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Abstract

We show that a Weierstrass function that is 1
2 -Hölder continuous possesses a

square integrable local time.
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1 Introduction/Notes

Figure 1: Graphic of W for x ∈ [0, 1]; {(x,W (x)) : x ∈ [0, 1]} ⊂ R2.
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2 The curve as attractor of a dynamical system

Our aim is to investigate the local time of the one-dimensional Weierstrass curve given
by

W (x) =
∞∑
n=0

2−
n
2 cos(2π2nx), x ∈ [0, 1]. (2.1)

Our access to the analysis of this function is via the theory of dynamical systems. In
fact, we shall describe a dynamical system on [0, 1]2, alternatively Ω = {0, 1}N×{0, 1}N,
which produces the graph of the function as its attractor. For elements of Ω we write for
convenience ω = ((ω−n)n≥0, (ωn)n≥1); one understands Ω as the space of 2-dimensional
sequences of Bernoulli random variables. Denote by θ the canonical shift on Ω, given
by

θ : Ω→ Ω, ω 7→ (ωn+1)n∈Z.

Ω is endowed with the product σ-algebra, and the infinite product ν = ⊗n∈Z(1
2
δ{0} +

1
2
δ{1}) of Bernoulli measures on {0, 1}. We recall that θ is ν-invariant.

Now let

T = (T1, T2) : Ω→ [0, 1]2, ω 7→ (
∞∑
n=0

ω−n2−(n+1),
∞∑
n=1

ωn2−n).

Let us denote by T1 the first component of T , and by T2 the second one. It is well known
that ν is mapped by the transformation T to λ2 (i.e. ν = λ2 ◦ T ), the 2-dimensional
Lebesgue measure. It is also well known that the inverse of T , the dyadic representation
of the two components from [0, 1]2, is uniquely defined apart from the dyadic pairs.
For these we define the inverse to map to the sequences not finally containing only 0.
Let

B = T ◦ θ ◦ T−1.

We call B the Baker’s transformation. The θ-invariance of ν directly translates into
the B-invariance of λ2:

λ2 ◦B−1 = (λ2 ◦ T ) ◦ θ−1 ◦ T−1 = (ν ◦ θ−1) ◦ T−1 = ν ◦ T−1 = λ2.

For (ξ, x) ∈ [0, 1]2 let us note

T−1(ξ, x) =
(
(ξ−n)n≥0, (xn)n≥1

)
.

Let us calculate the action of B and its entire iterates on [0, 1]2.

Lemma 2.1 Let (ξ, x) ∈ [0, 1]2. Then for k ≥ 0

Bk(ξ, x) =
(

2kξ(mod 1),
ξ−k+1

2
+
ξ−k+2

22
+ · · ·+ ξ0

2k
+
x

2k

)
,

for k ≥ 1

B−k(ξ, x) =
( ξ

2k
+
x1
2k

+
x2

2k−1
+ · · ·+ xk

2
, 2kx(mod 1)

)
.

2



Proof: By definition of θk for k ≥ 0

Bk(ξ, x) =
(∑
n≥0

ξ−n+k2
−(n+1),

ξ−k+1

2
+
ξ−k+2

22
+ · · ·+ ξ0

2k
+
∑
n≥1

xn2−(k+n)
)
.

Now we can write∑
n≥0

ξ−n+k2
−(n+1) = 2kξ(mod 1) and

∑
n≥1

xn2−(k+n) =
x

2k
.

This gives the first formula. For the second, note that by definition of θ−k for k ≥ 1

B−k(ξ, x) =
(∑
n≥0

ξ−n2−(n+1+k) +
x1
2k

+
x2

2k−1
+ · · ·+ xk

2
,
∑
n≥1

xn+k2
−n
)
.

Again, we identify∑
n≥1

xn+k2
−n = 2kx(mod 1) and

∑
n≥0

ξ−n2−(n+1+k) =
ξ

2k
.

�
For k ∈ Z, (ξ, x) ∈ [0, 1]2 we abbreviate the k-th Baker transform of (ξ, x) as

Bk(ξ, x) = (ξk, xk),

where for k ≥ 0

ξk = 2kξ(mod 1), and xk =
ξ−k+1

2
+
ξ−k+2

22
+ · · ·+ ξ0

2k
+
x

2k
,

and for k ≥ 1

ξ−k =
ξ

2k
+
x1
2k

+
x2

2k−1
+ · · ·+ xk

2
, and x−k = 2kx(mod 1).

