

u
exp(−1

2
u2) ≤ (1 +

1

u2
)

∫ ∞

u
exp(−x

2

2
)dx

and
u

1 + u2
exp(−1

2
u2) ≤

∫ ∞

u
exp(−x

2

2
)dx.

Now let G ⊂ R be open, y ∈ G. By symmetry, we may assume that y > 0. Let, moreover,
a, b > 0 such that y ∈]a, b[⊂ G. Then, for ϵ small enough we have

µϵ(G) ≥ µϵ(]a,∞[)− µϵ([b,∞[) ≥ 1√
2π

[

a√
ϵ

1 + a2

ϵ

exp(−a
2

2ϵ
)− exp(− b

2

2ϵ
)]

≥ 1√
2π

a
2
√
ϵ

1 + a2

ϵ

exp(−a
2

2ϵ
).
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Therefore

lim inf
ϵ→0

ϵ lnµϵ(G) ≥ −a
2

2
≥ −y

2

2
= −I(y).

This implies the lower bound.

3.2 Large deviations for one-dimensional Brownian motion in Hölder space

In this section we use the Fourier series decomposition of one-dimensional Brownian motion
in Hölder space Cα0 of order α < 1

2 , and Ciesielski’s isomorphism mapping this space to a
sequence space, to calculate the rate function arising in LDP for Brownian motion, as for
instance specified in Schilder’s theorem. This remarkable approach was presented in Baldi
and Roynette [BR92]. Again we have d = 1. Let W be a one-dimensional Brownian motion
indexed by [0, 1], described by

W = Z00G00(t) +

∞∑
p=1

∑
1≤m≤2p

ZpmGpm,

with a sequence (Z00, (Zpm)p≥1,1≤m≤2p) of i.i.d standard normal variables, and the Schauder
functions (Gpm)p≥0,0≤m≤2p , as described in the previous section. Recall the Haar functions
(Hpm)p≥0,0≤m≤2p and the sequences (c−10, c00, (cpm(α))p≥1,1≤m≤2p) appearing in Ciesielski’s
isomorphism in Theorem 1.3 for 0 < α < 1, given by

cpm(α) = 2p(α−
1
2
)+α−1, c00(α) = 1, c−10(α) = 1, (13)

if p ≥ 1, 1 ≤ m ≤ 2p. We investigate the asymptotic behavior of the family of probability
measures (µϵ)ϵ>0, where µϵ is the law of

√
ϵW , ϵ > 0. We remark that according to Theorem

2.3 for any ϵ > 0, 0 < α < 1
2 we have

µϵ(Cα0 ) = 1. (14)

The large deviation rates for Brownian motion will crucially depend on the following
function space, the Cameron-Martin space of absolutely continuous functions.

Definition 3.2. Let

H1 =
{
f : [0, 1] → R, f(0) = 0, f abs. cont. with density ḟ ∈ L2([0, 1])

}
=

{∫ t

0
ḟ(s)ds, ḟ ∈ L2([0, 1])

}
. (15)

By means of (15) we can define the rate function for Brownian motion.

Definition 3.3. Let

I(f) =

{
1
2

∫ 1
0 (ḟ)

2(u)du, if f ∈ H1,
∞, otherwise.

(16)

In the following Theorem the rate function for an LDP for Brownian motion is calculated
for basic sets of a topology that is finer than the supremum norm topology usually employed
on Wiener space. Using standard arguments, it can be enhanced to an LDP in Schilder’s
Theorem. We consider the following basic sets of the Hölder topology. For δ > 0, ξ ∈
ℓ∞ = ℓ∞(R) denote B∞

δ (ξ) the ball of radius δ in the topology of l∞. We consider the sets
T−1
α,0(B

∞
δ (Tα,0(ψ))) for ψ ∈ Cα0 .

11



Theorem 3.4. Let 0 < α < 1/2, δ > 0 and ψ ∈ (Cα0 , ∥ · ∥α). Then with the rate function I
defined by (16)

lim
ϵ→0

ϵ lnµϵ(T
−1
α,0(B

∞
δ (Tα,0(ψ)))) = − inf

f∈T−1
α,0(B

∞
δ (Tα,0(ψ)))

I(f), (17)

lim
ϵ→0

ϵ lnµϵ(T
−1
α,0(B

∞
δ (Tα,0(ψ)))) = − inf

f∈T−1
α,0(B

∞
δ (Tα,0(ψ)))

I(f). (18)

Proof. We give the arguments for (17). The proof of (18) is almost identical.
1. We use the Schauder representation of Brownian motion W and the function ψ given

by

W = Z00G00 +
∑

p≥1,1≤m≤2p

ZpmGpm and let C0 ∋ ξ = (ξ00, (ξpm)1≤p,1≤m≤2p) = Tα,0(ψ).

(19)
Then by definition for ε > 0 (cf. Theorem 1.3)

Tα,0(
√
εW ) = (

√
εZ00, (

√
εcpm(α)Zpm)1≤p,1≤m≤2p ,

and therefore We therefore have, denoting for notational simplicity, Zp0 = 0, ξp0 = 0, cp0 =
1, p ≥ 1, √

εW ∈ T−1
α,0(B

∞
δ (ξ)) ⇐⇒ sup

p≥0,0≤m≤2p
|
√
εcpm(α)Zpm − ξpm| < δ.

Hence

(
√
εW )−1[T−1

α,0(B
∞
δ (ξ))] =

∩
p≥0,0≤m≤2p

{√
εcpm(α)Zpm ∈]ξpm − δ, ξpm + δ[

}
.

Since (Zpm)p≥0,0≤m≤2p is a family of independent random variables, we obtain for ϵ > 0

µϵ(T
−1
α,0(B

∞
δ (ξ))) =

∏
p≥0,0≤m≤2p

P
(√

εcpm(α)Zpm ∈]ξpm − δ, ξpm + δ[
)
=

∏
p≥0,0≤m≤2p

Ppm(ε).

(20)
We split the sequence of probabilities (Ppm(ε))p≥0,0≤m≤2p into four different parts to be treated
separately:

Λ1 =
{
(p,m) : p ≥ 0, 0 ≤ m ≤ 2p, 0 /∈ [ξpm − δ, ξpm + δ]

}
,

Λ2 =
{
(p,m) : p ≥ 0, 0 ≤ m ≤ 2p, ξpm = ±δ

}
,

Λ3 =
{
(p,m) : p ≥ 0, 0 ≤ m ≤ 2p, [ξpm − δ, ξpm + δ] ⊃

[
− δ

2 ,
δ
2

]}
,

Λ4 = (Λ3)
c \ (Λ1 ∪ Λ2).

Let us recall that (ξpm)p≥0,0≤m≤2p ∈ C0, so Λ3 contains almost all (p,m), p ≥ 0, 0 ≤ m ≤ 2p,
and hence Λ1 ∪ Λ2 ∪ Λ4 = (Λ3)

c is finite.
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2. Let us first discuss the contribution of Λ3. Since (Z00, Zpm)p≥1,1≤m≤2p are standard
normal variables, we have∏

(p,m)∈Λ3

Ppm(ε) ≥
∏

(p,m)∈Λ3,p≥1

P
(
Zpm ∈

[
− δ

2cpm(α)
√
ε
,

δ

2cpm(α)
√
ε

])

=
∏

(p,m)∈Λ3,p≥1

(
1−

√
2

π

∫ ∞

δ/(2cpm(α)
√
ε)
e−u

2/2du
)
.

