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1. Markov chains: construction and elementary properties

Definition 1.1. Let (S,S ) be a measurable space. A function

p : S × S → [0, 1]

ia called transition probability, if

(a) for each x ∈ S p(x, . ) is a probability measure on (S,S );

(b) for each A ∈ S p( . , A) is S -measurable.

Remark 1.2. Let p be a transition probability on a measurable space (S,S ).

i) If f : S → R is S -B1-measurable and bounded, then also g :=
∫
S f(x) p( . , dx) is.

ii) If µ is a probability measure on (S,S ), then also ν :=
∫
S p(x, . ) µ(dx) is.

Proof. i) By 1.1(b) the statement holds for indicator functions f = 1A of
measurable sets, hence also (linearity of the integral) for step functions.
If f ≥ 0, there exist approximating step functions 0 ≤ fn ↗ f ; here gn :=∫
fn(x)p( . , dx) is measurable (since fn is a step function) and (by the bound of

f) bounded; on the other hand (monotone convergence) gn ↗
∫
f(x)p( . , dx) ≡

g, such that g is measurable as pointwise limit of measurable functions; g is
bounded with the same bound as f .
More generally, decompose f = f+ − f− mit f+, f− ≥ 0; by what we know,
g± :=

∫
f±(x) p( . , dx) measurable and bounded, hence also g = g+ − g−.

ii) For a sequence (An)n∈N of pairwise disjoint An ∈ S we have

ν

(
.∪
n

An

)
≡
∫
S
p

(
x,

.∪
An

)
µ(dx)

1.1(a)
=

∫
S

∑
n

p(x,An) µ(dx)

mon. conv.
=

∑
n

∫
S
p(x,An) µ(dx) ≡

∑
n

ν(An) ;

moreover ν(S) ≡
∫
S p(x, S)µ(dx)

1.1(a)
=

∫
S µ(dx) = 1 (µ probability measure).

Definition 1.3. Let S be a Polish space, and (pn)n∈N a sequence of transition probabil-
ities, µ a probability measure. Then let P0 := µ and

Pn(B0 × · · · ×Bn) :=

∫
B0×···×Bn

pn(xn−1, dxn)pn−1(xn−2, dxn−1) · · · p1(x0, dx1) µ(dx0)

for n ∈ N and Bi ∈ S ≡ B(S).
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By remark 1.2 we obtain recursively that Pn is well defined on the semiring1

Rn := {B0 × · · · ×Bn : Bi ∈ S } .

Moreover, Pn can be extended to a measure on the σ-algebra generated by the ring r(Rn)

σ (r(Rn)) = S ⊗ · · · ⊗ S︸ ︷︷ ︸
(n+1)times

≡ S n+1
(
S Polish

= B(Sn+1)
)
.

Proof. Pn induces a pre-measure on the ring r(Rn). By Caratheodory, to
extend it to σ (r(Rn)) we have to prove that Pn is σ-additive on the ring.
Since Pn is a finite pre-measure, σ-additivity is equivalent to the property of
continuity from above that will be shown in what follows; by recursion and
remark 1.2 it is enough to consider the case n = 1:
Let (Ak)k∈N be a sequence in r(R1) with Ak ↘ ∅. We have to prove:

P1(Ak)
k→∞−−−→ 0. Denoting the intersection by A ∈ r(R1) near x ∈ S with

Ax := {y ∈ S : (x, y) ∈ A} ,

we obtain by Ak ↘ ∅ for all x ∈ S :

(Ak)x ↘ ∅ (k → ∞) .

By continuity from above of the measure p1(x, . ) we get

p1(x, (Ak)x)
k→∞−−−→ 0 (x ∈ S)

and thus by dominated convergence:

P1(Ak) =

∫
S
p1(x, (Ak)x) µ(dx)

k→∞−−−→ 0 .

Our next aim is the construction of a Markov chain on SN0 with transition probabilities
(pn)n∈N and initial distribution µ. For this, let S be Polish, endowed with the Borel σ-
algebra B(S) =: S . We verify the consistency condition by Kolmogorov for (Pn)n∈N0 .
For this purpose we define:

For F,G ⊂ N0 with F ⊂ G let

πG,F : SG −→ SF

(xi)i∈G 7−→ (xi)i∈F

1A collection of sets is called P semiring , if (cf. Halmos [HM 74, S.22]):

• for E ∈ P and F ∈ P also E ∩ F ∈ P, and

• for E ∈ P and F ∈ P mit E ⊂ F there exist pairwise disjoint sets C1, . . . , Cn ∈ P, such that

F \ E = ∪n
i=1Ci.
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the projection on the smaller index set and herewith πF := πN0,F ; correspondingly let
m,n ∈ N0 with m ≤ n

πn,m : Sn+1 −→ Sm+1

(x0, . . . , xn) 7−→ (x0, . . . , xm)

and for m ∈ N0

πm : SN0 −→ Sm+1

(xi)i∈N0 7−→ (x0, . . . , xm) .

These projections are measurable for the respective product σ-algebras. The uniqueness
theorem for measures (applied to ∩-stable generators of σ-algebras consisting of cylinder
sets) yields for m,n ∈ N0 with m ≤ n the equality

Pn ◦ π−1
n,m = Pm

of measures on S m+1 ; analogously for finite F,G ⊂ N0 with F ⊂ G also

PG ◦ π−1
G,F = PmaxF ◦ π−1

{0,...,maxF},F
=: PF ;

this consistency property implies that (PF )F⊂N0 finite defines a pre-measure on (SN0 ,B(S)N0).
By Kolmogorov’s consistency theorem it is even σ-additive. Therefore there is a unique
probability measure Pµ on (SN0 ,B(S)N0) with

Pµ ◦ π−1
n = Pn (n ∈ N0) . (1)

Satz 1.4 (canonical Markov chain). Let S be a Polish space with transition probabilities
(pn)n∈N and probability measure µ; let Pµ be the thus induced probability measure on SN0.
Then

Xn := π{n} ≡ πN0,{n} (n ∈ N0)

is a Markov chain on

(Ω,F ,P, (Fn)n∈N0) :=
(
SN0 ,S N0 , Pµ, (σ(πn))n∈N0

)
,

i.e. we have

i) Xn is Fn-measurable, and

ii) for all n ∈ N0 and B ∈ S we have:

P (Xn+1 ∈ B |Fn) = P (Xn+1 ∈ B |Xn) = pn+1(Xn, B) .
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Proof. i)Xn is measurable with respect to σ(Xn) ⊂ σ(X0, . . . , Xn) ≡ σ(πn) ≡
Fn .
ii) We have to show:∫

A
1{Xn+1∈B} dPµ =

∫
A
pn+1(Xn, B) dPµ (A ∈ Fn)

(then also P(Xn+1 ∈ B|Xn) = pn+1(Xn, B), by measurability with respect to
σ(Xn) ⊂ Fn) . Since π−1

n (Rn) is a ∩-stable generator of Fn, it is enough, to
prove the above equation for

A = π−1
n (B0 × · · · ×Bn) ≡ {X0 ∈ B0, . . . , Xn ∈ Bn}

with B0, . . . , Bn ∈ S , namely:∫
A
1{Xn+1∈B} dPµ = Pµ{X0 ∈ B0, . . . , Xn ∈ Bn, Xn+1 ∈ B}

(1)
= Pn+1(B0 × · · · ×Bn ×B)

1.3
=

∫
B0×···×Bn

pn+1(xn, B) Pn(dx0, . . . , dxn)

transf. thm
=

∫
A
pn+1(Xn, B) dPµ .

Definition 1.5. Let (S,S ) be a measurable space. Then on the path space Ω ≡ SN0 the
family θ ≡ (θn)n∈N0 of (canonical) shifts θn : Ω −→ Ω (n ∈ N0) is defined by

θn(ω) :=
(
m 7→ ω(m+ n)

)
.

Each θn is measurable with respect to F ≡ S N0 .

We next prove the Markov property (with deterministic times) and then the strong
Markov property (with stopping times). For this we denote Eµ resp. Ex ≡ Eδx the
conditional expectations with respect to Pµ resp. Pδx on Ω with underlying transition
probabilities (pn)n∈N. For simplicity we assume that the Markov chain is time homoge-
neous:

Definition 1.6. In the situation of Proposition 1.4 the Markov chain is called X time
homogeneous, if for all n ∈ N we have pn = p1(=: p).

Theorem 1.7 (Markov property). In the situation of 1.4 let the Markov chain X be time
homogeneous; let Y be a bounded, F -measurable random variable on Ω. Then

Eµ(Y ◦ θn | Fn) = EXn(Y ) ≡ Ex(Y )
∣∣∣
x=Xn

(n ∈ N0) .

Proof. Note first that EXn(Y ) is indeed measurable with respect to Fn; this follows from
adaptedness of X and measurability of x 7→ Ex(Y ) [this one by definition and recursive
application of 1.2 i) clear for indicator functions Y = 1π−1

n [B0×···×Bn]
for Bi ∈ S ; the
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general property follows from the monotone class theorem, since by monotone convergence
{Y : x 7→ Ex(Y ) measurable} is closed for monotone operations ]. So we have to prove
the claimed equation. By monotone class arguments, it is enough to argue for the case Y

of the form
m∏
k=0

gk(Xk) with bounded S -measurable random variables g0, . . . , gm .

1) We first consider sets Fn of the form A := π−1
n [A0 × · · · × An] with A0, . . . , An ∈ S ;

we have

Eµ(Y ◦ θn · 1A) ≡ Eµ

(
m∏
k=0

gk(Xn+k) · 1A

)
(1),1.3
=

∫
A0

µ(dx0)

∫
A1

p(x0, dx1) · · ·
∫
An

p(xn−1, dxn) ×

×
∫
S
g0(xn+1) p(xn, dxn+1) · · ·

∫
S
gm(xn+m) p(xn+m−1, dxn+m)

transf. thm
= Eµ

(
EXn

(
m∏
k=0

gk(Xk)

)
· 1A

)
≡ Eµ

(
EXn(Y ) · 1A

)
,

hence the claim follows for all A ∈ Fn of the special considered form.

2) Let now L :=
{
A ∈ Fn : claim from 1) valid for A

}
.According to 1) π−1

n (Rn) ⊂ L ;
since π−1

n (Rn) is ∩-stable, Dynkin’s lemma yields Fn = σ(π−1
n (Rn)) ⊂ L .

Our next goal is to extend the Markov property to stopping times.

Definition 1.8. Let Ω,F , (Fn)n∈N0) be a filtered measure space; N : Ω → N0 ∪ {∞} is
called (Fn)n∈N0-stopping time, if {N ≤ n} ∈ Fn for all N0. Equivalently, {N = n} ∈ Fn

for all n ∈ N0.
To an (Fn)n-stopping time N we associate the σ-algebra

FN :=

{
A ∈ F : A ∩

{
N

(=)

≤ n

}
∈ Fn for all n ∈ N0

}
;

it is called N -past or σ-algebra of events before N .

In the situation from 1.4 and 1.5 we formally enlarge Ω by ∆ /∈ Ω, increase F by {∆}
and define a (Fn)n∈N0-stopping time N by

θN (ω) :=

{
θN(ω)(ω) , N(ω) < ∞
∆ , N(ω) = ∞ .

For a random variable Y on Ω let Y (∆) := 0 .

Theorem 1.9 (strong Markov property). In the situation from 1.4 assume the Markov
chain X is time homogeneous; let θ be the shift from 1.5 and N a (Fn)n-stopping time. If
(Yn)n∈N0 is a family of F -measurable and (uniformly in (n, ω)) bounded random variables,
we have

Eµ(YN ◦ θN | FN ) = EXN
(YN ) on {N < ∞} ;
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In particular, for a F -measurable bounded random variable Y :

Eµ(Y ◦ θN | FN ) = EXN
(Y ) on {N < ∞} .

Proof. Note first that ω 7→ EXN(ω)(ω)(YN(ω)) is in fact FN -measurable, since

it is the composition of the measurable maps ω 7→ (ω,N(ω)) , (ω, n) 7→
(Xn(ω), n) and (x, n) 7→ Ex(Yn).
With A ∈ FN we then have

Eµ

(
YN ◦ θN · 1A∩{N<∞}

) dom. conv.
=

∞∑
n=0

Eµ

(
Yn ◦ θn · 1A∩{N=n}

)
MP 1.7
=

∞∑
n=0

Eµ

(
EXn(Yn) · 1A∩{N=n}

)
dom. conv.

= Eµ

(
EXN

(YN ) · 1A∩{N<∞}
)
.

We next aim at investigating invariant measures of a Markov chain. Invariant measures
are strongly correlated with return properties. We therefore assume as a further simpli-
fication that S is countable; for the representation with general Polish state space S see
Meyn & Tweedie [M-T 93].

Let in the following

Ty := inf{n ∈ N : Xn = y } (y ∈ S) ,

be the first hitting time of y and thus

ρxy := Px(Ty < ∞) (x, y ∈ S) .

y ∈ S is called

{
recurrent
transient

}
, if

{
ρyy = 1
ρyy < 1

}
. The number of visits in y ,

Hy :=

∞∑
n=1

1{Xn=y}

characterizes recurrence and transience of y in the following way:

Theorem 1.10 (transience and recurrence). Let the Markov chain X from 1.4 be time
homogeneous with countable state space S. Then for y ∈ S :

y transient =⇒ Ex(Hy) =
ρxy

1− ρyy
< ∞ (∀x ∈ S) ,

y recurrent ⇐⇒ Ey(Hy) = ∞ .
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Proof. For k ∈ N let T k
y the time of the k-th visit in y. With this we have

Px(T
k
y < ∞) = ρxy · ρk−1

yy (x ∈ S, k ∈ N) ; (⋆)

for k = 1 this is just the definition of ρxy; for k > 1 it follows inductively:

Px(T
k
y < ∞) = Px

(
T k−1
y < ∞ , Ty ◦ θTk−1

y
< ∞

)
= Ex

(
1{Tk−1

y <∞} Ex

(
1{

Ty◦θ
Tk−1
y

<∞
} ∣∣∣FTk−1

y

)
︸ ︷︷ ︸

str. MP 1.9
= Ey

(
1{Ty<∞}

)
≡ ρyy

)

= ρyy · Px(T
k−1
y < ∞)

ind. hyp.
= ρxyρ

k−1
yy .

Therefore

Ex(Hy) =

∞∑
n=1

Px {Hy ≥ n}︸ ︷︷ ︸
{Tn

y <∞}

(⋆)
= ρxy

∞∑
n=1

ρn−1
yy =

ρxy
1− ρyy

;

the geometric series converges for ρyy < 1, and diverges iff ρyy = 1.