Following Baranski [1, 2, 3], Shen [12], Hunt [7], we will next interpret the Weierstrass
curve W by a transformation on our base space [0, 1]2. Let

F : [0, 1]2 × R → [0, 1]2 × R,

(ξ, x, y) 7→
(
B(ξ, x), 2−

1
2y + cos

(
2πB2(ξ, x)

))
.

Here we note B = (B1, B2) for the two components of the Baker transform B.
For convenience, we extend W from [0, 1] to [0, 1]2 by setting

W (ξ, x) = W (x), ξ, x ∈ [0, 1].

To see that the graph of W is an attractor for F , the skew-product structure of F with
respect to B plays a crucial role.

3



Lemma 2.2 For any ξ, x ∈ [0, 1] we have

F
(
ξ, x,W (ξ, x)

)
=
(
B(ξ, x),W

(
B(ξ, x)

))
.

Proof: We have by the 2π-periodicity of the trigonometric functions

W
(
B2(ξ, x)

)
= W

(ξ0 + x

2

)
=

∞∑
n=0

2−
n
2 cos

(
2π2n

ξ0 + x

2

)
= cos

(
2π
ξ0 + x

2

)
+
∞∑
n=1

2−
n
2 cos(2π2n−1x)

= cos
(

2π
ξ0 + x

2

)
+ 2−

1
2

∞∑
n=0

2−
n
2 cos(2π2nx)

= cos
(
2πB2(ξ, x)

)
+ 2−

1
2W (x).

Hence by definition of F(
B(ξ, x),W (B(ξ, x))

)
=
(
B(ξ, x),W (B2(ξ, x))

)
= F

(
ξ, x,W (ξ, x)

)
.

�

To assess stability properties of the dynamical system generated by F , let us calcu-
late its Jacobian. We obtain for ξ, x ∈ [0, 1], y ∈ R

DF (ξ, x, y) =

 2 0 0
0 1

2
0

0 −π sin
(
2πB2(ξ, x)

)
2−

1
2

 .
Hence the Lyapunov exponents of the dynamical system associated with F are given
by 2, 1

2
, and γ := 2−

1
2 . The corresponding invariant vector fields are given by 1

0
0

 , X(ξ, x) =

 0
1

2π
∑∞

n=1 γ
n sin

(
2πBn

2 (ξ, x)
)
 ,

 0
0
1

 ,

as is straightforwardly verified. Hence we have in particular for ξ, x ∈ [0, 1], y ∈ R

DF (ξ, x, y)X(ξ, x) =
1

2
X
(
B(ξ, x)

)
.

Note that the vector X spans an invariant stable manifold, and does not depend on y.

3 The regularity of the SBR measure

In Tsujii [9] it has been proved that the Sinai-Bowen-Ruelle (SBR) measure of

S(ξ, x) = 2π
∞∑
n=1

γn sin
(
2πBn

2 (ξ, x)
)
, ξ, x ∈ [0, 1], γ = 2−

1
2 ,
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is absolutely continuous with respect to Lebesgue measure. We shall now tackle a proof
of this statement which rest upon the scaling properties of S alone, and argues via a
Fourier analytic characterization of regularity of measures. It not only simplifies the
proof by Tsujii [9], but is also dual to a derivation of the smoothness of the occupation
measure of W in the subsequent section.

To recall the SBR measure of F , let us first calculate the action of S on the λ2-
measure preserving map B. For ξ, x ∈ [0, 1] we have

S(B(ξ, x)) = 2π
∞∑
n=1

γn sin
(

2πBn
2 (B2(ξ, x))

)
= 2π

∞∑
n=1

γn sin
(
2πBn+1

2 (ξ, x)
)

= 2π2
1
2

∞∑
k=1

γk sin
(
2πBk

2 (ξ, x)
)
− 2π sin

(
2πB2(ξ, x)

)
= 2

1
2S(ξ, x)− 2π sin

(
2πB2(ξ, x)

)
.

So we may define the Anosov skew product

G : [0, 1]2 × R→ [0, 1]2 × R,

(ξ, x, v) 7→
(
B(ξ, x), 2

1
2v − 2π sin

(
2πB2(ξ, x)

))
.

Then the equation proved before yields the next result (compare with Lemma 2.2).

