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Abstract. We investigate Takagi-type functions with roughness parameter γ that are
Hölder continuous with coe�cient H = log γ

log 1
2

. Analytical access is provided by an embedding

into a dynamical system related to the baker transform where the graphs of the functions
are identi�ed as their global attractors. They possess stable manifolds hosting Sinai-Bowen-
Ruelle (SBR) measures. We show that the SBR measure is absolutely continuous for large
enough γ. Dually, where duality is related to time reversal, we prove that for large enough
γ a version of the Takagi-type curve centered around �bers of the associated stable manifold
possesses a square integrable local time.

1. Introduction

The interest in the subject of this paper, rough Takagi-type curves, arose from a two
dimensional example of such functions studied in the context of the Fourier analytic approach
of rough path analysis or rough integration theory laid out in [11] and [12]. In [12], the
construction of a Stratonovich type integral of a rough function f with respect to another
rough function g is based on the notion of paracontrol of f by g. This Fourier analytic
concept generalizes the original notion of control introduced by Gubinelli [10]. In search of
a good example of two-dimensional functions for which no component is controlled by the
other one, in [17] we come up with a pair of Weierstrass functions W = (W1,W2). One of
them �uctuates on all dyadic scales in a sinusoidal manner, the other one in a cosinusoidal
one. Hence while the �rst one has minimal increments, the second one has maximal ones,
and vice versa. This is seen to mathematically underpin in a rigorous way the fact that they
are mutually not controlled. It is also seen that the Lévy areas of the approximating �nite
sums of the representing series do not converge. This geometric pathology motivated us to
look for further geometric properties of the pair, or of its single components. Here we look
at a relative of the Weierstrass curves, Takagi-type curves with similar regularity parameters.
In contrast to the former, they are more easily accessible to the analysis we employ for the
investigation of their geometric properties. They are given by

T (x) =

∞∑
n=0

γnΦ(2nx), x ∈ [0, 1],
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with Φ(x) = d(x,Z), the distance of x to the closest point in Z, and a roughness parameter

γ ∈]1
2 , 1[ (see Figure 1). They are Hölder continuous with Hurst parameter H = log γ

log 1
2

.
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Figure 1. Takagi curve for di�erents values of γ

We continue the study of geometric properties of such functions by asking the question:
under which condition on γ does T possess a local time? In fact, we shall answer this
question for a modi�cation H of T de�ned in (5.1), obtained by perturbation of T with a
very smooth path, naturally given by geometric properties of the associated dynamical system
our analysis is based on. The answer to this question resonates back to rough path analysis,
as is impressively shown in [7]. There it is proved that curves possessing smooth local times
have a regularizing e�ect, if added to an ill-posed ODE. More precisely, in [7] the notion of
(ρ, γ)-irregularity is introduced. It is proved that adding a (ρ, γ)-irregular function to an ill-
posed ODE typically gives rise to a well-posed equation. This notion of irregularity is based
on a Sobolev smoothness of the occupation measure given in terms of the decay of its Fourier
modes. From the stochastic analysis point of view, at least for one-dimensional problems, it
is more natural to study regularity of the occupation measure in terms of local times.

It had been noticed in a series of papers (see [14], [3], [4], [5], [2], [18], [21]) on one-
dimensional Weierstrass type curves that the number of iterations of the expansion by a real
factor can be taken as a starting point in interpreting their graphs as pullback attractors of
dynamical systems in which a baker transformation de�nes the dynamics. This observation
marks, in many of the papers quoted, the point of departure for determining the Hausdor�
dimension of graphs of one dimensional Weierstrass type functions. For a historical survey of
this work the reader may consult [5]. For our curve we use the same metric dynamical system
based on a suitable baker transformation as a starting point. This is done by introducing,
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besides a variable x that encodes expansion by the factor 2 forward in time, an auxiliary
variable ξ describing contraction by the factor 1

2 in turn, forward in time as well. The operation
of expansion-contraction in both variables is described by the baker transformation B =
(B1, B2). Backward in time, the sense of expansion and contraction is interchanged. The
action of applying forward expansion in one step just corresponds to stepping from one term
in the series expansion of T to the following one. This indicates that T is an attractor of a
three dimensional hyperbolic dynamical system F that, besides contracting a leading variable
by the factor γ, adds the �rst term of the series to the result. So by de�nition of F , T is its
attractor. Since 1

2 , the factor x in the forward �ber motion, is the smallest Lyapunov exponent
of the linearization of F , there is a stable manifold related to this Lyapunov exponent. It is
spanned by the vector which is given as another Weierstrass type series

S(ξ, x) = −
∞∑
n=1

κnΦ′
(
Bn

2 (ξ, x)
)
,

where κ = 1
2γ ∈]1

2 , 1[ is a roughness parameter dual to γ. This will be explained below. The

pushforward of the Lebesgue measure by S(·, x) for x ∈ [0, 1] �xed, is the x-marginal of the
Sinai-Bowen-Ruelle measure of F . The de�nition of F as a linear transformation added to
a very smooth function may be understood as conveying the concept of self-a�nity for the
Takagi curve. Self-a�nity can be seen as a concept providing the magnifying lens to zoom out
microscopic properties of the underlying geometric object to a macroscopic scale. Our main
tool of telescoping relations translates this rough idea into mathematical formulas, quite in
the sense of Keller's paper [18]. Our telescoping is done in both time directions, forward and
backward, and in doing this, we can, roughly, relate the Sinai-Bowen-Ruelle measure and the
occupation measure underlying local time by duality through the operation of time reversal.
More formally, we investigate the doubly in�nite series

H(ξ, x) =
∑
n∈Z

γ−n
[
Φ
(
B−n2 (ξ, x)

)
− Φ

(
B−n2 (ξ, 0)

)]
, ξ, x ∈ [0, 1].

A key equation relates H, T and the stable process S by the formula

H(ξ, y)−H(ξ, x) = T (y)− T (x)−
∫ y

x
S(ξ, z)dz.

For a geometric interpretation of the increments of H, de�ne the stable �ber through a point
(x, T (x)) of the graph of T by solutions of the initial value problem of the ODE

d

dv
l(ξ,x,w)(v) = S(ξ, v), l(ξ,x,w)(x) = w,

where we set w = T (x). Then vertical distances on di�erent stable �bers are just given by
the increments of H:

l(ξ,y,T (y))(y)− l(ξ,x,T (x))(y) = H(ξ, y)−H(ξ, x), ξ, x, y ∈ [0, 1].

To study the Sinai-Bowen-Ruelle measure, we will start by looking at the measure ρ given by
the pushforward of three-dimensional Lebesgue measure with the transformation

(ξ, η, x) 7→ S(ξ, x)− S(η, x).

For the investigation of the occupation measure, in a dual step, we shall start with consid-
ering χ, the pushforward of three-dimensional Lebesgue measure with the transformation

(x, y, ξ) 7→ H(ξ, y)−H(ξ, x).

For both measures we shall derive telescoping equations relating them with macroscopic ver-
sions ρ̂ resp. χ̂ which are given by ρ resp. χ conditioned on the macroscopic sets {ξ0 6= η0}
resp. x1 6= y1}, where ξ0, η0, x1, y1 denote the �rst components in the dyadic expansion of
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ξ, η resp. x, y. The key element of our approach is the observation that the behaviour of
S on these macroscopic sets is easy to describe, at least for speci�c ranges of the roughness
parameters κ resp. γ. The related macroscopic properties are close to transversality proper-
ties used in many of the papers cited earlier. The �rst appearance of this notion describing
a quality of the �ow related to the map x 7→ S(ξ, x) − S(η, x) for (ξ, η) in the macroscopic
set {ξ0 6= η0} is in Tsujii [24]. The particular role played by Takagi-type curves among more
general Weierstrass curves is the relative simplicity of the stable manifold map S stating
that S(ξ, ·) is constant on its domain [0, 1], for ξ ∈ [0, 1]. In this situation, transversality is
just expressed by positivity of S(ξ, 0) resp. S(ξ, 0) − S(η, 0) uniformly on macroscopic sets
{ξ0 = 1} resp. {ξ0 6= η0}. This makes the usually tedious investigation of transversality
relatively simple for Takagi-type curves. This property of positivity is established for ranges
of κ resp. γ obtained from a representation of S(ξ, ·) − S(η, ·) by series depending only on
the jump times τk at which the dyadic components ξ−n and η−n representing ξ resp. η di�er
for the kth time (for details see Subsection 4.1 below). These series, though formally similar
to Erdös' famous Bernoulli convolutions, should not be confused with the latter. The tele-
scoping relations used in Fourier analytic criteria for the smoothness of SBR resp. occupation
measures reduce to simpler Fourier analytic criteria for the macroscopic restrictions of the
measures that are deduced using transversality in the main theorems of the paper.