We next show that recurrence is contagious:

Theorem 1.11. Let the Markov chain X from 1.4 be time homogeneous with countable
S. If x ∈ S is recurrent and ρxy > 0 with some y ∈ S, then also y is recurrent and we
have ρyx = 1.
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Proof. By recurrence of von x we have

0 = Px(Tx = ∞) ≥ Px

(
Ty < ∞ , Tx ◦ θTy = ∞

)
= Ex

(
1{Ty<∞} Ex

(
1{Tx◦θTy=∞}

∣∣∣FTy

)
︸ ︷︷ ︸

str. MP 1.9
= Ey(1{Tx=∞}) = (1−ρyx)

)

= ρxy (1− ρyx) ;

Since by hypothesis ρxy > 0, we obtain: ρyx = 1.
With this the recurrence of y follows: by ρxy > 0 and ρyx = 1 there exist
k1, k2 ∈ N with

Px(Xk1 = y) > 0 and Py(Xk2 = x) > 0 .

By Chapman-Kolmogorov for n ∈ N we have:

Py(Xn+k1+k2 = y) ≥ Py(Xk2 = x) Px(Xn = x) Px(Xk1 = y) ,

hence

Ey(Hy) =
∞∑
n=1

Py(Xn = y) ≥ Py(Xk2 = x)︸ ︷︷ ︸
>0

Ex(Hx)︸ ︷︷ ︸
1.10
= ∞

Px(Xk1 = y)︸ ︷︷ ︸
>0

.

Hence also Ey(Hy) = ∞ and y is recurrent by 1.10.

Thus the set of recurrent states decomposes into classes: For x, y ∈ S let

x ∼ y :⇐⇒
(
x = y or (ρxy > 0 and ρyx > 0)

)
.

Theorem 1.12. Let the Markov chain X from 1.4 be time homogeneous with countable
S. Then the set of recurrent states R := {x ∈ S : ρxx = 1} decomposes into a family
(Ri)i∈I of pairwise disjoint classes, the equivalence classes of ∼.

Proof. We have to show that ∼ is an equivalence relation: reflexivity and
symmetry follow directly from the definition, so that only transitivity remains
to prove:
If x, y, z ∈ R are fixed, we have to show that with x ∼ y and y ∼ z also x ∼ z
holds true. For this purpose we may wlog assume x ̸= y and x ̸= z; by definition
of ∼ we have ρxy > 0 and ρyz > 0. Applying the strong Markov property as in
the proofs of 1.10 and 1.11 we obtain:

ρxz ≡ Px(Tz < ∞) ≥ Px(Ty < ∞ , Tz ◦ θTy < ∞) = ρxy ρyz > 0 ,

whence with 1.11 we get (x ∈ R) : ρzx = 1 > 0, in summary x ∼ z.



2. Invariant measures and asymptotic behavior

We further consider the following situation: The countable space S is state space of a
canonical time homogeneous Markov chain (Xn)n∈N0 with space of trajectories (Ω,F ) :=
(SN0 ,S N0) and transition matrix p.

Definition 2.1. A measure µ on S is called stationary, if for all y ∈ S we have

µ(y) =
(
µp
)
(y) ≡

∑
x∈S

µ(x) p(x, y) < ∞ .

A measure µ on S is called invariant, if it is a stationary probability measure.

Example 2.2 (Ehrenfest model of diffusions). In a system consisting of the containersA
and B we have a total of r molecules. Let Xn be the number of
molecules in A at time n ∈ N0. This quantity takes
its values in S := {0, 1, . . . , r}. By

p(k,m) :=


r−k
r , m = k + 1

k
r , m = k − 1

0 , else

r
r

r
rr

r rr
r

r
rrr

r r
r

A B

a transition probability on S is defined, that is proportional to the number of molecules
in container A. For this transition matrix the binomial distribution on S,

µ(k) :=

(
r

k

)
2−r (k ∈ S ≡ {0, 1, . . . , r}) ,

is an invariant measure.

Proof. Since µ is a probability measure, we only have to show that µ(k) =∑r
m=0 p(m, k) µ(m) for k = 0, 1, . . . , r is valid. With k = 1, . . . , r − 1 we have∑r

m=0
p(m, k) µ(m) = p(k + 1, k)µ(k + 1) + p(k − 1, k)µ(k − 1)

≡ 2−r

[(
r

k + 1

)
k + 1

r
+

(
r

k − 1

)
r − (k − 1)

r

]
= 2−r

[
(r − 1)!

k! (r − (k + 1))!
+

(r − 1)!

(k − 1)! (r − k)!

]
= 2−r (r − 1)!

(k − 1)! (r − k − 1))!

[
1

k
+

1

r − k

]
= 2−r r!

k! (r − k)!

≡ µ(k) .

In the cases k = 0 and k = r only one summand does not vanish.

Now we show how to associate with each class of recurrent states a stationary measure;
the Markov chain decouples on these classes. We constantly use

Px(Xn = y) = pn(x, y) (x, y ∈ S ; n ∈ N) ,

where pn(x, y) is the n-fold matrix product.
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Theorem 2.3. Let x be recurrent and T ≡ Tx := inf{n ∈ N : Xn = x} its first hitting
time. Then

µ(y) := Ex

(
T−1∑
n=0

1{Xn=y}

)
=

∞∑
n=0

Px(Xn = y , T > n) (y ∈ S)

defines a stationary measure.

Proof. First we prove the equation µp = µ; this way we prove that µ(y) < ∞ for all
y ∈ S. Note that µ(x) = 1.

(a)
∑

y∈S µ(y) p(y, z) = µ(z) for all z ∈ S :

1) If z ̸= x , the Markov property (Thm 1.7) implies:∑
y∈S

µ(y) p(y, z)
Fubini
=

∞∑
n=0

∑
y∈S

Px(Xn = y , T > n) · Py(X1 = z)

MP
=

∞∑
n=0

∑
y∈S

Px(Xn = y , T > n , Xn+1 = z)

=

∞∑
n=0

Px(T > n , Xn+1 = z)

z ̸=x
=

∞∑
n=0

Px(T > n+ 1 , Xn+1 = z)

=

∞∑
n=1

Px(T > n , Xn = z)

z ̸=x
=

∞∑
n=0

Px(T > n , Xn = z) ≡ µ(z) .

2) If z = x , again by the Markov property 1.7:∑
y∈S

µ(y) p(y, x)
ME
=

∞∑
n=0

∑
y∈S

Px(Xn = y , T > n , Xn+1 = x)

=

∞∑
n=0

Px(T = n+ 1) = ρxx
x rec.
= 1 = µ(x) .

(b) µ(y) < ∞ for all y ∈ S :

1) In case ρxy > 0 : By iteration of (a) we get: µ = µ pn for n ∈ N so

1 = µ(x)
(a)
=
(
µ pn

)
(x) =

∑
y∈S

µ(y) pn(y, x) (n ∈ N) .

Consequently necessarily µ(y) < ∞, if pn(y, x) > 0 with some n ∈ N; since pn(y, x) =
Py(Xn = x), the latter is implied by ρyx ≡ Py(Tx < ∞) > 0, which in the case
considered ρxy > 0 by recurrence of x follows from Thm 1.11 (hence x ∼ y).

2) If ρxy = 0 , the definition of µ gives µ(y) = 0 (< ∞) .
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Theorem 2.4 (Uniqueness of stationary measures). Let (Xn)n∈N0 be irreducible, i.e. S
has only one class of recurrent states. Then the stationary measure µ from Theorem 2.3
is unique up to multiplication by constants.

Proof. Let a ∈ S be a recurrent state and µ the stationary measure belonging
to a according to 2.3. If ν denotes a further stationary measure, we have to
show:

ν(z) = µ(z) · ν(a) (z ∈ S) .

By stationarity of ν we obtain iteratively for z ∈ S :

ν(z) =
∑
y∈S

ν(y) p(y, z)

= ν(a) p(a, z) +
∑
y ̸=a

ν(y) p(y, z)

= ν(a) p(a, z) +
∑
y ̸=a

(∑
x∈S

ν(x) p(x, y)

)
p(y, z)

= ν(a) p(a, z) +
∑
y ̸=a

ν(a) p(a, y) p(y, z) +
∑
y ̸=a

∑
x ̸=a

ν(x) p(x, y) p(y, z)

= ν(a) Pa(X1 = z) +
∑
y ̸=a

ν(a) Pa(X1 ̸= a , X2 = z)

+ Pν(X0 ̸= a , X1 ̸= a , X2 = z)

= · · · =

= ν(a)

n∑
m=1

Pa(Xk ̸= a for 1 ≤ k < m , Xm = z)

+ Pν(X0 ̸= a , X1 ̸= a , . . . ,Xn−1 ̸= a , Xn = z)

≥ ν(a) · µ(z)

(n → ∞) by definition of µ; therefore for n ∈ N :

ν(a) =
∑
z∈S

ν(z) pn(z, a) ≥ ν(a)
∑
z∈S

µ(z) pn(z, a) = ν(a)µ(a) = ν(a) .

In the previous estimate ν(z) ≥ ν(a)µ(z) the inequality ”‘>”’ can only be valid
if pn(z, a) = 0 for each n ∈ N. By irreducibility of for any z there exists n ∈ N
with pn(z, a) > 0. Therefore ν(z) = ν(a)µ(z) . �

We give a necessary condition for the normability of stationary measures:

Satz 2.5. If there exists an invariant measure µ, all states y with µ(y) > 0 are recurrent.

Proof. For n ∈ N we have by stationarity µ = µpn, hence by Fubini

∞∑
n=1

µ(y) =
∑
x∈S

µ(x)
∞∑
n=1

pn(x, y)
1.10
=

∑
x∈S

µ(x)
ρxy

1− ρyy
≤ µ(S)

1− ρyy
.

By hypothesis
∑∞

n=1 µ(y) = ∞ and µ(S) = 1 < ∞, hence ρyy = 1. �
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Theorem 2.6. Let (Xn)n∈N0 be irreducible and µ an invariant measure. Then

µ(x) =
1

Ex(Tx)
(x ∈ S) .

Proof. Note first that all elements of S are recurrent: Each element with
positive mass w.r.t. µ is recurrent by 2.5; but since X is irreducible, this
recurrence transfers to all other elements.
Consequently for each fixed x ∈ S by 2.3 there exists a stationary measure µ0:

µ0(z) ≡
∑

n∈N0

Px(Xn = z , Tx > n) and µ0(x) = 1 .

Consequently by Fubini:

∑
z∈S

µ0(z) =

∞∑
n=0

∑
z∈S

Px(Xn = z , Tx > n) =

∞∑
n=0

Px(Tx > n) = Ex(Tx) .

By the uniqueness statement in 2.4 this means for the normed measure µ :

µ(y) =
µ0(y)∑
z∈S µ0(z)

=
µ0(y)

Ex(Tx)
(y ∈ S) ,

whence by y = x the claim follows, since µ0(x) = 1. �

x ∈ S is called positively recurrent, if Ex(Tx) < ∞ ; in the other case x is called null
recurrent.

”‘Positively recurrent”’ is stronger than ”‘recurrent”’. Positive and null recurrence are
properties of classes. In the Ehrenfest model 2.2 every state is positively recurrent.

Corollary 2.7. Let (Xn)n∈N0 be irreducible. Then the following statements are equivalent:

i) There exists an invariant measure;

ii) There exists a positively recurrent state;

iii) All states are positively recurrent.

Proof. iii) ⇒ ii) trivial.
ii) ⇒ i) Let x be positively recurrent. By 2.3 there exists a stationary measure
µ0 with total mass µ0(S) =

∑
z∈S µ0(z) = Ex(Tx) (proof of 2.6), which by

positive recurrence is finite. The norming factor µ is therefore invariant:

µ(y) :=
µ0(y)

Ex(Tx)
≡ 1

Ex(Tx)

∑
n∈N0

Px(Xn = y , Tx > n) (y ∈ S) .

i) ⇒ iii) Let µ be the invariant measure. By irreducibility µ(x) > 0 for all
x ∈ S (every state x is recurrent, so that µ0(x) = 1 for the stationary measure
µ0 given according to 2.3; by 2.4 we therefore must have µ(x) > 0). From 2.6
we conclude: Ex(Tx) = 1

µ(x) < ∞ for each x ∈ S . �

We now discuss criteria under which pn converges to the invariant measure.
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Example 2.8. On S := {1, 2} p :=

(
0 1
1 0

)
defines a transition matrix. We have

p2n =

(
1 0
0 1

)
and p2n+1 =

(
0 1
1 0

)
≡ p (n ∈ N) .

In this case no convergence of pn(x, y) is given.

Periodicity prevents convergence to the invariant measure.

Definition 2.9. For a recurrent x ∈ S let2

Ix := {n ∈ N0 : pn(x, x) > 0} .

dx := gcD(Ix) is called period of x.

By the Chapman-Kolmogorov equation Ix is a semigroup.

In the above example 2.8 we have I1 = I2 = { gerade Zahlen} and d1 = d2 = 2.

Lemma 2.10. Let x, y ∈ S be recurrent with x ∼ y. Then dx = dy.

Proof. We show3: dy | dx . Since our arguments are symmetric in x and y,
this implies the claim, for by switching the roles of x and y we also have dx | dy.
Wlog we may assume x ̸= y. By the equivalence x ∼ y we therefore have
ρxy > 0 and ρyx > 0; in particular there exist m,n ∈ N with pm(x, y) > 0 and
pn(y, x) > 0. By Chapman-Kolmogorov this implies

pn+m(y, y) ≥ pn(y, x) pm(x, y) > 0 .

Hence by the above definition we obtain dy | n+m .
Let now an arbitrary k ∈ Ix be given. By what has just been proved dy | n+m
we only have to show that also dy | n + m + k. These two statements imply
dy | k and thus the claim. By Chapman-Kolmogorov and k ∈ Ix we get

pn+k+m(y, y) ≥ pn(y, x) pk(x, x) pm(x, y) > 0 ,

and thus dy | n+ k +m . �

Definition 2.11. (a) A state x ∈ S is called aperiodic, if dx = 1 holds.

(b) An irreducible, recurrent Markov chain is called aperiodic, if each state is aperiodic.

As indicated in the above example, we shall see that aperiodicity is a criterion for the
convergence of the transition probabilities to the invariant measure. The proof of this fact
is prepared by the following lemma.

Lemma 2.12. For aperiodic x there exists m0 ∈ N with pm(x, x) > 0 for all m ≥ m0 .