Lemma 3.1 For ξ, x ∈ [0, 1] we have

Γ
(
ξ, x, S(ξ, x)

)
=
(
B(ξ, x), S(B(ξ, x))

)
.

The measure
ψ = λ2 ◦ (id, S)−1

on B([0, 1]2)⊗ B(R) is Γ-invariant.

Proof: The first equation has been verified above. The Γ-invariance of ψ is a direct
consequence of the B-invariance of λ2. �

Define π2 : [0, 1]2 → [0, 1], (ξ, x) 7→ x and let

µ = λ2 ◦ (S, π2)
−1.

The measure µ is called Sinai-Bowen-Ruelle measure of Γ.
We now define a map on our probability space that exhibits certain increments of

S in a self similar way. Let

G(ξ, x) = 2π
∑
n∈Z

2
n
2

[
sin
(
2πB−n2 (ξ, x)

)
− sin

(
2πB−n2 (0, x)

)]
, ξ, x ∈ [0, 1].

Then we have the following simple relationship between G and S.
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Lemma 3.2 For x, ξ, η ∈ [0, 1] we have

G(ξ, x)−G(η, x) = S(ξ, x)− S(η, x).

Proof: For x, ξ, η ∈ [0, 1] we have indeed

G(ξ, x)−G(η, x) =
∑
n∈Z

2
n
2

[
sin
(
2πB−n2 (ξ, x)

)
− sin

(
2πB−n2 (η, x)

)]
=

∞∑
k=1

2−
k
2

[
sin
(
2πBk

2 (ξ, x)
)
− sin

(
2πBk

2 (η, x)
)]

= S(ξ, x)− S(η, x).

This completes the proof. �

Let us next assess the scaling properties of G. This will be crucial for the proof of
the absolute continuity of the SBR measure. For this purpose, denote by ρ the image
measure of λ3 on [0, 1]3 by the mapping (x, ξ, η) 7→ G(ξ, x)−G(η, x) = S(ξ, x)−S(η, x).
The next result concerns scaling and self-similarity properties of G and ρ.

Proposition 3.3 (Scaling of G) For ξ, x ∈ [0, 1] we have

G(B−1(ξ, x)) = γG(ξ, x).

Let C be a Borel set in R. Then

ρ(γC) = γ2ρ(C).

Proof: First note that by definition, defining n+ 1 = k, for ξ, x ∈ [0, 1]

G(B−1(ξ, x)) = 2π
∑
n∈Z

2
n
2

[
sin
(
2πB−n−1(ξ, x)

)
− sin

(
2πB−n−1(0, x)

)]
= γ

∑
k∈Z

2
k
2

[
sin
(
2πB−k(ξ, x)

)
− sin

(
2πB−k(0, x)

)]
= γG(ξ, x).

For the second claim, note that the first one gives∫
[0,1]3

1C

(
|G(B−1(ξ, x))−G(B−1(η, x))|

)
dxdξdη

=

∫
[0,1]3

1C

(
γ|G(ξ, x)−G(η, x)|

)
dxdξdη = ρ(γ−1C).

On the other hand, using the definition of B−1, we may calculate

6



∫
[0,1]3

1C

(
|G
(
B−1(ξ, x)

)
−G

(
B−1(η, x)

)∣∣)dxdξdη

=

∫
[0,1]3

1C

(∣∣∣G(ξ + x1
2

, 2x(mod 1)
)
−G

(η + x1
2

, 2x(mod 1)
)∣∣∣)dxdξdη

=
1

2

∫
[0,1]3

1C

(∣∣∣G(ξ
2
, 2x(mod 1)

)
−G

(η
2
, 2x(mod 1)

)∣∣∣)dxdξdη

+
1

2

∫
[0,1]3

1C

(∣∣∣G(ξ + 1

2
, 2x(mod 1)

)
−G

(η + 1

2
, 2x(mod 1)

)∣∣∣)dxdξdη

= (
1

2
+

1

2
) 2

∫
[0,1]3

1C

(∣∣G(ξ′, x′)−G(η′, x′)
∣∣)dx′dξ′dη′ = 2ρ(C).

For obtaining the first equality in the last line, we set x′ = 2x(mod 1), ξ′ = ξ
2
, η′ = η

2

resp. x′ = 2x(mod 1), ξ′ = ξ+1
2
, η′ = η+1

2
. Combining the two preceding equations, we

obtain altogether

γ−2ρ(C) = ρ(γ−1C).