Now according to (13) and our choice of α, cpm(α) ≤ 1, limp→∞ cpm(α) = 0. Therefore, for
ϵ > 0 such that ϵ < δ2 and all p ≥ 1, 1 ≤ m ≤ 2p we may estimate (see proof of Theorem 3.1)∫ ∞

δ/(2cpm(α)
√
ε)
exp(−x

2

2
)dx ≤ exp(− δ2

8cpm(α)2ϵ
).

In order to prove that
∏

(p,m)∈Λ3
Ppm(ε) converges to 1 as ϵ→ 0, by the elementary inequality

ln( 1
1−x) = ln(1+ x

1−x) ≤
x

1−x for x ∈]0, 1[ it suffices to prove that
∑

p≥1,1≤m≤2p exp(−
δ2

8cpm(α)2ε
)

converges to 0 as ϵ→ 0. This is in fact the case due to (13). We deduce

lim
ε→0

∏
(p,m)∈Λ3

Ppm(ε) = 1. (21)

3. Next, we estimate the contribution of Λ4. Indeed, |Λ4| < ∞ and by definition [ξpm −
δ, ξpm + δ] contains a small neighborhood of the origin for any (p,m) ∈ Λ4. We obtain

lim
ε→0

∏
(p,m)∈Λ4

Ppm(ε) = 1. (22)

4. Since |Λ2| <∞, its definition immediately gives

lim
ε→0

∏
(p,m)∈Λ2

Ppm(ε) = 2−|Λ2|. (23)

5. Let us finally estimate the contribution of Λ1. We define

ξpm =

{
ξpm − δ, if ξpm − δ > 0,
−(ξpm + δ), if ξpm + δ < 0.

Since for (p,m) ∈ Λ1 Zpm has a standard normal law, Theorem 3.1 implies

lim
ϵ→0

ϵ lnPpm(ε) = −
ξ
2
pm

2cpm(α)2
.

Since |Λ1| <∞, we therefore have

lim
ϵ→0

ϵ ln
∏

[p,m)∈Λ1

Ppm(ε) = −
∑

(p,m)∈Λ1

ξ
2
pm

2cpm(α)2
. (24)
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6. Using (21), (22), (23) and (24), we can deduce (17) if we are able to compare

∑
(p,m)∈Λ1

ξ
2
pm

2cpm(α)2
with inf

f∈T−1
α,0(B

∞
δ (ξ))

I(f).

By Theorem 1.4 any function f ∈ Cα0 ∩H1 has the Schauder representation

f = η00G00 +
∑

p≥1,1≤m≤2p

ηpm
cpm(α)

Gpm, with (η00, (ηpm)p≥0,1≤m≤2p) ∈ l∞.

The derivative satisfies ḟ = η00H00 +
∑

p≥1,1≤m≤2p
ηpm

cpm(α) Hpm, and since

(H00, (Hpm)p≥1,1≤m≤2p), is an orthonormal system in L2([0, 1]), we obtain

1

2

∫ 1

0
ḟ(s)2 ds =

∑
p≥0,1≤m≤2p

η2pm
2cpm(α)2

.

So the statement of the Theorem is an immediate consequence of the equality

inf
f∈T−1

α,0(B
∞
δ (ξ))∩H1

1

2

∫ 1

0
ḟ(s)2 ds = inf

{ ∑
p≥0,0≤m≤2p

η2pm
2cpm(α)2

, with ηpm ∈]ξpm − δ, ξpm + δ[
}

=
∑

(p,m)∈Λ1

ξ
2
pm

2cpm(α)2
.

4 Paradifferential calculus and Young integration

In this section we develop the basic tools that will be required for our rough path integral in
terms of Schauder functions. We shall formally decompose the integral into three components.
In these terms, we shall derive Young’s integral.

Before we continue, let us slightly change notation. We want to get rid of the factor 2−p/2

in (1), and therefore we define for p ≥ 0 and 0 ≤ m ≤ 2p the rescaled functions

χpm := 2
p
2Hpm and φpm := 2

p
2Gpm,

as well as φ−10 := G−10 ≡ 1. Then we have for p ∈ N and 1 ≤ m ≤ 2p

∥φpm(t)∥∞ = φpm(t
1
pm) = 2

p
2

∫ t1pm

t0pm

2
p
2ds = 2p

(
2m− 1

2p+1
− 2m− 2

2p+1

)
=

1

2
,

so that ∥φpm∥∞ ≤ 1 for all p,m. The expansion of f in terms of (φpm) is given by fk =∑k
p=0

∑2p

m=0⟨Hpm, df⟩Gpm =
∑k

p=0

∑2p

m=0 2
−p⟨χpm, df⟩φpm =

∑k
p=0

∑2p

m=0 fpmφpm, where
f−10 := f(1), and f00 := f(1)− f(0) and for p ∈ N and m ≥ 1

fpm := 2−p⟨χpm, df⟩ = 2f
(
t1pm
)
− f

(
t0pm
)
− f

(
t2pm
)
= ft0pm,t1pm − ft1pm,t2pm = 2−

p
2 ⟨Hpm, df⟩.

We write ⟨χpm, df⟩ := 2pfpm for all values of (p,m), despite not having defined χ−10.
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Definition 4.1. For α > 0 and f : [0, 1] → Rd the norm ∥·∥α is defined as

∥f∥α := sup
pm

2pα|fpm|,

and we write

Cα := Cα(Rd) :=
{
f ∈ C([0, 1],Rd) : ∥f∥α <∞

}
.

According to Theorem 1.3, we may indeed use the same name for the sequence space norm
as before for the function space norm. And the old space Cα is identical with the one just
defined. For α ∈ (0, 1), we have Cα = Cα([0, 1],Rd).

Littlewood-Paley notation. We will employ notation inspired from Littlewood-Paley the-
ory. For p ≥ −1 and f ∈ C([0, 1]) we define

∆pf :=

2p∑
m=0

fpmφpm and Spf :=
∑
q≤p

∆qf.

We will occasionally refer to (∆pf) as the Schauder blocks of f . Note that

Cα = {f ∈ C([0, 1],Rd) : ∥(2pα∥∆pf∥∞)p∥ℓ∞ <∞}.

4.1 The paraproduct in terms of Schauder functions

Here we introduce a “paradifferential calculus” in terms of Schauder functions. Paradifferen-
tial calculus is usually formulated in terms of Littlewood-Paley blocks and was initiated by
Bony [Bon81]. For a gentle introduction see [BCD11].

We will need to study the regularity of
∑

p,m upmφpm, where upm are functions and not
constant coefficients. For this purpose we define the following space of sequences of functions.

Definition 4.2. If (upm : p ≥ −1, 0 ≤ m ≤ 2p) is a family of affine functions of the form
upm : [t0pm, t

2
pm] → Rd, we set for α > 0

∥(upm)∥Aα := sup
p,m

2pα∥upm∥∞,

where it is understood that ∥upm∥∞ := maxt∈[t0pm,t2pm] |upm(t)|. The space Aα := Aα(Rd) is
then defined as

Aα :=
{
(upm)p≥−1,0≤m≤2p : upm ∈ C([t0pm, t

2
pm],Rd) is affine and ∥(upm)∥Aα <∞

}
.