2Reminder: pn(x, y) ≡ Px(Xn = y) for x, y ∈ S and n ∈ N0.
3As usual ”‘|”’ abbreviates ”‘is a divisor of”’.
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Proof. We first prove that there is N ∈ N such that N,N + 1 ∈ Ix . For this
purpose let n0, n0 + k ∈ Ix be fixed. In case k = 1 the proof is finished. In case
k ≥ 2 we choose n1 ∈ Ix with k - n1 (since dx = 1). For this we have (division
with remainder)

n1 = mk + r1 (m ∈ N0 , 0 < r1 < k)

and by the semigroup property of Ix

(m+ 1)(n0 + k) ∈ Ix and (m+ 1)n0 + n1 ∈ Ix .

For these two elements we have:∣∣∣(m+ 1)(n0 + k) −
(
(m+ 1)n0 + n1

)∣∣∣ = |(m+ 1)k − n1|

≡ |(m+ 1)k − (mk + r1)| = k − r1 < k .

If k − r1 = 1, the claim holds with N := (m + 1)n0 + n1 . If k − r1 > 1, we
repeat the step performed with ñ0 := (m + 1)n0 + n1 and k̃ := k − r1. After
finitely many iterations we obtain N ∈ N with N,N + 1 ∈ Ix .
With this the claim of the Lemma follows with m0 := N2, since for m ≥ m0

we have
m−N2 = kN + r (k ∈ N0 , 0 ≤ r < N)

(division with remainder), so that

m = N2 + kN + r = (N − r + k)N + r(1 +N) ∈ Ix

by the semigroup property of Ix. �

Theorem 2.13 (Invariant measure is limit of transition probabilities). Let the Markov
chain (Xn)n∈N0 be aperiodic and possess the invariant measure µ . Then

pn(x, y)
n→∞−−−−→ µ(y) =

1

Ey(Ty)
(x, y ∈ S) .

Proof(coupling of processes, W. Döblin). On S2 ≡ S × S setting

q
(
(x1, y1) , (x2, y2)

)
:= p(x1, x2) p(y1, y2) (x1, x2, y1, y2 ∈ S)

defines a transition probability. Let (Xn, Yn)n∈N0 be the canonical Markov
chain associated with q, that is the Markov chain with state space S2 on

(Ω,F ,P) :=
(
(S2)N0 , (S 2)N0 , Pϱ

)
,

where Pϱ is the probability measure related to q and an initial distribution ϱ
(on S 2 ≡ S ⊗ S ) according to Kolmogorov.
With 2.12 we now prove irreducibility of (Xn, Yn)n∈N0 ; from this we get that
this coupled process hits the diagonal of S2 in finite time. This will imply
convergence.
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1) (Xn, Yn)n∈N0 is irreducible: If x1, x2, y1, y2 ∈ S are fixed, irreducibility of
X provides times k, l ∈ N with

pk(x1, x2) > 0 and pl(y1, y2) > 0 .

Aperiodicity yields according to 2.12 also an m0 ∈ N, such that for m ≥ m0 we
have

pm+l(x2, x2) > 0 and pm+k(y2, y2) > 0 .

Hence by Chapman-Kolmogorov also

qk+l+m
(
(x1, y1) , (x2, y2)

)
≡ pk+l+m(x1, x2) p

k+l+m(y1, y2)

≥ pk(x1, x2) p
m+l(x2, x2) pl(y1, y2) p

m+k(y2, y2) > 0 .

Therefore S2 consists of a unique equivalence class. For irreducibility we have
to show that all states in S2 are recurrent. By 2.5 for this we need a q-invariant
measure ν with ν(x, y) > 0 for all (x, y) ∈ S2. But setting

ν(x, y) := µ(x)µ(y) (x, y ∈ S)

provides a q-invariant measure on S2 by p-invariance of µ :∑
(x1,x2)∈S2

ν(x1, x2) q((x1, x2), (y1, y2)) ≡
∑

(x1,x2)

µ(x1)µ(x2) p(x1, y1) p(x2, y2)

=
∑
x1

µ(x1) p(x1, y1)
∑
x2

µ(x2) p(x2, y2) = µ(y1)µ(y2) ≡ ν(y1, y2)

for (y1, y2) ∈ S2 ; moreover ν(y1, y2) ≡ µ(y1)µ(y2)
2.6
= 1

Ey1 (Ty1 )
1

Ey2 (Ty2)

2.7 iii)
> 0 .

2) Denote by T the first hitting time of the diagonal D := {(x, x) : x ∈ S} ,

T := inf{n ∈ N : (Xn, Yn) ∈ D } ,

T(x,x) the time of first visit in (x, x) ∈ D. Then on the one hand T ≤ T(x,x). If
ϱ is an arbitrary initial distribution on S2, on the other hand by the recurrence
proved in 1) we get T(x,x) < ∞ Pϱ - a.s.; in particular T < ∞ Pϱ – a.s. .

Xn and Yn possess on {T ≤ n} identical laws (n ∈ N), since for y ∈ S:

Pϱ (Xn = y , T ≤ n) =

n∑
m=1

Pϱ (T = m, Xn = y)

=

n∑
m=1

∑
x∈S

Pϱ (T = m, Xm = x , Xn = y) =
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=

n∑
m=1

∑
x∈S

Pϱ

(
Xn = y

∣∣T = m, Xm = x
)
Pϱ (T = m, Xm = x)

ME
=

n∑
m=1

∑
x∈S

Pϱ

(
Xn = y

∣∣Xm = x
)
Pϱ (T = m, Xm = x)

=

n∑
m=1

∑
x∈S

Pϱ

(
Yn = y

∣∣ Ym = x
)
Pϱ (T = m, Ym = x)

= . . . . . . . . .
same arg.

= Pϱ (Yn = y , T ≤ n) .

Here we used that X and Y possess identical transition probability p.

3) Now we prove the claim of the theorem; for this purpose we show the
following (stronger) convergence:∑

y∈S
| pn(x, y) − µ(y) | n→∞−−−−→ 0

for all x ∈ S; the equality µ(y) = 1/Ey(Ty) is already clear by 2.6.

For an arbitrary x ∈ S we fix the initial distribution

ϱ := δx ⊗ µ

on S2 for the coupled process. Thus for all y ∈ S

pn(x, y) = Pϱ(Xn = y)

= Pϱ (Xn = y , T ≤ n) + Pϱ (Xn = y , T > n)

2)
= Pϱ (Yn = y , T ≤ n) + Pϱ (Xn = y , T > n)

by equality of the laws proven in 2), and

µ(y) = Pϱ(Yn = y) ≡ Pϱ (Yn = y , T ≤ n) + Pϱ (Yn = y , T > n)

by the p -invariance of µ ; in summary∑
y∈S

| pn(x, y) − µ(y) | =
∑
y∈S

| Pϱ(Xn = y) − Pϱ(Yn = y) |

=
∑
y∈S

| Pϱ (Xn = y , T > n) − Pϱ (Yn = y , T > n) |

≤
∑
y∈S

[
Pϱ (Xn = y , T > n) + Pϱ (Yn = y , T > n)

]
= 2 Pϱ (T > n)

n→∞−−−−→ 0 ,

since T is Pϱ-a.s. finite, as seen in 2). �



3. Stationary Processes

In this chapter we consider stochastic processes X = (Xn)n∈N0 on a fixed probability space
(Ω,F ,P) with values in a Polish space S (equipped with the Borel σ-algebra S := B(S)).
This family of F -S -measurable maps can also be considered as a random sequence

X : Ω −→ SN0 , ω 7→ (Xn(ω))n∈N0 ,

which is F -S N0-measurable, with product σ-algebra

S N0 := σ
(∪

n∈N0

π−1
{n}[Bn] : Bn ∈ S

)
= σ

(∪
n∈N0

π−1
n [B] : B ∈ S n+1

)
;

where the second generating system is ∩-stable, in contrast to the first. The measure
defined by

PX ≡ P(Xn)n∈N0
:= P ◦X−1

on S N0 is the law of X.
If only distribution properties are relevant, instead of X we can wlog also study its canon-
ical representation (Y )n :=

(
π{n}

)
n
on (SN0 ,S N0 , PX).

Definition 3.1. A stochastic process X = (Xn)n∈N0 is called stationary, if we have:

P(Xn)n∈N0
= P(Xn+k)n∈N0

(∀ k ∈ N) .

The distribution of a stationary process does not ”‘move”’; this will be enforced in the
following Lemma:

Lemma 3.2. X = (Xn)n∈N0 is stationary iff we have:

P(X0,...,Xn) = P(Xk,...,Xk+n) (k ∈ N , n ∈ N0) .

Proof. ”‘⇒”’ For all k ∈ N , n ∈ N0 and B ∈ S n+1 we have:

P(X0,...,Xn)(B) ≡ P{ (X0, . . . , Xn) ∈ B }
= P{ (Xm)m∈N0 ∈ π−1

n (B) }
stat
= P{ (Xm+k)m∈N0 ∈ π−1

n (B) }
= P{ (Xk, . . . , Xn+k) ∈ B } ≡ P(Xk,...,Xk+n)(B) .

”‘⇐”’ By hypothesis we have for all k ∈ N , n ∈ N0 and B ∈ S n+1 :

P(Xm)m∈N0

(
π−1
n (B)

)
= P(Xm+k)m∈N0

(
π−1
n (B)

)
(see calculation above). But since {

∪
n∈N0

π−1
n (B) : B ∈ S n+1 } is a ∩-stable

generator of S N0 , this implies P(Xm)m∈N0
= P(Xm+k)m∈N0

by the uniqueness
theorem for measures. �

Example 3.3 (Markov chain with transition probability p). Let (Xn)n∈N0 be a Markov
chain on a countable space S (equipped with S := B(S) ≡ P(S)) with transition
probability p and invariant measure µ. Then (Xn)n∈N0 is stationary on (Ω,F ,P) :=
(SN0 ,S N0 , Pµ) .
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Proof. Note first that we have for all B := B0 ×B1 × · · · ×Bn ∈ S n+1 :

(Pµ)(X1,...,Xn+1)(B) ≡ Pµ{X1 ∈ B0 , X2 ∈ B1 , . . . , Xn+1 ∈ Bn }
= Pµ{X0 ∈ S , X1 ∈ B0 , X2 ∈ B1 , . . . , Xn+1 ∈ Bn }

=
∑
z∈S

µ(z)
∑

x0∈B0

p(z, x0)
∑

x1∈B1

p(x0, x1) · · ·
∑

xn∈Bn

p(xn−1, xn)

=
∑

x0∈B0

∑
z∈S

µ(z) p(z, x0)
∑

x1∈B1

p(x0, x1) · · ·
∑

xn∈Bn

p(xn−1, xn)

inv
=

∑
x0∈B0

µ(x0)
∑

x1∈B1

p(x0, x1) · · ·
∑

xn∈Bn

p(xn−1, xn)

= Pµ{X0 ∈ B0 , X1 ∈ B1 , . . . , Xn ∈ Bn }
= (Pµ)(X0,X1,...,Xn)(B) .

By k-fold iteration of this argument we obtain the criterion for stationarity
from 3.2 . �

Example 3.4 (Rotation on circle). Let (Ω,F ,P) := ([0, 1),B[0, 1), λ
∣∣
F
) , where λ de-

notes the Lebesgue measure. Then for each fixed θ ∈ [0, 1) the process (Xn)n∈N0 ,

Xn : Ω −→ S := Ω , Xn(ω) := ω + n · θ (mod 1) , n ∈ N0 ,

is a stationary Markov chain on (SN0 ,S N0 , Pλ) with respect to the transition probability

p : S × S −→ [0, 1] , p(x,A) :=

{
1 , if y = x+ θ (mod 1) ∈ A,

0 , else.

Proof. By translation invariance of the Lebesgue measure λ is p-invariant,
since for A ∈ S ∫ 1

0
λ(dz) p(z,A) = λ(A− θ (mod1)) = λ(A).

Hence as in Example 3.3 for all B := B0 ×B1 × · · · ×Bn ∈ S n+1 :

(Pλ)(X1,...,Xn+1)(B) = Pλ{X0 ∈ S , X1 ∈ B0 , X2 ∈ B1 , . . . , Xn+1 ∈ Bn }

=

∫
Ω
λ(dz)

∫
B0

p(z, dx0)

∫
B1

p(x0, dx1) · · ·
∫
Bn

p(xn−1, dxn)

=

∫
B0

∫
Ω
λ(dz) p(z, dx0)

∫
B1

p(x0, dx1) · · ·
∫
Bn

p(xn−1, dxn)

inv
=

∫
B0

λ(dx0)

∫
B1

p(x0, dx1) · · ·
∫
Bn

p(xn−1, dxn)

= (Pλ)(X0,X1,...,Xn)(B) ,

and thus stationarity again from Lemma 3.2 . �
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Theorem 3.5. Let the process (Xn)n∈N0 with Polish state space (S,S ) be stationary and
let g : SN0 −→ S′ be S N0-S ′-measurable, where (S′,S ′) is also Polish. Then

Yk := g (Xk , Xk+1 , . . . ) (k ∈ N0)

is stationary (in S′).

Proof. By measurability of g for each k ∈ N0 also

gk : SN0 −→ S′ , x 7→ g ◦ θk(x),

is measurable, where θ ≡ (θk)k∈N0 (see 1.5) denotes the measurable shift

θk : SN0 −→ SN0 , (xn)n 7→ (xn+k)n.

Let now B ∈ (S ′)N0 be fixed; by measurability of all gk also A :=
(g0, g1, . . .)

−1(B) is measurable and by Yk = gk
(
(Xn)n

)
we obtain for m ∈ N:

P(Yk)k∈N0
(B) ≡ P

(
(Yk)k∈N0 ∈ B

)
= P

(
(Xn)n∈N0 ∈ A

)
X stat
= P

(
(Xn+m)n∈N0 ∈ A

)
= P

(
(Yk+m)k∈N0 ∈ B

)
≡ P(Yk+m)k∈N0

(B) ,

hence the stationarity of Y . �

Example 3.6 (Bernoulli-Shift). On (Ω,F ,P) := ([0, 1),B[0, 1), λ
∣∣
F
) (Yn)n∈N0 ,

Yn : Ω −→ Ω , Yn :=

{
idΩ , n = 0,

2Yn−1 (mod 1) , n ∈ N ,

is stationary.
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Proof. Let (Xn)n∈N0 be a Bernoulli sequence with rate 1
2 , realized as prod-

uct measure P̃ on Ω̃ := {0, 1}N0 ; hence (Xn)n is a sequence of i.i.d. random
variables in S := {0, 1} with P̃{Xn = 0} = P̃{Xn = 1} = 1

2 . Then (Xn)n is
stationary. Moreover

g : Ω̃ ≡ {0, 1}N0 −→ Ω ≡ [0, 1) , (xn)n 7→
∑∞

n=0
xn 2−n−1 (mod 1)

is measurable and so P̃◦g−1 = P (dyadic intervals may be written as sets of the
form {X0 = i0 , . . . , Xk = ik} with i0, . . . , ik ∈ {0, 1}). Because of Theorem
3.5 we have that

Zk := g(Xk , Xk+1 , . . . ) (k ∈ N0)

is stationary; on the other hand we have:

2Z0 ≡ 2 g(X0 , X1 , . . . ) = X0 +
∑∞

n=1
Xn 2−n (mod 1)

= X0 +
∑∞

n=0
Xn+1 2

−(n+1) (mod 1)

= g(X1 , X2 , . . . ) ≡ Z1 ;

by iteration we obtain: 2Zn−1 = Zn (n ∈ N) , hence with Z also Y is stationary.
�

Definition 3.7 (measure preserving map). Let (Ω,F ,P) be a probability space. A F -
F -measurable mapping φ : Ω → Ω is called measure preserving, if we have: P ◦ φ−1 = P.
Remark 3.8. Let φ be measure preserving on (Ω,F ,P) and X : Ω → S a F -S -
measurable map with values in a Polish space (S,S ). Then (Xn)n∈N0 with

Xn :=

{
X , n = 0

X ◦ φn , n ∈ N

is stationary.