Replacing C with γC and multiplying the equation by γ2, we obtain the desired equa-
tion. �

Something seems not to fit here: if I take C = R, then γC = C, so the measure
should not change when scaling.

.gon: the sets should be taken from the support of the measure which is contained
in a compact?

From the preceding scaling statement we can easily deduce the following practical
corollary.

Corollary 3.4 Let L > 0 be such that [−L,L] is the support of ρ, which is symmetric.
Then for n ∈ N we have

ρ
(
]2−

n+1
2 L, 2−

n
2L]
)

= γ2n ρ
(
]2−

1
2L,L]

)
.

Proof: Choose C =]2−
1
2L,L] in Proposition 3.3, and iterate. �

Equipped with the scaling properties of G deduced above, we are finally able to
address the main result of this section. We aim at studying the absolute continuity
of µ with respect to Lebesgue measure. For this purpose we consider the Fourier
transforms of the marginals µx, x ∈ [0, 1]. Let

φx(u) =

∫
R

exp(iuy)µx(dy), u ∈ R.
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By definition of µ and the integral transform theorem, we have

φx(u) =

∫ 1

0

exp(iuS(ξ, x))dξ, u ∈ R, x ∈ [0, 1].

To prove absolute continuity of µx, we have to prove that φx is square integrable on R.
Therefore, to prove that µ is absolutely continuous, it will be sufficient to prove∫ 1

0

∫
R
|φx(u)|2dudx =

∫
R

∫
[0,1]3

exp
(
iu
(
S(ξ, x)− S(ξ′, x)

))
dξdξ′dxdu <∞.

Theorem 3.5 For almost every x ∈ [0, 1] the function

ξ 7→ S(ξ, x)

has an absolutely continuous law with respect to Lebesgue measure with a square in-
tegrable density. In particular, the SBR measure of Γ is absolutely continuous with
respect to Lebesgue measure and possesses a square integrable density.

Proof: We have to show that∫
R

∫
[0,1]3

exp
(
iu
(
S(ξ, x)− S(ξ′, x)

))
dξdξ′dxdu <∞.

Let K > 0 be fixed. We shall show that∫ K

−K

∫
[0,1]3

exp
(
iu
(
S(ξ, x)− S(η, x)

))
dxdξdηdu,

is bounded by a constant independent of K > 0. Recall that ρ is symmetric with
respect to reflection at the origin, and its compact support [−L,L]. We have

∫ K

−K

∫
[0,1]3

exp
(
iu
(
S(ξ, x)− S(η, x)

))
dxdξdη =

∫ K

−K

∫ L

−L
exp(iuy)ρ(dy)du

= 2

∫ K

−K

∫ L

0

exp(iuy)ρ(dy)du

= 4

∫ L

0

∫ K

0

cos(uy)duρ(dy)

= 4

∫ L

0

[
1

y
sin(Ky)]ρ(dy).

Since sin is bounded, it remains to show that∫ L

0

1

y
ρ(dy) <∞.
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But this clearly follows from the scaling properties of ρ, Corollary 3.4, in writing∫ L

0

1

y
ρ(dy) ≤ L

∞∑
n=0

2
n+1
2 ρ
(
]2−

n+1
2 L, 2−

n
2L]
)

= L
∞∑
n=0

2
1−n
2 ρ
(
]2−

1
2L,L]

)
≤ Lρ

(
]2−

1
2L,L]

) 21/2

1− 2−1/2
<∞.

�

The last estimate in the proof of the preceding Theorem indicates that the density
of the SBR measure has more regularity than just square integrability.

4 The existence of a local time for W

In this section we use a similar Fourier analytic criterion as in the preceding one to
show that the occupation measure associated with W possesses a square integrable
density. This will be done in an indirect way. We shall first establish an intrinsic link
between Weierstrass curve as the attractor of an underlying dynamical system and its
stable manifold spanned by S. Then, we shall show, using a basic scaling equality
and a Fourier analytic argument, that the local time of W shifted by smooth curves
following the stable manifold exists. Finally, we shall get rid of the smooth curves to
get a local time of W . In the following key lemma we establish the link between W
and the stable manifold of F . For this purpose, we define

H(ξ, x) =
∑
n∈Z

2−
n
2

[
cos
(
2πB−n2 (ξ, x)

)
− cos

(
2πB−n2 (ξ, 0)

)]
, ξ, x ∈ [0, 1].

Then we have the following relationship between W and S.