The paper is organized along these lines of reasoning in the following way. In Section 2,
repeating [3], [14] or [18], we explain the interpretation of our Takagi-type curve in terms of
dynamical systems based on the baker transform. In Section 3, we describe the measures re-
lated to the SBR measure, deduce telescoping relationships between them, and representation
formulas for S(ξ, ·)− S(η, ·) using the jump times τn, n ∈ N outlined above. In Section 4, we
treat the absolute continuity of the SBR measure. In the short Subsection 4.1 we establish
transversality on suitable ranges of κ resp. γ. This provides the basis for the proof of absolute
continuity of the SBR measure in Subsection 4.3, after the relationship between measures
related to the SBR measure and their macroscopic versions have been clari�ed in Section
4.2. These results are not in con�ict with the existence of the remarkable Pisot numbers for
Erdös' Bernoulli convolutions. Dually, in Section 5, we deal with measures related to the
occupation measure of H, and use a Fourier analytic criterion to show absolute continuity of
the occupation measure of H = T −

∫ ·
0 S(ξ, z)dz.

2. The curve as the attractor of a dynamical system

Let γ ∈]1
2 , 1[. Our aim is to investigate the �ne structure geometry of the one-dimensional

Takagi type curves given by

(2.1) T (x) =

∞∑
n=0

γnΦ(2nx), x ∈ [0, 1],

where Φ(y) = d(y,Z), y ∈ R. Let us �rst determine the Hölder exponent of x 7→ T (x) (see [2]
for an overview).

Proposition 2.1. T is Hölder continuous with exponent − log γ
log 2 .

Proof. Let x, y ∈ [0, 1] and choose an integer k ≥ 0 such that

2−(k+1) ≤ |x− y| ≤ 2−k.
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Then we have, using the Lipschitz continuity of the distance function

|T (x)− T (y)| ≤
k∑

n=1

γn|d(2nx,Z)− d(2ny,Z)|+ 2

∞∑
n=k+1

γn

.
k∑

n=1

(2γ)n|x− y|+ γk . (2γ)k 2−k + γk ' γk = 2
−k log γ

log 1
2

. |x− y|−
log γ
log 2 .

This shows that log γ

log 1
2

is an upper bound for the Hölder exponent of T . To see that it is also

a lower bound, for n ∈ N choose xn = 0, yn = 2−n. Then we may write

|T (xn)− T (yn)| =
∣∣∣ ∞∑
k=1

γkd(2k−n,Z)
∣∣∣

=

n−1∑
k=1

γk2k−n ' 2
−n log γ

log 1
2 = |xn − yn|−

log γ
log 2 .

Since |xn − yn| → 0 as n → ∞, this shows that − log γ
log 2 is also a lower bound for the Hölder

exponent of T . The argument can be extended to the other points in the interval. �

Our access to the analysis and geometry of T is via the theory of dynamical systems.
In fact, we shall describe a dynamical system on [0, 1]2, alternatively Ω = {0, 1}N × {0, 1}N
the attractor of which is given by the graph of the function. For elements of Ω we write
for convenience ω = ((ω−n)n≥0, (ωn)n≥1); one understands Ω as the space of 2-dimensional
sequences of Bernoulli random variables. Denote by θ the canonical shift on Ω, given by

θ : Ω→ Ω, ω 7→ (ωn+1)n∈Z.

Ω is endowed with the product σ-algebra, and the in�nite product ι = ⊗n∈Z(1
2δ{0} + 1

2δ{1})
of Bernoulli measures on {0, 1}. We recall that θ is ι-invariant.

Now let

T = (T1, T2) : Ω→ [0, 1]2, ω 7→ (
∞∑
n=0

ω−n2−(n+1),
∞∑
n=1

ωn2−n).

Let us denote by T1 the �rst component of T , and by T2 the second one. It is well known
that ι is mapped by the transformation T to λ2 (i.e. ι = λ2 ◦ T ), the 2-dimensional Lebesgue
measure. It is also well known that the inverse of T , the dyadic representation of the two
components from [0, 1]2, is uniquely de�ned apart from the dyadic pairs. For these we de�ne
the inverse to map to the sequences not converging to 0. Let

B = (B1, B2) = T ◦ θ ◦ T−1.

We call B = (B1, B2) the baker's transformation. The θ-invariance of ι directly translates
into the B-invariance of λ2:

λ2 ◦B−1 = (λ2 ◦ T ) ◦ θ−1 ◦ T−1 = (ι ◦ θ−1) ◦ T−1 = ι ◦ T−1 = λ2.(2.2)

For (ξ, x) ∈ [0, 1]2 let us note

T−1(ξ, x) =
(
(ξ−n)n≥0, (xn)n≥1

)
.

Let us calculate the action of B and its entire iterates on [0, 1]2.
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Lemma 2.2. Let (ξ, x) ∈ [0, 1]2. Then for k ≥ 0

Bk(ξ, x) =
(

2kξ (mod 1),
ξ−k+1

2
+
ξ−k+2

22
+ · · ·+ ξ0

2k
+

x

2k

)
,

for k ≥ 1

B−k(ξ, x) =
( ξ

2k
+
x1

2k
+

x2

2k−1
+ · · ·+ xk

2
, 2kx(mod 1)

)
.

Proof: By de�nition of θk for k ≥ 0

Bk(ξ, x) =
(∑
n≥0

ξ−n+k2
−(n+1),

ξ−k+1

2
+
ξ−k+2

22
+ · · ·+ ξ0

2k
+
∑
n≥1

xn2−(k+n)
)
.

Now we can write∑
n≥0

ξ−n+k2
−(n+1) = 2kξ(mod 1) and

∑
n≥1

xn2−(k+n) =
x

2k
.

This gives the �rst formula. For the second, note that by de�nition of θ−k for k ≥ 1

B−k(ξ, x) =
(∑
n≥0

ξ−n2−(n+1+k) +
x1

2k
+

x2

2k−1
+ · · ·+ xk

2
,
∑
n≥1

xn+k2
−n
)
.

Again, we identify∑
n≥1

xn+k2
−n = 2kx(mod 1) and

∑
n≥0

ξ−n2−(n+1+k) =
ξ

2k
.

�
For k ∈ Z, (ξ, x) ∈ [0, 1]2 we abbreviate the k-fold iterate of the baker transform of (ξ, x) as

Bk(ξ, x) =
(
Bk

1 (ξ, x), Bk
2 (ξ, x)

)
= (ξk, xk),

where for k ≥ 0

ξk = 2kξ(mod 1), and xk =
ξ−k+1

2
+
ξ−k+2

22
+ · · ·+ ξ0

2k
+

x

2k
,

and for k ≥ 1

ξ−k =
ξ

2k
+
x1

2k
+

x2

2k−1
+ · · ·+ xk

2
, and x−k = 2kx(mod 1).

Following Baranski [3, 4, 5], Shen [21], Hunt [14] and [16], we will next interpret the Takagi
curve T by a transformation on our base space [0, 1]2. Let

F : [0, 1]2 × R → [0, 1]2 × R,

(ξ, x, y) 7→
(
B(ξ, x), γy + Φ(B2(ξ, x))

)
.

Here we note B = (B1, B2) for the two components of the baker transform B.
For convenience, we extend T from [0, 1] to [0, 1]2 by setting

T (ξ, x) = T (x), ξ, x ∈ [0, 1].

To see that the graph of T is an attractor for F , the skew-product structure of F with respect
to B plays a crucial role.

Lemma 2.3. For any ξ, x ∈ [0, 1] we have

F
(
ξ, x, T (ξ, x)

)
=
(
B(ξ, x), T

(
B(ξ, x)

))
.
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Proof: By the de�nition of the baker's transform we may write

T (ξ, x) =
∞∑
n=0

γnΦ
(
B−n2 (ξ, x)

)
, ξ, x ∈ [0, 1].