Proof. For B ∈ S n+1 we have:

P(X0,...,Xn)(B) ≡ P
(
(X0, . . . , Xn) ∈ B

)
φ m.p.
= P

(
(X0, . . . , Xn) ◦ φk ∈ B

)
= P(Xk,...,Xk+n)(B) ,

so that stationarity follows from Lemma 3.2. �
The situation of the preceding remark does not only provide an example for a stationary

sequence. It already depicts the general situation.

Satz 3.9 (standard model for stationary sequences).
Let (Yn)n∈N0 be stationary on (Ω,F ,P) with values in a Polish space (S,S ). Then there
exists a probability space (Ω′,F ′,P′) with a measure preserving map φ : Ω′ → Ω′ and a
random variable X0 : Ω

′ → S such that with Xn := X0 ◦ φn (n ∈ N) we have:

P′
(Xn)n∈N0

= P(Yn)n∈N0
.
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Proof. Let (Ω′,F ′,P′) := (SN0 ,S N0 , P(Yn)n∈N0
) and X0 := π{0} (projection

at time 0) and φ := θ1 (shift). By stationarity of Y φ is measure preserving,
since for A′ ∈ F ′ we have:

P′ (φ−1(A′)
)

= P
(
(Yn)n ∈ φ−1(A′)

)
= P

(
(Yn+1)n ∈ A′)

Y stat
= P

(
(Yn)n ∈ A′) = P′(A′) .

The claimed equality of laws follows from the definition of P′. �

Definition 3.10 (invariant, ergodic). Let φ be a measure preserving mapping on (Ω,F ,P).

A ∈ F is called

{
invariant
strictly invariant

}
, if

{
φ−1(A) = A P-a.s.
φ−1(A) = A

}
.

φ is called ergodic, if for all A ∈ I := { invariant sets} we have: P(A) ∈ {0, 1} .

Remark 3.11. i) I is a σ-algebra (sub-σ-algebra of F );

ii) For A ∈ I there exists a strictly invariant set B ∈ F with B = A P-a.s.
(for example B := lim infn→∞ φ−n(A)).

iii) For A ∈ I there exists B ∈ T :=
∩∞

n=1 σ(Xn, Xn+1, . . .) with
4 B = A P-a.s.

(for example again B := lim infn→∞ φ−n(A), since B = φ−k(B) ∈ σ(Xk, Xk+1, . . .)).

4T is the σ-algebra of terminal events;
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Example 3.12. Let (Xn)n∈N0 be independent random elements in a Polish space S (wlog
defined on the sequence space), i.e.:

P ≡ PX =
⊗
n∈N0

PXn .

Then we have P(A) ∈ {0, 1} for A ∈ T ; i.e. the shift φ := θ1 is ergodic.

Example 3.13 (Rotation on the circle). As in 3.4 we consider the transformation

φ : Ω −→ Ω , φ(ω) := ω + θ (mod 1) ,

on the probability space (Ω,F ,P) := ([0, 1),B[0, 1), λ
∣∣
F
) , where λ denotes the Lebesgue

measure. Then φ is ergodic iff θ is irrational.

Proof. ”‘⇒”’ Let θ be rational, hence θ = m
n with integers n ≥ m ≥ 1.

Moreover let B ∈ F ≡ B[0, 1) with 0 < λ(B) < 1
n . Then A :=

∪m−1
k=1 (B + k

n)
is invariant, but 0 < λ(A) < 1.
”‘⇐”’ This can be proven with a Fourier series argument; see e.g. Shiryaev
[Sh 95, p.408] or Kallenberg [KB 97, p.174/9]. �

Example 3.14. Let (Xn)n∈N0 be the canonical Markov chain on S := {1, 2, 3, 4} with
transition probability

p :=


1
3

2
3 0 0

2
3

1
3 0 0

0 0 1
2

1
2

0 0 1
4

3
4


(p is a stochastic matrix, since the sums over the lines equal 1). A measure µ on S is
invariant, if we have:

µ(j) =

4∑
i=1

p(i, j)µ(i) (j = 1, 2, 3, 4) .

This is satisfied for instance by the measures

µ0(1) = µ0(2) :=
1

2
, µ0(3) = µ0(4) := 0

and

µ1(1) = µ1(2) := 0 , µ1(3) :=
1

3
, µ1(4) :=

2

3
.

But then also each

µβ := (1− β)µ0 + βµ1 (0 ≤ β ≤ 1)

is invariant. With respect to the canonical shift φ := θ1 we have now:

A := {Xn ∈ {1, 2}, n ∈ N0} ∈ I and B := {Xn ∈ {3, 4}, n ∈ N0} ∈ I .

Hence we further have: Pµβ
(A) = 1− β and Pµβ

(B) = β . Consequently φ is ergodic iff
β ∈ {0, 1}.
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Theorem 3.15. Let (Xn)n∈N0 with Polish state space (S,S ) be ergodic and
g : SN0 −→ S′ be S N0-S ′-measurable, where (S′,S ′) is equally Polish. Then

Yk := g (Xk , Xk+1 , . . . ) (k ∈ N0)

is ergodic (in S′).

Proof. Wlog let again (Ω,F ,P) = (SN0 ,S N0 ,P(Xn)n∈N0
) and Xn = π{n}

(projection at time n) and φ = θ1 (shift). Equally let (Ω′,F ′,P′) =
((S′)N0 , (S ′)N0 ,P(Yn)n∈N0

) and φ′ = θ1. Moreover denote by I resp. I ′

the systems of invariant sets associated with φ resp. φ′.
Let now A ∈ I ′ be fixed; for B := (g0, g1, . . .)

−1(A) we then have:

φ−1(B) = (g1, g2, . . .)
−1(A)

= (g0, g1, . . .)
−1
(
(φ′)−1(A)

)
= (g0, g1, . . .)

−1(A) ≡ B ,

hence B ∈ I . By ergodicity of φ we get: P′(A) ≡ P(B) ∈ {0, 1}. �

Example 3.16 (Bernoulli shift). As in 3.6 we consider i.i.d. random variables (Xn)n in
S := {0, 1} with P{Xn = 0} = P{Xn = 1} = 1

2 . Moreover let

g : {0, 1}N0 −→ [0, 1) , (xn)n 7→
∑∞

n=0
xn 2−n−1 (mod 1) .

By example 3.12 X is ergodic, hence according to Theorem 3.15 also

Yk := g (Xk , Xk+1 , . . . ) (k ∈ N0) .



4. Birkhoff’s ergodic theorem

Let (Ω,F ,P) be a probability space with measure preserving mapping φ : Ω → Ω and a
random variable X : Ω → R. We now study the asymptotic behavior of the stochastic
process defined by

Xk := X ◦ φk (k ∈ N0).

Theorem 4.1 (Ergodic theorem, Birkhoff). Let X ∈ L1(P). Then we have P-a.s. and
in L1(P):

1

n

n−1∑
k=0

X ◦ φk n→∞−−−−→ E(X|I ) .

The proof is based on the following estimate:

Lemma 4.2 (Maximal-ergodic Lemma, Hopf). In the situation from 4.1 let

Sn := X0 + · · ·+Xn−1 ≡
n−1∑
k=0

X ◦ φk (n ∈ N) and

Mn := max{0, S1, . . . , Sn} (n ∈ N0) .

Then we have:
E
(
X 1{Mn> 0}

)
≥ 0 (n ∈ N0) .

Proof. In case n = 0 nothing is to be proven.
1. First we show:

X 1{Mn> 0} ≥ 1{Mn> 0} (Mn −Mn ◦ φ) (n ∈ N) ;

by the definitions above we have Sk − Mn ≤ 0 for all k ∈ {1, . . . , n} , hence
also

X ≥ X + (Sk −Mn) ◦ φ = (X + Sk ◦ φ)−Mn ◦ φ ≡ Sk+1 −Mn ◦ φ

and thus
X ≥ max{S1, . . . , Sn} −Mn ◦ φ ;

in particular we have shown:

X 1{Mn> 0} ≥ 1{Mn> 0} max{S1, . . . , Sn} − 1{Mn> 0} Mn ◦ φ
= 1{Mn> 0} (Mn −Mn ◦ φ) (n ∈ N) ,

hence the desired claim.
2. But this implies:

E
(
X 1{Mn> 0}

)
≥

∫
{Mn> 0}

(Mn −Mn ◦ φ) dP

=

∫
(Mn −Mn ◦ φ) dP = 0 ,

where we finally use that φ is measure preserving. �
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Proof of Birkhoff’s ergodic theorem 4.1 Wlog assume E(X|I ) = 0 ;
else we consider X̃ := X −E(X|I ) , which is possible thanks to the invariance
of E(X|I ) ◦ φ = E(X|I ) (P-a.s.).

1. P-almost sure convergence: For this purpose we will show that with

X̄ := lim sup
n→∞

Sn

n
≡ lim sup

n→∞

1

n

n−1∑
k=0

X ◦ φk

and with
D := { X̄ > ε } ∈ I (for arbitrary ε > 0)

we have
P(D) = 0 ;

analogously one can show lim inf Sn
n ≥ 0 , by considering −X instead of X.

To show P(D) = 0 we give D an alternative description: With

X∗ := (X − ε) 1D

S∗
n := X∗ +X∗ ◦ φ+ · · ·+X∗ ◦ φn−1

M∗
n := max{0, S∗

1 , . . . , S
∗
n}

Fn := {M∗
n > 0 }

we have

D =

{
sup
n∈N

S∗
n

n
> 0

}
=
∪
n∈N

Fn .

Upon applying the maximal-ergodic Lemma 4.2 on X∗, we obtain:

0 ≤ E (X∗ 1Fn ) (Lemma 4.2)

n→∞−−−→ E
(
X∗ 1∪

n Fn

)
(dom. conv., since X ∈ L1)

= E (X∗ 1D ) (above char. of D)

≡ E (X 1D )− εP(D) (definition of X∗)

= −εP(D) (E(X|I ) = 0 and D ∈ I )

≤ 0 ,

in summary: P(D) = 0 .

2. L1-convergence: For this purpose we truncate X; with some fixed K > 0
let

X ′ := X 1{|X|≤K} and X ′′ := X −X ′ .

The P-a.s. convergence proved above applies in particular to X ′; since this
convergence is dominated by K, we obtain for X ′ :

1

n

n−1∑
k=0

X ′ ◦ φk n→∞−−−−→ E(X ′|I ) in L1(P) .
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In addition we have

E

(∣∣∣∣∣ 1n
n−1∑
k=0

X ′′ ◦ φk

∣∣∣∣∣
)

≤ 1

n

n−1∑
k=0

E
(
|X ′′| ◦ φk

)
= E(|X ′′|) ,

where we use that φ is measure preserving; moreover we have by Jensen (| . | is
convex):

E
( ∣∣E(X ′′|I )

∣∣ ) ≤ E
(
E( |X ′′| |I )

)
= E(|X ′′|) ;

combining the preceding two inequalities we obtain

E

(∣∣∣∣∣ 1n
n−1∑
k=0

X ′′ ◦ φk − E(X ′′|I )

∣∣∣∣∣
)

≤ 2 E(|X ′′|) .

Let now an arbitrary ε > 0 be fixed; then we may choose K > 0 such that

2 E(|X ′′|) <
ε

2

(dominated convergence, definition of X ′′). With the parameters ε and K by
the above L1-convergence for X ′ we can choose n0 ∈ N, such that we have:

E

(∣∣∣∣∣ 1n
n−1∑
k=0

X ′ ◦ φk − E(X ′|I )

∣∣∣∣∣
)

<
ε

2
(n ≥ n0) .

Since now X ≡ X ′ +X ′′ , the preceding three estimates yield:

E

(∣∣∣∣∣ 1n
n−1∑
k=0

X ◦ φk − E(X|I )

∣∣∣∣∣
)

≤ E

(∣∣∣∣∣ 1n
n−1∑
k=0

X ′ ◦ φk − E(X ′|I )

∣∣∣∣∣
)
+ E

(∣∣∣∣∣ 1n
n−1∑
k=0

X ′′ ◦ φk − E(X ′′|I )

∣∣∣∣∣
)

< ε.

�
Example 4.3 (Strong law of large numbers). Let (Xn)n∈N0 be i.i.d. random variables,
wlog defined on the sequence space Ω := RN0 , with P ≡ PX = PX0 ⊗ PX0 ⊗ · · · and
ergodic shift φ = θ1 (see example 3.12). If X0 ∈ L1(P), we infer from Theorem 4.1 with
Proposition 3.9:

1

n

n−1∑
k=0

Xk =
1

n

n−1∑
k=0

X0 ◦ φk P-a.s., L1(P)−−−−−−−−→ E(X0|I ) = E(X0) .

Example 4.4 (Rotation on the circle, Weyl’s equidistribution law). Let

φ : Ω −→ Ω , φ(ω) := ω + θ (mod 1) ,

on (Ω,F ,P) := ([0, 1),B[0, 1), λ
∣∣
F
) be given as in 3.4 and 3.13, where λ is the Lebesgue

measure. Moreover let θ ∈ Qc. Then from Theorem 4.1 with example 3.13 for A ∈ B[0, 1)
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we obtain:
1

n

n−1∑
k=0

1A ◦ φk λ-a.e., L1(λ)−−−−−−−−→ λ(A) .



5. The subadditive ergodic theorem of Kingman

Let (Ω,F ,P) be a probability space with a measure preserving transformation φ : Ω → Ω.
In the preceding section we have investigated the asymptotic behavior of Sn

n , where Sn is

of the form
∑n−1

k=0 X ◦ φk, so in particular satisfies the additive cocycle property

Sn+m = Sn + Sm ◦ φn (n,m ∈ N0).