Before proving a regularity estimate for affine expansions, let us establish an auxiliary
result.

Lemma 4.3. Let s < t and let f : [s, t] → L(Rd,Rn) and g : [s, t] → Rd be affine functions.
Then for all r ∈ (s, t) and for all h > 0 with r − h ∈ [s, t] and r + h ∈ [s, t] we have

|(fg)r−h,r − (fg)r,r+h| ≤ 8|t− s|−2h2∥f∥∞∥g∥∞. (25)
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Proof. For f(r) = a1 + (r − s)b1 and g(r) = a2 + (r − s)b2 we have

|(fg)r−h,r − (fg)r,r+h| = |2f(r)g(r)− f(r − h)g(r − h)− f(r + h)g(r + h)| = | − 2h2b1b2|.

Now fs,t = b1(t− s) so that |b1| ≤ 2|t− s|−1∥f∥∞, and similarly for b2.

We now prove a regularity estimate for affine expansions.

Lemma 4.4. Let α ∈ (0, 2) and let (upm) ∈ Aα. Then
∑

p,m upmφpm ∈ Cα, and∥∥∥∑
p,m

upmφpm

∥∥∥
α
. ∥(upm)∥Aα .

Proof. We need to examine the coefficients 2−q⟨χqn, d(
∑

pm upmφpm)⟩. The cases (q, n) =

(−1, 0) and (q, n) = (0, 0) are easy. So let q ≥ 0 and 1 ≤ n ≤ 2q. If p > q, then φpm(t
i
qn) = 0

for i = 0, 1, 2 and for all m, and therefore

2−q
⟨
χqn,d

(∑
p,m

upmφpm

)⟩
= 2−q

∑
p≤q

∑
m

⟨χqn, d(upmφpm)⟩.

If p < q, there is at most one m0 with ⟨χqn, d(upm0φpm0)⟩ ̸= 0. The support of χqn is then
contained in [t0pm0

, t1pm0
] or in [t1pm0

, t2pm0
] and upm0 and φpm0 are affine on these intervals.

So (25) yields, with |t− s| = 2−p, h = 2−q∑
m

|2−q⟨χqn,d(upmφpm)⟩| =
∑
m

|(upmφpm)t0qn,t1qn − (upmφpm)t1qn,t2qn |

. 22p2−2q∥upm∥∞∥φpm∥∞ . 2p(2−α)−2q∥(upm)∥Aα .

For p = q we have φqn(t
0
qn) = φqn(t

2
qn) = 0 and φqn(t

1
qn) = 1/2, and thus∑

m

|2−q⟨χqn,d(uqmφqm)⟩| =
∣∣∣(uqnφqn)t0qn,t1qn − (uqnφqn)t1qn,t2qn

∣∣∣ = |u(t1qn)| . 2−αq∥(upm)∥Aα .

Combining these estimates and using that α < 2, we obtain

2−q
∣∣∣⟨χqn, d(∑

pm

upmφpm

)⟩∣∣∣ .∑
p≤q

2p(2−α)−2q∥(upm)∥Aα ≃ 2−αq∥(upm)∥Aα ,

which completes the proof.

The following paraproducts will be essential in the decomposition of the integrals we
investigate.

Lemma 4.5. Let β ∈ (0, 2), let v ∈ C([0, 1],L(Rd,Rn)), and w ∈ Cβ(Rd). Then

π<(v, w) :=

∞∑
p=0

Sp−1v∆pw ∈ Cβ(Rn) and ∥π<(v, w)∥β . ∥v∥∞∥w∥β. (26)

Proof. We have π<(v, w) =
∑

p,m upmφpm with upm = (Sp−1v)|[t0pm,t2pm]wpm. For every

(p,m), the function (Sp−1v)|[t0pm,t2pm] is the linear interpolation of v between t0pm and t2pm.

As ∥(Sp−1v)|[t0pm,t2pm]wpm∥∞ ≤ 2−pβ∥v∥∞∥w∥β, setting upm = Sp−1v|[t0pm,t2pm]wpm, we obtain

∥(upm)∥Aβ
≤ ∥v∥∞∥w∥β.

Hence the statement follows from Lemma 4.4.
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4.2 A decomposition of Young’s integral

In this section we construct Young’s integral using Schauder expansions. If v ∈ Cα and
w ∈ Cβ, we formally define∫ ·

0
v(s)dw(s) :=

∑
p,m

∑
q,n

vpmwqn

∫ ·

0
φpm(s)dφqn(s) =

∑
p,q

∫ ·

0
∆pv(s)d∆qw(s).

We show that this definition makes sense provided α+β > 1. We identify three components of
the integral that behave quite differently. This will be our starting point towards an extension
of the integral beyond the Young regime.

In a first step, we have to estimate the Schauder coefficients of the iterated integrals of
Schauder functions arising in our double sum.

Lemma 4.6. Let p > q ≥ 0. Then

⟨φpm, χqn⟩ = 2−p−2χqn(t
0
pm), and |⟨φpm, χqn⟩| = 2p+q−2(p∨q)−2 (27)

for all m,n. If p = q, then ⟨φpm, χpn⟩ = 0, except if p = q = 0, in which case the integral is
bounded by 1. If 0 ≤ p < q, then for all (m,n) we have

⟨φpm, χqn⟩ = −2−q−2χpm
(
t0qn
)
, and |⟨φpm, χqn⟩| = 2p+q−2(p∨q)−2. (28)

If p = −1, then the integral is bounded by 1.

Proof. The cases p = q and p = −1 are easy, so let p > q ≥ 0. Since χqn ≡ χqn(t
0
pm) on the

support of φpm, we have∫ 1

0
φpm(s)dφqn(s) = χqn(t

0
pm)

∫ 1

0
φpm(s)ds = χqn(t

0
pm)2

−p−2.

If 0 ≤ p < q, then integration by parts and (27) imply (28).

Next we estimate the coefficients of iterated integrals in the Schauder basis.

Lemma 4.7. Let i, p ≥ −1, q ≥ 0, 0 ≤ j ≤ 2i, 0 ≤ m ≤ 2p, 0 ≤ n ≤ 2q. Then

2−i
∣∣∣⟨χij , d(∫ ·

0
φpmχqnds

)⟩∣∣∣ ≤ 2−2(i∨p∨q)+p+q, (29)

except if p < q = i. In this case we only have the worse estimate

2−i
∣∣∣⟨χij , d(∫ ·

0
φpmχqnds

)⟩∣∣∣ ≤ 1. (30)

Proof. We have ⟨χ−10, d(
∫ ·
0 φpmχqnds)⟩ = 0 for all (p,m) and (q, n). So let i ≥ 0. If i < p∨ q,

then χij is constant on the support of φpmχqn, and therefore Lemma 4.6 gives

2−i |⟨χij , φpmχqn⟩| ≤ |⟨φpm, χqn⟩| ≤ 2p+q−2(p∨q) = 2−2(i∨p∨q)+p+q.