Hence, setting k = n− 1, for ξ, x ∈ [0, 1]

T
(
B2(ξ, x)

)
=

∞∑
n=0

γnΦ
(
B−n+1

2 (ξ, x)
)

= Φ
(
B2(ξ, x)

)
+ γ

∞∑
k=0

γkΦ
(
B−k2 (ξ, x)

)
= Φ

(
B2(ξ, x)

)
+ γT (x).

Hence by de�nition of F(
B(ξ, x), T (B(ξ, x))

)
=
(
B(ξ, x), T (B2(ξ, x))

)
= F

(
ξ, x, T (ξ, x)

)
.

�

To assess the stability properties of the dynamical system generated by F , we calculate its
Jacobian. We obtain for ξ, x ∈ [0, 1], y ∈ R

DF (ξ, x, y) =

 2 0 0
0 1

2 0
0 1

2Φ′
(
B2(ξ, x)

)
γ

 .
Hence the Lyapunov exponents of the dynamical system associated with F are given by 2, 1

2 ,
and γ. The corresponding invariant vector �elds are given by 1

0
0

 , X(ξ, x) =

 0
1

−
∑∞

n=1

(
1

2γ

)n
Φ′
(
Bn

2 (ξ, x)
)
 ,

 0
0
1

 ,

as is straightforwardly veri�ed. Note that X is well de�ned, since by our choice of γ we have
2γ > 1. Hence we have in particular for ξ, x ∈ [0, 1], y ∈ R

DF (ξ, x, y)X(ξ, x) =
1

2
X
(
B(ξ, x)

)
.

Note that the vector X spans an invariant stable manifold and does not depend on y.

3. The Sinai-Bowen-Ruelle measure

Abbreviate κ = 1
2γ ∈]0, 1[. In Tsujii [24] the problem of the absolute continuity of the

Sinai-Bowen-Ruelle (SBR) measure on the stable manifold described by

S(ξ, x) =

∞∑
n=1

κnΦ′
(
Bn

2 (ξ, x)
)
, ξ, x ∈ [0, 1],

with respect to Lebesgue measure has been treated. It has been related to the transversality

of the map x 7→ S(ξ, x) − S(η, x) for ξ, η ∈ [0, 1] such that ξ0 6= η0. We shall now tackle a
proof of this statement for a reasonably big range of κ by giving the problem of transversality
of S a closer look. Our proof rests upon a comparison of the measures ρ, image measure of
three dimensional Lebesgue measure under the map

(x, ξ, η) 7→ S(ξ, x)− S(η, x),
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and its conditioning to the set {ξ0 6= η0}, namely ρ̂ = ρ(·|ξ0 6= η0). This comparison will
simplify the derivation of smoothness of the SBR measure from transversality in the spirit of
Tsuji [24].

To recall the SBR measure of F , let us �rst calculate the action of S on the λ2-measure
preserving map B. For ξ, x ∈ [0, 1] we have

S(B(ξ, x)) =
∞∑
n=1

κnΦ′
(
Bn

2

(
B2(ξ, x)

))
=

∞∑
n=1

κnΦ′
(
Bn+1

2 (ξ, x)
)

= κ−1
∞∑
k=1

κkΦ′
(
Bk

2 (ξ, x)
)
− Φ′

(
B2(ξ, x)

)
= 2γS(ξ, x)− Φ′

(
B2(ξ, x)

)
.

So we may de�ne the Anosov skew product

Γ : [0, 1]2 × R→ [0, 1]2 × R,

(ξ, x, v) 7→
(
B(ξ, x), 2γv − Φ′

(
B2(ξ, x)

))
.

Then the equation just obtained yields the following result (compare with Lemma 2.3).

Lemma 3.1. For ξ, x ∈ [0, 1] we have

Γ
(
ξ, x, S(ξ, x)

)
=
(
B(ξ, x), S(B(ξ, x))

)
.

The push-forward of the Lebesgue measure in R2 to the graph of S given by

ψ = λ2 ◦ (id, S)−1

on B([0, 1]2)⊗ B(R) is Γ-invariant.

Proof: The �rst equation has been veri�ed above. The Γ-invariance of ψ is a direct con-
sequence of the B-invariance of λ2. �

De�ne π2 : [0, 1]2 → [0, 1], (ξ, x) 7→ x and de�ne the measure

µ = λ2 ◦ (π2, S)−1(3.1)

on B([0, 1]2). The measure µ is called the Sinai-Bowen-Ruelle measure of Γ. Its marginals in
x ∈ [0, 1] are denoted µx = λ ◦ S(·, x)−1.

We now de�ne a map on our probability space that exhibits certain increments of S in a
self similar way. Let

G(ξ, x) =
∑
n∈Z

κ−n
[
Φ′
(
B−n2 (ξ, x)

)
− Φ′

(
B−n2 (0, x)

)]
, ξ, x ∈ [0, 1].

Then we have the following simple relationship between G and S.

Lemma 3.2. For x, ξ, η ∈ [0, 1] we have

G(ξ, x)−G(η, x) = S(ξ, x)− S(η, x).
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Proof: For x, ξ, η ∈ [0, 1], the equation

G(ξ, x)−G(η, x) =
∑
n∈Z

κ−n
[
Φ′
(
B−n2 (ξ, x)

)
− Φ′

(
B−n2 (η, x)

)]
=

∞∑
k=1

κk
[
Φ′
(
Bk

2 (ξ, x)
)
− Φ′

(
Bk

2 (η, x)
)]

= S(ξ, x)− S(η, x),

holds. Here we used that the �rst sum for non-negative integers n is zero.
This completes the proof. �

The following result describes the scaling properties of G.

Lemma 3.3. For ξ, x ∈ [0, 1] we have

G
(
B−1(ξ, x)

)
= κG(ξ, x).

Proof: Note that by de�nition, setting n+ 1 = k, for ξ, x ∈ [0, 1]

G
(
B−1(ξ, x)

)
=

∑
n∈Z

κ−n
[
Φ′
(
B−n−1(ξ, x)

)
− Φ′

(
B−n(B−1

1 (ξ, x), 0)
)]

+
∑
n∈Z

κ−n
[
Φ′
(
B−n−1(ξ, x)

)
− Φ′

(
B−n−1(ξ, 0)

)]
+

∑
n∈Z

κ−n[Φ′
(
B−n−1

2 (ξ, 0)
)
− Φ′

(
B−n2 (B−1

1 (ξ, x), 0)
)]

= κG(ξ, x) +

∞∑
k=1

κk[Φ′(Bk−1
2 (ξ, 0))− Φ′(Bk

2 (B−1
1 (ξ, x), 0))]

= κG(ξ, x).

For the last equality, note that Φ′ is constant on the two halves of the unit interval, and that

Bk−1
2 (ξ, 0) =

ξ0

2k−1
+ · · ·+

ξ−k+2

2
and

Bk
2 (B−1

1 (ξ, x), 0) =
x1

2k
+

ξ0

2k−1
+ · · ·+

ξ−k+2

2
belong to the same half. This provides the claimed identity.�

We �nish this section by giving a representation which will be the starting point for our
subsequent approach of transversality of S. To this end, �x ξ, η ∈ [0, 1]. We recursively de�ne
the following sequence of times of disagreement of dyadic components of ξ and η. For n ∈ N
let

τ1 = inf{` ≥ 0 : ξ̄−` 6= η̄−`}, and τn+1 = inf{` > τn : ξ̄−` 6= η̄−`},(3.2)

and for x ∈ [0, 1]

g(x) :=
∞∑
m=0

κm
[
Φ′
(
Bm

2 (0,
1 + x

2
)
)
− Φ′

(
Bm

2 (0,
x

2
)
)]

=

∞∑
m=0

κm
[
Φ′
(1 + x

2m+1

)
− Φ′

( x

2m+1

)]
.

We have the following result.
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Proposition 3.4. Let ξ, η, x ∈ [0, 1]. Then

(3.3) S(ξ, x)− S(η, x) =
∞∑
`=1

κτ`+1 (−1)(1−ξ̄−τ` )g
(
Bτ`

2 (ξ, x)
)
.

Proof: It follows from the de�nition of τn, n ∈ N, that ξ can be written

ξ = (η0, . . . , ητ1+1, ξ−τ1 , η−τ1−1, · · · , η−τ2+1, ξ−τ2 , η−τ2−1, · · · · · · , η−τn+1, ξ−τn , η−τn−1, · · · ).