Now we are interested in the following generalization:

Definition 5.1 (subadditive sequences of random variables). A sequence (Yn)n of random
variables (n ∈ N0 or N; state space R ∪ {−∞}) is called subadditive, if we have:

Yn+m ≤ Yn + Ym ◦ φn (n,m ∈ N0) .

A sequence (Yn)n∈N0 is called superadditive, if (−Yn)n∈N0 is subadditive, and it is called
additive, if it is both sub- and superadditive.

Example 5.2. Let (Xn)n∈N0 be a sequence of i.i.d. random variables, realized wlog by
Xn = π{n} on the sequence space (Ω,F ,P, φ) = (SN0 ,S N0 , P(Xn)n∈N0

, θ1) . Let

Sn :=
n−1∑
k=0

Xk .

Then (Sn)n∈N0 is additive and (|Sn|)n∈N0 subadditive.

Proof. Additivity of (Sn)n is immediate, since φ ≡ θ1. Moreover we have:

|Sn+m| ≡

∣∣∣∣∣
n+m−1∑
k=0

Xk

∣∣∣∣∣ ≤

∣∣∣∣∣
n−1∑
k=0

Xk

∣∣∣∣∣ +
∣∣∣∣∣
n+m−1∑
k=n

Xk

∣∣∣∣∣
= |Sn| +

∣∣∣∣∣
m−1∑
k=0

Xk ◦ φn

∣∣∣∣∣ = |Sn| + |Sm| ◦ φn .

�

Example 5.3. (discrete version of linear stochastic differential equation) Let B0, B1 be
d × d matrices with real values, W a one-dimensional Brownian motion, θ1 the shift by
time one on Wiener space. We consider the discrete version

xn+1 − xn = B0xn +B1(Wn+1 −Wn)

of the stochastic differential equation

dxt = B0xtdt+B1xtdWt.

The discrete equation may be written

xn+1 = (I +B0 +B1(W1 −W0) ◦ θn)xn = (A ◦ θn) xn
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with the random matrix A : Ω → Rd×d given by A = (I + B0 + B1(W1 − W0)). This is
a special case of the following example. On a probability space (Ω,F ,P) with measure
preserving map φ let a random matrix be given, i.e. a measurable mapping A : Ω → Rd×d.
Moreover let

An := (A ◦ φn−1)(A ◦ φn−2) · · · A and thus

Yn := log ∥An ∥ (n ∈ N) ,

where ∥ . ∥ denotes a matrix norm. Then (Yn)n is subadditive.

Proof.

Yn+m = log ∥ (A ◦ φm−1 ◦ φn) · · · (A ◦ φ0 ◦ φn)(A ◦ φn−1) · · · A ∥
= log ∥ (Am ◦ φn)An ∥

Norm
≤ log [ ( ∥Am ∥ ◦ φn ) ∥An ∥ ]
= log ( ∥Am ∥ ◦ φn ) + log ∥An ∥ ≡ Ym ◦ φn + Yn .

�

Now we aim at getting a convergence statement for subadditive (Yn)n. This will be
achieved in the subadditive ergodic theorem 5.7 of Kingman. For this we state the three
following Lemmas.

Lemma 5.4 (Riesz). Let u1, . . . , un ∈ R (n ∈ N). With

sj :=

{
0 , j = 0

u1 + · · ·+ uj , j ∈ {1, . . . , n} ,

define

vj ≡ vjn := max
k∈{j,...,n}

( sk − sj ) ≡ max
{
0 , uj+1 , uj+1 + uj+2 , uj+1 + · · ·+ un

}

for j = 0, 1, . . . , n . Then we have:

n−1∑
j=0

uj+1 1{vjn>0} ≥ 0 .
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Proof. 1) First we have for all j ∈ {0, 1, . . . , n} :

vj = max{ 0 , uj+1 + vj+1 } ≡ (uj+1 + vj+1)
+ .

This follows directly, since

vj = max{ 0 , uj+1 , uj+1 + uj+2 , uj+1 + · · ·+ un } and

= max{0,max{uj+1, uj+1 + uj+2, · · · , uj+1 + · · ·+ un} }
= max{0, uj+1 +max{0, uj+2, uj+2 + uj+3, · · · , uj+2 + · · ·+ un}}
= max{0, uj+1 + vj+1}.

2) By 1) we have:

vj ≤ vj+1 + uj+11{vj>0} (j ∈ {0, 1, . . . , n}) .

Indeed, if vj = 0, this is trivial, and in case vj > 0 we have:

0 < vj
1)
= (uj+1 + vj+1)

+ vj>0
= vj+1 + uj+1 .

3) From 2) now follows the claim of the Lemma, since:

0 ≤ v0 = v0 − vn =
n−1∑
j=0

(vj − vj+1)
2)

≤
n−1∑
j=0

uj+1 1{vj>0} .

�
In the proof of the subadditive ergodic theorem of Kingman we will compare subadditive

sequences (Yn)n with additive sequences Xn =
∑n−1

i=0 X0 ◦ φi . For this purpose we need
the following auxiliary argument, for which the preceding Lemma of Riesz will be useful.
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Lemma 5.5 (maximal inequality). Let (Yn)n∈N0 be superadditive on (Ω,F ,P, φ) and
assume Yn ≥ 0 for all n. Moreover let X ≥ 0 be an integrable random variable; set

V := sup
n∈N0

(Yn −Xn )− Y0 , where Xn :=

n−1∑
i=0

X ◦ φi .

Then we have:

E
(
X 1{V >0} |I

)
≤ sup

n∈N

E(Yn |I )

n
.

Proof. Let vjn := max
k∈{j,...,n}

(
Yk − Yj −

k−1∑
i=j

X ◦ φi
)

for j = 0, 1, . . . , n .

1) At first we have:

Yn ≥
n−1∑
j=0

X ◦ φj 1{vjn>0} (n ∈ N) ;

since with Yj+1 ≥ Yj (by superadditivity and Yn ≥ 0) we obtain:

Yn ≥ Yn − Y0 =

n−1∑
j=0

(Yj+1 − Yj )

≥
n−1∑
j=0

(Yj+1 − Yj ) 1{vjn>0}
5.4
≥

n−1∑
j=0

X ◦ φj 1{vjn>0} ,

where the last step follows from Lemma 5.4 with uj := Yj − Yj−1 −X ◦ φj−1 .

2) From 1) we get:

E(Yn |I ) ≥
n∑

k=1

E
(
X 1{v0k>0} |I

)
(n ∈ N);

since for k ≥ j by superadditivity Yk − Yj ≥ Yk−j ◦ φj and thus vjn ≥
v0(n−j) ◦ φj , hence in summary (with the measure preserving property of φ):

E(Yn |I )
1)

≥
n−1∑
j=0

E
(
X ◦ φj 1{vjn>0}

∣∣∣ I
)

≥
n−1∑
j=0

E
( [

X 1{v0(n−j)>0}

]
◦ φj

∣∣∣ I
)

=

n∑
k=1

E
(
X 1{v0k>0} |I

)
.

3) By Fatou and {v0k > 0} ↗ {V > 0} (k → ∞) we obtain from this:

sup
n∈N

E(Yn |I )

n

2)

≥ lim inf
n→∞

1

n

n∑
k=1

E
(
X 1{v0k>0} |I

)
≥ E

(
X 1{V >0} |I

)
.

�
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Lemma 5.6. If Z is a measurable function on (Ω,F ,P, φ) with Z ≥ Z ◦ φ, we have
Z = Z ◦ φ. If in particular (Yn)n∈N0 is superadditive and

Y := lim sup
n→∞

Yn
n

, resp. Y := lim inf
n→∞

Yn
n

,

we have:
Y = Y ◦ φ , resp. Y = Y ◦ φ .

Proof. We first prove the statement on Z and for this assume Z > Z ◦ φ on
a set of positive measure, so

P(Z > q > Z ◦ φ ) > 0

for some q ∈ Q . Then we get:

P(Z < q )
φ m.p.
= P(Z ◦ φ < q )

= P(Z ◦ φ < q ≤ Z ) + P(Z ◦ φ < q , Z < q )
Z≥Z◦φ
= P(Z ◦ φ < q ≤ Z )︸ ︷︷ ︸

>0

+P(Z < q )

> P(Z < q ) ,

a contradiction.
With what has just been proved, it now remains to show:

Y ≥ Y ◦ φ , resp. Y ≥ Y ◦ φ ;

but by the superadditivity of (Yn)n we now have:

Yn+1

n+ 1
≥ Y1

n+ 1
+

Yn ◦ φ
n+ 1

=
Y1

n+ 1
+

n

n+ 1

Yn
n

◦ φ .

�

Theorem 5.7 (subadditive ergodic theorem, Kingman).
On (Ω,F ,P, φ) let (Yn)n∈N be a superadditive sequence of integrable random variables.
Then we have:

Yn
n

P-a.s.−−−−−−→n→∞ sup
n∈N

1

n
E(Yn |I ) =: γ ≤ ∞ .

Here γ is integrable iff sup
n∈N

1
n E(Yn) < ∞ . In this case we also have

Yn
n

L1(P)−−−−−−→n→∞
γ .

Moreover there exists a set Ω̃ ∈ I with Ω̃ ⊂ φ−1 Ω̃ and P(Ω̃) = 1, so that we also have:

Yn
n

−−−−→n→∞ γ on Ω̃ .
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Proof. To simplify notation we set Y0 := 0 (else replace Yn by Yn−Y0, n ≥ 0);
then (Yn)n∈N0 is furthermore superadditive.

1) We first show that we can assume wlog

Yn ≥ 0 (n ∈ N).

For this purpose let

Gn := Yn − Fn, with Fn :=

n−1∑
i=0

Y1 ◦ φi .

Then
Yn = Gn + Fn.

The sequence (Fn)n is an additive cocycle, so that the assumed integrability
provides due to Birkhoffs ergodic theorem 4.1 a random variable γF such that

Fn

n
−→ γF

P-a.s. and in L1(P). The claims about Y follow, if we have shown

Gn

n
−→ γG (P-a.s. and in L1(P)),

since then in particular

Yn
n

−→ γG + γF (P-a.s. and in L1(P)).

But now by inductive application of superadditivity

Gn = −Y1 − Y1 ◦ φ − · · · − Y1 ◦ φn−2 − Y1 ◦ φn−1 + Yn

≥ −Y1 − Y1 ◦ φ − · · · − Y1 ◦ φn−2 + Yn−1

≥ −Y1 − Y1 ◦ φ − · · · + Yn−2

≥ · · · · · ·
≥ −Y1 − Y1 ◦ φ + Y2 ≥ 0 ;

on the other hand superadditivity of (Yn)n is transferred to (Gn)n. There-
fore the claims for (Yn)n reduce to corresponding convergences for the positive
process (Gn)n.

2) We further prove that wlog we can assume

Yn ≥ n (n ∈ N) :

Since Yn+m + n+m ≥ Yn + n+ (Ym +m) ◦ φn with (Yn)n also (Yn + n)n is
superadditive. If Yn+n

n −→ γ′ , so also Yn
n −→ γ := γ′ − 1 .
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3) Yn
n −→ γ P-a.s.: For this we show Y ≤ γ and Y ≥ γ , where again

Y := lim sup
n→∞

Yn
n

resp. Y := lim inf
n→∞

Yn
n

.

i) Y ≤ γ P-a.s.: For 2 < r ∈ N we define

Xr := min{ r , Y − 1

r
} > 0 ;

with this the inequality follows, since by 2) Y ≥ 1. By Lemma 5.6 we have

moreover Xr = Xr ◦ φ , hence Xr
n :=

n−1∑
i=0

Xr ◦ φi = nXr ; with this we have

V := sup
n∈N0

(Yn −Xr
n )− Y0 = sup

n∈N0

(Yn − nXr ) > 0 ;

here the latter inequality follows from the definition of Xr: in case Yn ≤ nXr

for all n ∈ N0, the contradiction Y ≡ lim sup Yn
n ≤ lim sup nXr

n = Xr < Y
would follow. Hence with Lemma 5.5:

Xr = E (Xr |I ) ≤ sup
n∈N

E(Yn |I )

n
≡ γ .

But from this as r → ∞: Y ≤ γ P-a.s. .

ii) Y ≥ γ P-a.s.: First we have that (Yn)n is increasing, by superadditivity and
positivity; from this we conclude:

k Yn+k−1 ≥
k∑

l=1

n−1∑
j=0

(Yj+l − Yj+l−1) =

n−1∑
j=0

(Yj+k − Yj) (k, n ∈ N) ;

consequently for each k ∈ N :

Y = lim inf
n→∞

Yn+k−1

n+ k − 1

= lim inf
n→∞

Yn+k−1

n

=
1

k
lim inf
n→∞

k Yn+k−1

n

≥ 1

k
lim inf
n→∞

n−1∑
j=0

Yj+k − Yj
n

(prec. rem.)

≥ 1

k
lim inf
n→∞

n−1∑
j=0

Yk ◦ φj

n
(superadditivity)

=
1

k
E(Yk |J ) (Birkhoff 4.1)

hence also Y ≥ γ.
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4) γ integrable ⇔ sup
n∈N

1
n E(Yn) < ∞ : For this let Zn := Yn

n . From what has

been shown: Zn → γ P-a.s. and Eγ ≥ EZn ; therefore ”‘⇒”’ has been shown.
”‘⇐”’ follows with monotone convergence.

5) If γ is integrable, we have : Zn ≡ Yn
n → γ in L1(P) .

In fact, by 0 ≤ (γ − Zn)
+ ≤ γ we have on the one hand

E
(
(γ − Zn)

+
)
→ 0 ;

and on the other hand also

0 ≤ E( γ − Zn ) → 0

by Fatou, so that we also obtain:

E
(
(γ − Zn)

− ) = −E( γ − Zn ) + E
(
(γ − Zn)

+
)
→ 0 ,

and thus in summary
E ( | γ − Zn | ) → 0 .

6) existence of Ω̃ ∈ I with Ω̃ ⊂ φ−1 Ω̃ , P(Ω̃) = 1 and Yn
n → γ on Ω̃ : By

Lemma 5.6 Y and Y are invariant. Therefore also

Ω̃ := { Y = Y }

is invariant; the remaining properties follow from what has been proved (evtl.
choice of an a.s. equal strictly invariant set). �



6. The theorem of Furstenberg-Kesten

Let (Ω,F ,P) be a probability space with a measure preserving mapping φ : Ω → Ω and
A : Ω → Rd×d a random matrix. We now investigate the asymptotics of

An(ω) :=
(
A ◦ φn−1(ω)

) (
A ◦ φn−2(ω)

)
· · · (A ◦ φ(ω))

(
A(ω)

)
(ω ∈ Ω) . (2)

Example 6.1 (deterministic, symmetric matrix). Let A ∈ Rd×d be symmetric. Then
there exists a diagonalisation of A with real (A symmetric) eigenvalues δ1 ≥ · · · ≥ δd ;
hence there exists an orthogonal matrix O, so that we have

A = O∗DO with D :=

 δ1 0
. . .