Now let i > q. Then χqn is constant on the support of χij , and therefore another applica-
tion of Lemma 4.6 implies that

2−i |⟨χij , φpmχqn⟩| = 2q−i|⟨φpm, χij⟩| ≤ 2q−i2p+i−2(p∨i) = 2−2(i∨p∨q)+p+q.
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The only remaining case is i = q ≥ p, in which

2−i |⟨χij , φpmχqn⟩| ≤ 2i
∫ t2ij

t0ij

φpm(s)ds ≤ ∥φpm∥∞ ≤ 1.

Corollary 4.8. Let i, p ≥ −1 and q ≥ 0. Let v ∈ C([0, 1],L(Rd,Rn)) and w ∈ C([0, 1],Rd).
Then ∥∥∥∆i

(∫ ·

0
∆pv(s)d∆qw(s)

)∥∥∥
∞

. 2−(i∨p∨q)−i+p+q∥∆pv∥∞∥∆qw∥∞, (31)

except if i = q > p. In this case we only have the worse estimate∥∥∥∆i

(∫ ·

0
∆pv(s)d∆qw(s)

)∥∥∥
∞

. ∥∆pv∥∞∥∆qw∥∞. (32)

Proof. The case i = −1 is easy, so let i ≥ 0. We have

∆i

(∫ ·

0
∆pv(s)d∆qw(s)

)
=
∑
j,m,n

vpmwqn⟨2−iχij , φpmχqn⟩φij .

For fixed j, there are at most 2(i∨p∨q)−i non-vanishing terms in the double sum. Hence, we
obtain from Lemma 4.7 that∥∥∥∑

m,n

vpmwqn⟨2−iχij , φpmχqn⟩φij
∥∥∥
∞

. 2(i∨p∨q)−i∥∆pv∥∞∥∆qw∥∞(2−2(i∨p∨q)+p+q + 1i=q>p)

= (2−(i∨p∨q)−i+p+q + 1i=q>p)∥∆pv∥∞∥∆qw∥∞.

Corollary 4.9. Let i, p, q ≥ −1. Let v ∈ C([0, 1],L(Rd,Rn)) and w ∈ C([0, 1],Rd). Then for
p ∨ q ≤ i we have

∥∆i (∆pv∆qw)∥∞ . 2−(i∨p∨q)−i+p+q∥∆pv∥∞∥∆qw∥∞, (33)

except if i = q > p or i = p > q, in which case we only have the worse estimate

∥∆i(∆pv∆qw)∥∞ . ∥∆pv∥∞∥∆qw∥∞. (34)

If p > i or q > i, then ∆i(∆pv∆qw) ≡ 0.

Proof. The case p = −1 or q = −1 is easy. Otherwise we apply integration by parts and
note that the estimates (31) and (32) are symmetric in p and q. If for example p > i, then
∆p(v)(t

k
ij) = 0 for all k, j, which implies that ∆i(∆pv∆qw) = 0.

We now come to a natural formal decomposition of our integral
∫ ·
0 v(s)dw(s) into three

terms. They all have individual regularity properties to be derived from the estimates (31)
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and (32). More precisely, (32) indicates that the series
∑

p<q

∫ ·
0 ∆pv(s)d∆qw(s) is rougher

than the remainder
∑

p≥q
∫ ·
0 ∆pv(s)d∆qw(s). Integration by parts gives

∑
p<q

∫ ·

0
∆pv(s)d∆qw(s) = π<(v, w)−

∑
p<q

∑
m,n

vpmwqn

∫ ·

0
φqn(s)dφpm(s).

This motivates us to decompose the integral into three components, namely∑
p,q

∫ ·

0
∆pv(s)d∆qw(s) = L(v, w) + S(v, w) + π<(v, w).

Here L is defined as the antisymmetric Lévy area. It can be shown that L is closely related
to the Lévy area of certain dyadic martingales. We set:

L(v, w) :=
∑
p>q

∑
m,n

(vpmwqn − vqnwpm)

∫ ·

0
φpmdφqn

=
∑
p

(∫ ·

0
∆pvdSp−1w −

∫ ·

0
d(Sp−1v)∆pw

)
.

The symmetric part S is defined as

S(v, w) :=
∑
m,n≤1

v0mw0n

∫ ·

0
φ0mdφ0n +

∑
p≥1

∑
m

vpmwpm

∫ ·

0
φpmdφpm

=
∑
m,n≤1

v0mw0n

∫ ·

0
φ0mdφ0n +

1

2

∑
p≥1

∆pv∆pw,

and π< is the paraproduct defined in (26). As we observed in Lemma 4.5, π<(v, w) is always
well defined, and it inherits the regularity of w. Let us study S and L.

Lemma 4.10. Let α, β ∈ (0, 1) be such that α+β > 1. Then L is a bounded bilinear operator
from Cα × Cβ to Cα+β.

Proof. We only argue for
∑

p

∫ ·
0 ∆pvdSp−1w The term −

∫ ·
0 d(Sp−1v)∆pw can be treated with

the same arguments. Corollary 4.8 (more precisely (31)) implies that for i ≥ 0∥∥∥∆i

(∑
p

∫ ·

0
∆pvdSp−1w

)∥∥∥
∞

=
∥∥∥∑

p

∆i

(∫ ·

0
∆pvdSp−1w

)∥∥∥
∞

≤
∑
p≤i

∑
q<p

∥∥∥∆i

(∫ ·

0
∆pvd∆qw

)∥∥∥
∞

+
∑
p>i

∑
q<p

∥∥∥∆i

(∫ ·

0
∆pvd∆qw

)∥∥∥
∞

≤
(∑
p≤i

∑
q<p

2−2i+p+q2−pα∥v∥α2−qβ∥w∥β +
∑
p>i

∑
q<p

2−i+q2−pα∥v∥α2−qβ∥w∥β
)

.α+β 2−i(α+β)∥v∥α∥w∥β,

where we used 1−α > 0 and 1−β > 0. For the second series we also used that α+β > 1.

Unlike the Lévy area L, the symmetric part S is always well defined. It is also smooth.
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Lemma 4.11. Let α, β ∈ (0, 1). Then S is a bounded bilinear operator from Cα×Cβ to Cα+β.

Proof. This is shown using the same arguments as in the proof of Lemma 4.10.

In conclusion, the integral consists of three components. The Lévy area L(v, w) is only
defined if α+β > 1, but then it is smooth. The symmetric part S(v, w) is always defined and
smooth. And the paraproduct π<(v, w) is always defined, but it is rougher than the other
components. To summarize:

Theorem 4.12 (Young’s integral). Let α, β ∈ (0, 1) be such that α + β > 1, and let v ∈ Cα
and w ∈ Cβ. Then the integral

I(v, dw) :=
∑
p,q

∫ ·

0
∆pvd∆qw = L(v, w) + S(v, w) + π<(v, w) ∈ Cβ

satisfies ∥I(v, dw)∥β . ∥v∥α∥w∥β and

∥I(v, dw)− π<(v, w)∥α+β . ∥v∥α∥w∥β. (35)

5 Paracontrolled paths, pathwise integration beyond Young

In this section we construct a rough path integral in terms of Schauder functions. Let us
first motivate by an example (see [IP15]) what might be missing for two functions that serve
as integrand and integrator in a rough integral, in case for the Hölder coefficients we have
the inequality α+ β ≤ 1. Since we use trigonometric functions instead of Haar and Schauder
functions we shall briefly switch the domain from [0, 1] to [−1, 1].