For n ∈ N let ξn be the sequence which up to τn represents the dyadic expansion of ξ, and
then switches to the representing sequence of η. Then for n ∈ N we have

ξn = (η0, . . . , ητ1+1, ξ−τ1 , η−τ1−1, · · · , η−τ2+1, ξ−τ2 , η−τ2−1, · · · · · · , η−τn+1, ξ−τn , η−τn−1, · · · , η−m, · · · ).

Note that limn→∞ ξ
n = ξ.We can therefore rewrite the left hand side of (3.3) in the telescoping

form

S(ξ, x)− S(η, x) =
∞∑
l=1

(
S(ξ`, x)− S(ξ`−1, x)

)
,

where ξ0 = η.

For ` ∈ N let us calculate S(ξ`, ·)− S(ξ`−1, ·). Since ξ`−k = ξ
`−1
−k for k ≤ τ` − 1, we have

S(ξ`, x)− S(ξ`−1, x) =

∞∑
n=1

κn
[
Φ′
(
Bn

2 (ξ`, x)
)
− Φ′

(
Bn

2 (ξ`−1, x)
)]

=
∞∑

n=τ`+1

κn
[
Φ′
(
Bn

2 (ξ`, x)
)
− Φ′

(
Bn

2 (ξ`−1, x)
)]

=κτ`
∞∑
m=1

κm
[
Φ′
(
Bm

2

(
Bτ`

2 (ξ`, x)
))
− Φ′

(
Bm

2

(
Bτ`

2 (ξ`−1, x)
))]

.

Now

Bτ`
2 (ξ`, x) = Bτ`

2 (ξ, x) = Bτ`
2 (ξ`−1, x).

And in case ξ−τ` = 1 we have

B1
2

(
Bτ`

2 (ξ`, x)
)

= Bτ`+1
2 (ξ`, x) =

1 +Bτ`
2 (ξ`, x)

2
=

1 +Bτ`
2 (ξ, x)

2
,

while

B1
2

(
Bτ`

2 (ξ`−1, x)
)

= Bτ`+1
2 (ξ`−1, x) =

Bτ`
2 (ξ, x)

2
.

In case ξ−τ` = 0, we have in contrast

B1
2

(
Bτ`

2 (ξ`, x)
)

= Bτ`+1
2 (ξ`, x) =

Bτ`
2 (ξ`, x)

2
=
Bτ`

2 (ξ, x)

2
,

while

B1
2

(
Bτ`

2 (ξ`−1, x)
)

= Bτ`+1
2 (ξ`−1, x) =

1 +Bτ`
2 (ξ`, x)

2
=

1 +Bτ`
2 (ξ, x)

2
.

So we may write by de�nition of g

S(ξ`, x)−S(ξ`−1, x)

= (−1)(1−ξ−τ` ) κτ`
∞∑
m=1

κm
[
Φ′
(
Bm−1

2

(1 +Bτ`
2 (ξ, x)

2

))
− Φ′

(
Bm−1

2

(Bτ`
2 (ξ, x)

2

))]
=κτ`+1 (−1)(1−ξ−τ` ) g

(
Bτ`

2 (ξ, x)
)
.
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Hence we obtain the claimed representation

S(ξ, x)− S(η, x) =

∞∑
`=1

κτ`+1 (−1)(1−ξ−τ` ) g
(
Bτ`

2 (ξ, x)
)
, ξ, η, x ∈ [0, 1].

�

Let us calculate g. Here, as opposed to the trigonometric case in the stable manifold of
Weierstrass curves (see [15]), the simplicity of φ implies the following surprising identity.

Lemma 3.5. We have g(x) = 2, x ∈ [0, 1].

Proof: Let us inspect the �rst term in the series decomposition of g. Here we have
B0

2(0, 1+x
2 ) = 1+x

2 ∈ [1
2 , 1], while B0

2(0, x2 ) = x
2 ∈ [0, 1

2 ]. Hence the contribution of the �rst

term is 1 + 1 = 2. For m ≥ 1 we have in contrast that both Bm
2 (0, 1+x

2 ) = 1+x
2m+1 and

Bm
2 (0, x2 ) = x

2m+1 belong to [0, 1
2 ]. Hence the contribution of terms of order m ≥ 1 vanishes.

This implies the claimed identity.�

Lemma 3.5 gives the following simpli�cation of the representation formula of Proposition
3.4.

Corollary 3.6. Let ξ, η, x ∈ [0, 1]. Then

(3.4) S(ξ, x)− S(η, x) = 2
∞∑
`=1

κτ`+1 (−1)(1−ξ̄−τ` ).

Proof: This follows by combining Lemma 3.5 and Proposition 3.4. �

Let us �nally extend this property to S(ξ, .) for ξ ∈ [0, 1]. First observe that for any
x ∈ [0, 1] we have

(3.5) S(0, x) =
∞∑
n=1

κnΦ′(
x

2n
) =

∞∑
n=1

κn =
κ

1− κ
.

Now denote by τ0
n, n ∈ N, the sequence of stopping times described above for the particular

case η = 0. Then we obtain

Corollary 3.7. Let ξ, x ∈ [0, 1]. Then

(3.6) S(ξ, x) =
κ

1− κ
+ 2

∞∑
`=1

κτ
0
` +1.

Proof: Combine Corollary 3.6 with (3.5), and note that by de�nition ξ−τ0k
= 1 for all

k ≥ 1. �

4. Smoothness of the SBR measure

In this section we shall address the smoothness of the SBR measure de�ned in Section 3.
More precisely, we shall prove that the SBR measure is absolutely continuous. To do this, in
Subsection 4.2 we shall derive a telescoping relationship linking the image of three dimensional
Lebesgue measure by the map

([0, 1]3 3 (x, ξ, η) 7→ S(ξ, x)− S(η, x)

to its macroscopic restriction to the set {τ1 = 0}. Smoothness of the SBR measure will be
seen to be crucially linked to transversality of S, i.e. positivity properties of S(ξ, ·)−S(η, ·) on
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the macroscopic set {τ1 = 0}. This will be discussed in the following Subsection 4.1. Finally,
in Subsection 4.3 we shall use a Fourier analytic approach to establish smoothness of the SBR
measure.

Remark 4.1. Our result of Theorem 4.4 on the smoothness of the SBR measure established
on the interval [1

2 ,
1√
2
] exempli�es our approach based especially on the telescoping relationship

4.3. It can be improved to hold for any parameter κ ∈ [1
2 , 1[ (see Shen [21], or Baranski [2]

for a survey). We emphasize in particular that this result does not contradict Erdös' [9]
famous result on Bernoulli convolutions. In fact, Erdös considers series of the type Z(κ) =∑

n∈NXnκ
n with i.i.d. Bernoulli sequences (Xn)n∈N, triggering a remarkable series of papers

(see [6, 22, 23], for surveys see [20, 25]) dealing with the question of absolute continuity of
the law of Z(κ) for κ ∈ [1

2 , 1[. One of the results of this research was the discovery of critical

values κ, i.e. those for which 1
κ is a Pisot number, and for which absolute continuity is not

given. As shown above, a Bernoulli type series may be seen to appear in the representation of
S(ξ, 0)−S(η, 0) in Corollary 3.6. But the impression that this is a series of the Erdös type is
misleading, since we face the much more lacunary situation of series with powers κτn instead
of κn, where τn are the (random) times of disagreement of the dyadic sequences related to
ξ, η ∈ [0, 1], and since we do not consider the problem of absolute continuity of the increments
S(ξ, 0) − S(η, 0). The representation of S(ξ, 0) in Corollary 3.7 is even less suspicious for
representing an Erdös type convolution.

4.1. Transversality of S. As a consequence of Corollary 3.6 we shall now tackle the transver-
sality property for the stable manifold map S. The property will turn out to be crucial for
the smoothness of the SBR measure deduced subsequently. Here, we simply say that S is
transversal if S(ξ, ·)−S(η, ·), a constant function according to Corollary 3.6, is bounded away
from 0 on the set {τ1 = 0}. We will design an interval I in ]1

2 , 1[ such that for κ ∈ I the map
S is transversal.

Proposition 4.2. For κ ∈ I =]1
2 ,

1√
2
] the map S is transversal on the set {τ1 = 0}.