Lemma 4.1 For x, y, ξ ∈ [0, 1] we have

H(ξ, y)−H(ξ, x) = W (y)−W (x)−
∫ y

x

S(ξ, z)dz.

Proof: For x, y, ξ ∈ [0, 1] we have indeed

H(ξ, y)−H(ξ, x) =
∑
n∈Z

2−
n
2

[
cos
(
2πB−n2 (ξ, y)

)
− cos

(
2πB−n2 (ξ, x)

)]
=

∞∑
n=0

2−
n
2

[
cos
(
2πB−n2 (ξ, y)

)
− cos

(
2πB−n2 (ξ, x)

)]
+
∞∑
k=1

2
k
2

[
cos
(
2πBk

2 (ξ, y)
)
− cos

(
2πBk

2 (ξ, x)
)
]

= W (y)−W (x) +

∫ y

x

(−2π)
∞∑
k=1

2−
k
2 sin

(
2πBk

2 (ξ, z)
)
dz

= W (y)−W (x)−
∫ y

x

S(ξ, z)dz.
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This completes the proof. �

We will next assess the scaling properties of H. This will be crucial for the proof of
the existence of a local time.

Proposition 4.2 For ξ, x ∈ [0, 1] we have

H(B(ξ, x)) = γH(ξ, x).

For r > 0 let
Ar = {(x, y, ξ) ∈ [0, 1]3 : |H(ξ, y))−H(ξ, x)| ≤ r}.

Then
λ3(Aγr) = γ2λ3(Ar).

Proof: First note that by definition, setting n− 1 = k, for ξ, x ∈ [0, 1]

H(B(ξ, x)) =
∑
n∈Z

2−
n
2

[
cos
(
2πB−n+1(ξ, x)

)
− cos

(
2πB−n+1(ξ, 0)

)]
= γ

∑
k∈Z

2−
k
2

[
cos
(
2πB−k(ξ, x)

)
− cos

(
2πB−k(ξ, 0)

)]
= γH(ξ, x).

For the second claim, note that the first one gives∫
[0,1]3

1[0,r]

(
|H(B(ξ, y)−H(B(ξ, x))|

)
dxdydξ∫

[0,1]3
1[0,r]

(
γ|H(B(ξ, y))−H(B(ξ, x)|

)
dxdydξ = λ3(Aγ−1r).

On the other hand, using the definition of B, we may calculate∫
[0,1]3

1[0,r]

(∣∣H(B(ξ, y))−H(B(ξ, x))
∣∣)dxdydξ

=

∫
[0,1]3

1[0,r]

(∣∣∣H(2ξ(mod 1),
ξ0 + y

2

)
−H

(
2ξ(mod 1),

ξ0 + x

2

)∣∣∣)dxdydξ

=
1

2

∫
[0,1]3

1[0,r]

(∣∣∣H(2ξ(mod 1),
y

2

)
−H

(
2ξ(mod 1),

x

2

)∣∣∣)dxdydξ

+
1

2

∫
[0,1]3

1[0,r]

(∣∣∣H(2ξ(mod 1),
1 + y

2

)
−H

(
2ξ(mod 1),

1 + x

2

)∣∣∣)dxdydξ

= (
1

2
+

1

2
) 2

∫
[0,1]3

1[0,r]

(∣∣H(ξ′, y′)−H(ξ′, x′)
∣∣)dx′dy′dξ′ = 2λ3(Ar).

For obtaining the first equality in the last line, we set ξ′ = 2ξ(mod 1), x′ = x
2
, y′ = y

2

resp. ξ′ = 2ξ(mod 1), x′ = x+1
2
, y′ = y+1

2
. Combining the two preceding equations, we

obtain altogether
γ−2λ3(Ar) = λ3(Aγ−1r).
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Replacing r with γr and multiplying the equation by γ2, we obtain the desired equa-
tion. �

From the preceding scaling statement we can easily deduce the following practical
corollary.

Corollary 4.3 There are constants c, C > 0 such that for any r > 0 we have

c r2 ≤ λ3
({

(ξ, x, y) ∈ [0, 1]3 : |H(ξ, y)−H(ξ, x)| < r
})
≤ Cr2.

Proof: Iterating the last statement of the preceding Proposition, we get for any
n ∈ N

λ3(
({

(ξ, x, y) ∈ [0, 1]3 : |H(ξ, y)−H(ξ, x)| < γn
})

= γ2nλ3(
({

(ξ, x, y) ∈ [0, 1]3 : |H(ξ, y)−H(ξ, x)| < 1
})
.