Example 5.1. Let us consider for m ∈ N the functions (fm, gm) : [−1, 1] → R2 with compo-
nents given by

fmt :=
m∑
k=1

ak sin(2
kπt) and gmt :=

m∑
k=1

ak cos(2
kπt), t ∈ [−1, 1],

where ak := 2−αk and α ∈ [0, 1]. Set f := limm→∞ fm, g := limm→∞ gm. These functions are
α-Hölder continuous uniformly in m. Indeed, let s, t ∈ [−1, 1] and choose k ∈ N such that
2−k−1 ≤ |s− t| ≤ 2−k. Then we can estimate as follows

|fmt − fms | =
∣∣∣∣ m∑
l=1

al2 cos(2
l−1π(s+ t)) sin(2l−1π(s− t))

∣∣∣∣
≤ 2

k∑
l=1

|al|| sin(2l−1π(s− t))|+ 2

∞∑
l=k+1

|al| ≤ 2

k∑
l=1

|al|2l−1π|s− t|+ 2

∞∑
l=k+1

|al|

≤
k∑
l=1

2l−αlπ|s− t|+ 2−α(k+1)+1 1

1− 2−α
≤ 2(k+1)(1−α) − 1

21−α − 1
π|s− t|+ 21−α

1− 2−α
|s− t|α

≤ 2(k+1)(1−α) − 1

21−α − 1
π2−k(1−α)|s− t|α +

21−α

1− 2−α
|s− t|α ≤ C|s− t|α

for some constant C > 0 independent of m ∈ N. Analogously, we can get the α-Hölder
continuity of gm. Furthermore, it can be seen with the same estimate that (fm) converges
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uniformly to f , (gm) to g and thus also in α-Hölder topology. The limit functions f and g are
not β-Hölder continuous for every β > α. In order to see this, choose s = 0 and t = tn = 2−n

for n ∈ N and observe that

|ftn − f0|
|tn − 0|β

=
n−1∑
k=1

2−αk+βn sin(2k−nπ) ≥ 2(β−α)n+α,

which obviously tends to infinity with n.
Let us now show that (f, g) possesses no Lévy area. For this purpose, fix α ∈ [0, 1] and

m ∈ N. Then Lévy’s area for (fm, gm) is given by∫ 1

−1
fms dgms −

∫ 1

−1
gms dfms

=−
m∑

k,l=1

akal

∫ 1

−1

(
sin(2kπs) sin(2lπs)2lπ + cos(2lπs) cos(2kπs)2kπ

)
ds

=−
m∑

k,l=1

akal
(
2lπ

∫ 1

−1

1

2
(cos((2k − 2l)πs)− cos((2k + 2l)πs))ds

+ 2kπ

∫ 1

−1
(cos((2k − 2l)πs) + cos((2k + 2l)πs))ds

)
=− 2

m∑
k=1

a2k2
kπ = −2

m∑
k=1

2(1−2α)kπ.

This quantity diverges as m tends to infinity for α < 1
2 . Since (fm, gm) converges to (f, g) in

the α-Hölder topology, we can use this result to choose partition sequences of [−1, 1] along
which Riemann sums approximating the Lévy area of (f, g) diverge as well. This shows that
(f, g) possesses no Lévy area.

We will now see that f possesses no fractional Taylor expansion up to first order with
respect to g and vice versa. We will name this expansion a control relationship between f
and g. So the example will show that neither f is controlled by g nor vice versa. For this
purpose, note that for −1 ≤ s ≤ t ≤ 1, and 0 ̸= fgs ∈ R

|fs,t − fgs gs,t| =
∣∣∣∣ ∞∑
k=1

ak[(sin(2
kπt)− sin(2kπs))− fgs (cos(2

kπt)− cos(2kπs))]

∣∣∣∣
=

∣∣∣∣2 ∞∑
k=1

ak
[
sin(2k−1π(s− t)) cos(2k−1π(s+ t)) + fgs sin(2

k−1π(s+ t)) sin(2k−1π(s− t))
]∣∣∣∣

=

∣∣∣∣2 ∞∑
k=1

ak sin(2
k−1π(s− t))

√
1 + (fgs )2 sin(2

k−1π(s+ t) + arctan((fgs )
−1))

∣∣∣∣.
Let us now investigate Hölder regularity at s = 0. First, assume fg0 > 0, and take t = 2−n to
obtain

|f0,2n − fg0 g0,2n |
2−βn

= 2βn
∣∣∣∣2 n∑

k=1

ak sin(2
k−1−nπ)

√
1 + (fg0 )

2 sin(2k−1−nπ + arctan((fg0 )
−1))

∣∣∣∣
≥ 2(β−α)n sin

(π
2
+ arctan((fg0 )

−1)
)
.
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For fg0 < 0 the same estimates work for tn = −2−n instead. Therefore, the Hölder regularity
at 0 cannot be better than α and in particular f cannot be controlled by g for 1

2 > α.
Switching the roles of f and g with similar arguments leads to the same conclusion.

5.1 Paracontrolled paths

For going beyond the Young limit in the theory of integration of rough paths, according to
the example just given the concept of control will play the essential role. In fact, we will
assume that integrand and integrator are controlled by a joint rough function for which we
know that the three terms obtained in the decomposition given in Section 4.2 make sense.
The notion of control of rough functions generalizes the approximation by linear or quadratic
terms in Taylor’s formula of differential calculus into the domain of fractional approximation
orders. We use control by paraproducts, and obtain the following notion of paracontrolled
paths.

Definition 5.2. Let α > 0 and v ∈ Cα(Rd). We define

Dα
v := Dα

v (Rn) :=
{
(f, fv) ∈ Cα(Rn)× Cα(L(Rd,Rn)) : f ♯ = f − π<(f

v, v) ∈ C2α(Rn)
}
.

If (f, fv) ∈ Dα
v , then f is called paracontrolled by v. The function fv is called the derivative

of f with respect to v. Abusing notation, we write f ∈ Dα
v if it is clear from the context what

the derivative fv is supposed to be. We equip Dα
v with the norm

∥f∥v,α := ∥fv∥α + ∥f ♯∥2α.

If v ∈ Cα and (f̃ , f̃ ṽ) ∈ Dα
ṽ , then we also write

dDα(f, f̃) := ∥fv − f̃ ṽ∥α + ∥f ♯ − f̃ ♯∥2α.

Example 5.3. Let α+ β > 1 and v ∈ Cα, w ∈ Cβ. Then by (35), the Young integral I(v, dw)
is in Dα

w, with derivative v.

Example 5.4. If 2α < 1 and v ∈ Cα, then (f, fv) ∈ Dα
v if and only if |fs,t − fvs vs,t| . |t− s|2α

and in that case

∥fv∥∞ + sup
s ̸=t

|fvs,t|
|t− s|α

+ sup
s ̸=t

|fs,t − fvs vs,t|
|t− s|2α

. ∥f∥v,α(1 + ∥v∥α).

Indeed we have |fvs vs,t−π<(fv, v)s,t| . |t− s|2α∥fv∥α∥v∥α, which can be shown using similar
arguments as for Lemma B.2 in [GIP12]. In other words, for α ∈ (0, 1/2) the space Dα

v

coincides with a space of controlled paths.