Proof: Assume w.l.o.g. (modulo changing the roles of ξ and η) that ξ − η > 1
2 . This

implies that ξ0 = 1, η0 = 0, hence τ1 = 0, and also ξ−τ1 = 1, ξ−τ2 = 1. As a consequence, we
have

S(ξ, ·)− S(η, ·) = 2(κ+ κτ2+1 +
∞∑
`=3

κτ`+1 (−1)(1−ξ̄−τ` ))

≥ 2κ[1 + κτ2 − κτ3 1

1− κ
].(4.1)

Now by de�nition τ3 ≥ τ2 + 1, τ2 ≥ 1, and κ > 1
2 . Hence we may estimate

(1 + κτ2)(1− κ)− κτ3 ≥ 1− κ+ κτ2 − κτ2+1 − κτ2+1

= 1− κ+ κτ2(1− 2κ) ≥ 1− κ+ κ(1− 2κ) = 1− 2κ2.

And 1 − 2κ2 > 0 i� κ < 1√
2
. Using this in (4.1) yields the claimed uniform positivity of

S(ξ, ·)− S(η, ·). �

4.2. The relationship between ρ, ρ̂ and Lebesgue measure. In this section we exploit
the scaling properties of S, more precisely its self a�nity in order to express ρ in terms of ρ̂.
Recall that ρ is the image measure of the three-dimensional Lebesgue measure by the map

[0, 1]3 3 (x, ξ, η) 7→ S(ξ, x)− S(η, x),
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namely, for any Borel set A ⊂ R, we de�ne

ρ(A) = λ3
({

(x, ξ, η) ∈ [0, 1]3 : S(ξ, x)− S(η, x) ∈ A
})
.

and ρ̂(·) = ρ(·|τ1 = 0). By its very de�nition, ρ̂ lives on the set of pairs (ξ, η) ∈ [0, 1]2 for which
τ1 = 0, which means that ξ0 6= η0. On this set, transversality of S will allow a comparison of
ρ̂ with the Lebesgue measure. This will �nally lead to conclusions about the regularity of the
SBR measure. In the following formula, ρ is related to its macroscopic version ρ̂.

Proposition 4.3. For Borel sets A on the real line, we have

ρ(A) =
∞∑
n=0

2−n−1ρ̂(κ−nA).

Proof: Our arguments will be based on the representation presented in Corollary 3.6.
Recall that for ξ, x ∈ [0, 1] the map Bτ1

1 (ξ, x) is related to the dyadic sequence

(· · · , ξ−τ1−1, ξ−τ1).

For k ∈ N let

τ̂1 = inf{` ≥ 0 : ξ−τ1−` 6= η−τ1−`}, τ̂k = inf{` > τ̂k−1 : ξ−τ1−` 6= η−τ1−`}.

Then, abbreviating ξ̂ = Bτ1
1 (ξ, x), we have for k ≥ 1

τk = τ1 + τ̂k, ξ̂−τ̂k = ξ̄−τk .

Consequently we may write

∞∑
`=1

κτ`+1(−1)(1−ξ−τ` )(4.2)

= κτ1
∞∑
`=1

κτ̂`+1(−1)(1−ξ̂−τ̂` ).

Moreover, note that by de�nition of τ1, we have

ξ̂0 = ξ−τ1 6= η−τ1 = η̂0,

so that τ̂1 = 0. Finally, τ1 and τ̂k, k ∈ N, are independent. Therefore we have, writing P
and E for probability and expectation with respect to the underlying sample space [0, 1]3 by
the tower property of conditional expectations, the fact that τ1 has a geometric law with

parameter 1
2 on Z+, and that by Corollary 3.6 the law of 2

∑∞
`=1 κ

τ̂`+1(−1)(1−ξ̂−τ̂` ) is just ρ̂

ρ(A) = E(ρ(A|τ1)) =
∞∑
n=0

2−n−1 ρ(A|τ1 = n)(4.3)

=

∞∑
n=0

2−n−1P(2

∞∑
`=1

κτ̂`+1(−1)(1−ξ̂−τ̂` ) ∈ κ−nA)

=

∞∑
n=0

2−n−1ρ̂(κ−nA).

This is the claimed formula. �
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4.3. The smoothness of the SBR measure. In this section we will �nally draw our con-
clusions from the preceding two sections. In fact, we will derive a su�cient criterion for the
absolute continuity of the SBR measure from Proposition 4.2. We note here that absolute
continuity of the SBR measure, at least for the classical Weierstrass function, can be estab-
lished for the entire range [1

2 , 1[ for κ, as is shown in [21]. We stick to the simpler positivity
criterion just for allowing an explicitly dual form for a criterion for absolute continuity of the
occupation measure in section 5. For establishing absolute continuity, we consider the Fourier
transforms of the marginals µx, x ∈ [0, 1], of the SBR measure µ de�ned in (3.1). Let

φx(u) =

∫
R

exp(iuy)µx(dy), u ∈ R.

By de�nition of µ and the integral transform theorem we have

φx(u) =

∫ 1

0
exp

(
iuS(ξ, x)

)
dξ, u ∈ R, x ∈ [0, 1].

To prove the absolute continuity of µx we have to prove that φx is square integrable on R.
Therefore, to prove that µ is absolutely continuous, it will be su�cient to show∫ 1

0

∫
R
|φx(u)|2dudx =

∫
R

∫
[0,1]3

exp
(
iu
(
S(ξ, x)− S(η, x)

))
dxdξdηdu

=

∫
R

∫
R

exp(iux)ρ(dx)du <∞.

Theorem 4.4. Let κ ≤ 1√
2
. Then for almost every x ∈ [0, 1] the function

ξ 7→ S(ξ, x)

has an absolutely continuous law with respect to the Lebesgue measure with square integrable

density. In particular, the SBR measure (3.1) is absolutely continuous with respect to the

Lebesgue measure with square integrable density.

Proof: By Proposition 4.3, the integral transformation formula and noting that 1
2κ = γ,

we may write∫
R

∫
R

exp(iux)ρ(dx)du =

∞∑
n=0

2−n−1

∫
R

∫
R

exp(iuy)ρ̂(κ−ndy)du

=

∫
R

∫
R

∞∑
n=0

2−n−1 exp(iuκny)ρ̂(dy)du

=
1

2

∫
R

∫
R

∞∑
n=0

γn exp(iuy)ρ̂(dy)du

=
1

2

1

1− γ

∫
R

∫
R

exp(iuy)ρ̂(dy)du.

We have to show that

lim sup
K→∞

∫ K

−K

∫
R

exp(iuy)duρ̂(dy) <∞.

Recall that ρ̂ is antisymmetric with respect to re�ection at the origin and has compact support
[−L,L]. From Proposition 4.2 and Corollary 3.6 we further know that there is k > 0 such
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that ρ̂([−k, k]) = 0. Hence we have

∫ K

−K

∫
R

exp(iuy)duρ̂(dy) =

∫ K

−K

∫ L

−L
exp(iuy)ρ̂(dy)du

= 2

∫ L

−L

∫ K

0
cos(uy)duρ̂(dy)

= 2

∫ L

−L

sin(Ky)

y
ρ̂(dy)

= 4

∫ L

k

sin(Ky)

y
ρ̂(dy).(4.4)

But the integrand in the last line of (4.4) is uniformly bounded in K. This implies the claimed
absolute continuity.
�

5. The existence of a local time for T

In this section we use a similar criterion as in the preceding one to show that the occupation
measure associated with T possesses a square integrable density. This will be done in an
indirect way. We �rst establish an intrinsic link between the Takagi curve as the attractor
of an underlying dynamical system and its stable manifold spanned by S. It will identify
H(ξ, x) = T (x)−

∫ x
0 S(ξ, z)dz = H(ξ, x)−xS(ξ, 0) for x, ξ ∈ [0, 1] as a function having much

in common with the function G of the preceding sections. To relate microscopic properties
of H with macroscopic ones, we will deduce scaling relationships for H with respect to both
its arguments. We will de�ne measures χ and χ̂ related to increments of H in the second
variable. This will be done in an analogous way as ρ and ρ̂ in the preceding section. It will
be crucial again to investigate the relationship between the macroscopic measures and the
Lebesgue measure. This will be done by an argument as in subsection 4.2.