0 δd

 .

Here we assume δ1 > · · · > δd , i.e. the eigenspaces Ei belonging to δi are one dimensional.
Moreover let xi be an eigenvector in Ei and

Vj =

{
Ej ⊕Ej+1 ⊕ · · · ⊕ Ed , j = 1, . . . , d ,

{0} , j = d+ 1 .

In this setting let x ∈ Vj \ Vj+1 . Then x can be written as

x =

d∑
k=j

αk xk with αj ̸= 0 .

So we have by linearity of A, since xk are eigenvectors:

Anx =
d∑

k=j

αk A
nxk =

d∑
k=j

αk δ
n
k xk ,

hence

1

n
log |Anx| =

1

n
log

∣∣∣∣∣∣
d∑

k=j

αk δ
n
k xk

∣∣∣∣∣∣
=

1

n

log δnj + log

∣∣∣∣∣∣
d∑

k=j

αk

(
δk
δj

)n

xk

∣∣∣∣∣∣
 n→∞−−−−→ log δj .

We also have the reverse conclusion, in summary:

x ∈ Vj \ Vj+1 ⇐⇒ lim
n→∞

1

n
log ∥Anx∥ = log δj (j = 1, . . . , d) .

We now aim at showing this analogously also for the sequence (An)n from (2).
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Definition-remark 6.2 (decomposition according to singular value). Each A ∈ Rd×d

possesses a singular value decomposition, i.e. there are orthogonal matrices U, V and a
diagonal matrix

D =

 δ1 0
. . .

0 δd


with δ1 ≥ · · · ≥ δd , such that we have

A = V DU .

Thereby δ1, . . . , δd are the eigenvalues of (A∗A)1/2 and for the operator norm we have:
∥A∥ = δ1.

Proof. First of all, A possesses a polar decomposition, i.e.:

A = W (A∗A)1/2 with an orthogonal matrix W .

(In case A is non-singular, this follows with W := A(A∗A)−1/2 ). Let now
D := diag (δ1, . . . , δd) be the diagonal matrix with eigenvalues δ1 ≥ · · · ≥ δd of
(A∗A)1/2. So the positive semidefinite matrix (A∗A)1/2 can be written as

(A∗A)1/2 = U∗DU

with an orthogonal matrix U . In summary we have with V := WU∗

A = W (A∗A)1/2 = WU∗DU = V DU .

�
Remark: If e1, . . . , ed are the canonical unit vectors in Rd, then Uei is the vector in
direction of the i-th main axis of the ellipsoid (A∗A)1/2(Sd−1) and δi describes the dilation
in this direction.

For the construction of the analogues of δ1, . . . , δd in example 6.1 for the sequence An

defined in (2) we need information on how An acts on linear subspaces of Rd of any
dimension below d. These linear subspaces are elements of the Grassmannian manifolds
which can be defined via exterior products. In the Theorem by Furstenberg-Kesten we
shall investigate the asymptotic behavior of the singular values δi(An) for 1 ≤ i ≤ d as
n → ∞.

Definition 6.3 (exterior product). For a d-dimensional linear space E let E∗ be the dual
of E and

L k(E∗) := { k-linear forms on (E∗)k } (k = 1, . . . , d) .

We thus define ∧kE, the k-fold ”exterior product of E”, as

∧kE := { f ∈ L k(E∗) : f alternating } ,

hence as the collection of all k-linear, alternating multilinear forms on (E∗)k .
An element f ∈ ∧kE is a k-linear mapping

f : E∗ × · · · × E∗︸ ︷︷ ︸
ktimes

−→ R ,
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which is alternating, i.e.:

f( . . . , xi , . . . , xj , . . . ) = − f( . . . , xj , . . . , xi , . . . ) (i ̸= j) .

Lemma 6.4 (alternating maps). For f ∈ L k(E∗) the following are equivalent:

i) f ∈ ∧kE;

ii) f(x1 , . . . , xk) = 0 , if (x1 , . . . , xk) not pairwise different;

iii) f(x1 , . . . , xk) = 0 , if (x1 , . . . , xk) not pairwise linearly independent;

iv) f(xπ(1) , . . . , xπ(k)) = sgn(π) f(x1 , . . . , xk) for all π ∈ Sk .

Proof. i)⇔iv) follows from the representation π = τ1 ◦ · · · ◦ τk with
permutations of two elements τi , hence sgn(τi) = −1.

i)⇒ii): If (x1 , . . . , xk) are not pairwise different, from the definition
of an alternating mapping we obtain by exchanging equal elements:
f(x1 , . . . , xk) = −f(x1 , . . . , xk) .

ii)⇒iii): Let wlog xk =
∑k−1

i=1 αi xi . Then with linearity and ii):

f(x1 , . . . , xk) =
∑k−1

i=1 αi f(x1 , . . . , xk−1 , xi) = 0 .

iii)⇒ii) is trivial.

ii)⇒i): Let wlog k = 2 . Then we have for x1, x2 ∈ E∗:

0
ii)
= f(x1 + x2 , x1 + x2)

= f(x1, x1) + f(x1, x2) + f(x2, x1) + f(x2, x2)

ii)
= f(x1, x2) + f(x2, x1) ,

hence f(x1, x2) = −f(x2, x1) . �

Definition-remark 6.5. Let f ∈ ∧kE and g ∈ ∧lE , where E denotes again a d-
dimensional linear space and k, l ∈ N0. Then

f ∧ g (x1 , . . . , xk+l ) :=
1

k! l!

∑
π∈Sk+l

sgn(π) f
(
xπ(1) , . . . , xπ(k)

)
g
(
xπ(k+1) , . . . , xπ(k+l)

)

is called the exterior product of f and g and we have: f ∧ g ∈ ∧k+l E .
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Proof. We have: f ∧ g ∈ L m(E∗) with m := k + l. To see that f ∧ g is
alternating, we apply 6.4 iv); for arbitrary x1, . . . , xm ∈ E∗ let

a(π) :=
1

k! l!
f
(
xπ(1) , . . . , xπ(k)

)
g
(
xπ(k+1) , . . . , xπ(m)

)
(π ∈ Sm) .

Then:

f ∧ g (xπ(1) , . . . , xπ(m) ) =
∑

π′∈Sm

sgn(π′) a(π′ ◦ π)

= sgn(π)
∑

π′∈Sm

sgn(π′ ◦ π) a(π′ ◦ π)

= sgn(π)
∑

σ∈Sm

sgn(σ) a(σ)

≡ sgn(π) f ∧ g (x1 , . . . , xm ) .

�

Lemma 6.6 (associativity of the exterior product).
Let f ∈ ∧kE , g ∈ ∧lE and h ∈ ∧mE with k, l,m ∈ N0 . Then we have:

(f ∧ g) ∧ h = f ∧ (g ∧ h) .

Proof. Let n := k + l + m and T := { τ ∈ Sn : τ(i) = i for i > k + l };
moreover let for arbitrary x1, . . . , xm ∈ E∗ and π ∈ Sm

a(π) := f
(
xπ(1) , . . . , xπ(k)

)
g
(
xπ(k+1) , . . . , xπ(k+l)

)
h
(
xπ(k+l+1) , . . . , xπ(n)

)
.

Herewith by twice applying Remark 6.5:(
(f ∧ g) ∧ h

)
(x1 , . . . , xn ) =

=
1

(k + l)!m!

∑
σ∈Sn

sgn(σ)
1

k! l!

∑
τ∈T

sgn(τ) a(σ ◦ τ)

=
1

k! l!m!

1

(k + l)!

∑
τ∈T

∑
σ∈Sn

sgn(σ ◦ τ) a(σ ◦ τ)

=
1

k! l!m!

card(T)

(k + l)!

∑
γ∈Sn

sgn(γ) a(γ)

=
1

k! l!m!

∑
γ∈Sn

sgn(γ) a(γ) .

Since we obtain this result also, if we (with identical steps) calculate (f ∧ (g ∧
h))(x1 , . . . , xn ), the claim is proven. �

Hence it is clear that expressions such as

f1 ∧ . . . ∧ fm with fl ∈ ∧klE

are uniquely determined. Thus we have:
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Lemma 6.7. Let fl ∈ ∧klE for l ∈ {1, . . . ,m} . Then we have with n := k1 + · · ·+ km

f1 ∧ . . . ∧ fm =
∏

1≤l≤m

1

kl !
·
∑
π∈Sn

sgn(π) fπ ,

where fπ with il := k1 + · · ·+ kl−1 is defined as

fπ(x1, . . . , xn) := f1
(
xπ(1), . . . , xπ(i1)

)
f2
(
xπ(i1+1), . . . , xπ(i2)

)
· · · fm

(
xπ(im+1), . . . , xπ(n)

)
.

Proof. This follows by induction on m. The case l = 2 is just the definition
of 6.5; the case l = 3 is shown in the proof of 6.6. �

Lemma 6.8. Let e1, . . . , ed be a basis of E∗∗ ∼= E and b1, . . . , bd the dual basis of E∗.
Then we have for all f ∈ ∧kE :

f =
∑

i1<···<ik

ai1 ... ik ei1 ∧ . . . ∧ eik ⇐⇒ ai1 ... ik = f(bi1 , . . . , bik) for all i1 < · · · < ik .

Proof. Note first that for i1 < · · · < ik and j1 < · · · < jk from Lemma 6.7:

ei1 ∧ . . . ∧ eik (bj1 , . . . , bjk) =
∑
π∈Sk

sgn(π) ei1

(
bjπ(1)

)
· · · eik

(
bjπ(k)

)
=

∑
π∈Sk

sgn(π) δi1 , jπ(1)
· · · δik , jπ(k)

= δi1 , j1 · · · δik , jk (da i1 < · · · < ik)

=

{
1 , if i1 = j1 , . . . , ik = jk

0 , else.

”‘⇒”’ follows directly from this remark;
”‘⇐”’ Let g :=

∑
i1<···<ik

f(bi1 , . . . , bik) ei1 ∧ . . . ∧ eik ∈ ∧kE . By above re-
mark we have f(bi1 , . . . , bik) = g(bi1 , . . . , bik) for all i1 < · · · < ik; by linearity
therefore f and g are equal on (E∗)k. �

Lemma 6.9. Let e1, . . . , ed be a basis of E∗∗ ∼= E and k ∈ {1, . . . , d}. Then

{ ei1 ∧ . . . ∧ eik : 1 ≤ i1 < . . . < ik ≤ d }

is a basis of ∧kE. In particular we have:

dim∧kE =

(
d

k

)
.

Proof. To prove this, we choose a basis b1, . . . , bd of E∗ dual to e1, . . . , ed and
apply 6.8. �
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Definition 6.10 (scalar product). Let b1 , . . . , bd be a basis of E∗. Then

⟨f, g⟩ :=
∑

i1<···<ik

f(bi1 , . . . , bik) g(bi1 , . . . , bik) (f, g ∈ ∧kE)

defines a scalar product on ∧kE.

Lemma 6.11. For the scalar product from 6.10 we have:

⟨u1 ∧ . . . ∧ uk , v1 ∧ . . . ∧ vk⟩ = det
(
⟨ui, vj⟩

)
1≤i,j≤k

(ui, vi ∈ E) .

In particular we have for the associated norm:

|u1 ∧ . . . ∧ uk | =
√

det
(
⟨ui, uj⟩

)
1≤i,j≤k

(ui, vi ∈ E) .

Proof. The right hand side h(u1, . . . , uk; v1, . . . , vk) := det
(
⟨ui, vj⟩

)
1≤i,j≤k

for fixed v1, . . . , vk is an alternating multilinear form in u1, . . . , uk and vice
versa, i.e. h( . ; v1, . . . , vk) ∈ ∧kE∗ and h(u1, . . . , uk; . ) ∈ ∧kE∗. If e1, . . . , ed
denotes the dual basis of b1, . . . , bd of E, and if we apply Lemma 6.8 twice,
we obtain:

h(u1, . . . , uk; v1, . . . , vk)

=
∑

i1<···<ik

h(ei1 , . . . , eik ; v1, . . . , vk) bi1 ∧ . . . ∧ bik(u1, . . . , uk)

=
∑

i1<···<ik

∑
j1<···<jk

h(ei1 , . . . , eik ; ej1 , . . . , ejk) bi1 ∧ . . . ∧ bik(u1, . . . , uk)

· bj1 ∧ . . . ∧ bjk(v1, . . . , vk)

=
∑

i1<···<ik

bi1 ∧ . . . ∧ bik(u1, . . . , uk) bi1 ∧ . . . ∧ bik(v1, . . . , vk)

=
∑

i1<···<ik

u1 ∧ . . . ∧ uk(bi1 , . . . , bik) v1 ∧ . . . ∧ vk(bi1 , . . . , bik)

≡ ⟨u1 ∧ . . . ∧ uk , v1 ∧ . . . ∧ vk⟩ .

�
Remark: In particular the preceding statement
holds for E := Rd = E∗ (with the canonical basis).
The norm

|u1 ∧ . . . ∧ uk | =
√

det
(
⟨ui, uj⟩

)
1≤i,j≤k

provides for E = Rd the k-dimensional volume of the
paralellipiped spanned by u1, . . . , uk.

�
�
�
��

�
�
�
�� �

�
�
��

#
#
##

#
#
##

#
#
##

u1

u2

u3
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So we have e.g. in the case k = 2 :

|u1 ∧ u2 | = det

(
⟨u1, u1⟩ ⟨u1, u2⟩
⟨u2, u1⟩ ⟨u2, u2⟩

)1/2
= det

(
|u1|2 |u1| |u2| cos θ

|u1| |u2| cos θ |u2|2
)1/2

=
(
|u1|2 |u2|2 (1− cos2 θ)

)1/2
= |u1| |u2| | sin θ|

�
�
�

�
��u2

u1

θ

|u2| sin θ

-�
�

�
�
��>

�

Since we want to study the action of A on k-dimensional objects in Rd, we now consider
the k-fold exterior product of a matrix:
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Definition-remark 6.12. Let A ∈ Rd×d. Then by Lemma 6.9 via

∧kA (u1 ∧ . . . ∧ uk) := Au1 ∧ . . . ∧ Auk (ui ∈ Rd)

a linear operator ∧kA : ∧kRd → ∧kRd is defined, the k-fold exterior product of the matrix
A. For this we have:

i) ∧1A = A ,

ii) ∧dA = detA (by Lemma 6.7),

iii) ∧k(AB) = (∧kA)(∧kB) ,

iv) (∧kA)−1 = ∧kA−1 if A invertible,

v) ∧k(cA) = ck ∧k A for c ∈ R ,

vi) ∧kU orthogonal, if U orthogonal and in this case we have (∧kU)∗ = ∧kU∗ .