5.2 A basic commutator estimate

Here we prove the commutator estimate which will be the main ingredient in the construction
of the integral I(f, dg), where f is paracontrolled by v and g is paracontrolled by v, and where
we assume that the Lévy area of the control L(v, v) exists.
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Propostion 5.5. Let α ∈ (0, 1), and assume that 2α < 1 < 3α. Let f, v, w ∈ Cα. Then the
“commutator”

C(f, v, w) := L(π<(f, v), w)− I(f, dL(v, w)) (36)

:= lim
N→∞

[L(SN (π<(f, v)), SNw)− I(f, dL(SNv, SNw))]

= lim
N→∞

∑
p≤N

∑
q<p

[∫ ·

0
∆p(π<(f, v))(s)d∆qw(s)−

∫ ·

0
f(s)∆pv(s)d∆qw(s)

−
(∫ ·

0
d(∆q(π<(f, v)))(s)∆pw(s)−

∫ ·

0
f(s)d(∆qv)(s)∆pw(s)

)]

converges in C3α−ε for all ε > 0. Moreover,

∥C(f, v, w)∥3α . ∥f∥α∥v∥α∥w∥α.

Proof. We only argue for the first difference in (36), i.e. for

XN :=
∑
p≤N

∑
q<p

[∫ ·

0
∆p(π<(f, v))(s)d∆qw(s)−

∫ ·

0
f(s)∆pv(s)d∆qw(s)

]
. (37)

The second difference can be handled using the same arguments. First we prove that (XN )
converges uniformly. Then we show that ∥XN∥3α stays uniformly bounded. This will imply
the desired result, since bounded sets in C3α are relatively compact in C3α−ε.

To prove uniform convergence, note that

XN −XN−1 =
∑
q<N

[∫ ·

0
∆N (π<(f, v))(s)d∆qw(s)−

∫ ·

0
f(s)∆Nv(s)d∆qw(s)

]

=
∑
q<N

[∑
j≤N

∑
i<j

∫ ·

0
∆N (∆if∆jv)(s)d∆qw(s)

−
∑
j≥N

∑
i≤j

∫ ·

0
∆j(∆if∆Nv)(s)d∆qw(s)

]
, (38)

where for the second term it is possible to take the infinite sum over j outside of the integral
because

∑
j ∆jg converges uniformly to g and because ∆qw is a finite variation path. We also

used that ∆N (∆if∆jv) = 0 whenever i > N or j > N . The terms in (38) for j = N cancel.
These cancellations are crucial, since they eliminate terms for which we only have the worse
estimate (34) in Corollary 4.9. We obtain

XN −XN−1 =
∑
q<N

∑
j<N

∑
i<j

∫ ·

0
∆N (∆if∆jv)(s)d∆qw(s)−

∑
q<N

∫ ·

0
∆N (∆Nf∆Nv)(s)d∆qw(s)

−
∑
q<N

∑
j>N

∑
i<j

∫ ·

0
∆j(∆if∆Nv)(s)d∆qw(s)

−
∑
q<N

∑
j>N

∫ ·

0
∆j(∆jf∆Nv)(s)d∆qw(s). (39)
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Note that ∥∂t∆qw∥∞ . 2q∥∆qw∥∞. Hence, an application of Corollary 4.9, where we use
(33) for the first three terms and (34) for the fourth term, yields

∥XN −XN−1∥∞ . ∥f∥α∥v∥α∥w∥α

[∑
q<N

∑
j<N

∑
i<j

2−2N+i+j2−iα2−jα2q(1−α)

+
∑
q<N

2−2Nα2q(1−α) +
∑
q<N

∑
j>N

∑
i<j

2−2j+i+N2−iα2−Nα2q(1−α)

+
∑
q<N

∑
j>N

2−jα2−Nα2q(1−α)

]
. ∥f∥α∥v∥α∥w∥α2−N(3α−1), (40)

where in the last step we used 3α > 1. This gives us the uniform convergence of (XN ).
Next let us show that ∥XN∥3α . ∥f∥α∥v∥α∥w∥α for all N . Similarly to (39) we obtain

for n ∈ N

∆nXN =
∑
p≤N

∑
q<p

∆n

[∑
j<p

∑
i<j

∫ ·

0
∆p(∆if∆jv)(s)d∆qw(s)−

∫ ·

0
∆p(∆pf∆pv)(s)d∆qw(s)

−
∑
j>p

∑
i≤j

∫ ·

0
∆j(∆if∆pv)(s)d∆qw(s)

]
,

and therefore by Corollary 4.8

∥∆nXN∥∞ .
∑
p

∑
q<p

[∑
j<p

∑
i<j

2−(n∨p)−n+p+q∥∆p(∆if∆jv)∥∞∥∆qw∥∞

+ 2−(n∨p)−n+p+q∥∆p(∆pf∆pv)∥∞∥∆qw∥∞

+
∑
j>p

∑
i≤j

2−(n∨j)−n+j+q∥∆j(∆if∆pv)∥∞∥∆qw∥∞

]
.

Now we apply Corollary 4.9, where for the last term we distinguish the cases i < j and i = j.
Using that 1− α > 0, we get

∥∆nXN∥∞ . ∥f∥α∥v∥α∥w∥α
∑
p

2p(1−α)

[∑
j<p

∑
i<j

2−(n∨p)−n+p2−2p2i(1−α)2j(1−α)

+ 2−(n∨p)−n+p2−pα2−pα

+
∑
j>p

∑
i<j

2−(n∨j)−n+j2−2j+i(1−α)+p(1−α)

+
∑
j>p

2−(n∨j)−n+j2−jα−pα

]
. ∥f∥α∥v∥α∥w∥α2−n(3α),

where we used both that 3α > 1 and that 2α < 1.

Remark 5.6. If 2α = 1, we can apply Proposition 5.5 with α − ε to obtain that C(f, v, w) ∈
C3α−ε for every sufficiently small ε > 0. If 2α > 1, then we are in the Young setting and there
is no need to introduce the commutator.
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5.3 Pathwise integration for paracontrolled paths

In this section we apply the commutator estimate to construct the rough path integral under
the assumption that the Lévy area exists for a given reference path.

Theorem 5.7. Let α ∈ (1/3, 1), and assume that 2α ̸= 1. Let v ∈ Cα(Rd) and assume that
the Lévy area

L(v, v) := lim
N→∞

(
L(SNv

k, SNv
ℓ)
)
1≤k≤d,1≤ℓ≤d

converges uniformly and that supN∥L(SNv, SNv)∥2α < ∞. Let f ∈ Dα
v (L(Rd,Rm)). Then

I(SNf, dSNv) converges in Cα−ε for all ε > 0. Denoting the limit by I(f, dv), we have

∥I(f, dv)∥α . ∥f∥v,α
(
∥v∥α + ∥v∥2α + ∥L(v, v)∥2α

)
.

Moreover, I(f, dv) ∈ Dα
v with derivative f and

∥I(f, dv)∥v,α . ∥f∥v,α
(
1 + ∥v∥2α + ∥L(v, v)∥2α

)
.