Choose r > 0. We may assume r < 1, since otherwise the claim is trivial. Next choose
l ∈ N such that γl+1 ≤ r ≤ γl. Then

λ3
({

(ξ, x, y) ∈ [0, 1]3 : |H(ξ, y)−H(ξ, x)| < r
})

≤ λ3
({

(ξ, x, y) ∈ [0, 1]3 : |H(ξ, y)−H(ξ, x)| < γl
})

= γ2lλ3(
{

(ξ, x, y) ∈ [0, 1]3 : |H(ξ, y)−H(ξ, x)| < 1
}

)

≤ r2γ−2λ3(
{

(ξ, x, y) ∈ [0, 1]3 : |H(ξ, y)−H(ξ, x)| < 1
}

).

Hence by setting C = γ−2λ3(
{

(ξ, x, y) ∈ [0, 1]3 : |H(ξ, y) −H(ξ, x)| < 1
}

), we get the
right hand side of the claimed inequality. A similar argument for the left hand side
reveals that setting c = γ2λ3(

{
(ξ, x, y) ∈ [0, 1]3 : |H(ξ, y)−H(ξ, x)| < 1

}
) finishes the

proof. �

This corollary improves the one dimensional version in Keller [8] of our Lemma 4.8.
in the manuscript on the Hausdorff dimension essentially. So the telescoping proof with
the very complex and tedious arguments in Keller’s paper is not necessary. One can
improve on the one hand Keller’s paper.

Equipped with the scaling properties of H deduced above, we are finally able to
state and prove the main result of this section.

Theorem 4.4 For almost every ξ ∈ [0, 1] the function

H(ξ, x) = W (x)−W (0)−
∫ x

0

S(ξ, z)dz, x ∈ [0, 1],

possesses a square integrable local time.
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Proof: We just have to transfer the arguments of the proof of Theorem 3.5 from S
to H and a corresponding measure. We have to show that∫

R

∫
[0,1]3

exp
(
iu(H(ξ, y)−H(ξ, x))

)
dxdydξdu <∞.

Let K > 0 be fixed. We shall show that∫ K

−K

∫
[0,1]3

exp
(
iu(H(ξ, y)−H(ξ, x))

)
dxdydξdu

is bounded by a constant independent of K. For this, denote by χ the image measure of
λ3 on [0, 1]3 by the mapping (ξ, x, y) 7→ H(ξ, y)−H(ξ, x). This measure is symmetric
with respect to reflection at the origin, and has compact support, say [−L,L]. We have

∫ K

−K

∫
[0,1]3

exp
(
iu(H(ξ, y)−H(ξ, x))

)
dxdydξdu =

∫ K

−K

∫ L

−L
exp(iuy)χ(dy)du

= 2

∫ K

−K

∫ L

0

exp(iuy)χ(dy)du

= 4

∫ L

0

∫ K

0

cos(uy)duχ(dy)

= 4

∫ L

0

[
1

y
sin(Ky)]χ(dy).

Since sin is bounded, it remains to show that∫ L

0

1

y
χ(dy) <∞.

But this follows from Corollary 4.3. �

We finally have to translate the result of Theorem 4.4 to a statement of existence
of a local time for W .

Theorem 4.5 The function W possesses a square integrable local time.

Proof: Let ξ ∈ [0, 1] and L(ξ, ·) be the square integrable local time of H(ξ, ·),
according to Theorem 4.4. We have to show that for some ξ ∈ [0, 1] the function
W = W (0)+H+

∫ ·
0
S(ξ, z)dz possesses a square integrable local time. For any ξ ∈ [0, 1],

the function f(ξ, t) = W (0) +
∫ t
0
S(ξ, z)dz, t ∈ [0, 1], is infinitely often continuously

differentiable. The local time L(ξ, ·) induces a family of measures on the Borel sets of
[0, 1], the distribution functions of which are given by L(ξ, x, t), where L(ξ, ·, t) is the
square integrable local time of H(ξ, ·), restricted to the interval [0, t], t ∈ [0, 1]. In these
terms, it is easy to see that the square integrable local time M of W derives from L
via the formula

M(x) =

∫ 1

0

L
(
ξ, x− f(ξ, t)

)
dt.

This perturbation result is certainly known. I just did not find the right reference in
the literature. Can you check? �
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