Lemma 6.13 (exterior product of a matrix and eigenvalues). Let λ1, . . . , λd be the eigen-
values of A ∈ Rd×d. Then ∧kA has the eigenvalues

{ λi1 · · · λik : 1 ≤ i1 < · · · < ik ≤ d } .

Proof. If u1, . . . , ud are the eigenvectors of λ1, . . . , λd, fixing indices 1 ≤ i1 <
· · · < ik ≤ d , we get:

∧kA (ui1 ∧ . . . ∧ uik) ≡ Aui1 ∧ . . . ∧ Auik
= λi1 ui1 ∧ . . . ∧ λik uik
= (λi1 · · ·λik) (ui1 ∧ . . . ∧ uik) ,

so that λi1 · · ·λik is an eigenvalue with eigenvector ui1 ∧ . . .∧uik . For dimension
reasons these are all eigenvectors and hence all eigenvalues. �

Lemma 6.14 (exterior product of a matrix and singular value decomposition).
For A ∈ Rd×d let δ1 ≥ . . . ≥ δd ≥ 0 be the singular values and

A = V DU

a singular value decomposition, where D ≡ diag(δ1, . . . , δd). Then we have for k = 1, . . . , d:

i) ∧kA = (∧kV )(∧kD)(∧kU) ist singular value decomposition of ∧kA;

ii) ∧kD = diag ( δi1 · · · δik : 1 ≤ i1 < · · · < ik ≤ d ).
Hence δ1 · · · δk is the biggest resp. δd−k+1 · · · δd the smallest singular value of ∧kA.

iii) For the operator norm we have:
∥ ∧k A∥ = δ1 · · · δk , | detA| = ∥ ∧d A∥ = δ1 · · · δd and ∥ ∧k A∥ ≤ ∥A∥k .

Proof. i) and ii) follow from Remark 6.12 and Lemma 6.13; iii) follows from
ii) and the definition of the operator norm ∥ · ∥ . �
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Theorem 6.15 (Furstenberg-Kesten). Let (Ω,F ,P) be a probability space and A : Ω →
Rd×d a random matrix, for which we have

log+ ∥A( . ) ∥ ∈ L1(P) . (3)

Moreover let as in (2)

An :=
(
A ◦ φn−1

) (
A ◦ φn−2

)
· · · (A ◦ φ) A

with a (P-)measure preserving map φ : Ω → Ω .
Then there exists a set Ω̃ ∈ F with P(Ω̃) = 1 and Ω̃ ⊂ φ−1(Ω̃) , and there exist

measurable functions

γ(k) : Ω −→ R ∪ {−∞} (k = 1, . . . , d)

with γ(k)
+ ∈ L1(P), such that for all ω ∈ Ω̃ and k,m ∈ {1, . . . , d} we have:

γ(k)(ω) = lim
n→∞

1

n
log ∥ ∧k An(ω)∥ ,

γ(k)
(
φ(ω)

)
= γ(k)(ω) ,

γ(k+m)(ω) ≤ γ(k)(ω) + γ(m)(ω) .

If we define recursively random variables

Λk : Ω −→ R ∪ {−∞} (k = 1, . . . , d)

by
Λ1 + . . .+ Λk = γ(k)

with
Λk := −∞ on { γ(k) = −∞} ,

we have for all ω ∈ Ω̃ and k ∈ {1, . . . , d}:

Λk(ω) = lim
n→∞

1

n
log δk

(
An(ω)

)
,

Λk

(
φ(ω)

)
= Λk(ω) ,

Λ1(ω) ≥ Λ2(ω) ≥ . . . ≥ Λd(ω) (≥ −∞ ) .

If P is ergodic, so γ(k) and Λk are constant by the invariance above (on Ω̃), hence
γ(k) = E(γ(k)) and Λk = E(Λk).

Proof. 1) Let

Y k
n := log ∥ ∧k An∥ (n ∈ N, k = 1, . . . , d) ;

then (Y k
n )n for each k = 1, . . . , d is subadditive: in case k = 1 this had been

shown in 5.3; for k > 1 the calculation can immediately been transferred, since
for all matrices B,C we have: ∧k(BC) = (∧kB)(∧kC). Consequently with A
also each ∧kA is a cocycle, i.e. we have:

∧k An+m = ∧k An ◦ φm · ∧k Am .

Hence subadditivity of (Y k
n )n follows.
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2) The existence of Ω̃ and γ(k) with the claimed properties follows from The-
orem 5.7, applied to (−Y k

n )n ; it remains to prove:

γ(k+m) ≤ γ(k) + γ(m) ;

but this follows directly from the characteristic property of the γ(k) and the
norm inequality

∥ ∧k+m An∥ ≤ ∥ ∧k An∥ · ∥ ∧m An∥ .

3) We now prove the claims with respect to Λk : By Lemma 6.14 we have for
k = 1, . . . , d:

1

n
log ∥ ∧k An∥ =

1

n

k∑
i=1

log δi(An).

We have Λ1 ≡ γ(1) and for ω ∈ Ω̃ we obtain successively:

Λk+1(ω) ≡ γ(k+1)(ω) − γ(k)(ω) = lim
n→∞

1

n
log δk+1(An) ,

if γk(ω) > ∞; if this procedure ends, i.e. if γk0(ω) = −∞, then also γk(ω) =
−∞ for all k ≥ k0 and thus also Λk = −∞ for all k ≥ k0. The remaining
statements hold true by

δ1(An) ≥ δ2(An) ≥ . . . ≥ δd(An)

and the respective expectations exist by hypothesis. �



7. The multiplicative ergodic theorem of Oseledets

Let (Ω,F ,P) be a probability space with a measure preserving mapping φ : Ω → Ω and
A : Ω → Rd×d a random matrix. According to (2) we define

An :=

{ (
A ◦ φn−1

) (
A ◦ φn−2

)
· · · (A ◦ φ) A , n ∈ N ,

I , n = 0 ,

the cocycle generated by A; An is therefore a cocycle over φ , i.e. we have:

An+m = (An ◦ φm) · Am (m,n ∈ N0) ,

as has already been used in the proof of the theorem of Furstenberg-Kesten.

We are now interested in the asymptotics of |Anx| for x ∈ Rd as n → ∞. We trace this
behavior back to the theorem of Furstenberg-Kesten by means of the following (determin-
istic) proposition 7.3. To prove the convergence statements therein we first establish two
Lemmata:

Lemma 7.1. Let Φ ∈ Rd×d by symmetric with spectral decomposition

Φ =

r∑
i=1

λiPi ,

where r ≤ d and λi the eigenvalues and Pi the corresponding orthogonal projectors on the
eigenspaces. Let

Φn =

rn∑
i=1

λn
i P

n
i

equally symmetric d× d-matrices, so that we have:

i) λn
k

n→∞−−−−→ λi for all k ∈ Σi , where Σi ̸= ∅ are sets of indices (i=1,. . . , r);

ii) P̄n
i :=

∑
k∈Σi

Pn
k

n→∞−−−−→ Pi for all i = 1, . . . , r .

Then: Φn
n→∞−−−−→ Φ .

Proof. With the convergence statements we obtain:

Φn − Φ =

r∑
i=1

∑
k∈Σi

λn
kP

n
k −

r∑
i=1

λiPi

=
r∑

i=1

[ ∑
k∈Σi

(λn
k − λi) P

n
k︸ ︷︷ ︸

→0

+ λi

(∑
k∈Σi

Pn
k − Pi

)
︸ ︷︷ ︸

→0

]
n→∞−−−−→ 0 .

�
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Lemma 7.2. Let P,Q be orthogonal projectors in R2, such that we have:

dimU = dimV = 1 , where U := ImP and V := ImQ .

Then:

δ(U, V ) := ∥P −Q∥ = |x ∧ y| = | sinα| (x ∈ U, y ∈ V with |x| = |y| = 1) ,

where α is the angle between x and y. Consequently δ is a complete metric on P1 , the
projective space of all one dimensional linear subspaces of R2.

Proof. The second equation has already been proved in the remark after
Lemma 6.11.

∥P −Q∥ = |x ∧ y| : As in the remark after Lemma 6.11 we further obtain:

|x ∧ y| = det

(
⟨x, x⟩ ⟨x, y⟩
⟨y, x⟩ ⟨y, y⟩

)1/2
=

√
1− ⟨x, y⟩2

=
√

⟨x, y⟩2 + ⟨x, y⊥⟩2 − ⟨x, y⟩2

= | ⟨x, y⊥⟩ |
= ∥ (I −Q)P ∥
= ∥ (P −Q)P ∥ ≤ ∥P −Q ∥ ,

where the idempotence of orthogonal projectors has been used besides the fact
∥AB∥ = ∥BA∥ for orthogonal projectors A,B.
Note that ||PQ|| = |⟨x, y⟩| = | cos(α)| = |⟨x⊥, y⊥⟩| = ||(I −Q)(I − P )||.
On the other hand for w ∈ R2:

| (P −Q)w |2 = | (P −QP )w − (Q−QP )w |2

= | (I −Q)Pw −Q(I − P )w |2

= | (I −Q)Pw |2 + |Q(I − P )w |2

≤ ∥ (I −Q)P ∥2 |Pw |2 + ∥Q(I − P ) ∥︸ ︷︷ ︸
∥ (I−Q)P ∥2

2 | (I − P )w |2

= ∥ (I −Q)P ∥2 ,

hence
∥P −Q ∥ ≤ ∥ (I −Q)P ∥ .

In summary we proved:

∥P −Q ∥ = ∥ (I −Q)P ∥ = |x ∧ y| .

�
The following deterministic theorem serves to prepare for an application of the theorem

of Furstenberg-Kesten.
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Proposition 7.3 (Goldsheid-Margulis). Let (An)n∈N be a sequence in Rd×d with the prop-
erties:

lim sup
n→∞

1

n
log ∥An∥ ≤ 0 (4)

and assume that Φn := An · · ·A1 fulfils

lim
n→∞

1

n
log ∥ ∧i Φn∥ =: γ(i) ∈ R ∪ {−∞} (5)

for each i = 1, . . . , d . Then we have:

i) There exists (in the topology of the operator norm) the limit

Ψ := lim
n→∞

( Φ∗
n Φn )

1/2n ≥ 0 .

Defining successively Λi for i = 1, . . . , d by Λ1 + · · ·+ Λi = γ(i)

(if γ(i) = −∞, set Λi = −∞), then the eigenvalues of Ψ are given by

eΛ1 , . . . , eΛd

and we have

Λi = lim
n→∞

1

n
log δi(Φn) (i = 1, . . . , d) .

ii) Let

eλp < · · · < eλ1

the different (!) eigenvalues of Ψ (where λp = −∞ is possible), Up, . . . , U1 the
corresponding eigenspaces with di := dimUi and let

Vi :=

{
{0} , i = p+ 1

Up ⊕ · · · ⊕ Ui , i = 1, . . . , p .

Then we have:

Vp+1 ⊂ Vp ⊂ Vp−1 ⊂ · · · ⊂ V1 = Rd

and for each x ∈ Rd \ {0} there exists the Lyapunov exponent

λ(x) := lim
n→∞

1

n
log |Φnx| ;

we have for all i = 1, . . . , p :

x ∈ Vi \ Vi+1 ⇐⇒ λ(x) = λi

resp. equivalently:

Vi = {x ∈ Rd : λ(x) ≤ λi } .
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Proof. In case d = 1 nothing needs to be proven, since then Φn ∈ R and the
claims follow directly from the hypotheses.
For simplicity we now confine our attention to the case d = 2; the general case
can be proved in a similar way, with more technicalities (see Arnold [AR 98]
pp. 144-152).

Λi = lim
n→∞

1
n log δi(Φn) for i = 1, 2 This follows from (5) with Lemma 6.14 iii):

Λ1 ≡ γ1
(5)
= lim

n→∞

1

n
log ∥Φn∥

6.14
= lim

n→∞

1

n
log δ1(Φn) ;

if now Λ1 = −∞, hence γ1 = −∞, by (5) also γ2 = −∞ = Λ2; on the other
hand in this case

1

n
log δ2(Φn) ≤

1

n
log δ1(Φn) −→ −∞.

If Λ1 > −∞, we get:

Λ2 ≡ γ2 − Λ1 = lim
n→∞

1

n
log ∥ ∧2 Φn∥︸ ︷︷ ︸

δ1(Φn)δ2(Φn)

− lim
n→∞

1

n
log δ1(Φn)

= lim
n→∞

1

n
log δ2(Φn) .

convergence of operators and Lyapunov exponents Let now

Φn = VnDnOn

be the singular value decomposition of Φn, with

Dn =

(
δ1(Φn) 0

0 δ2(Φn)

)
.

from this we obtain:

(Φ∗
n Φn)

1/2n = (O∗
nD

2
nOn)

1/2n = O∗
nD

1/n
n On ;

this matrix has eigenvalues δ1(Φn)
1/n and δ2(Φn)

1/n, which according to what
has been shown above converge to eΛ1 and eΛ2 ; so we have the following con-
vergences:

D1/n
n ≡

(
δ
1/n
1 (Φn) 0

0 δ
1/n
2 (Φn)

)
n→∞−−−−→

(
eΛ1 0
0 eΛ2

)
.

Now the difficulty is that the convergence of On in general is not guaranteed;
but it is enough to prove convergence of the respective eigenspaces for which
Lemma 7.1 has been established.
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1. CASE: Λ1 = Λ2 =: λ1 : As just seen we have D
1/n
n → eλ1I and Lemma 7.1

imply
(Φ∗

nΦn)
1/2n n→∞−−−−→ eλ1I

with P̄n
1 := Pn

1 + Pn
2 . Moreover we have immediately: V1 ≡ U1 = R2 , p = 1

and d1 = 2 . Therefore we only have to prove that for all x ∈ R2 \ {0} we have:

λ(x) ≡ lim
n→∞

1

n
log ∥Φnx∥ = λ1 .

For this let first λ1 > −∞; then from the already proven characterization of
Λ1, it follows that for each ϵ > 0 there exists cϵ ∈ (0,∞) with

1

cϵ
en(λ1−ϵ) ≤ δi(Φn) ≤ cϵe

n(λ1+ϵ), i = 1, 2.