Proof. If 2α > 1, everything follows from the Young case, Theorem 4.12, so let 2α < 1. We
decompose

I(SNf, dSNv) = S(SNf, SNv) + π<(SNf, SNv) + L(SNf
♯, SNv)

+ [L(SNπ<(f
v, v), SNv)− I(fv, dL(SNv, SNv))] + I(fv, dL(SNv, SNv)).

Convergence then follows from Proposition 5.5 and Theorem 4.12. The limit is given by

I(f, dv) = S(f, v) + π<(f, v) + L(f ♯, v) + C(fv, v, v) + I(fv, dL(v, v)),

from where we easily deduce the claimed bounds.

6 Construction of the Lévy area for hypercontractive pro-
cesses

To apply our theory, it remains to construct the Lévy area for suitable stochastic processes.
We discuss the example of hypercontractive stochastic processes whose covariance function
satisfies a certain “finite variation” property.

Let X : [0, 1] → Rd be a centered continuous stochastic process, such that Xi is inde-
pendent of Xj for i ̸= j. We write R for its covariance function, R : [0, 1]2 → Rd×d and
R(s, t) := (E(Xi

sX
j
t ))1≤i,j≤d. The increment of R over a rectangle [s, t] × [u, v] ⊆ [0, 1]2 is

defined as

R[s,t]×[u,v] := R(t, v) +R(s, u)−R(s, v)−R(t, u) := (E(Xi
s,tX

j
u,v))1≤i,j≤d.

Let us make the following two assumptions.

(ρ–var) There exists C > 0 such that for all 0 ≤ s < t ≤ 1 and for every partition s = t0 < t1 <
· · · < tn = t of [s, t] we have

n∑
i,j=1

|R[ti−1,ti]×[tj−1,tj ]|
ρ ≤ C|t− s|.

25



(HC) The process X is hypercontractive, i.e. for every m,n ∈ N and every r ≥ 1 there
exists Cr,m,n > 0 such that for every polynomial P : Rn → R of degree m, for all
i1, . . . , in ∈ {1, . . . , d}, and for all t1, . . . , tn ∈ [0, 1]

E(|P (Xi1
t1
, . . . , Xin

tn )|
2r) ≤ Cr,m,nE(|P (Xi1

t1
, . . . , Xin

tn )|
2)r.

These conditions are taken from [FV10a], where under even more general assumptions it
is shown that it is possible to construct the iterated integrals I(X, dX), and that I(X, dX)
is the limit of (I(Xn, dXn))n∈N under a wide range of smooth approximations (Xn)n that
converge to X.

Example 6.1. Condition (HC) is satisfied by all Gaussian processes. More generally, it is
satisfied by every process “living in a fixed Gaussian chaos”; see [Jan97], Theorem 3.50.
Slightly oversimplifying things, this is the case if X is given by polynomials of fixed degree
and iterated integrals of fixed order with respect to a Gaussian reference process.

Prototypical examples of processes living in a fixed chaos are Hermite processes. They
are defined for H ∈ (1/2, 1) and k ∈ N, k ≥ 1 as

Zk,Ht = C(H, k)

∫
Rk

(∫ t

0

k∏
i=1

(s− yi)
−( 1

2
+ 1−H

k )
+ ds

)
dBy1 . . .dByk ,

where (By)y∈R is a standard Brownian motion, and C(H, k) is a normalization constant. In
particular, Zk,H lives in the Wiener chaos of order k. The covariance of Zk,H is

E(Zk,Hs Zk,Ht ) =
1

2

(
t2H + s2H + |t− s|2H

)
Since Z1,H is Gaussian, it is just the fractional Brownian motion with Hurst parameter H.
For k = 2 we obtain the Rosenblatt process. For further details about Hermite processes
see [PT11]. However, we should point out that it follows from Kolmogorov’s continuity
criterion that Zk,H is α–Hölder continuous for every α < H. Since H ∈ (1/2, 1), Hermite
processes are amenable to Young integration, and it is trivial to construct L(Zk,H , Zk,H).

Example 6.2. Condition (ρ–var) is satisfied by Brownian motion with ρ = 1. More generally
it is satisfied by the fractional Brownian motion with Hurst index H, for which ρ = 1/(2H).
It is also satisfied by the fractional Brownian bridge with Hurst index H. A general criterion
that implies condition (ρ–var) is the one of Coutin and Qian [CQ02]: If E(|Xi

s,t|2) . |t− s|2H
and |E(Xi

s,s+hX
i
t,t+h)| . |t−s|2H−2h2 for i = 1, . . . , d, then (ρ–var) is satisfied for ρ = 1/(2H).

For details and further examples see [FV10b], Section 15.2.

Lemma 6.3. Assume that the stochastic process X : [0, 1] → R satisfies (ρ–var). Then we
have for all p ≥ −1 and for all M,N ∈ N with M ≤ N ≤ 2p that

N∑
m1,m2=M

|E(Xpm1Xpm2)|ρ . (N −M + 1)2−p. (41)

Proof. The case p ≤ 0 is easy so let p ≥ 1. It suffices to note that

E(Xpm1Xpm2) = E
(
(Xt0pm1

,t1pm1
−Xt1pm1

,t2pm1
)(Xt0pm2

,t1pm2
−Xt1pm2

,t2pm2
)
)

=
∑

i1,i2=0,1

(−1)i1+i2R
[t
i1
pm1

,t
i1+1
pm1

]×[t
i2
pm2

,t
i2+1
pm2

]
,

and that {tipm : i = 0, 1, 2,m =M, . . . , N} partitions the interval [(M − 1)2−p, N2−p].
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Lemma 6.4. Let X,Y : [0, 1] → R be independent, centered, continuous processes, both
satisfying (ρ–var) for some ρ ∈ [1, 2]. Then for all i, p ≥ −1, q < p, and 0 ≤ j ≤ 2i

E
[∣∣∣ ∑
m≤2p

∑
n≤2q

XpmYqn⟨2−iχij , φpmχqn⟩
∣∣∣2] . 2(p∨i)(1/ρ−4)2(q∨i)(1−1/ρ)2−i2p(4−3/ρ)2q/ρ.

Proof. Since p > q, for every m there exists exactly one n(m), such that φpmχqn(m) is not
identically zero. Hence, we can apply the independence of X and Y to obtain

E
[∣∣∣ ∑
m≤2p

∑
n≤2q

XpmYqn⟨2−iχij , φpmχqn⟩
∣∣∣2]

≤
2p∑

m1,m2=0

∣∣E(Xpm1Xpm2)E(Yqn(m1)Yqn(m2))⟨2
−iχij , φpm1χqn(m1)⟩⟨2

−iχij , φpm2χqn(m2)⟩
∣∣.

Let us writeMj := {m : 0 ≤ m ≤ 2p, ⟨χij , φpmχqn(m)⟩ ̸= 0}. We also write ρ′ for the conjugate
exponent of ρ, i.e. 1/ρ+ 1/ρ′ = 1. Hölder’s inequality and Lemma 4.7 imply∑
m1,m2∈Mj

∣∣E(Xpm1Xpm2)E(Yqn(m1)Yqn(m2))⟨2
−iχij , φpm1χqn(m1)⟩⟨2

−iχij , φpm2χqn(m2)⟩
∣∣

.
( ∑
m1,m2∈Mj

∣∣E(Xpm1Xpm2)
∣∣ρ)1/ρ( ∑

m1,m2∈Mj

∣∣E(Yqn(m1)Yqn(m2))
∣∣ρ′)1/ρ′

(2−2(p∨i)+p+q)2.