In the following key lemma we establish the link between T and the stable manifold of F .
For this purpose, we de�ne

H(ξ, x) =
∑
n∈Z

γn
[
Φ(B−n2 (ξ, x)

)
− Φ

(
B−n2 (ξ, 0)

)]
, ξ, x ∈ [0, 1].(5.1)

Then we have the following relationships between H and S.

Lemma 5.1. For x, y, ξ ∈ [0, 1] we have

H(ξ, y)−H(ξ, x) = T (y)− T (x)−
∫ y

x
S(ξ, z)dz.

For x, ξ, η ∈ [0, 1] we have

H(η, x)−H(ξ, x) =

∫ x

0

(
S(ξ, z)− S(η, z)

)
dz = x(S(ξ, 0)− S(η, 0)).
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Proof: For x, y, ξ ∈ [0, 1] we have indeed (recall κ = 1
2γ )

H(ξ, y)−H(ξ, x) =
∑
n∈Z

γn
[
Φ
(
B−n2 (ξ, y)

)
− Φ

(
B−n2 (ξ, x)

)]
=

∞∑
n=0

γn
[
Φ
(
B−n2 (ξ, y)

)
− Φ

(
B−n2 (ξ, x)

)]
+

∞∑
k=1

γ−k
[
Φ
(
Bk

2 (ξ, y)
)
− Φ

(
Bk

2 (ξ, x)
)
]

= T (y)− T (x)−
∫ y

x

∞∑
k=1

(2γ)−kΦ′
(
Bk

2 (ξ, z)
)
dz

= T (y)− T (x)−
∫ y

x

∞∑
k=1

κkΦ′
(
Bk

2 (ξ, z)
)
dz

= T (y)− T (x)−
∫ y

x
S(ξ, z)dz.

To argue for the second equation, note that for x, ξ, η ∈ [0, 1] we have

H(η, x)−H(ξ, x) =
∑
n∈Z

γn
{[

Φ
(
B−n2 (η, x)

)
− Φ

(
B−n2 (η, 0)

)]
−
[
Φ
(
B−n2 (ξ, x)

)
− Φ

(
B−n2 (ξ, 0)

)]}
=

∞∑
k=1

γ−k
{[

Φ
(
Bk

2 (η, x)
)
− Φ

(
Bk

2 (η, 0)
)]

−
[
Φ
(
Bk

2 (ξ, x)
)
− Φ

(
Bk

2 (ξ, 0)
)]}

= −
∫ x

0

∞∑
k=1

(2γ)−k
[
Φ′
(
Bk

2 (η, z)
)
− Φ′

(
Bk

2 (ξ, z)
)]

dz

= −
∫ x

0

∞∑
k=1

κk
[
Φ′
(
Bk

2 (η, z)
)
− Φ′

(
Bk

2 (ξ, z)
)]

dz

=

∫ x

0
[S(ξ, z)− S(η, z)]dz.

This completes the proof of the second equation. �

We next address the scaling properties of H.

Lemma 5.2. For ξ, x ∈ [0, 1] we have

H
(
B(ξ, x)

)
= γH(ξ, x) +

ξ0

2
S(2ξ, 0).

Consequently, for ξ, x, y ∈ [0, 1]

H(B(ξ, y))−H(B(ξ, x)) = γ[H(ξ, y)−H(ξ, x)].
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Proof: Let ξ, x ∈ [0, 1]. By de�nition and setting n − 1 = k we obtain, de�ning ξ̂ to be
represented by the dyadic sequence (0, ξ−1, ξ−2, · · · ),

H(B(ξ, x)) =
∑
n∈Z

γn
[
Φ
(
B−n+1(ξ, x)

)
− Φ

(
B−n(B1(ξ, x), 0)

)]
=

∑
n∈Z

γn
[
Φ
(
B−n+1(ξ, x)

)
− Φ

(
B−n+1(ξ, 0)

)]
+

∑
n∈Z

γn
[
Φ
(
B−n+1(ξ, 0)

)
− Φ

(
B−n(B1(ξ, x), 0)

)]
= γ

∑
k∈Z

γk
[
Φ
(
B−k(ξ, x)

)
− Φ

(
B−k(ξ, 0)

)]
+

∞∑
k=1

γ−k[Φ
(
Bk+1

2 (ξ, 0)
)
− Φ

(
Bk+1

2 (ξ̂, 0)
)]

= γH(ξ, x) + ξ0

∞∑
k=1

γ−k2−k−1Φ′(Bk+1
2 (ξ̂, 0))

= γH(ξ, x) +
ξ0

2

∞∑
k=1

κkΦ′(Bk
2 (2ξ, 0))

= γH(ξ, x) +
ξ0

2
S(2ξ, 0).

The last equation follows from the fact that the second term in the �rst formula only depends
on ξ. �

We �nally give a representation of increments of H that can be considered dual to the
representation of Proposition 3.4. It will serve as an entrance to investigating the smoothness
of the occupation measure, i. e. the existence of local time. To this end, �x x, y ∈ [0, 1]. We
recursively de�ne the following sequence of times of disagreement of dyadic components of x
and y. For n ∈ N let

σ1 = inf{` ≥ 1 : x̄` 6= ȳ`}, and σn+1 = inf{` > σn : x̄` 6= ȳ`}.(5.2)

We have the following result.

Proposition 5.3. Let ξ, x, y ∈ [0, 1]. Then

H(ξ, y)−H(ξ, x) =

∞∑
`=1

γσ` (−1)(1−ȳσ` )S
(
B−σ`1 (ξ, y), 0

)
(5.3)

+ 4κ

∞∑
`=1

γσ`Φ(B1
2(B−σ`1 (ξ, y), B−σ`2 (ξ, x)).

Proof: It follows from the de�nition of σn, n ∈ N, that y can be written

y = (x1, . . . , xσ1−1, yσ1 , xσ1+1, · · · , xσ2−1, yσ2 , xσ2+1, · · · · · · , xσn−1, yσn , xσn+1, · · · ).

For n ∈ N let yn be the sequence which up to σn represents the dyadic expansion of y, and
then switches to the representing sequence of x. Then for n ∈ N we have

yn = (x1, . . . , xσ1−1, yσ1 , xσ1+1, · · · , xσ2−1, yσ2 , xσ2+1, · · · · · · , xσn−1, yσn , xσn+1, · · · , xm, · · · ).
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Note that limn→∞ y
n = y. Hence the left hand side of (5.3) has the telescoping representation

H(ξ, y)−H(ξ, x) =
∞∑
l=1

(
H(ξ, y`)−H(ξ, y`−1)

)
,

where y0 = x.
For ` ∈ N let us calculate H(·, y`)−H(·, y`−1). Since B−n2 (ξ, y`) = B−n2 (ξ, y`−1) for n ≥ σ`

we have

H(ξ, y`)−H(ξ, y`−1) =
∑
n∈Z

γn
[
Φ
(
B−n2 (ξ, y`)

)
− Φ

(
B−n2 (ξ, y`−1)

)]
=
∑
n<σ`

γn
[
Φ
(
B−n2 (ξ, y`)

)
− Φ

(
B−n2 (ξ, y`−1)

)]
=γσ`

∞∑
m=1

γ−m
[
Φ
(
Bm

2

(
B−σ`(ξ, y`)

))
− Φ

(
Bm

2

(
B−σ`(ξ, y`−1)

))]
.

Now for m ∈ N we have

Bm
2 (B−σ`(ξ, y`))

=
B−σ`2 (ξ, x)

2m
+
yσ`
2m

+
B−σ`1 (ξ, y)−1

2m−1
+ · · ·+

B−σ`1 (ξ, y)−(m−1)

2

=
B−σ`2 (ξ, x)

2m
+
B−σ`1 (ξ, y)0

2m
+
B−σ`1 (ξ, y)−1

2m−1
+ · · ·+

B−σ`1 (ξ, y)−(m−1)

2

Bm
2 (B−σ`1 (ξ, y), B−σ`2 (ξ, x)),

Bm
2 (B−σ`(ξ, y`−1))

=
B−σ`2 (ξ, x)

2m
+
xσ`
2m

+
B−σ`1 (ξ, y)−1

2m−1
+ · · ·+

B−σ`1 (ξ, y)−(m−1)

2

B−σ`2 (ξ, x)

2m
+

(−1)yσ`

2m
+
B−σ`1 (ξ, y)0

2m
+
B−σ`1 (ξ, y)−1

2m−1
+ · · ·+

B−σ`1 (ξ, y)−(m−1)

2

= Bm
2 (B−σ`1 (ξ, y), B−σ`2 (ξ, x)) +

(−1)yσ`

2m
.