Setting xn := Onx, we get

|Φnx| = |VnDnOnx| = |Dnxn| =
(
δ1(Φn)

2(x1n)
2 + δ2(Φn)

2(x2n)
2
)1/2

with xin denoting the components of xn; in summary we therefore have

|x|
cϵ

en(λ1−ϵ) ≤ |Φnx| ≤ |x|cϵen(λ1+ϵ) ,

whence we obtain that λ(x) = λ1.
If λ = −∞, we can in the same way find for each r < 0 a cr ∈ (0,∞) such that

0 ≤ δi(Φn) ≤ cre
nr , i = 1, 2 .

As above we then infer:

0 ≤ |Φnx| ≤ |x|crenr,

from which we conclude as above: λ(x) = λ1. So the theorem is proved in case
Λ1 = Λ2.

2. CASE: λ1 ≡ Λ1 > Λ2 ≡ λ2 : Here we have

D1/n
n ≡

(
δ
1/n
1 (Φn) 0

0 δ
1/n
2 (Φn)

)
n→∞−−−−→

(
eλ1 0
0 eλ2

)
.

To prove the existence of Ψ, we have to show that the orthogonal projectors
Pn
1 , P

n
2 on the eigenspaces Un

1 , U
n
2 of (Φ∗

nΦn)
1/2n converge to orthogonal pro-

jectors P1, P2, since then Lemma 7.1 yields:

(Φ∗
nΦn)

1/2n n→∞−−−−→ eλ1P1 + eλ2P2 =: Ψ .

This will be proved in the following Lemma by means of a Cauchy sequence
argument. For this purpose we remark that the eigenvectors of (Φ∗

nΦn)
1/2n =

O∗
nD

1/n
n On are given by uni := O∗

nei (i = 1, 2), where (e1, e2) is the standard
basis of R2. In particular Un

i = span (uni ) , i = 1, 2.
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Lemma 7.4. In the situation above (”‘2. case”’ in the proof of theorem 7.3) we have:

lim sup
n→∞

1

n
log δ

(
Un
i , U

n+1
i

)
≤ λ2 − λ1 < 0 (i = 1, 2).

In particular (Un
i )n∈N (i = 1, 2) is a Cauchy sequence in the projective space P 1, that hence

converges to Ui ∈ P 1. Moreover, this convergence takes place with exponential speed:

lim sup
n→∞

1

n
log δ

(
Un
i , Ui

)
≤ λ2 − λ1 (i = 1, 2).

Proof of Lemma 7.4. Wlog let hereby i = 2, since Un
1 is orthogonal to Un

2 ,
but the metric δ on P1 is invariant with respect to orthogonal transformations.
By orthogonality of all (un+1

1 , un+1
2 ) we may represent un2 as

un2 = αnu
n+1
1 + βnu

n+1
2 (n ∈ N) .

1) δ
(
Un
2 , U

n+1
2

)
= |αn| , because:

δ
(
Un
2 , U

n+1
2

) 7.2
= |un2 ∧ un+1

2 | ≡ |(αnu
n+1
1 + βnu

n+1
2 ) ∧ un+1

2 |
= |αn| |un+1

1 ∧ un+1
2 |

= |αn| ,

where orthonormality of un1 and un2 was used.

2) δ
(
Un
2 , U

n+1
2

)
≤ ∥An+1∥ δ2(Φn)

δ1(Φn+1)
, because: First we have

|Φn+1u
n
2 | ≡ |αnΦn+1u

n+1
1 + βnΦn+1u

n+1
2 |

≡ |αn Vn+1Dn+1On+1O
∗
n+1e1 + βn Vn+1Dn+1On+1O

∗
n+1e2|

= |αn δ1(Φn+1) Vn+1e1 + βn δ2(Φn+1) Vn+1e2|
orth.
≥ |αn δ1(Φn+1) Vn+1e1|
= |αn| δ1(Φn+1) ;

on the other hand

|Φn+1u
n
2 | ≡ |An+1Φnu

n
2 | ≤ ∥An+1∥ |Φnu

n
2 | = ∥An+1∥ δ2(Φn) ,

hence in summary

δ
(
Un
2 , U

n+1
2

) 1)
= |αn| ≤ |Φn+1u

n
2 |

δ1(Φn+1)
≤ ∥An+1∥

δ2(Φn)

δ1(Φn+1)
.
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3) First claim of the Lemma: by what has just been proved we get:

lim sup
n→∞

1

n
log δ

(
Un
2 , U

n+1
2

)
≤ lim sup

n→∞

1

n
log ∥An+1∥

+ lim sup
n→∞

1

n
log δ2(Φn)

− lim inf
n→∞

1

n
log δ1(Φn+1)

≤ 0 + λ2 − λ1 ,

where we use the first hypothesis of theorem 7.3 and the convergence result
already established.

4) (Un
2 )n converges in P 1 to some U2 : For this purpose let ε < λ1 − λ2 ; by

what has been shown we can choose n0 ∈ N such that

1

n
log δ

(
Un
2 , U

n+1
2

)
< λ2 − λ1 + ε (< 0) (∀n ≥ n0).

But then we get for n0 ≤ m ≤ n :

δ
(
Un
2 , U

n+1
2

)
≤

n−1∑
k=m

δ
(
Uk
2 , U

k+1
2

)
≤

n−1∑
k=m

ek(λ2−λ1+ε)

≤
∞∑

k=m

ek(λ2−λ1+ε)

=
em(λ2−λ1+ε)

1− eλ2−λ1+ε

m→∞−−−−→ 0 ,

where the summation formula for geometric series was employed.

5) Second claim of the Lemma: with the arguments just used we also get:

δ
(
Un
2 , U2

)
≤ en(λ2−λ1+ε) 1

1− eλ2−λ1+ε

and therefore

lim sup
n→∞

1

n
log δ

(
Un
2 , U2

)
≤ λ2 − λ1 + ε .

Now the claim follows with ε → 0. �
Lem.
7.4



The multiplicative ergodic theorem (Oseledets) 53

Continuation of the proof of Proposition 7.3. As orthogonal projectors
P1, P2 we now choose the projectors on the spaces U1, U2 existing due to Lemma
7.4. By Lemma 7.2 and Lemma 7.4 we get the convergence

Pn
i

n→∞−−−−→ Pi (i = 1, 2) .

In summary we obtain

(Φ∗
n Φn)

1/2n n→∞−−−−→ eλ1P1 + eλ2P2 =: Ψ

It remains to prove the claim on the Lyapunov exponents; hereby V2 = U2 ⊂
R2 = V1, such that it remains to prove:

x ∈ V2 \ {0} =⇒ lim
n→∞

1

n
log ∥Φnx∥ = λ2 and

x ∈ R2 \ V2 =⇒ lim
n→∞

1

n
log ∥Φnx∥ = λ1 ;

where in each case we may assume |x| = 1.

x ∈ V2 \ {0} ⇒ lim 1
n log |Φnx| = λ2 : We represent x as

x = αnu
n
1 + βnu

n
2 ,

hence again

Φnx = αnΦnu
n
1 + βnΦnu

n
2 = αn δ1(Φn)Vne1 + βn δ2(Φn)Vne2 ,

and thus

|βn| δ2(Φn) ≤
[
α2
n δ1(Φn)

2 + β2
n δ2(Φn)

2
]1/2

= |Φnx| ;

as in the proof of 1) of Lemma 7.4 we obtain from Lemma 7.2: δ
(
Un
2 , U

n+1
2

)
=

|αn| , since x ∈ V2 = U2; consequently by Lemma 7.4 also

lim sup
n→∞

1

n
log |αn| = lim sup

n→∞

1

n
log δ

(
Un
2 , U2

)
≤ λ2 − λ1 < 0 ;

thus we infer:
β2
n = 1− α2

n
n→∞−−−→ 1 .

and therefore in summary:

λ2 = lim
n→∞

1

n
log ( |βn| δ2(Φn) )

≤ lim inf
n→∞

1

n
log |Φnx| ≤ lim sup

n→∞

1

n
log |Φnx|

=
1

2
lim sup
n→∞

1

n
log
[
α2
n δ1(Φn)

2 + β2
n δ2(Φn)

2
]

≤ 1

2
max

{
lim sup
n→∞

1

n
logα2

n δ1(Φn)
2 , lim sup

n→∞

1

n
log β2

n δ2(Φn)
2

}
≤ max { (λ2 − λ1) + λ1 , 0 + λ2 }
= λ2 .
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x ∈ R2 \ V2 ⇒ lim 1
n log |Φnx| = λ1 : Here we represent x as

x = αu+ βv

with unit vectors u ∈ U1 and v ∈ U2 = V2 ; the latter are represented by

v = αnu
n
1 + βnu

n
2 resp. u = γnu

n
1 + δnu

n
2 .

Also in this case we necessarily get from Lemma 7.4: αn → 0, δn → 0 and thus
|βn| → 1, |γn| → 1 (in projective space we have by Lemma 7.4: un1 → u and
un2 → v).
Therefore we have as above:

|α| |γn| δ1(Φn) ≤
[
(αγn + βαn)

2 δ1(Φn)
2 + (αδn + ββn)

2 δ2(Φn)
2
]1/2

= |Φnx| ;

noting that by the position of x always α = ⟨x, u⟩ ̸= 0, we in summary again
obtain:

λ1 = lim
n→∞

1

n
log ( |α| |γn| δ1(Φn) )

≤ lim inf
n→∞

1

n
log |Φnx| ≤ lim sup

n→∞

1

n
log |Φnx|

=
1

2
lim sup
n→∞

1

n
log
[
(αγn + βαn)

2 δ1(Φn)
2 + (αδn + ββn)

2 δ2(Φn)
2
]

≤ λ1 .

Thus all claims of Proposition 7.3 have been proven. �

To be able to apply the Proposition by Goldsheid-Margulis, it remains to check the first
hypothesis in the special case of stationary random matrices:

Lemma 7.5. Let X : Ω → R∪{−∞} be a random variable with X+ ∈ L1(Ω,F ,P). Then

Ω1 :=

{
lim sup
n→∞

1

n
X ◦ φn−1 ≤ 0

}
is invariant and we have P(Ω1) = 1 .

Proof. The invariance follows from the definition of Ω1. Moreover Ω1 has full
measure, because:

∞∑
n=1

P
{
1

n
X ◦ φn−1 > ε

}
φ m. pres.

=

∞∑
n=1

P {X > εn} =

∞∑
n=1

P
{
X+ > εn

}
≤ 1

ε
E(X+) < ∞ ,

hence by Borel-Cantelli: P(Ω1) = 1 . �

To deduce the main theorem, we apply Lemma 7.5 to X := log ∥A∥ . So we obtain:
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Theorem 7.6 (Multiplicative ergodic theorem, Oseledets). Let A : Ω → Rd×d be a
random matrix on (Ω,F ,P, φ) and

An :=

{ (
A ◦ φn−1

) (
A ◦ φn−2

)
· · · (A ◦ φ) A , n ∈ N ,

I , n = 0 ,

the cocycle on Rd generated by this sequence. Assume

log+ ∥A ∥ ∈ L1(Ω,F ,P) .

Then there exists Ω̃ ∈ F with Ω̃ ⊂ φ−1(Ω̃) and P(Ω̃) = 1 , such that for each ω ∈ Ω̃ we
have:

i) There exists

Ψ(ω) := lim
n→∞

(
A∗

n(ω)An(ω)
)1/2n ≥ 0.

ii) If

eλp(ω)(ω) < · · · < eλ1(ω)

are the different eigenvalues of Ψ(ω) (where λp(ω)(ω) = −∞ is possible), and Up(ω)(ω), . . . , U1(ω)
are the corresponding eigenspaces with di(ω) := dimUi(ω) , then we have:(
λi ◦ φ

)
(ω) = λi(ω) ,

(
di ◦ φ

)
(ω) = di(ω) , and 1 ≤ i ≤ pi(ω) =

(
pi ◦ φ

)
(ω) .

iii) Defining

Vi(ω) :=

{
{0} , i = p(ω) + 1

Up(ω)(ω)⊕ · · · ⊕ Ui(ω) , i = 1, . . . , p(ω) ,

we have

Vp(ω)+1(ω) ⊂ Vp(ω)(ω) ⊂ Vp(ω)−1(ω) ⊂ · · · ⊂ V1(ω) = Rd

and for each x ∈ Rd \ {0} there exists

λ(ω, x) := lim
n→∞

1

n
log |An(ω)x| ;

and we have for all i = 1, . . . , p(ω) :

x ∈ Vi(ω) \ Vi+1(ω) ⇐⇒ λ(ω, x) = λi(ω)

resp. equivalently:

Vi(ω) = {x ∈ Rd : λ(ω, x) ≤ λi(ω) } .

iv) If φ is ergodic, then p, λi and di on Ω̃ are constant P-a.s..
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Proof. By the integrability hypothesis Lemma 7.5 is applicable with X :=
log ∥A∥ and provides the invariant set

Ω̃1 :=

{
ω ∈ Ω : lim sup

n→∞

1

n
log ∥A(φn−1ω)∥ ≤ 0

}
with full measure. We now apply the deterministic MET Proposition 7.3 to

Aω
n := A(φn−1ω) and Φω

n ≡ Aω
n · · ·Aω

1
cocycle
= An(ω) ,

where (4) is valid by definition on Ω̃1 and (5) holds true by the theorem of
Furstenberg-Kesten 6.15 on a forward invariant set Ω̃2 with full measure; con-
sequently Proposition 7.3 is applicable for each ω ∈ Ω̃1∩ Ω̃2 =: Ω̃, a forward in-
variant set of full measure, and yields with Theorem 6.15 the desired claims. �

Definition 7.7. The functions λi from the theorem of Oseledets are called Lyapunov
exponents of the linear cocycle (An)n∈N0 .

The spaces Vi (for i = 1, . . . , p) are not the analogues of eigenspaces from the determin-
istic theory. For such an analogy the theory has to be extended to cocycles indexed by Z ,
see Arnold [AR 98], Theorem 3.4.11. .



Notations

R+ {t ∈ R : t ≥ 0}
N0 N ∪ {0}
s± (±s) ∨ 0; positive resp. negative part of a real number

or function s
≡ equality by definition
| | norm
∥ ∥ operator norm
M

.∪ N disjoint union of M and N
B(X) Borel σ-algebra on the topological space X
Bn B(Rn)
δ1(A) ≥ · · · ≥ δd(A) singular values of A ∈ Rd×d

E(f)
∫
f dP; expectation of a function f with respect to the

probability measure P
E(f |F ) conditional expectation of the random variable f given F
I σ-algebra of measurable invariant sets
σ(M ) σ-Algebra generated by a family M of sets resp. functions

RV random variable
Wlog without loss of generality
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