Now write Nj for the set of n for which χijχqn is not identically zero. For every n̄ ∈ Nj there
are 2p−q numbers m ∈Mj with n(m) = n̄. Hence( ∑

m1,m2∈Mj

∣∣E(Yqn(m1)Yqn(m2))
∣∣ρ′)1/ρ′

. (22(p−q))1/ρ
′
((

max
n1,n2∈Nj

∣∣E(Yqn1Yqn2)
∣∣)ρ′−ρ ∑

n1,n2∈Nj

∣∣E(Yqn1Yqn2)
∣∣ρ)1/ρ′

,

where we used that ρ ∈ [1, 2] and therefore ρ′ − ρ ≥ 0 (for ρ′ = ∞ we interpret the right

hand side as maxn1,n2∈Nj |E(Yqn1Yqn2)|). Lemma 6.3 implies that
(∣∣E(Yqn1Yqn2)

∣∣ρ′−ρ)1/ρ′ .
2−q(1/ρ−1/ρ′). Similarly we apply Lemma 6.3 to the sum over n1, n2, and we obtain

(22(p−q))1/ρ
′
((

max
n1,n2∈Nj

∣∣E(Yqn1Yqn2)
∣∣)ρ′−ρ ∑

n1,n2∈Nj

∣∣E(Yqn1Yqn2)
∣∣ρ)1/ρ′

. (22(p−q))1/ρ
′
2−q(1/ρ−1/ρ′)(|Nj |2−q)1/ρ

′
= 2(q∨i)/ρ

′
2−i/ρ

′
22p/ρ

′
2q(−2/ρ′−1/ρ)

= 2(q∨i)(1−1/ρ)2i(1/ρ−1)22p(1−1/ρ)2q(1/ρ−2),

where we used that |Nj | = 2(q∨i)−i. Since |Mj | = 2(p∨i)−i, another application of Lemma 6.3
yields ( ∑

m1,m2∈Mj

∣∣E(Xpm1Xpm2)
∣∣ρ)1/ρ . 2(p∨i)/ρ2−i/ρ2−p/ρ.
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The result now follows by combining these estimates:

E
[∣∣∣ ∑
m≤2p

∑
n≤2q

XpmYqn⟨2−iχij , φpmχqn⟩
∣∣∣2]

.
( ∑
m1,m2∈Mj

∣∣E(Xpm1Xpm2)
∣∣ρ)1/ρ( ∑

m1,m2∈Mj

∣∣E(Yqn(m1)Yqn(m2))
∣∣ρ′)1/ρ′(2−2(p∨i)+p+q)2

.
(
2(p∨i)/ρ2−i/ρ2−p/ρ

)(
2(q∨i)(1−1/ρ)2i(1/ρ−1)22p(1−1/ρ)2q(1/ρ−2)

)(
2−4(p∨i)+2p+2q

)
= 2(p∨i)(1/ρ−4)2(q∨i)(1−1/ρ)2−i2p(4−3/ρ)2q/ρ.

Theorem 6.5. Let X : [0, 1] → Rd be a continuous, centered stochastic process with indepen-
dent components, and assume that X satisfies (HC) and (ρ–var) for some ρ ∈ [1, 2). Then
for every α ∈ (0, 1/ρ) almost surely∑

N≥0

∥L(SNX,SNX)− L(SN−1X,SN−1X)∥α <∞,

and therefore L(X,X) = limN→∞ L(SNX,SNX) is almost surely α–Hölder continuous.

Proof. First note that L is antisymmetric, and in particular the diagonal of the matrix
L(SNX,SNX) is constantly zero. For k, ℓ ∈ {1, . . . , d} with k ̸= ℓ we have

∥L(SNXk, SNX
ℓ)− L(SN−1X

k, SN−1X
ℓ)∥α

=
∥∥∥∑
q<N

∑
m,n

(Xk
NmX

ℓ
qn −Xk

qnX
ℓ
Nm)

∫ ·

0
φNm(s)dφqn(s)

∥∥∥
α

≤
∑
q<N

∥∥∥∑
m,n

Xk
NmX

ℓ
qn

∫ ·

0
φNm(s)dφqn(s)

∥∥∥
α
+
∑
q<N

∥∥∥∑
m,n

Xℓ
NmX

k
qn

∫ ·

0
φNm(s)dφqn(s)

∥∥∥
α

Let us argue for the first term on the right hand side, the arguments for the second one being
identical. Let r ≥ 1. Using the hypercontractivity condition (HC), we obtain∑

i,N

∑
j≤2i

∑
q<N

P
(∣∣∣∑
m,n

Xℓ
NmX

k
qn⟨2−iχij , φNmχqn⟩

∣∣∣ > 2−iα2−N/(2r)2−q/(2r)
)

≤
∑
i,N

∑
j≤2i

∑
q<N

E
(∣∣∣∑
m,n

Xℓ
NmX

k
qn⟨2−iχij , φNmχqn⟩

∣∣∣2r)2iα2r2N+q

.
∑
i,N

∑
j≤2i

∑
q<N

E
(∣∣∣∑
m,n

Xℓ
NmX

k
qn⟨2−iχij , φNmχqn⟩

∣∣∣2)r2iα2r2N+q.
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Now we can apply Lemma 6.4 to bound this expression by∑
i,N

∑
j≤2i

∑
q<N

(
2(N∨i)(1/ρ−4)2(q∨i)(1−1/ρ)2−i2N(4−3/ρ)2q/ρ

)r
2iα2r2N+q

.
∑
i

2i
∑
N≤i

∑
q<N

2ir(2α−4)2Nr(4−3/ρ+1/r)2qr(1/ρ+1/r)

+
∑
i

2i
∑
N>i

∑
q≤i

2ir(2α−1/ρ)2Nr(1/r−2/ρ)2qr(1/ρ+1/r)

+
∑
i

2i
∑
N>i

∑
i<q<N

2ir(2α−1)2Nr(1/r−2/ρ)2qr(1+1/r)

.
∑
i

2ir(2α+3/r−2/ρ) +
∑
i

∑
N>i

2ir(2α+2/r)2Nr(1/r−2/ρ)

+
∑
i

∑
N>i

2ir(2α+1/r−1)2Nr(1+2/r−2/ρ).

For r ≥ 1 we have 1/r−2/ρ < 0, because ρ < 2. Therefore, the sum over N in the second term
on the right hand side converges. If now we choose r > 1 large enough so that 1+3/r−2/ρ < 0
(and then also 2α + 3/r − 2/ρ < 0), then all three series on the right hand side are finite.
Hence, Borel-Cantelli implies the existence of C(ω) > 0, such that for almost all ω ∈ Ω and
for all N, i, j and q < N∣∣∣∑

m,n

Xℓ
Nm(ω)X

k
qn(ω)⟨2−iχij , φNmχqn⟩

∣∣∣ ≤ C(ω)2−iα2−N/(2r)2−q/(2r).

From here it is straightforward to see that for these ω we have

∞∑
N=0

∥L(SNX(ω), SNX(ω))− L(SN−1X(ω), SN−1X(ω))∥α <∞.
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