Hence

Φ
(
Bm

2 (B−σ`(ξ, y`))
)
− Φ

(
Bm

2 (B−σ`(ξ, y`−1))
)

=

∫ Bm2 (B
−σ`
1 (ξ,y),B

−σ`
2 (ξ,x))

Bm2 (B
−σ`
1 (ξ,y),B

−σ`
2 (ξ,x))+

(−1)
yσ`

2m

Φ′(z)dz.

To evaluate the integral, we distinguish the cases m = 1 and m > 1.
Assume m = 1 �rst. In case yσ` = 1 we obtain

Bm
2 (B−σ`1 (ξ, y), B−σ`2 (ξ, x)) =

1

2
+
B−σ`2 (ξ, x)

2
≥ 1

2
,

while

Bm
2 (B−σ`1 (ξ, y), B−σ`2 (ξ, x)) +

(−1)yσ`

2m
=
B−σ`2 (ξ, x)

2
≤ 1

2
.



TAKAGI TYPE FUNCTIONS AND SMOOTHNESS OF THEIR SBR MEASURE 19

Hence in this case, recalling that φ′|[0,1] = 1[0, 1
2

[ − 1[ 1
2
,1[,∫ Bm2 (B

−σ`
1 (ξ,y),B

−σ`
2 (ξ,x))

Bm2 (B
−σ`
1 (ξ,y),B

−σ`
2 (ξ,x))+

(−1)
yσ`

2m

Φ′(z)dz = (
1

2
− B−σ`2 (ξ, x)

2
)− (

1

2
+
B−σ`2 (ξ, x)

2
− 1

2
)

=
1

2
−B−σ`2 (ξ, x) = −1

2
Φ′(B1

2(B−σ`1 (ξ, x)), B−σ`2 (ξ, x))−B−σ`2 (ξ, x).

In case yσ` = 0 the sign on the right hand side of the preceding equation just changes, so that
we obtain ∫ Bm2 (B

−σ`
1 (ξ,y),B

−σ`
2 (ξ,x))

Bm2 (B
−σ`
1 (ξ,y),B

−σ`
2 (ξ,x))+

(−1)
yσ`

2m

Φ′(z)dz

= −(
1

2
−B−σ`2 (ξ, x)) = −1

2
Φ′(B1

2(B−σ`1 (ξ, x)), B−σ`2 (ξ, x)) +B−σ`2 (ξ, x).

In summary we obtain in case m = 1

Φ
(
Bm

2 (B−σ`(ξ, y`))
)
− Φ

(
Bm

2 (B−σ`(ξ, y`−1))
)

(5.4)

= −1

2
Φ′(B1

2(B−σ`1 (ξ, y), B−σ`2 (ξ, x)) + (−1)yσ`B−σ`2 (ξ, x).

Now assume that m > 1. In this case, depending on whether B−σ`1 (ξ, y)−(m−1) is 1 or

0, both Bm
2 (B−σ`1 (ξ, y), B−σ`2 (ξ, x)) + (−1)

yσ`

2m and Bm
2 (B−σ`1 (ξ, y), B−σ`2 (ξ, x)) are in [1

2 , 1[ or

[0, 1
2 [. Hence

Φ
(
Bm

2 (B−σ`(ξ, y`))
)
− Φ

(
Bm

2 (B−σ`(ξ, y`−1))
)

(5.5)

= Φ
(
Bm

2 (B−σ`1 (ξ, y), B−σ`2 (ξ, x)) +
(−1)yσ`

2m
)
− Φ

(
Bm

2 (B−σ`1 (ξ, y), B−σ`2 (ξ, x))
)

= (−1)(1−yσ` )2−mΦ′(Bm
2 (B−σ`1 (ξ, y), B−σ`2 (ξ, x))).

Still �xing ` ∈ N, we now sum in m in (5.5), add (5.4), and recall that κ = 1
2γ , to obtain

∞∑
m=1

γ−m
[
Φ
(
Bm

2

(
B−σ`(ξ, y`)

))
− Φ

(
Bm

2

(
B−σ`(ξ, y`−1)

))]
= 2κ[(−1)yσ`B−σ`2 (ξ, x)− 1

2
(1 + (−1)(1−yσ` ))Φ′(B1

2(B−σ`1 (ξ, y), B−σ`2 (ξ, x)))]

+(−1)(1−yσ` )
∞∑
m=1

κmΦ′
(
Bm

2 (B−σ`1 (ξ, x), B−σ`2 (ξ, x))
)

= 2κ[(−1)yσ`B−σ`2 (ξ, x)− 1

2
(1 + (−1)(1−yσ` ))Φ′(B1

2(B−σ`1 (ξ, y), B−σ`2 (ξ, x)))]

+(−1)(1−yσ` )S(B−σ`1 (ξ, y), B−σ`2 (ξ, x))

= 2κ[(−1)yσ`B−σ`2 (ξ, x)− 1{yσ`=1}Φ
′(B1

2(B−σ`1 (ξ, y), B−σ`2 (ξ, x)))]

+(−1)(1−yσ` )S(B−σ`1 (ξ, y), B−σ`2 (ξ, x))

= 2κ[(−1)yσ`B−σ`2 (ξ, x) + 1{yσ`=1}]

+(−1)(1−yσ` )S(B−σ`1 (ξ, y), B−σ`2 (ξ, x))

= 4κ Φ(B1
2(B−σ`1 (ξ, y), B−σ`2 (ξ, x)) + (−1)(1−yσ` )S(B−σ`1 (ξ, y), B−σ`2 (ξ, x)).
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Now multiply the last line of the preceding equation by γσ` and sum over ` ∈ N to obtain
the desired formula. �

Let us �nally use the representation formulas for S from section 3 to describe increments
of H in more detail. For this purpose, for y ∈ [0, 1] with dyadic representation (yn)n∈N de�ne

σ0
1 = inf{k ≥ 1 : yk 6= 0}, σ0

n+1 = inf{k > σ0
n : yk 6= 0}, n ∈ N,

and for ` ∈ N let

R` = sup{k ∈ N : σ0
k ≤ σ`}.

Corollary 5.4. Let ξ, x, y ∈ [0, 1]. Then we have

H(ξ, y)−H(ξ, x)− 4κ
∞∑
`=1

γσ`Φ(B1
2(B−σ`1 (ξ, y), B−σ`2 (ξ, x))

=
∞∑
`=1

γσ`(−1)(1−yσ` )[
κ

1− κ
+ 2κσ`

R∑̀
p=1

κ−σ
0
p ] +

∞∑
`=1

(
1

2
)σ`(−1)(1−yσ` )[S(ξ, 0)− S(0, 0)]

=
∞∑
`=1

γσ`(−1)(1−yσ` )[
κ

1− κ
+ 2κσ`

R∑̀
p=1

κ−σ
0
p ] + (y − x)[S(ξ, 0)− S(0, 0)].

Proof: According to Proposition 5.3 we have to calculate S(B−σ`1 (ξ, y), 0) for ξ, y ∈
[0, 1], ` ∈ N using the formulas provided by Corollaries 3.6, 3.7. To exploit them, we �rst note

that the dyadic sequence associated with B−σ`1 (ξ, y) is given by

(· · · , ξ−1, ξ0, y1, y2, · · · , yσ`−1, yσ`). We therefore can write

S(B−σ`1 (ξ, y), 0) =
κ

1− κ
+ 2κσ`

R∑̀
p=1

κ−σ
0
p + 2

∞∑
m=1

κσ`+τ
0
m+1

=
κ

1− κ
+ 2κσ`

R∑̀
p=1

κ−σ
0
p + κσ`(S(ξ, 0)− S(0, 0)).

Now insert this formula into the representation of Proposition 5.3, and observe that γκ = 1
2

to obtain the �rst equation. For the second, observe that the second term on the right hand
side of the �rst equation simply equals (y−x)[S(ξ, 0)−S(0, 0)], by the de�nition of σk, k ∈ N.�

5.1. The relationship between χ, χ̂ and Lebesgue measure. Let us next de�ne ana-
logues of the measures ρ and ρ̂ describing the spatial distribution of the increments of S with
respect to the two coordinates. For the �rst version, the increments of H are taken with
respect to the second variable x which is �dual� to ξ. We de�ne the image measure of λ3 on
[0, 1]3 by the mapping [0, 1]3 3 (x, y, ξ) 7→ H(ξ, y)−H(ξ, x) ∈ R, namely for Borel sets A ⊂ R
de�ne

χ(A) = λ3
({

(x, y, ξ) ∈ [0, 1]3 : H(ξ, x)−H(ξ, y) ∈ A
})
.

Further, denote by χ̂ the measure χ, conditioned on {σ1 = 1}.
To prove existence of a local time, we shall use smoothness properties of the density of the

measure χ̂.We will deduce them via a Fourier analytic criterion as before. Similarly to section
4.2, in this subsection we �rst address the scaling properties of H with respect to increments
in the second variable as to establish an analogous relationship between χ and χ̂.

In the following formula and using arguments dual to those given in subsection 4.2, χ is
expressed in terms of χ̂.
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Proposition 5.5. For Borel sets A on the real line, we have

χ(A) =
∞∑
n=0

2−n−1χ̂(γ−nA).

Proof: Again we start with a representation formula, this time given by Proposition 5.3.
For ξ, x ∈ [0, 1] the map B−σ1+1

2 (ξ, x) is related to the dyadic sequence

(xσ1 , xσ1+1, · · · ).

For k ∈ N let

σ̂1 = inf{` ≥ 0 : xσ1−1+` 6= yσ1−1+`}, σ̂k = inf{` > σ̂k−1 : ξσ1−1+` 6= yσ1−1+`}.

Then we have for k ≥ 1

σk = σ1 − 1 + σ̂k, x̂σ̂k = x̄σk .

Moreover, note that by de�nition of σ1, we have

x̂1 = xσ1 6= yσ1 = ŷ1,

so that σ̂1 = 1. Therefore we obtain the equation

H(ξ, y)−H(ξ, x) =
∞∑
`=1

γσ` (−1)(1−ȳσ` )S
(
B−σ`1 (ξ, y), 0

)
(5.6)

+ 4κ
∞∑
`=1

γσ`Φ(B1
2(B−σ`1 (ξ, y), B−σ`2 (ξ, x))

= γσ1−1
[ ∞∑
`=1

γσ̂` (−1)(1−ŷσ̂` )S
(
B−σ̂`1 (B−σ1+1ξ, y), 0

)
+ 4κ

∞∑
`=1

γσ̂`Φ(B1
2(B−σ̂`1 (B−σ1+1(ξ, y)), B−σ̂`2 (B−σ1+1(ξ, x)))

]
.

Now as in the proof of Proposition 4.3 we may identify the expression within the square
brackets in the last lines of (5.6) as H(ξ, y)−H(ξ, x), conditioned on σ1 = 1. Hence the fac-
torizing by γσ1−1 in (5.6) and the fact that σ1− 1 has a geometric law on Z+ with parameter
1
2 again leads to the conclusion contained in the claimed formula. �

5.2. The existence of local time. In this subsection we will show that T (·)−
∫ ·

0 S(ξ, z)dz
possesses a local time. For this purpose we shall use arguments such as those for the absolute
continuity of the SBR measure, starting with the Fourier analytic criterion. For this purpose,
denote by β the law of the map [0, 1]2 3 (ξ, x) 7→ H(ξ, x) = T (x)−

∫ x
0 S(ξ, z)dz. We consider

the Fourier transforms of the marginals βξ, ξ ∈ [0, 1]. Let

φξ(u) =

∫
R

exp(iuy)βξ(dy), u ∈ R.

By the integral transform, we have

φξ(u) =

∫ 1

0
exp

(
iuH(ξ, x)

)
dx, u ∈ R, ξ ∈ [0, 1].
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To prove absolute continuity of βξ, we have to prove that φξ is square integrable on R.
Therefore, to prove that H(ξ, ·) possesses a local time, it will be su�cient to show∫ 1

0

∫
R
|φξ(u)|2dudξ =

∫
R

∫
[0,1]3

exp
(
iu
(
H(ξ, y)−H(ξ, x)

))
dξdxdydu

=

∫
R

∫
R

exp(iux)χ(dx)du <∞.

By macroscopic properties of χ, the veri�cation of this criterion will boil down to a similar
one with χ̂ replacing χ.

Theorem 5.6. Then for all γ ∈ [1
2 ,

2
3 ] and for a.a. ξ ∈ [0, 1] the function

x 7→ H(ξ, x)

has an absolutely continuous law with respect to the Lebesgue measure with a square integrable

density. In particular, H(ξ, ·) possesses a square integrable local time for a.e. ξ ∈ [0, 1].

Proof: Applying Proposition 5.5 and the integral transformation theorem we �rst obtain∫
R

∫
R

exp(iux)χ(dx)du =

∞∑
n=0

2−n
∫
R

∫
R

exp(iuy)χ̂(γ−ndy)du

=

∫
R

∫
R

∞∑
n=0

2−n exp(iuγny)χ̂(dy)du

=

∫
R

∫
R

∞∑
n=0

κn exp(iuy)χ̂(dy)du

=
1

1− κ

∫
R

∫
R

exp(iuz)χ̂(dz)du.

Now recall that by de�nition of χ̂ and corollary 3.7 we have∫
R

∫
R

exp(iuz)χ̂(dz)du =

∫
R

∫
{σ1=1}

∫
[0,1]

exp(iu(H(ξ, x)−H(ξ, y)))dξdxdydu.

The positivity of the integral and Fubini's theorem allow us to integrate in u �rst, giving∫
R

∫
{σ1=1}

∫
[0,1]

exp(iu(H(ξ, y)−H(ξ, x)))dξdxdydu

= lim
N→∞

∫ N

−N

∫
{σ1=1}

∫
[0,1]

exp(iu(H(ξ, y)−H(ξ, x)))dξdxdydu

= lim
N→∞

∫
{σ1=1}

∫
[0,1]

2 sin(N(H(ξ, y)−H(ξ, x))

H(ξ, y)−H(ξ, x)
dξdxdy.

For the last equation we use that the function x 7→ sin(Nx)
x is pair.

To show positivity for H(ξ, y) − H(ξ, x) on the macroscopic set {σ1 = 1} anf for γ ≤ 2
3 ,

recall that for ξ, x, y ∈ [0, 1] we have

H(ξ, y)−H(ξ, x) = T (x)− T (y)− (y − x)S(ξ, 0)).

Now note that by de�nition for any x, y ∈ [0, 1] we have

T (y)− T (x) ≤ T (y) ≤ 1

2(1− γ)
.
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Recall from Corollary 3.7 that for ξ ∈ [0, 1] we have S(ξ, 0) ≥ 1
2γ−1 . Hence for x, y such that

σ1 = 1, yσ1 = 1, we have

(y−x)S(ξ, 0)−(T (y)−T (x)) ≥ 1

2

1

2γ − 1
− 1

2(1− γ)
=

1

2
[

1

2γ − 1
− 1

γ − 1
] =

1

2

2− 3γ

(2γ − 1)(1− γ)
,

which is positive for γ < 2
3 . If the roles of x and y are switched, a similar argument applies.�

Let us �nish by giving a geometric interpretation of the local time we just obtained. For
this purpose let l(ξ,x,v) be the motion through (ξ, x, T (ξ, x)) along the stable �ber described
by S(ξ, x), given by the solutions of the family of ODE

d

dr
l(ξ,x,v)(r) = S(ξ, r), with l(ξ,x,v)(x) = v, v ∈ R2.

Then for ξ, x, y ∈ [0, 1], x < y, the vertical distance between the stable �bers through the
points (ξ, y, T (y)) and (ξ, x, T (x)) is given by

l(ξ,y,T (y))(y)− l(ξ,x,T (x))(y) = T (y)− l(ξ,x,T (x))(y)

= T (y)− T (x)−
(
l(ξ,x,T (x))(y)− l(ξ,x,T (x))(x)

)
= T (y)− T (x)−

∫ y

x
S(ξ, z)dz

= H(ξ, y)−H(ξ, x).

Therefore Theorem 5.6 just expresses that measuring occupation by the position of the dif-
ferent displacements on the stable �bers of our dynamical system leads to smooth measures.
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